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Introduction to Constrained Optimization 
in Mathematica

Optimization Problems

Constrained optimization problems are problems for which a function f HxL is to be minimized or

maximized subject to constraints FHxL. Here f : n Ø  is called the objective function and FHxL is

a  Boolean-valued  formula.  In  Mathematica  the  constraints  FHxL  can  be  an  arbitrary  Boolean

combination  of  equations  gHxL 0,  weak  inequalities  gHxL ¥ 0,  strict  inequalities  gHxL > 0,  and  x œ

statements. The following notation will be used.

(1)
Min f HxL
s.t. FHxL

stands for "minimize f HxL subject to constraints FHxL", and

(2)
Max f HxL
s.t. FHxL

stands for "maximize f HxL subject to constraints FHxL".

You say a point u œn satisfies the constraints F if FHuL is true.

The following describes constrained optimization problems more precisely, restricting the discus-

sion to minimization problems for brevity.

Global Optimization

A point u œn  is said to be a global minimum of f  subject to constraints F if u satisfies the con-

straints and for any point v that satisfies the constraints, f HuL § f HvL.

A value a œ‹ 8-¶, ¶< is said to be the global minimum value of f  subject to constraints F if for

any point v that satisfies the constraints, a § f HvL.

The global minimum value a  exists for any f  and F.  The global minimum value a  is attained if

there exists  a point  u  such that  FHuL  is  true and f HuLã a.  Such a point  u  is  necessarily  a global

minimum.

If f  is a continuous function and the set of points satisfying the constraints F is compact (closed

and bounded) and nonempty, then a global minimum exists. Otherwise a global minimum may

or may not exist.



If f  is a continuous function and the set of points satisfying the constraints F is compact (closed

and bounded) and nonempty, then a global minimum exists. Otherwise a global minimum may

or may not exist.

Here the minimum value is not attained. The set of points satisfying the constraints is not 
closed.

In[1]:= MinimizeA9x, x2 + y2 < 1=, 8x, y<E

Minimize::wksol :
Warning: There is no minimum in the region described by the constraints; returning a result

on the boundary. à
Out[1]= 8-1, 8x Ø -1, y Ø 0<<

Here the set of points satisfying the constraints is closed but unbounded. Again, the minimum 
value is not attained.

In[3]:= MinimizeA9x2, x y ã 1=, 8x, y<E

Minimize::natt : The minimum is not attained at any point satisfying the given constraints. à

Out[3]= 80, 8x Ø Indeterminate, y Ø Indeterminate<<

The minimum value may be attained even if the set of points satisfying the constraints is 
neither closed nor bounded. 

In[4]:= MinimizeA9x2 + Hy - 1L2, y > x2=, 8x, y<E

Out[4]= 80, 8x Ø 0, y Ø 1<<

Local Optimization

A point u œn  is said to be a local minimum of f  subject to constraints F if u satisfies the con-

straints and, for some r > 0, if v satisfies v - u < rÏ FHvL, then f HuL § f HvL.

A local minimum may not be a global minimum. A global minimum is always a local minimum.

Here FindMinimum  finds a local minimum that is not a global minimum. 

In[18]:= FindMinimumA3 x4 - 28 x3 + 84 x2 - 96 x + 42, 8x, 1.1<E

Out[18]= 85., 8x Ø 1.<<

In[19]:= MinimizeA3 x4 - 28 x3 + 84 x2 - 96 x + 42, 8x<E

Out[19]= 8-22, 8x Ø 4<<
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In[20]:= PlotA3 x4 - 28 x3 + 84 x2 - 96 x + 42, 8x, 0, 5<E

Out[20]=
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Solving Optimization Problems

The methods used to solve local  and global  optimization problems depend on specific  problem

types.  Optimization  problems  can  be  categorized  according  to  several  criteria.  Depending  on

the type of functions involved there are linear and nonlinear (polynomial, algebraic, transcenden -

tal,  ...)  optimization  problems.  If  the  constraints  involve  x œ,  you  have  integer  and  mixed

integer-real  optimization  problems.  Additionally,  optimization  algorithms  can  be  divided  into

numeric and symbolic (exact) algorithms.

Mathematica  functions  for  constrained  optimization  include  Minimize,  Maximize,  NMinimize

and NMaximize for global constrained optimization, FindMinimum  for local constrained optimiza-

tion,  and  LinearProgramming  for  efficient  and  direct  access  to  linear  programming  methods.

The following table briefly summarizes each of the functions.

Function Solves Algorithms

FindMinimum , FindMaximum numeric local optimization linear programming methods, 
nonlinear interior point algorithms, 
utilize second derivatives

NMinimize , NMaximize numeric global optimization linear programming methods, 
Nelder-Mead, differential evolution, 
simulated annealing, random search

Minimize , Maximize exact global optimization linear programming methods, 
cylindrical algebraic decomposition, 
Lagrange multipliers and other 
analytic methods, integer linear 
programming

LinearProgramming linear optimization linear programming methods 
(simplex, revised simplex, interior 
point)

Summary of constrained optimization functions.

Here is a decision tree to help in deciding which optimization function to use.
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Here is a decision tree to help in deciding which optimization function to use.

Out[2]=

Yes No

Yes No

Yes No Yes No

Is your problem linear?

LinearProgramming Do you want a global optimum?

Do you want an exact solution? Is your problem small?

NMinimize FindMinimumMinimize

Linear Programming

Introduction

Linear  programming  problems  are  optimization  problems  where  the  objective  function  and

constraints are all linear.

Mathematica  has  a  collection  of  algorithms  for  solving  linear  optimization  problems  with  real

variables,  accessed  via  LinearProgramming,  FindMinimum,  FindMaximum,  NMinimize,

NMaximize, Minimize, and Maximize. LinearProgramming gives direct access to linear program -

ming algorithms, provides the most flexibility for specifying the methods used, and is the most

efficient  for  large-scale  problems.  FindMinimum,  FindMaximum,  NMinimize,  NMaximize,

Minimize,  and  Maximize  are  convenient  for  solving  linear  programming problems in  equation

and inequality form.
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This solves a linear programming problem

Min x + 2 y
s.t. -5 x + y = 7

x + y ¥ 26
x ¥ 3, y ¥ 4

using Minimize.
In[1]:= Minimize@8x + 2 y, -5 x + y ã 7 && x + y ¥ 26 && x ¥ 3 && y ¥ 4<, 8x, y<D

Out[1]= :
293

6
, :x Ø

19

6
, y Ø

137

6
>>

This solves the same problem using NMinimize. NMinimize returns a machine-number 
solution.

In[2]:= NMinimize@8x + 2 y, -5 x + y ã 7 && x + y ¥ 26 && x ¥ 3 && y ¥ 4<, 8x, y<D

Out[2]= 848.8333, 8x Ø 3.16667, y Ø 22.8333<<

This solves the same problem using LinearProgramming.

In[3]:= LinearProgramming@81, 2<, 88-5, 1<, 81, 1<<,
887, 0<, 826, 1<<, 883, Infinity<, 84, Infinity<<D

Out[3]= :
19

6
,
137

6
>

The LinearProgramming Function

LinearProgramming  is  the  main  function  for  linear  programming  with  the  most  flexibility  for

specifying the methods used, and is the most efficient for large-scale problems.

The following options are accepted.

option name default value

Method Automatic method used to solve the linear optimiza -
tion problem

Tolerance Automatic convergence tolerance

Options for LinearProgramming. 
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The  Method  option  specifies  the  algorithm  used  to  solve  the  linear  programming  problem.

Possible  values  are  Automatic,  "Simplex",  "RevisedSimplex",  and  "InteriorPoint".  The

default is Automatic, which automatically chooses from the other methods based on the prob -

lem size and precision. 

The Tolerance option specifies the convergence tolerance.

Examples

Difference between Interior Point and Simplex and/or Revised 
Simplex

The  simplex  and  revised  simplex  algorithms  solve  a  linear  programming  problem  by  moving

along the edges of the polytope defined by the constraints, from vertices to vertices with succes-

sively  smaller  values  of  the  objective  function,  until  the  minimum  is  reached.  Mathematica's

implementation of these algorithm uses dense linear algebra. A unique feature of the implemen-

tation is  that  it  is  possible  to solve exact/extended precision problems. Therefore these meth-

ods are suitable for small-sized problems for which non-machine-number results are needed, or

a solution on the vertex is desirable.

Interior  point  algorithms for  linear  programming,  loosely  speaking,  iterate  from the interior  of

the polytope defined by the constraints. They get closer to the solution very quickly, but unlike

the simplex/revised simplex algorithms, do not find the solution exactly.  Mathematica's  imple-

mentation of an interior point algorithm uses machine precision sparse linear algebra. Therefore

for  large-scale  machine-precision  linear  programming  problems,  the  interior  point  method  is

more efficient and should be used.

This solves a linear programming problem that has multiple solutions (any point that lies on the 
line segment between 81, 0< and 81, 0< is a solution); the interior point algorithm gives a 
solution that lies in the middle of the solution set.

In[6]:= LinearProgramming@8-1., -1<, 881., 1.<<, 881., -1<<, Method Ø "InteriorPoint"D

Out[6]= 80.5, 0.5<

Using Simplex or RevisedSimplex, a solution at the boundary of the solution set is given.

In[7]:= LinearProgramming@8-1., -1<, 881., 1.<<, 881., -1<<, Method Ø "RevisedSimplex"D

Out[7]= 81., 0.<

This shows that interior point method is much faster for the following random sparse linear 
programming problem of 200 variables and gives similar optimal value.
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This shows that interior point method is much faster for the following random sparse linear 
programming problem of 200 variables and gives similar optimal value.

In[43]:= m = SparseArray@RandomChoice@80.1, 0.9< Ø 81., 0.<, 850, 200<DD;
xi = LinearProgramming@Range@200D, m, Table@0, 850<D,
Method Ø "InteriorPoint"D; êê Timing

Out[44]= 80.012001, Null<

In[45]:= xs = LinearProgramming@Range@200D, m, Table@0, 850<D,
Method Ø "Simplex"D; êê Timing

Out[45]= 80.576036, Null<

In[46]:= Range@200D.xi - Range@200D.xs

Out[46]= 2.14431µ10-7

Finding Dual Variables

Given the general linear programming problem

Min cT x HPL
s.t. A1 x = b1

A2 x ¥ b2
l § x § u ,

its dual is

Max bT y + lT z - uT w HDL
s.t. AT y + z - w = c

y2 ¥ 0, z, w ¥ 0

It is useful to know solutions for both for some applications.

The relationship between the solutions of the primal and dual problems is given by the following

table.

if the primal is then the dual problem is

feasible feasible

unbounded infeasible or unbounded

infeasible unbounded or infeasible

Constrained Optimization     7



When both problems are feasible, then the optimal values of (P) and (D) are the same, and the

following complementary conditions hold for the primal solution x, and dual solution y, z.

HA2 x - b2LT y2 = 0
Hl - x*LT z* = Hu - x*LT w* = 0

DualLinearProgramming returns a list 8x, y, z, w<.

This solves the primal problem

Min 3 x1 + 4 x2
s.t. x1 + 2 x2 ¥ 5

1 § x1 § 4, 1 § x2 § 4,

as well as the dual problem

Max 5 y1 + z1 + z2 - 4w1 - 4w2
s.t. y1 + z1 - w1 = 3

2 y1 + z2 - w2 = 4
y1, z1, z2, w1, w2 ¥ 0

In[14]:= 8x, y, z, w< = DualLinearProgramming@83, 4<, 881, 2<<, 85<, 881, 4<, 81, 4<<D

Out[14]= 881, 2<, 82<, 81, 0<, 80, 0<<

This confirms that the primal and dual give the same objective value.

In[15]:= 83, 4<.x

Out[15]= 11

In[16]:= 85, 1, 1, -4, -4<.Flatten@8y, z, w<D

Out[16]= 11

The dual of the constraint is y = 82.<, which means that for one unit of increase in the right-
hand side of the constraint, there will be 2 units of increase in the objective. This can be con-
firmed by perturbing the right-hand side of the constraint by 0.001.

In[17]:= 8x, y, z, w< = DualLinearProgramming@83, 4<, 881, 2<<, 85 + 0.001<, 881, 4<, 81, 4<<D

Out[17]= 881., 2.0005<, 82.<, 81., 0.<, 80., 0.<<

Indeed the objective value increases by twice that amount.

In[18]:= 83, 4<.x - 11

Out[18]= 0.002

Dealing with Infeasibility and Unboundedness in the Interior 
Point Method

8     Constrained Optimization



Dealing with Infeasibility and Unboundedness in the Interior 
Point Method

The  primal-dual  interior  point  method  is  designed  for  feasible  problems;  for  infeasible/un-

bounded problems it will diverge, and with the current implementation, it is difficult to find out

if the divergence is due to infeasibility, or unboundedness.

A heuristic catches infeasible/unbounded problems and issues a suitable message.

In[19]:= LinearProgramming@81., 1<, 881, 1<, 81, 1<<,
881, -1<, 82, 1<<, Method Ø "InteriorPoint"D

LinearProgramming::lpsnf : No solution can be found that satisfies the constraints. à

Out[19]= LinearProgramming@81., 1<, 881, 1<, 81, 1<<, 881, -1<, 82, 1<<, Method Ø InteriorPointD

Sometimes the heuristic cannot tell with certainty if a problem is infeasible or unbounded.

In[20]:= LinearProgramming@8-1., -1.<, 881., 1.<<, 81.<, Method Ø "InteriorPoint"D

LinearProgramming::lpdinf :
The dual of this problem is infeasible, which implies that this problem is either

unbounded or infeasible. Setting the option Method -> Simplex should give a
more definite answer, though large problems may take longer computing time. à

Out[20]= LinearProgramming@8-1., -1.<, 881., 1.<<, 81.<, Method Ø InteriorPointD

Using the Simplex method as suggested by the message shows that the problem is unbounded.

In[21]:= LinearProgramming@8-1., -1.<, 881., 1.<<, 81.<, Method Ø "Simplex"D

LinearProgramming::lpsub: This problem is unbounded.

Out[21]= 8Indeterminate, Indeterminate<

The Method Options of "InteriorPoint"

"TreatDenseColumn" is a method option of "InteriorPoint" that decides if dense columns are

to be treated separately. Dense columns are columns of the constraint matrix that have many

nonzero elements. By default, this method option has the value Automatic, and dense columns

are treated separately.

Large problems that contain dense columns typically benefit from dense column treatment.

In[95]:= A = SparseArray@88i_, i_< Ø 1., 8i_, 1< Ø 1.<, 8300, 300<D;
c = Table@1, 8300<D;
b = A.Range@300D;
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In[98]:= 8x1 = LinearProgramming@c, A, b, Method Ø "InteriorPoint"D; êê Timing,
x2 = LinearProgramming@c, A, b,

Method Ø 8"InteriorPoint", "TreatDenseColumns" Ø False<D; êê Timing<
Out[98]= 880.028001, Null<, 80.200013, Null<<

In[99]:= x1.c - x2.c

Out[99]= 4.97948µ10-11

Importing Large Datasets and Solving Large-Scale 
Problems

A  commonly  used  format  for  documenting  linear  programming  problems  is  the  Mathematical

Programming System (MPS) format. This is a text format consisting of a number of sections.

Importing MPS Formatted Files in Equation Form

Mathematica  is  able  to  import  MPS  formatted  files.  By  default,  Import  of  MPS  data  returns  a

linear  programming  problem  in  equation  form,  which  can  then  be  solved  using  Minimize  or

NMinimize.

This solves the linear programming problem specified by MPS file "afiro.mps".

In[25]:= p = Import@"OptimizationêDataêafiro.mps"D

Out[25]= 88-0.4 X02MPS - 0.32 X14MPS - 0.6 X23MPS - 0.48 X36MPS + 10. X39MPS,
-1. X01MPS + 1. X02MPS + 1. X03MPS ã 0. && -1.06 X01MPS + 1. X04MPS ã 0. && 1. X01MPS § 80. &&
-1. X02MPS + 1.4 X14MPS § 0. && -1. X06MPS - 1. X07MPS - 1. X08MPS - 1. X09MPS + 1. X14MPS + 1. X15MPS ã 0. &&
-1.06 X06MPS - 1.06 X07MPS - 0.96 X08MPS - 0.86 X09MPS + 1. X16MPS ã 0. && 1. X06MPS - 1. X10MPS § 80. &&
1. X07MPS - 1. X11MPS § 0. && 1. X08MPS - 1. X12MPS § 0. && 1. X09MPS - 1. X13MPS § 0. &&
-1. X22MPS + 1. X23MPS + 1. X24MPS + 1. X25MPS ã 0. && -0.43 X22MPS + 1. X26MPS ã 0. && 1. X22MPS § 500. &&
-1. X23MPS + 1.4 X36MPS § 0. && -0.43 X28MPS - 0.43 X29MPS - 0.39 X30MPS - 0.37 X31MPS + 1. X38MPS ã 0. &&
1. X28MPS + 1. X29MPS + 1. X30MPS + 1. X31MPS - 1. X36MPS + 1. X37MPS + 1. X39MPS ã 44. &&
1. X28MPS - 1. X32MPS § 500. && 1. X29MPS - 1. X33MPS § 0. && 1. X30MPS - 1. X34MPS § 0. &&
1. X31MPS - 1. X35MPS § 0. && 2.364 X10MPS + 2.386 X11MPS + 2.408 X12MPS + 2.429 X13MPS - 1. X25MPS +

2.191 X32MPS + 2.219 X33MPS + 2.249 X34MPS + 2.279 X35MPS § 0. && -1. X03MPS + 0.109 X22MPS § 0. &&
-1. X15MPS + 0.109 X28MPS + 0.108 X29MPS + 0.108 X30MPS + 0.107 X31MPS § 0. &&
0.301 X01MPS - 1. X24MPS § 0. && 0.301 X06MPS + 0.313 X07MPS + 0.313 X08MPS + 0.326 X09MPS - 1. X37MPS § 0. &&
1. X04MPS + 1. X26MPS § 310. && 1. X16MPS + 1. X38MPS § 300. && X01MPS ¥ 0 && X02MPS ¥ 0 && X03MPS ¥ 0 &&
X04MPS ¥ 0 && X06MPS ¥ 0 && X07MPS ¥ 0 && X08MPS ¥ 0 && X09MPS ¥ 0 && X10MPS ¥ 0 && X11MPS ¥ 0 &&
X12MPS ¥ 0 && X13MPS ¥ 0 && X14MPS ¥ 0 && X15MPS ¥ 0 && X16MPS ¥ 0 && X22MPS ¥ 0 && X23MPS ¥ 0 &&
X24MPS ¥ 0 && X25MPS ¥ 0 && X26MPS ¥ 0 && X28MPS ¥ 0 && X29MPS ¥ 0 && X30MPS ¥ 0 && X31MPS ¥ 0 &&
X32MPS ¥ 0 && X33MPS ¥ 0 && X34MPS ¥ 0 && X35MPS ¥ 0 && X36MPS ¥ 0 && X37MPS ¥ 0 && X38MPS ¥ 0 && X39MPS ¥ 0<,

8X01MPS, X02MPS, X03MPS, X04MPS, X06MPS, X07MPS, X08MPS, X09MPS, X10MPS, X11MPS, X12MPS,
X13MPS, X14MPS, X15MPS, X16MPS, X22MPS, X23MPS, X24MPS, X25MPS, X26MPS, X28MPS, X29MPS,
X30MPS, X31MPS, X32MPS, X33MPS, X34MPS, X35MPS, X36MPS, X37MPS, X38MPS, X39MPS<<

In[26]:= NMinimize üü p

Out[26]= 8-464.753, 8X01MPS Ø 80., X02MPS Ø 25.5, X03MPS Ø 54.5, X04MPS Ø 84.8, X06MPS Ø 18.2143, X07MPS Ø 0.,
X08MPS Ø 0., X09MPS Ø 0., X10MPS Ø 0., X11MPS Ø 0., X12MPS Ø 0., X13MPS Ø 0., X14MPS Ø 18.2143,
X15MPS Ø 0., X16MPS Ø 19.3071, X22MPS Ø 500., X23MPS Ø 475.92, X24MPS Ø 24.08, X25MPS Ø 0.,
X26MPS Ø 215., X28MPS Ø 0., X29MPS Ø 0., X30MPS Ø 0., X31MPS Ø 0., X32MPS Ø 0., X33MPS Ø 0.,
X34MPS Ø 0., X35MPS Ø 0., X36MPS Ø 339.943, X37MPS Ø 383.943, X38MPS Ø 0., X39MPS Ø 0.<<

Large-Scale Problems: Importing in Matrix and Vector Form
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Large-Scale Problems: Importing in Matrix and Vector Form

For large-scale problems, it is more efficient to import the MPS data file and represent the linear

programming using matrices and vectors, then solve using LinearProgramming. 

This shows that for MPS formatted data, the following 3 elements can be imported.

In[101]:= p = Import@"OptimizationêDataêganges.mps", "Elements"D

Out[101]= 8ConstraintMatrix, Equations, LinearProgrammingData<

 This imports the problem "ganges", with 1309 constraints and 1681 variables, in a form suit-
able for LinearProgramming.

In[102]:= 8c, A, b, bounds< =
Import@"OptimizationêDataêganges.mps", "LinearProgrammingData"D;

This solves the problem and finds the optimal value.

In[103]:= x = LinearProgramming@c, A, b, boundsD;

In[104]:= c.x

Out[104]= -109586.

The "ConstraintMatrix" specification can be used to get the sparse constraint matrix only.

In[105]:= p = Import@"OptimizationêDataêganges.mps", "ConstraintMatrix"D

Out[105]= SparseArray@<6912>, 81309, 1681<D

Free Formatted MPS Files

Standard MPS formatted files use a fixed format, where each field occupies a strictly fixed charac -

ter position. However some modeling systems output MPS files with a free format, where fields

are  positioned  freely.  For  such  files,  the  option  "FreeFormat" -> True  can  be  specified  for

Import.

This string describes an MPS file in free format.

In[122]:= txt =
"NAME TESTPROB\nROWS\n N COST\n L CON1\n G CON2\n E CON3 \nCOLUMNS\n x COST

1 CON1 2\n x CON2 3\n y COST 4 CON1 5\n y CON3 6\n Z COST
7 CON2 8\n Z CON3 9\nRHS\n RHS1 CON1 10 CON2 11\n RHS1 CON3
12\nBOUNDS\n UP BND1 x 13\n LO BND1 y 14\n UP BND1 y 15\nENDATA\n";
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This gets a temporary file name, and exports the string to the file.

In[123]:= file = Close@OpenWrite@DD;
Export@file, txt, "Text"D;

This imports the file, using the "FreeFormat" -> True option.

In[126]:= Import@file, "MPS", "FreeFormat" Ø TrueD

Out[126]= 881. xMPS + 4. yMPS + 7. ZMPS, 2. xMPS + 5. yMPS § 10. && 3. xMPS + 8. ZMPS ¥ 11. && 6. yMPS + 9. ZMPS ã 12. &&
xMPS ¥ 0 && xMPS § 13. && yMPS ¥ 14. && yMPS § 15. && ZMPS ¥ 0<, 8xMPS, yMPS, ZMPS<<

Linear Programming Test Problems

Through  the  ExampleData  function,  all  NetLib  linear  programming  test  problems  can  be

accessed.

This finds all problems in the Netlib set.

In[12]:= ExampleData@"LinearProgramming"D

Out[12]= 88LinearProgramming, 25fv47<, 8LinearProgramming, 80bau3b<,
8LinearProgramming, adlittle<, 8LinearProgramming, afiro<, 8LinearProgramming, agg<,
8LinearProgramming, agg2<, 8LinearProgramming, agg3<, 8LinearProgramming, bandm<,
8LinearProgramming, beaconfd<, 8LinearProgramming, blend<, 8LinearProgramming, bnl1<,
8LinearProgramming, bnl2<, 8LinearProgramming, boeing1<, 8LinearProgramming, boeing2<,
8LinearProgramming, bore3d<, 8LinearProgramming, brandy<, 8LinearProgramming, capri<,
8LinearProgramming, cre-a<, 8LinearProgramming, cre-b<, 8LinearProgramming, cre-c<,
8LinearProgramming, cre-d<, 8LinearProgramming, cycle<, 8LinearProgramming, czprob<,
8LinearProgramming, d2q06c<, 8LinearProgramming, d6cube<, 8LinearProgramming, degen2<,
8LinearProgramming, degen3<, 8LinearProgramming, dfl001<, 8LinearProgramming, e226<,
8LinearProgramming, etamacro<, 8LinearProgramming, fffff800<, 8LinearProgramming, finnis<,
8LinearProgramming, fit1d<, 8LinearProgramming, fit1p<, 8LinearProgramming, fit2d<,
8LinearProgramming, fit2p<, 8LinearProgramming, forplan<, 8LinearProgramming, ganges<,
8LinearProgramming, gfrd-pnc<, 8LinearProgramming, greenbea<, 8LinearProgramming, greenbeb<,
8LinearProgramming, grow15<, 8LinearProgramming, grow22<, 8LinearProgramming, grow7<,
8LinearProgramming, infeasêbgdbg1<, 8LinearProgramming, infeasêbgetam<,
8LinearProgramming, infeasêbgindy<, 8LinearProgramming, infeasêbgprtr<,
8LinearProgramming, infeasêbox1<, 8LinearProgramming, infeasêceria3d<,
8LinearProgramming, infeasêchemcom<, 8LinearProgramming, infeasêcplex1<,
8LinearProgramming, infeasêcplex2<, 8LinearProgramming, infeasêex72a<,
8LinearProgramming, infeasêex73a<, 8LinearProgramming, infeasêforest6<,
8LinearProgramming, infeasêgalenet<, 8LinearProgramming, infeasêgosh<,
8LinearProgramming, infeasêgran<, 8LinearProgramming, infeasêgreenbea<,
8LinearProgramming, infeasêitest2<, 8LinearProgramming, infeasêitest6<,
8LinearProgramming, infeasêklein1<, 8LinearProgramming, infeasêklein2<,
8LinearProgramming, infeasêklein3<, 8LinearProgramming, infeasêmondou2<,
8LinearProgramming, infeasêpang<, 8LinearProgramming, infeasêpilot4i<,
8LinearProgramming, infeasêqual<, 8LinearProgramming, infeasêreactor<,
8LinearProgramming, infeasêrefinery<, 8LinearProgramming, infeasêvol1<,
8LinearProgramming, infeasêwoodinfe<, 8LinearProgramming, israel<, 8LinearProgramming, kb2<,
8LinearProgramming, ken-07<, 8LinearProgramming, ken-11<, 8LinearProgramming, ken-13<,
8LinearProgramming, ken-18<, 8LinearProgramming, lotfi<, 8LinearProgramming, maros<,
8LinearProgramming, maros-r7<, 8LinearProgramming, modszk1<, 8LinearProgramming, nesm<,
8LinearProgramming, osa-07<, 8LinearProgramming, osa-14<, 8LinearProgramming, osa-30<,
8LinearProgramming, osa-60<, 8LinearProgramming, pds-02<, 8LinearProgramming, pds-06<,
8LinearProgramming, pds-10<, 8LinearProgramming, pds-20<, 8LinearProgramming, perold<,
8LinearProgramming, pilot<, 8LinearProgramming, pilot4<, 8LinearProgramming, pilot87<,
8LinearProgramming, pilot.ja<, 8LinearProgramming, pilotnov<, 8LinearProgramming, pilot.we<,
8LinearProgramming, recipe<, 8LinearProgramming, sc105<, 8LinearProgramming, sc205<,
8LinearProgramming, sc50a<, 8LinearProgramming, sc50b<, 8LinearProgramming, scagr25<,
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Out[12]=

8LinearProgramming, scagr7<, 8LinearProgramming, scfxm1<, 8LinearProgramming, scfxm2<,
8LinearProgramming, scfxm3<, 8LinearProgramming, scorpion<, 8LinearProgramming, scrs8<,
8LinearProgramming, scsd1<, 8LinearProgramming, scsd6<, 8LinearProgramming, scsd8<,
8LinearProgramming, sctap1<, 8LinearProgramming, sctap2<, 8LinearProgramming, sctap3<,
8LinearProgramming, seba<, 8LinearProgramming, share1b<, 8LinearProgramming, share2b<,
8LinearProgramming, shell<, 8LinearProgramming, ship04l<, 8LinearProgramming, ship04s<,
8LinearProgramming, ship08l<, 8LinearProgramming, ship08s<, 8LinearProgramming, ship12l<,
8LinearProgramming, ship12s<, 8LinearProgramming, sierra<, 8LinearProgramming, stair<,
8LinearProgramming, standata<, 8LinearProgramming, standgub<, 8LinearProgramming, standmps<,
8LinearProgramming, stocfor1<, 8LinearProgramming, stocfor2<, 8LinearProgramming, tuff<,
8LinearProgramming, vtp.base<, 8LinearProgramming, wood1p<, 8LinearProgramming, woodw<<

This imports the problem "afiro" and solves it.

In[8]:= ExampleData@8"LinearProgramming", "afiro"<D

Out[8]=

In[9]:= LinearProgramming üü %

Out[9]= 880., 25.5, 54.5, 84.8, 18.2143, 0., 0., 0., 0., 0., 0., 0., 18.2143, 0., 19.3071, 500.,
475.92, 24.08, 0., 215., 0., 0., 0., 0., 0., 0., 0., 0., 339.943, 383.943, 0., 0.<

This shows other properties that can be imported for the "afiro" problem.

In[10]:= ExampleData@8"LinearProgramming", "afiro"<, "Properties"D

Out[10]= 8Collection, ConstraintMatrix, Dimensions, Equations, LinearProgrammingData, Name, Source<

This imports "afiro" in equation form.

In[11]:= ExampleData@8"LinearProgramming", "afiro"<, "Equations"D

Out[11]= 88-0.4 X02MPS - 0.32 X14MPS - 0.6 X23MPS - 0.48 X36MPS + 10. X39MPS,
-1. X01MPS + 1. X02MPS + 1. X03MPS ã 0. && -1.06 X01MPS + 1. X04MPS ã 0. && 1. X01MPS § 80. &&
-1. X02MPS + 1.4 X14MPS § 0. && -1. X06MPS - 1. X07MPS - 1. X08MPS - 1. X09MPS + 1. X14MPS + 1. X15MPS ã 0. &&
-1.06 X06MPS - 1.06 X07MPS - 0.96 X08MPS - 0.86 X09MPS + 1. X16MPS ã 0. && 1. X06MPS - 1. X10MPS § 80. &&
1. X07MPS - 1. X11MPS § 0. && 1. X08MPS - 1. X12MPS § 0. && 1. X09MPS - 1. X13MPS § 0. &&
-1. X22MPS + 1. X23MPS + 1. X24MPS + 1. X25MPS ã 0. && -0.43 X22MPS + 1. X26MPS ã 0. && 1. X22MPS § 500. &&
-1. X23MPS + 1.4 X36MPS § 0. && -0.43 X28MPS - 0.43 X29MPS - 0.39 X30MPS - 0.37 X31MPS + 1. X38MPS ã 0. &&
1. X28MPS + 1. X29MPS + 1. X30MPS + 1. X31MPS - 1. X36MPS + 1. X37MPS + 1. X39MPS ã 44. &&
1. X28MPS - 1. X32MPS § 500. && 1. X29MPS - 1. X33MPS § 0. && 1. X30MPS - 1. X34MPS § 0. &&
1. X31MPS - 1. X35MPS § 0. && 2.364 X10MPS + 2.386 X11MPS + 2.408 X12MPS + 2.429 X13MPS - 1. X25MPS +

2.191 X32MPS + 2.219 X33MPS + 2.249 X34MPS + 2.279 X35MPS § 0. && -1. X03MPS + 0.109 X22MPS § 0. &&
-1. X15MPS + 0.109 X28MPS + 0.108 X29MPS + 0.108 X30MPS + 0.107 X31MPS § 0. &&
0.301 X01MPS - 1. X24MPS § 0. && 0.301 X06MPS + 0.313 X07MPS + 0.313 X08MPS + 0.326 X09MPS - 1. X37MPS § 0. &&
1. X04MPS + 1. X26MPS § 310. && 1. X16MPS + 1. X38MPS § 300. && X01MPS ¥ 0 && X02MPS ¥ 0 && X03MPS ¥ 0 &&
X04MPS ¥ 0 && X06MPS ¥ 0 && X07MPS ¥ 0 && X08MPS ¥ 0 && X09MPS ¥ 0 && X10MPS ¥ 0 && X11MPS ¥ 0 &&
X12MPS ¥ 0 && X13MPS ¥ 0 && X14MPS ¥ 0 && X15MPS ¥ 0 && X16MPS ¥ 0 && X22MPS ¥ 0 && X23MPS ¥ 0 &&
X24MPS ¥ 0 && X25MPS ¥ 0 && X26MPS ¥ 0 && X28MPS ¥ 0 && X29MPS ¥ 0 && X30MPS ¥ 0 && X31MPS ¥ 0 &&
X32MPS ¥ 0 && X33MPS ¥ 0 && X34MPS ¥ 0 && X35MPS ¥ 0 && X36MPS ¥ 0 && X37MPS ¥ 0 && X38MPS ¥ 0 && X39MPS ¥ 0<,

8X01MPS, X02MPS, X03MPS, X04MPS, X06MPS, X07MPS, X08MPS, X09MPS, X10MPS, X11MPS, X12MPS,
X13MPS, X14MPS, X15MPS, X16MPS, X22MPS, X23MPS, X24MPS, X25MPS, X26MPS, X28MPS, X29MPS,
X30MPS, X31MPS, X32MPS, X33MPS, X34MPS, X35MPS, X36MPS, X37MPS, X38MPS, X39MPS<<

Application Examples of Linear Programming

Constrained Optimization     13



Application Examples of Linear Programming

L1-Norm Minimization

It is possible to solve an l1 minimization problem

Min A x - b 1

by turning the system into a linear programming problem

Min zT e
z ¥ A x - b
z ¥ -A x + b

This defines a function for solving an l1 minimization problem.

In[35]:= L1Minimization@A_, b_D := Module@
8B, c, All, ball, x, lb, AT <,
8m, n< = Dimensions@AD;
AT = Transpose@AD;
B = SparseArray@88i_, i_< Ø 1<, 8m, m<D;
Aall = Join@Transpose@Join@B, -ATDD, Transpose@Join@B, ATDDD;
ball = Join@-b, bD;
c = Join@Table@1, 8m<D, Table@0, 8n<DD;
lb = Table@-Infinity, 8m + n<D;
x = LinearProgramming@c, Aall, ball, lbD;
x = Drop@x, mD

D

The following is an over-determined linear system.

1 2 3
4 5 5
7 8 9
10 11 12

x =

1
2
3
4

A simple application of LinearSolve  would fail.

In[36]:= A = SparseArray@881, 2, 3<, 85, 6, 7<, 87, 8, 9<, 810, 11, 12<<D;
b = 81, 2, 3, 4<;
LinearSolve@A, bD

LinearSolve::nosol : Linear equation encountered that has no solution. à

Out[38]= LinearSolve@SparseArray@<12>, 84, 3<D, 81, 2, 3, 4<D
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This finds the l1 minimization solution.

In[39]:= x = L1Minimization@A, bD

Out[39]= :0, 0,
1

3
>

In[40]:= 8Norm@A.x - b, 1D, Norm@A.x - b, 2D< êê N

Out[40]= 80.333333, 0.333333<

The least squares solution can be found using PseudoInverse. This gives a large l1 norm, but 
a smaller l2 norm.

In[41]:= x2 = PseudoInverse@AD.b

Out[41]= :
4

513
,

58

513
,
112

513
>

In[42]:= 8Norm@A.x2 - b, 1D, Norm@A.x2 - b, 2D< êê N

Out[42]= 80.491228, 0.286132<

Design of an Optimal Anchor

The example is adopted from [2]. The aim is to design an anchor that uses as little material as

possible to support a load.

This problem can be modeled by discretizing and simulating it using nodes and links. The model-

ing  process  is  illustrated  using  the  following  figure.  Here  a  grid  of  7×10  nodes  is  generated.

Each node is then connected by a link to all other nodes that are of Manhattan distance of less

than or  equal  to  three.  The three red nodes are assumed to be fixed to the wall,  while  on all

other nodes, compression and tension forces must balance.
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Each link represents a rigid rod that has a thickness, with its weight proportional to the force on

it and its length. The aim is to minimize the total material used, which is 

Material needed to construct a link = force* link_length

subject to force balance on each node except the fixed ones.

Hence mathematically  this  is  a linearly  constrained minimization problem, with objective func-

tion a sum of absolute values of linear functions.

Minimize ‚ force* link_length

subject to force balance on every unanchored node.

The  absolute  values  force* link_length  in  the  objective  function  can  be  replaced  by  breaking

down  force  into  a  combination  of  compression  and  tension  forces,  with  each  non-negative.

Thus assume E is the set of links, V the set of nodes, lij the length of link between nodes i and

j,  cijand  tij  the  compression  and  tension  forces  on  the  link;  then  the  above  model  can  be

converted to a linear programming problem

Minimize ‚
8i, j<œ E

Icij + tijM lij

subject to ‚
8i,k<œ E

H tik - cikL = loadi, tij, cij ¥ 0, for all i œ V and 8i, j< œ E.

The following sets up the model, solves it, and plots the result; it is based on an AMPL model 
[2].
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The following sets up the model, solves it, and plots the result; it is based on an AMPL model 
[2].

In[1]:= OptimalAnchorDesign@X_, Y_, ANCHORS_, forcepoints_, dist_: 3D :=
Module@8a, c, ldist, p, NODES, UNANCHORED, setx, sety, length, xload, yload,

nnodes, getarcs, ARCS, comp, comps, tensions, const1, const2, lengths, volume,
inedges, outedges, nodebalance, const3, vars, totalf, maxf, res, tens,
setInOutEdges, consts, sol, f, xii, yii, xjj, yjj, t, rhs, ma, obj, m, n<,

Clear@comp, tensions, tens, varsD;

H* need at least 2 nchor points *L
If@Length@Union@ANCHORSDD ã 1, Return@8<DD;

H* A lattice of Nodes *L
NODES = Partition@Flatten@Outer@List, X, YDD, 2D;

H* these are the nodes near the wall that will be anchored *L
UNANCHORED = Complement@NODES, ANCHORSD;
H* the many linked exist in the structure that we try to optimize away *L
setx@8x_, y_<D := Hxload@x, yD = 0L;
sety@8x_, y_<D := Hyload@x, yD = 0L;
Map@setx, UNANCHOREDD;
Map@sety, UNANCHOREDD;
Map@Hyload@Ò@@1DD, Ò@@2DDD = -1L &, forcepointsD;

H* get the edges that link nodes with neighbors of distance § 3 *L
nnodes = Length@NODESD;
getarcs =
Compile@88NODES, _Integer, 2<<, Module@8xi, yi, xj, yj, i, j, nn = 0, NN<,

H* we use a two sweep strategy as a nexted list
would not be allowed to compile by Compile *L

Do@Do@8xi, yi< = NODES@@iDD;
8xj, yj< = NODES@@jDD;
If@Abs@xj - xiD § dist && Abs@yj - yiD § dist &&

Abs@GCD@xj - xi, yj - yiDD ã 1 && Hxi > xj »» Hxi ã xj && yi > yjLL, nn++D,
8j, Length@NODESD<D, 8i, Length@NODESD<D;

NN = Table@81, 1, 1, 1<, 8nn<D;
nn = 1;
Do@Do@8xi, yi< = NODES@@iDD;

8xj, yj< = NODES@@jDD;
If@Abs@xj - xiD § dist && Abs@yj - yiD § dist &&

Abs@GCD@xj - xi, yj - yiDD ã 1 && Hxi > xj »» Hxi ã xj && yi > yjLL,
NN@@nn++DD = 8xi, yi, xj, yj<D, 8j, Length@NODESD<D, 8i, Length@NODESD<D;

NNDD;
ARCS = Partition@Flatten@getarcs@NODESDD, 84<D;
length@8xi_, yi_, xj_, yj_<D := Sqrt@Hxj - xiL^2 + Hyj - yiL^2D êê N;
H* the variables: compression and tension forces *L
comps = Map@Hcomp üü ÒL &, ARCSD;
tensions = Map@Htens üü ÒL &, ARCSD;
const1 = Thread@Greater@comps, 0DD;
const2 = Thread@Greater@tensions, 0DD;
lengths = Map@Hlength@ÒDL &, ARCSD êê N;

H* objective function *L
volume = lengths.Hcomps + tensionsL;

Map@Hinedges@ÒD = FalseL &, NODESD;
Map@Houtedges@ÒD = FalseL &, NODESD;
setInOutEdges@8xi_, yi_, xj_, yj_<D := Module@8<,

If@outedges@8xj, yj<D === False, outedges@8xj, yj<D = 8xi, yi, xj, yj<,
outedges@8xj, yj<D = 8outedges@8xj, yj<D, 8xi, yi, xj, yj<<D;

If@inedges@8xi, yi<D === False, inedges@8xi, yi<D = 8xi, yi, xj, yj<,
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In[1]:=

inedges@8xi, yi<D = 8inedges@8xi, yi<D, 8xi, yi, xj, yj<<D;D;
Map@HsetInOutEdges@ÒDL &, ARCSD;
Map@Hinedges@ÒD = Partition@Flatten@8inedges@ÒD<D, 84<DL &, NODESD;
Map@Houtedges@ÒD = Partition@Flatten@8outedges@ÒD<D, 84<DL &, NODESD;

nodebalance@8x_, y_<D :=
Module@8Inedges, Outedges, xforce, yforce<, Inedges = inedges@8x, y<D;
Outedges = outedges@8x, y<D;
xforce@8xi_, yi_, xj_, yj_<D := HHxj - xiL ê length@8xi, yi, xj, yj<DL *

Hcomp@xi, yi, xj, yjD - tens@xi, yi, xj, yjDL;
yforce@8xi_, yi_, xj_, yj_<D := HHyj - yiL ê length@8xi, yi, xj, yj<DL *

Hcomp@xi, yi, xj, yjD - tens@xi, yi, xj, yjDL;
H* constraints *L
8Total@Map@xforce, InedgesDD - Total@Map@xforce, OutedgesDD ã xload@x, yD,
Total@Map@yforce, InedgesDD - Total@Map@yforce, OutedgesDD ã yload@x, yD<

D;
const3 = Flatten@Map@nodebalance@ÒD &, UNANCHOREDDD;
H* assemble the variables and constraints, and solve *L

vars = Union@Flatten@8comps, tensions<DD;
8rhs, ma< = CoefficientArrays@const3, varsD;
obj = CoefficientArrays@volume, varsD@@2DD;
8m, n< = Dimensions@maD;
Print@"Number of variables = ", n, " number of constraints = ", mD;

H* solve *L
t = Timing@sol = LinearProgramming@obj, ma,

Transpose@8-rhs, Table@0, 8m<D<D, Table@80, Infinity<, 8n<DD;D;
Print@"CPU time = ", t@@1DD, " Seconds"D;
Map@Set üü Ò &, Transpose@8vars, sol<DD;

H* Now add up the total force on all links,
and scale them to be between 0 and 1. *L
maxf = Max@comps + tensionsD;
Evaluate@Map@totalf@ÒD &, ARCSDD = Hcomps + tensionsL ê maxf;

H* Now we plot the links that has a force at least 0.001 and
get the optimal design of the anchor. We color code the drawing
so that red means a large force and blue a small one. Also,

links with large forces are drawn thinker than those with small forces. *L

res = 8EdgeForm@BlackD, White,
Polygon@880, 0<, 80, Length@YD<, 81, Length@YD<, 81, 0<<D,
Map@H8xii, yii, xjj, yjj< = Ò; f = totalf@8xii, yii, xjj, yjj<D;

If@f > 0.001, 8Hue@.7 * H1 - fLD, Thickness@.02 Sqrt@fDD,
Line@88xii, yii<, 8xjj, yjj<<D<, 8<DL &, ARCSD, GrayLevel@.5D,

PointSize@0.04D, 8Black, Map@8Arrow@8Ò, Ò + 80, -4<<D< &, forcepointsD<,
Map@Point, ANCHORSD<;

Graphics@resD
D;
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This solves the problem by placing 30 nodes in the horizontal and vertical directions.

In[2]:= m = 30;H* y direction. *L
n = 30;H* x direction. *L
X = Table@i, 8i, 0, n<D;
Y = Table@i, 8i, 0, m<D;
res = OptimalAnchorDesign@X, Y,

Table@81, i<, 8i, Round@m ê 3D, Round@m ê 3 * 2D<D, 88n, m ê 2<<, 3D

Number of variables = 27496 number of constraints = 1900

CPU time = 4.8123 Seconds

Out[6]=

If, however, the anchor is fixed not on the wall, but on some points in space, notice how the 
results resemble the shape of some leaves. Perhaps the structure of leaves is optimized in the 
process of evolution.

In[7]:= m = 40;H*must be even*L
n = 40;
X = Table@i, 8i, 0, n<D;
Y = Table@i, 8i, 0, m<D;
res = OptimalAnchorDesign@X, Y,

Table@8Round@n ê 3D, i<, 8i, Round@m ê 2D - 1, Round@m ê 2D + 1<D, 88n, m ê 2<<, 3D

Number of variables = 49456 number of constraints = 3356

CPU time = 9.83262 Seconds

Out[11]=

Constrained Optimization     19



Algorithms for Linear Programming

Simplex and Revised Simplex Algorithms

The simplex and revised simplex algorithms solve linear programming problems by constructing

a  feasible  solution  at  a  vertex  of  the  polytope  defined  by  the  constraints,  and  then  moving

along  the  edges  of  the  polytope  to  vertices  with  successively  smaller  values  of  the  objective

function until the minimum is reached. 

Although  the  sparse  implementation  of  simplex  and  revised  algorithms  are  quite  efficient  in

practice, and are guaranteed to find the global optimum, they have a poor worst-case behavior:

it  is  possible  to  construct  a  linear  programming  problem  for  which  the  simplex  or  revised

simplex method takes a number of steps exponential in the problem size.

Mathematica  implements  simplex  and  revised  simplex  algorithms  using  dense  linear  algebra.

The unique feature of this implementation is that it is possible to solve exact/extended precision

problems. Therefore these methods are more suitable for small-sized problems for which non-

machine number results are needed. 

This sets up a random linear programming problem with 20 constraints and 200 variables.

In[12]:= SeedRandom@123D;
8m, n< = 820, 200<;
c = Table@RandomInteger@81, 10<D, 8n<D;
A = Table@RandomInteger@8-100, 100<D, 8m<, 8n<D;
b = A.Table@1, 8n<D;
bounds = Table@8-10, 10<, 8n<D;

This solves the problem. Typically, for a linear programming problem with many more variables 
than constraints, the revised simplex algorithm is faster. On the other hand, if there are many 
more constraints than variables, the simplex algorithm is faster.

In[25]:= t = Timing@x = LinearProgramming@c, A, b, bounds, Method Ø "Simplex"D;D;
Print@"time = ", t@@1DD, " optimal value = ", c.x, " or ", N@c.xDD

time = 14.7409 optimal value =

-
1151274037058983869972777363

105283309229356027027010
or -10935.
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In[26]:= t = Timing@x = LinearProgramming@c, A, b, bounds, Method Ø "RevisedSimplex"D;D;
Print@"time = ", t@@1DD, " optimal value = ", c.x, " or ", N@c.xDD

time = 6.3444 optimal value =

-
1151274037058983869972777363

105283309229356027027010
or -10935.

If only machine-number results are desired, then the problem should be converted to machine 
numbers, and the interior point algorithm should be used.

In[20]:= t = Timing@
x = LinearProgramming@N@cD, N@AD, N@bD, N@boundsD, Method Ø "InteriorPoint"D;D;

Print@"time = ", t, " optimal value = ", c.xD

time = 80.036002, Null< optimal value = -10935.

Interior Point Algorithm

Although  the  simplex  and  revised  simplex  algorithms  can  be  quite  efficient  on  average,  they

have a poor worst-case behavior. It  is possible to construct a linear programming problem for

which the simplex or revised simplex methods take a number of steps exponential in the prob-

lem size.  The  interior  point  algorithm,  however,  has  been proven to  converge  in  a  number  of

steps that are polynomial in the problem size. 

Furthermore,  the  Mathematica  simplex  and  revised  simplex  implementation  use  dense  linear

algebra,  while  its  interior  point  implementation  uses  machine-number  sparse  linear  algebra.

Therefore  for  large-scale,  machine-number  linear  programming  problems,  the  interior  point

method is more efficient and should be used.

Interior Point Formulation

Consider the standardized linear programming problem

Min cT x, s.t. A x = b, x ¥ 0,

where c, x œ Rn, A œ Rmµn, b œ Rm. This problem can be solved using a barrier function formulation

to deal with the positive constraints

Min cT x - t‚
i=1

n

ln HxiL, s.t. A x = b, x ¥ 0, t > 0, t Ø 0

The first-order necessary condition for the above problem gives

c - t X-1 e = AT y, and A x = b, x ¥ 0

Let X denote the diagonal matrix made of the vector x, and z = t X-1 e. 
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Let X denote the diagonal matrix made of the vector x, and z = t X-1 e. 

x z = t e
AT y + z = c
A x = b
x, z ¥ 0

This is a set of 2m + n  linear/nonlinear equations with constraints. It can be solved using New-

ton's method

Hx, y, zL := Hx, y, zL + HDx, Dy, DzL

with

X Z 0
I 0 AT

0 A 0

Dz
Dx
Dy

=

t e - x z
c - AT y - z
b - A x

.

One way to  solve  this  linear  system is  to  use Gaussian elimination to  simplify  the matrix  into

block triangular form.

X Z 0
I 0 AT

0 A 0
Ø

X Z 0
0 X-1 Z AT

0 A 0
Ø

X Z 0
0 X-1 Z AT

0 0 A Z-1 X AT

To  solve  this  block  triangular  matrix,  the  so-called  normal  system  can  be  solved,  with  the

matrix in this normal system

B = A Z-1 X AT

This matrix is positive definite, but becomes very ill-conditioned as the solution is approached.

Thus numerical  techniques are used to stabilize the solution process, and typically the interior
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point  method  can  only  be  expected  to  solve  the  problem  to  a  tolerance  of  about

$MachineEpsilon ,  with  tolerance  explained  in  "Convergence  Tolerance".  Mathematica  uses

Mehrotra's predictor-corrector scheme [1].

Convergence Tolerance

General Linear Programming problems are first converted to the standard form

Min cT x
subject to A x = b

x ¥ 0

with the corresponding dual 

Max bT y
subject to A T y + z = c

z ¥ 0

The convergence criterion for the interior point algorithm is 

»» b - A x »»

maxH1, »» b »»L
+

»» c - AT y - z »»

maxH1, »» c »»L
+

»» cT x - bT y »»

maxI1, »» cT x »», »» bT y »»M
§ tolerance

with the tolerance set, by default, to $MachineEpsilon . 

References

[1] Vanderbei, R. Linear Programming: Foundations and Extensions. Springer-Verlag, 2001.

[2] Mehrotra, S. "On the Implementation of a Primal-Dual Interior Point Method." SIAM Journal 

on Optimization 2 (1992): 575|601.
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Numerical Nonlinear Local Optimization

Introduction

Numerical  algorithms  for  constrained  nonlinear  optimization  can  be  broadly  categorized  into

gradient-based methods and direct search methods. Gradient search methods use first deriva-

tives  (gradients)  or  second  derivatives  (Hessians)  information.  Examples  are  the  sequential

quadratic programming (SQP) method, the augmented Lagrangian method, and the (nonlinear)

interior  point  method.  Direct  search methods do not  use derivative information.  Examples  are

Nelder|Mead,  genetic  algorithm  and  differential  evolution,  and  simulated  annealing.  Direct

search  methods  tend  to  converge  more  slowly,  but  can  be  more  tolerant  to  the  presence  of

noise in the function and constraints.

Typically, algorithms only build up a local model of the problems. Furthermore, to ensure conver -

gence of the iterative process, many such algorithms insist on a certain decrease of the objec-

tive function or of a merit function which is a combination of the objective and constraints. Such

algorithms  will,  if  convergent,  only  find  the  local  optimum,  and  are  called  local  optimization

algorithms. In Mathematica local optimization problems can be solved using FindMinimum.

Global optimization algorithms, on the other hand, attempt to find the global optimum, typically

by  allowing  decrease  as  well  as  increase  of  the  objective/merit  function.  Such  algorithms  are

usually  computationally  more  expensive.  Global  optimization  problems  can  be  solved  exactly

using Minimize or numerically using NMinimize.

This solves a nonlinear programming problem,

Min x - y
s.t - 3 x2 + 2 x y - y2 ¥ -1

using Minimize, which gives an exact solution.

In[1]:= MinimizeA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[1]= 8-1, 8x Ø 0, y Ø 1<<
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This solves the same problem numerically. NMinimize returns a machine-number solution.

In[2]:= NMinimizeA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[2]= 9-1., 9x Ø -3.57514µ10-17, y Ø 1.==

FindMinimum  numerically finds a local minimum. In this example the local minimum found is 
also a global minimum.

In[3]:= FindMinimumA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[3]= 9-1., 9x Ø 2.78301µ10-17, y Ø 1.==

The FindMinimum Function

FindMinimum  solves local unconstrained and constrained optimization problems. This document

only  covers  the  constrained optimization  case.  See "Unconstrained Optimization"  for  details  of

FindMinimum for unconstrained optimization.

This solves a nonlinear programming problem,

Min - 100
Hx-1L2+Hy-1L2+1

- 200
Hx+1L2+Hy+2L2+1

s.t x2 + y2 > 3

using FindMinimum .

In[4]:= FindMinimumB:-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, x2 + y2 > 3 >, 8x, y<F

Out[4]= 8-207.16, 8x Ø -0.994861, y Ø -1.99229<<

This provides FindMinimum  with a starting value of 2 for x, but uses the default starting point 
for y.

In[5]:= FindMinimumB:-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, x2 + y2 > 3 >, 88x, 2<, y<F

Out[5]= 8-103.063, 8x Ø 1.23037, y Ø 1.21909<<

The previous  solution  point  is  actually  a  local  minimum.  FindMinimum  only  attempts  to  find  a

local minimum.
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This contour plot of the feasible region illustrates the local and global minima.

In[6]:= ContourPlotB-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, 8x, -3, 2<,

8y, -3, 2<, RegionFunction Ø HÒ1^2 + Ò2^2 > 3 &L, Contours Ø 10,
Epilog Ø H8Red, PointSize@.02D, Text@"global minimum", 8-.995, -2.092<D,

Point@8-.995, -1.992<D, Text@"local minimum", 80.5304, 1.2191<D,
Point@81.2304, 1.2191<D<L, ContourLabels Ø TrueF

Out[6]=
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This is a 3D visualization of the function in its feasible region.

In[21]:= ShowB:Plot3DB-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, 8x, -4, 3<,

8y, -4, 3<, RegionFunction Ø HÒ1^2 + Ò2^2 > 3 &L, PlotRange Ø AllF,
Graphics3D@8Red, PointSize@.02D, Text@"Global minimum", 8-.995, -2.092, -230<D,

Point@8-.995, -2.092, -207<D, Text@"Local minimum", 80.5304, 1.2191, -93.4<D,
Point@81.23, 1.22, -103.<D<D>F

Out[21]=
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Options for FindMinimum

FindMinimum accepts these options.

option name default value

AccuracyGoal Automatic the accuracy sought

Compiled Automatic whether the function and constraints 
should automatically be compiled

EvaluationMonitor Automatic expression to evaluate whenever f is 
evaluated

Gradient Automatic the list of gradient functions 
8D@ f, xD, D@ f, yD, …<

MaxIterations Automatic maximum number of iterations to use

Method Automatic method to use

PrecisionGoal Automatic the precision sought

StepMonitor None expression to evaluate whenever a step is 
taken

WorkingPrecision Automatic the precision used in internal computations

The Method option specifies the method to use to solve the optimization problem. Currently, the

only method available for constrained optimization is the interior point algorithm.

This specifies that the interior point method should be used.

In[8]:= FindMinimumA9x2 + y2, Hx - 1L2 + 2 Hy - 1L2 > 5=, 8x, y<, Method Ø "InteriorPoint"E

Out[8]= 80.149239, 8x Ø -0.150959, y Ø -0.355599<<

MaxIterations  specifies  the  maximum  number  of  iterations  that  should  be  used.  When

machine  precision  is  used  for  constrained  optimization,  the  default  MaxIterations -> 500  is

used.

When  StepMonitor  is  specified,  it  is  evaluated  once  every  iterative  step  in  the  interior  point

algorithm.  On the  other  hand,  EvaluationMonitor,  when specified,  is  evaluated every  time a

function or an equality or inequality constraint is evaluated.
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This demonstrates that 19 iterations are not sufficient to solve the following problem to the 
default tolerance. It collects points visited through the use of StepMonitor .

In[9]:= pts =

ReapBsol = FindMinimumB:-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, x2 + y2 > 3 >,

88x, 1.5<, 8y, -1<<, MaxIterations Ø 19, StepMonitor ß HSow@8x, y<DLF;F; sol

FindMinimum::eit : The algorithm does not converge to the tolerance of 4.806217383937354`*^-6 in 19
iterations. The best estimated solution, with 8feasibility residual, KKT residual, complementary

residual< of 90.000305478, 0.0173304, 1.1484µ10-12=, is returned. à

Out[9]= 8-207.16, 8x Ø -0.994818, y Ø -1.9923<<

The points visited are shown using ContourPlot . The starting point is blue, the rest yellow.

In[10]:= ContourPlotB-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, 8x, -3, 3<,

8y, -4, 2<, RegionFunction Ø HÒ1^2 + Ò2^2 > 3 &L, Contours Ø 10,
Epilog Ø H8Red, PointSize@.01D, Line@pts@@2, 1DDD, Yellow, Point êü pts@@2, 1DD,

Blue, PointSize@.02D, Point@pts@@2, 1, 1DDD<L, ContourLabels Ø TrueF

Out[10]=
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WorkingPrecision -> prec specifies that all  the calculation in FindMinimum  is to be carried out

at  precision  prec.  By  default,  prec = MachinePrecision.  If  prec > MachinePrecision,  a  fixed

precision of prec is used through the computation.

AccuracyGoal  and  PrecisionGoal  options  are  used  in  the  following  way.  By  default,

AccuracyGoal -> Automatic,  and  is  set  to  prec ê 3.  By  default,  PrecisionGoal -> Automatic

and  is  set  to  -Infinity.  AccuracyGoal -> ga  is  the  same  as

AccuracyGoal -> 8-Infinity, ga<. 

Suppose  AccuracyGoal -> 8a, ga<  and  PrecisionGoal -> p,  then  FindMinimum  attempts  to

drive the residual,  which is  a combination of  the feasibility and the satisfaction of  the Karush|

Kuhn|Tucker  (KKT)  and  complementary  conditions,  to  be  less  than  or  equal  to  tol = 10-ga.  In

addition,  it  requires  the  difference  between  the  current  and  next  iterative  point,  x  and  x+,  to

satisfy »» x+ - x »» <= 10-a + 10-p »» x »», before terminating.
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Suppose  AccuracyGoal -> 8a, ga<  and  PrecisionGoal -> p,  then  FindMinimum  attempts  to

drive the residual,  which is  a combination of  the feasibility and the satisfaction of  the Karush|

Kuhn|Tucker  (KKT)  and  complementary  conditions,  to  be  less  than  or  equal  to  tol = 10-ga.  In

addition,  it  requires  the  difference  between  the  current  and  next  iterative  point,  x  and  x+,  to

satisfy »» x+ - x »» <= 10-a + 10-p »» x »», before terminating.

This computes a solution using a WorkingPrecision of 100.

In[11]:= sol = FindMinimumB:-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, x2 + y2 > 3 >,

8x, y<, WorkingPrecision Ø 100F

Out[11]= 8-207.1598969820087285017593316900341920050300050695900831345837005214162585155897084005034822Ö
593961079, 8x Ø
-0.9948613347360094014956553845944468031990304363229825717098561180647581982908158877161292Ö

969329515966, y Ø
-1.9922920021040141022434830768916702049447785592615484931630228240356715336019034943007530Ö

03273288575<<

The exact optimal value is computed using Minimize, and compared with the result of 
FindMinimum .

In[12]:= solExact =

MinimizeB:-
100

Hx - 1L2 + Hy - 1L2 + 1
-

200

Hx + 1L2 + Hy + 2L2 + 1
, x2 + y2 > 3 >, 8x, y<F;

In[13]:= sol@@1DD - solExact@@1DD

Out[13]= 8.58739616875135385265051020µ10-71

Examples of FindMinimum

Finding a Global Minimum

If  a  global  minimum is  needed,  NMinimize  or  Minimize  should  be  used.  However  since  each

run of FindMinimum  tends to be faster than NMinimize or Minimize, sometimes it may be more

efficient to use FindMinimum, particularly for relatively large problems with a few local minima.

FindMinimum  attempts to find a local minimum, therefore it will terminate if a local minimum is

found.
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This shows a function with multiple minima within the feasible region of -10 § x § 10.

In[14]:= Plot@Sin@xD + .5 x, 8x, -10, 10<D

Out[14]=
-10 -5 5 10

-4

-2

2

4

With the automatic starting point, FindMinimum  converges to a local minimum.

In[15]:= FindMinimum@8Sin@xD + .5 x, -10 <= x <= 10<, 8x<D

Out[15]= 8-1.91322, 8x Ø -2.0944<<

If the user has some knowledge of the problem, a better starting point can be given to 
FindMinimum .

In[16]:= FindMinimum@8Sin@xD + .5 x, -10 <= x <= 10<, 88x, -5<<D

Out[16]= 8-5.05482, 8x Ø -8.37758<<

Alternatively, the user can tighten the constraints.

In[17]:= FindMinimum@8Sin@xD + .5 x, -10 <= x <= 10 && x < -5<, 8x<D

Out[17]= 8-5.05482, 8x Ø -8.37758<<

Finally, multiple starting points can be used and the best resulting minimum selected.

In[18]:= SeedRandom@7919D;
Table@
FindMinimum@8Sin@xD + .5 x, -10 <= x <= 10<, 88x, RandomReal@8-10, 10<D<<D, 810<D

Out[19]= 88-1.91322, 8x Ø -2.09439<<, 8-5.05482, 8x Ø -8.37758<<, 8-5.05482, 8x Ø -8.37758<<,
8-5.05482, 8x Ø -8.37758<<, 8-1.91322, 8x Ø -2.0944<<, 8-5.05482, 8x Ø -8.37758<<,
81.22837, 8x Ø 4.18879<<, 81.22837, 8x Ø 4.18879<<, 81.22837, 8x Ø 4.18879<<, 84.45598, 8x Ø 10.<<<

Multiple starting points can also be done more systematically via NMinimize, using the 
"RandomSearch" method with an interior point as the post-processor.

In[1]:= NMinimize@8Sin@xD + .5 x, -10 <= x <= 10<, 8x<,
Method Ø 8"RandomSearch", "PostProcess" Ø "InteriorPoint"<D

Out[1]= 8-5.05482, 8x Ø -8.37758<<
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Solving Minimax Problems

The minimax (also known as minmax) problem is that of finding the minimum value of a func-

tion defined as the maximum of several functions, that is, 

Min Maxi fiœ81,2,…,m<HxL
s.t gHxL ¥ 0, hHxL = 0

While  this  problem can often be solved using general  constrained optimization technique,  it  is

more  reliably  solved  by  reformulating  the  problem  into  one  with  smooth  objective  function.

Specifically, the minimax problem can be converted into the following

Min z
s.t z ¥ fiHxL, i œ 81, 2, …, m<, gHxL ¥ 0, hHxL = 0

and solved using either FindMinimum or NMinimize.

This defines a function FindMinMax.

In[9]:= H*FindMinMax@8Max@8f1,f2,..<D,constraints<,varsD*L
SetAttributes@FindMinMax, HoldAllD;
FindMinMax@8f_Max, cons_<, vars_, opts___?OptionQD :=

With@8res = iFindMinMax@8f, cons<, vars, optsD<, res ê; ListQ@resDD;
iFindMinMax@8ff_Max, cons_<, vars_, opts___?OptionQD :=

Module@8z, res, f = List üü ff<,
res = FindMinimum@8z, HAnd üü consL && HAnd üü Thread@z >= fDL<,

Append@Flatten@8vars<, 1D, zD, optsD;
If@ListQ@resD, 8z ê. res@@2DD, Thread@vars -> Hvars ê. res@@2DDLD<DD;

This solves an unconstrained minimax problem with one variable.

In[19]:= FindMinMax@8Max@8x^2, Hx - 1L^2<D, 8<<, 8x, y<D

Out[19]= 80.25, 8x Ø 0.5, y Ø 1.<<

This solves an unconstrained minimax problem with two variables.

In[12]:= FindMinMax@8Max@8Abs@2 x^2 + y^2 - 48 x - 40 y + 304D, Abs@-x^2 - 3 y^2D,
Abs@x + 3 y - 18D, Abs@-x - yD, Abs@ x + y - 8D<D, 8<<, 8x, y<D

Out[12]= 837.2356, 8x Ø 4.92563, y Ø 2.07956<<
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This shows the contour of the objective function, and the optimal solution.

In[14]:= ContourPlot@Max@8Abs@2 x^2 + y^2 - 48 x - 40 y + 304D, Abs@-x^2 - 3 y^2D,
Abs@x + 3 y - 18D, Abs@-x - yD, Abs@ x + y - 8D<D, 8x, 3, 7<, 8y, 1, 3<,

Contours Ø 40, Epilog Ø 8Red, PointSize@0.02D, Point@84.93, 2.08<D<D

Out[14]=

This solves a constrained minimax problem.

In[16]:= FindMinMax@
8Max@8Abs@2 x^2 + y^2 - 48 x - 40 y + 304D, Abs@-x^2 - 3 y^2D, Abs@x + 3 y - 18D,

Abs@-x - yD, Abs@ x + y - 8D<D, 8Hx - 6L^2 + Hy - 1L^2 § 1<<, 8x, y<D
Out[16]= 837.7192, 8x Ø 5.34014, y Ø 1.75139<<

This shows the contour of the objective function within the feasible region, and the optimal 
solution.

In[18]:= ContourPlot@Max@8Abs@2 x^2 + y^2 - 48 x - 40 y + 304D,
Abs@-x^2 - 3 y^2D, Abs@x + 3 y - 18D, Abs@-x - yD, Abs@ x + y - 8D<D,

8x, 3, 7<, 8y, 0, 3<, RegionFunction Ø HHHÒ1 - 6L^2 + HÒ2 - 1L^2 <= 1L &L,
Contours Ø 40, Epilog Ø 8Red, PointSize@0.02D, Point@85.34, 1.75<D<D

Out[18]=

Multiobjective Optimization: Goal Programming
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Multiobjective Optimization: Goal Programming

Multiobjective  programming  involves  minimizing  several  objective  functions,  subject  to  con-

straints. Since a solution that minimizes one function often does not minimize the others at the

same time, there is usually no unique optimal solution.

Sometimes the decision maker has in mind a goal for each objective. In that case the so-called

goal programming technique can be applied.

There are a number of variants of how to model a goal-programming problem. One variant is to

order the objective functions based on priority, and seek to minimize the deviation of the most

important objective function from its goal first, before attempting to minimize the deviations of

the less important objective functions from their  goals.  This is called lexicographic or preemp-

tive goal programming.

In the second variant, the weighted sum of the deviation is minimized. Specifically, the follow-

ing constrained minimization problem is to be solved.

Minx w1I f1HxL - goal1M
+
+ w2I f2HxL - goal2M

+
+ … + wmI fmHxL - goalmM

+

s.t gHxL ¥ 0, hHxL = 0

Here  a+  stands  for  the  positive  part  of  the  real  number  a.  The  weights  wi  reflect  the  relative

importance,  and  normalize  the  deviation  to  take  into  account  the  relative  scales  and  units.

Possible values for the weights are the inverse of the goals to be attained. The previous prob-

lem can be reformulated to one that is easier to solve.

Minw1 z1 + w2 z2 + … + wm zm
s.t z1 ¥ f1HxL - goal1, z2 ¥ f2HxL - goal2, …, zm ¥ fmHxL - goalm, z1, z2, …, zm ¥ 0
gHxL ¥ 0, hHxL = 0

The  third  variant,  Chebyshev  goal  programming,  minimizes  the  maximum  deviation,  rather

than  the  sum  of  the  deviations.  This  balances  the  deviation  of  different  objective  functions.

Specifically, the following constrained minimization problem is to be solved.

Min Maxi wiI fiHxL - goaliM
s.t gHxL ¥ 0, hHxL = 0
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This can be reformulated as

Min z
s.t z ¥ wiI fiHxL - goaliM, i = 1, 2, …, m
gHxL ¥ 0, hHxL = 0

This defines a function GoalProgrammingWeightedAverage that solves the goal program-
ming model by minimizing the weighted sum of the deviation.
H* GoalProgrammingWeightedAverage@888f1,goal1,weight1<,...<,cons<,varsDD*L
GoalProgrammingWeightedAverage@

8fg : 88_, _< ..<, cons_<, vars_, opts___?OptionQD := With@
8res = Catch@iGoalProgrammingWeightedAverage@8Map@HAppend üü Ò &L,

Thread@8fg, ConstantArray@1, 8Length@fgD<D<DD, cons<, varsDD<,
res ê; ListQ@resD

D;
GoalProgrammingWeightedAverage@

8fg : 88_, _, _< ..<, cons_<, vars_, opts___?OptionQD := With@
8res = Catch@iGoalProgrammingWeightedAverage@8fg, cons<, varsDD<,
res ê; ListQ@resD

D;
iGoalProgrammingWeightedAverage@

8fg : 88_, _, _< ..<, cons_<, vars_, opts___?OptionQD := Module@
8fs, goals, zs, z, res, ws<,
8fs, goals, ws< = Transpose@fgD;
If@! VectorQ@ws, HÒ >= 0 &LD, Throw@$FailedDD;
If@! VectorQ@goals, HHNumericQ@ÒD && Head@ÒD =!= ComplexL &LD, Throw@$FailedDD;
zs = Array@z, Length@fsDD;
res = FindMinimum@8ws.zs, HAnd üü Flatten@8cons<, 1DL && HAnd üü Thread@zs ¥ 0DL &&

HAnd üü Thread@zs ¥ fs - goals DL<, Join@Flatten@8vars<, 1D, zsD, optsD;
If@ListQ@resD, 8fs ê. res@@2DD, Thread@vars Ø Hvars ê. res@@2DDLD<D

D;

This defines a function GoalProgrammingChebyshev that solves the goal programming model 
by minimizing the maximum deviation.
H* syntax GoalAttainment@888f1,goal1,weight1<,...<,cons<,varsDD*L
GoalProgrammingChebyshev@

8fg : 88_, _< ..<, cons_<, vars_, opts___?OptionQD := With@
8res = Catch@iGoalProgrammingChebyshev@8Map@HAppend üü Ò &L,

Thread@8fg, ConstantArray@1, 8Length@fgD<D<DD, cons<, varsDD<,
res ê; ListQ@resD

D;
GoalProgrammingChebyshev@

8fg : 88_, _, _< ..<, cons_<, vars_, opts___?OptionQD := With@
8res = Catch@iGoalProgrammingChebyshev@8fg, cons<, varsDD<,
res ê; ListQ@resD

D;
iGoalProgrammingChebyshev@

8fg : 88_, _, _< ..<, cons_<, vars_, opts___?OptionQD := Module@
8fs, goals, y, res, ws<,
8fs, goals, ws< = Transpose@fgD;
If@! VectorQ@ws, HÒ >= 0 &LD, Throw@$FailedDD;
If@! VectorQ@goals, HHNumericQ@ÒD && Head@ÒD =!= ComplexL &LD, Throw@$FailedDD;
res = FindMinimum@

8y, HAnd üü Flatten@8cons<, 1DL && HAnd üü Thread@y ¥ ws * Hfs - goalsL DL<,
Append@Flatten@8vars<, 1D, yD, optsD;

If@ListQ@resD, 8fs ê. res@@2DD, Thread@vars Ø Hvars ê. res@@2DDLD<D
D;

This solves a goal programming problem with two objective functions and one constraint using 
GoalProgrammingWeightedAverage with unit weighting, resulting in deviations from the 
goal of 13.12 and 33.28, thus a total deviation of 37, and a maximal deviation of 33.28.
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This solves a goal programming problem with two objective functions and one constraint using 
GoalProgrammingWeightedAverage with unit weighting, resulting in deviations from the 
goal of 13.12 and 33.28, thus a total deviation of 37, and a maximal deviation of 33.28.
res1 = GoalProgrammingWeightedAverage@

888x^2 + y^2, 0<, 84 Hx - 2L^2 + 4 Hy - 2L^2, 0<<, y - x ã -4<, 8x, y<D
8813.12, 33.28<, 8x Ø 3.6, y Ø -0.4<<

This solves a goal programming problem with two objective functions and one constraint using 
GoalProgrammingChebyshev with unit weighting, resulting in deviations from the goal of 16 
and 32, thus a maximal deviation of 32, but a total deviation of 38.
res2 = GoalProgrammingChebyshev@

888x^2 + y^2, 0<, 84 Hx - 2L^2 + 4 Hy - 2L^2, 0<<, y - x ã -4<, 8x, y<D

9816., 32.<, 9x Ø 4., y Ø -4.55071µ10-9==

This shows the contours for the first (blue) and second (red) objective functions, the feasible 
region (the black line), and the optimal solution found by 
GoalProgrammingWeightedAverage (yellow point) and by GoalProgrammingChebyshev 
(green point).
g1 = ContourPlot@x^2 + y^2, 8x, 2, 6<, 8y, -1, 2<,

ContourShading Ø False, ContourStyle Ø Blue, ContourLabels Ø AutomaticD;
g2 = ContourPlot@4 Hx - 2L^2 + 4 Hy - 2L^2, 8x, 2, 6<, 8y, -1, 2<,

ContourShading Ø False, ContourStyle Ø Red, ContourLabels Ø AutomaticD;
Show@8g1, g2<, Epilog Ø 8Line@883, -1<, 86, 2<<D, PointSize@0.02D, Yellow,

Point@8x, y< ê. res1@@2DDD, Green, Point@8x, y< ê. res2@@2DDD<D
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An Application Example: Portfolio Optimization

A powerful tool in managing investments is to spread the risk by investing in assets that have

few  or  no  correlations.  For  example,  if  asset  A  goes  up  20% one  year  and  is  down  10% the

next, asset B goes down 10% one year and is up 20% the next, and up years for A are down

years  for  B,  then  holding  both  in  equal  amounts  would  result  in  a  10% increase  every  year,

without  any risk.  In  reality  such  assets  are  rarely  available,  but  the  concept  remains  a  useful

one.

In this example, the aim is to find the optimal asset allocation so as to minimize the risk, and

achieve a preset level of return, by investing in a spread of stocks, bonds, and gold.

Here are the historical returns of various assets between 1973 and 1994. For example, in 1973,

S&P 500 lost 1 - 0.852 = 14.8 %, while gold appreciated by 67.7%.

"3m Tbill" "long Tbond" "SP500" "Wilt.5000" "Corp. Bond" "NASDQ" "EAFE" "Gold"
1973 1.075 0.942 0.852 0.815 0.698 1.023 0.851 1.677
1974 1.084 1.02 0.735 0.716 0.662 1.002 0.768 1.722
1975 1.061 1.056 1.371 1.385 1.318 0.123 1.354 0.76
1976 1.052 1.175 1.236 1.266 1.28 1.156 1.025 0.96
1977 1.055 1.002 0.926 0.974 1.093 1.03 1.181 1.2
1978 1.077 0.982 1.064 1.093 1.146 1.012 1.326 1.295
1979 1.109 0.978 1.184 1.256 1.307 1.023 1.048 2.212
1980 1.127 0.947 1.323 1.337 1.367 1.031 1.226 1.296
1981 1.156 1.003 0.949 0.963 0.99 1.073 0.977 0.688
1982 1.117 1.465 1.215 1.187 1.213 1.311 0.981 1.084
1983 1.092 0.985 1.224 1.235 1.217 1.08 1.237 0.872
1984 1.103 1.159 1.061 1.03 0.903 1.15 1.074 0.825
1985 1.08 1.366 1.316 1.326 1.333 1.213 1.562 1.006
1986 1.063 1.309 1.186 1.161 1.086 1.156 1.694 1.216
1987 1.061 0.925 1.052 1.023 0.959 1.023 1.246 1.244
1988 1.071 1.086 1.165 1.179 1.165 1.076 1.283 0.861
1989 1.087 1.212 1.316 1.292 1.204 1.142 1.105 0.977
1990 1.08 1.054 0.968 0.938 0.83 1.083 0.766 0.922
1991 1.057 1.193 1.304 1.342 1.594 1.161 1.121 0.958
1992 1.036 1.079 1.076 1.09 1.174 1.076 0.878 0.926
1993 1.031 1.217 1.1 1.113 1.162 1.11 1.326 1.146
1994 1.045 0.889 1.012 0.999 0.968 0.965 1.078 0.99
average 1.078 1.093 1.120 1.124 1.121 1.046 1.141 1.130

This is the annual return data.
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This is the annual return data.

In[2]:= R = 881.075`, 1.084`, 1.061`, 1.052`, 1.055`, 1.077`,
1.109`, 1.127`, 1.156`, 1.117`, 1.092`, 1.103`, 1.08`, 1.063`,
1.061`, 1.071`, 1.087`, 1.08`, 1.057`, 1.036`, 1.031`, 1.045`<,

80.942`, 1.02`, 1.056`, 1.175`, 1.002`, 0.982`, 0.978`, 0.947`,
1.003`, 1.465`, 0.985`, 1.159`, 1.366`, 1.309`, 0.925`,
1.086`, 1.212`, 1.054`, 1.193`, 1.079`, 1.217`, 0.889`<,

80.852`, 0.735`, 1.371`, 1.236`, 0.926`, 1.064`, 1.184`, 1.323`, 0.949`,
1.215`, 1.224`, 1.061`, 1.316`, 1.186`, 1.052`, 1.165`, 1.316`,
0.968`, 1.304`, 1.076`, 1.1`, 1.012`<, 80.815`, 0.716`, 1.385`, 1.266`,
0.974`, 1.093`, 1.256`, 1.337`, 0.963`, 1.187`, 1.235`, 1.03`, 1.326`,
1.161`, 1.023`, 1.179`, 1.292`, 0.938`, 1.342`, 1.09`, 1.113`, 0.999`<,

80.698`, 0.662`, 1.318`, 1.28`, 1.093`, 1.146`, 1.307`, 1.367`, 0.99`,
1.213`, 1.217`, 0.903`, 1.333`, 1.086`, 0.959`, 1.165`, 1.204`, 0.83`,
1.594`, 1.174`, 1.162`, 0.968`<, 81.023`, 1.002`, 0.123`, 1.156`,
1.03`, 1.012`, 1.023`, 1.031`, 1.073`, 1.311`, 1.08`, 1.15`, 1.213`,
1.156`, 1.023`, 1.076`, 1.142`, 1.083`, 1.161`, 1.076`, 1.11`, 0.965`<,

80.851`, 0.768`, 1.354`, 1.025`, 1.181`, 1.326`, 1.048`, 1.226`, 0.977`,
0.981`, 1.237`, 1.074`, 1.562`, 1.694`, 1.246`, 1.283`, 1.105`, 0.766`,
1.121`, 0.878`, 1.326`, 1.078`<, 81.677`, 1.722`, 0.76`, 0.96`, 1.2`,
1.295`, 2.212`, 1.296`, 0.688`, 1.084`, 0.872`, 0.825`, 1.006`, 1.216`,
1.244`, 0.861`, 0.977`, 0.922`, 0.958`, 0.926`, 1.146`, 0.99`<<;

Here are the expected returns over this 22-year period for the eight assets.

In[3]:= 8n, nyear< = Dimensions@RD;

In[5]:= ER = Mean@TransposeüRD

Out[5]= 81.07814, 1.09291, 1.11977, 1.12364, 1.12132, 1.04632, 1.14123, 1.12895<

Here is the covariant matrix, which measures how the assets correlate to each other.

In[11]:= Covariants = Covariance@Transpose@RDD;

This finds the optimal asset allocation by minimizing the standard deviation of an allocation, 
subject to the constraints that the total allocation is 100% (Total@varsD == 1), the expected 
return is over 12% (vars.ER ¥ 1.12), and the variables must be non-negative, thus each asset is 
allocated a non-negative percentage (thus no shorting). The resulting optimal asset allocation 
suggests 15.5% in 3-month treasury bills, 20.3% in gold, and the rest in stocks, with a result-
ing standard deviation of 0.0126.

In[18]:= vars = Map@Subscript@x, ÒD &, 8"3m T-bill", "long T-bond", "SP500",
"Wiltshire 5000", "Corporate Bond", "NASDQ", "EAFE", "Gold"<D;

vars = Map@Subscript@x, ÒD &, 8"3m T-bill", "long T-bond", "SP500",
"Wiltshire 5000", "Corporate Bond", "NASDQ", "EAFE", "Gold"<D;

FindMinimum@8
vars.Covariants.vars,
Total@varsD ã 1 && vars.ER ¥ 1.12 && Apply@And, Thread@Greater@vars, 0DDD<, varsD

Out[20]= 80.0126235, 8x3m T-bill Ø 0.154632, xlong T-bond Ø 0.0195645, xSP500 Ø 0.354434, xWiltshire 5000 Ø 0.0238249,
xCorporate Bond Ø 0.000133775, xNASDQ Ø 0.0000309191, xEAFE Ø 0.24396, xGold Ø 0.203419<<
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This trades less return for smaller volatility by asking for an expected return of 10%. Now we 
have 55.5% in 3-month treasury bills, 10.3% in gold, and the rest in stocks.

In[16]:= vars = Map@Subscript@x, ÒD &, 8"3m T-bill", "long T-bond", "SP500",
"Wiltshire 5000", "Corporate Bond", "NASDQ", "EAFE", "Gold"<D;

FindMinimum@8
vars.Covariants.vars,
Total@varsD ã 1 && vars.ER ¥ 1.10 && Apply@And, Thread@Greater@vars, 0DDD<, varsD

Out[17]= 80.00365995, 8x3m T-bill Ø 0.555172, xlong T-bond Ø 0.0244205, xSP500 Ø 0.156701, xWiltshire 5000 Ø 0.0223812,
xCorporate Bond Ø 0.00017454, xNASDQ Ø 0.0000293021, xEAFE Ø 0.13859, xGold Ø 0.102532<<

Limitations of the Interior Point Method

The  implementation  of  the  interior  point  method  in  FindMinimum  requires  first  and  second

derivatives  of  the  objective  and  constraints.  Symbolic  derivatives  are  first  attempted,  and  if

they fail, finite difference will be used to calculate the derivatives. If the function or constraints

are  not  smooth,  particularly  if  the  first  derivative  at  the  optimal  point  is  not  continuous,  the

interior point method may experience difficulty in converging.

This shows that the interior point method has difficulty in minimizing this nonsmooth function.

In[29]:= FindMinimum@8Abs@x - 3D, 0 § x § 5<, 8x<D

FindMinimum::eit : The algorithm does not converge to the tolerance of 4.806217383937354`*^-6 in 500
iterations. The best estimated solution, with 8feasibility residual, KKT residual, complementary

residual< of 94.54827µ10-6, 0.0402467, 2.27414µ10-6=, is returned. à

Out[29]= 98.71759µ10-6, 8x Ø 2.99999<=

This is somewhat similar to the difficulty experienced by an unconstrained Newton's method.

In[30]:= FindMinimum@8Abs@x - 3D<, 8x<, Method Ø NewtonD

FindMinimum::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and

PrecisionGoal but was unable to find a sufficient decrease
in the function. You may need more than MachinePrecision

digits of working precision to meet these tolerances. à

Out[30]= 98.06359µ10-6, 8x Ø 2.99999<=
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Numerical Algorithms for Constrained Local 
Optimization

The Interior Point Algorithm

The interior point algorithm solves a constrained optimization by combining constraints and the

objective function through the use of the barrier function. Specifically, the general constrained

optimization problem is first converted to the standard form

(3)
Min f HxL
s.t.hHxL = 0, x ¥ 0.

The  non-negative  constraints  are  then  replaced  by  adding  a  barrier  term  to  the  objective

function

Min ymHxL := f HxL - m‚
i
lnHxiL

s.t.hHxL = 0,

where m > 0 is a barrier parameter.

The necessary KKT condition (assuming, for example, that the gradient of h is linearly indepen-

dent) is 

“ymHxL - yT AHxL = 0
hHxL = 0,

where A HxL = H“h1 HxL, “h2 HxL, …, “hm HxLLT is of dimension m×n. Or

gHxL - mX-1 e - yT AHxL = 0
hHxL = 0.

Here  X  is  a  diagonal  matrix,  with  the  diagonal  element  i  of  xi  if  i œ I,  or  0.  Introducing  dual

variables z = m X-1 e, then

(4)
gHxL - z - yT AHxL = 0
hHxL = 0
Z X e = m e.

This  nonlinear  system  can  be  solved  with  Newton's  method.  Let  LHx, yL = f HxL - hHxLT y  and

HHx, yL = “2 LHx, yL = “2 f HxL -⁄m
i=1 yi “2 hiHxL; the Jacobi matrix of the above system (4) is
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This  nonlinear  system  can  be  solved  with  Newton's  method.  Let  LHx, yL = f HxL - hHxLT y  and

HHx, yL = “2 LHx, yL = “2 f HxL -⁄m
i=1 yi “2 hiHxL; the Jacobi matrix of the above system (4) is

HHx, yL -AHxLT -I
-AHxL 0 0
Z 0 X

d x
d y
d z

= -
gHxL - z - yT AHxL

-hHxL
Z X e - m e

= -

dy
-dh
dx z

.

Eliminating dz, dz = -X-1HZ d x + dx zL, then IHHx, yL + X-1 ZM dx - AHxLT dy = -dy - X-1 dx z, thus

(5)
HHx, yL + X-1 Z -AHxLT

-AHxL 0
d x
d y

= -
dy + X-1 dx z

-dh
= -

gHxL - AHxLT y - m X-1 e
-hHxL

.

Thus the nonlinear constrained problem can be solved iteratively by 

(6)x := x + d x, y := y + d y, z := z + d z

with the search direction 8d x, d y, d z< given by solving the previous Jacobi system (5).

To ensure convergence, you need to have some measure of success. One way of doing this is to

use a merit function, such as the following augmented Langrangian merit function.

Augmented Langrangian Merit Function

This defines an augmented Langrangian merit function

(7)fHx, bL = f HxL - m⁄i lnHxiL - h HxLT l + b »» hHxL »»2 .

Here m > 0  is the barrier parameter and b > 0  a penalty parameter. It  can be proved that if  the

matrix N Hx, yL = H Hx, yL + X-1 Z  is positive definite, then either the search direction given by (6) is

a decent direction for the above merit function (7), or 8x, y, z, m< satisfied the KKT condition (4).

A line search is performed along the search direction, with the initial step length chosen to be

as close to 1 as possible, while maintaining the positive constraints. A backtracking procedure is

then  used  until  the  Armijo  condition  is  satisfied  on  the  merit  function,

fHx + t d x, bL § f Hx, bL + g t “f Hx, bLT d x with g œ H0, 1 ê2D.
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 Convergence Tolerance

The convergence criterion for the interior point algorithm is 

»» gHxL - z - yT AHxL »» + »» hHxL »» + »» Z X e - m e »» § tol

with tol set, by default, to 10-MachinePrecisionê3.

Numerical Nonlinear Global Optimization

Introduction

Numerical  algorithms  for  constrained  nonlinear  optimization  can  be  broadly  categorized  into

gradient-based  methods  and  direct  search  methods.  Gradient-based  methods  use  first  deriva-

tives (gradients)  or  second derivatives (Hessians).  Examples are the sequential  quadratic  pro-

gramming (SQP) method, the augmented Lagrangian method, and the (nonlinear) interior point

method.  Direct  search methods do not  use derivative information.  Examples are Nelder|Mead,

genetic  algorithm  and  differential  evolution,  and  simulated  annealing.  Direct  search  methods

tend to converge more slowly, but can be more tolerant to the presence of noise in the function

and constraints.

Typically,  algorithms  only  build  up  a  local  model  of  the  problems.  Furthermore,  many  such

algorithms insist on certain decrease of the objective function, or decrease of a merit  function

which is a combination of the objective and constraints, to ensure convergence of the iterative

process. Such algorithms will, if convergent, only find local optima, and are called local optimiza-

tion algorithms. In Mathematica local optimization problems can be solved using FindMinimum.

Global optimization algorithms, on the other hand, attempt to find the global optimum, typically

by  allowing  decrease  as  well  as  increase  of  the  objective/merit  function.  Such  algorithms  are

usually  computationally  more  expensive.  Global  optimization  problems  can  be  solved  exactly

using Minimize or numerically using NMinimize.

This solves a nonlinear programming problem,

Min x - y
s.t. - 3 x2 + 2 x y - y2 ¥ -1
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using Minimize,which gives an exact solution.

In[1]:= MinimizeA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[1]= 8-1, 8x Ø 0, y Ø 1<<

This solves the same problem numerically. NMinimize returns a machine-number solution.

In[2]:= NMinimizeA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[2]= 9-1., 9x Ø 1.90701µ10-6, y Ø 1.==

FindMinimum  numerically finds a local minimum. In this example the local minimum found is 
also a global minimum.

In[3]:= FindMinimumA9x - y, -3 x2 + 2 x y - y2 ¥ -1=, 8x, y<E

Out[3]= 9-1., 9x Ø 2.78301µ10-17, y Ø 1.==

The NMinimize Function

NMinimize  and NMaximize  implement several algorithms for finding constrained global optima.

The methods are flexible enough to cope with functions that are not differentiable or continuous

and are not easily trapped by local optima. 

Finding a global optimum can be arbitrarily difficult, even without constraints, and so the meth-

ods  used  may  fail.  It  may  frequently  be  useful  to  optimize  the  function  several  times  with

different starting conditions and take the best of the results. 

This finds the maximum of sinHx + yL - x2 - y2. 

In[46]:= NMaximizeASin@x + yD - x2 - y2, 8x, y<E

Out[46]= 80.400489, 8x Ø 0.369543, y Ø 0.369543<<

This finds the minimum of Jy - 1
2
N
2
+ x2 subject to the constraints y ¥ 0 and y ¥ x + 1. 

In[47]:= NMinimizeA9x2 + Hy - .5L2, y ¥ 0 && y ¥ x + 1=, 8x, y<E

Out[47]= 80.125, 8x Ø -0.25, y Ø 0.75<<

The  constraints  to  NMinimize  and  NMaximize  may  be  either  a  list  or  a  logical  combination  of

equalities, inequalities, and domain specifications. Equalities and inequalities may be nonlinear.

Element,  for  example,

Element@x, IntegersD or x œ Integers. Variables must be either integers or real numbers, and

will  be  assumed  to  be  real  numbers  unless  specified  otherwise.  Constraints  are  generally

enforced by adding penalties when points leave the feasible region. 
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The  constraints  to  NMinimize  and  NMaximize  may  be  either  a  list  or  a  logical  combination  of

Any strong inequalities will  be converted to weak inequalities due to the limits of working with

approximate  numbers.  Specify  a  domain  for  a  variable  using  Element,  for  example,

Element@x, IntegersD or x œ Integers. Variables must be either integers or real numbers, and

will  be  assumed  to  be  real  numbers  unless  specified  otherwise.  Constraints  are  generally

enforced by adding penalties when points leave the feasible region. 

Constraints can contain logical operators like And, Or, and so on. 

In[3]:= NMinimizeA9x2 + y2, x ¥ 1 »» y ¥ 2=, 8x, y<E

Out[3]= 81., 8x Ø 1., y Ø 0.<<

Here x is restricted to being an integer. 

In[4]:= NMinimizeA9Hx - 1 ê 3L2 + Hy - 1 ê 3L2, x œ Integers=, 8x, y<E

Out[4]= 80.111111, 8x Ø 0, y Ø 0.333333<<

In  order  for  NMinimize  to  work,  it  needs  a  rectangular  initial  region  in  which  to  start.  This  is

similar to giving other numerical methods a starting point or starting points. The initial region is

specified  by  giving  each  variable  a  finite  upper  and  lower  bound.  This  is  done  by  including

a § x § b  in  the  constraints,  or  8x, a, b<  in  the  variables.  If  both  are  given,  the  bounds  in  the

variables are used for the initial region, and the constraints are just used as constraints. If no

initial region is specified for a variable x, the default initial region of -1 § x § 1 is used. Different

variables can have initial regions defined in different ways. 

Here the initial region is taken from the variables. The problem is unconstrained. 

In[5]:= NMinimizeAx2, 88x, 3, 4<<E

Out[5]= 80., 8x Ø 0.<<

Here the initial region is taken from the constraints. 

In[6]:= NMinimizeA9x2, 3 § x § 4=, 8x<E

Out[6]= 89., 8x Ø 3.<<

Here the initial region for x is taken from the constraints, the initial region for y is taken from 
the variables, and the initial region for z is taken to be the default. The problem is uncon-
strained in y and z, but not x. 

In[7]:= NMinimizeA9x2 + y2 + z2, 3 § x § 4=, 8x, 8y, 2, 5<, z<E

Out[7]= 89., 8x Ø 3., y Ø 0., z Ø 0.<<

The polynomial 4 x4 - 4 x2 + 1 has global minima at xØ ±
2
2

. NelderMead finds one of the 

minima.
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The polynomial 4 x4 - 4 x2 + 1 has global minima at xØ ±
2
2

. NelderMead finds one of the 

minima.

In[48]:= NMinimizeA4 x4 - 4 x2 + 1, x, Method -> "NelderMead"E

Out[48]= 80., 8x Ø 0.707107<<

The other minimum can be found by using a different RandomSeed.

In[50]:= NMinimizeA4 x4 - 4 x2 + 1, x, Method Ø 8"NelderMead", "RandomSeed" Ø 111<E

Out[50]= 80., 8x Ø -0.707107<<

NMinimize  and  NMaximize  have  several  optimization  methods  available:  Automatic,

"DifferentialEvolution",  "NelderMead",  "RandomSearch",  and "SimulatedAnnealing".  The

optimization  method  is  controlled  by  the  Method  option,  which  either  takes  the  method  as  a

string, or takes a list  whose first element is the method as a string and whose remaining ele-

ments  are  method-specific  options.  All  method-specific  option,  left-hand  sides  should  also  be

given as strings.

The following function has a large number of local minima.

In[51]:= Clear@fD;
f =

‰Sin@50 xD + Sin@60 ‰yD + Sin@70 Sin@xDD + Sin@Sin@80 yDD - Sin@10 Hx + yLD +
1

4
Ix2 + y2M;

Plot3D@f, 8x, -1, 1<, 8y, -1, 1<, PlotPoints Ø 50, Mesh Ø FalseD

Out[53]=

Use RandomSearch to find a minimum.

In[54]:= NMinimize@f, 8x, y<, Method Ø "RandomSearch"D

Out[54]= 8-2.85149, 8x Ø 0.449094, y Ø 0.291443<<
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Use RandomSearch with more starting points to find the global minimum. 

In[55]:= NMinimize@f, 8x, y<, Method Ø 8"RandomSearch", "SearchPoints" Ø 250<D

Out[55]= 8-3.30687, 8x Ø -0.0244031, y Ø 0.210612<<

With the default method, NMinimize  picks which method to use based on the type of problem.

If  the  objective  function  and  constraints  are  linear,  LinearProgramming  is  used.  If  there  are

integer variables, or if the head of the objective function is not a numeric function, differential

evolution is  used. For everything else,  it  uses Nelder-Mead, but if  Nelder-Mead does poorly,  it

switches to differential evolution. 

Because the methods used by NMinimize may not improve every iteration, convergence is only

checked after several iterations have occurred.

Numerical Algorithms for Constrained Global 
Optimization

Nelder|Mead

The Nelder|Mead method is a direct search method. For a function of n variables, the algorithm

maintains  a  set  of  n + 1  points  forming  the  vertices  of  a  polytope  in  n-dimensional  space.  This

method  is  often  termed  the  "simplex"  method,  which  should  not  be  confused  with  the  well-

known simplex method for linear programming.

At  each  iteration,  n + 1  points  x1, x2, …, xn+1  form  a  polytope.  The  points  are  ordered  so  that

f Hx1L § f Hx2L § … § f Hxn+1L. A new point is then generated to replace the worst point xn+1.

Let c be the centroid of the polytope consisting of the best n points, c = 1
n ⁄i=1

n xi. A trial point xt is

generated by reflecting the worst point through the centroid, xt = c + a Hc - xn+1L,  where a > 0  is  a

parameter.

If  the  new  point  xt  is  neither  a  new  worst  point  nor  a  new  best  point,  f Hx1L § f HxtL § f HxnL,  xt

replaces xn+1.

If the new point xt  is better than the best point, f HxtL < f Hx1L, the reflection is very successful and

can be carried out further to xe = c + b Hxt - rL, where b > 1 is a parameter to expand the polytope.

If the expansion is successful, f HxeL < f HxtL, xe replaces xn+1; otherwise the expansion failed, and xt

replaces xn+1.
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If the new point xt  is better than the best point, f HxtL < f Hx1L, the reflection is very successful and

can be carried out further to xe = c + b Hxt - rL, where b > 1 is a parameter to expand the polytope.

If the expansion is successful, f HxeL < f HxtL, xe replaces xn+1; otherwise the expansion failed, and xt

replaces xn+1.

If the new point xt  is worse than the second worst point, f HxtL ¥ f HxnL, the polytope is assumed to

be too large and needs to be contracted. A new trial point is defined as 

xc =
c + g Hxn+1 - cL, if f HxtL ¥ f Hxn+1L,
c + g Hxt - cL, if f HxtL < f Hxn+1L,

where  0 < g < 1  is  a  parameter.  If  f HxcL < MinH f Hxn+1L, f HxtLL,  the  contraction  is  successful,  and  xc

replaces xn+1. Otherwise a further contraction is carried out.

The process is assumed to have converged if the difference between the best function values in

the new and old polytope, as well as the distance between the new best point and the old best

point, are less than the tolerances provided by AccuracyGoal and PrecisionGoal.

Strictly speaking, Nelder|Mead is not a true global optimization algorithm; however, in practice

it tends to work reasonably well for problems that do not have many local minima.

option name default value

"ContractRatio" 0.5 ratio used for contraction 

"ExpandRatio" 2.0 ratio used for expansion 

"InitialPoints" Automatic set of initial points 

"PenaltyFunction" Automatic function applied to constraints to penalize 
invalid points

"PostProcess" Automatic whether to post-process using local search 
methods 

"RandomSeed" 0 starting value for the random number 
generator

"ReflectRatio" 1.0 ratio used for reflection 

"ShrinkRatio" 0.5 ratio used for shrinking 

"Tolerance" 0.001 tolerance for accepting constraint violations 

NelderMead specific options.
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Here the function inside the unit disk is minimized using NelderMead. 

In[82]:= NMinimizeB:100 Iy - x2M2 + H1 - xL2, x2 + y2 § 1>, 8x, y<, Method Ø "NelderMead"F

Out[82]= 80.0456748, 8x Ø 0.786415, y Ø 0.617698<<

Here is a function with several local minima that are all different depths. 

In[83]:= Clear@a, fD;
a = Reverse êü Distribute@88-32, -16, 0, 16, 32<, 8-32, -16, 0, 16, 32<<, ListD;
f = 1 ê H0.002 + Plus üü MapIndexed@1 ê HÒ2P1T + Plus üü HH8x, y< - Ò1L^6LL &, aDL;
Plot3D@f, 8x, -50, 50<, 8y, -50, 50<, Mesh Ø None, PlotPoints Ø 25D

Out[83]=

With the default parameters, NelderMead is too easily trapped in a local minimum. 

In[116]:= Do@Print@NMinimize@f, 88x, -50, 50<, 8y, -50, 50<<,
Method Ø 8"NelderMead", "RandomSeed" Ø i<DD, 8i, 5<D

83.96825, 8x Ø 15.9816, y Ø -31.9608<<

912.6705, 9x Ø 0.02779, y Ø 1.57394 µ 10-6==

810.7632, 8x Ø -31.9412, y Ø 0.0253465<<

81.99203, 8x Ø -15.9864, y Ø -31.9703<<

816.4409, 8x Ø -15.9634, y Ø 15.9634<<

By using settings that are more aggressive and less likely to make the simplex smaller, the 
results are better. 

In[117]:= Do@Print@NMinimize@f, 88x, -50, 50<, 8y, -50, 50<<,
Method Ø 8"NelderMead", "ShrinkRatio" Ø 0.95, "ContractRatio" Ø 0.95,

"ReflectRatio" Ø 2, "RandomSeed" Ø i<DD, 8i, 5<D

83.96825, 8x Ø 15.9816, y Ø -31.9608<<

82.98211, 8x Ø -0.0132362, y Ø -31.9651<<

81.99203, 8x Ø -15.9864, y Ø -31.9703<<

816.4409, 8x Ø -15.9634, y Ø 15.9634<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

Differential Evolution
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Differential Evolution

Differential evolution is a simple stochastic function minimizer.

The algorithm maintains a population of m points, 9x1, x2, …, x j, …, xm=, where typically mp n, with

n being the number of variables. 

During each iteration of the algorithm, a new population of m  points is generated. The jth  new

point  is  generated by picking three random points,  xu,  xv  and xw,  from the old population,  and

forming  xs = xw + sHxu - xvL,  where  s  is  a  real  scaling  factor.  Then  a  new point  xnew  is  constructed

from x j  and xs  by taking the ith  coordinate from xs  with  probability  r  and otherwise taking the

coordinate  from x j.  If  f HxnewL < f Ix jM,  then  xnew  replaces  x j  in  the  population.  The  probability  r  is

controlled by the "CrossProbability" option.

The process is assumed to have converged if the difference between the best function values in

the new and old  populations,  as  well  as  the distance between the new best  point  and the old

best point, are less than the tolerances provided by AccuracyGoal and PrecisionGoal.

The  differential  evolution  method  is  computationally  expensive,  but  is  relatively  robust  and

tends to work well for problems that have more local minima.

option name default value

"CrossProbability" 0.5 probability that a gene is taken from xi

"InitialPoints" Automatic set of initial points 

"PenaltyFunction" Automatic function applied to constraints to penalize 
invalid points

"PostProcess" Automatic whether to post-process using local search 
methods 

"RandomSeed" 0 starting value for the random number 
generator

"ScalingFactor" 0.6 scale applied to the difference vector in 
creating a mate 

"SearchPoints" Automatic size of the population used for evolution 

"Tolerance" 0.001 tolerance for accepting constraint violations 

DifferentialEvolution specific options.
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Here the function inside the unit disk is minimized using DifferentialEvolution. 

In[125]:= NMinimizeB:100 Iy - x2M2 + H1 - xL2, x2 + y2 § 1>,

8x, y<, Method Ø "DifferentialEvolution"F

Out[125]= 80.0456748, 8x Ø 0.786415, y Ø 0.617698<<

The following constrained optimization problem has a global minimum of 7.66718. 

In[126]:= Clear@f, c, v, x1, x2, y1, y2, y3D

In[127]:= f = 2 x1 + 3 x2 + 3 y1 ê 2 + 2 y2 - y3 ê 2;
c = 8x1^2 + y1 ã 5 ê 4, x2^H3 ê 2L + 3 y2 ê 2 == 3,

x1 + y1 § 8 ê 5, 4 x2 ê 3 + y2 § 3, y3 § y1 + y2, 0 § x1 § 10, 0 § x2 § 10,
0 § y1 § 1, 0 § y2 § 1, 0 § y3 § 1, 8y1, y2, y3< œ Integers

<;
v = 8x1, x2, y1, y2, y3<;

With the default settings for DifferentialEvolution, an unsatisfactory solution results.

In[130]:= NMinimize@8f, c<, v, Method Ø "DifferentialEvolution"D

Out[130]= 87.93086, 8x1 Ø 0.499931, x2 Ø 1.31033, y1 Ø 1, y2 Ø 1, y3 Ø 1<<

By adjusting ScalingFactor, the results are much better. In this case, the increased 
ScalingFactor gives DifferentialEvolution better mobility with respect to the integer 
variables.

In[131]:= NMinimize@8f, c<, v, Method Ø 8"DifferentialEvolution", "ScalingFactor" Ø 1<D

Out[131]= 87.66718, 8x1 Ø 1.11803, x2 Ø 1.31037, y1 Ø 0, y2 Ø 1, y3 Ø 1<<

Simulated Annealing

Simulated annealing is a simple stochastic function minimizer. It is motivated from the physical

process of annealing, where a metal object is heated to a high temperature and allowed to cool

slowly. The process allows the atomic structure of the metal to settle to a lower energy state,

thus becoming a tougher metal. Using optimization terminology, annealing allows the structure

to  escape  from  a  local  minimum,  and  to  explore  and  settle  on  a  better,  hopefully  global,

minimum.

At  each  iteration,  a  new point,  xnew,  is  generated  in  the  neighborhood  of  the  current  point,  x.

The radius of the neighborhood decreases with each iteration. The best point found so far, xbest,

is also tracked.

If  f HxnewL § f HxbestL,  xnew  replaces  xbest  and x.  Otherwise,  xnew  replaces  x  with  a  probability  ebIi,D f , f0M.

Here b is the function defined by BoltzmannExponent, i is the current iteration, D f  is the change

in the objective function value, and f0  is  the value of  the objective function from the previous

iteration. The default function for b is -D f logHi+1L
10

.
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If  f HxnewL § f HxbestL,  xnew  replaces  xbest  and x.  Otherwise,  xnew  replaces  x  with  a  probability  ebIi,D f , f0M.

Here b is the function defined by BoltzmannExponent, i is the current iteration, D f  is the change

in the objective function value, and f0  is  the value of  the objective function from the previous

iteration. The default function for b is -D f logHi+1L
10

.

Like  the  RandomSearch  method,  SimulatedAnnealing  uses  multiple  starting  points,  and  finds

an optimum starting from each of them.

The default number of starting points, given by the option SearchPoints, is minH2 d, 50L, where d

is the number of variables.

For each starting point, this is repeated until the maximum number of iterations is reached, the

method  converges  to  a  point,  or  the  method  stays  at  the  same  point  consecutively  for  the

number of iterations given by LevelIterations.

option name default value

"BoltzmannExponent" Automatic exponent of the probability function 

"InitialPoints" Automatic set of initial points 

"LevelIterations" 50 maximum number of iterations to stay at a 
given point 

"PenaltyFunction" Automatic function applied to constraints to penalize 
invalid points

"PerturbationScale" 1.0 scale for the random jump 

"PostProcess" Automatic whether to post-process using local search 
methods 

"RandomSeed" 0 starting value for the random number 
generator

"SearchPoints" Automatic number of initial points 

"Tolerance" 0.001 tolerance for accepting constraint violations 

SimulatedAnnealing specific options. 

Here a function in two variables is minimized using SimulatedAnnealing. 

In[62]:= NMinimizeB:100 Iy - x2M2 + H1 - xL2, -2.084 § x § 2.084 && -2.084 § y § 2.084>,

8x, y<, Method Ø "SimulatedAnnealing"F

Out[62]= 80., 8x Ø 1., y Ø 1.<<
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Here is a function with many local minima. 

In[63]:= Clear@fD
f@x_, y_D := 20 Sin@p ê 2 Hx - 2 pLD + 20 Sin@p ê 2 Hy - 2 pLD + Hx - 2 pL2 + Hy - 2 pL2;
Plot3D@f@x, yD, 8x, 0, 10<, 8y, 0, 10<D

Out[65]=

By default, the step size for SimulatedAnnealing is not large enough to escape from the 
local minima. 

In[68]:= NMinimize@f@x, yD, 8x, y<, Method Ø "SimulatedAnnealing"D

Out[68]= 88.0375, 8x Ø 1.48098, y Ø 1.48098<<

By increasing PerturbationScale, larger step sizes are taken to produce a much better 
solution. 

In[69]:= NMinimize@f@x, yD, 8x, y<, Method Ø 8"SimulatedAnnealing", "PerturbationScale" Ø 3<D

Out[69]= 8-38.0779, 8x Ø 5.32216, y Ø 5.32216<<

Here BoltzmannExponent is set to use an exponential cooling function that gives faster 
convergence. (Note that the modified PerturbationScale is still being used as well.) 

In[70]:= NMinimize@f@x, yD, 8x, y<, Method Ø 8"SimulatedAnnealing", "PerturbationScale" Ø 3,
"BoltzmannExponent" Ø Function@8i, df, f0<, -df ê HExp@i ê 10DLD<D

Out[70]= 8-38.0779, 8x Ø 5.32216, y Ø 5.32216<<

Random Search

The random search algorithm works by generating a population of random starting points and

uses a local  optimization method from each of the starting points to converge to a local  mini-

mum. The best local minimum is chosen to be the solution.

The possible local search methods are Automatic and "InteriorPoint". The default method is

Automatic,  which  uses  FindMinimum  with  unconstrained  methods  applied  to  a  system  with

penalty terms added for the constraints. When Method  is set to "InteriorPoint", a nonlinear

interior-point method is used.
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The possible local search methods are Automatic and "InteriorPoint". The default method is

Automatic,  which  uses  FindMinimum  with  unconstrained  methods  applied  to  a  system  with

penalty terms added for the constraints. When Method  is set to "InteriorPoint", a nonlinear

interior-point method is used.

The default number of starting points, given by the option SearchPoints, is minH10 d, 100L, where

d is the number of variables.

Convergence  for  RandomSearch  is  determined  by  convergence  of  the  local  method  for  each

starting point.

RandomSearch  is  fast,  but  does not scale very well  with the dimension of  the search space.  It

also suffers from many of the same limitations as FindMinimum. It is not well suited for discrete

problems and others where derivatives or secants give little useful information about the prob-

lem. 

option name default value

"InitialPoints" Automatic set of initial points

"Method" Automatic which method to use for minimization 

"PenaltyFunction" Automatic function applied to constraints to penalize 
invalid points

"PostProcess" Automatic whether to post-process using local search 
methods 

"RandomSeed" 0 starting value for the random number 
generator

"SearchPoints" Automatic number of points to use for starting local 
searches 

"Tolerance" 0.001 tolerance for accepting constraint violations 

RandomSearch specific options. 

Here the function inside the unit disk is minimized using RandomSearch. 

In[71]:= NMinimizeB:100 Iy - x2M2 + H1 - xL2, x^2 + y^2 § 1>, 8x, y<, Method Ø "RandomSearch"F

Out[71]= 80.0456748, 8x Ø 0.786415, y Ø 0.617698<<
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Here is a function with several local minima that are all different depths and are generally 
difficult to optimize. 

In[72]:= Clear@a, fD;
a = Reverse êü Distribute@88-32, -16, 0, 16, 32<, 8-32, -16, 0, 16, 32<<, ListD;
f = 1 ê H0.002 + Plus üü MapIndexed@1 ê HÒ2P1T + Plus üü HH8x, y< - Ò1L^6LL &, aDL;
Plot3D@f, 8x, -50, 50<, 8y, -50, 50<, Mesh Ø None,
NormalsFunction Ø "Weighted", PlotPoints Ø 50D

Out[72]=

With the default number of SearchPoints, sometimes the minimum is not found. 

In[73]:= Do@Print@NMinimize@f, 88x, -50, 50<, 8y, -50, 50<<,
Method Ø 8"RandomSearch", "RandomSeed" Ø i<DD, 8i, 5<D

81.99203, 8x Ø -15.9864, y Ø -31.9703<<

81.99203, 8x Ø -15.9864, y Ø -31.9703<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

81.99203, 8x Ø -15.9864, y Ø -31.9703<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

Using many more SearchPoints produces better answers. 

In[74]:= Do@Print@NMinimize@f, 88x, -50, 50<, 8y, -50, 50<<,
Method Ø 8"RandomSearch", "SearchPoints" Ø 100, "RandomSeed" Ø i<DD, 8i, 5<D

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<

80.998004, 8x Ø -31.9783, y Ø -31.9783<<
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Here points are generated on a grid for use as initial points. 

In[75]:= NMinimize@f, 88x, -50, 50<, 8y, -50, 50<<, Method Ø 8"RandomSearch",
"InitialPoints" Ø Flatten@Table@8i, j<, 8i, -45, 45, 5<, 8j, -45, 45, 5<D, 1D<D

Out[75]= 80.998004, 8x Ø -31.9783, y Ø -31.9783<<

This uses nonlinear interior point methods to find the minimum of a sum of squares.

In[76]:= n = 10;
f = SumAHx@iD - Sin@iDL2, 8i, 1, n<E;
c = Table@-0.5 < x@iD < 0.5, 8i, n<D;
v = Array@x, nD;
Timing@NMinimize@8f, c<, v, Method Ø 8"RandomSearch", Method Ø "InteriorPoint"<DD

Out[80]= 88.25876, 80.82674, 8x@1D Ø 0.5, x@2D Ø 0.5, x@3D Ø 0.14112, x@4D Ø -0.5,
x@5D Ø -0.5, x@6D Ø -0.279415, x@7D Ø 0.5, x@8D Ø 0.5, x@9D Ø 0.412118, x@10D Ø -0.5<<<

For some classes of problems, limiting the number of SearchPoints can be much faster 
without affecting the quality of the solution.

In[81]:= Timing@NMinimize@8f, c<, v,
Method Ø 8"RandomSearch", Method Ø "InteriorPoint", "SearchPoints" Ø 1<DD

Out[81]= 80.320425, 80.82674, 8x@1D Ø 0.5, x@2D Ø 0.5, x@3D Ø 0.14112, x@4D Ø -0.5,
x@5D Ø -0.5, x@6D Ø -0.279415, x@7D Ø 0.5, x@8D Ø 0.5, x@9D Ø 0.412118, x@10D Ø -0.5<<<

Exact Global Optimization

Introduction

Exact global optimization problems can be solved exactly using Minimize and Maximize. 

This computes the radius of the circle, centered at the origin, circumscribed about the set 
x4 + 3 y4 § 7.

In[1]:= MaximizeB: x2 + y2 , x4 + 3 y4 § 7>, 8x, y<F

Out[1]= : 2
7

3

1ë4

, 9x Ø RootA-21 + 4 Ò14 &, 1E, y Ø RootA-7 + 12 Ò14 &, 1E=>
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This computes the radius of the circle, centered at the origin, circumscribed about the set 
a x2 + b y2 § 1 as a function of the parameters a and b.

In[2]:= MaximizeB: x2 + y2 , a x2 + b y2 § 1>, 8x, y<F

Out[2]= :

1

a
Hb > 0 && a ã bL »» Hb > 0 && 0 < a < bL

1

a-b
b > 0 && a ã 2 b

1

b
Hb > 0 && a > 2 bL »» Hb > 0 && b < a < 2 bL

¶ True

,

:x Ø

0 Hb > 0 && a ã 2 bL »» Hb > 0 && a > 2 bL »» Hb > 0 && b < a < 2 bL

-
1

a
b > 0 && 0 < a < b

-

1

a

2
b > 0 && a ã b

Indeterminate True

,

y Ø

0 b > 0 && 0 < a < b

-
1

2
3 1

a
b > 0 && a ã b

-
1

a-b
b > 0 && a ã 2 b

-
1

b
Hb > 0 && a > 2 bL »» Hb > 0 && b < a < 2 bL

Indeterminate True

>>

Algorithms

Depending on the type of problem, several different algorithms can be used. 

The most general method is based on the cylindrical algebraic decomposition (CAD) algorithm.

It  applies  when  the  objective  function  and  the  constraints  are  real  algebraic  functions.  The

method  can  always  compute  global  extrema  (or  extremal  values,  if  the  extrema  are  not

attained).  If  parameters  are  present,  the  extrema  can  be  computed  as  piecewise-algebraic

functions of the parameters. A downside of the method is its high, doubly exponential complex-

ity in the number of variables. In certain special cases not involving parameters, faster methods

can be used.

When  the  objective  function  and  all  constraints  are  linear  with  rational  number  coefficients,

global extrema can be computed exactly using the simplex algorithm.

For  univariate  problems,  equation  and  inequality  solving  methods  are  used  to  find  the  con-

straint solution set and discontinuity points and zeros of the derivative of the objective function

within the set.
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For  univariate  problems,  equation  and  inequality  solving  methods  are  used  to  find  the  con-

straint solution set and discontinuity points and zeros of the derivative of the objective function

within the set.

Another approach to finding global extrema is to find all the local extrema, using the Lagrange

multipliers or the Karush|Kuhn|Tucker (KKT) conditions, and pick the smallest (or the greatest).

However, for a fully automatic method, there are additional complications. In addition to solving

the necessary conditions for local extrema, it needs to check smoothness of the objective func-

tion and smoothness and nondegeneracy of the constraints. It also needs to check for extrema

at  the boundary of  the set  defined by the constraints  and at  infinity,  if  the set  is  unbounded.

This  in  general  requires  exact  solving of  systems of  equations  and inequalities  over  the  reals,

which  may  lead  to  CAD  computations  that  are  harder  than  in  the  optimization  by  CAD  algo-

rithm. Currently Mathematica uses Lagrange multipliers only for equational constraints within a

bounded box. The method also requires that the number of stationary points and the number of

singular  points  of  the  constraints  be  finite.  An  advantage  of  this  method  over  the  CAD-based

algorithm is that it can solve some transcendental problems, as long as they lead to systems of

equations that Mathematica can solve. 

Optimization by Cylindrical Algebraic Decomposition

Examples

This finds the point on the cubic curve x3 - x + y2  1
4
 which is closest to the origin. 

In[3]:= MinimizeB:x2 + y2, x3 + y2 - x ã
1

4
>, 8x, y<F

Out[3]= 9RootA-1 + 16 Ò1 - 32 Ò12 + 16 Ò13 &, 1E, 9x Ø RootA-1 - 4 Ò1 + 4 Ò13 &, 2E, y Ø 0==

This finds the point on the cubic curve x3 - x + y2  a which is closest to the origin, as a function 
of the parameter a. 

In[4]:= min = MinimizeA9x2 + y2, x3 + y2 - x ã a=, 8x, y<E

Out[4]= :

1

9
a ã

8

27

1

27
H-5 + 27 aL 8

27
< a §

80

27

RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E True

,

: , y Ø
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Out[4]=

:x Ø

-
1

3
a ã

8

27
»»

8

27
< a §

80

27

RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 1E a >
80

27
»» a < -

2

3 3

RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 2E True

, y Ø

0 a ã
8

27

- -
8

27
+ a 8

27
< a §

80

27

--Ja + RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 1E -

RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 1E
3
N

a >
80

27
»» a < -

3 

--Ja + RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 2E -

RootA-a + RootA-a2 + Ò1 - 2 Ò12 + Ò13 &, 1E - Ò1 - Ò12 + Ò13 &, 2E
3
N

True

>>

This visualization shows the point on the cubic curve x3 - x + y2  a which is closest to the origin, 
and the distance m of the point from the origin. The value of parameter a can be modified using 
the slider. The visualization uses the minimum computed by Minimize. 

In[5]:= plot@a_D := ContourPlotAx3 + y2 - x ã a,
8x, -3, 3<, 8y, -3, 3<, PlotRange -> 88-3, 3<, 8-3, 3<<E;

minval@a_D := Evaluate@min@@1DDD
minpt@a_D := Evaluate@min@@2DDD
mmark = Graphics@Text@Style@"m=", 10D, 81.25, 2.5<DD;
mvalue@a_D :=

Graphics@Text@Style@PaddedForm@minval@aD, 85, 3<D, 10D, 82, 2.5<DD;
amark = Graphics@Text@Style@"a=", 10D, 81.25, 2.8<DD;
avalue@a_D := Graphics@Text@Style@PaddedForm@a, 85, 3<D, 10D, 82, 2.8<DD;
mpoint@a_D := Graphics@8PointSize@0.03D, Red, Point@Re@8x, y< ê. minpt@aDDD<D;
Manipulate@Show@8plot@aD, amark, avalue@aD, mmark, mvalue@aD, mpoint@aD<D,
88a, 4.5<, -5, 5<, SaveDefinitions Ø TrueD

Out[13]=

a

a= 4.500
m= 3.430

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Customized CAD Algorithm for Optimization

The cylindrical algebraic decomposition (CAD) algorithm is available in Mathematica  directly as

CylindricalDecomposition.  The  algorithm  is  described  in  more  detail  in  "Real  Polynomial

Systems".  The  following  describes  how  to  customize  the  CAD  algorithm  to  solve  the  global

optimization problem.

Reduction to Minimizing a Coordinate Function

Suppose it is required to minimize an algebraic function f Hx, tL over the solution sets of algebraic

constraints  FHx, tL,  where  x  is  a  vector  of  variables  and t  is  a  vector  of  parameters.  Let  y  be  a

new variable. The minimization of f  over the constraints F is equivalent to the minimization of

the coordinate function y over the semialgebraic set given by y f Hx, tL Ï FHx, tL.

If f  happens to be a monotonic function of one variable x1, a new variable is not needed, as x1
can be minimized instead.

The Projection Phase of CAD

The variables are projected, with x first, then the new variable y, and then the parameters t.

If algebraic functions are present, they are replaced with new variables; equations and inequali-

ties  satisfied  by  the  new  variables  are  added.  The  variables  replacing  algebraic  functions  are

projected first. They also require special handling in the lifting phase of the algorithm.

Projection operator improvements by Hong, McCallum, and Brown can be used here, including

the use of equational constraints. Note that if a new variable needs to be introduced, there is at

least one equational constraint, namely yã f .

The Lifting Phase of CAD

The  parameters  t  are  lifted  first,  constructing  the  algebraic  function  equation  and  inequality

description  of  the  cells.  If  there  are  constraints  that  depend  only  on  parameters  and  you  can

determine  that  F  is  identically  false  over  a  parameter  cell,  you  do  not  need  to  lift  this  cell

further.

When lifting  the  minimization  variable  y,  you  start  with  the  smallest  values  of  y,  and  proceed

(lifting the remaining variables in the depth-first manner) until  you find the first cell  for which

the  constraints  are  satisfied.  If  this  cell  corresponds  to  a  root  of  a  projection  polynomial  in  y,

the root is the minimum value of f , and the coordinates corresponding to x of any point in the

cell give a point at which the minimum is attained. If parameters are present, you get a paramet-

ric description of a point in the cell in terms of roots of polynomials bounding the cell. If there

are no parameters, you can simply give the sample point used by the CAD algorithm. If the first

cell  satisfying the constraints corresponds to an interval Hr, sL,  where r  is a root of a projection

polynomial  in  y,  then  r  is  the  infimum of  values  of  f ,  and  the  infimum value  is  not  attained.

Finally,  if  the  first  cell  satisfying  the  constraints  corresponds  to  an  interval  H-¶, sL,  f  is

unbounded from below.
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When lifting  the  minimization  variable  y,  you  start  with  the  smallest  values  of  y,  and  proceed

(lifting the remaining variables in the depth-first manner) until  you find the first cell  for which

the  constraints  are  satisfied.  If  this  cell  corresponds  to  a  root  of  a  projection  polynomial  in  y,

the root is the minimum value of f , and the coordinates corresponding to x of any point in the

cell give a point at which the minimum is attained. If parameters are present, you get a paramet -

ric description of a point in the cell in terms of roots of polynomials bounding the cell. If there

are no parameters, you can simply give the sample point used by the CAD algorithm. If the first

cell  satisfying the constraints corresponds to an interval Hr, sL,  where r  is a root of a projection

polynomial  in  y,  then  r  is  the  infimum of  values  of  f ,  and  the  infimum value  is  not  attained.

Finally,  if  the  first  cell  satisfying  the  constraints  corresponds  to  an  interval  H-¶, sL,  f  is

unbounded from below.

Strict Inequality Constraints

If  there  are  no  parameters,  all  constraints  are  strict  inequalities,  and  you  only  need  the

extremum value,  then  a  significantly  simpler  version  of  the  algorithm  can  be  used.  (You  can

safely make inequality constraints strict if you know that C Œ intHCL, where C is the solution set of

the  constraints.)  In  this  case  many  lower-dimensional  cells  can  be  disregarded;  hence,  the

projection may only consist of the leading coefficients, the resultants, and the discriminants. In

the  lifting  phase,  only  full-dimensional  cells  need  be  constructed;  hence,  there  is  no  need  for

algebraic number computations.

Experimental`Infimum@8 f,cons<,8x,y,…<D

find the infimum of values of f  on the set of points satisfy -
ing the constraints cons.

Experimental`Supremum@8 f,cons<,8x,y,…<D

find the supremum of values of f  on the set of points 
satisfying the constraints cons.

Finding extremum values.

This finds the smallest ball centered at the origin which contains the set bounded by the surface 
x4 - y z x + 2 y4 + 3 z4  1. A full Maximize call with the same input did not finish in 10 minutes.

In[14]:= Experimental`SupremumA9x2 + y2 + z2, x4 + 2 y4 + 3 z4 - x y z < 1=, 8x, y, z<E êê Timing

Out[14]= 94.813, -RootA-1 341154819099 - 114665074208 Ò1 + 4968163024164 Ò12 +

288926451967 Ò13 - 7172215018940 Ò14 - 240349978752 Ò15 + 5066800071680 Ò16 +

69844008960 Ò17 - 1756156133376 Ò18 - 2717908992 Ò19 + 239175991296 Ò110 &, 1E=

Linear Optimization

Constrained Optimization     59



Linear Optimization

When  the  objective  function  and  all  constraints  are  linear,  global  extrema  can  be  computed

exactly using the simplex algorithm.

This solves a random linear minimization problem with ten variables.

In[15]:= SeedRandom@1D; n = 10;
A = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<, 8n<D;
B = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<, 8n<D;
a = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<D;
b = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<D;
g = Table@RandomInteger@8-1000, 1000<D, 8n<D;
X = x êü Range@nD;
Minimize@8g.X, And üü Thread@A.X ã aD && And üü Thread@b § B.X § b + 100D<, XD

Out[22]= :
6053416204117714679590329859484149

1194791208768786909167074679920
,

:x@1D Ø
1231164669474551725622041404999

1194791208768786909167074679920
, x@2D Ø -

1324409686130055761704674699781

597395604384393454583537339960
,

x@3D Ø
33103498981835356980792655092

74674450548049181822942167495
, x@4D Ø -

859057104531672755759277109213

597395604384393454583537339960
,

x@5D Ø -
1101359025510393235751743044237

1194791208768786909167074679920
, x@6D Ø

681114758987787242569015281099

597395604384393454583537339960
,

x@7D Ø
3008784898283435639647867743

14934890109609836364588433499
, x@8D Ø

656889989559037679422691779229

597395604384393454583537339960
,

x@9D Ø
1769243029064640615513519505823

597395604384393454583537339960
, x@10D Ø

699425860731183550585590812579

1194791208768786909167074679920
>>

Optimization problems where the objective is a fraction of linear functions and the constraints 
are linear (linear fractional programs) reduce to linear optimization problems. This solves a 
random linear fractional minimization problem with ten variables.

In[23]:= SeedRandom@2D; n = 10;
A = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<, 8n<D;
B = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<, 8n<D;
a = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<D;
b = Table@RandomInteger@8-1000, 1000<D, 8n ê 2<D;
g = Table@RandomInteger@8-1000, 1000<D, 8n<D;
d = Table@RandomInteger@8-1000, 1000<D, 8n<D;
X = x êü Range@nD;
Minimize@8g.X ê d.X, And üü Thread@A.X ã aD && And üü Thread@b § B.X § b + 100D<, XD

Out[31]= :-
1286274653702415809313525025452519

437743412320661916541674600912158
,

:x@1D Ø
611767491996227433062183883923

599276957533098032663796688622
, x@2D Ø

2665078586976600235350409286849

1198553915066196065327593377244
,

x@3D Ø -
215391679158483849611061030533

299638478766549016331898344311
, x@4D Ø

1477394491589036027204142993013

599276957533098032663796688622
,

60     Constrained Optimization



Out[31]=

x@5D Ø
473657331854113835444689628600

299638478766549016331898344311
, x@6D Ø -

955420726065204315229251112109

599276957533098032663796688622
,

x@7D Ø
265603080958760324085018021123

1198553915066196065327593377244
, x@8D Ø -

447840634450080124431365644067

599276957533098032663796688622
,

x@9D Ø -
2155930215697442604517040669063

1198553915066196065327593377244
, x@10D Ø

18201652848869287002844477177

299638478766549016331898344311
>>

Univariate Optimization

For  univariate  problems,  equation  and  inequality  solving  methods  are  used  to  find  the  con-

straint solution set and discontinuity points and zeros of the derivative of the objective function

within the set.

This solves a univariate optimization problem with a transcendental objective function.

In[32]:= m = MinimizeAx2 + 2x, xE

Out[32]= :2
-
ProductLogB

Log@2D2

2
F

LogA2E +
ProductLogB Log@2D2

2
F
2

Log@2D2
, :x Ø -

ProductLogB Log@2D2

2
F

Log@2D
>>

Here is a visualization of the minimum found.

In[33]:= ShowA9PlotAx2 + 2x, 8x, -1, 1<E,
Graphics@8PointSize@0.02D, Red, Point@N@8x ê. m@@2DD, m@@1DD<DD<D=E

Out[33]=

-1.0 -0.5 0.5 1.0

1.5

2.0

2.5

3.0

Here Mathematica recognizes that the objective functions and the constraints are periodic.

In[34]:= MinimizeB:TanB2 x -
p

2
F
2

, -
1

2
§ Sin@xD §

1

2
>, xF

Out[34]= :
1

3
, :x Ø

p

6
>>

Optimization by Finding Stationary and Singular 
Points
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Optimization by Finding Stationary and Singular 
Points

Here is an example where the minimum is attained at a singular point of the constraints.

In[35]:= m = MinimizeA9y, y3 ã x2 && -2 § x § 2 && -2 § y § 2=, 8x, y<E

Out[35]= 80, 8x Ø 0, y Ø 0<<

In[36]:= ShowA9ContourPlotAy3 ã x2, 8x, -2, 2<, 8y, -0.5, 2<E,
Graphics@8PointSize@0.02D, Red, Point@8x, y< ê. m@@2DDD<D=E

Out[36]=

-2 -1 0 1 2
-0.5

0.0

0.5

1.0

1.5

2.0

The maximum of the same objective function is attained on the boundary of the set defined by 
the constraints.

In[37]:= m = MaximizeA9y, y3 ã x2 && -2 § x § 2 && -2 § y § 2=, 8x, y<E

Out[37]= 9RootA-4 + Ò13 &, 1E, 9x Ø -2, y Ø RootA-4 + Ò13 &, 1E==

In[38]:= ShowA9ContourPlotAy3 ã x2, 8x, -2, 2<, 8y, -0.5, 2<E,
Graphics@8PointSize@0.02D, Red, Point@8x, y< ê. m@@2DDD<D=E

Out[38]=

-2 -1 0 1 2
-0.5

0.0

0.5

1.0

1.5

2.0

There are no stationary points in this example.
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There are no stationary points in this example.

In[39]:= ReduceAy3 ã x2 && -2 x l ã 0 && 1 + 3 y2 l ã 0, 8x, y, l<E

Out[39]= False

Here is a set of 3-dimensional examples with the same constraints. Depending on the objective

function, the maximum is attained at a stationary point of the objective function on the solution

set  of  the  constraints,  at  a  stationary  point  of  the  restriction  of  the  objective  function  to  the

boundary  of  the  solution  set  of  the  constraints,  and  at  the  boundary  of  the  boundary  of  the

solution set of the constraints.

Here the maximum is attained at a stationary point of the objective function on the solution set 
of the constraints.

In[40]:= m = MaximizeAx + y + z, x2 + y2 + z2 ã 9 && -2 § x § 2 && -2 § y § 2 && -2 § z § 2, 8x, y, z<E

Out[40]= :3 3 , :x Ø 3 , y Ø 3 , z Ø 3 >>

In[41]:= ShowA9ContourPlot3DAx2 + y2 + z2 - 9 ã 0, 8x, -2, 2<, 8y, -2, 2<, 8z, -2, 2<E,
Graphics3D@8PointSize@0.03D, Red, Point@8x, y, z< ê. m@@2DDD<D=,

ViewPoint Ø 83, 3, 3<E

Out[41]=

Here the maximum is attained at a stationary point of the restriction of the objective function to 
the boundary of the solution set of the constraints.

In[42]:= m = MaximizeAx + y + 2 z, x2 + y2 + z2 ã 9 && -2 § x § 2 && -2 § y § 2 && -2 § z § 2, 8x, y, z<E

Out[42]= :4 + 10 , :x Ø
5

2
, y Ø

5

2
, z Ø 2>>
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In[43]:= ShowA9ContourPlot3DAx2 + y2 + z2 - 9 ã 0, 8x, -2, 2<, 8y, -2, 2<, 8z, -2, 2<E,
Graphics3D@8PointSize@0.03D, Red, Point@8x, y, z< ê. m@@2DDD<D=,

ViewPoint Ø 83, 7, 7<E

Out[43]=

Here the maximum is attained at the boundary of the boundary of the solution set of the 
constraints.

In[44]:= m = MaximizeAx + 2 y + 2 z, x2 + y2 + z2 ã 9 && -2 § x § 2 && -2 § y § 2 && -2 § z § 2, 8x, y, z<E

Out[44]= 89, 8x Ø 1, y Ø 2, z Ø 2<<

In[45]:= ShowA9ContourPlot3DAx2 + y2 + z2 - 9 ã 0, 8x, -2, 2<, 8y, -2, 2<, 8z, -2, 2<E,
Graphics3D@8PointSize@0.03D, Red, Point@8x, y, z< ê. m@@2DDD<D=E

Out[45]=
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The Lagrange multiplier method works for some optimization problems involving transcendental 
functions.

In[46]:= MinimizeA9y + Sin@10 xD, y3 ã Cos@5 xD && -5 § x § 5 && -5 § y § 5=, 8x, y<E

Minimize::ztest : Unable to decide whether numeric quantities
8Sin@4 Hp-ArcTan@AlgebraicNumber@á2àDDLD-Sin@4 H2 p-ArcTan@á1àDLD,á5à, Sin@4 Hp-ArcTan@

AlgebraicNumber@á2àDDLD+Sin@á1àD<

are equal to zero. Assuming they are.

Out[46]= :AlgebraicNumberB

RootA43 046721 - 95659380 Ò12 - 59049 Ò13 + 78653268 Ò14 - 32805 Ò15 - 29052108 Ò16 - 7290 Ò17 +

4763286 Ò18 - 810 Ò19 - 358668 Ò110 - 45 Ò111 + 11988 Ò112 - Ò113 - 180 Ò114 + Ò116 &, 6E,

:0,
2825

256
,

1

81
, -

10645

768
,

1271

186624
,
117277

20736
,

421

279936
, -

177851

186624
,

157

944784
,

13523

186624
,

625

68024448
, -

36749

15116544
,

83

408146688
,

4975

136048896
, 0, -

83

408146688
>F - SinB

4 p - ArcTanBAlgebraicNumberBRootA43 046721 - 95659380 Ò12 - 59049 Ò13 + 78653268 Ò14 - 32805 Ò15 -

29052108 Ò16 - 7290 Ò17 + 4763286 Ò18 - 810 Ò19 - 358668 Ò110 - 45 Ò111 + 11988 Ò112 -

Ò113 - 180 Ò114 + Ò116 &, 6E, :0,
1

3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>FF F,

:x Ø -
2

5
p - ArcTanBAlgebraicNumberBRootA43 046721 - 95659380 Ò12 - 59049 Ò13 + 78653268 Ò14 -

32805 Ò15 - 29052108 Ò16 - 7290 Ò17 + 4763286 Ò18 - 810 Ò19 - 358668 Ò110 - 45 Ò111 + 11988

Ò112 - Ò113 - 180 Ò114 + Ò116 &, 6E, :0,
1

3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>FF ,

y Ø AlgebraicNumberBRootA43 046721 - 95659380 Ò12 - 59049 Ò13 + 78653268 Ò14 -

32805 Ò15 - 29052108 Ò16 - 7290 Ò17 + 4763286 Ò18 - 810 Ò19 -

358668 Ò110 - 45 Ò111 + 11988 Ò112 - Ò113 - 180 Ò114 + Ò116 &, 6E,

:0,
2825

256
,

1

81
, -

10645

768
,

1271

186624
,
117277

20736
,

421

279936
, -

177851

186624
,

157

944784
,

13523

186624
,

625

68024448
, -

36749

15116544
,

83

408146688
,

4975

136048896
, 0, -

83

408146688
>F>>

In[47]:= N@%, 20D

Out[47]= 8-1.9007500346675151230, 8x Ø -0.77209298024514961134, y Ø -0.90958837944086038552<<
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Optimization over the Integers

Integer Linear Programming

An integer linear programming problem is an optimization problem in which the objective func-

tion is linear, the constraints are linear and bounded, and the variables range over the integers.

To  solve  an  integer  linear  programming  problem Mathematica  first  solves  the  equational  con-

straints, reducing the problem to one containing inequality constraints only. Then it uses lattice

reduction techniques to put the inequality system in a simpler form. Finally, it solves the simpli-

fied optimization problem using a branch-and-bound method.

This solves a randomly generated integer linear programming problem with 7 variables.

In[48]:= SeedRandom@1D;
A = Table@RandomInteger@8-1000, 1000<D, 83<, 87<D;
a = Table@RandomInteger@8-1000, 1000<D, 83<D;
B = Table@RandomInteger@8-1000, 1000<D, 83<, 87<D;
b = Table@RandomInteger@8-1000, 1000<D, 83<D;
g = Table@RandomInteger@8-1000, 1000<D, 87<D;
X = x êü Range@7D;
eqns = And üü Thread@A.X ã aD;
ineqs = And üü Thread@B.X § bD;
bds = And üü Thread@X ¥ 0D && Total@XD § 10100;
Minimize@8g.X, eqns && ineqs && bds && X œ Integers<, XD

Out[58]= 8448932, 8x@1D Ø 990, x@2D Ø 1205, x@3D Ø 219, x@4D Ø 60, x@5D Ø 823, x@6D Ø 137, x@7D Ø 34<<

Optimization over the Reals Combined with Integer Solution 
Finding

Suppose a  function f œ@xD  needs to  be minimized over  the integer  solution  set  of  constraints

FHxL. Let m be the minimum of f  over the real solution set of FHxL. If there exists an integer point

satisfying f HxL `mp Ï FHxL, then `mp is the minimum of f  over the integer solution set of F. Other-

wise you try to find an integer solution of f HxL `mp + 1 Ï FHxL, and so on. This heuristic works if

you can solve the real  optimization problem and all  the integer solution finding problems, and

you can find an integer solution within a predefined number of attempts. (By default Mathemat-

ica  tries  10  candidate  optimum  values.  This  can  be  changed  using  the

IntegerOptimumCandidates system option.)
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This finds a point with integer coordinates maximizing x + y among the points lying below the 
cubic x3 + y3  1000.

In[59]:= m = MaximizeA9x + y, x3 + y3 § 1000 && Hx yL œ Integers=, 8x, y<E

Out[59]= 815, 8x Ø 6, y Ø 9<<

In[60]:= ShowA9ContourPlotAx3 + y3 ã 1000, 8x, -20, 20<, 8y, -20, 20<E,
Graphics@8PointSize@0.02D, Red, Point@8x, y< ê. m@@2DDD<D=E

Out[60]=

-20 -10 0 10 20
-20

-10

0

10

20

Comparison of Constrained Optimization 
Functions

NMinimize,  NMaximize,  Minimize  and  Maximize  employ  global  optimization  algorithms,  and

are thus suitable when a global optimum is needed.

Minimize  and  Maximize  can  find  exact  global  optima  for  a  class  of  optimization  problems

containing  arbitrary  polynomial  problems.  However,  the  algorithms  used  have  a  very  high

asymptotic  complexity  and  therefore  are  suitable  only  for  problems  with  a  small  number  of

variables. 

Maximize always finds a global maximum, even in cases that are numerically unstable. The 
left-hand side of the constraint here is Ix2 + y2 - 1010M2 Ix2 + y2M.

In[1]:= MaximizeA9x + y,
100000000000000000000 x2 - 20000000000 x4 + x6 + 100000000000000000000 y2 -

40000000000 x2 y2 + 3 x4 y2 - 20000000000 y4 + 3 x2 y4 + y6 § 1=, 8x, y<E êê N@Ò, 20D &

Out[1]= 8141421.35623730957559, 8x Ø 70710.678118654787795, y Ø 70710.678118654787795<<

This input differs from the previous one only in the twenty-first decimal digit, but the answer is 
quite different, especially the location of the maximum point. For an algorithm using 16 digits of 
precision both problems look the same, hence it cannot possibly solve them both correctly.
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This input differs from the previous one only in the twenty-first decimal digit, but the answer is 
quite different, especially the location of the maximum point. For an algorithm using 16 digits of 
precision both problems look the same, hence it cannot possibly solve them both correctly.

In[2]:= MaximizeA9x + y,
100000000000000000001 x2 - 20000000000 x4 + x6 + 100000000000000000000 y2 -

40000000000 x2 y2 + 3 x4 y2 - 20000000000 y4 + 3 x2 y4 + y6 § 1=, 8x, y<E êê N@Ò, 20D &

Out[2]= 8100000.99999500000000, 8x Ø 1.0000000000000000000, y Ø 99999.999995000000000<<

NMaximize, which by default uses machine-precision numbers, is not able to solve either of the 
problems.

In[3]:= NMaximizeA
9x + y, 100000000000000000000 x2 - 20000000000 x4 + x6 + 100000000000000000000 y2 -

40000000000 x2 y2 + 3 x4 y2 - 20000000000 y4 + 3 x2 y4 + y6 § 1=, 8x, y<E

NMaximize::incst :
NMaximize was unable to generate any initial points satisfying the inequality constraints

9-1+100000000000000000000 x2 -20000000000 x4 +x6 +100000000000000000000 y2 -á1à+

3 x4 y2 -20000000000 y4 +3 x2 y4 +y6 § 0=. The initial
region specified may not contain any feasible points. Changing the initial
region or specifying explicit initial points may provide a better solution. à

Out[3]= 91.35248µ10-10, 9x Ø 4.69644µ10-11, y Ø 8.82834µ10-11==

In[4]:= NMaximizeA
9x + y, 100000000000000000001 x2 - 20000000000 x4 + x6 + 100000000000000000000 y2 -

40000000000 x2 y2 + 3 x4 y2 - 20000000000 y4 + 3 x2 y4 + y6 § 1=, 8x, y<E

NMaximize::incst :
NMaximize was unable to generate any initial points satisfying the inequality constraints

9-1+100000000000000000001 x2 -20000000000 x4 +x6 +100000000000000000000 y2 -á1à+

3 x4 y2 -20000000000 y4 +3 x2 y4 +y6 § 0=. The initial
region specified may not contain any feasible points. Changing the initial
region or specifying explicit initial points may provide a better solution. à

Out[4]= 91.35248µ10-10, 9x Ø 4.69644µ10-11, y Ø 8.82834µ10-11==

FindMinimum  only attempts to find a local minimum, therefore is suitable when a local optimum

is needed, or when it is known in advance that the problem has only one optimum or only a few

optima that can be discovered using different starting points.

Even  for  local  optimization,  it  may  still  be  worth  using  NMinimize  for  small  problems.

NMinimize  uses  one  of  the  four  direct  search  algorithms  (Nelder|Mead,  differential  evolution,

simulated annealing, and random search), then finetunes the solution by using a combination of

KKT  solution,  the  interior  point,  and  a  penalty  method.  So  if  efficiency  is  not  an  issue,

NMinimize should be more robust than FindMinimum, in addition to being a global optimizer.
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This shows the default behavior of NMinimize on a problem with four variables.

In[5]:= Clear@f, x, y, z, tD;
f = -Log@xD - 2 Log@yD - 3 Log@yD - 3 Log@tD;
cons = 9200 x2 + y2 + z2 + t2 == 100, x > 0, y > 0, z > 0, t > 0=;
vars = 8x, y, z, t<;
sol = NMinimize@8f, cons<, varsD

Out[9]= 8-13.8581, 8t Ø 5.7735, x Ø 0.235702, y Ø 7.45356, z Ø 0.00177238<<

This  shows  that  two  of  the  post-processors,  KKT  and  FindMinimum,  do  not  give  the  default

result. Notice that for historical reasons, the name FindMinimum, when used as an option value

of  PostProcess,  stands  for  the  process  where  a  penalty  method  is  used  to  convert  the  con-

strained  optimization  problem into  unconstrained  optimization  methods  and  then  solved  using

(unconstrained) FindMinimum.

In[10]:= sol = NMinimize@8f, cons<, vars, Method Ø 8NelderMead, PostProcess Ø KKT<D

NMinimize::nosat : Obtained solution does not satisfy the following
constraints within Tolerance -> 0.001`: 9100- t2 -200 x2 -y2 -z2 ã 0=. à

Out[10]= 80.759899, 8t Ø 9.98441, x Ø 0.0103018, y Ø 0.539287, z Ø 0.0246594<<

In[11]:= sol = NMinimize@8f, cons<, vars, Method Ø 8NelderMead, PostProcess Ø FindMinimum<D

Out[11]= 8-13.8573, 8t Ø 5.84933, x Ø 0.233007, y Ø 7.41126, z Ø 0.00968789<<

However, if efficiency is important, FindMinimum  can be used if you just need a local minimum,

or  you  can  provide  a  good  starting  point,  or  you  know  the  problem  has  only  one  minimum

(e.g.,  convex),  or  your  problem is  large/expensive.  This  uses  FindMinimum  and  NMinimize  to

solve the same problem with seven variables. The constraints are relatively expensive to com-

pute. Clearly FindMinimum in this case is much faster than NMinimize.

In[12]:= Clear@f, cons, vars, xD;
8f, cons, vars< =

:
20 x@2D x@6D

x@1D2 x@4D x@5D2
+

15 x@3D x@4D

x@1D x@2D2 x@5D x@7D0.5`
+
10 x@1D x@4D2 x@7D0.125`

x@2D x@6D3
+

25 x@1D2 x@2D2 x@5D0.5` x@7D

x@3D x@6D2
, :0.1` § x@1D § 10, 0.1` § x@2D § 10, 0.1` § x@3D § 10,

0.1` § x@4D § 10, 0.1` § x@5D § 10, 0.1` § x@6D § 10, 0.01` § x@7D § 10,

1 -
0.2` x@3D x@6D2ê3 x@7D0.25`

x@2D x@4D0.5`
-
0.7` x@1D3 x@2D x@6D x@7D0.5`

x@3D2
-
0.5` x@1D0.5` x@7D

x@3D x@6D2
¥

0, 1 -
3.1` x@2D0.5` x@6D1ê3

x@1D x@4D2 x@5D
-

1.3` x@2D x@6D

x@1D0.5` x@3D x@5D
-
0.8` x@3D x@6D2

x@4D x@5D
¥ 0,
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In[12]:=

0, 1 -

1 -
x@2D x@3D0.5` x@5D

x@1D
-

0.1` x@2D x@5D

x@3D0.5` x@6D x@7D0.5`
-
2 x@1D x@5D x@7D1ê3

x@3D1.5` x@6D
-

0.65` x@3D x@5D x@7D

x@2D2 x@6D
¥ 0, 1 -

0.3` x@1D0.5` x@2D2 x@3D x@4D1ê3 x@7D0.25`

x@5D2ê3
-

0.2` x@2D x@5D0.5` x@7D1ê3

x@1D2 x@4D
-
0.5` x@4D x@7D0.5`

x@3D2
-
0.4` x@3D x@5D x@7D0.75`

x@1D3 x@2D2
¥ 0,

20 x@2D x@6D

x@1D2 x@4D x@5D2
+

15 x@3D x@4D

x@1D x@2D2 x@5D x@7D0.5`
+
10 x@1D x@4D2 x@7D0.125`

x@2D x@6D3
+

25 x@1D2 x@2D2 x@5D0.5` x@7D

x@3D x@6D2
¥ 100,

20 x@2D x@6D

x@1D2 x@4D x@5D2
+

15 x@3D x@4D

x@1D x@2D2 x@5D x@7D0.5`
+

10 x@1D x@4D2 x@7D0.125`

x@2D x@6D3
+
25 x@1D2 x@2D2 x@5D0.5` x@7D

x@3D x@6D2
§ 3000>,

8x@1D, x@2D, x@3D, x@4D, x@5D, x@6D, x@7D<>;

In[14]:= FindMinimum@8f, cons<, varsD êê Timing

Out[14]= 80.541, 8911.881, 8x@1D Ø 3.89625, x@2D Ø 0.809359, x@3D Ø 2.66439,
x@4D Ø 4.30091, x@5D Ø 0.853555, x@6D Ø 1.09529, x@7D Ø 0.0273105<<<

In[15]:= NMinimize@8f, cons<, varsD êê Timing

NMinimize::incst : NMinimize was unable to generate any initial points satisfying the inequality constraints

:-1+
3.1 x@2D0.5 x@6D1ê3

x@1D x@4D2 x@5D
+

1.3 x@2D x@6D

x@1D0.5 x@3D x@5D
+
0.8 x@3D x@6D2

x@4D x@5D
§ 0,á4à, -1+á4à § 0>.

The initial region specified may not contain any feasible points. Changing the
initial region or specifying explicit initial points may provide a better solution. à

NMinimize::incst : NMinimize was unable to generate any initial points satisfying the inequality constraints

:-1+
3.1 x@2D0.5 x@6D1ê3

x@1D x@4D2 x@5D
+

1.3 x@2D x@6D

x@1D0.5 x@3D x@5D
+
0.8 x@3D x@6D2

x@4D x@5D
§ 0,á4à, -1+á4à § 0>.

The initial region specified may not contain any feasible points. Changing the
initial region or specifying explicit initial points may provide a better solution. à

Out[15]= 88.151, 8911.881, 8x@1D Ø 3.89625, x@2D Ø 0.809359, x@3D Ø 2.66439,
x@4D Ø 4.30091, x@5D Ø 0.853555, x@6D Ø 1.09529, x@7D Ø 0.0273105<<<
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