Master’s Thesis in Informatics

Development and Evaluation of a Generic Framework for Sensor Data Acquisition, Aggregation and Propagation in HPC Systems

Micha Müller
I confirm that this master’s thesis is my own work and I have documented all sources and material used.

Munich, 15.11.2019

Micha Müller
Acknowledgements

The author would like to express his gratitude towards a number of people that significantly contributed to this thesis by their involvement.

First, the author would like to thank his thesis supervisor Prof. Dr. Martin Schulz for his feedback throughout the thesis work that was always appreciated.

Second, special thanks to the thesis advisor Dr. Michael Ott, who not only provided valuable feedback, but also supplied technical assistance and clever ideas whenever problems arose.

Third, the author wants to say a big thank you to the whole DCDB team, namely Alessio Netti, Carla Guillen, Daniele Tafani, and Michael Ott. Apart from providing an always uncomplicated and constructive work environment, they also offered immediate support regarding all issues.

Fourth, the author would like to thank all proofreaders that contributed to make this thesis as perfect as possible: Karsten Emrich, Hanna Müller, Iris Müller, and Thomas Schilling.

Fifth, the author would like to acknowledge the financial funding of his parents for his fancy living.

Lastly, the author is grateful for the always pleasant atmosphere before and throughout the thesis that emanated from all the people involved.
Abstract

Current HPC systems get ever more powerful and complex. To efficiently detect component failure and allow for energy and performance optimization despite these trends, an adequate monitoring solution is required. To provide such a tool that provides holistic monitoring from facility to application level is the goal of the DCDB project. DCDB employs a modular architecture with a Pusher component that is responsible of acquiring monitoring data in the first place.

This thesis describes a newly developed Pusher component for DCDB. The Pusher implementation is designed as framework that provides the infrastructure for data acquiring plugins. Pusher's design goals, functionality and implementation are presented in detail. Further on, the internal architecture of Pusher plugins will be presented as well as the following concrete plugin implementations: BACnet, IPMI, OPA, Perf Events, REST, SNMP, and SysFS.

Additionally, this thesis introduces the Caliper plugin. It allows to gain introspection into a user's application by employing the Caliper toolbox provided by the Lawrence Livermore National Laboratory (LLNL).

Both, the Pusher component in general and the Caliper plugin in particular are evaluated. It is shown, that Pusher's runtime overhead collecting general in-band data does usually not exceed 5%. Overhead of Pusher collecting Caliper data, however, can significantly surpass 5% in certain cases. The runtime results for Caliper have to be interpreted carefully, though, as they appear not to be fully stable in all cases. Additional memory usage of an application induced by Caliper's integration is determined to be ca. 500 MiB. Pusher's resource usage is shown to be sufficiently low when gathering Caliper data. In an usual configuration, Pusher does not exceed 1% CPU and 160 MiB of memory usage.
Contents

Acknowledgements iv
Abstract v
List of Figures viii
List of Tables ix
List of Listings x
Nomenclature xi

1 Introduction
1.1 Problem Statement 1
1.2 Contribution 2

2 Background: DCDB 3
2.1 Design Principles 3
2.2 Components 4
2.3 Shortcomings 6

3 Related Work 7

4 DCDB Pusher 9
4.1 Design Goals 9
4.2 Functionality 10
4.3 Implementation 11

5 Pusher Plugins 16
5.1 Functionality 16
5.2 Implementation 16
5.3 Plugin Details 24
5.3.1 IPMI, SNMP, SysFS 24
5.3.2 BACnet 24
5.3.3 OPA 25
5.3.4 REST 25
5.3.5 PerfEvent 25

6 Caliper: A Hybrid Plugin 26
6.1 The Caliper Framework 26
6.2 Use Cases 27
6.3 Caliper-Pusher Communication 29
6.4 Caliper Service 29
6.5 Pusher Plugin 31
Contents

7 Evaluation

7.1 Setup ... 33
7.2 Pusher Framework Overhead 35
7.3 Caliper Overhead 36
 7.3.1 Benchmarking Problems 36
 7.3.2 Sampler 36
 7.3.3 Sampler Frequency 41
 7.3.4 Sampler with Events 41
 7.3.5 Conclusion 45

8 Summary and Outlook 46

A Software Dependencies 47

B Additional Evaluation Information 48

Bibliography 50
List of Figures

2.1 A deployment example of DCDB visualizing its different components and their hierarchical structure. ... 5

4.1 UML class diagram depicting the components of the Pusher framework and their relations. Classes with blue background are global to the DCDB project. For the sake of simplicity, implementation details are left out. 11

5.1 UML class diagram depicting all involved plugin components and their relations. Classes with blue background are global to the DCDB project. Classes with dark gray background are optional. For the sake of simplicity, implementation details are left out. .. 19

5.2 Overview of all components of the Pusher framework and its plugins highlighting the data flow. This figure also includes an introspection into Collect Agent and Storage Backend. 23

6.1 A histogram of the most meaningful function samples sorted by binaries, as acquired with the Caliper plugin for a single-node HPL run on an AVX-512 Skylake system. ... 28

6.2 Visualization of a fictional use case where CPU monitoring data is enriched with Event annotations. .. 28

7.1 Pusher’s overhead on different benchmarks and system sizes on the SNG system. 35

7.2 Runtime overhead induced by Pusher and Caliper using the Sampler configuration on the SNG system. .. 37

7.3 Runtime overhead induced by Pusher and Caliper using the Sampler configuration on the CM2 system. .. 38

7.4 Additional memory usage of benchmarks induced by the Caliper integration using the Sampler configuration on the SNG system. 39

7.5 Pusher’s average CPU usage using the Sampler configuration on the SNG system. .. 40

7.6 Pusher’s average memory usage using the Sampler configuration on the SNG system. .. 40

7.7 Runtime overhead induced by Pusher and Caliper, as well as additional memory usage of benchmarks caused by Caliper’s integration. Both measured with different Sampler frequencies on the SNG system. .. 42

7.8 Pusher’s average CPU and memory usage with different Sampler frequencies on the SNG system. .. 42

7.9 Runtime overhead induced by Pusher and Caliper using the Sampler with Events configuration on the SNG system. 43

7.10 Pusher’s average CPU usage using the Sampler with Events configuration on the SNG system. .. 44

7.11 Pusher’s average memory usage using the Sampler with Events configuration on the SNG system. .. 44
List of Tables

2.1 Overview of required data sources that should be realized in plugins. 6
4.1 Overview of all RestAPI endpoints supported by Pusher. 14
5.1 Overview of all plugins and their features. 18
7.1 Overview of the system hardware used for the evaluation. 34
7.2 Overview of the system hardware used for the Collect Agents. 34
A.1 External software dependencies Pusher and its plugins rely on. 47
B.1 Compiler versions used for the evaluation. 48
List of Listings

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Excerpt from a configuration file for Pusher.</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Pseudocode of MQTTPusher’s primary push method.</td>
<td>13</td>
</tr>
<tr>
<td>4.3</td>
<td>Pseudocode of RESTHttpsServer’s functionality that will be invoked whenever a request is received.</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Excerpt from a configuration file for a generic plugin that uses the optional Entity component.</td>
<td>17</td>
</tr>
<tr>
<td>5.2</td>
<td>Pseudocode of a SensorGroup’s data reading functionality that is executed during runtime. Code in comments shows an alternative use case with an Entity involved.</td>
<td>22</td>
</tr>
<tr>
<td>B.1</td>
<td>Configuration for Pusher’s Caliper plugin as used in Section 7.3.</td>
<td>48</td>
</tr>
<tr>
<td>B.2</td>
<td>Pusher’s configuration file.</td>
<td>49</td>
</tr>
<tr>
<td>B.3</td>
<td>Runtime configuration of the Caliper toolbox as used in Section 7.3.</td>
<td>49</td>
</tr>
<tr>
<td>B.4</td>
<td>Runtime configuration of the Caliper toolbox as used for the HPL run without Pusher in Section 7.3.2.</td>
<td>49</td>
</tr>
</tbody>
</table>
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASLR</td>
<td>Address space layout randomization</td>
</tr>
<tr>
<td>BACnet</td>
<td>Building Automation and Control Networks</td>
</tr>
<tr>
<td>BMC</td>
<td>Baseboard Management Controller</td>
</tr>
<tr>
<td>CM2</td>
<td>CoolMUC-2</td>
</tr>
<tr>
<td>DCDB</td>
<td>Data Center DataBase</td>
</tr>
<tr>
<td>GPFS</td>
<td>General Parallel File-System</td>
</tr>
<tr>
<td>HPC</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>HPL</td>
<td>High-Performance Linpack</td>
</tr>
<tr>
<td>IPC</td>
<td>Inter-Process Communication</td>
</tr>
<tr>
<td>IPMI</td>
<td>Intelligent Platform Management Interface</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>MKL</td>
<td>Math Kernel Library</td>
</tr>
<tr>
<td>MQTT</td>
<td>Message Queuing Telemetry Transport</td>
</tr>
<tr>
<td>MSR</td>
<td>Model-specific register</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>OPA</td>
<td>Intel Omni-Path</td>
</tr>
<tr>
<td>PC</td>
<td>Program counter</td>
</tr>
<tr>
<td>PID</td>
<td>Process Identifier</td>
</tr>
<tr>
<td>ProcFS</td>
<td><code>/proc</code> file system</td>
</tr>
<tr>
<td>Regex</td>
<td>Regular expression</td>
</tr>
<tr>
<td>REST</td>
<td>RESTful API plugin</td>
</tr>
<tr>
<td>RestAPI</td>
<td>RESTful API</td>
</tr>
<tr>
<td>RSS</td>
<td>Residual Set Size</td>
</tr>
<tr>
<td>SNG</td>
<td>SuperMUC-NG</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SysFS</td>
<td><code>/sysfs</code> file system</td>
</tr>
</tbody>
</table>
1 Introduction

The current trends of machine learning and artificial intelligence as well as the general interest of researchers in running ever larger and/or more detailed simulations result in an insatiable demand for compute power. High Performance Computing (HPC) service providers counteract the demand by installing more powerful computing systems, leading to a soon breakthrough of the exascale barrier [1]. For decades, Moore’s law [2], which describes the observation that the number of transistors per fixed area doubles approximately every two years, allowed hardware manufacturers to provide ever more powerful systems. While Moore’s law is reportedly predicted to decelerate in the near future [3, 4] single CPU performance improvements already hit their limits years ago [5]. To evade the single CPU performance barrier a trend towards heavy parallelization has emerged. Manufacturers employ increasing numbers of CPU cores per processor while HPC systems use ever rising numbers of nodes. Apart from the natural increase of CPU cores this trend requires upscaling of devices all along the infrastructure such as server racks, network switches, storage disks, power supply, and cooling systems. The deployment of more system components, together with the adoption of new technologies like liquid cooling, link increasing compute power inseparably with overall higher system complexity.

At the same time, higher system complexity also significantly increases the risk of component failure and misconfiguration. To achieve reliable, continuous, and efficient service HPC systems must therefore be permanently monitored. System components commonly offer access to certain monitoring data of integrated sensors. With the ongoing trend of digitalization the amount of available sensor data is ever increasing and allows to satisfy the needs of all stakeholders. HPC stakeholders, i.e. operators, administrators, and users of HPC centers all share an interest in certain monitoring data. Operators require data of component utilization to optimize them for their most efficient operating point or to reduce overall operating costs. Administrators require notification of component failure or metric anomalies which may indicate malfunctioning devices. Users require exhaustive performance data of their applications for future optimizations. To effectively make use of the available sensor data, also despite the ever more complex systems, and provide stakeholders with required monitoring data one generally deploys a monitoring solution. A monitoring solution collects and stores the available sensor data from one or multiple different systems and allows for easy data access through unified high-level interfaces.

1.1 Problem Statement

The increasing system complexity results in a high diversity of devices. As HPC systems constantly get upgraded, extended, and replaced by new systems there coexist different generations of devices as well as components from a diverse set of vendors. Unfortunately, many of them allow access to their monitoring sensor data only via protocols that are proprietary or incompatible to each other. Further on, most existing monitoring tools
are fixed on certain sensor data sources or are tailored towards a specific stakeholder. Therefore one is required to deploy multiple monitoring solutions to serve all stakeholders and gather data from all devices. Deployment of multiple monitoring tools results in a set of disadvantages such as accumulating overhead and competition for the same data source which can result in mutual inferences. Also, every tool usually uses a different format for its data complicating the correlation of multiple data sources to the point of impossibility.

To overcome the fragmentation into multiple differing monitoring solutions there is a need for a holistic monitoring tool. Deployment of one single solution allows to eliminate possible inference, reduce overhead, and unify all data in one common format and therefore allow for simple and efficient correlation. To keep up with ever more complex future systems, the monitoring tool should be highly scalable and adaptable for new devices aka data sources.

1.2 Contribution

The Data Center DataBase (DCDB, cf. Chapter 2) [6, 7] project takes on all of the stated challenges. DCDB is a modular monitoring framework that aims to allow holistic monitoring from facility to application level. To achieve this goal, an adaptable and extendable data acquisition component is required that supports data collection from all kinds of data sources. Components of DCDB that acquire data for the framework are called Pusher.

Before this thesis, the author developed a new Pusher component that unifies and enhances previous Pusher implementations. The following parts were implemented:

- a new Pusher that provides a framework infrastructure for actual data acquisition through plugins and forwards the data to other DCDB components,
- four framework plugins, each supporting a new distinct data source,
- porting of the previous Pusher components to framework plugins, and
- a general HTTPs Server infrastructure for RESTful APIs (RestAPI) [8] and based upon it a RestAPI was integrated into the new Pusher framework for runtime control.

The purpose of this document is twofold: It serves as documentation of the author’s previous work on DCDB and exhaustively describes the actual thesis work. Namely, an additional hybrid plugin based on the Caliper [9] toolbox for application introspection. This thesis presents Pusher’s functionality, design principles, and implementation in detail. The functionality and implementation of Pusher’s various plugins in general and the Caliper application introspection plugin in particular will be outlined. Further on, Pusher’s general overhead and the impact of the Caliper plugin on a production system are depicted in this thesis.

The remainder is as follows. Chapter 2 gives an general overview of the DCDB project and its parts relevant for Pusher. In Chapter 3 other existing monitoring tools are presented. Pusher’s design goals, functionality and implementation details are introduced in Chapter 4. The functionality and implementation of Pusher’s accompanying plugins in general and the Caliper plugin in particular are detailed in Chapters 5 and 6. Chapter 7 presents an evaluation of overhead measurements for Pusher and the Caliper plugin. Finally, Chapter 8 sums up the thesis and states future work.
2 Background: DCDB

The Pusher component presented in this thesis is developed for the DCDB project. DCDB aims to offer a software architecture for holistic monitoring from facility to application level data. It is primarily targeted at HPC facilities. DCDB is presented in detail in [6, 7]. Following, relevant parts are summed up.

2.1 Design Principles

The DCDB project employs a few design principles that also apply to Pusher. Further on, technical decisions that affect the whole project, like the selected inter-component communication protocol, impact Pusher's implementation. Therefore, relevant design principles and decisions are described in the following.

Holism

DCDB is intended to avoid the fragmentation into multiple custom monitoring systems for each use case. Therefore it aims to be holistic. DCDB is kept as generic as possible to be applicable for all relevant use cases. It is not tailored towards a specific use case other than general applicability for HPC facilities. It rather provides only a monitoring infrastructure which may be adapted and deployed as required.

Scalability

HPC facilities usually host one or more large HPC systems. Current systems comprise thousands of CPU cores accompanied by adequate infrastructure hardware. Most of those devices have built in sensors that are accessible to the outside and therefore allow to monitor their operational state. The large quantity of devices results in an exceptional amount of available raw monitoring data that can be expected to further grow in the future as HPC systems get ever larger. To keep up with this enormous data stream, the DCDB framework tries to achieve high scalability by employing a distributed modular architecture and consistent use of a hierarchical push principle.

Modularity

Components of DCDB run independently of each other and are related to each other only through well-defined APIs or protocols. Access to DCDB monitoring data is abstracted through an library called libdcdb. Underlying components can therefore be exchanged or supplemented through custom implementations as required. Likewise, monitoring data is pushed into DCDB via MQTT, allowing for employing any data collection tool that speaks MQTT. This allows for adaption for a diverse set of use cases. Also, thanks to the independent modularity, multiple instances of one component can be run in parallel. This way, components of DCDB can be scaled independently of each other as required to overcome bottlenecks.
Push Principle

Acquired data gets pushed by the data collector (source) to the data sinks. As a result, required computations to gather data are distributed among data sources, avoiding possible bottlenecks of a central data collection service and keeping overhead of an individual instance to a minimum.

Sensor

In the DCDB context, a single data point is referenced as Sensor. A Sensor is the smallest possible data unit in the framework. Multiple readings or measurements of the same Sensor result in a timeline of this data point. The Sensor unit is part of all DCDB components. Two or more Sensors can be arithmetically combined to retrieve derived metrics, which is called a virtual Sensor. Virtual Sensors will not be considered further, however.

MQTT

For communication among DCDB components the Message Queuing Telemetry Transport (MQTT) [10] protocol is designated. MQTT bases on the publish/subscribe communication pattern and therefore fulfills the need for push-based data forwarding. It satisfies the need for modularity as components can join and leave the MQTT communication domain anytime at own will. The only interconnecting point is the MQTT broker. The protocol is very lightweight and intended to be able to run on embedded devices. As it is widely used, many implementations are available and libraries for all important programming languages exist. Therefore almost no hard- or software limits are imposed on components for DCDB’s infrastructure.

Within the MQTT protocol, all published messages are associated with a topic. Data consumers receive data from all topics they are subscribed to. To make the potential huge amount of Sensors distinguishable, each Sensor has to be assigned its own unique topic. The topic is used as unique identifier among the whole monitoring framework. Additionally, topics allow for file system-like hierarchical ordering. Although not strictly necessary it is strongly recommended to make use of this feature to organize Sensors. This way, they can be retrieved by selections with wildcard patterns later on. For example, Sensors can be sorted for their location within a system (“Cluster/Rack/Node/Socket”).

2.2 Components

The DCDB project consists of three integral abstract parts: Pusher, Collect Agent, and Storage Backend. The realization of the components is not fixed and the current implementation may be replaced with other variants at ones own discretion. Specifically for the current implementation of the three core components, Figure 2.1 shows an exemplary deployment of DCDB.

In addition to the three core components, an operational data analytic framework called Wintermute [11] is integrated into DCDB. Collect Agent and Storage Backend are already implemented in the DCDB project and are taken for granted. The Wintermute component was independently developed by collaborators in parallel to the presented Pusher.
2 Background: DCDB

Figure 2.1: A deployment example of DCDB visualizing its different components and their hierarchical structure.

Pusher

Acquisition of Sensor data in the DCDB infrastructure is task of Pusher. Pusher acts as MQTT publisher and therefore publishes the acquired data from Sensors under their respective MQTT topic. To achieve holistic monitoring, Pusher should be deployed on all relevant data sources, e.g. compute and management nodes as well as on dedicated servers to gather data remotely from infrastructure devices such as chillers.

Collect Agent

The Collect Agent is a custom MQTT broker and therefore acts as data intermediary. It receives published data from one or more Pusher. The Collect Agent in turn stores the received data in the Storage Backend via libdcdb. As of now, there are no subscribers for Sensor data except the Storage Backend. Therefore the subscriber related functionality is not implemented in the Collect Agent to reduce unnecessary overhead. The missing logic, however, can be added in the future if required.

Storage Backend

Storage Backend is the DCDB part responsible for storing all acquired data and serving requests for historic (non-live) data. One or more Collect Agents can write data to a single Storage Backend and there can be multiple Storage Backends. All read or write accesses to a Storage Backend are abstracted by the libdcdb library, making it independent of a specific storage solution. As of now, a Cassandra [12] database is employed as Storage Backend solution.

Wintermute

While the three aforementioned components make up the core of the DCDB infrastructure, the Wintermute framework as additional data analytic component is also part of the DCDB project. Wintermute is integrated in the Pusher and Collect Agent components and extends their functionality for operational data analyses. It offers in-band or out-of-band and online or on-demand data analyses. Wintermute’s internal structure is similar to Pusher’s; the framework forms the basis for Operator plugins which implement actual data analyses. Plugin data analyses operate on Sensors as smallest possible item. Although tightly integrated, the core components of DCDB run independent of Wintermute and it can be switched off if required.
2.3 Shortcomings

Before the work described in this thesis started, there existed no generic Pusher framework yet. Instead, following the modularity principle, for each of the three data sources supported at the time a custom Pusher component was implemented. The intention was to create multiple differing Pusher implementations, each adapted and optimized for its respective protocol. In the long term, however, this approach resulted in significant drawbacks. At the core, all of the separate Pusher implementations had the same functionality (gathering data from sensor instances and pushing them to the Collect Agent), resulting in huge parts of duplicated code. Changes to the common code base would require adaption of all other Pusher instances, significantly impacting development costs for future plans to expand Pusher’s functionality. Also, running multiple similar instances induces extra (management-)overhead that could be avoided by running the core functionality only once.

Therefore it was decided to unify the core functionality of all Pusher instances into one generic framework. Data source specific code should be outsourced into framework plugins. The already existing Pusher implementations should be ported to plugins for the new framework. In general, more data sources should be supported by the development of further framework plugins. A summary of all required data sources is presented in Table 2.1.

This thesis describes the new generic Pusher framework and associated plugins for the required data sources. Design, functionality, and implementation of the framework in general are presented in Chapter 4. Details on the plugins and their realization are given in Chapter 5. The Caliper plugin is particularly highlighted in Chapter 6.

Table 2.1: Overview of required data sources that should be realized in plugins.

<table>
<thead>
<tr>
<th>Data source</th>
<th>P</th>
<th>cf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Automation and Control Networks [13]</td>
<td></td>
<td>5.3.2</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory’s (LLNL) Caliper [9] tool</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General Parallel File-System [14] monitoring data</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Intelligent Platform Management Interface [15]</td>
<td>X</td>
<td>5.3.1</td>
</tr>
<tr>
<td>Intel model-specific register [16]</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Intel Omni-Path [17]</td>
<td></td>
<td>5.3.3</td>
</tr>
<tr>
<td>RESTful APIs [8]</td>
<td></td>
<td>5.3.4</td>
</tr>
<tr>
<td>Linux Perf Events [18]</td>
<td></td>
<td>5.3.5</td>
</tr>
<tr>
<td>Linux /proc file system [19]</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Simple Network Management Protocol [20]</td>
<td>X</td>
<td>5.3.1</td>
</tr>
<tr>
<td>Linux /sysfs file system [21]</td>
<td>X</td>
<td>5.3.1</td>
</tr>
</tbody>
</table>

1 Already realized in an existing Pusher instance
3 Related Work

The Pusher as introduced in this thesis is developed for the DCDB monitoring framework [6, 7]. An operational data analytics framework [11] is closely integrated into the DCDB infrastructure. Besides DCDB, there is a number of other monitoring tools available. Most of them are specialized for a certain domain or focus on one HPC stakeholder.

Still, there are also approaches to a continuous and scalable monitoring solution. Ganglia [23] is a widespread system monitoring tool. A daemon is run locally on each node to retrieve monitoring data. Among each other, the daemons exchange data via a multicast-based listen/announce protocol. Data of node federations can be retrieved from independent aggregating daemons which retrieve data from nodes in a poll-manner. Although it states scalability of up to 2,000 nodes, this is not sufficient anymore for HPC systems as of today. Also, it does not allow for subsecond sampling frequencies which is possibly not fine-grained enough.

The Lightweight Distributed Metric Service (LDMS) [24], which is part of the OVIS [25] project, is a more recent HPC system monitoring tool. Its design is very similar to DCDB. LDMS runs separate sampler, aggregation and storage instances. All instances are based on the same ldsmd daemon, which is adapted by configurable plugins for each use case. However, LDMS’ design does not account for customization. Development of new sampling plugins or extension of storage options requires significant effort. Also, the employed custom communication protocol complicates integration of other components into the LDMS infrastructure.

Another rather job-centered system-wide monitoring tool is TACC Stats [26, 27]. Similar to the other approaches, a data collection instance called monitor is run on each node. The monitor allows for exhaustive monitoring of the node’s hardware metrics. Collected data can either be harvested and permanently stored once a day or pushed via a RabbitMQ [28] server to data consumers in real-time. Further on, data analysis and visualization tools are offered. Although monitoring with TACC Stats is system-wide, it is not holistic. Collectable metrics are limited to compute node hardware.

Performance Co-Pilot (PCP) [29] uses an almost identical design approach to DCDB. Its plugin-based architecture allows for customization and system-wide holistic monitoring. Instead of the push-principle as employed by DCDB, PCP forwards data in a poll-manner. Reliable key-figures regarding PCP’s overhead could not be found.

There is a number of commercial monitoring solutions available, e.g. Nagios [30] or Splunk [31]. Most cloud service providers are known to offer monitoring options as well. Details about their internals are usually sparse, however. All of them have in common, that they are proprietary, closed-source, and rather alert-oriented.

Some of the system monitoring tools, like TACC Stats and LDMS, allow to collect hardware data from compute nodes that is closely related to a user’s application. None of the tools, however, allows for the integration of actual software introspection data. On application side, there is a vast amount of performance analysis tools available that allow for exhaustive software introspection. Namely Score-P [32], TAU [33], perf [18], Intel VTune Amplifier [34], and the Caliper toolbox [9] among others. Most of them support instrumentation and/or sampling of applications. All have in common, though, that they are
primarily tailored towards HPC application users. The tools usually store the gathered data in a proprietary data file for retrospective analyses. They do not support forwarding of their data or integration of other facility data. The main work of this thesis, the hybrid Caliper plugin, allows to integrate application introspection data into the holistic DCDB monitoring framework. To the author’s knowledge, no other solutions to unify system hardware monitoring and user software performance analysis data into one monitoring tool exist, yet.
4 DCDB Pusher

The parts responsible of originally acquiring monitoring data for the DCDB infrastructure are called Pusher. They are the most critical part of DCDB as their number of deployed instances can be expected to be the most of all DCDB components. To achieve holistic data center monitoring one has to deploy Pusher instances on all compute and management servers as well as additional instances to monitor facility infrastructure data. Before this thesis, the author developed a new Pusher component that employs a framework infrastructure and supports considerably more data sources through plugins than previous Pushers. The framework structure of the new Pusher is presented in the following. Its functionality and implementation as well as its underlying design goals are described.

4.1 Design Goals

The very first design goal for the new Pusher component (only called Pusher in the following) is to be as easy to use as possible for all involved stakeholders. They are as following, ordered for their priority:

1. User,
2. Developer, and
3. Maintainer.

For users, the complexity to setup and configure Pusher, also during runtime, should be as low as possible. Possibilities for the user to misconfigure Pusher should be strictly avoided. Note that the term user usually refers to HPC system operators in the DCDB context and not to the actual HPC system users. Most commonly, HPC system users lack the permission to install facility wide monitoring solutions, although they might be given limited access through exposure of DCDB’s outside interfaces. The term developer refers to the ”using” developers, which want to utilize the Pusher framework for their needs, e.g. by creation of a custom plugin. Maintainers are the ”maintaining” developers behind the DCDB project. For developers, all interfaces should be powerful enough to satisfy their needs and at the same time simple to use. They should be able to build upon the framework with only minimal effort but without them having to cut back their requirements. Maintainers require the whole DCDB project including the Pusher part to be comprehensible at all times. Interfaces should be expandable for future requirements and framework-internal revisions should only require minimal expenses. All of the stakeholders unites the need for complete and comprehensible documentation. Furthermore, the same design principles as stated in Section 2.1 for the DCDB project apply for Pusher. The design should be modular and holistic, while the functionality must obey the push-principle. Pusher’s implementation shall realize Sensors as smallest possible unit and must use MQTT to publish its acquired sensor data.
4.2 Functionality

From a user’s point of view, Pusher allows for configuration of framework settings through a configuration file. It uses Boost’s custom INFO file format [35]. An exemplary configuration file for the Pusher framework can be seen in Listing 4.1. Selected Pusher options can also be set via command line parameters passed on start-up. Usage of the framework as well as all configurable options for Pusher are documented in a README file within the code repository [22].

Pusher ships with plugins for eleven different data sources. More details on them can be found in Chapter 5.

Further on, Pusher runs a RESTful API (RestAPI) [8] that allows for runtime configuration of the plugins. The RESTful API can be leveraged by developers to control Pusher from external applications. For example, one could automatically halt certain plugins to avoid inference with other software.

For developers, the framework provides all infrastructure to develop custom plugins. Plugins are realized as shared libraries. Users only need to provide appropriate configuration files for the plugin. The framework will then take care of loading and running the plugin, as well as making it accessible through the RestAPI. Plugins will get periodically invoked according to their configuration to poll their data. Pusher will take care of the acquired data to be forwarded to the Collect Agent. To ease the process of developing plugins, enforce a uniform plugin structure, and eliminate the need to repeatedly write the same code skeleton, plugin generator scripts are included. On invocation they generate all source files required for a new plugin and fill them with the necessary code structures.

Listing 4.1: Excerpt from a configuration file for Pusher.
Developers only need to take care of the constituting plugin code parts pointed to by the TODO comments.
For maintainers, code is documented as complete and comprehensible as possible. Doxygen [36] is used to create an interconnected HTML documentation.

4.3 Implementation

The DCDB project including Pusher is written in C++11 and publicly available as open source [22] under the GNU GPL license. To not re-invent the wheel for all functionality, Pusher's implementation employs a set of external libraries. They are listed in Appendix A. Further on, the usage of external libraries for certain functionality greatly increases the maintainability of Pusher's actual code base.

The Pusher framework itself consists of five rather loosely coupled components (compare Figure 4.1):

- **Configuration**,
- **MQTTPusher**,
- **PluginManager**
- **RestAPI**, and
- **dcdbpusher** ("main"-method).

![UML class diagram](image_url)

Figure 4.1: UML class diagram depicting the components of the Pusher framework and their relations. Classes with blue background are global to the DCDB project. For the sake of simplicity, implementation details are left out.
PluginManager

Central to the framework is the PluginManager component. It is responsible of administering the framework plugins. The corresponding PluginManager class offers various functionality to operate on single plugins. A new plugin can be loaded, i.e. its shared library is opened, making it accessible for further operations. Opposite, plugins can also be unloaded, i.e. its dynamic library is closed and completely unlinked from the framework. After a new plugin was loaded, it has to be initialized. Initialization leaves the plugin in a stopped state, meaning it is fully operational but currently does not collect data. After initialization a plugin can be started, i.e. its sensors start collecting data, and stopped again any number of times. To allow for adaption of a plugin during runtime without the need to fully unload and load it again one can alter the plugin’s configuration file at will and then reload it during runtime. The new configuration file is read in and the plugin is set up accordingly, inducing a short interruption of the plugin’s data collection. During a typical plugin lifecycle, operations are called in the following order:

1. `loadPlugin()`
2. `initPlugin()`
3. `startPlugin()`
4. (optional: `reloadPluginConfig()`)
5. `stopPlugin()`
6. (optional: go back to 3.)
7. `unloadPlugin()`

One can also retrieve direct access to all currently loaded plugins via PluginManager’s `getPlugins()` method and operate on a plugin’s components directly.

MQTTPusher

MQTTPusher is the actual "pushing" component sending all data as MQTT messages to the Collect Agent. The main functionality of MQTTPusher is implemented in the `push()` method of the MQTTPusher class which is portrayed in Listing 4.2. It is run by its own thread which continually cycles over all loaded plugins in an endless loop. Initial start and final termination is controlled via start and stop methods which set the `_keepRunning` flag accordingly. Within one cycle all sensors of a plugin are accessed. Sensor data which was buffered since the last cycle is retrieved and used to construct a MQTT message with the sensor’s MQTT topic. The message is then sent to Collect Agent. For MQTT communication the open source Mosquitto [37] library is used. To reduce overhead, MQTTPusher keeps a reference to PluginManager’s plugins instead of retrieving them each cycle via `getPlugins()`. In doing so, MQTTPusher’s plugin list is also up to date at all times. However, modifications made to the plugin list from elsewhere, namely (un-)loading plugins, or plugin-internal changes to its groups or sensors require the MQTTPusher to be paused beforehand to avoid race conditions. For this reason, functionality to temporarily halt and later on continue the execution of the primary push cycle is offered.
RestAPI

The primary user interface during runtime is the RestAPI offered by Pusher. As other components of the DCDB project offer a RestAPI, too, common functionality is merged in the project global RESTHttpsServer class. The class is not instantiable on its own but only forms a base class with common functionality. The common base class leverages the Boost.Beast library [38] to provide a HTTPS server for RestAPIs. Derived classes only have to implement their endpoint functionality and register the endpoints as well as the associated endpoint handler function with the RESTHttpsServer. In this context, an endpoint specifies an unique functionality offered by the RestAPI. An endpoint is identified by its unique URI. If a client makes a HTTPS request to an endpoint, the RESTHttpsServer takes care of the server-client communication like accepting the connection, sanity checks, error handling, authenticating users, checking user access permissions and determining the correct API endpoint. On success, the registered handler function is called and provided with all request parameters. The handler has to process the query and return a HTTPS response which will be dispatched from the RESTHttpsServer. Pseudocode of the whole procedure can be seen in Listing 4.3. Internally, functionality to start/stop the server threads, i.e. controlling availability of the RestAPI, add authorized users and add new RestAPI endpoints is provided to external and derived classes.

Pusher’s RestAPI class derives from the common RESTHttpsServer class. It currently provides nine endpoints, each realized by its own handler. They are listed in Table 4.1. The RestAPI component provides five PUT endpoints wrapping functionality of the PluginManager. In doing so, PluginManager’s functionality gets accessible from the outside during runtime. To realize the PUT endpoints, RestAPI keeps a pointer to the PluginManager and MQTTPusher. Access to the latter one is required whenever the plugins are modified and MQTTPusher has to be paused to avoid race conditions. The other four endpoints are associated with GET methods and are of informational character. They respond with a small endpoint cheatsheet, currently loaded plugins, all sensors of a plugin and the average of one sensor’s last readings respectively. The GET endpoints allow for user-space access to Sensor data through a single interface at runtime. This increases security, as no access to the actual underlying data sources has to be granted. Instead, a user only has to be supplied with appropriate credentials for the RestAPI. Further on, data access is simplified in general for external parties, as all data can be retrieved through the same RestAPI.
connectionHandler(socket) {
 connection = socket.accept();
 request = connection.receive();

 //check provided user credentials
 if(!userValid(request.credentials)) {
 //fail: unauthorized request
 }

 //look up requested endpoint within
 //all registered endpoint handlers
 reqHandler = endpointHandlerMap[request.endpoint];

 if(reqHandler == NULL) {
 //fail: no handler registered for requested endpoint
 }

 if(reqHandler.method != request.method) {
 //fail: REST methods (e.g. GET or PUT) of request
 //and endpoint handler do not match
 }

 //delegate further processing to endpoint handler
 response = reqHandler.fun(request);
 connection.send(response);
 socket.close(connection);
}

Listing 4.3: Pseudocode of RESTHttpsServer’s functionality that will be invoked whenever a request is received.

<table>
<thead>
<tr>
<th>RM</th>
<th>URI Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>/help</td>
<td>Return a cheatsheet of possible REST API endpoints.</td>
</tr>
<tr>
<td>GET</td>
<td>/plugins</td>
<td>List all loaded Pusher plugins.</td>
</tr>
<tr>
<td>GET</td>
<td>/sensors</td>
<td>List all sensors of a specific plugin.</td>
</tr>
<tr>
<td>GET</td>
<td>/average</td>
<td>Get the average of the last readings of a sensor. Also allows access to Wintermute’s analytic sensors.</td>
</tr>
<tr>
<td>PUT</td>
<td>/load</td>
<td>Load and initialize a new plugin but do not start it. Use the /start request to kick off the plugin’s data collection.</td>
</tr>
<tr>
<td>PUT</td>
<td>/unload</td>
<td>Unload a plugin, removing it completely from Pusher. To use the plugin again one has to /load it first.</td>
</tr>
<tr>
<td>PUT</td>
<td>/start</td>
<td>Start a plugin, i.e. its sensors start polling.</td>
</tr>
<tr>
<td>PUT</td>
<td>/stop</td>
<td>Stop a plugin, i.e. its sensors stop polling.</td>
</tr>
<tr>
<td>PUT</td>
<td>/reload</td>
<td>Reload a plugin’s configuration (includes fresh creation of a plugin’s sensors and a plugin restart).</td>
</tr>
</tbody>
</table>

1RestAPI Method

Table 4.1: Overview of all RestAPI endpoints supported by Pusher.
4 DCDB Pusher

Configuration

The component responsible for reading in configuration files is the Configuration. Its implementation class is similar to the RestAPI as it is based on a project global parent class called GlobalConfiguration. Many settings, like log verbosity, temporary file directory, and MQTT prefix are common to multiple components of DCDB. This includes the RestAPIs’ server settings, as all of them are based on the common RESTHttpsServer base class. The logic to read in the common settings is bundled in GlobalConfiguration. The derived Configuration class only has to provide a method to read in additional values. This method parses Pusher specific configuration settings, e.g. the address of the MQTT broker aka Collect Agent, and will be called from the parent class after common settings have been parsed. Separated from the general setting parsing is the code to read in the users and their corresponding permissions of the RestAPI and Pusher’s plugin configuration. Both parts rely on other components, namely RESTHttpsServer and PluginManager, to be instantiated first as the parsed values will be directly set within the components. Therefore, those settings cannot be parsed at the very beginning together with the general settings but only at a later point of time.

Dcdbpusher

The last component, containing the main() method, is dcdpusher. It initiates all other components, starting with Configuration. After the global configuration is read in, PluginManager is invoked and all initial plugins loaded and configured. Dcdbpusher sets up a pool of threads which will execute the data reading tasks issued by the plugins (see Section 5.2 for details). The thread pool allows for asynchronous execution of data readings. Hence, read intervals of Sensors can freely be adapted to the underlying data source. The number of associated threads in the pool can be configured depending on the number of data sources and their read cycle as well as the hardware Pusher is run on and therefore allows for scalability. Also, dcdpusher kicks off RestAPI and MQTTPusher and takes care of a graceful shutdown on termination.

An overview of all Pusher components, including those of the plugins, can be seen in Figure 5.2.

Logging

During the development of Pusher a logging infrastructure was integrated and adapted to other components of the DCDB project. The logging infrastructure is based on the Boost.Log [39] library, which allows for thread-safe efficient logging with different levels of severity. A component requires only a local instance of a boost logger to participate. Convenient macros for recording messages are provided. The infrastructure logs all messages to a file and the terminal. One can specify the verbosity of the log messages, i.e. set the severity level a message must exceed to be logged.
5 Pusher Plugins

The new Pusher framework only provides the general infrastructure to push Sensor data towards other DCDB components. It does not implement any logic to acquire data itself. Instead, it relies on plugins for this task. The plugin-based approach allows to achieve modularity and extensibility. Depending on the machine Pusher is deployed on, different data sources can be tapped into by loading the appropriate plugin. Also, future data sources can easily be integrated as only a plugin that implements the data reading functionality has to be developed.

5.1 Functionality

Currently, eleven Pusher plugins for different data sources are provided. Out of the eleven plugins, four were developed by the author before this thesis. Additionally, the preceding Pusher implementations for the first three data sources have been ported to plugins for the new framework. During the thesis work itself, the complex Caliper plugin to gain user application introspection data was developed. The remaining three plugins were developed in parallel by DCDB collaborators. An overview of all plugins can be seen in Table 5.1. Plugins that were developed by the author are described in detail below.

Plugins either acquire data locally from the same host they are run on (in-band) or from remote machines (out-of-band). Just like the framework, plugins are configured through individual configuration files in Boost’s INFO file format [35]. One can specify Sensors as smallest possible unit, SensorGroups that bundle multiple Sensors, and optionally Entities. More details on those components can be found in Section 5.2. The configuration files also allow to specify template blocks. These are equal to normal Sensors/SensorGroups/Entities but will not be actually instantiated. Instead, they can be used to set default values and allow one to skip the repeated specification of unvarying configuration parameters. Usage of plugins as well as their individual configurable options are documented in the code repository’s [22] README file. An exemplary excerpt from a plugin configuration file can be seen in Listing 5.1.

5.2 Implementation

Plugins are realized as shared dynamic libraries. Just like the Pusher framework they are written in C++11 and are available as open source [22]. A number of plugins relies on third-party software. See Appendix A for more information. Each plugin is based on the same general component architecture that is presented in the following.

A plugin includes the components as follows (compare Figure 5.1):

- SensorBase,
- SensorGroup,
- Entity (optional), and
- Configurator.
global {
 mqttprefix /plugin ;MQTT prefix
 ;(overwrites Pusher global prefix)
}

template_entity temp1 { ;Template entity which is not used
 ;in live operation.
 ;Here go entity attributes
}

group g1 {
 interval 1000 ;Group wide attributes
 minValues 3
 mqttPart /aa ;Will be appended to global prefix

 sensor s11 { ;Appended to prefix and group part,
 mqttsuffix /s11 ;must result in an unique MQTT topic.
 ;Usually the sensor would require
 ;additional attributes.
 }

 sensor s12 {
 mqttsuffix /s12
 ...
 }
}

template_entity ent1 {
 default temp1 ;Use temp1 as template Entity

 group g2 { ;ent1 has now two groups (g1 and g2)
 ;with a total of 3 sensors
 ;(s11, s12, s21).

 sensor s21 {
 mqttsuffix /s21
 ...
 }
 }
}

template_entity ent2 { ;Entity with only one sensor
 mqttPart /ent2 ;Entities can also add an part
 ;to the MQTT topic.

 single_sensor s1 {
 ;Specify a single sensor that
 ;does not belong to a group.
 interval 2000
 mqttsuffix /s3
 }
}
<table>
<thead>
<tr>
<th>Plugin</th>
<th>Data source</th>
<th>In-band</th>
<th>Out-of-band</th>
<th>Entity</th>
<th>DBA<sup>1</sup></th>
<th>Ported</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet</td>
<td>Building Automation and Control Networks [13]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Caliper</td>
<td>Lawrence Livermore National Laboratory’s (LLNL) Caliper [9] tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPFSmon</td>
<td>General Parallel File-System [14] monitoring data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSR</td>
<td>Intel model-specific register [16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPA</td>
<td>Intel Omni-Path [17]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REST</td>
<td>RESTful APIs [8]</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PerfEvent</td>
<td>Linux Perf Events [18]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProcFS</td>
<td>Linux /proc file system [19]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SysFS</td>
<td>Linux /sysfs file system [21]</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

¹Developed by the author

Table 5.1: Overview of all plugins and their features.
Figure 5.1: UML class diagram depicting all involved plugin components and their relations. Classes with blue background are global to the DCDB project. Classes with dark gray background are optional. For the sake of simplicity, implementation details are left out.
Components are implemented according to the Template Method design pattern [40]. The design pattern is useful to keep common functionality in a general interface class while allowing or even forcing derived concrete classes to customize parts of the functionality. Therefore it perfectly suits the realization of plugins. Each plugin part is made up of an abstract interface class and a concrete, plugin-specific implementation class. The interface defines a component’s functionality that is accessible to the framework. Also, common code is implemented in the interface. Plugin specialization is achieved by abstract and/or virtual protected methods which are implemented in concrete plugin classes and are called from the public interface functions. If an operation has to be overwritten by a plugin it will be pure virtual, aka abstract. Methods that can be optionally specialized from a plugin are virtual and the interface provides an usually empty default implementation. The concrete implementation classes contain all plugin specific code, namely all code that is required and/or specific to access the plugin’s target data source.

During implementation of the first plugins for Pusher it became obvious, that the Sensor-Groups and Configurators of all plugins share common code. Unfortunately, some code details rely on plugin specifics, e.g. the presence of an entity, which prevents unification in the interfaces. Therefore an additional class layer of templates is introduced. The templates allow to join the common code while keeping it plugin specific at the same time by using plugin implementation classes as template parameters. To account for the optional entity component, partial template specializations are implemented. They come into effect if no class was specified for the entity template parameter. The templates cannot fully replace the abstract interfaces, however, as C++ does not allow to reference a template class in general without plugin specialization. Therefore, the use of templates as interfaces to the framework is prohibited. The templates rather extend the interface level of the Template Method design for an additional layer.

Configurator

The SensorBase, SensorGroup and Entity components are responsible for the plugin’s data collection. Each of them has a name attribute for human readable identification. The Configurator component is the primary access point to a plugin. Other components of a plugin can only be accessed through the plugin’s Configurator (operations not shown in Figure 5.1). When a plugin is loaded the first and only component created by the Pusher framework is the plugin Configurator. The Configurator is subsequently responsible of reading in a plugin’s configuration file and creating the other components accordingly. If a plugin is requested to reload its configuration during runtime, the Configurator is the only component to persist. All other plugin parts are recreated according to the new configuration file. The ConfiguratorInterface only implements logic to parse common plugin attributes, like the plugin-global default MQTT prefix. More specialized logic to read in the Entitiy, SensorGroup and SensorBase structure is realized in the template. The concrete plugin Configurator implementation has to parse all plugin-specific attributes.

SensorBase

SensorBase realizes the Sensor concept, i.e. a SensorBase represents the smallest possible data source unit within the DCDB project. It may represent the number of cache accesses, branch mispredictions, CPU temperature, or the energy consumption of a single power
outlet. As this unit is also used by other components the general base class has a project
global scope. The most important attributes of the SensorBase are its assigned MQTT
topic and the storage for data readings. The MQTT topic is usually made up of multiple parts. Each hierarchy level (plugin, Entity, SensorGroup) may add an identifying
MQTT part. Those parts make up the prefix which is completed from a custom MQTT suffix assigned to each SensorBase. A SensorBase has two storages for data readings, the
cache and the reading queue. A data reading in turn consists of two components, the
actual read value and the corresponding timestamp. A single data reading is produced
every read cycle (see also the SensorGroup paragraph below). The cache is a ring buffer
which stores all data readings for a configurable amount of time. It is used to speed up internal operations like serving RestAPI requests or to enable the Wintermute analytics
framework for fast online analysis without making a detour to the Storage Backend. The
reading queue contains all readings which should be dispatched by the MQTTPusher. The
reading queue may be only a subset of the cache. As only one data producer (the SensorBase itself) puts data into the queue while the MQTTPusher is the only data con-
sumer, it is implemented as efficient lock free single-producer single-consumer queue.
Plugin implementations of the SensorBase usually do not have to provide any special logic except plugin specific attributes and their associated get and set methods. Therefore
no additional template layer is required for this component.
The SensorBase base class offers additional logic through its storeReading() method
for more fine grained processing of a new data reading:

- Storage of only delta values, i.e. instead of the absolute reading just the difference
to the preceding value will be stored. Selected plugins, e.g. for Perf Events, that are
known to only provide monotonically increasing data have this feature activated
by default.

- Skipping of constant values. Values that did not change since the last read cycle
will be skipped completely from storing. If sensors, e.g. error counters, are known
to change only occasionally this can save storage space.

- Subsampling only stores every n-th value. Can be used to reduce pressure on the
network and/or storage space as only every n-th read value will be pushed. Natu-
rally, this will also reduce granularity of data in the Storage Backend.

In all cases all readings will still be stored in the cache. The previously listed features
only affect the reading queue. The additional logic can be individually dis- and enabled
through settings in the configuration file.

SensorGroup

Within Pusher a SensorBase object never exists on its own. It is always part of a Sen-
sorGroup. SensorGroups aggregate one or more related SensorBases whose data sources
will always be read together. This allows to correlate data readings of different Sensor-
Bases, like cache misses to overall cache accesses, and reduces overhead. The logic to
read values from a plugin’s data source is implemented within the SensorGroup. The read
functionality will be periodically executed with a frequency depending on a configurable
read interval. Each read cycle an asynchronous task to execute the SensorGroup’s read() method is issued to be picked up by one of the threads in the Pusher framework’s pool.
An exemplary implementation of the relevant read() method is depicted in Listing 5.2.
The SensorGroup will iterate over all of its SensorBases and trigger a read of the corre-
Listing 5.2: Pseudocode of a SensorGroup’s data reading functionality that is executed during runtime. Code in comments shows an alternative use case with an Entity involved.

A SensorGroup allows for some additional settings which will affect all of its associated SensorBases. To reduce network overhead caused by the MQTTPusher one can set a minimum number of readings a SensorBase should contain before they are processed into a MQTT message. This avoids network congestion by MQTT messages that only contain one data reading at a time. Naturally, this increases the latency until data gets available in the Storage Backend and can be accessed through libdcdb. Hence, this setting is a trade-off between latency and network overhead.

One can also instruct a SensorGroup to synchronize its read interval with other groups. In this case, the absolute timestamp of the next reading time will be rounded down to the next multiple of a SensorGroup’s read interval. Hence, all groups with the same interval will start their next read cycle at the same absolute timestamp. Synchronized data readings result in improved post-analysis, as data points do not have to be interpolated to correlate them. As the clocks of all nodes, and therefore the time of all Pushers running on them, are synchronized via the Network Time Protocol (NTP) [41], the data reading overhead of synchronized SensorGroups will occur on all instances (nodes) at the same point of time. Synchronized readings between nodes, however, only work for sufficiently large read intervals, as the nodes’ clocks are subject to drift and the NTP synchronization may not be precise enough for fine-grained read intervals.

To accommodate the need for single independent Sensors, a special SingleSensor option can be used in the configuration files. A SingleSensor block allows to specify the attributes for a SensorBase and SensorGroup at once. Internal, the Configurator takes care of creating a SensorGroup accordingly which contains only one SensorBase.

Entity

A plugin can contain a second, optional aggregation level above SensorGroups, namely Entities. Entities are intended for plugins that gather their data from remote locations, e.g. power delivery units that are accessible via network or the Baseboard Management Controller (BMC) of a remote server. If multiple SensorGroups need to communicate with
the same server an *Entity* can be introduced. As *Entities* are an optional component, they do not control associated *SensorGroups*, but instead a *SensorGroup* will get a pointer to its associated *Entity* set from the plugin’s *Configurator*. The *Entity* can then provide logic to communicate with the remote server which has to be used from the *SensorGroups* to read their data. This way, the *Entity* is the solely controller of the connection to "its" server and can eliminate race conditions if multiple *SensorGroups* want to read data at the same time.

A complete overview of all framework and plugin components can be seen in Figure 5.2.

Figure 5.2: Overview of all components of the *Pusher* framework and its plugins highlighting the data flow. This figure also includes an introspection into *Collect Agent* and *Storage Backend*.
5.3 Plugin Details

All plugins which are developed by the author are implemented according to the structure presented above. Still, a handful of plugins also require implementation of special features that are unique to them and are therefore not accounted for in the framework but are kept in the plugins. Those special features are presented in the following sections. The *Caliper* plugin, that allows to gather application introspection data, is highlighted in particular in Chapter 6 as it does not fit the common value-timestamp data point format and uses a hybrid approach for data acquisition.

The fact that this highly diverse set of adaptions is possible within the plugins demonstrates the flexibility and permissiveness of the *Pusher* framework.

5.3.1 IPMI, SNMP, SysFS

The three plugins *IPMI*, *SNMP*, and *SysFS* are historically the very first data sources for *DCDB*. Before the start of the *Pusher* framework and its plugin based architecture they existed as separate binaries. Functionality that is unified by *Pusher* as of now was implemented by each of them separately, resulting in major code duplication. During the development process of *Pusher* they were ported and rewritten to be the first compatible plugins.

The *IPMI* plugin allows to query data from a server mainboard’s Baseboard Management Controller (BMC) via the Intelligent Platform Management Interface (IPMI) [15] protocol. The *SNMP* plugin offers access to data from devices that are accessible via the Simple Network Management Protocol (SNMP) [20], e.g. routers, switches, and printers. *IPMI* and *SNMP* both make use of the *Entity* feature to access their remote data sources. The *Entity* abstracts one host machine and is employed by one or multiple *SensorGroups* to read remote data. It allows to reuse the same established connection to the remote machine for multiple queries. This significantly reduces overhead and delay, as initialization of an IPMI or SNMP connection is comparatively slow and expensive.

The *SysFS* plugin acquires data by parsing the content of files in the local */sysfs* file system [21]. During its porting, it was enriched with support to parse files with *regular expressions* (regex) [42]. In fact, the *SysFS* plugin could be (ab-)used to parse arbitrary files to acquire data and make use of its regex feature.

5.3.2 BACnet

The *BACnet* plugin implements functionality to acquire data from devices that support the Building Automation and Control Network (BACnet) [13] protocol. It is deployed in data centers to control and monitor infrastructure like water pumps, cooling towers, or air handlers. The *BACnet* plugin uses the *Entity* feature to query its remote data sources. Like most of the plugins that are implemented to acquire data via a specific protocol, *BACnet* uses an external open source library that provides a protocol communication stack (see also Appendix A). The library used for *BACnet*, however, is not reentrant, i.e. it does not support more than one connection at once. Therefore the number of *BACnet Entities* is also limited to one. This property is ensured by the plugin’s *Configurator*. All *BACnet* connections have to pass through the single *Entity* instance. In turn, the *Entity* supports connections to multiple differing remote devices.
5.3.3 OPA

To gather data from Intel Omni-Path (OPA) [17] network interfaces the OPA plugin is implemented. It allows to read data from the various status counters of the local machine’s OPA network interfaces. Such status data comprise for example the number of network transmit or receive errors, if the network link is up or down, and the overall transmitted data packets in general.

5.3.4 REST

The REST plugin allows to query RestAPIs [8], parse their response, and match the parsed data with Sensors. RestAPI queries are dispatched through Entities. Each Entity is usually associated with an unique host and one SensorGroup matches a specific request. The response may contain data for multiple Sensors. The corresponding SensorBases are part of the requesting SensorGroup. Each read cycle, the SensorGroup dispatches its request through its associated Entity to the target host, parses the response, and serves the data readings of all associated SensorBases with the parsed data.

5.3.5 PerfEvent

The Perf Events plugin supports data acquisition from CPU internal performance counters [18]. Perf Events allow for high frequency, low level sampling of a CPU core’s key figures. As a single processor can consist of dozens of CPU cores, one node can have multiple processors, and a HPC system has thousand of nodes, the amount of data produced by Perf Events is huge. Although the DCDB infrastructure can handle the tremendous data flow per se, requests to reduce the pressure on the required storage space were brought forward. To meet the requests, an option is implemented that allows to accumulate the data of CPU cores by specifying an aggregation value. All CPU core numbers that are a multiple of this value will be aggregated, i.e. only one Sensor exists for all aggregated CPU cores that stores the sum of all of their readings. This is especially useful to aggregate values of logical cores as they occur in processors that implement simultaneous multithreading (SMT) [43]. Further on, Perf Events allows to limit the data acquisition to certain CPU cores. Cores that are permanently pinned to management tasks may therefore be excluded from the data sampling.
6 Caliper: A Hybrid Plugin

For a fully holistic monitoring of HPC system facilities one also requires introspection capabilities into user applications. This allows to automatically provide users with monitoring data correlated to their application code without them taking further actions. Also, the HPC system operators have a fair interest in the application performance data. Most HPC software makes use of precompiled libraries provided by the operators. Access to application performance data would allow the providers to tune critical functions within those libraries. This way, all of the users profit as own optimizations to those libraries are out of their area of influence. Also, access to user application performance data allows for a better requirements analysis when purchasing new hardware.

The intention was to develop a plugin for Pusher that provides user application introspection data. While doing so, the solution should obey two primary design goals:

1. minimal user application overhead, and
2. no requirement for application developer involvement.

Acquisition of application introspection data always incurs overhead. It should be kept to a minimum to avoid negative impacts on an software’s runtime and increase acceptance among users. To automatically gather data from all running applications without relying on the good will of the software developer, no action should be required from their side to gather application data.

A Pusher plugin itself has no access to an application’s introspection data by default. In fact, it would be possible for the plugin to "hijack" user binaries. However, this would require significant development effort and increased process privileges which induces a security flaw. Instead, to acquire introspection data, a hybrid solution is developed. On user application side the Caliper performance analysis toolbox developed at LLNL is employed to gather introspection data in the first place. A custom service developed for the Caliper framework allows to access the data and forward it to Pusher via inter-process communication (IPC). On Pusher’s side, a special plugin is implemented that will receive the application data and therefore make it available to the DCDB infrastructure.

6.1 The Caliper Framework

Caliper per se is a framework for program instrumentation and performance measurements and is intended to be used by application programmers for performance analysis and optimizations.

The most basic data processing unit within Caliper is a snapshot. It contains all information provided by the application developer and the Caliper framework about the user program at a certain point of time. Main features of the framework stem from its services which digest snapshots. Depending on their functionality a service will be invoked during different stages of a snapshot’s lifecycle. Services can trigger the creation of a snapshot, add additional information, process snapshots at runtime or store them for later analysis. The framework as well as all required services are compiled into a shared
library which has to be linked with binaries that want to use Caliper’s functionality. Runtime configuration is achieved by setting environment variables or by configuration files. Caliper’s original target user group are application developers. Its strength is performance analysis of applications via instrumentation. Annotations have to be incorporated by developers into an application’s source code and trigger snapshot creation synchronously whenever they are encountered if the Event service is activated. Although supported in DCDB, the Event data does not suffice as sole data source. It relies on the user to fully annotate its code for holistic application introspection, which may require excessive effort and cannot be enforced after all. Therefore, the Sampler service is used for primary snapshot creation to acquire application introspection data. Caliper’s Sampler service allows for asynchronous snapshot creation with a configurable frequency, i.e. it provides low overhead analysis via a sampling approach. Even more important, apart from initialization of Caliper no further software adaption is required on application side to start the Sampler service. This way, Caliper’s application introspection capabilities can be integrated into the software almost invisible to users and require as little involvement from them as possible. The sampling approach may produce less accurate profiling results than precise instrumentation. This drawback is considered of little weight as HPC software usually correlates with hour-long runtimes that allow for enough samples to form a precise statistical profile of the application. Also, by adjustment of the sampling frequency, fast and fine grained control of the induced overhead is possible.

6.2 Use Cases

For the implementation of the Caliper plugin two use cases are considered.

Sampler

In the first case, the goal is to gather information on how much time an application spends in which function. This information can point the user directly to the most critical methods that offer the most optimization potential. Also, the data can help system operators to identify frequently used libraries. Special focus can then be put on the most used libraries for further support.

For this use case, the Sampler service is used to gather sampling introspection data from every thread. The data can be sorted into a histogram to directly present the most encountered function. An exemplary histogram for a single node High-Performance Linpack (HPL) [44, 45] run can be seen in Figure 6.1. One can see there, that primarily the Caliper-enriched HPL binary xhpl_cali itself and the Intel Math Kernel Library (MKL) [46] are encountered during runtime. In particular, the AVX-512 [47] version of the MKL library is used as the HPL run is conducted on a Skylake system with AVX-512 support. The fact, that by far the most samples are taken from MKL’s "dgemm_kernel" method meets the expectations, as it makes up the main computation of HPL and therefore should also require the most execution time.

This use case is the default, as it allows almost invisible monitoring of application internals with minimal expenses for the user. One only has to initialize Caliper once in the application. Sampling on all threads is then automatically set up by the Caliper framework. In the future, it is intended to integrate the Caliper initialization invisibly to the user in every application. The long-term goal is to gather sampling data from all user software without requiring further involvement from the developers.
Figure 6.1: A histogram of the most meaningful function samples sorted by binaries, as acquired with the Caliper plugin for a single-node HPL run on an AVX-512 Skylake system.

Figure 6.2: Visualization of a fictional use case where CPU monitoring data is enriched with Event annotations.
6 Caliper: A Hybrid Plugin

Sampler with Events

The second use case is an extension of the first. It is intended to additionally allow the user to enrich their application with *Caliper* annotations that can later be correlated with other monitoring data. This way, the user can easily comprehend the flow of their software and can correlate each section with detailed resource usage statistics. Also, the annotation data can be used to gain more fine-grained information than the first use case may provide as annotations allow to distinguish different sections within the same function. For this case, the *Event* service is used in addition to the *Sampler* as it triggers a snapshot upon encountering a *Caliper* annotation.

An exemplary depiction of such a use case can be seen in Figure 6.2. It presents the fictional correlation of function and loop annotations with CPU usage data. In this example, one can easily deduce that the loop iterations are by far the most CPU intensive parts of the functions. Or vice versa, the function parts outside the loop do not fully use the CPU. Such a deep introspection down to the loop iteration level can not be achieved with the *Sampler* use case alone.

6.3 Caliper-Pusher Communication

IPC between the custom *Caliper* service and the *Pusher* plugin (only called service and plugin respectively in the following) is realized via POSIX [48] shared memory and POSIX Unix domain sockets for initial setup. It is assumed that per compute node not more than one *Pusher* is run, but that multiple applications with *Caliper* integrated can be run in parallel, e.g. by shared node usage or execution of multiple MPI [49] processes per node. Therefore, several instances of the service may want to connect to the same plugin. To avoid inferences, each service instance uses a distinct shared memory file for communication with the plugin. File names are based on a common schema which involves the unique process identifier (PID) to avoid name collisions. The plugin continuously listens on a local Unix socket whose name is predefined and known to the service. On application start, the service sends its PID to the plugin. By receiving the PID on its listening socket, the plugin is informed about the new process and is capable to deduce the shared memory file name for the IPC. As both sides now can determine the file name all following communication is done via shared memory. The shared memory file contains a ring buffer to send data from the service to the plugin. An entry in the queue consists of a string that contains snapshot data from the application and an associated timestamp. In case of a *Sampler* triggered snapshot the data string comprises the name of the sampled function and its containing library. For *Event* snapshots the string contains the triggering annotation name and its optionally associated value. Shared semaphores are realized in the memory file to synchronize read/write accesses to the queue.

6.4 Caliper Service

The service attaches to the snapshot processing level of *Caliper*. It will be invoked every time a new snapshot is created and retrieves information of interest from the snapshot to forward it to the plugin. The service relies on four other services shipped with *Caliper* to function correctly:
The **Event** and **Sampler** services are required to trigger the snapshot creation in the first place. They can be either used concurrently or only one of them on its own.

The **Sampler** service provides the application’s PC value right before the software is interrupted for snapshot creation. The PC allows to determine the program function name for the sample with the binary’s symbol data. A symbol is the string name of an attribute, function, or other labels in the binary. Depending on debug options used during compilation, each binary comprises more or less exhaustive symbol data that allows to resolve a string name to a memory address or vice versa.

The **Event** service enriches a snapshot with an ID of the triggering annotation. The ID can then be resolved to the unique annotation name and its optional value.

The **Timestamp** service enriches every snapshot with the current timestamp of its creation, which is required to attain a complete value-timestamp data point for DCDB. The service is therefore required in any case. The **Timestamp** service, however, did previously not offer sub-second precision which is required for DCDB. Therefore, a patch for the **Timestamp** service to provide nanosecond timestamps was submitted to Caliper’s GitHub repository [50]. The patch was accepted and therefore sufficiently precise timestamps are provided as of now.

The **Pthread** service takes care of starting the **Sampler** service for every new thread that was created via POSIX threads (pthreads) [51], the core API for multithreading in UNIX. The service achieves this by using **GOTCHA** [52] to wrap **pthread_create** to create a Caliper thread scope for every new thread. **Pthread** must be enabled whenever the **Sampler** service is used to achieve fully holistic application sampling.

On invocation, the snapshot processing routine of the custom Caliper service retrieves the relevant data from a snapshot and processes it to a data string for the IPC queue. In case of **Event** triggered snapshots, the ID of the triggering annotation is retrieved. The ID will be resolved to the annotation’s name and its optionally associated value. Resolution can be done through Caliper’s framework API. In case of **Sampler** snapshots, the custom Caliper service retrieves the provided PC value. The PC value will be resolved to the associated function name and its containing library (see below for details). The gathered function information will then be processed into a data string. In both cases, the custom Caliper service also retrieves the timestamp of the snapshot and the CPU number it is currently executed on. Assuming that thread pinning is enabled, one can safely expect that the current CPU equals the one the snapshot was created on. Otherwise, one has to trust that the thread was not rescheduled to another CPU in the meantime of snapshot creation and its actual processing in this service. The CPU value is added to the data string. Together with the timestamp a queue entry is then formed which is eventually written to the shared memory queue.

Due to address space layout randomization (ASLR) [53], an application is mapped to different memory addresses each execution. PC values of the **Sampler** service can therefore only be resolved to concrete function symbol names as long as the current memory mapping of the application is known. Consequently, PC values have to be resolved to function symbols at runtime. Therefore, the service reads all function symbol names and their corresponding addresses from its application binary and associated loaded libraries on startup. The data is parsed and stored in a local data structure (the "symbol index")
that is searchable for address values. PC values can then be easily looked up in the sym-
bol index and resolved to actual function names during runtime.
Although it is not very common for HPC software, it may occur that new libraries are
loaded during runtime. The new libraries include symbol data that is not yet present in
the index. To account for this case, the service will rebuild the symbol index at runtime if
a PC value could not be resolved to a symbol name. To limit the significant overhead of
this operation in case a PC value persistently cannot be resolved, a temporal cooldown
for the symbol index rebuild can be configured.

6.5 Pusher Plugin

The plugin consists of only one single SensorGroup. The single SensorGroup processes the
data of all Caliper applications. Every read cycle it iterates over all known Caliper pro-
cesses and their corresponding shared memory files. It will read all buffered data from
the ring buffer and further process it before pushing it to the DCDB infrastructure. If con-
sistently no new values are available in the buffer, the associated application is assumed
to have terminated and will be removed from the plugin’s internal list. This timeout
based approach allows for guaranteed release of resources allocated by the plugin for the
application, even if the corresponding process crashed.
The value-timestamp data point scheme of DCDB does not allow for sending data strings.
Therefore the data strings have to be encoded in MQTT topics. Sampler and Event data is
treated differently in this context.

Sampler

Data from the Sampler service is stored with all other Sensor data in the Storage Backend.
For every unique function name encountered, a new SensorBase is constructed and added
to the single SensorGroup. The function name is used to customize the SensorBase’s MQTT
topic following the form "globalPrefix / cpu / caliper / library name / function name". For
example, if a Pusher instance uses the hostname "mpp2r08c01s05" as global prefix, and
the function "libstdc::start" was sampled on CPU 2, the corresponding Sensor topic will be "mpp2r08c01s05/cpu2/caliper/libstdc/start". On future encounters of the same function,
a simple value of one will be stored as data reading with its corresponding SensorBase
object. To avoid excessive network overhead by having to send many readings of one for
each function encounter, an aggregation optimization is implemented. All encounters
of the same function within the same read cycle are summed up. At the end, only the
total value of function encounters in this read cycle is stored with the SensorBase. As a
drawback, the exact timestamps for aggregated samples are lost. The time granularity
is therefore reduced to the SensorGroup’s read interval. Hence, the choice of the read
interval is a trade-off between network overhead and sample time precision. One has
to keep in mind, though, that the read interval can also affect CPU usage. However, in
Chapter 7 it is shown that Pusher’s CPU usage is sufficiently low. Hence, the neglect of
CPU usage for the read interval consideration is justifiable in this case.
In retrospect, the overall number of function calls in a certain time frame can be calculated
by retrieving and summing up all corresponding Sensor readings in this time frame. The
function name to MQTT topic correlation also allows to aggregate statistics for shared
library functions that are used among multiple applications.
Event

Data from Event snapshots is stored in a separate table within the Storage Backend. The key value in the table will be of the form "hostname / cpu / caliper". As data entries the annotation name and value from the Event data strings are used. The table can then be queried for a stream of annotations that were encountered on a node’s CPU in a certain time frame, e.g. during the time a specific application was run. The annotation data is sent from Pusher to Collect Agent by encoding it in a MQTT topic which requires the creation of a SensorBase object per topic. The MQTT topic consists of a fixed prefix, the key for the Event data table, and the actual event data, for instance "CALL_EVT_DATA / mpp2r08c01s05 / cpu2 / caliper / begin_function / main". The topic prefix will then be recognized in the Collect Agent and the message handled differently from usual Sensor data messages. Collect Agent will split up the topic in its key and data part and store the data within the Event data table in the Storage Backend.

To limit the memory usage by possibly infinite creation of new SensorBase objects, two mechanisms exist. First, if no applications are currently connected to the plugin anymore, e.g. in the meantime between two user jobs, all existing SensorBase objects will be cleared. Second, one can specify a maximum number of SensorBase objects that can exist simultaneously. If this threshold is reached, all current SensorBase objects are destroyed and have to be reconstructed on future encounters.
7 Evaluation

A key challenge of monitoring is to gather meaningful data while keeping the overhead introduced by the monitoring system to a minimum. In the HPC domain mostly scientific software is run. Resource budget and time of the researchers is usually limited. User applications should complete as soon as possible, hence excessive overhead introduced by a monitoring system may be unacceptable. In this context the question arises how much additional overhead is introduced by the DCDB system. In particular, the impact of the previously presented Pusher component collecting in-band data on compute nodes is of interest. The impact of Pushers that collect out-of-band data, Collect Agents, and Storage Backends is of subordinate significance as they can be run on dedicated hardware that does not affect user applications.

This chapter is devoted to the performance evaluation of Pusher and seeks to answer the question how much additional overhead is introduced by the Pusher framework in general and the Caliper hybrid plugin in particular. The measurements for Section 7.2 were conducted as part of a previous publication [7]. Following up, the results for Section 7.3 were collected as part of this thesis work.

7.1 Setup

The exact hard- and software setup for the evaluation as well as the evaluated metrics are presented in the following.

Hardware

Evaluation tests are conducted on the SuperMUC-NG (SNG) [54] system and the CoolMUC-2 (CM2) [55] Linux cluster at LRZ. A short summary of their respective hardware is given in Table 7.1. If not stated otherwise, measurements are conducted on SNG, as it is the primary test system. For the measurements, no hyper-threading is used and in case of SNG only thin nodes are employed. Threads are pinned, although no specific thread to core assignment is specified. Collect Agents are run on dedicated hardware as listed in Table 7.2.

Software

For the evaluation, a varying set of benchmarks from the CORAL-2 [56] suite is used to represent user applications. Overall Kripke [57], AMG [58], LAMMPS [59], Quicksilver [60], and Pennant [61] are used. All benchmarks except LAMMPS are configured to instantiate one MPI [49] process per node and use as many OpenMP [62] threads as there are physical cores. As representation of multiple processes on the same node, LAMMPS is configured to start one MPI process per every physical core and not use any OpenMP threads. Tests are conducted on various system sizes with a weak-scaling approach. Additionally, on SNG single node High-Performance Linpack (HPL) [44, 45]
7 Evaluation

<table>
<thead>
<tr>
<th></th>
<th>SNG</th>
<th>CM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel Platinum 8174</td>
<td>Intel E5-2697 v3</td>
</tr>
<tr>
<td>Architecture</td>
<td>Skylake</td>
<td>Haswell</td>
</tr>
<tr>
<td>Cores per Node</td>
<td>2 x 24</td>
<td>2 x 14</td>
</tr>
<tr>
<td>Memory per Node</td>
<td>96 GB</td>
<td>64 GB</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>6,480</td>
<td>384</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Intel Omni-Path</td>
<td>FDR14 Infiniband</td>
</tr>
</tbody>
</table>

Table 7.1: Overview of the system hardware used for the evaluation.

<table>
<thead>
<tr>
<th>Collect Agent</th>
<th>SNG</th>
<th>CM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel Gold 6148</td>
<td>Intel E5-2690 v3</td>
</tr>
<tr>
<td>Architecture</td>
<td>Skylake</td>
<td>Haswell</td>
</tr>
<tr>
<td>Cores</td>
<td>2 x 20</td>
<td>2 x 12</td>
</tr>
<tr>
<td>Memory</td>
<td>768 GB</td>
<td>128 GB</td>
</tr>
</tbody>
</table>

Table 7.2: Overview of the system hardware used for the Collect Agents.

runs are conducted. The HPL version used for this runs uses Intel’s MKL [46] library with AVX-512 [47]. Just like with LAMMPS, HPL uses one MPI process per every physical core but does not use any OpenMP threads.

A separate Pusher instance is launched on every node, each using two sampling threads. For each system, SNG and CM2, a single Collect Agent is run in a special benchmark mode. In the benchmark mode, the Collect Agent does not store any messages in a Storage Backend but instead discards all messages after receiving them. As the Collect Agent is run on separate hardware anyway, and still receives all messages, the evaluation should not be affected by its benchmark mode. During the measurements, it is recorded that the Collect Agent never receives more than 80,000 messages per second which is well below the maximum message rate tested in [7]. Hence, the Collect Agent can be ruled out as bottleneck for this evaluation. A Storage Backend is not run for this tests.

A list of used compilers is shown in Table B.1. All measurements are repeated ten times and from the results median values are taken to account for possible outliers.

Metrics

To assess Pusher’s impact on an application’s performance, runtime overhead and additional memory usage are consulted as evaluation metrics.

For runtime overhead the wall clock execution time of the benchmarks is consulted. Overhead is defined as \(O = (T_p - T_r)/T_r \). In this context, \(T_r \) refers to the reference value as measured during an unmodified benchmark run. \(T_p \) denotes the measured time of a benchmark run with Pusher and Caliper, if applicable.

Additional memory usage is determined by \(M = M_p - M_r \). \(M_p \) refers to the memory required by an unmodified benchmark while \(M_p \) denotes the memory used by a benchmark with Caliper integrated. Memory usage is determined by the average Residual Set Size (RSS) as reported by the Linux ps tool throughout a run.

Further on, CPU and memory usage of the Pusher process as measured by ps are reported.
7.2 Pusher Framework Overhead

Pusher's runtime overhead is already evaluated for another DCDB related publication [7]. For the sake of completeness, the runtime overhead results are briefly repeated here. Two Pusher configurations are tested. The first uses a special Tester plugin that allows to create Sensors which generate dummy data with negligible overhead. This configuration is therefore used to isolate the overhead of the Pusher framework itself from its plugins. The second configuration uses the four plugins Perf Events, ProcFS, SysFS, and OPA to gather in-band data. In both cases almost 2500 Sensors with a sampling rate of 1 Hz are created. The results are depicted in Figure 7.1. If no bar is visible, no overhead could be measured at all.

![Pusher's overhead on different benchmarks and system sizes on the SNG system.](image)

Figure 7.1: Pusher’s overhead on different benchmarks and system sizes on the SNG system.

Regarding Kripke, LAMMPS, and Quicksilver one can see that the overhead introduced by Pusher is below 5%. The overhead of the Pusher test configuration is well below the full setup. Hence, most of the overhead seems to be induced by the actual data collection of the plugins while the overhead of the Pusher framework itself is negligible. Regarding the AMG benchmark, however, overhead goes up to over 9% which exceeds the other benchmark quite well. Also, the difference between test and full setup is not as distinct as with the other benchmarks. The root cause for the additional overhead lies therefore within the Pusher framework itself. In [7] it is already deduced that the unusual high overhead for AMG can be attributed to network inferences. Both configurations, test and full, produce the same amount of messages which have to be sent to the Collect Agent. As AMG is a network sensitive benchmark, both configurations infer with it in equal parts resulting in overly high overhead in both cases. One may consider the usage of a separate network interface to forward Pusher’s data messages to reduce the network overhead.
7.3 Caliper Overhead

Part of the work for this thesis is the exhaustive evaluation of the Caliper plugin. As it is a hybrid plugin that has to be integrated into a user’s application, its overhead may be much more critical than Pusher one’s. Two configurations, each representing a distinct use case as described in Section 6.2, are evaluated. The Pushers are instantiated with only the Caliper plugin enabled. The exact Pusher and Caliper configuration used for the tests is also shown in Appendix B.

7.3.1 Benchmarking Problems

The process of conducting the Caliper evaluation was hindered by quite a number of problems. At first, it was intended to run all measurements on CM2. The cluster, however, is usually crowded and jobs include up to several days of prior waiting time. After the required infrastructure was set up on CM2, and first results were already gathered, the cluster underwent a three day maintenance. Unfortunately, the updates rolled out during the maintenance resulted in an unstable cluster operation that rendered further measurements impossible. After these instabilities persisted for more than two weeks, it was decided to switch to the SNG system for the measurements. The setup on SNG in turn was hindered by inferences between Caliper and Intel libraries. Although an issue was submitted to Caliper’s GitHub repository [63], only a provisional solution for the problem could be found. Namely Caliper’s initialization is only done after the MPI initialization. Eventually, the results on SNG and CM2, whose operation stabilized in the meantime, showed to be not fully rational, as detailed below. Although further investigations were undertaken, the root cause was not found.

Overall, the aforementioned obstacles resulted in a remarkable slow down of the whole evaluation process. The initial time budget was by far exceeded. Therefore, the following results are not as polished as they could be. Also, not all unreasonable results can be appropriately explained as no time was left for further investigations.

7.3.2 Sampler

For the evaluation of the Sampler use case all benchmarks were modified to initialize Caliper at program start. By default, a sampling rate of 10 Hz is used.

Runtime

One can see in Figure 7.2 that in the case of Kripke and AMG the runtime overhead lies well below 10%. In case of Pennant, the runtime overhead almost vanishes in the measurement fluctuations. For LAMMPS and Quicksilver the measurements yield quite strange results. Contrary to all expectations, LAMMPS runtime notably improves by the Caliper integration. Quicksilver in turn reveals some great overhead fluctuations, ranging from almost -45% to over +25%. Both benchmarks strongly suggest that the setup and/or conduction of the experiments is erroneous. Despite triple checking the experimental setup and various further tests to exclude any other possible environmental inference a root cause or other explanation for the LAMMPS and Quicksilver results could not be found and would require an exhaustive performance analysis that is out of the scope of
this thesis. Although the results for LAMMPS at least could be considered to cast a very favorable light on the Caliper set up, the author does not assess them as correct.

To further investigate on the unreasonable runtime overhead results, the experiment is repeated at smaller scale on the CM2 system. The resulting runtime overheads are depicted in Figure 7.3. One can see that on one side Kripke’s overhead improved on CM2 and is almost negligible. On the other side, AMG’s overhead got worse and even increases with larger node configurations. Pennant’s overhead in turn remains unchanged except a significant outlier with the 32 node configuration. For the aforementioned results, a statement on generally better or worse performance on CM2 can not be given. LAMMPS’ overhead appears to be more sound than on SNG, despite one extreme outlier at the 16 node configuration. Quicksilver repeatedly shows greatly varying results, which may indicate a general high fluctuation of runtimes. Although the overhead never exceeds 5%, the Quicksilver results should be interpreted carefully, as an overhead of less than -20% in the two node configuration does not seem reasonable.

One should also recall into mind that all measurements are repeated ten times and only median values are reported. Outliers and fluctuations are therefore persistent.

For better classification of the results, the overhead caused by Pusher and Caliper is compared to the overhead of Caliper integration alone. For this test, the runtime overhead on single node HPL is measured on SNG with two configurations. The first uses Pusher and Caliper in the same setup as for the CORAL-2 benchmarks above. The second configuration leaves out Pusher and sets up Caliper to use the Trace, Symbollookup, and Recorder services instead of the dcdbpusher service. This way, Caliper achieves similar sample data results but without being integrated into the DCDB infrastructure. The exact Caliper configuration is given in Listing B.4.

The HPL runtimes with the different configurations reveal that Caliper together with Pusher induces an overhead of 3.4% while Caliper alone only adds 0.3%. Therefore, only...
Figure 7.3: Runtime overhead induced by Pusher and Caliper using the Sampler configuration on the CM2 system.

a minor part of the runtime overhead seems to be caused by the Caliper integration on its own. Instead, the majority has to be accredited to the dcdnpusher Caliper service and the presence of Pusher.

Overall, the runtime overhead caused by Pusher and the Caliper integration has to be interpreted carefully. Only regarding meaningful benchmark results, the overhead lies mostly below 5%. Nevertheless, 5% are also significantly exceeded especially in the case of AMG, but also other benchmarks revealed extreme outliers. Taking the unusual and currently unexplainable results from LAMMPS on SNG and particularly Quicksilver into account, doubts about the validity of the measurements remain.

Memory

The induced additional memory consumption of the CORAL-2 benchmarks due to the Caliper integration as measured on SNG is depicted in Figure 7.4. Note that Pusher’s memory usage is not included in Figure 7.4 but is disclosed separately below. One can see that Caliper usually requires an additional 500 MiB of memory. In the case of AMG some significant negative outliers can be observed. This may be accredited to AMG’s general high memory fluctuations. The benchmark’s memory usage varies within a few GiB that can easily make up for the extra memory usage of Caliper. The same reasoning can be applied to Kripke’s significant fluctuations, although they are not quite as high as with AMG.

Results from the measurements on the CM2 system are left out, as they do not expose any new insights. Caliper’s memory usage stays unchanged with around 500 MiB on CM2. The 500 MiB of additional memory required by Caliper seem to be acceptable for most cases, as current HPC system’s main memory is comparatively large, rendering Caliper’s requirements negligible. Here for example, even the most memory intensive benchmark,
Kripke, still did not use half of the memory that is offered on SNG. Still, extreme memory affine applications, that can completely use a system’s memory on their own may be impacted by the Caliper integration. In such cases, it may be necessary to account for Caliper’s additional memory usage and reduce the problem size accordingly.

Pusher

Pusher’s resource usage, namely its CPU and memory usage are depicted in Figures 7.5 and 7.6 respectively. One can see, that Pusher’s CPU usage is below 1% in every case and is therefore on the verge of being negligible (100% CPU usage correspond to one fully loaded CPU core). Pusher’s memory usage lies between 90 and 160 MiB. This matches the memory measurements with other plugins as reported in [7]. Unequal memory usages with different benchmarks can be explained by the amount of differing functions that are sampled. The more different functions are sampled, the more Sensor objects are created by the Caliper plugin, hence memory usage rises. Even in the worst case, namely Quicksilver, Pusher’s memory usage of at most 160 MiB should be acceptable as current HPC server systems comprise dozens of GiB of main memory. Similar results for Pusher’s resource usage could be observed on the CM2 system. CPU usage is below 1% at all times while no more than 160 MiB of memory are required. Altering resource usage on different system sizes can not be observed and is also not to be expected, as a separate Pusher instance is run on every node. Hence, the number of Pusher instances scales with the system size while individual resource usage of a single Pusher stays constant.
Figure 7.5: *Pusher’s* average CPU usage using the *Sampler* configuration on the SNG system.

Figure 7.6: *Pusher’s* average memory usage using the *Sampler* configuration on the SNG system.
7.3.3 Sampler Frequency

The used Sampler frequency of 10 Hz is a rather arbitrary choice. To assess the impact of the Sampler frequency on the evaluation and gather a small indication on how severe the impact of higher frequencies is, a small experiment is conducted. The benchmarks Kripke and AMG are run on two SNG nodes with the same configuration as before but with increasingly higher Sampler frequencies.

Looking at the runtime overhead as reported in Figure 7.7, both benchmarks seem to be only marginally affected by increased Sampler frequencies. Although the applications themselves are rather unaffected by higher Sampler frequencies, Pusher's CPU usage linearly correlates with the increasing snapshot rate as can be seen in Figure 7.8. This seems logical, as the Pusher plugin is the place where the snapshots have to be processed and assigned to Sensors. Therefore, more snapshots that have to be processed require more processing power. In this test Pusher's previously almost negligible CPU overhead of less than 1% rises to significant 15% in the worst case.

The additional memory usage of the benchmarks is subject to high variations as can be seen in Figure 7.7. Fluctuations within the results can realistically be credited to overall measurement variations. Especially AMG is already described as having a highly varying memory usage. Still, the high memory fluctuations do not allow for a meaningful interpretation of the results, although in general no rising memory usage with increasing Sampler frequencies can be observed. Memory usage staying the same for increasing frequencies is to be expected, as the generated snapshots do not get stored within the application but get directly forwarded to the Pusher plugin. Higher frequencies result in more snapshots per second to be forwarded to the plugin but they do not require a significant part of additional memory.

Pusher's memory usage does not correlate linearly with the Sampler frequency as can be seen in Figure 7.8. Although there is a slight increase of memory usage until 100 Hz, it seems to be capped for higher frequencies. This behavior meets the expectations. The main factor of Pusher's increasing memory is the creation of new Sensor objects for every newly sampled function. At some point, however, under the assumption of finite user software, all possible functions are sampled already. No new Sensors have to be created as all samples can be accounted to an existing object. Therefore the rise of memory usage comes to a halt.

Overall, it can be recorded, that an increase of the Sampler frequency does not directly affect an user's application. However, the software is still affected indirectly, as it has to share a node’s resources with a Pusher whose CPU usage increases linearly with the frequency. Especially compute bound applications are therefore prone to performance impacts from rising Sampler frequencies. Still, a frequency of up to 100 Hz seems to be an acceptable choice, as its induced increased resource usage lies within a small acceptable range.

7.3.4 Sampler with Events

The second use case makes use of the Event service in addition to the Sampler. Once again, the Sampler uses a sampling rate of 10 Hz. The benchmarks Kripke, AMG, and Quicksilver are enriched with two annotations respectively that enclose the main compute loop. Further on, a heavily annotated Quicksilver version from the Caliper example repository [64] is evaluated ("Quicksilver Exam" in the following). The annotations make up for 5% (Kripke), 30% (AMG), 15% (Quicksilver), and 90% (Quicksilver Exam) of all processed snapshots respectively.
Figure 7.7: Runtime overhead induced by Pusher and Caliper, as well as additional memory usage of benchmarks caused by Caliper’s integration. Both measured with different Sampler frequencies on the SNG system.

Figure 7.8: Pusher’s average CPU and memory usage with different Sampler frequencies on the SNG system.
Figure 7.9: Runtime overhead induced by *Pusher* and *Caliper* using the *Sampler* with *Events* configuration on the SNG system.

The runtime overhead caused by *Caliper* with the *Sampler* and *Event* configuration is depicted in Figure 7.9. Visible outliers are credited to the same unexplainable problem as reported in Section 7.3.2. *Kripke*, *AMG*, and *Quicksilver* all seem to be rather unaffected by the additional annotations. Their overhead does not significantly exceed the numbers shown in Figure 7.2 and is in line with the overhead reported in [9]. This may also be partly credited to the fact, that the annotations only make up for a minority of the snapshots. *Quicksilver Exam*, however, shows a great performance impact caused by its annotations of up to almost 50%. This is to be expected, as the annotation triggered events make up 90% of its snapshots and result in an average event rate of 4,500 events/second. One has to keep in mind, though, that the *Quicksilver* results are not as indicative as they could be, because of *Quicksilver’s* known performance variations. For an accurate statement, further measurements would be required.

In general, additionally introduced overhead greatly depends on the number of annotations for the *Sampler* with *Events* configuration. Therefore, acceptable overhead has to be determined by the users themselves and annotations have to be deployed accordingly. Additional memory usage remains unchanged in this configuration, presumably for the same reasoning as presented in Section 7.3.3. Therefore, the corresponding graphs are left out.

The impact of the *Sampler* with *Events* configuration on *Pusher’s* resource usage appears to be limited. Its CPU usage as shown in Figure 7.10 did not significantly increase in any case in comparison to Figure 7.5 and is still well below 1%. Only in the case of *Quicksilver Exam* a slightly increased CPU usage can be noted. It seems that the additional *Event* snapshots are negligible even in the case of *Quicksilver Exam*, where they make up 90% of all snapshots. This appears reasonable, as a significant increase of *Pusher’s* CPU usage in Figure 7.8 could only be observed with per-thread *Sampler* frequencies that induce overall many more snapshots than the per-process annotations from *Quicksilver Exam*. Regarding *Pusher’s* memory usage as presented in Figure 7.11, no significant rise in com-
Figure 7.10: *Pusher’s* average CPU usage using the *Sampler* with *Events* configuration on the SNG system.

Figure 7.11: *Pusher’s* average memory usage using the *Sampler* with *Events* configuration on the SNG system.
parison to Figure 7.6 can be observed. It seems that the additional Sensor objects required for the annotation data are negligible in comparison to the sampling induced Sensors. Surprisingly, in the case of AMG, Pusher requires persistently less than half of the memory than with the Sampler only configuration. Results for the other benchmarks, however, testify that the measurements in general are valid. Currently, no sound explanation for this odd behavior can be given.

7.3.5 Conclusion

In general, approval of the results depends on what threshold one is willing to accept. Runtime overhead of the Pusher framework collecting general in-band data is below 5% in most cases except AMG. It is predicted that also AMG’s overhead can be further reduced by sending Pusher’s data over a dedicated network. Therefore, the overhead of Pusher collecting in-band data is classified as acceptable for production use. Results for Pusher collecting application introspection data with Caliper in the Sampler configuration have to be interpreted carefully. The measured runtime overheads appear to be likely inaccurate in the case of LAMMPS on SNG and Quicksilver in general. Regarding the reasonable results, the conclusion is mixed. Depending on the benchmark the runtime overhead may exceed 5% and reach more than 20%. It is unlikely that the overhead is caused by Pusher’s resource usage per se. It is shown that Pusher does not exceed 1% CPU and 160 MiB memory usage. Runtime overhead also appears to be rather indifferent towards the used sampling frequency, as no overhead changes could be observed for frequencies of up to 1000 Hz. Still, Pusher’s CPU usage linearly increases with the Sampler frequency and is therefore likely to cause runtime inference at some point. Regarding measurements with Caliper in the Sampler with Events configuration, it is shown that the runtime overhead significantly depends on the amount of Event triggering annotations. The overhead can increase greatly with Event snapshots. However, the users themselves are in direct charge of the amount of Event annotations. An applications additional memory usage induced by Caliper is determined to be around 500 MiB. The memory usage is largely independent of the configuration. Although current HPC systems employ multiple dozens of GiB as main memory per node, the additional memory usage should be taken into consideration for memory affine applications.
8 Summary and Outlook

Holistic monitoring is key to efficient operation of current and future HPC systems. In this thesis, a new, generic data acquisition module called Pusher for the DCDB monitoring infrastructure is presented and evaluated. As a background, DCDB’s design principles and main components, namely Pusher, Collect Agent, and Storage Backend, are introduced. Further on, the need for a new generic Pusher implementation is stated. A new Pusher component was developed. It is designed as general framework, that allows for the attachment of plugins. Actual data acquisition from specific data sources is outsourced into those plugins. The framework provides the infrastructure to forward the data to other DCDB components. All design goals and the full functionality of the framework like the integrated RestAPI are presented. Further on, an in-depth overview of the actual implementations and the various involved components is given. Following, the implementation structure of plugins is presented. All currently implemented plugins and their functionality are showcased. The hybrid Caliper plugin is highlighted in particular, as it allows to gather application introspection data for the monitoring framework. In conclusion, the Pusher framework in general and the Caliper plugin in particular are evaluated. It is shown, that the resource footprint of Pusher collecting generic in-band data is viable for production use. The runtime overhead of the Caliper plugin on different benchmarks may exceed a 5% in certain configurations. Acceptance is therefore subject to personal opinions. Additional memory usage induced by Caliper is determined to be around 500 MiB. The resource usage of Pusher itself supports Caliper sampling frequencies of up to 100 Hz without exceeding 2% CPU and 160 MiB memory usage. For the future, some tasks still remain. The integration of Caliper into user software should be done automatically and invisible to the user to gather sampling data from applications at all times. Possibly, this can be done by providing a custom library that overwrites a program’s start method and initializes Caliper before actual application start. Feasibility of this approach still has to be explored, though. Especially the inferences between Caliper and Intel libraries have to be resolved first, as they form a significant hurdle for the automatic Caliper integration in general. Also, further investigations of the LAMMPS and Quicksilver benchmark results may be necessary to dispel doubts about the evaluation results. It may also be useful to do further experiments to fully explore the impact of Sampler triggered snapshots in comparison to Event triggered ones.
A Software Dependencies

Pusher and its shipped plugins depend on a set of third-party software. Those dependencies are listed in the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Source</th>
<th>Required for</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet Stack</td>
<td>0.8.6</td>
<td>[65]</td>
<td>BACnet plugin</td>
</tr>
<tr>
<td>Boost</td>
<td>1.70.0</td>
<td>[66]</td>
<td>Among others: Threadpool, Logging, SensorBase reading queue, RESTHttpsServer</td>
</tr>
<tr>
<td>Elfutils</td>
<td>0.177</td>
<td>[67]</td>
<td>Caliper plugin</td>
</tr>
<tr>
<td>FreeIPMI</td>
<td>1.6.3</td>
<td>[68]</td>
<td>IPMI plugin</td>
</tr>
<tr>
<td>Mosquitto</td>
<td>1.5.5</td>
<td>[69]</td>
<td>MQTTPusher</td>
</tr>
<tr>
<td>Net-SNMP</td>
<td>5.8</td>
<td>[70]</td>
<td>SNMP plugin</td>
</tr>
<tr>
<td>OPA Software</td>
<td>10.6.0.0.134</td>
<td>[71]</td>
<td>OPA plugin</td>
</tr>
<tr>
<td>OpenSSL</td>
<td>1.1.1c</td>
<td>[72]</td>
<td>RESTHttpsServer, REST plugin</td>
</tr>
</tbody>
</table>

Table A.1: External software dependencies *Pusher* and its plugins rely on.
B Additional Evaluation Information

This chapter is a collection of all relevant information related to Chapter 7 that did not fit the text flow very well.

Compilers

To compile the evaluation applications as well as Pusher and Caliper themselves, different compilers and versions are used. They are listed in the following.

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCC</td>
<td>4.8.5</td>
<td>Pusher in Section 7.2</td>
</tr>
<tr>
<td>GCC</td>
<td>7.3.0</td>
<td>Pusher and Caliper in Section 7.3</td>
</tr>
<tr>
<td>Intel (including Intel MPI)</td>
<td>18.0.5</td>
<td>All benchmarks in Section 7.2</td>
</tr>
<tr>
<td>Intel (including Intel MPI)</td>
<td>19.0.4</td>
<td>All benchmarks in Section 7.3</td>
</tr>
</tbody>
</table>

Table B.1: Compiler versions used for the evaluation.

Configuration Files

The exact Pusher and Caliper configurations as used for the Caliper evaluation are shown below.

```plaintext
1 global {
2   mqttPrefix /System/Rack/Chassis/Node
3 }
4
5 group cali {
6   interval 100
7   maxSensors 1000
8   timeout 250
9 }
```

Listing B.1: Configuration for Pusher’s Caliper plugin as used in Section 7.3.
Listing B.2: Pusher’s configuration file.

Listing B.3: Runtime configuration of the Caliper toolbox as used in Section 7.3.

Listing B.4: Runtime configuration of the Caliper toolbox as used for the HPL run without Pusher in Section 7.3.2.
Bibliography

Bibliography

