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Series Editor’s Note

It is a pleasure to write an introductory note for a book that is so popular you can sim-
ply refer to it as “the Kline book” and everyone will know what you mean. Rex Kline is 
a quantitative expert with that rare ability to provide clear and accessible guidance on 
how to best use structural equation modeling (SEM) to answer critical research ques-
tions. It takes a very special author to overcome students’ fears and engage them in the 
principles and practice of SEM. In each edition of his book Kline has done just this, 
and with each edition it gets better and better! The literature on SEM is always evolving 
and being refined. To keep up with this literature is a challenge even to the quantitative 
expert. Thankfully, we have Rex Kline to rely on. 

If you are a fan of the earlier editions, I think you will find the improvements to the 
third edition both welcome and enlightening. For example, based on the helpful feed-
back of readers like you, Kline has reorganized Part II to model the phases and steps one 
follows in a typical analysis, from initial model specification, to identification consider-
ations, to parameter estimation, to evaluating hypotheses, and, finally, to model respeci-
fication. Pedagogically, he has also added useful exercises with answers and informative 
topic boxes that cover key concepts, core techniques, and specialized issues in the world 
of SEM. He also elegantly addresses “troublesome” examples, which leads to discussions 
of how to handle known problems that arise in SEM analyses. 

If you have not looked at “the Kline book,” or not in a while, I encourage you to take 
a look at this third edition. Kline provides an accurate and authoritative “translation” of 
the technical world of SEM for students and applied researchers alike. It is the Rosetta 
stone for understanding SEM and for showing substantive researchers how to use SEM 
in the conduct of their science. It strikes a tidy balance between the technical and the 
practical aspects of SEM so that you will be able to both clarify and expand your knowl-
edge of the vast possibilities of SEM. It serves as a conduit for substantive researchers to 
stay connected to the ever-changing field of SEM.

Since the first edition, the book’s success is the consensus viewpoint of critical 
reviewers and researchers—who lean heavily on it. The second edition was a complete 
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and thorough update to the best practice in the field and saw pedagogic changes that 
elevated the second edition to a bonafide bestseller in the social and behavioral sciences. 
And the third edition is nothing short of remarkable in terms of its authoritative sum-
mary of an ever-advancing field. The chapter dedicated to the use of different software 
packages (Chapter 4) is expanded. Coverage of assessing the identification status of mea-
surement models with correlated errors and complex indicators is updated in Chapter 6. 
Chapter 7 gives expanded coverage of estimation, including more specific information 
for analyzing models with categorical outcome variables. Chapter 12 expands coverage 
of estimating interactive effects and multilevel SEMs. And the list goes on! You can see 
by the praise of the many reviewers of this latest edition that Rex Kline has managed to 
take “the Kline book” to another level of clarity and coverage.

Todd D. Little 
University of Kansas 
Lawrence, Kansas
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Preface and Acknowledgments

It’s not often in life that you get three chances at something. Thus, it was a privilege for 
me to write the third edition of this book. This edition builds on the strengths of the 
second by presenting structural equation modeling (SEM) in a clear, accessible way for 
readers without extensive quantitative backgrounds. Many new examples of the applica-
tion of SEM to actual research problems are included in this edition, but, like the second 
edition, these examples come from a wide range of disciplines, including education, 
psychometrics, business, and psychology. I selected some of these examples because 
there were technical problems in the analysis, such as when output from a computer 
program contains error messages. These “troublesome” examples give a context for dis-
cussing how to handle various problems that can crop up in SEM analyses. That is, not 
all applications of SEM described in this book are picture perfect, but neither are actual 
research problems.

There are many changes in this edition from the second edition, all intended to 
enhance the pedagogical presentation of SEM and cover recent developments in the 
field, especially concerning how structural equation models—and the corresponding 
research hypotheses—should be tested. These changes are as follows:

1. Part II of the third edition, about core SEM techniques, is now organized accord-
ing to phases of the analysis, starting with model specification, going on to consider-
ation of its identification status, next to estimation, and then to the testing of hypotheses 
and model respecification (Chapters 5–8). In contrast, the second edition covered this 
material on a more technique-by-technique basis. I think that the new organization 
corresponds more closely to how researchers usually proceed with an SEM analysis. It 
should also give students a better view of the “big picture” concerning major issues that 
apply in most applications of SEM.

2. There are now exercises with suggested answers for all chapters that introduce 
prerequisite statistical and measurement concepts (Part I) and also for all chapters in 
Part II about core techniques. These exercises give students additional opportunities for 
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learning about SEM by responding to questions that test their concept knowledge. Some 
exercises also involve the analysis of structural equation models with actual data sets 
(i.e., learning by doing). All of these features also support self-study of SEM; that is, they 
should help readers who wish to learn about SEM but are not participating in a formal 
course or seminar.

3. Website support for this edition is even stronger than that of the second edition. 
For example, readers can freely download for every detailed example in Part II all syntax, 
data, and output files for each of three widely used SEM computer tools: EQS, LISREL, 
and Mplus. This allows readers to reproduce the analysis on their own computer using 
the corresponding computer tool. Even if the reader uses a different computer tool for 
SEM, all of these files can be opened with a standard text editor, such as Windows Note-
pad. That is, the reader does not need to have EQS, LISREL, or Mplus installed on his  
or her computer in order to view the contents of these files. And for readers who already 
use one of three computer tools for SEM (e.g., LISREL), it can be educational to view the 
results of the same analysis generated by a different computer tool (e.g., Mplus). Other 
resources for readers may be found on the book’s website (described in Chapter 1), the 
address of which is presented on page 3.

4. The chapter on hypothesis testing in SEM (Chapter 8) reflects some of the most 
recent thinking in this area that is described by several different authors in a special 
issue on SEM in the journal Personality and Individual Differences (Vernon & Eysenck, 
2007). Briefly, there is a general consensus that (a) standard practices for evaluating 
models in SEM have been lax and, consequently, (b) researchers need to take a more 
rigorous, skeptical, and disciplined approach to hypothesis testing. How to do so is a 
major theme of Chapter 8 and indeed of the whole book.

5. There is more coverage in this edition of two advanced topics in SEM: the estima-
tion of interactive effects of observed or latent variables and multilevel analysis (Chapter 
12). Many developments have taken place recently in each of these areas, and more and 
more researchers are estimating models in which these types of effects are represented. 
Accordingly, the chapter on how to fool yourself with SEM (Chapter 13) is now expanded 
to include the failure to consider these types of effects, among other more prosaic ways 
to become irrational with SEM.

6. Several chapters feature topic boxes about concepts, techniques, or specialized 
issues in the conduct of SEM. These boxes offer relatively short summaries of topics that 
complement or elaborate on the presentation in the main text. More advanced topics are 
covered in chapter appendices, which allows readers of various skill levels to get more 
out of the book.

C. Deborah Laughton, Publisher, Methodology and Statistics, at The Guilford Press, 
has a special knack for giving me exactly the type of feedback I need at precisely the 
right moment in the writing process. She collected reviews of the second edition and 
drafts for the third edition from a variety of scholars with differing backgrounds and 
levels of experience, from those just learning about SEM to renowned professors whose 
work is very widely known in their respective fields. C. Deborah sent these reviews 
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to me without identifying their authors, and the content of the reviews was extremely 
helpful in the planning and writing of this edition. C. Deborah, thanks again for all 
your work and support. The names of the reviewers were revealed to me only after the 
writing was done, and their original comments were not associated with their names. A 
big thanks to all the persons listed next (in alphabetical order) who put in a lot of time 
and effort to communicate their thoughts about the book in various stages of its writing; 
their comments and suggestions were invaluable:

Alan C. Acock, Department of Human Development, Oregon State University•	
Noel A. Card, John and Doris Norton School of Family and Consumer Sciences, •	
Division of Family Studies and Human Development, University of Arizona
David F. Gillespie, Department of Social Work, Washington University in St. Louis•	
Debbie Hahs-Vaughn, College of Education, Department of Educational Research, •	
Technology, and Leadership, University of Central Florida
Lance Holbert, Department of Communications, Ohio State University•	
Jacob Marszalek, School of Education, Research and Psychology, University of •	
Missouri–Kansas City
Richard A. Posthuma, College of Business Administration, University of Texas at •	
El Paso
James Schreiber, School of Education, Department of Foundations and Leadership, •	
Duquesne University
Greg Welch, School of Education, Department of Psychology and Research in Edu-•	
cation, University of Kansas
Craig Wells, School of Education, Department of Educational Policy, Research, and •	
Administration, University of Massachusetts at Amherst
Duan Zhang, Morgridge College of Education, Quantitative Research Methods, •	
University of Denver

It was a pleasure to work with the Methodology in the Social Sciences Series Editor 
at Guilford, Todd D. Little, in putting together the final version of this book. His com-
ments were very helpful, and it was a pleasure to meet Todd when he visited Concordia 
University in Montréal in November 2009. Betty Pessagno served as the copyeditor for 
the original manuscript, and her work and suggested changes improved the clarity of 
the presentation. I also appreciate the efforts of the Guilford production editor, Wil-
liam Meyer, in preparing the final version of this book. I asked Lesley Hayduk of the 
Department of Sociology at the University of Alberta to review a draft of Chapter 8 about 
hypothesis testing in SEM. Les has long advocated for a more rigorous approach to test-
ing in SEM, and the rest of the field is catching up to this viewpoint. I was hoping that 
Les’s comments would give the final version of Chapter 8 more backbone, and I was not 
disappointed. Thanks, Les, for saying the kinds of things I needed to hear about this 
crucial topic.

The most recent versions of computer tools for SEM were generously provided for 
me by Multivariate Software (EQS), Muthén and Muthén (Mplus), and Scientific Soft-
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ware International (LISREL). In particular, I wish to thank Linda Muthén and Peter 
Bentler for their comments on earlier drafts of descriptions of, respectively, Mplus and 
EQS. And once again, my heartfelt thanks to my wife, Joanna, and children, Julia and 
Luke, for all their love and support while writing this book.

Rex B. Kline 
Montréal 
rex.kline@concordia.ca
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1

Introduction

The book is intended to serve as a guide to the principles, assumptions, strengths, 
limitations, and application of structural equation modeling (SEM) for researchers and 
students who do not have extensive quantitative backgrounds. Accordingly, the pre-
sentation is conceptually rather than mathematically oriented, the use of formulas and 
symbols is kept to a minimum, and many examples are offered of the application of 
SEM to research problems in various disciplines, including psychology, education, 
health sciences, marketing, and management. When you finish reading this book, I 
hope that you will have acquired the skills to begin to use SEM in your own research in 
an informed, disciplined way. The following adage attributed to poet Eugene F. Ware 
is pertinent here: All glory comes from daring to begin. Let’s do just that.

The Book’s Website

This book has a website on the Internet; the address is www.guilford.com/kline
From the site, you can freely access or download the following resources:

Computer files for every example of SEM analyses in Chapters 7–12 for three widely •	
used SEM computer tools—EQS, LISREL, and Mplus.
Links to related web pages, including sites with more information about computer •	
data analysis in SEM.
A supplemental reading about the estimation of curvilinear effects of observed and •	
latent variables in SEM.

The purpose of the website for this book is to support a learning-by-doing approach 
to SEM. Specifically, the availability of both data summaries and syntax files means that 
you can reproduce the analyses for most of the examples in this book using the corre-
sponding SEM computer tool. Even without access to a particular program, such as EQS, 
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you can still download and open on your own computer the EQS output file for a par-
ticular analysis and review the results. This is because all of the computer files on this 
book’s website are plain-text (ASCII) files that require nothing more than a basic text 
editor, such as Notepad in Microsoft Windows, to view their contents. Even if you are 
using an SEM computer tool other than EQS, LISREL, or Mplus, it is still worthwhile to 
review the computer files on the site. This is because (1) common principles about pro-
gramming apply across different SEM computer tools, and (2) it can be helpful to view 
the same analysis from somewhat different perspectives. Some of the exercises for this 
book involve extensions of the original analyses for these examples, so there are plenty 
of opportunities for practice with real data sets. Suggested answers for all exercises are 
presented at the end of the book.

Pedagogical Approach

You may be reading this book while participating in a course or workshop on SEM. This 
context offers the potential advantages of the structure and support available in a class-
room setting, but formal coursework is not the only way to learn about SEM. Another 
is self-study, a method through which many researchers learn about what is, for them, 
a new statistical technique. (This is how I first learned about SEM, not in classes.) I 
assume that most readers are relative newcomers to SEM or that they already have some 
knowledge of the area, but wish to hone their skills. Consequently, I will speak to you 
(through my author’s voice) as one researcher to another, not as a statistician to the quan-
titatively untutored. For example, the instructional language of statisticians is matrix 
algebra, which can convey a lot of information in a relatively small amount of space, but 
you must already be familiar with linear algebra to decode the message. There are other, 
more advanced works about SEM that emphasize matrix representations (Bollen, 1989; 
Kaplan, 2009; Mulaik, 2009), and these works can be consulted by those interested in 
such presentations (i.e., when you are ready). Instead, fundamental concepts about SEM 
are presented here using the language of researchers: words and figures, not matrix alge-
bra. I will not shelter you from some of the more technical aspects of SEM, but I aim to 
cover requisite concepts in an accessible way that supports continued learning.

You may be relieved to know that you are not at a disadvantage if at present you 
have no experience using an SEM computer tool. This is because the presentation in 
this book is not based on the symbolism or syntax associated with a particular software 
package. A number of books are linked to specific SEM computer tools, including

Byrne (2006, 2009, 2010) for, respectively, EQS, Amos, and Mplus.•	
Blunch (2008) for Amos.•	
Diamantopoulos and Siguaw (2000), Hayduk (1996), and Kelloway (1998) for •	
LISREL.
Mueller (1996) for both LISREL and EQS.•	
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Software-centric books can be invaluable for users of a particular computer tool, but 
perhaps less so for others. Instead, essential principles of SEM that users of any com-
puter tool must understand are emphasized here. In this way, this book is more like a 
guide to writing style and composition than a handbook about how to use a particular 
word processor. Besides, becoming proficient with a particular software package is just 
a matter of practice. But without strong concept knowledge, the output one gets from 
a computer tool for statistical analyses—including SEM—may be meaningless or, even 
worse, misleading.

As with other statistical techniques, there is no gold standard for notation in SEM. 
Although the symbol set associated with the original syntax of LISREL is probably the 
most widely used in advanced works about SEM, it features a profusion of subscripted 
lowercase Greek letters (e.g., 23φ , 31Λ ) for individual model parameters, uppercase 
Greek letters for parameter matrices (e.g., Φ, Λx), and two-letter acronyms for parameter 
matrices (e.g., TE for theta–epsilon) or matrix forms (e.g., DI for diagonal) that can be 
confusing to follow unless you have memorized the entire system. Instead, this book 
uses a minimum number of alphabetic characters to represent various aspects of SEM 
such as observed versus latent variables.

Learning to use a new set of statistical techniques is like making a journey through 
a strange land. Such a journey requires a substantial commitment of time, patience, and 
a willingness to tolerate the frustration of initial uncertainty and inevitable trial and 
error. But this is one journey you do not have to make alone. Think of this book as a 
travel atlas or even as someone to counsel you about language and customs, what to see 
and what to avoid, and what lies just over the horizon. I hope that the combination of 
a conceptually based approach, numerous examples, and the occasional bit of practical 
advice presented in this book will help to make this statistical journey a little easier, 
maybe even enjoyable. (Imagine that!)

Getting Ready to Learn about SEM

Listed next are suggestions about the best way to prepare yourself for learning about 
SEM. I offer these suggestions in the spirit of giving you a healthy perspective at the 
beginning of this journey, one that empowers your sense of being a researcher.

Know Your Area

Strong familiarity with the theoretical and empirical literature in your research area is 
the single most important thing you need for SEM. This is because everything, from the 
specification of your initial model to modification of that model in subsequent reanaly-
ses to interpretation of the results, must be guided by your domain knowledge. So you 
need first and foremost to be a researcher, not a statistician or computer geek. This is true 
for most kinds of statistical analysis, in that the value of the product (numerical results) 
depends on the quality of the ideas (your hypotheses) on which the analysis is based. 
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Otherwise, that familiar expression about computer analysis, “garbage in, garbage out,” 
applies.

Know Your Measures

Kühnel (2001) reminds us that learning about SEM has the by-product that newcomers 
must deal with fundamental issues of measurement. Specifically, the analysis of measures 
with strong psychometric characteristics, such as good score reliability and validity, is 
essential in SEM. For example, it is impossible to analyze a structural equation model 
with latent variables that represent hypothetical constructs without thinking about how 
to measure those constructs. When you have just a single measure of a construct, then 
it is especially critical for this single indicator to have good psychometric properties. 
Likewise, the analysis of measures with deficient psychometric characteristics could 
bias the results. Unfortunately, measurement theory is too often neglected nowadays in 
undergraduate and graduate degree programs in psychology (Frederich, Buday, & Kerr, 
2000) and related areas, but SEM requires strong knowledge in this area. Some crucial 
measurement-related concepts are considered in Chapter 3.

Review Fundamental Statistical Concepts and Techniques

Before learning about SEM, you should have a good understanding of (1) principles of 
multiple correlation/regression,1 (2) the correct interpretation of results from statistical 
tests, and (3) data screening techniques. These topics are reviewed in the next two chap-
ters, but it may help to know now why they are so important. Some kinds of statistical 
results in SEM are interpreted exactly as regression coefficients in multiple regression 
(MR). Values of these coefficients are corrected for the presence of correlated predictors 
in SEM just as they are in MR. The potential for bias due to the omission of a predictor 
that is correlated with others in the equation is basically the same in SEM and MR. The 
technique of MR plays an important role in data screening. There are many statistical 
tests in SEM, and their correct interpretation is essential. So with strong knowledge of 
these topics, you are better prepared to learn about SEM.

Use the Best Research Computer in the World

Which is the human brain; specifically—yours. At the end of the analysis in SEM—or any 
type of statistical analysis—it is you as the researcher who must evaluate the degree of 
support for the hypotheses, explain any unexpected findings, relate the results to those 
of previous studies, and reflect on implications of the findings for future research. These 
are all matters of judgment. A statistician or computer geek could help you to select 
appropriate statistical tools, but not with the rest without your domain knowledge. As 

1The simpler term multiple regression is used from this point.
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aptly put by Pedhazur and Schmelkin (1991), “no amount of technical proficiency will 
do you any good, if you do not think” (p. 2).

Get a Computer Tool for SEM

Obviously, you need a computer tool to conduct the analysis. In SEM, many choices 
of computer tools are now available. Some of these include EQS, LISREL, and Mplus, 
but there are still more, including Amos, CALIS/TCALIS of SAS/STAT, Mx, RAMONA 
of SYSTAT, and SEPATH of STATISTICA. There are freely available student versions 
of Amos, LISREL, and Mplus, and student versions are great for honing basic skills. 
However, student versions are typically limited in terms of the number of variables 
that can be analyzed, so they are not generally suitable for more complex analyses. 
However, Mx can analyze a wide range of structural equation models, and it is freely 
available over the Internet. All the SEM computer tools just mentioned, and others, are 
described in Chapter 4. The website for this book (p. 3) has links to home pages for 
SEM computer tools.

Join the Community

An electronic mail network called SEMNET operates over the Internet and is dedicated 
to SEM.2 It serves as an open forum for discussion and debate about the whole range of 
issues associated with SEM. It also provides a place to ask questions about analyses or 
about more general issues, including philosophical ones (e.g., the nature of causality). 
Members of SEMNET come from different disciplines, and they range from newcom-
ers to seasoned veterans. Many works of the latter are cited in this book. (I subscribe 
to SEMNET, too.) Sometimes the discussion gets, ah, lively (sparks can fly), but this is 
the nature of scientific discourse. Whether you participate as a “lurker” (someone who 
mainly reads posts) or as an active poster, SEMNET offers opportunities to learn some-
thing new. There is even a theme song for SEM, the hilarious Ballad of the Casual Modeler 
(Rogosa, 1988). I think that you might enjoy listening to it, too.3

Characteristics of SEM

The term structural equation modeling (SEM) does not designate a single statistical 
technique but instead refers to a family of related procedures. Other terms such as cova-
riance structure analysis, covariance structure modeling, or analysis of covariance 
structures are also used in the literature to classify these techniques together under a 
single label. These terms are essentially interchangeable, but only the first will be used 

2www2.gsu.edu/~mkteer/semnet.html

3www.stanford.edu/class/ed260/ballad.mp3
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throughout this book. Another term that you may have heard is causal modeling, which 
is a somewhat dated expression first associated with the SEM technique of path analysis. 
For reasons elaborated later, the results of an SEM analysis cannot generally be taken 
as evidence for causation. Wilkinson and the Task Force on Statistical Inference (1999) 
were even more blunt when they noted that use of SEM computer tools “rarely yields 
any results that have any interpretation as causal effects” (p. 600). Some newcomers to 
SEM have unrealistic expectations in this regard. They may see SEM as a kind of magical 
technique that allows one to discern causal relations in the absence of experimental or 
even quasi-experimental designs. Unfortunately, no statistical technique, SEM or other-
wise, can somehow “prove” causality in nonexperimental designs. The correct and real-
istic interpretation of results from SEM analyses is emphasized throughout this book. 
Summarized next are the characteristics of most applications of SEM.

A Priori Does Not Mean Exclusively Confirmatory

Computer tools for SEM require you to provide a lot of information about things such 
as which variables are assumed to affect other variables and the directionalities of these 
effects. These a priori specifications reflect your hypotheses, and in total they make up 
the model to be analyzed. In this sense, SEM can be viewed as confirmatory. That is, 
your model is a given at the start of the analysis, and one of the main questions to be 
answered is whether it is supported by the data. But as often happens, the data may be 
inconsistent with your model, which means that you must either abandon your model or 
modify the hypotheses on which it is based. In a strictly confirmatory application, the 
researcher has a single model that is accepted or rejected based on its correspondence 
to the data (Jöreskog, 1993), and that’s it. However, on few occasions will the scope of 
model testing be so narrow.

A second, somewhat less restrictive context concerns the testing of alternative 
models, and it refers to situations in which more than one a priori model is available 
(Jöreskog, 1993). This context requires sufficient theoretical or empirical bases to spec-
ify more than one model; the particular model with acceptable correspondence to the 
data may be retained, but the rest will be rejected.

A third context, that of model generation, is probably the most common and occurs 
when an initial model does not fit the data and is subsequently modified by the researcher. 
The altered model is then tested again with the same data (Jöreskog, 1993). The goal of 
this process is to “discover” a model with three properties: It makes theoretical sense, it 
is reasonably parsimonious, and its correspondence to the data is acceptably close.

Explicit Distinction between Observed and Latent Variables

There are two broad classes of variables in SEM, observed and latent. The observed class 
represents your data—that is, variables for which you have collected scores and entered 
in a data file. Another term for observed variables is manifest variables. Observed vari-
ables can be categorical, ordinal, or continuous, but all latent variables in SEM are con-
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tinuous. There are other statistical techniques for analyzing models with categorical 
latent variables, but SEM deals with continuous latent variables only.

Latent variables in SEM generally correspond to hypothetical constructs or fac-
tors, which are explanatory variables presumed to reflect a continuum that is not directly 
observable. An example is the construct of intelligence. There is no single, definitive mea-
sure of intelligence. Instead, researchers use different types of observed variables, such 
as tasks of verbal reasoning or memory capacity, to assess various facets of intelligence. 
Latent variables in SEM can represent a wide range of phenomena. For example, con-
structs about attributes of people (e.g., intelligence, neuroticism), higher-level units of 
analysis (e.g., groups, geographic regions), or measures, such as method effects (e.g., 
self-report, observational), can all be represented as latent variables in SEM.

An observed variable used as an indirect measure of a construct is referred to as an 
indicator. The explicit distinction between factors and indicators in SEM allows one to 
test a wide variety of hypotheses about measurement. Suppose that a researcher believes 
that variables X1, X2, and X3 tap some common domain that is distinct from the one 
assessed by X4 and X5. In SEM, it is relatively easy to specify a model where X1–X3 are 
the indicators of one factor and X4–X6 are indicators of a different factor. If the fit of 
the model just described to the data is poor, then this measurement hypothesis would 
be rejected. The ability to analyze both observed and latent variables distinguishes 
SEM from some more standard statistical techniques, such as the analysis of variance 
(ANOVA) and MR, which analyze observed variables only.

Another class of variables in SEM corresponds to residual or error terms, which can 
be associated with either observed variables or factors specified as outcome (dependent) 
variables. In the case of indicators, a residual term represents variance unexplained 
by the factor that the corresponding indicator is supposed to measure. Part of this 
unexplained variance is due to random measurement error, or score unreliability.4 The 
explicit representation of measurement error is a special characteristic of SEM. This is 
not to say that SEM can compensate for gross psychometric flaws—no technique can—
but this property lends a more realistic quality to an analysis. Some more standard sta-
tistical techniques make unrealistic assumptions in this area. For example, it is assumed 
in MR that all predictor variables are measured without error. In diagrams of structural 
equation variables, residual terms may be represented using the same symbols as for 
substantive latent variables. This is because error variance must be estimated, given the 
whole model and the data; thus in this sense error variance is not directly observable in 
the raw data. Also, residual terms are explicitly represented in the syntax or diagrams 
of some SEM computer tools as latent variables. Even if they are not, error variance is 
estimated in basically all SEM analyses, and estimates about the degree of residual vari-
ance often have interpretive import.

As already mentioned, it is possible in SEM to analyze substantive latent variables 

4The other part of unexplained variance is systematic (i.e., reliable) but unrelated to the underlying 
construct. Another term for this part of residual variance is specific variance.
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or observed variables (or any combination of the two) as outcome variables. For such 
variables, each will typically have an error term that represents variance unexplained 
by their predictors. It is also possible to specify either observed or latent variables (or 
any combination of the two) as predictors in structural equation models. This capability 
permits great flexibility in the types of hypotheses that can be tested in SEM. I should 
say now that models in SEM do not necessarily have to have substantive latent variables 
at all. (Most structural equation models have error terms represented as latent variables, 
however.) That is, the evaluation of models that concern effects only among observed 
variables is certainly possible in SEM. This describes the technique of path analysis, a 
member of the SEM family.

Covariances Always, but Means Can Be Analyzed, Too

The basic statistic of SEM is the covariance, which is defined for two continuous observed 
variables X and Y as follows:

	 XY XY X Ycov r SD SD= 	 (1.1)

where rXY is the Pearson correlation and SDX and SDY are their standard deviations. A 
covariance represents the strength of the association between X and Y and their vari-
abilities, albeit with a single number. Because the covariance is an unstandardized sta-
tistic, its value has no upper or lower bound. For example, covariances of, say, –1,003.26 
or 13.58 are possible. In any event, covXY conveys more information than rXY, which says 
something about association in a standardized metric only.

To say that the covariance is the basic statistic of SEM means that the analysis 
has two main goals: (1) to understand patterns of covariances among a set of observed 
variables and (2) to explain as much of their variance as possible with the researcher’s 
model. The part of a structural equation model that represents hypotheses about vari-
ances and covariances is the covariance structure. The next several chapters outline 
the rationale of analyzing covariance structures, but essentially all models in SEM have 
a covariance structure.

Some researchers, especially those who use ANOVA as their main analytical tool, 
have the impression that SEM is concerned solely with covariances. However, this view 
is too narrow because means can also be analyzed in SEM, too. But what really distin-
guishes the analysis of means in SEM is that means of latent variables can be estimated. 
In contrast, ANOVA is concerned with means of observed variables only. It is also pos-
sible in SEM to analyze effects traditionally associated with ANOVA, including between-
group and within-group (e.g., repeated measures) mean contrasts. For example, in SEM 
one can estimate the magnitude of group mean differences on latent variables, some-
thing that is not really feasible in ANOVA.

When means are analyzed along with covariances in SEM, the model has both a 
covariance structure and a mean structure, and the mean structure often represents 
the estimation of factor means. Means are not analyzed in most SEM analyses—that is, 
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a mean structure is not required—but the option to do so provides additional flexibility. 
For example, sometimes we are interested in estimating factors by analyzing covari-
ances among the observed variables, but also want to test whether means on these latent 
variables are equal across different groups, such as boys versus girls. In this case, both 
covariances and means would be analyzed in SEM. At other times, however, we are not 
interested in means on the latent variables. Instead, we are concerned only with factor 
covariances, and focus solely on what are the latent variables or factors, based on analy-
sis of the covariances among the observed variables. In the second case just mentioned, 
we may only want to know how many factors underlie the scores on the observed vari-
ables. But in the first case, we may be interested in both questions—that is, how many 
factor underlie the indicators, and whether boys and girls have different means on each 
of these factors.5

SEM Can Be Applied to Experimental Data, Too

Another too narrow view of SEM is that it is appropriate only for data from nonexperi-
mental designs. The heavy emphasis on covariances in the SEM literature may be at the 
root of this perception, but the discussion to this point should suggest that this belief 
is without foundation. For example, between-group comparisons in SEM could involve 
experimental conditions to which cases are randomly assigned. In this context, the 
application of SEM could be used to estimate group differences on latent variables that 
are hypothesized to correspond to the observed outcome measures in a particular way. 
Techniques in SEM can also be used in studies that have a mix of experimental and 
nonexperimental features, as would occur if cases with various physical disorders were 
randomly assigned to receive particular kinds of medications.

SEM Requires Large Samples

Attempts have been made to adapt SEM techniques to accommodate smaller sample 
sizes (e.g., Nevitt & Hancock, 2004), but it is still generally true that SEM is a large-
sample technique. Implications of this property are considered throughout the book, but 
I can say now that some kinds of statistical estimates in SEM, such as standard errors, 
may not be accurate when the sample size is not large. The likelihood of technical prob-
lems in the analysis is greater, too.

Because sample size is such an important issue, let us now consider the bottom-line 
question: What is a “large enough” sample size in SEM? It is difficult to give a single 
answer because several factors affect sample size requirements. For example, the analy-
sis of a complex model generally requires more cases than that of a simpler model. This 
is because more complex models have more parameters than simpler models. More 
precise definitions of parameters are given later in this volume, but for now you can 

5Bruce Thompson, personal communication, April 22, 2008.
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view them as hypothesized effects that require statistical estimates based on your data. 
Models with more parameters require more estimates, so larger samples are necessary 
in order for the results to be reasonably stable. The type of estimation algorithm used in 
the analysis affects sample size requirements, too. There is more than one type of esti-
mation method in SEM, and some types need very large samples because of assumptions 
they make (or do not make) about the data. Another factor involves the distributional 
characteristics of the data. In general, smaller sample sizes are needed when the distri-
butions of continuous outcome variables are all normal in shape and their associations 
with one another are all linear.

A useful rule of thumb concerning the relation between sample size and model 
complexity that also has some empirical support was referred to by Jackson (2003) as 
the N:q rule. This rule is applicable when the estimation method used is maximum 
likelihood (ML), which is by far the method used most often in SEM. Indeed, ML is the 
default method in most SEM computer tools. Properties of ML estimation are described 
in Chapter 7, but it is no exaggeration to describe this method as the motor of SEM. (You 
are the driver.) In ML estimation, Jackson (2003) suggested that researchers think about 
minimum sample size in terms of the ratio of cases (N) to the number of model parame-
ters that require statistical estimates (q). An ideal sample size-to-parameters ratio would 
be 20:1. For example, if a total of q = 10 model parameters require statistical estimates, 
then an ideal minimum sample size would be 20 × 10, or N = 200. Less ideal would be an 
N:q ratio of 10:1, which for the example just given for q = 10 would be a minimal sample 
size of 10 × 10, or N = 100. As the N:q ratio decreases below 10:1 (e.g., N = 50, q = 10 for 
a 5:1 ratio), so does the trustworthiness of the results.

It also helps to think about recommended sample size in more absolute terms. A 
“typical” sample size in studies where SEM is used is about 200 cases. This number 
corresponds to the approximate median sample size in surveys of published articles in 
which SEM results are reported. These include an earlier review by Breckler (1990) of 72 
articles in personality and social psychology journals and a more recent review by Shah 
and Goldstein (2006) of 93 articles in management science journals. However, a sample 
size of 200 cases may be too small when analyzing a complex model, using an estima-
tion method other than ML, or distributions are severely non-normal. With < 100 cases, 
almost any type of SEM may be untenable unless a very simple model is evaluated. Such 
simple models may be so bare-bones as to be uninteresting. Barrett (2007) suggested 
that reviewers of journal submissions routinely reject for publication any SEM analysis 
where N < 200 unless the population studied is restricted in size. This recommendation 
is not standard practice, but it highlights the fact that analyzing small samples in SEM is 
problematic. One of these problems is low statistical power. I will show you in Chapter 
8 how to estimate power in SEM.

Less Emphasis on Statistical Tests

A great many effects can be tested for statistical significance in SEM, ranging from things 
such as the variance of a single variable up to entire models evaluated across multiple 
samples. There are four reasons, however, why the results of statistical tests may be less 
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relevant than other types of techniques, including ANOVA and MR. First, SEM allows 
the evaluation of entire models, which brings a higher-level perspective to the analysis. 
Statistical tests of individual effects represented in models may be of interest, but at 
some point you must make a decision about the whole model: Should it be rejected?—
modified?—if so, how? Thus, there is a sense in SEM that the view of the entire landscape 
(the whole model) has precedence over that of specific details (individual effects).

The second reason statistical tests play a smaller role in SEM concerns the general 
requirement for large sample sizes discussed earlier. With most statistical tests, it is pos-
sible to have results that are “highly significant” (e.g., p < .0001) but trivial in absolute 
magnitude when the sample size is large. By the same token, virtually all effects that are 
not nil will be statistically significant in a sufficiently large sample. In fact, if the sample 
size is large, then a statistically significant result just basically confirms a large sample 
(Thompson, 1992), which is a tautology, or a needless repetition of the same sense in 
different words.

The third reason is that statistical significance (i.e., p values) for effects of latent 
variables is estimated by the computer, but this estimate could change if, say, a different 
estimation algorithm is used or sometimes even across different computer tools for the 
same analysis and data. Differences in estimated p values across different software pack-
ages are usually not great, but small differences in p can affect hypothesis testing (e.g., 
p = .053 vs. p = .047 for the same effect when testing at the .05 level).

The fourth reason is not specific to SEM, but concerns most kinds of statistical 
analyses in the behavioral sciences: We should in general be more concerned with esti-
mating the sizes or magnitudes of effects (i.e., effect sizes) than with the outcome of 
statistical tests (e.g., Kline, 2004). Also, SEM gives better estimates of effect size than 
traditional techniques for observed variables, including MR and ANOVA. Suggestions 
for the conduct of statistical significance testing in SEM will be discussed at various 
points throughout the book.

SEM and the General Linear Model

You may know that ANOVA is just a special (restricted) case of MR. The two techniques 
are based on the same underlying mathematical model that belongs to a larger family 
known as the general linear model (GLM). The multivariate techniques of MANOVA 
(i.e., multivariate ANOVA) and canonical correlation, among others, are also part of the 
GLM. The whole of the GLM can be seen as just a restricted case of SEM (Fan, 1997). So 
learning about SEM really means extending your repertoire of data analysis skills to the 
next level, one that offers even more flexibility than the GLM.

Widespread Enthusiasm, but with a Cautionary Tale

It cannot be denied that SEM is increasingly “popular” among researchers in many dif-
ferent disciplines. This has become evident by the growing numbers of computer tools 
for SEM, formal courses at the graduate level, continuing-education workshops, and 
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articles in research journals where the authors describe the results of SEM analyses. It 
is also difficult to look through an issue of a research journal in psychology, education, 
or other areas and not find at least one article that concerns SEM. Interest in SEM has 
also expanded to other disciplines, including wildlife management (Grace, 2006, 2008), 
communication sciences (Holbert & Stephenson, 2002), medical research (DiLalla, 
2008), administrative pharmacy (Schreiber, 2008), and pediatric psychology (Nelson, 
Aylward, & Steele, 2008), to name a few.

It is not hard to understand this growing interest in SEM. As described by David 
Kenny in the Series Editor’s Note in the previous edition of this book, researchers love 
SEM because it addresses the questions they want answered and it “thinks” about 
research the way researchers do. The brief description given earlier of the kinds of 
hypotheses that can be tested in SEM only hints at its flexibility. However, there is 
evidence that many—if not most—published reports of the application of SEM have at 
least one flaw so serious that it compromises the scientific value of the article. MacCal-
lum and Austin (2000) reviewed about 500 applications of SEM in 16 different psychol-
ogy research journals, and they found problems with the reporting in many of these 
reports. For example, in about 50% of the articles, the reporting of parameter estimates 
was incomplete (e.g., unstandardized estimates were omitted); in about 25% the type of 
data matrix analyzed (e.g., a correlation vs. a covariance matrix) was not described; and 
in about 10% the model specified or the indicators of factors were not clearly specified. 
Shah and Goldstein (2006) reviewed 93 articles published in four management science 
journals. In a majority of articles, Shah and Goldstein (2006) found that it was difficult 
to determine the model actually tested or the complete set of observed variables. Along 
the same lines, they found in 31 out of 143 analyses that the model described in the text 
did not match the statistical results reported in text or tables, and the method of estima-
tion was not mentioned in about half of the articles.

Both sets of authors of the review studies just described found similar kinds of 
problems in their respective sets of articles. For example, MacCallum and Austin (2000) 
found that about 20% of studies used samples of fewer than 100 cases. Shah and Gold-
stein (2006) found that the N:q ratio was < 10:1 in about 70% of studies and < 5:1 in 
about 30%. The author of the typical article in these sets of reviewed studies did not 
consider alternative models that might account for the same pattern of observed covari-
ances just as well as the author’s preferred model. Such alternative models are known as 
equivalent models. Ignoring equivalent models is a form of confirmation bias whereby 
researchers test a single model, give an overly positive evaluation of that model, and fail 
to consider other explanations of the data (Shah & Goldstein, 2006). The potential for 
confirmation bias is further strengthened by the relative lack of replication. Specifically, 
most SEM studies are “one-shot” studies that do not involve cross-validation or a split-
sample approach. The need for large samples in SEM undoubtedly hinders the ability of 
researchers to replicate their analyses. But whether results reported in most SEM studies 
would be found across independent samples is typically unknown.

The problems just described—and others covered later—are serious, and they indi-
cate that our collective enthusiasm about SEM has outstripped our good judgment about 
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its proper use. Accordingly, a major goal of this book is to teach you how to avoid com-
mon mistakes in the use of SEM and thereby guide you toward more sound, correct 
practices in all phases of the analysis. I want you to use SEM intelligently and get as 
much out of its application as possible.

Family History and a Reminder about Context

Because SEM is a collection of related techniques, it does not have a single source. Part 
of its origins date to the early years of the 20th century with the development of what 
we now call exploratory factor analysis, usually credited to Charles Spearman (1904). 
A few years later, the biogeneticist Sewell Wright (e.g., 1918) developed the basics of 
path analysis. Wright demonstrated how observed covariances could be related to the 
parameters of a model that represents both direct and indirect causal effects among a 
set of variables. In doing so, he also showed how these effects could be estimated from 
sample data. Wright also invented path diagrams, which are graphical representations 
of direct and indirect effects that we still use to this day. In hindsight, Wright’s innova-
tions are remarkable. The technique of path analysis was subsequently introduced to the 
behavioral sciences by various authors, including Blalock (1961) and O. Duncan (1966), 
among others (see the annotated bibliography by Wolfle, 2003).

The measurement (factor analysis) and structural (path analysis) approaches were 
integrated in the early 1970s in the work of basically three authors: K. Jöreskog, J. Kees-
ling, and D. Wiley, into a framework that Bentler (1980) called the JWK model. One of 
the first widely available computer programs able to analyze models based on the JWK 
framework—now called SEM—was LISREL, developed by K. Jöreskog and D. Sörbom in 
the 1970s and subsequently updated by them several times.

The 1980s and 1990s witnessed the development of more computer programs and a 
rapid expansion of the use of SEM techniques in many different areas of the behavioral 
sciences. There have been many recent developments, too, many of which represent 
the extension of models about continuous latent variables to other kinds of analyses. 
For example, there are now many works in the SEM literature about the estimation of 
growth and change over time on latent variables (i.e., latent growth curve modeling; 
e.g., Duncan, Duncan, Strycker, Li, & Alpert, 1999) and also about the estimation of 
curvilinear and interactive effects of latent variables (e.g., Schumaker & Marcoulides, 
1998). Work by Muthén (1984) concerning estimation methods for non-normal data, 
such as when the indicators are dichotomous or ordered-categorical (ordinal) variables, 
further extended the range of application of SEM. Another major recent development 
concerns the convergence of SEM and techniques for multilevel analysis, which are 
applied in data sets where scores (cases) are grouped into higher-order units, such as 
siblings within families (Muthén, 1994). Within each level, the scores may not be inde-
pendent, and multilevel techniques take this dependency into account. Recent versions 
of some SEM computer tools, including EQS, LISREL, and Mplus, feature built-in syntax 
for multilevel analyses.
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The origin of the term causal modeling dates to Wright’s pioneering work, but here 
is a critical point: Wright invented path analysis in order to estimate the magnitudes of 
effects when the basic causal pathways were already known (e.g., genetics). That is, given 
a true causal model, the technique of path analysis could be applied to estimate it for 
observed variables. However, this is not how we generally use path analysis or related 
SEM techniques for analyzing latent variables today. In the behavioral sciences, we rarely 
know the true causal model. Instead, we usually hypothesize a causal model, and then 
we test that model using sample data. This context of use is vastly different from that 
of Wright’s. Specifically, when the true causal model is unknown but our hypothesized 
model fits the data, about all we can say is that our model is consistent with the data, but 
we cannot claim that our model is proven. In this way, SEM can be seen as a discom-
firmatory technique, one that can help us to reject false models (those with poor fit to 
the data), but it basically never confirms your particular model when the true model is 
unknown. Bollen (1989) put it this way (emphasis in original):

If a model is consistent with reality, then the data should be consistent with the model. But, if the data 
are consistent with the model, this does not imply that the model corresponds to reality. (p. 68)

Extended Latent Variable Families

Latent variables in structural equation models are assumed to be continuous. There 
are other statistical techniques for analyzing models with categorical latent variables. 
The levels of a categorical latent variable are classes, and they represent a mixture of 
subpopulations where membership is not known but is inferred from the data. Thus, a 
goal of the analysis is to identify the nature and number of latent classes. The technique 
of latent class analysis is a type of factor analysis but for categorical indicators and 
latent variables. A special kind of latent class factor model that represents the shift from 
one of two different states, such as from nonmastery to mastery of a skill, is a latent 
transition model. There are also analogs of techniques, such as MR, for the analysis of 
categorical latent variables. In latent class regression, a criterion is predicted by esti-
mated class membership and other variables that covary with class membership. In con-
trast to standard regression techniques for continuous variables, the predictors in latent 
class regression can be a mix of continuous, categorical, or count variables,6 and the 
criterion can be a continuous, categorical, or repeated-measures variable. It is also not 
assumed in latent class regression that the same prediction equation holds for all cases.

Until recently, SEM was generally viewed as a relatively distinct family of techniques 
from those just mentioned for analyzing categorical latent variables. However, this view 
is changing because of recent attempts to express all latent variable models within a 

6A count variable is the number of times an event happens over a particular period of time such as the 
number of automobile accidents over the past 5 years. Distributions of such variables are often positively 
skewed.
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common mathematical framework (Bartholomew, 2002). For example, Muthén (2001) 
described the analysis of mixture models with latent variables that may be continuous 
or categorical. When both are present in the same model, the analysis is basically SEM 
conducted across different inferred subpopulations. The Mplus computer program is 
especially adept at analyzing a variety of latent variable models. This is because it can 
analyze all basic kinds of SEM models and mixture models, too. Both kinds of analyses 
just mentioned can also be combined with a multilevel analysis in Mplus. Computer 
tools like Mplus blur the distinction between SEM and techniques such as latent class 
analysis, latent regression analysis, multilevel analysis, and mixture models analysis. So 
SEM itself is a member of an extended family of techniques for latent variable modeling. 
See Skrondal and Rabe-Hesketh (2004) for more information.

Plan of the Book

The topic of SEM is very broad, and not every aspect of it can be covered comprehen-
sively in a single volume. With this reality in mind, I will now describe the topics cov-
ered in this book. Part I introduces concepts essential to understanding the rationale 
of SEM. The main goal of Chapters 2 and 3 is to review basic statistical principles and 
techniques that form the foundation for learning about SEM. These topics include MR, 
the correct interpretation of statistical tests, and bootstrapping (Chapter 2), and the 
screening and preparation of data for SEM (Chapter 3). Computer tools for SEM are 
described in Chapter 4.

Part II consists of six chapters devoted to core SEM techniques. Most SEM analy-
ses described in the research literature involve these core techniques. Chapter 5 con-
cerns the specification of path analysis (PA) models, confirmatory factor analysis (CFA) 
measurement models, and models with characteristics of both PA and CFA models, or 
structural regression (SR) models. Chapter 6 is about identification of these models, or 
whether it is theoretically possible for the computer to derive a unique estimate of each 
and every model parameter. Estimation methods in SEM are considered in Chapter 7, 
especially the default method of ML. How to analyze path models is also demonstrated 
in this chapter. The critical question of how to evaluate the fit of a model to your data 
is dealt with in Chapter 8. Hypothesis testing strategies, the evaluation of alternative 
models, and what to report about model fit are also outlined in this chapter. The last two 
chapters of Part II are about core kinds of latent variable models in SEM: Chapter 9 deals 
with the technique of CFA, and Chapter 10 extends these ideas to the evaluation of SR 
models, the most general of basic structural equation models. The analysis of models 
across multiple samples is also considered in Chapter 9.

Part III gives you an overview of some more advanced topics and suggestions for 
avoiding mistakes. Chapter 11 deals with the analysis of means in SEM, including latent 
growth models and the estimation of group mean differences on latent variables. Chap-
ter 12 introduces the estimation of interactive effects of latent variables and multilevel 
analysis in SEM. These presentations are not as detailed, but it is beyond the scope of 
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this book to cover these topics in greater depth. Instead the goal is to make you aware 
of possibilities for these more advanced analyses and to provide references for further 
study. Chapter 13 is written as a kind of “how-not-to” manual that summarizes ways 
that researchers can mislead themselves with SEM. Read this chapter as a cautionary 
tale about common mistakes to avoid.

Summary

Essential characteristics of SEM were considered in this chapter, including its a priori 
nature, the potential to explicitly differentiate between observed and latent variables, 
and the capability to analyze covariances as well as means. The SEM family is a flexible 
set of techniques, applicable to both experimental and nonexperimental data. It is no 
wonder that more and more researchers across different disciplines are applying SEM 
in their own studies. However, in too many studies there are some serious problems 
with the way that SEM is used or with how the analysis is described and the results 
are reported. How to avoid getting into trouble with SEM will be a major theme in later 
chapters. In the meantime, the ideas introduced in this chapter set the stage for review-
ing fundamental statistical principles that underlie SEM in the next chapter.
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2

Fundamental Concepts

You should bring to a journey of learning about SEM prerequisite knowledge about 
some fundamental statistical concepts. One is the technique of multiple regression 
(MR). Although MR analyzes observed variables only, many of the principles that 
underlie it generalize directly to SEM. Next, the correct interpretation of statistical 
tests in general is considered, as are some special issues about their use in SEM. The 
basic logic of bootstrapping, a computer-based resampling procedure with increasing 
application in SEM, is also discussed. Some advice: Even if you think that you already 
know some of these topics, you should nevertheless read this whole chapter carefully. 
This is because many readers tell me that they learned something new after hearing 
about the issues outlined next.

Multiple Regression

I assume that you are already familiar with bivariate correlation and regression. You can 
find reviews of these topics in just about any introductory statistics book.1 The logic of 
MR is considered next for the case of two continuous predictors, X1 and X2, and a con-
tinuous criterion Y, but the same ideas apply when there are ≥ 3 predictors. Pearson cor-
relations among the predictors and the criterion are represented with the symbols rY1, 
rY2, and r12. These coefficients are known as zero-order correlations because they do 
not control for intercorrelation. For example, rY1 does not control for the possibility that 
rY2 ≠ 0 (X2 also covaries with Y) or that r12 ≠ 0 (the predictors are correlated). Features 
of MR especially relevant to SEM are emphasized next.

1See G. Garson’s online StatNotes for a review: http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm
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Ordinary Least Squares Estimation

With two predictors, the form of the unstandardized regression equation is

	 Ŷ  = B1 X1 + B2 X2 + A 	 (2.1)

where Ŷ  is a predicted score. The term Ŷ  is a composite, or a weighted linear combina-
tion of the two predictors, X1 and X2. Equation 2.1 has both a covariance structure and a 
mean structure. The covariance structure corresponds to the unstandardized regression 
coefficients B1 and B2, and the mean structure to the intercept (constant) A. The values 
of B1, B2, and A are estimated with the method of ordinary least squares (OLS) so that 
the least squares criterion is satisfied. The latter means the sum of the squared residu-
als, or Σ − 2ˆ( )Y Y , is as small as possible in a particular sample. The method of OLS 
estimation is a partial-information method or a limited-information method because 
it analyzes the equation for only one criterion at a time.

Residuals in OLS estimation are uncorrelated with each of the predictors. That is,

	 ˆ( ) 1−Y Yr  = ˆ( ) 2−Y Yr  = 0 	 (2.2)

where the residuals are represented in each subscript by the term (Y – Ŷ ) and the pre-
dictors X1 and X2 by, respectively, the terms 1 and 2. The equality represented in Equa-
tion 2.2 is required in order for the computer to derive a unique set of regression weights 
that satisfies the least squares criterion. Conceptually, assuming the independence of 
residuals and predictors permits estimation of the relative predictor power of the lat-
ter (e.g., B1 for X1), with omitted (unmeasured) predictors held constant. Bollen (1989) 
refers to this assumption as pseudoisolation of the measured from the unmeasured 
predictors. Other implications of this assumption are considered later.

The overall multiple correlation between the predictors and the criterion, 12YR ⋅ , is 
actually just the Pearson correlation between the observed and predicted scores, or

	 12YR ⋅ = ˆY Yr  	 (2.3)

Unlike Pearson correlations, though, the range of multiple correlations is 0–1.0. The 
value of 2

12YR ⋅  indicates the proportion of explained variance. For example, if 12YR ⋅ = 
.40, then 2

12YR ⋅ = .16, so we can say that X1  and X2 together explain 16% of the total 
variance in Y. The values of B1, B2, and A in Equation 2.1 in a particular sample are 
those that maximize predictive power. Consequently, OLS estimation capitalizes on 
chance, which implies that (1) 2

12YR ⋅ tends to overestimate the population proportion of 
explained variance ρ2, and (2) it is possible that similar values of B1, B2, and A may not 
be found in a replication sample.

There are many corrections that downward adjust R2 values as a function of sample 
size and the number of predictors (Yin & Fan, 2001). Perhaps the most common correc-
tion is Wherry’s (1931) equation
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1

NR R
N k

− = − −  − − 
	 (2.4)

where 2R̂  is the adjusted estimate of ρ2 and k is the number of predictors. The statistic 
2R̂  is a shrinkage-corrected R2. In small samples, the value of 2R̂  can be quite a bit 

less than that of R2. The value of the former can even be negative; in this case, 2R̂  is 
interpreted as though its value were zero. As the sample size increases for a constant 
number of predictors, values of 2R̂  and R2 are increasingly similar, and in very large 
samples they are essentially equal. That is, it is unnecessary to correct for positive bias 
in very large samples.

Regression Weights

The unstandardized regression coefficients B1 and B2 in Equation 2.1 indicate the 
expected raw score difference in Y, given a difference of a single point in one predic-
tor while we are controlling for the other. For example, if B1 = 5.40 and B2 = 3.65, then 
the expected difference on Y is 5.40 points given a difference on X1 of 1 point, with 
X2 held constant. Likewise, a 1-point difference on X2 predicts a 3.65-point difference 
on Y while controlling for X1. Because unstandardized coefficients reflect the scales of 
their respective predictors, values of Bs from predictors with different raw score met-
rics are not directly comparable. Thus, one cannot conclude for this example that the 
relative predictive power of X1 is greater than that of X2 because B1 > B2. The intercept 
A is a constant that equals the value of Ŷ when the scores on both predictors are zero 
(X1 = X2 = 0). It can be expressed as a function of the unstandardized coefficients and 
the means of all variables as follows:

	 A = MY – B1 M1 – B2 M2	 (2.5)

In contrast, means have no bearing on the values of the regression coefficients B1 and 
B2.

The regression equation for standardized variables is

	 ˆ
Yz  = b1 z1 + b2 z2 	 (2.6)

where z1 and z2 are, respectively, standardized scores (normal deviates2) on X1 and X2, 
and b1 and b2 are, respectively, the standardized regression coefficients. The latter are 
also called beta weights because each standardized coefficient estimates a population 
parameter designated by the symbol β. Beta weights indicate the expected difference on 
the criterion in standard deviation units, controlling for all other predictors. Also, their 
values can be directly compared across predictors. For example, if b1 = .40, it means that 
the difference in Y is expected to be .40 standard deviations large, given a difference 

2z1 = (X1 – M1)/SD1, z2 = (X2 – M2)/SD2.
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on X1 of one full standard deviation controlling for X2. The term b2 has the analogous 
meaning except that X1 is held constant. If b1 = .40 and b2 = .80, then we could say that 
the relative predictive power of X2 is exactly twice that of X1 in standard deviation units 
because the ratio b2 /b1 equals .80/.40, or 2.0.

Because beta weights are adjusted for intercorrelations among the predictors (and 
with the criterion, too), their absolute values are usually lower than those of the corre-
sponding bivariate correlations (e.g., b1 = .40, rY1 = .60). This is not always true, though. 
Absolute values of b weights can exceed those of the corresponding correlation (e.g., 
b1 = .80, rY1 = .60). It is also possible for absolute values of b weights to exceed 1.0 or 
even for the signs of a beta weight and the corresponding correlation to be in opposite 
directions (e.g., b1 = −.40, rY1 = .20). When any of these cases occur, a suppression effect 
is indicated. Suppression is dealt with later.

For two predictors, the formulas for their beta weights are

	 1 2 12
1 2

121
−=
−

Y Yr r rb
r

  and  2 1 12
2 2

121
−=
−

Y Yr r rb
r

	 (2.7)

The numerators in Equation 2.7 reflect one aspect of holding the other predictor con-
stant.3 In the formula for b1, for example, the product of both bivariate correlations 
that involve the other predictor, X2, is literally subtracted out of the bivariate correla-
tion for X1. The denominators in Equation 2.7 adjust the total standardized variance by 
removing the proportion shared by the two predictors. When there are ≥ 3 predictors, 
the formulas for the beta weights are more complicated but follow the same principles. 
The relation between unstandardized and standardized regression weights is expressed 
next:

	 1 1
1

YSDB b
SD

 
=  

 
  and  2 2

2

YSDB b
SD

 
=  

 
	 (2.8)

The statistic 2
12YR ⋅  can also be expressed as a function of the beta weights and the 

bivariate correlations of the predictors with the criterion. With two predictors,

	 2
12YR ⋅ = b1 rY1 + b2 rY2 	 (2.9)

The role of beta weights as corrections for the other predictor is apparent in this equa-
tion. Specifically, if r12 = 0 (the predictors are independent), then b1 = rY1 and b2 = rY2 
(Equation 2.7), which means that 2

12YR ⋅  is just the sum of 2
1Yr  and 2

2Yr . However, if r12 
≠ 0 (the predictors covary), then b1 and b2 do not equal the corresponding bivariate cor-
relations and 2

12YR ⋅  is not the simple sum of 2
1Yr  and 2

2Yr  (it is less).
As mentioned, beta weights can be directly compared across different predictors 

within the same sample. However, it is not generally correct to directly compare beta 

3In a bivariate regression analysis with a single predictor X, the standardized regression coefficient is rXY, 
the Pearson correlation with the criterion Y.
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weights for the same predictors but across different samples, especially if those samples 
have different variances. This is because beta weights are standardized based on the 
variability in a particular sample (e.g., Equation 2.8 but solved for each of b1 and b2). 
If the within-group variances are not the same, then the basis of that standardization 
is not constant.4 It is usually better to compare unstandardized regression coefficients 
across different samples. The same point holds in SEM analyses: It is the unstandardized 
solution that we directly compare across groups.

Presented in Table 2.1 is a small data set with scores on X1, X2, and Y. Assume that 
scores on these variables are from, respectively, a test of working memory, phonics skill, 
and reading achievement. Exercise 1 for this chapter will ask you to calculate and inter-
pret the results for these data summarized next:

	 12YR ⋅ = .801,  2
12YR ⋅  = .641 

	 B1 = .242,  B2 = .193,  A = 10.771 
	 b1 = .320,  b2 = .599

An alternative to using a commercial computer program for the chapter exercises is a 
freely available calculating webpage for MR.5 See the website for this book (p. 3) for 
links to other online calculating pages.

Assumptions

The statistical assumptions of MR are stringent, probably more so than many research-
ers realize. They are summarized next:

1.	 Regression weights reflect linear relations only. If there are also curvilinear rela-
tions, then values of regression weights will underestimate predictive power.

2.	 Statistical tests in MR assume that the residuals are normally distributed and 
have uniform variances across all levels of the predictors. The latter characteristic is 
homoscedasticity, and its opposite, heteroscedasticity, can be caused by outliers, 
severe non-normality in the observed scores, or more measurement error at some levels 
of the criterion or predictors. In the next chapter I will show you how to screen your 
data for heteroscedasticity.

3.	 It is assumed that the scores on the predictors are perfectly reliable (no mea-
surement error). This assumption is necessary because there is no direct way in MR to 
represent less-than-perfect score reliability for the predictors. Consequences of minor 

4Here is another example: Suppose that the same multiple-choice exam is administered in each of two 
different classes. For each class, scores are reported as the proportion correct, but relative to the highest 
score in each group, not the total number of items. Although the proportions in each class are standardized 
and have the same range (0–1.0), they are not directly comparable across the classes if the highest scores in 
each group are unequal.

5http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/MultRgression.htm
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violations of this requirement may not be critical, but more serious ones can result in 
bias. This bias can affect not only the regression weights of predictors measured with 
error but also those of other predictors. However, it is difficult to anticipate the direc-
tion of this error propagation. Depending on sample intercorrelations, some regression 
weights may be biased upward (too large), but others may be biased in the other direc-
tion. There is no requirement that the criterion should be measured without error, but 
the use of a psychometrically inadequate measure of it can reduce the value of R2. When 
the predictors are measured without error but the criterion is measured with error, beta 
weights tend to be too small, but not the unstandardized regression weights. If the pre-
dictors are measured with error, too, then these effects for the criterion could be ampli-
fied, diminished, or canceled out, but it is best not to hope for the latter. See Liu (1988) 
for more information.

4.	 It is assumed that omitted predictors are uncorrelated with measured predictors, 
or those in the equation. This requirement is a consequence of the fact that the residuals 
are uncorrelated with the predictors in OLS estimation. This is a strong assumption, one 
that is probably violated in most applications of MR (and SEM, too). This assumption 
also concerns the issue of specification error, which is considered next.

Specification Error

Specification error refers to the problem of omitted predictors that account for some 
unique proportion of total criterion variance but are not included in the analysis. A 
related term is left-out-variable error or, more lightheartedly, the “heartbreak of 
L.O.V.E.” The idea of specification error in SEM is even broader than in MR, but the 
omission of relevant predictors is a concern in SEM, too. Suppose that rY1 = .40 and rY2 = 
.60 for, respectively, predictors X1 and X2. A researcher measures only X1 and uses it as 
the sole predictor of Y. The standardized regression coefficient for the included predictor 
in this bivariate analysis is rY1 = .40. If the researcher had the foresight to also measure 
X2, the omitted predictor, and enter it along with X1 as a predictor in an MR analysis, the 
beta weight for X1 in this analysis may not equal .40. If not, then rY1 as a standardized 
regression coefficient with X1 as the sole predictor does not reflect the true predictive 
power of X1 compared with b1 derived with both predictors in the equation. However, 
the difference between rY1 and b1 varies with r12, the correlation between the included 
and omitted predictors. Specifically, if the included and omitted predictors are unrelated 

TABLE 2.1. E xample Data Set for Multiple Regression

Case X1 X2 Y

A   3 65 24

B   8 50 20

C 10 40 22

D 15 70 32

E 19 75 27
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(r12 = 0), there is no difference (rY1 = b1) because there is no correction for correlated 
predictors. But as the absolute value of their correlation increases (r12 ≠ 0), the amount 
of the difference between rY1 and b1 due to the omission of X2 becomes greater.

Presented in Table 2.2 are the results of three pairs of regression analyses. In all 
pairs, X2 is considered the omitted predictor.6 One member of each pair of analyses is a 
bivariate regression with X1 as the sole predictor, and the other member is an MR with 
both X1 and X2 in the equation. Constant across all three sets of analyses are the bivari-
ate correlations between the predictors and the criterion (rY1 = .40, rY2 = .60). The only 
thing that varies across the three sets is the value of r12, the correlation between the pre-
dictors. Reported for each analysis in Table 2.2 are the standardized regression weights 
(rY1 for the bivariate regression; b1 and b2 for the MR) and also the overall multiple 
correlation ( 12YR ⋅ ) for the regression of Y on both X1 and X2. For each case in the table, 
compare in the same row the value of rY1 in boldface with that of b1, also in boldface. 
The difference between these values (if any) indicates the amount by which the bivariate 
standardized regression coefficient for X1 does not accurately reflect its predictive power 
relative to when X2 is also in the equation.

Note in Table 2.2 that when the omitted predictor X2 is uncorrelated with the 
included predictor X1 (case 1, r12 = 0), the standardized regression weight for X1 is the 
same regardless of whether or not X2 is in the equation (rY1 = b1 = .40). However, when 
r12 = .30 (case 2), the value of b1 is lower than that of rY1, respectively, .24 versus .40. 
This happens because b1 controls for the correlation between X1 and X2, whereas rY1 
does not. Thus, rY1 overestimates the association between X1 and Y relative to b1. In 
case 3 in the table, the correlation between the included and omitted predictors is even 
higher (r12 = .60), which for these data results in an even greater discrepancy between 
rY1 and b1 (respectively, .40 vs. .06).

Omitting a predictor correlated with others in the equation does not always result 
in overestimation of the predictive power of an included predictor. For example, if X1 is 
the included predictor and X2 is the omitted predictor, it is also possible for the absolute 
value of rY1 to be less than that of b1 (i.e., rY1 underestimates the relation indicated by b1) 

6The same principles hold if X1 is the omitted predictor and X2 is the included predictor.

TABLE 2.2.  Examples of the Omitted Variable Problem

Predictor(s)

Both X1 and X2

Case X1 only X1 X2 RY ⋅ 12
1.  r12 = 0 .40 .40 .60 .72

2.  r12 = .30 .40 .24 .53 .64

3.  r12 = .60 .40 .06 .56 .60

Note. Numerical values for X1 and X2 are standardized regression coefficients.  
For all cases, X2 is considered the omitted variable; rY1 = .40 and rY2 = .60.



26	 CONCEPTS AND TOOLS

or even for rY1 and b1 to have different signs. Both cases indicate suppression. However, 
overestimation due to omission of a predictor probably occurs more often than under-
estimation (suppression). Also, the pattern of bias may be more complicated when there 
are several included and omitted variables (e.g., overestimation for some included pre-
dictors; underestimation for others).

Predictors are typically excluded because they are not measured. Thus, it is difficult 
to know by how much and in what direction regression coefficients may be biased rela-
tive to what their values would be if all relevant predictors were included. However, it 
is unrealistic to expect the researcher to know and be able to measure all relevant pre-
dictors. In this way, all regression equations are probably misspecified to some degree. 
If omitted predictors are uncorrelated with included predictors, the consequences of 
specification error may be slight. Otherwise, the consequences may be more serious. 
Careful review of theory and research is the main way to avoid a serious specification 
error by decreasing the potential number of left-out variables.

Suppression

Perhaps the most general definition is that suppression occurs when either the absolute 
value of a predictor’s beta weight is greater than its bivariate (zero-order) correlation 
with the criterion or the two have different signs. So defined, suppression implies that 
the estimated relation between a predictor and a criterion while controlling for the other 
predictors is a “surprise,” given the bivariate correlations. Suppose that X1 is amount of 
psychotherapy, X2 is degree of depression, and Y is number of prior suicide attempts. 
The bivariate correlations in a hypothetical sample are

	 rY1 = .19,  rY2 = .49,  and r12 = .70

Based on these results, it may seem that psychotherapy is harmful because of its posi-
tive association with suicide attempts (rY1 = .19). When both predictors (depression, 
psychotherapy) are entered as predictors in the same regression equation, however, the 
results are

	 b1 = –.30,  b2 = .70,  and 12YR ⋅  = .54

The beta weight for psychotherapy (–.30) has the opposite sign of its bivariate correla-
tion with the criterion (.19), and the beta weight for depression (.70) exceeds its bivariate 
correlation (.49).

The “surprising” results just described are due to controlling for other predic-
tors. Here, people who are more depressed are also more likely to be in psychotherapy 
(r12 = .70). Depressed people are more likely to try to harm themselves (rY2 = .49). 
Corrections for these associations in MR reveal that the relation of psychotherapy to 
suicide attempts is actually negative once depression is controlled. It is also true that 
the relation of depression to suicide attempts is even stronger once psychotherapy is 
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controlled. Omit either psychotherapy or depression from the analysis—a specification 
error—and the bivariate regression results with the remaining predictor are mislead-
ing. This example concerns negative suppression, where the predictors have positive 
correlations with the criterion and each other, but one receives a negative beta weight 
in the analysis.

A second type of suppression is classical suppression, where one predictor is uncor-
related with the criterion but receives a nonzero beta weight controlling for another pre-
dictor. For example, given the following correlations in a hypothetical sample,

	 rY1 = 0,  rY2 = .60,  and r12 = .50 

the results of an MR analysis are  

	 b1 = –.40,  b2 = .80,  12YR ⋅  = .69

This example of classical suppression (i.e., rY1 = 0, b1 = –.40) demonstrates that bivari-
ate correlations of zero can mask true predictive relations once other variables are con-
trolled. There is also reciprocal suppression, which can occur when two predictors 
correlate positively with the criterion but negatively with each other. See Shieh (2006) 
for more information about suppression.

Death to Stepwise Regression, Think for Yourself

There are two basic ways to enter predictors into the equation: One is to enter all pre-
dictors at once, or simultaneous entry. The other is to enter predictors over a series of 
steps, or sequential entry. Entry order can be determined according to one of two dif-
ferent standards, theoretical (rational) or empirical (statistical). The rational standard 
corresponds to hierarchical regression, where you tell the computer a fixed order of 
entry for the predictors. For example, sometimes demographic variables are entered at 
the first step, and then entered at the second step is a psychological variable of interest. 
This order not only controls for the demographic variables but also permits evaluation 
of the predictive power of the psychological variable, over and beyond that of simple 
demographic variables.

An example of the statistical standard is stepwise regression, where the com-
puter selects predictors for entry based on statistical significance (e.g., which predictor, 
if entered into the equation, would have the most statistically significant regression 
weight?). After they are selected, predictors at a later step can also be removed from the 
equation according to statistical test outcomes (e.g., if a predictor’s regression weight is 
no longer statistically significant). The stepwise process stops when there could be no 
statistically significant increase in R2 by adding more predictors. There are variations 
on stepwise regression—for example, some methods select predictors but do not later 
remove them (forward inclusion), and others begin with all predictors in the equation 
and then automatically remove them (backward elimination)—but all such methods 
are directed by the computer, not you.
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Stepwise regression and related methods pose many problems, so many that such 
methods are now basically forbidden in some research areas (e.g., Thompson, 1995), and 
for good reason, too. One problem is extreme capitalization on chance. Another is that 
not all regression computer programs print correct values of statistical tests in stepwise 
regression; that is, the computer’s choices may actually be wrong. Both of these prob-
lems imply that whatever final set of predictors happen to be selected by the computer 
in empirically driven procedures is unlikely to replicate. Worst of all, such methods give 
the illusion that the researcher does not have to think about the problem. Sribney (1998) 
offers this advice: “Personally, I would no more let an automatic routine select my model 
than I would let some best-fit procedure pack my suitcase” (Ronan Conroy’s Comments 
section, para. 8).

In SEM, there are methods for modifying structural equation models with poor fit 
to the data that are analogous to empirically based methods in MR. These methods in 
SEM indicate the particular effects that would result in the greatest improvement in fit 
if those effects were added to the model. Some SEM computer tools, such as LISREL, 
offer an automatic modification (AM) option that mechanically adds effects according 
to statistical criteria. Such purely exploratory options greatly capitalize on chance; they 
also give the illusion that you need not think about the problem. I do not recommend 
the use of AM-type options. Instead, the modification of your model should be guided 
mainly by your hypotheses, just as its specification in the first place should be so guided. 
There is a role in SEM for more limited empirically based methods, but they should be 
used in a way that respects your hypotheses. These issues are elaborated in Chapter 8, 
on hypothesis testing in SEM.

Partial Correlation and Part Correlation

The technique of partial correlation concerns the phenomenon of spuriousness: if the 
observed relation between two variables is due to ≥ 1 common cause(s), their association 
is spurious. To illustrate this concept, consider these zero-order correlations between 
vocabulary breadth (Y), shoe size (X1), and age (X2) in a hypothetical sample of children 
not all the same age:

	 rY1 = .50,  rY2 = .60,  and r12 = .80

Although the correlation between shoe size and vocabulary breadth is fairly substantial 
(.50), it is hardly surprising because both are caused by a third variable, age (i.e., matu-
ration).

The partial correlation 1 2Yr ⋅  removes the influence of a third variable X2 from both 
X1 and Y. The formula is

	 1 2 12
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 	 (2.10)
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The denominator in Equation 2.10 adjusts the total standardized variance of both Y and 
X1 for their overlap with X2. Applied to the hypothetical correlations just listed, the 
partial correlation between shoe size and vocabulary breadth controlling for age is 1 2Yr ⋅  
= .04. (An exercise will ask you to calculate this partial correlation.) Because the asso-
ciation between X1 and Y essentially disappears when X2 is controlled, their observed 
relation rY1 = .50 may be a spurious one. The technique of SEM readily allows the repre-
sentation of presumed spurious associations due to common causes.

Equation 2.10 for partial correlation can be extended to control for two or more 
external variables. For example, the higher-order partial correlation 1 23Yr ⋅  estimates 
the association between X1 and Y controlling for both X2 and X3. There is a related 
coefficient called part correlation or semipartial correlation that partials external 
variables out of either of two variables, but not both. The formula for the part correlation 

(1 2)Yr ⋅  for which the association between X1 and X2 is controlled but not the association 
between Y and X2 is presented next:
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Note that the denominator in Equation 2.11 adjusts the total standardized variance only 
for the overlap of X1 with X2. Given the same bivariate correlations among these three 
variables reported earlier, the part correlation between vocabulary breadth (Y) and shoe 
size (X1) controlling only the latter for age (X2) is (1 2)Yr ⋅  = .03. This result (.03) is some-
what smaller than the partial correlation for these data, or 1 2Yr ⋅  = .04. In general, 1 2Yr ⋅
is larger in absolute value than (1 2)Yr ⋅ . An exception is when r12 = 0; in this case, 1 2Yr ⋅  
= (1 2)Yr ⋅ .

Relations among the squares of the various correlations just described can be nicely 
illustrated with a Venn-type diagram like the one in Figure 2.1. The circles represent the 
total standardized variances of the criterion Y and the predictors X1 and X2. The regions 
in the figure labeled a–d make up the total standardized variance of Y, so

	 a + b + c + d = 1.0

Areas a and c in the figure represent the portions of Y uniquely predicted by, respectively, 
X1 and X2, but area b represents the simultaneous overlap (redundancy) of the predictors 
with Y. Area d represents the proportion of unexplained variance. The squared zero-
order correlations of the predictors with the criterion and the overall squared multiple 
correlation can be expressed as sums of the areas a, b, c, or d in Figure 2.1, as follows:

	
2
1Yr  = a + b  and  2

2Yr  = b + c 

	 2
12YR ⋅ = a + b + c = 1.0 – d

The squared part correlations correspond directly to the unique areas a and c in Fig-
ure 2.1. Each of these areas also equals the increase in the total proportion of explained 
variance that occurs by adding a second predictor to the equation. That is,
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	     2 2 2
(1 2) 12 2Y Y Yr a R r⋅ ⋅= = −  	 (2.12) 

	 2 2 2
(2 1) 12 1Y Y Yr c R r⋅ ⋅= = −

In contrast, the squared partial correlations correspond to areas a, c, and d in Figure 2.1, 
and each estimates the proportion of variance in the criterion explained by one predic-
tor but not the other. The formulas are
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Note that the numerator of each expression in Equation 2.13 is a squared part correla-
tion. The denominators in Equation 2.13 correct the total standardized variance of the 
criterion for its overlap with the other predictor. These denominators are generally < 1.0, 
which explains why squared partial correlations are generally larger than squared part 
correlations. Suppose that 2

12YR ⋅ = .40 and 2
2Yr  = .25. These results follow:

	
2
(1 2)Yr ⋅ = .40 – .25 = .15 

	 2
1 2Yr ⋅ = .15/(1 – .25) = .20

In words, predictor X1 uniquely explains .15, or 15% of the total variance of Y (squared 
part correlation). Of the variance in Y not already explained by X2, predictor X1 accounts 

FIGURE 2.1.  Venn diagram for the standardized variances of Y, X1, and X2.
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for .20, or 20% of the remaining variance (squared partial correlation). See G. Garson 
(2009) for an online review of partial correlation and part correlation.7

When predictors are correlated—which is just about always—beta weights, par-
tial correlations, and part correlations are alternative ways to describe in standardized 
terms the relative explanatory power of each predictor controlling for the rest. None is 
more “correct” than the other because each gives a different perspective on the same 
data. However, remember that unstandardized regression coefficients (B) are preferred 
when comparing results for the same predictors across different samples.

Other Bivariate Correlations

When all observed variables are continuous, it is Pearson correlations that are usually 
analyzed in SEM as part of analyzing covariances. (Recall that covXY is the product of 
rXY and the standard deviations of each variable; Equation 1.1.) However, noncontinu-
ous variables can be analyzed in SEM, too, so you need to know something about other 
kinds of bivariate correlations. There are other forms of the Pearson correlation for 
observed variables that are either categorical or ordinal. For example:

1.	 The point-biserial correlation (rpb ) is a special case of r that estimates the 
association between a dichotomous variable and a continuous one (e.g., gender, 
weight).

2.	 The phi coefficient ( ϕ̂ ) is a special case for two dichotomous variables (e.g., 
treatment-control, relapsed-not relapsed).

3.	 Spearman’s rank order correlation or Spearman’s rho is for two ranked vari-
ables.

It is also possible in SEM to analyze non-Pearson correlations that assume the under-
lying data (i.e., on a latent variable) are continuous and normally distributed instead of 
discrete. For example:

1.	 The biserial correlation is for a continuous variable and a dichotomy (e.g., 
agree-disagree), and it estimates what the Pearson r would be if both variables 
were continuous and normally distributed.

2.	 The polyserial correlation is the generalization of the biserial correlation that 
does basically the same thing for a continuous variable and a categorical vari-
able with three or more levels.

3.	 The tetrachoric correlation for two dichotomous variables estimates what r 
would be if both variables were continuous and normally distributed.

7http://faculty.chass.ncsu.edu/garson/PA765/partialr.htm
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4.	 The polychoric correlation is the generalization of the tetrachoric correlation 
that estimates r but for categorical variables with two or more levels.

Computing polyserial or polychoric correlations is complicated (Nunnally & Bernstein, 
1994) and requires specialized software such as PRELIS, which is the part of LISREL for 
manipulating, generating, and transforming data. The PRELIS program can be used to 
estimate polyserial or polychoric correlations, depending on the types of variables in the 
data set. It can also estimate results for censored variables, which have large propor-
tions of their scores at minimum or maximum values. Consider the variable “price paid 
for a new car in the last year.” In a hypothetical sample, only 10% bought a new car year 
in the last year, so the scores for rest (90%) are zero. This variable is censored because 
not everyone buys a new car every year. Instead of deleting the 90% of the cases who did 
not purchase a new car, PRELIS would attempt to estimate results for this variable in the 
whole sample assuming that the underlying distribution is normal. Options for analyz-
ing non-Pearson correlations in SEM are considered in Chapter 7.

Logistic Regression

Sometimes outcome variables are dichotomous or binary variables. Examples include 
graduated–did not graduate and survived–died. Some options to analyze dichotomous 
outcomes in SEM are based on the logic of logistic regression (LR). This technique is 
generally used instead of MR when the criterion is dichotomous. Just as in MR, the pre-
dictors in LR can be either continuous or categorical. However, the regression equation 
in LR is a logistic function that approximates a nonlinear relation between the dichoto-
mous outcome and a linear combination of the predictors. An example of a logistic func-
tion for a hypothetical sample is illustrated in Figure 2.2. The closed circles in the figure 
represent along the Y-axis whether cases with the same illness either improved (Y = 1.0) 
or did not improve (Y = 0). Along the X-axis, the closed circles in the figure represent 
scores on a composite variable made up of various indexes of healthy behavior (exercise, 
preventative care, etc.). The logistic function fitted to the data in Figure 2.2 is S-shaped, 
or sigmoidal in form. This function generates predicted probabilities of improvement, 
given scores on the healthy behavior composite.

The estimation method in logistic regression is not OLS. Instead, it is usually ML 
estimation but is applied after transforming the binary outcome into a logit variable, 
which is typically the natural logarithm—base e, or approximately 2.71828—of the 
odds of the target outcome. The latter tell us how much more likely it is that a case is a 
member of the target group instead of a member of the other group (Wright, 1995), and 
it equals the probability of the target outcome divided by the probability of the other 
outcome. An example follows.

Suppose that 60% of the cases improved over a particular time, but the rest, or 40%, 
did not. Assuming that improvement is the target outcome, the odds of improvement 
are calculated here as .60/.40, or 1.5. That is, the odds are 3:2 in favor of improvement. 
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Regression coefficients for each predictor in LR can be converted into an odds ratio, 
which estimates the difference in the odds of the target outcome for a one-point differ-
ence in the predictor, controlling for all other predictors. For example, if the estimated 
odds ratio for amount of exercise were 5.60, then the odds of improvement are 5.6 times 
greater for each one-point increase on the exercise variable, holding constant other pre-
dictors. Values of odds ratios less than 1.0 would indicate for this example a relative 
reduction in the odds of improvement given higher scores on that predictor, and odds 
ratios that equal 1.0 would indicate no difference in improvement odds for any value of 
the predictor. See Peng, Lee, and Ingersoll (2002) for more information about LR.

Statistical Tests

Characteristics of statistical tests especially relevant for SEM are emphasized next.

Standard Errors

Perhaps the most basic form of a statistical test is the critical ratio, which is the ratio of 
a sample statistic over its standard error. The standard error is the standard deviation 
of a sampling distribution, which is a probability distribution of a statistic based on 
all possible random samples, each based on the same number of cases. A standard error 
estimates sampling error, the difference between sample statistics and the correspond-
ing population parameter. Given constant variability among population cases, standard 

FIGURE 2.2.  Example of a logistic function where closed circles represent actual data values 
and the curve represents predicted probabilities.
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error varies inversely with sample size. This means that distributions of statistics from 
larger samples are generally narrower (less variable) than distributions of the same sta-
tistic from smaller samples.

There are textbook formulas for the standard errors of statistics with simple distri-
butions. By “simple” I mean that (1) the statistic estimates a single parameter and (2) the 
shape of the distribution is not a function of that parameter. For example, the textbook 
formula for estimating the standard error of the mean is

	 M
SDSE
N

= 	 (2.14)

It is more difficult to estimate standard errors for statistics that do not have simple 
distributions. There are approximate methods amenable to hand calculation for some 
statistics, such as sample proportions, where distribution shape and variability depend 
on the value of the population proportion. Such methods generate asymptotic standard 
errors that assume a large sample. However, if your sample is not large, such estimated 
standard errors may not be accurate. But some other statistics, such as the multiple 
correlation R, have distributions so complex that there may be no approximate stan-
dard error formula for hand calculation. Estimation of standard error in such cases may 
require specialized software (Kline, 2004, chap. 4). In SEM, standard errors for effects 
of latent variables are estimated by the computer, but these estimates are just that. This 
means that their values could change if, say, a different estimation method is used. So 
do not overinterpret results of statistical tests for latent variables.

Power and Types of Null Hypotheses

In large samples under the assumption of normality, a critical ratio is interpreted as a 
z-statistic in a normal curve with a mean of zero and a standard deviation that equals 
the standard error. A rule of thumb for large samples is that if the absolute value of this 
z-statistic exceeds 2.00, the null hypothesis (H0) that the corresponding parameter is 
zero is rejected at the .05 level of statistical significance (p < .05) for a two-tailed test (H1). 
The precise value of z for the .05 level is 1.96 and for the .01 level it is 2.58. Within small 
samples, critical ratios approximate a t-distribution instead of a z-distribution, which 
necessitates the use of special tables to determine critical values of t for the .05 or .01 
levels. Within large samples, t and z for the same sample statistic are essentially equal.

The failure to reject some null hypothesis is a meaningful outcome only if (1) the 
power of the test is adequate and (2) the null hypothesis is at least plausible to some 
degree. Briefly, power is the probability of rejecting the null hypothesis when there is a 
real effect in the population (H1 is true, H0 is not). Power varies directly with the mag-
nitude of the real population effect and your sample size. Other factors that affect power 
include:

1.	 The level of statistical significance (e.g., .05 vs. .01) and the directionality of H1 
(i.e., one- or two-tailed tests).
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2.	 Whether the samples are independent or dependent (i.e., a between- or within-
subject design).

3.	 The particular test statistic used.
4.	 The reliability of the scores.

The following combination generally leads to the greatest power: a large sample, the .05 
level of statistical significance, a one-tailed (directional) H1, a within-subject design, 
a parametric test statistic (e.g., t) rather than a nonparametric statistic (e.g., Mann–
Whitney U), and scores that are very reliable. The power of a study should be estimated 
when the study is planned but before the data are collected (Wilkinson & the Task 
Force on Statistical Inference, 1999). Ideally, power should be as high as possible, such 
as > .85. If power is only about .50, then the odds of rejecting a false null hypothesis 
are no greater than guessing the outcome of a coin toss. In fact, tossing a coin instead 
of conducting the study would be just as likely to give the correct decision and would 
save time and money, too (Schmidt & Hunter, 1997). How to estimate power in SEM is 
described in a later chapter, but the typical power of certain kinds of statistical tests in 
SEM are often relatively low even in large samples.

The type of null hypothesis tested most often in the behavioral sciences is a nil 
hypothesis, which says that the value of a population parameter or the difference 
between two parameters is zero. A nil hypothesis for the t-test of a mean contrast is

	 H0: µ1 – µ2 = 0

(i.e., H0: µ1 = µ2), which predicts that two population means are exactly equal. However, 
it is unlikely that the value of any population parameter (or difference between two 
parameters) is exactly zero, especially if zero implies the complete absence of an effect or 
association. It is also possible to specify a non-nil hypothesis for the t-test, such as

	 H0: µ1 – µ2 = 5.00

but this is rarely done in practice. As the name suggests, a non-nil hypothesis is a state-
ment that a population difference or effect is not zero.

It is more difficult to specify and test non-nil hypotheses for other types of statisti-
cal tests, such as the F-test when comparing ≥ 3 means. This is because computer pro-
grams almost always assume a nil hypothesis. Nil hypotheses may be appropriate when 
it is unknown whether effects exist at all, such as in new research areas where studies 
are mostly exploratory. Such hypotheses are less suitable in established research areas 
when it is already known that an effect is probably not zero. Perhaps most statistical 
results reported in literature are associated with nil hypotheses that are implausible. An 
example of an implausible nil hypothesis in the environmental sciences is the assump-
tion of equal survival probabilities for juvenile and adult members of a species (Ander-
son, Burnham, & Thompson, 2000). When a nil hypothesis is implausible, then (1) it is 
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a “straw man” argument (a fallacy) that is easily rejected and (2) estimated probabilities 
of data (p) under that unlikely hypothesis are too low.

It is important not to misinterpret the outcome of a statistical test in any type of 
data analysis. See Topic Box 2.1 for a review of the “Big Five” misinterpretations of sta-
tistical significance.

Statistical Tests in SEM

Here is a critical point about statistical tests in SEM: In ML estimation (and in some 
other methods, too), standard errors are generally calculated for the unstandardized solu-
tion only. You can see this fact when you look through the output of an SEM computer 
tool and find no standard errors printed for standardized estimates. This means that 

Topic Box 2.1

The “Big Five” Misinterpretations of Statistical Significance*

There is ample evidence that many of us do not know the correct interpretation 
of outcomes of statistical tests, or p values. For example, at the end of a standard 
statistics course, most students know how to calculate statistical tests, but they do 
not typically understand what the results mean (Haller & Krauss, 2002). About 
80% of psychology professors endorse at least one incorrect interpretation of 
statistical tests (Oakes, 1986). It is easy to find similar misinterpretations in books 
and articles (Cohen, 1994), so it seems that psychology students get their false 
beliefs from teachers and also from what students read. However, the situation 
is no better in other behavioral science disciplines (e.g., Hubbard & Armstrong, 
2006).

Most misunderstandings about statistical tests involve overinterpretation, or 
the tendency to see too much meaning in statistical significance. Specifically, we 
tend to believe that statistical tests tell us what we want to know, but this is wishful 
thinking. Elsewhere I described statistical tests as a kind of collective Rorschach 
inkblot test for the behavioral sciences in that what we see in them has more to 
do with fantasy than with what is really there (Kline, 2004). Such wishful think-
ing is so pervasive that one could argue that much of our practice of hypothesis 
testing based on statistical tests is myth.

In order to better understand misinterpretations of p values, let us first deal 
with their correct meaning. Here it helps to adopt a frequentist perspective 
where probability is seen as the likelihood of an outcome over repeatable events 
under constant conditions except for chance (sampling error). From this view, a 
probability does not apply directly to a single, discrete event. Instead, probabil-

*Part of this presentation is based on Kline (2009, chap. 5).
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ity is based on the expected relative frequency over a large number of trials, 
or in the long run. Also, there is no probability associated with whether or not 
a particular guess is correct in a frequentist perspective. The following mental 
exercises illustrate this point:

1.	 A die is thrown, and the outcome is a 2. What is the probability that this 
particular result is due to chance? The correct answer is not p = 1/6, or .17. 
This is because the probability .17 applies only in the long run to repeated 
throws of the die. In this case, we expect that .17 of the outcomes will be 
a 2. The probability that any particular outcome of the roll of a die is the 
result of chance is actually p = 1.00.

2.	 One person thinks of a number from 1 to 10. A second person guesses 
that number by saying, 6. What is the probability that the second person 
guessed right? The correct answer is not p = 1/10, or .10. This is because 
the particular guess of 6 is either correct or incorrect, so no probability 
(other than 0 for “wrong” or 1.00 for “right”) is associated with it. The 
probability .10 applies only in the long run after many repetitions of this 
game. That is, the second person should be correct about 10% of the time 
over all trials.

Let us now review the correct interpretation of statistical significance. You should 
know that the abbreviation p actually stands for the conditional relative-frequency 
probability:

 
  

0Result or true, random sampling,
more extreme other assumptions

H
p

which is the likelihood of a sample result or one even more extreme (a range of 
results) assuming that the null hypothesis is true, the sampling method is random 
sampling, and all other assumptions for the corresponding test statistic, such as 
the normality requirement of the t-test, are tenable. Two correct interpretations 
for the specific case p < .05 are given next. Other correct definitions are prob-
ably just variations of the ones that follow:

1.	 Assuming that H0 is true (i.e., every result happens by chance) and the 
study is repeated many times by drawing random samples from the same 
population, less than 5% of these results will be even more inconsistent with 
H0 than the particular result observed in the researcher’s sample.

2.	 Less than 5% of test statistics from random samples are further away 
from the mean of the sampling distribution under H0 than the one for the 
observed result. That is, the odds are less than 1 to 19 of getting a result 
from a random sample even more extreme than the observed one.

Described next are what I refer to as the “Big Five” false beliefs about p values. 
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Three of the beliefs concern misinterpretation of p, but two concern misinterpre-
tations of their complements, or 1 – p. Approximate base rates for some of these 
beliefs, reported by Oakes (1986) and Haller and Krauss (2002) in samples of 
psychology students and professors, are reported beginning in the next para-
graph. What I believe is the biggest of the Big Five is the odds-against-
chance fallacy, or the false belief that p indicates the probability that a result 
happened by chance (e.g., if p < .05, then the likelihood that the result is due to 
chance is < 5%). Remember that p is estimated for a range of results, not for any 
particular result. Also, p is calculated assuming that H0 is true, so the probability 
that chance explains any individual result is already taken to be 1.0. Thus, it is 
illogical to view p as somehow measuring the probability of chance. I am not 
aware of an estimate of the base rate of the odds-against-chance fallacy, but I 
think that it is nearly universal in the behavioral sciences. It would be terrific if 
some statistical technique could estimate the probability that a particular result is 
due to chance, but there is no such thing.

The local Type I error fallacy for the case p < .05 is expressed as fol-
lows: I just rejected H0 at the .05 level. Therefore, the likelihood that this par-
ticular (local) decision is wrong (a Type I error) is < 5% (70% approximate base 
rate among psychology students and professors). This belief is false because 
any particular decision to reject H0 is either correct or incorrect, so no prob-
ability (other than 0 or 1.00; i.e., right or wrong) is associated with it. It is only 
with sufficient replication that we could determine whether or not the decision to 
reject H0 in a particular study was correct. The inverse probability fallacy 
goes like this: Given p < .05; therefore, the likelihood that the null hypothesis is 
true is < 5% (30% approximate base rate). This error stems from forgetting that 
p values are probabilities of data under H0, not the other way around. It would 
be nice to know the probability that either the null hypothesis or alternative 
hypothesis were true, but there is no statistical technique that can do so based 
on a single result.

Two of the Big Five concern 1 – p. One is the replicability fallacy, which 
for the case of p < .05 says that the probability of finding the same result in 
a replication sample exceeds .95 (40% approximate base rate). If this fallacy 
were true, knowing the probability of replication would be useful. Unfortunately, 
a p value is just the probability of the data in a particular sample under a spe-
cific null hypothesis. In general, replication is a matter of experimental design 
and whether some effect actually exists in the population. It is thus an empiri-
cal question and one that cannot be directly addressed by statistical tests in a 
particular study. Here I should mention Killeen’s (2005) prep statistic, which is 
a mathematical transformation of 1 – p (i.e., generally, prep ≠ 1 – p) that esti-
mates the average probability of getting a result of the same sign (direction) in 
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results of statistical tests are available only for unstandardized estimates. Researchers 
often assume that results of statistical tests of unstandardized estimates apply to the 
corresponding standardized estimates. For samples that are large and representative, 
this assumption may not be problematic. You should realize, however, that the level of 

a hypothetical replication, assuming random sampling. Killeen suggested that 
prep may be less subject to misinterpretation than p values, but not everyone 
agrees (e.g., Cumming, 2005). It is better to actually conduct replication studies 
than rely on statistical prediction.

The last of the Big Five, the validity fallacy, refers to the false belief that the 
probability that H1 is true is greater than .95, given p < .05 (50% approximate 
base rate). The complement of p, or 1 – p, is also a probability, but it is just the 
probability of getting a result even less extreme under H0 than the one actually 
found. Again, p refers to the probability of the data, not to that of any particular 
hypothesis, H0 or H1. See Kline (2004, chap. 3) or Kline (2009, chap. 5) for 
descriptions of additional false beliefs about statistical significance.

It is pertinent to consider one last myth about statistical tests, and it is the view 
that the .05 and .01 levels of statistical significance, or α, are somehow universal 
or objective “golden rules” that apply across all studies and research areas. It is 
true that these levels of α are the conventional standards used today. They are 
generally attributed to Carl Fisher, but he did not advocate that these values be 
applied across all studies (e.g., Fisher, 1956). There are ways in decision theory 
to empirically determine the optimal level of α given estimate of the costs of 
various types of decision errors (Type I vs. Type II error), but these methods are 
almost never used in the behavioral sciences. Instead, most of us automatically 
use α = .05 or α = .01 without acknowledging that these particular levels are 
arbitrary. Even worse, some of us may embrace the sanctification fallacy, 
which refers to dichotomous thinking about p values that are actually continuous. 
If α = .05, for example, then a result where p = .049 versus one where p = .051 
is practically identical in terms of statistical outcomes. However, we usually make 
a big deal about the first (it’s significant!) but ignore the second. (Or worse, we 
interpret it as a “trend” as though it was really “trying” to be significant, but fell 
just short.) This type of black-and-white thinking is out of proportion to continuous 
changes in p values. There are other areas in SEM where we commit the sanc-
tification fallacy, and these will be considered in Chapter 8. This thought from 
the astronomer Carl Sagan (1996) is apropos: “When we are self-indulgent and 
uncritical, when we confuse hopes and facts, we slide into pseudoscience and 
superstition” (p. 27). Let there be no superstition between us concerning statistical 
significance going forward from this point.
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statistical significance for an unstandardized estimate does not automatically apply to 
its standardized counterpart. This is true in part because standardized estimates have 
their own standard errors, and the ratio of a standardized statistic over its standard error 
may not correspond to the same p value as the ratio of that statistic’s unstandardized 
counterpart over its standard error. This is why you should (1) always report the unstan-
dardized estimates with their standard errors and (2) not associate results of statistical 
tests for unstandardized estimates with the corresponding standardized estimates. An 
example follows.

Suppose in ML estimation that the values of an unstandardized estimate, its stan-
dard error, and the standardized estimate are, respectively, 4.20, 2.00, and .60. In a large 
sample, the unstandardized estimate would be statistically significant at the .05 level 
because z = 4.20/2.00, or 2.10, which exceeds the critical value (1.96) at p < .05. Whether 
the standardized estimate of .60 is also statistically significant at p < .05 is unknown 
because it has no standard error. Consequently, it would be inappropriate to report the 
standardized estimate by itself as

	  .60*

where the asterisk designates p < .05. It is better to report both the unstandardized and 
standardized estimates and also the standard error of the former, like this

	  4.20* (2.10) .60

where the standard error is given in parentheses and the asterisk is associated with the 
unstandardized estimate (4.20), not the unstandardized one (.60). Special methods in 
SEM for estimating correct standard errors for the standardized solution are described 
in Chapter 7.

Central and Noncentral Test Distributions

Conventional tests of statistical significance are based on central test distributions. A 
central test distribution assumes that the null hypothesis is true, and tables of criti-
cal values for distributions such as t, F, and χ2 found in many introductory statistics 
textbooks are based on central test distributions. In a noncentral test distribution, 
however, the null hypothesis is not assumed to be true. Some perspective is in order. 
Families of central test distributions of t, F, and χ2 are special cases of noncentral distri-
butions of each test statistic just mentioned. Compared to central distributions, noncen-
tral distributions have an extra parameter called the noncentrality parameter, which is 
often represented in the quantitative literature by the symbol ∆ for the t statistic and by 
λ for the F and χ2 statistics. This extra parameter indicates the degree of departure from 
the null hypothesis. An example follows.

Central t-distributions are described by a single parameter, the degrees of freedom 
df, but noncentral t-distributions are described by both df and ∆. Presented in Figure 2.3 
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are two t-distributions each where df = 10. For the central t-distribution in the left part 
of the figure, ∆ = 0. However, ∆ = 4.17 for the noncentral t-distribution in the right side of 
the figure. Note that the latter distribution in Figure 2.3 is positively skewed. The same 
thing happens but in the opposite direction for negative values of ∆ for t-distributions. 
In a two-sample design, the positive skew in the noncentral t-distribution would arise 
due to sampling of positive mean differences because µ1 – µ2 > 0 (i.e., H0: µ1 – µ2 = 0 is 
false).

Noncentral test distributions play an important role in certain types of statistical 
analyses. Computer programs that estimate power as a function of study characteristics 
and the expected population effect size analyze noncentral test distributions. This is 
because the concept of power assumes that the null hypothesis is false, and in a power 
analysis it is false to the degree indicated by the hypothesized effect size. A nonzero 
effect size generally corresponds to a value of the noncentrality parameter that is also 
not zero. Another application is the estimation of confidence intervals based on sample 
statistics that measure effect size, such as standardized mean differences (d) for mean 
contrasts or R2 in regression analyses. Effect size estimation also assumes that the null 
hypothesis—especially when it is a nil hypothesis—is false. See Kline (2004) for more 
information about confidence intervals for effect sizes.

In SEM, some measures of model fit are based on noncentral test distributions, 
especially noncentral χ2-distributions. These statistics indicate the degree of approxi-

FIGURE 2.3.  Distributions of central t and noncentral t for 10 degrees of freedom and where 
the noncentrality parameter equals 4.17 for noncentral t.
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mate fit of your model to the data. That is, these fit indexes allow for an “acceptable” 
amount of departure from exact fit or perfect fit between model and data. What is 
considered “acceptable” departure from perfection is related to the estimated value of 
the noncentrality parameter for the χ2 statistic that the computer calculates for your 
model. Other fit statistics in SEM measure the degree of departure from perfect fit, and 
these indexes are generally described by central χ2-distributions. Assessment of model 
fit against these two standards, exact versus approximation, is covered in Chapter 8.

Bootstrapping

Bootstrapping is a computer-based method of resampling developed by B. Efron (e.g., 
1979). There are two general kinds of bootstrapping. In nonparametric bootstrapping, 
your sample (i.e., data file) is treated as a pseudopopulation. Cases from the original 
data set are randomly selected with replacement to generate other data sets, usually 
with the same number of cases as the original. Because of sampling with replacement, 
(1) the same case can appear in more than one generated data set and (2) the composi-
tion of cases will vary slightly across the generated samples. When repeated many times 
(e.g., 1,000), bootstrapping simulates the drawing of numerous random samples from a 
population. Standard errors are estimated in this method as the standard deviation in 
the empirical sampling distribution of the same statistic across all generated samples. 
Nonparametric bootstrapping generally assumes only that the sample distribution has 
the same shape as that of the population distribution. In contrast, the distributional 
assumptions of many standard statistical tests, such as the t-test for means, are more 
demanding (e.g., normal and equally variable population distributions). A raw data file 
is necessary for nonparametric bootstrapping. This is not true in parametric bootstrap-
ping, where the computer randomly samples from a theoretical probability density func-
tion specified by the researcher. This is a kind of Monte Carlo method that is used in 
computer simulation studies of the properties of particular estimators, including those 
of many used in SEM that measure model fit.

It is important to realize that bootstrapping is not a magical technique that can 
somehow compensate for small or unrepresentative samples, severely non-normal dis-
tributions, or the absence of actual replication samples. In fact, bootstrapping can poten-
tially magnify the effects of unusual features in a small data set (Rodgers, 1999). More 
and more SEM computer programs, including Amos, EQS, LISREL, and Mplus, feature 
optional bootstrap methods. Some of these methods can be used to estimate the stan-
dard errors of a particular model parameter estimate or a fit statistic; bootstrapping can 
be used to calculate confidence intervals for these statistics, too. Bootstrapping methods 
are also applied in SEM to estimate standard errors for non-normal or categorical data 
and when there are missing data.

An example of the use of nonparametric bootstrapping to empirically estimate the 
standard error of a Pearson correlation follows. Presented in Table 2.3 is a small data set 
for two continuous variables where N = 20 and the observed correlation is rXY = .3566. 
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I used the nonparametric bootstrap procedure of SimStat for Windows (Version 2.5.5; 
Provalis Research, 1995–20048) to resample from the data set in Table 2.3 in order to 
generate a total of 1,000 bootstrapped samples each with 20 cases. Presented in Figure 
2.4 is the empirical sampling distribution of rXY across the 1,000 bootstrapped samples. 
SimStat reported that the mean of this distribution is .3482 and the standard deviation 
is .1861. The former result (.3482) is close to the observed correlation (.3566), and the 
latter (.1861) is actually the bootstrapped estimate of the standard error of the observed 
correlation. The 95% bootstrapped confidence interval calculated by SimStat based on 
the distribution in the figure is –.0402 to .6490, and the bias-adjusted confidence inter-
val is –.0402 to .6358.9 One could use the method of nonparametric bootstrapping to 
estimate standard errors or confidence intervals for multiple correlations, too.

Summary

Reviewed in this chapter were fundamental statistical concepts that underlie many 
aspects of SEM. One of these is the idea of statistical control—the partialing out of 
variables from other variables, a standard feature of most models in SEM. A related idea 
is that of spuriousness, which happens when an observed association between two vari-
ables disappears when controlling for common causes. The phenomenon of suppression 
is also related to statistical control. Suppression occurs in some cases when the sign of 
the adjusted relation between two variables differs from that of their bivariate correla-
tion. One lesson of suppression is that values of observed correlations can mask true 
relations between variables once intercorrelations with other variables are controlled. 
Another is the importance of including all relevant predictors in the analysis. This is 
because the omission of predictors that are correlated with those included in the model 
is a specification error that may bias the results. Special issues concerning statistical 

TABLE 2.3.  Example Data Set for Nonparametric Bootstrapping

 Case X Y Case X Y
 A 12 16  K 16 37
 B 12 46  L 13 51
 C 21 66  M 18 32
 D 16 70  N 12 53
 E 18 27  O 22 52
 F 16 27  P 12 34
 G 16 44  Q 22 54
 H 14 69  R 12  5
 I 16 22  S 14 38
 J 18 61  T 14 38

8You can download a free 30-day trial version of the full version of SimStat from www.provalisresearch.com

9In nonparametric bootstrapping, bias correction controls for lack of dependence due to possible selection 
of the same case ≥ 2 times in the same generated sample.
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tests were also considered, including the need to avoid common misinterpretations of 
statistical significance. Results of statistical tests in SEM generally apply to unstandard-
ized estimates only, not to the corresponding standardized estimates. Also reviewed in 
this chapter was the basic logic of bootstrapping, a resampling technique that can be 
applied to estimate standard errors for statistics with complex distributions.

Recommended Readings

The book by Cohen, Cohen, West, and Aiken (2003) is considered by many as a kind of 
“bible” of the multiple regression technique. The suggested chapters in Kline (2004) concern 
the correct interpretation of statistical tests and related statistics, such as standard errors (chaps. 
1–3), and an introduction to bootstrapping (chap. 9). A more comprehensive review of boot-
strap methods for estimation, regression, forecasting, and simulation is available in Chernick 
(2008).

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers (2nd 
ed.). Hoboken, NJ: Wiley.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correla-
tion analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behav-
ioral research. Washington, DC: American Psychological Association.

FIGURE 2.4.  Empirical sampling distribution for the Pearson correlation rXY in 1,000 boot­
strapped samples for the data in Table 2.3.



�		  Fundamental Concepts	 45

Exercises

	 1.	 For the data in Table 2.1, calculate 12YR ⋅ , the unstandardized regression equa-
tion, and the standardized regression weights. Interpret the results assuming 
X1, X2, and Y are, respectively, measures of working memory, phonics skill, and 
reading achievement.

	 2.	 Calculate scores on Ŷ  and Y –  Ŷ  for the data in Table 2.1. Show that 12YR ⋅  = 

ˆY Yr . Also show that the equality expressed in Equation 2.2 is true.

	 3.	 Calculate scores on ˆ
Yz  and zY – ˆ

Yz  for the data in Table 2.1. Show that the 
residuals in standardized form are uncorrelated with each predictor in stan-
dardized form.

	 4.	 Calculate a shrinkage-corrected 2
12YR ⋅  for the data in Table 2.1. Interpret the 

results.

	 5.	 Calculate 12YR ⋅ , b1, and b2, given rY1 = .40, rY2 = .50, and r12 = –.30. Describe the 
results.

	 6.	 Use Equation 2.10 to calculate the partial correlation between X and Y control-
ling for W, given these Pearson correlations: rXY = .50, rXW = .80, and rYW = 
.60.

	 7.	 Suppose that the 95% confidence interval for the difference between two means 
in a particular sample is 75.25–84.60. Explain what is wrong with this state-
ment: “There is a 95% chance that the interval 75.25–84.60 contains the popu-
lation mean difference µ1 – µ2.”

	 8.	 Find three incorrect definitions of statistical significance on the Internet. Hint: 
In Google, type “define: statistical significance.” Explain what is wrong with 
each.



46

3

Data Preparation

The main topics of this chapter—data preparation and screening—are critical for two 
reasons. First, the most widely used estimation methods in SEM make specific distribu-
tional assumptions about the data. These assumptions must be taken seriously because 
violation of them could result in bias. Second, data-related problems can make SEM 
computer programs fail to yield a logical solution. A researcher who has not properly 
prepared and screened the data could mistakenly believe that the model is at fault. 
Also reviewed are concepts from measurement theory about score reliability and valid-
ity. It is not possible to cover all aspects of data screening and psychometrics in a 
single chapter, but more advanced works are cited throughout, and these should be 
consulted for more information. This adage attributed to Abraham Lincoln sets the tone 
for this chapter: If I had eight hours to chop down a tree, I’d spend six sharpening my 
axe.

Forms of Input Data

Most primary researchers—those who conduct original studies—input raw data files 
for a primary analysis with SEM computer programs. These same researchers may 
be surprised to learn that the raw data themselves are not necessary for many—and 
perhaps most—types of SEM. This is also true, however, for many other statistical tech-
niques. For example, presented in the top part of Table 3.1 is syntax that instructs SPSS 
to conduct a one-way analysis of variance (ANOVA) using only summary statistics that 
include group means, standard deviations, and sizes. In the bottom part of the table is 
SPSS syntax for conducting a multiple regression analysis with summary statistics that 
include the sample correlation matrix, means, and standard deviations. The “Matrix 
Data” commands in both sets of syntax define the summary statistics.

The capability to analyze summary statistics provides the basis for a secondary 
analysis where data collected by others are reanalyzed but where the raw data are 
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unavailable. The technique of meta-analysis is a type of secondary analysis in which 
summary statistics from a set of primary studies are analyzed altogether. Many journal 
articles about the results of SEM contain enough information, such as correlations and 
standard deviations, to create a matrix summary of the data, which can then be submit-
ted to a computer program for analysis. Thus, readers of these works can, with no access 
to the raw data, replicate the original analyses or estimate alternative models not con-
sidered in the original work. You can replicate analyses described in this book using the 
data matrix summaries that accompany each example (see p. 3). This is a great way to 
learn because you can make mistakes using someone’s data before analyzing your own.

Basically all SEM computer tools accept either a raw data file or a matrix summary 
of the data. If a raw data file is submitted, the program will create its own matrix, which 
is then analyzed. You should consider the following issues when choosing between a 
raw data file and a matrix summary as program input:

TABLE 3.1. E xamples in SPSS Syntax of Statistical Analyses Conducted with 
Summary Statistics

Analysis of variance
 
comment one-way anova with summary statistics.
matrix data variables=GROUP rowtype_ DV/factors=GROUP.
begin data
1 n 50
2 n 55
3 n 65
1 mean 66.25
2 mean 60.25
3 mean 69.30
1 sd 23.50
2 sd 23.25
3 sd 22.95
end data.
oneway DV by GROUP/statistics=descriptives/matrix=in(*).

Multiple regression
 
comment mr with summary statistics.
matrix data variables=v1 to v4/contents=mean sd n corr
  /format=lower nodiagonal.
begin data
10.25 8.50 9.15 5.40
3.45 4.50 7.35 5.30
100 100 100 100
.35
.40 .30
.30 .35 .50
end data.
regression matrix=in(*)/variables=v1 to v4/dependent=v4/enter.
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1.	 Some special kinds of analyses require raw data files. One is when non-normal 
data are analyzed with an estimation method that assumes normality—this includes 
the default method of maximum likelihood (ML)—but test statistics are calculated that 
correct for non-normality. You should know that default ML estimation does not handle 
incomplete raw data files. However, there are special forms of ML estimation available in 
some SEM computer tools—including Amos, EQS, LISREL, and Mplus—for analyzing 
incomplete data sets. For analyses that do not involve any of these applications—and 
many do not—either the raw data or a matrix summary of them can be analyzed.

2.	 Matrix input offers a potential economy over raw data files. Suppose that 1,000 
cases are measured on 10 variables. The raw data file may be 1,000 lines (or more) in 
length, but a matrix summary for the same data might be only 10 lines long.

3.	 Sometimes one might “make up” a data matrix using theory or results from a 
meta-analysis, so there are no raw data, only a matrix summary. A made-up data matrix 
can be submitted to an SEM computer tool for analysis. This is also a way to diagnose 
certain technical problems that can crop up in SEM. This point is elaborated in later 
chapters.

If means are not analyzed, there are two basic types of summaries of raw data—
correlation matrices with standard deviations and covariance matrices. For example, 
presented in the top part of Table 3.2 are the correlation matrix with standard devia-
tions (left) and the covariance matrix (right) for the raw data in Table 2.1 on three 
variables. (Whenever possible, four-decimal accuracy is recommended for matrix input. 
Precision at this level helps to minimize rounding error in computer analysis.) Both of 
these matrices in Table 3.2 are in lower diagonal form where only the unique values of 
correlations or covariances are reported in the lower-left-hand side of the matrix. Most 
SEM computer programs accept lower diagonal matrices as an alternative to full ones, 

TABLE 3.2. Matrix Summaries of the Data in Table 2.1

Variables Variables

X1 X2 Y X1 X2 Y

Summaries without means

Correlations, standard deviations Covariances

1.0000 38.5000
  .4699   1.0000 42.5000 212.5000
  .6013     .7496 1.0000 17.5000   51.2500 22.0000
6.2048 14.5773 4.6904

Summaries with means

Correlations, standard deviations, means Covariances, means

  1.0000 38.5000
    .4699   1.0000 42.5000 212.5000
    .6013     .7496   1.0000 17.5000   51.2500 22.0000
  6.2048 14.5773   4.6904 11.0000   60.0000 25.0000
11.0000 60.0000 25.0000



�		  Data Preparation	 49

with (redundant) entries above and below the diagonal, and can “assemble” a covariance 
matrix given the correlations and standard deviations.

It may be problematic to submit for analysis just a correlation matrix without stan-
dard deviations or specify that all standard deviations equal 1.0, which standardizes 
everything.1 This is because the default method of ML estimation (and most other meth-
ods, too) assumes that the variables are unstandardized. This means that if a correlation 
matrix without standard deviations is analyzed, the results may not be correct. This 
point is elaborated in Chapter 7 about estimation, but potential problems include the 
derivation of incorrect standard errors for standardized estimates if special methods 
for standardized variables are not used. Some SEM computer programs give warning 
messages or terminate the run if the researcher requests the analysis of a correlation 
matrix only with standard ML estimation. Thus, it is generally safer to analyze a covari-
ance matrix or a correlation matrix with standard deviations. Accordingly, covariances 
are analyzed for almost all of the examples presented in this book. When a correlation 
matrix only is analyzed, I use a special method described in Chapter 7 for standardized 
variables. The issues just discussed about the pitfalls of analyzing correlation matrices 
without standard deviations explain why you must clearly state in written reports the 
specific kind of data matrix analyzed and the estimation method used to do so.

Matrix summaries of raw data must consist of the covariances and means whenever 
means are analyzed in SEM. Presented in the lower part of Table 3.2 are matrix sum-
maries of the data in Table 2.1 that include the correlations, standard deviations, and 
means (left) and the covariances and means (right). Both of these matrices convey the 
same information. Even if your analysis does not concern means, you should neverthe-
less report the means of all variables. You may not be interested in analyzing the means, 
but someone else may be. Always report sufficient summary statistics (including the 
means) so that others can reproduce your results in a secondary analysis (McDonald & 
Ho, 2002).

Positive Definiteness

The data matrix that you submit for analysis to an SEM computer tool should have the 
property that it is positive definite (PD), which is required for most estimation meth-
ods. A matrix that lacks this characteristic is nonpositive definite (NPD), and attempts 
to analyze such a data matrix will probably fail. A PD data matrix has the properties 
summarized next (Wothke, 1993):

1.	 The matrix is nonsingular, or invertible. In most kinds of multivariate analyses 
(SEM included), the computer needs to derive the inverse of the data matrix as part of 
linear algebra operations. A matrix that is not invertible is singular.

1By the same token, it would also be problematic to convert raw scores to z scores and then submit for 
analysis the data file of standardized scores.
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2.	 All eigenvalues of PD matrices are positive (> 0). An eigenvalue is the variance 
of an eigenvector, which is a linear combination of the observed variables where all 
the weights are not zero. An eigenvalue is the unstandardized proportion of variance 
explained by the corresponding eigenvector, and the variance of that composite (its 
eigenvalue) cannot logically be less than zero. The total number of pairs of eigenval-
ues and eigenvectors for a data matrix equals the number of observed variables. For 
example, if a covariance matrix is based on 10 variables, then there are a total of 10 
eigenvalue-eigenvector pairs.

3.	 A related property is that the determinant of a PD matrix is greater than zero. 
If the determinant is zero, then the matrix is singular. A determinant equals the serial 
product (the first times the second times the third, and so on) of the eigenvalues, so if a 
determinant is negative, then some odd number of the eigenvalues (1 or 3 or 5, etc.) must 
be negative. A negative determinant indicates an NPD matrix.

4.	 In a PD data matrix, none of the correlations or covariances are out of bounds. 
An out-of-bounds matrix element is one that would be mathematically impossible to 
derive if all entries were calculated using data from the same cases. This property is 
explained next.

The value of the Pearson correlation between two variables X and Y is limited by the 
correlations between these variables and a third variable W. Specifically, the value of rXY 
must fall within the following range:

	 2 2( ) (1 ) (1 )XW YW XW YWr r r r× ± − −  	 (3.1)

For example, if rXW = .60 and rYW = .40, then the value of rXY must be within the range 
.24 ± .73 (i.e., –.49–.97). Any other value for rXY would be out of bounds. Another way 
to view Equation 3.1 is that it specifies a triangle inequality for values of correlations 
among three variables measured in the same sample.2

In a PD data matrix, the maximum absolute value of covXY, the covariance between 
X and Y, must respect the upper limit defined next:

	 2 2max XY X Ycov s s≤  	 (3.2)

where 2
Xs  and 2

Ys  are, respectively, the sample variances of X and Y. In words, the maxi-
mum absolute value for the covariance between any two variables is less than or equal 
to the square root of the product of their variances. Otherwise, the value of covXY is out 
of bounds. For example, given

	 covXY = 13.00,  2
Xs  = 12.00,  and 2

Ys  = 10.00

2In a geometric triangle, the length of a given side must be less than the sum of the lengths of the other two 
sides but greater than the difference between the lengths of the two sides.
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then the covariance between X and Y would be out of bounds because

	 13.00 > (12.00 × 10.00)1/2 = 10.95

which violates Equation 3.2. The value of rXY for this example is also out of bounds 
because it equals 1.19. An exercise will ask you to verify this fact.

An NPD data matrix has at least one eigenvalue ≤ 0. Many computer programs for 
multivariate statistical analyses, including those for SEM, print eigenvalues in the out-
put, so this sign of trouble is apparent. An eigenvalue of zero indicates that the matrix 
is singular. A negative eigenvalue could indicate a few different problems. One is the 
presence of an out-of-bounds entry in the data matrix (i.e., Equations 3.1–3.2 do not 
hold). Another is perfect collinearity either between a pair of variables (e.g., rXY = 1.00) 
or between a variable and at least two others (e.g., ⋅Y XWR  = 1.00). It can also happen that 
near-perfect collinearity (e.g., rXY = .95) manifested as positive but near-zero eigenvalues 
can cause matrix inversion operations to fail. It is easy to spot bivariate collinearity by 
inspecting the correlation matrix. A way to detect multivariate collinearity among three 
or more variables is described later in this chapter. See Topic Box 3.1 for more informa-
tion about causes of nonpositive definiteness in the data matrix and possible solutions.

Data Screening

Before analyzing in SEM either a raw data file or a matrix summary, the original data file 
should be screened for the problems considered next. Some of these potential problems 
are causes of NPD data matrices, but others concern distributional assumptions for con-
tinuous outcomes.

Collinearity

Extreme collinearity can occur because what appear to be separate variables actually 
measure the same thing. Suppose that X measures accuracy and Y measures speed. If 
rXY = .95, for example, then variables X and Y are redundant despite their different labels 
(speed is accuracy and vice versa). Either one or the other could be included in the same 
analysis, but not both. Researchers can inadvertently cause extreme collinearity when 
composite variables and their constituent variables are analyzed together. Suppose that 
a questionnaire has 10 items and the total score is summed across the items. Although 
the bivariate correlations between the total score and each of the individual items may 
not be high, the multiple correlation between the total score and the items must equal 
1.00, which is collinearity in its most extreme form.

Some methods and statistics to detect collinearity among three or more variables 
are summarized next. Most of these are available in regression diagnostics procedures of 
programs for general statistical analyses, such as SPSS and SAS/STAT:
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Topic Box 3.1

Causes of Nonpositive Definiteness and Solutions

Many points summarized here are from Wothke (1993).* Some causes of non-
positive definite (NPD) data matrices are listed next. Most can be detected 
through careful data screening:

1.	 Extreme bivariate or multivariate collinearity among the observed vari-
ables.

2.	 The presence of outliers, especially those that force values of correlations to 
be extremely high.

3.	 Pairwise deletion of cases with missing data.
4.	 Making a typing mistake when transcribing a data matrix from one source, 

such as a table in a journal article, to another, such as a command file for 
computer analysis, can also result in an NPD matrix. For example, if the 
value of a covariance in the original matrix is 15.00, then mistakenly typing 
150.00 in the transcribed matrix could generate an NPD covariance matrix 
with elements that violate Equation 3.2. It is so easy to make a typing mis-
take during manual entry of a data matrix that errors are almost guaran-
teed, especially when the number of variables exceeds 10 or so. Follow this 
simple but effective advice from Wilkinson and the Task Force on Statistical 
Inference (1999) whenever you transcribe a data matrix: look at the data, 
that is, carefully compare, entry by entry, the original data matrix with your 
transcribed matrix before you attempt to analyze it with the computer.

5.	 Plain old sampling error can generate NPD data matrices, especially if 
the number of cases is relatively small or the sample is unrepresentative. 
The former condition can be addressed by increasing the sample size; the 
unrepresentativeness may be the result of using a sampling method that 
selects atypical cases.

6.	 Sometimes matrices of estimated Pearson correlations, such as polyserial 
or polychoric correlations derived for noncontinuous observed variables 
(Chapter 2), are NPD. This may be especially true if polyserial or poly-
choric correlations are estimated in a pairwise manner instead of simul-
taneously estimating the whole correlation matrix. Pairwise calculation of 
non-Pearson correlations is an older method that required less computer 
memory, but this goal is less relevant given today’s personal computers 
with relatively large memory capacities. Modern computer tools, such as 
the PRELIS program of LISREL, can simultaneously estimate the whole cor-
relation matrix.

*See also E. Rigdon’s webpage on nonpositive definite matrices in SEM at www2.gsu. 
edu/~mkteer/npdmatri.html
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1.	 Calculate a squared multiple correlation ( 2
smcR ) between each variable and all 

the rest. That is, run several multiple regressions, each with a different variable as the 
criterion and the rest as predictors. The observation that 2

smcR  > .90 for a particular vari-
able analyzed as the criterion suggests extreme multivariate collinearity.

2.	 A related statistic is tolerance, which equals 1 –  2
smcR  and indicates the propor-

tion of total standardized variance that is unique (not explained by all the other vari-
ables). Tolerance values < .10 may indicate extreme multivariate collinearity.

3.	 Another is the variance inflation factor (VIF). It equals 1/(1 –  2
smcR ), the ratio 

Here is a tip about diagnosing whether a data matrix is positive definite before 
submitting it for analysis to an SEM computer program: Copy the full matrix (with 
redundant entries above and below the diagonal) into a text (ASCII) file, such as 
Microsoft Windows Notepad. Next, point your Internet browser to a free, online 
matrix calculator and then copy the data matrix into the proper window on 
the calculating webpage.* Finally, select options on the webpage to derive the 
determinant and eigenvalues of the data matrix. Look for outcomes that indicate 
nonpositive definiteness, such as near-zero, zero, or negative eigenvalues.

Some SEM computer programs, such as LISREL, offer options for making 
a ridge adjustment to an NPD data matrix. The ridge technique iteratively 
multiplies the diagonal entries of the matrix by a constant > 1.0 until negative 
eigenvalues disappear (the matrix becomes positive definite). For covariance 
matrices, ridge adjustments increase the values of the variances until they are 
large enough to exceed any out-of-bounds covariance entry in the off-diagonal 
part of the matrix (Equation 3.2 will be satisfied). This technique “fixes up” a 
data matrix so that necessary algebraic operations can be performed (Wothke, 
1993). However, the resulting parameter estimates, standard errors, and model 
fit statistics will be biased after applying a ridge correction. For this reason, I do 
not recommend that you use a ridge technique to analyze an NPD data matrix 
unless you are very familiar with linear algebra (i.e., you know what you are 
doing and why). Instead, you should try to solve the problem of nonpositive 
definiteness through data screening or increasing the sample size.

There are other contexts where you may encounter NPD matrices in SEM, but 
these generally concern (1) matrices of parameter estimates for your model or 
(2) matrices of covariances or correlations predicted from your model that could 
be compared with those observed in your sample. A problem in the analysis is 
indicated if any of these matrices is NPD. We will deal with these contexts in 
later chapters.

*www.bluebit.gr/matrix-calculator/
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of the total standardized variance over unique variance (tolerance). If the first is more 
than 10 times greater than the second, or VIF > 10.0, the variable in question may be 
redundant.

There are two basic ways to deal with extreme collinearity: eliminate variables or 
combine redundant ones into a composite. For example, if X and Y are highly correlated, 
one could be dropped or their scores could be summed (or averaged) to form a single 
new variable, but note that the total score (or average) must replace both X and Y in the 
analysis. Extreme collinearity can also happen between latent variables when their esti-
mated correlation is so high that it is clear they are not distinct. This issue is considered 
in Chapter 9.

Outliers

Outliers are scores that are different from the rest. A case can have a univariate outlier 
if it is extreme on a single variable. There is no single definition of “extreme,” but a com-
mon rule is that scores more than three standard deviations beyond the mean may be 
outliers. Univariate outliers are easy to find by inspecting frequency distributions of z 
scores (e.g., | z | > 3.00 indicates an outlier). A multivariate outlier has extreme scores 
on two or more variables, or its pattern of scores is atypical. For example, a case may 
have scores between two and three standard deviations above the mean on all variables. 
Although no individual score may be considered extreme, the case could be a multivari-
ate outlier if this pattern is unusual in the sample.

The detection of multivariate outliers without extreme individual scores is more 
difficult, but there are a few options:

1.	 Some computer programs for SEM, such as EQS and Amos, identify cases that 
contribute the most to multivariate non-normality as measured by Mardia’s (1970) 
index, and such cases may be multivariate outliers. In order for cases to be screened by 
the computer, a raw data file must be analyzed.

2.	 Another method is based on the Mahalanobis distance (D) statistic, which 
indicates the distance in standard deviation units between a set of scores (vector) for an 
individual case and the sample means for all variables (centroid), correcting for inter-
correlations. Within large samples with normal distributions, D2 is distributed as a cen-
tral chi-square (χ2) statistic with degrees of freedom equal to the number of variables. 
A value of D2 with a low p value in the appropriate central χ2-distribution may lead to 
rejection of the null hypothesis that the case comes from the same population as the 
rest. A conservative level of statistical significance is usually recommended for this test 
(e.g., p < .001). Some computer programs for general statistical analyses, including SPSS 
and SAS/STAT, can print D (or D2) for individual cases; Amos also prints Mahalanobis 
distances. See Filzmoser (2005) for more information about detecting multivariate outli-
ers.
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Let us assume that an outlier is not due to a data entry error (e.g., 99 was entered 
instead of 9) or the failure to specify a missing data code (e.g., –9) in the data editor of 
a statistics computer tool; that is, the outlier is a valid score. One possibility is that the 
case does not belong to the population from which you intended to sample. Suppose 
that a senior graduate student audits a lower-level undergraduate class in which a ques-
tionnaire is distributed. The auditing student is from a different population, and his or 
her questionnaire responses may be extreme compared with those of classmates. If it is 
determined that a case with outlier scores is not from the same population as the rest, 
then it is best to remove that case from the sample. Otherwise, there are ways to reduce 
the influence of extreme scores if they are retained. One option is to convert extreme 
scores to a value that equals the next most extreme score that is within three standard 
deviations of the mean. Another is to apply a mathematical transformation to a variable 
with outliers. Transformations are discussed later in this chapter.

Missing Data

The topic of how to analyze data sets with missing observations is complicated. Entire 
books and special sections of journals (Allison, 2001; Little & Rubin, 2002; McKnight, 
McKnight, Sidani, & Figueredo, 2007; West, 2001) are devoted to it. This is fortunate 
because it is not possible here to give a comprehensive account of the topic. The goal 
instead is to acquaint you with basic analysis options, explain the relevance of these 
options to SEM, and provide references for further study.

Ideally, researchers would always work with complete data sets, ones with no miss-
ing values. Otherwise, prevention is the best approach. For example, questionnaire items 
that are clear and unambiguous may prevent missing responses, and completed forms 
should be reviewed for missing responses before research participants leave the labora-
tory. In the real world, missing values occur in many (if not most) data sets, despite the 
best efforts at prevention. Missing data occur for many reasons, including hardware 
failure, software bugs, missed appointments, and case attrition. A few missing values, 
such as less than 5% on a single variable, in a large sample may be of little concern. This 
is especially true if the reason for data loss is ignorable, which means accidental or not 
systematic. Selection among methods to deal with the missing observations in this case 
is pretty much arbitrary in that the method used does not tend to make much difference. 
A systematic data loss pattern, on the other hand, means that incomplete cases differ 
from cases with complete records for some reason, rather than randomly. Thus, results 
based only on the cases with complete records may not generalize to whole population. 
This situation is more difficult because the use of different methods for handling miss-
ing data could yield different results, perhaps all biased.

Most methods that deal with missing observations assume that the data loss pat-
tern is ignorable. There are two general kinds of ignorable patterns, missing at random 
(MAR) and missing completely at random (MCAR). If the missing observations on 
some variable X differ from the observed scores on that variable only by chance, the data 
loss pattern is MAR. If, in addition to the property just mentioned, the presence versus 
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absence of data on X is unrelated to any other variable in the data set, the data loss pat-
tern is MCAR. Note that MCAR is just a stronger assumption about the randomness of 
data loss than MAR, but it may be doubtful whether the assumption of MCAR holds in 
real data sets.

It is not easy in practice to determine whether the data loss pattern is systematic or 
ignorable, especially when each variable is measured only once. This is because there 
is no single test that provides definitive evidence of either MAR or MCAR. Instead, 
researchers typically examine various features of their data for indications of systematic 
data loss. For example, a multivariate statistical test by R. Little concerns whether the 
MCAR assumption is tenable, given the data (Little & Rubin, 2002). Plausibility of the 
MAR assumption can be examined through a series of comparisons with the t-test of 
cases with missing observations on some variable with cases who have complete records 
on other variables. The finding of appreciable differences in these comparisons may help 
to identify the nature of the data loss mechanism. A related tactic involves the creation 
of a dummy-coded variable that indicates whether a score is missing or present and 
then examining cross-tabulations with other categorical variables, such as gender or 
treatment condition. Some computer programs for general statistical analyses have spe-
cial procedures for analyzing missing data patterns. An example is the Missing Values 
procedure of SPSS, which can conduct all these diagnostic tests. The PRELIS module of 
LISREL also has extensive capabilities for analyzing missing data patterns.

There is no magic statistical “fix” that will remedy systematic data loss. About the 
best that can be done is to attempt to understand the nature of the underlying data loss 
pattern and then accordingly qualify your interpretation of the results. If the selection 
of one option for dealing with missing data instead of another makes a difference in the 
results and it is unclear which option is best, then you should report both sets of find-
ings. This makes it plain that your results depend on how missing observations were 
handled. This approach is a kind of sensitivity analysis in which data are reanalyzed 
under different assumptions—here, using alternative missing data techniques—and the 
results are compared with the original findings. Always explain in written summaries 
the extent of missing observations in your sample and the steps you took to deal with 
them in the analysis (Burton & Altman, 2004). Too many researchers neglect to inform 
their readers about this critical information (e.g., Roth, 1994).

The methods for dealing with missing observations described here fall into four 
categories (Vriens & Melton, 2002):

1.	 Available case methods that analyze only the data available through deletion of 
incomplete cases. Techniques include listwise deletion and pairwise deletion.

2.	 Single-imputation methods that replace each missing score with a single cal-
culated score. Techniques in this category include mean substitution and regression-
based substitution.

3.	 Model-based imputation methods that take greater advantage of the structure 
in the data compared with single imputation methods, and they can generate more than 
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one estimated score for each missing observation, that is, multiple imputation. An 
example includes the expectation–maximization algorithm.

4.	 A special form of full-information ML estimation for incomplete data sets that is 
applied to raw data files only and does not delete cases or impute missing observations.

Available case methods and single imputation are “classical” techniques that are 
available in various kinds of statistical analyses. These classical techniques are gener-
ally easy to understand, but they “are ad hoc procedures that attempt to make the best 
of a bad situation in ways that are seemingly plausible but have no theoretical rationale” 
(Arbuckle, 1996, p. 243). This is because classical techniques take little advantage of the 
information in the data. They also typically assume that the data loss pattern is MCAR, 
which is unrealistic. Classical techniques tend to yield biased estimates under the less 
strict assumption of MAR, and even more so when the data loss pattern is systematic. In 
contrast, techniques such as model-based imputation are more complicated, but they use 
more information in the data and generally assume a data loss pattern that is MAR, not 
MCAR. When the data loss pattern is not random, these more sophisticated techniques 
will also yield biased estimates, but perhaps less so compared with classical techniques 
(Arbuckle, 1996; Peters & Enders, 2002; Wiggins & Sacker, 2002).

Available Case Methods

There are two basic kinds of available case methods: listwise and pairwise deletion. 
In listwise deletion, cases with missing scores on any variable are excluded from all 
analyses. The effective sample size with listwise deletion includes only cases with com-
plete records, and this number can be much smaller than the original sample if missing 
observations are scattered across many records. It is no surprise that standard errors 
estimated after applying listwise deletion are usually larger than those based on the 
entire data set. In regression analyses, listwise deletion of incomplete cases generates 
reasonably accurate estimates when the missing data mechanism depends on the pre-
dictors, but not on the criterion (Little & Rubin, 2002).

An advantage of listwise deletion is that all analyses are conducted with the same 
number of cases. This is not so with pairwise deletion, in which cases are excluded 
only if they have missing data on variables involved in a particular analysis. Suppose 
that N = 300 for an incomplete data set. If 280 cases have no missing scores on variables 
X and Y, then the effective sample size for covXY is this number. If fewer or more cases 
have valid scores on X and W, however, the effective sample size for covXW will not be 
280. It can happen with pairwise deletion that no two terms in a covariance matrix are 
based on the same subset of cases. It is this property of the method that can give rise to 
out-of-bounds covariances or correlations. Accordingly, pairwise deletion is not gener-
ally recommended for use in SEM unless the number of missing observations is small. 
Presented in Table 3.3 is a small data set with scores on X, Y, and W but with missing 
observations on all three variables. The covariance matrix generated by pairwise dele-
tion for these data is NPD. An exercise will ask you to verify this fact.
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Single-Imputation Methods

The most basic method is mean substitution, which involves replacing a missing score 
with the overall sample mean. A variation is group-mean substitution, in which a miss-
ing score in a particular group (e.g., men) is replaced by the group mean. The variation 
may be preferred when group membership is a predictor in the analysis or when a struc-
tural equation model is analyzed over groups. Both methods are simple, but they can 
distort the distribution of the data by reducing variability. Suppose in a data set where 
N = 75 that 15 cases have missing values on some variable. Substituting the mean of the 
60 valid cases will result in the mean for the whole sample and the mean for the N = 60 
cases after substitution, both being equal. However, the variance for the N = 60 scores 
before substitution will be greater than the variance for the N = 75 scores after substitu-
tion. Mean substitution also tends to make distributions more peaked at the mean, too, 
which further distorts the underlying distribution of the data (Vriens & Melton, 2002).

A somewhat more sophisticated single-imputation technique is regression-based 
imputation, in which each missing score is replaced by a predicted score using multiple 
regression based on nonmissing scores on other variables. Suppose that there are five 
trials in a learning task and each trial yields a continuous score. As a result of equipment 
failure, the score for Trial 4 for some cases is not recorded. In this method, specify Trials 
1–3 and 5 as predictors of Trial 4 (the criterion) in a regression analysis based on scores 
from all complete cases. From this analysis, record the values of the four unstandardized 
regression coefficients (B1–B3, B5) and the intercept (A). An imputed score for Trial 4 is 
the predicted score ( 4Ŷ ), given scores on the other four trials (designated with X in the 
following equation), the regression coefficients, and the intercept, as follows:

	 4̂Y  = B1 X1 + B2 X2 + B3 X3 + B5 X5 + A

Regression-based substitution uses more information than mean substitution. It is best 
to generate predicted scores based on data from the whole sample, not from just one 
group. This is because regression techniques can be affected by range restriction, which 
can happen when scores from a particular group are less variable compared with scores 
for the whole sample.

A more sophisticated single-imputation method is pattern matching. In this 

TABLE 3.3.  Example of an Incomplete Data Set

 Case X Y W

 A 42   8 13

 B 34 10 12

 C 22 12 —

 D — 14   8

 E 24 16   7

 F 16 — 10

 G 30 — 10
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method, the computer replaces a missing observation with a score from a case with 
the most similar profile of scores across other variables. The PRELIS program of LIS-
REL can use pattern matching to impute missing observations. Another is random hot-
deck imputation. This technique separates complete from incomplete records, sorts 
both sets of records so that cases with similar profiles on background variables are 
grouped together, randomly interleaves the incomplete cases among the complete ones, 
and replaces missing scores with those on the same variable from the nearest complete 
record. This nearest record is not guaranteed to have the most similar pattern of scores. 
All single-imputation methods tend to underestimate error variance, especially if the 
proportion of missing observations is relatively high (Vriens & Melton, 2002).

Model-Based Imputation Methods

These methods can generally replace a missing score with ≥ 1 imputed (estimated) val-
ues from a predictive distribution that explicitly models the underlying data loss mecha-
nism. In nontechnical terms, a model for both the complete data and the incomplete 
data is defined under these methods. The computer then estimates means and variances 
in the whole sample that satisfy a statistical criterion. One model-based method is the 
expectation–maximization (EM) algorithm, which has two steps. In the E (expecta-
tion) step, missing observations are imputed by predicted scores in a series of regres-
sions in which each incomplete variable is regressed on the remaining variables for a 
particular case. In the M (maximization) step, the whole imputed data set is submitted 
for ML estimation. These two steps are repeated until a stable solution is reached across 
the M steps. Among SEM computer tools, EM-type algorithms are available in EQS and 
LISREL; it is also available in the Missing Values procedure of SPSS. Two SAS/STAT 
procedures, MI and MIANALYZE, impute multiple values for missing observation, but 
they are based on a different method. See Peng, Harwell, Liou, and Ehman (2007) for 
more information.

Special Form of ML Estimation for Incomplete Data

This special method is available in some SEM computer tools, including Amos, Mx, LIS-
REL, and Mplus, and it does not delete cases or impute missing observations. Instead, 
it partitions the cases in a raw data file into subsets, each with the same pattern of 
missing observations. Relevant statistical information, including means and variances, 
is extracted from each subset, so all cases are retained in the analysis. This means that 
parameter estimates and their standard errors are calculated directly from the available 
data without deletion or imputation of missing values. Arbuckle (1996), Enders and 
Bandalos (2001), and Peters and Enders (2002) found in computer simulation studies 
that special ML-based methods for incomplete data generally outperformed classical 
methods. See Horton and Kleinman (2007) for information about other missing data 
techniques.
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Multivariate Normality

Estimation in SEM with ML—either the default form that does not handle missing 
observations or the special form that does—assumes multivariate normality or multi-
normality of continuous outcome variables. This means that:

1.	 All the individual univariate distributions are normal.
2.	 The joint distribution of any pair of the variables is bivariate normal; that is, 

each variable is normally distributed for each value of every other variable.
3.	 All bivariate scatterplots are linear, and the distribution of residuals is homosce-

dastic.

Because it is often impractical to examine all joint frequency distributions, it can be dif-
ficult to assess all aspects of multivariate normality. There are statistical tests intended 
to detect violation of multivariate normality, including Mardia’s (1985) test and the 
Cox–Small test (Cox & Small, 1978), among others. However, all such tests are limited 
by the fact that slight departures from normality could be statistically significant in a 
large sample. Fortunately, many instances of multivariate nonnormality are detectable 
through inspection of univariate distributions.

Univariate Normality

Skew and kurtosis are two ways that a distribution can be non-normal, and they can 
occur either separately or together in a single variable. Skew implies that the shape of 
a unimodal distribution is asymmetrical about its mean. Positive skew indicates that 
most of the scores are below the mean, and negative skew indicates just the opposite. 
Presented in the top part of Figure 3.1 are examples of distributions with either positive 
skew or negative skew compared with a normal curve. For a unimodal, symmetrical 
distribution, positive kurtosis indicates heavier tails and a higher peak and negative 
kurtosis indicates just the opposite, both relative to a normal distribution with the 
same variance. A distribution with positive kurtosis is described as leptokurtic, and a 
distribution with negative kurtosis is described as platykurtic. Presented in the bottom 
part of Figure 3.1 are examples of distributions with either positive kurtosis or negative 
kurtosis compared with a normal curve. Note that skewed distributions are generally 
leptokurtic. This means that remedies for skew, such as transformations, may also fix a 
kurtosis problem. Blest (2003) describes a kurtosis measure that adjusts for skewness.

Extreme skew is easy to spot by inspecting graphical frequency distributions or 
histograms. Two other types of visual displays helpful for detecting skew are stem-and-
leaf plots and box plots (box-and-whisker plots). For example, presented in the left 
part of Figure 3.2 is a stem-and-leaf plot for N = 64 scores. The lowest and highest scores 
are, respectively, 10 and 27. The latter is an outlier that is > 5 standard deviations above 
the mean (M = 12.73, SD = 2.51). In the stem-and-leaf plot, the numbers to the left side 
of the vertical line (“stems”) represent the “tens” digit of each score, and each number to 
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FIGURE 3.1.  Distributions with positive skew or negative skew (top) and with positive kurtosis 
or negative kurtosis (bottom) relative to a normal curve.

FIGURE 3.2.  A stem-and-leaf plot (left) and a box plot (right) for the same distribution (N = 64).
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the right (“leaf”) represents the “ones” digit. The shape of the stem-and-leaf plot in the 
figure indicates positive skew.

Presented in the right side of Figure 3.2 is a box plot for the same scores. The 
bottom and top borders of the rectangle in a box plot correspond to, respectively, the 
25th percentile (1st quartile) and the 75th percentile (3rd quartile). The line inside the 
rectangle of a box plot represents the median (2nd quartile). The “whiskers” are the 
vertical lines that connect the first and third quartiles with, respectively, the lowest 
and highest scores that are not extreme, or outliers. The length of the whiskers shows 
how far nonextreme scores spread away from the median. Skew is indicated in a box 
plot if the median line does not fall within the center of the rectangle or if the “whis-
kers” have unequal lengths. In the box plot of Figure 3.2, the 25th and 75th percentiles 
are, respectively, 11 and 13.75; the median is 12; and the lowest and highest scores that 
are not extreme are, respectively, 10 and 17. The high score of 27 is extreme and thus 
is represented in the box plot as a single open circle above the upper “whisker.” The 
box plot in the figure indicates positive skew because there is a greater spread of scores 
above the median.

Kurtosis is harder to spot by eye when inspecting frequency distributions, stem-
and-leaf plots, or box plots, especially in distributions that are more or less symmetrical. 
Departures from normality due to skew or kurtosis may be apparent in normal prob-
ability plots, in which data are plotted against a theoretical normal distribution in such 
a way that the points should form an approximate straight line. Otherwise, the distribu-
tion is non-normal, but it is hard to discern the degree of non-normality due to skew or 
kurtosis apparent in normal probability plots. An example of a normal probability plot 
is presented later.

Fortunately, there are more precise measures of skew and kurtosis. Perhaps the best 
known standardized measures of these characteristics that permit comparison of differ-
ent distributions to the normal curve are the skew index (SI) and kurtosis index (KI), 
which are calculated as follows:
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The sign of SI indicates the direction of the skew, positive or negative, and a value of zero 
indicates a symmetrical distribution. The value of KI in a normal distribution equals 
zero, and its sign indicates the type of kurtosis, positive or negative.3

3Some computer programs calculate the kurtosis index as KI = S4/(S2)2. In this case, a value of 3.0 indicates 
a normal distribution, a value greater than 3.0 indicates positive kurtosis, and a value less than 3.0 indicates 
negative kurtosis.
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The ratio of the value of either SI or KI over its standard error is interpreted in large 
samples as a z-test of the null hypothesis that there is no population skew or kurtosis, 
respectively. These tests may not be helpful in large samples because even slight depar-
tures from normality could be statistically significant. An alternative is to interpret the 
absolute values of SI or KI, but there are few clear-cut standards for doing so. Some 
guidelines can be offered, however, based on computer simulation studies of estima-
tion methods used by SEM computer programs (e.g., Curran, West, & Finch, 1997). 
Variables with absolute values of SI > 3.0 are described as “extremely” skewed by some 
authors of these studies. There is less consensus about the KI, however—absolute values 
from about 8.0 to over 20.0 of this index are described as indicating “extreme” kurtosis. 
A conservative rule of thumb, then, seems to be that absolute values of KI > 10.0 suggest 
a problem, and absolute values of KI > 20.0 indicate a more serious one. For the data in 
Figure 3.2, SI = 3.10 and KI = 15.73. By the rules of thumb just mentioned, these data are 
severely non-normal. Before analyzing non-normal data with a normal theory method, 
such as ML, corrective action should be taken.

Transformations

One way to deal with univariate normality—and thereby address multivariate normal-
ity—is through transformations, meaning that the original scores are converted with a 
mathematical operation to new ones that may be more normally distributed. The effect 
of applying a transformation is to compress one part of a distribution more than another, 
thereby changing its shape but not the rank order of the scores. This describes a mono-
tonic transformation. Transformations for three types of non-normal distributions and 
practical suggestions for using them are offered next. Recall that transformations for 
skew may also help for kurtosis:

1.	 Positive skew. Before applying these transformations, you should add a constant 
to the scores so that the lowest value is 1.00. A basic transformation is the square root 
function, or X 1/2. It works by compressing the differences between scores in the upper 
end of the distributions more than the differences between lower scores. Logarithmic 
transformations are another option. A logarithm is the power (exponent) to which a base 
number must be raised in order to get the original number, such as 102 = 100, so the log-
arithm of 100 in base 10 is 2.0. In general, distributions with extremely high scores may 
require a transformation with a higher base, such as log10 X, but a lower base may suffice 
for less extreme cases, such as the natural log base e ≅ 2.71828 for the natural log trans-
formation, or ln X. However, using a base that is too high for the degree of skew could 
result in loss of resolution. This is because gaps between higher scores could be made so 
small that useful information is lost. For even more extreme skew, the inverse function 
1/X is an option. As noted by Osborne (2002), the inverse transformation makes small 
numbers very large and large numbers very small. Because the function 1/X reverses the 
order of the scores, it is recommended that you first reflect or reverse the original scores 
before taking their inverse. Scores are reflected by multiplying them by –1.0. Next, you 
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should add a constant to the reflected scores so that the minimum score is at least 1.0 
before taking the inverse.

2.	 Negative skew. All the transformations just mentioned also work for negative 
skew when they are applied as follows: First, reflect the scores, and then add a constant 
so that the lowest score equals 1.0. Next, apply the transformation, and then reflect the 
scores again to restore the original ordering (Osborne, 2002).

3.	 Other types of non-normality. Odd-root functions, such as X 1/3, and sine func-
tions tend to bring in outliers from both tails of the distribution toward the mean. Odd-
powered polynomial transformations, such as X 3, may help for negative kurtosis.

There are many other kinds of transformations, and this is one of their potential prob-
lems: It can be difficult to find one that works with a particular set of scores. A class 
of power transformations known as Box–Cox transformations (Box & Cox, 1964) 
may require less trial and error. The most basic form of the Box–Cox transformation is 
defined only for positive data values, but you can always add a constant to the scores so 
that there are no negative values. The basic Box–Cox transformation is

	 ( )
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where the exponent λ is a constant selected to normalize a set of scores. There are com-
puter algorithms for finding an optimal value of λ, one that both normalizes the scores 
and results in the maximum correlation between the original and transformed scores. 
It is relatively easy to find on the Internet macros for implementing the Box–Cox trans-
formation in SAS/STAT (e.g., Friendly, 2006). There are many variations on the basic 
Box–Cox transformation, some for more specialized situations (Yeo & Johnson, 2000). 
Box–Cox transformations are also applied in regression analyses to deal with heterosce-
dasticity, which is considered momentarily.

Other potential drawbacks of transformations are briefly considered. Some distribu-
tions can be so severely non-normal that basically no transformation will work. Another 
problem is that the scale of the original variable is lost when scores are transformed. If 
that scale is meaningful, such as postoperative survival time, then its loss could be a 
sacrifice. Results of statistical analyses of transformed scores do not directly apply to 
the original scores.

An example of using transformations to normalize the scores in Figure 3.2 where 
SI = 3.10 and KI = 15.73 is presented next. I added a constant (–9.0) to these scores so 
that the lowest score is 1.0 before applying the transformation X1/2. For the square-root-
transformed scores, SI = 1.24 and KI = 4.13. Even greater reduction in nonnormality for 
these data is afforded by the transformation ln X, for which SI = –.04 and KI = .46 after 
its application.
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Linearity and Homoscedasticity

Linear relations and homoscedasticity (uniform distributions) among residuals are 
aspects of multivariate normality. The presence of bivariate curvilinear relations is easy 
to detect by looking at scatterplots. It is possible in SEM to estimate curvilinear rela-
tions—and interaction effects, too—using the same basic method as in multiple regres-
sion. Chapter 12 deals with this topic.

Heteroscedasticity (nonuniform distributions) among residuals may be caused by 
non-normality in X or Y, more random error at some levels of X or Y than at others, or 
outliers. For example, presented in Figure 3.3 is a scatterplot for N = 18 scores. One case 
has an extreme score (40) on Y that is more than three standard deviations above the 
mean. For these data, rXY = –.074, and the linear regression line is nearly horizontal. 
However, these results are affected by the outlier. When the outlier case is removed, 
then rXY = –.772 for N = 17, and the new regression line better fits the remaining data 
(see Figure 3.3).

Presented in the top part of Figure 3.4 is the normal probability plot for the stan-
dardized regression residuals (converted to z scores) for the data in Figure 3.3 with 
the outlier included. The plotted points of the expected versus observed cumulative 
probabilities for the residuals clearly do not fall along a diagonal line. Presented in the 
middle part of Figure 3.4 is the histogram of the standardized residuals for the same data 
with a superimposed normal curve. Both kinds of displays just described indicate that 
the residuals for the data in Figure 3.3 are not normally distributed when the outlier 
is included. At the bottom of Figure 3.4 is a scatterplot of the standardized residuals 
against the standardized predicted scores ( ˆ

Yz ) for the same data. The residuals are not 
evenly distributed around zero throughout the entire length of this scatterplot. See Bels-
ley, Kuh, and Welsch (2004) for more information about regression diagnostics.

FIGURE 3.3.  Scatterplot with outlier (N = 18) and the linear regression lines with and without 
(N = 17) the outlier.
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FIGURE 3.4.  Plots for regression diagnostics: A normal probability plot of the standardized 
residuals (top), a histogram of the standardized residuals (middle), and a scatterplot of the 
standardized residuals and predicted scores (bottom) for the data in Figure 3.3 with the outlier 
included (N = 18).
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Transformations can be helpful in remedying heteroscedasticity due to non-normal-
ity but may not be very useful when the cause is differential score reliability. Some het-
eroscedastic relations are expected, especially for developmental variables. For instance, 
age is related to height, but variation in height increases from childhood to adulthood. 
One way to take direct account of expected heterogeneity is to analyze a latent growth 
model, in which it is no special problem to estimate different variances across occa-
sions of a repeated measures variable. The analysis of latent growth models in SEM is 
discussed in Chapter 11.

Relative Variances

Covariance matrices in which the ratio of the largest to the smallest variance is greater 
than, say, 10.0, are ill scaled. Analysis of an ill-scaled covariance matrix in SEM can 
cause problems. Most estimation methods in SEM are iterative, which means that initial 
estimates are derived by the computer and then modified through subsequent cycles of 
calculation. The goal of iterative estimation is to derive better estimates at each stage, 
ones that improve the overall fit of the model to the data. When improvements from step 
to step become small, iterative estimation stops because the solution is stable. However, 
if the estimates do not converge to stable values, then the process may fail. One cause is 
variances of observed variables that are very different in magnitude, such as 2

Xs  = 12.00 
and 2

Ys  = .12. When the computer adjusts the estimates from one step to the next in an 
iterative process for an ill-scaled matrix, the sizes of these changes may be huge for vari-
ables with small variances but trivial for others with large variances. Consequently, the 
entire set of estimates may head toward worse rather than better fit.

To prevent this problem, variables with extremely high or low variances can be 
rescaled by multiplying their scores by a constant, which changes the variance by a fac-
tor that equals the squared constant. For example:

	
2
Xs  = 12.00;  so 2

.10Xs ×  = .102 × 12.00 = .12

Likewise:

	
2
Ys  = .12;  so 2

10Ys ×  = 102 × .12 = 12.00

Rescaling a variable in this way changes its mean and variance but not its correlation 
with other variables. This is because multiplying a variable by a constant is just a linear 
transformation that does not affect relative differences among the scores. An example 
with real data follows.

Roth, Wiebe, Fillingim, and Shay (1989) administered measures of exercise, hardi-
ness, fitness, stress, and illness in a sample of university students. Reported in Table 3.4 
is a matrix summary of these data (correlations and variances). The largest variance and 
smallest variances in this matrix (see the table) differ by a factor of more than 27,000, 
so the covariance matrix is ill scaled. I have seen some SEM computer programs fail to 
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analyze this matrix due to this characteristic. To correct this problem, I multiplied the 
original variables by the constants listed in Table 3.4 (e.g., 10.0 for hardiness) in order 
to make their variances more homogeneous. Among the rescaled variables, the largest 
variance is 4,489.00 for stress, and the smallest variance is 1,354.24 for fitness, about a 
4:1 ratio. The rescaled matrix is not ill scaled.

Selecting Good Measures and Reporting about Them

It is just as critical in SEM as in other types of statistical analyses to (1) select measures 
with strong psychometric characteristics and (2) report these characteristics in written 
summaries. This is because the product of measures, or scores, is what you analyze. If 
the scores do not have good psychometric properties, then your results can be meaning-
less. Unfortunately, the quality of instruction about measurement has declined over the 
last 30 years or so. For example, about one-third of psychology PhD programs in North 
America offer no formal training in measurement, and measurement courses have dis-
appeared from many undergraduate psychology programs (Aiken, West, Sechrest, & 
Reno, 1990; Frederich, Buday, & Kerr, 2000). This state of affairs puts both students 
and established researchers in a difficult spot: They are expected to select measures for 
their research, but they may lack the skills needed in order to critically evaluate those 
measures.

It also seems that lax education about measurement has begotten widespread poor 
reporting practices in our research literature. For example, Vacha-Haase, Ness, Nilsson, 
and Reetz (1999) found no mention of score reliability in one-third of the articles pub-
lished from 1990 to 1997 in three different counseling or psychology journals. Only 
about one-third reported reliability coefficients for the scores actually analyzed in the 
study, and the rest described score reliability information from previous studies or 

TABLE 3.4.  Example of an Ill-Scaled Data Matrix

Variable 1 2 3 4 5

1.  Exercise    — 

2.  Hardiness −.03     — 

3.  Fitness   .39     .07    — 

4.  Stress −.05   −.23 −.13    — 

5.  Illness −.08   −.16 −.29   .34    — 

Original s2 4,422.25 14.44 338.56 44.89 390,375.04

Constant 1.00 10.00 2.00 10.00 .10

Rescaled s2 4,422.25 1,440.00 1,354.24 4,489.00 3,903.75

Rescaled SD 66.50 37.95 36.80 67.00 62.48

Note. These data (correlations and variances) are from Roth et al. (1989); N = 373.  Note that low scores on 
the hardiness measure used by these authors indicate greater hardiness.  In order to avoid confusion due to 
negative correlations, the signs of the correlations that involve the hardiness measure were reversed before 
they were recorded in this table.
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sources, such as test manuals. The latter practice is reliability induction. Too many 
authors who invoke reliability induction (inferring from particular coefficients calcu-
lated in other samples to a different population) fail to explicitly compare characteristics 
of their sample with those from cited studies.

Thompson and Vacha-Haase (2000) speculated that another cause of poor reporting 
practices is the apparently widespread but false belief that it is tests that are reliable or 
unreliable, not scores in a particular sample. That is, if researchers believe that reliabil-
ity, once established, is an immutable property of the test, then they may put little effort 
into estimating score reliability in their own samples. They may also adopt a “black box” 
view of reliability that assumes that reliability can be established by others, such as a 
select few academics who conduct measurement research. This false belief also implies 
that it is wasteful to devote significant resources to teaching about measurement.

Fortunately, there are some bright spots in this otherwise bleak picture. If you have 
already taken a measurement course, then you are at some advantage in learning about 
SEM. Otherwise, you are encouraged to recognize that this gap in your background 
is a potential handicap. Formal coursework is not the only way to learn more about 
measurement. Just like learning about SEM, more informal ways to learn measurement 
theory include participation in seminars or workshops and self study. For self-study 
I recommend Thorndike and Thorndike-Christ (2010) as a good undergraduate-level 
book and Nunnally and Bernstein (1994) as a strong graduate-level book that covers 
both classical test theory and more modern approaches.

Score Reliability

Score reliability, the degree to which scores in a particular sample are free from random 
measurement error, is estimated as one minus the proportion of total observed variance 
due to random error. These estimates are reliability coefficients, and a reliability for the 
scores of variable X is often designated with the symbol rXX. Because rXX is a proportion 
of variance, its theoretical range is 0–1.00. For example, if rXX = .80, then it is estimated 
that 1 – .80 = .20, or 20% of total observed score variance is due to random error. As rXX 
approaches zero, the scores are more and more like random numbers, and random num-
bers measure nothing. It can happen that an empirical reliability coefficient is less than 
zero. A negative reliability coefficient is usually interpreted as though its value were 
zero, but such a result (rXX < 0) indicates a serious problem with the scores.

The type of reliability coefficient reported most often in the literature is coefficient 
alpha also called Cronbach’s alpha. This statistic measures internal consistency reli-
ability, the degree to which responses are consistent across the items within a measure. 
If internal consistency is low, then the content of the items may be so heterogeneous 
that the total score is not the best possible unit of analysis for the measure. A conceptual 
equation is

	 αC = 
1 ( 1)

ij

ij

n r
n r+ −

	 (3.6)
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where n is the number of items (not cases) and ijr  is the average Pearson correlation 
between all pairs of items. For example, given n = 20 items with a mean interitem cor-
relation of .30, then

	 αC = 20 (.30)/[1 + (20 – 1) .30] = .90

Internal consistency reliability is greater as there are more items, or the mean inter-
item correlation is increasingly positive. In manifest variable analyses where there is 
no direct representation of latent variables, it is generally best to analyze measures that 
are internally consistent. This is also generally good advice for latent variable methods, 
including SEM, but see Little, Lindenberger, and Nesselroade (1999, p. 207) for more 
information about some exceptions to this general rule.

Estimation of other kinds of score reliability may require multiple measurement 
occasions, test forms, or examiners. For example, test–retest reliability involves the 
readministration of a measure to the same group on a second occasion. If the two sets of 
scores are highly correlated, then random error due to temporal factors may be minimal. 
Alternate- (parallel-) forms reliability involves the evaluation of the stability of scores 
across different versions of the same test. Interrater reliability is relevant for subjec-
tively scored measures: if independent examiners do not consistently agree in their scor-
ing, then examiner-specific factors may contribute unduly to observed score variability.

In manifest variable analyses, there is no gold standard as to how high coefficients 
should be in order to consider score reliability as “good,” but here are some guidelines: 
Generally, reliability coefficients around .90 are considered “excellent,” values around 
.80 are “very good,” and values around .70 are “adequate.” If rXX  <  .50, most of the 
observed score variance is due to random error, an unacceptable amount of imprecision 
in most research. Note that somewhat lower levels of score reliability can be tolerated 
in latent variable methods compared with observed variable methods, if the sample size 
is sufficiently large (e.g., Little et al., 1999). Whenever possible—and it usually is, espe-
cially for internal consistency reliability—report score reliability coefficients in your 
own samples. You should also cite values of reliability coefficients reported in other 
published sources (reliability induction), but note that published coefficients may not 
generalize to your particular sample. So tell your readers whether or not they do based 
on similarities between your sample and samples described in published sources.

Low score reliability has many detrimental effects in manifest variable analyses. 
Poor reliability reduces the power of statistical tests; it also generally attenuates effect 
sizes below their true (population) values. Unreliability in the scores of two different 
variables, X or Y, attenuates their observed correlation. This formula from classical mea-
surement theory shows the exact relation:

	 ˆmax XYr  = XX YYr r 	 (3.7)

where ˆmax XYr  is the theoretical (estimated) maximum absolute value of the correla-
tion. That is, the absolute correlation between X and Y can equal 1.00 only if scores on 
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both variables are perfectly reliable. Suppose that rXX = .10 and rYY = .90. Given this 
information, the theoretical maximum absolute value of rXY can be no higher than (.10 × 
.90)1/2, or .30. A variation of Equation 3.7 is the correction for attenuation:

	 ˆ XY
XY

XX YY

rr
r r

= 	 (3.8)

where ˆ
XYr  is the estimated validity coefficient if scores on both measures were perfectly 

reliable and rXY is the observed (sample) validity coefficient. In general, ˆ
XYr  is greater in 

absolute value than rXY. For example, given rXY = .30, rXX = .90, and rYY = .40, then ˆ
XYr  = 

.50. That is, we expect that the “true” correlation between X and Y would be .50, if scores 
on both measures were perfectly reliable. Because disattenuated correlations are only 
estimates, it can happen that their absolute values exceed 1.00. Disattenuating observed 
correlations is one way to take measurement error into account. A better way to do so is 
to use SEM where constructs are specified as latent variables, each measured by multiple 
indicators (i.e., analyze a measurement model). In fact, SEM is much more accurate at 
estimating correlations between factors or between indicators and factors than manifest 
variable methods (e.g., Little et al., 1999). Indeed, this property of SEM provides a major 
motivation for its use over observed variable methods.

Score Validity

Score validity concerns the soundness of the inferences based on the scores, and infor-
mation about score validity conveys to the researcher whether applying a test is capable 
of achieving certain aims. All forms of score validity are subsumed under the broader 
concept of construct validity, which concerns whether scores measure the hypotheti-
cal construct the researcher believes they do. Hypothetical constructs are not directly 
observable (they are latent) and thus can be measured only indirectly through observed 
scores, or indicators. Messick (1995) expanded the concept of construct validity to 
include the relevance, utility, value implications, and social consequences of test use and 
interpretation. An example of the social consequences of testing includes the accurate 
and fair assessment of scholastic skills among minority children.

There is no single, definitive test of construct validity, nor is it established in a single 
study. Instead, measurement-related research usually concerns a particular facet of con-
struct validity. Also, the relative importance of these facets usually depends on the con-
text (setting, values, etc.), content (which trait is assessed), and goals of measurement. 
For example, the facet of criterion-related validity concerns whether the scores (X) 
relate to an external criterion (Y) against which the scores can be evaluated. Specifically, 
are sample values of rXY large enough to support the claim that a test explains an appre-
ciable amount of the variability on the criterion? Whether an admissions test for univer-
sity predicts eventual grade point average is a question of criterion-related validity.

Convergent validity and discriminant validity involve the evaluation of measures 
against each other instead of against an external standard. A set of variables presumed 
to measure the same construct shows convergent validity if their intercorrelations are 
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at least moderate in magnitude. In contrast, a set of variables presumed to measure dif-
ferent constructs shows discriminant validity if their intercorrelations are not too high. 
If rXY = .90, for instance, then we can hardly say that variables X and Y measure distinct 
constructs. The SEM technique of confirmatory factor analysis (CFA) is one statistical 
tool (among others) for testing hypotheses about convergent and discriminant validity 
(Chapter 9).

Another facet of score validity is content validity, which concerns whether test 
items are representative of the domains they are supposed to measure. Content valid-
ity is often a critical concern for achievement tests, especially tests that are supposed 
to measure skills specific to a particular grade level, such as Grade 3 mathematics. It 
is important for other kinds of tests, too, such as symptom rating scales and attitude 
scales. For example, the items of a depression rating scale should represent the symp-
toms domains that make up clinical depression, including vegetative symptoms (e.g., 
poor sleep) and negative self-evaluation. Expert opinion is the basis for establishing 
content validity, not statistical analysis.

As in other kinds of statistical methods in the behavioral sciences, SEM requires 
the analysis of measures with good evidence for score validity. Because score reliability 
is generally required for score validity—but does not guarantee it—this requirement 
includes good score reliability, too (but see Little et al., 1999, for discussion of some 
exceptions to this general rule in SEM). Otherwise, the accuracy of the interpretation 
of the results is doubtful. That is, using SEM does not somehow free researchers from 
having to think about measurement.

Summary

The most widely used estimation methods in SEM require screening the data for multi-
variate normality. It is also critical to select appropriate methods for handling missing 
data. These methods generally assume that the data loss pattern is random. The pair-
wise deletion of incomplete cases may be problematic because it can lead to covariance 
matrices that are not positive definite, and a positive definite data matrix is generally 
required in SEM. Computer tools for SEM typically accept either raw data files or matrix 
summaries of the data. Because most estimation methods in SEM assume the analysis 
of unstandardized variables, a covariance matrix is preferred over a correlation matrix 
without standard deviations when a matrix summary is the input and means are not 
analyzed. In written reports of the analysis you should provide information about the 
psychometric characteristics of your scores, such as their reliability, in your own sam-
ples. The analysis of measures with poor score reliability or validity can jeopardize the 
integrity of the results. Computer tools for SEM are described in the next chapter.

Recommended Readings

Allison (2003) gives clear descriptions of missing data techniques for SEM, including the spe-
cial ML method for incomplete raw data files. Little, Lindenberger, and Nesselroade (1999) 
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describe a conceptual and statistical framework for understanding the relation between indica-
tor selection, indicator psychometric characteristics, and construct measurement. Peng, Har-
well, Liou, and Ehman (2007) describe modern techniques for analyzing incomplete data and 
characteristics of software tools in this area. Wothke (1993) offers many helpful suggestions 
for diagnosing nonpositive definiteness in data matrices and other instances of this problem 
in SEM. You can find a concise summary of score reliability and related topics in Thompson 
(2003).

Allison, P. D. (2003). Missing data techniques for structural equation modeling. Journal of 
Abnormal Psychology, 112, 545–557.

Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivari-
ate measurement and modeling with latent variables: When “good” indicators are bad 
and “bad” indicators are good. Psychological Methods, 4, 192–211.

Peng, C.‑Y. J., Harwell, M., Liou, S.‑M., & Ehman, L. H. (2007). Advances in missing data 
methods and implications for educational research. In S. S. Sawilowsky (Ed.), Real data 
analysis (pp. 31–78). Charlotte, NC: IAP.

Thompson, B. (Ed.). (2003). Score reliability. Thousand Oaks, CA: Sage.

Wothke, W. (1993). Nonpositive definite matrices in structural equation modeling. In K. A. 
Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 256–293). Newbury 
Park, CA: Sage.

Exercises

	 1.	 Calculate the correlation matrix given the covariance matrix in lower diagonal 
form for variables X, W, and Y (in this order) presented next:

	 42.25		   
	 31.72	 148.84	  
	 63.05	  82.84	 376.36	

	 2.	 Presented next are scores for 10 cases reported as (X, Y, W) and where a miss-
ing observation is coded as –9. Enter these scores into a data file with the 
appropriate missing data specification. Calculate the bivariate correlations 
using listwise deletion, pairwise deletion, and mean substitution. Describe the 
results:

	 (–9,15,–9),	 (12,23,48),	(13,25,38),	(–9,18,38), 
	 (15,20,39),	 (13,15,35),	(17,–9,36),	 (18,24,47), 
	 (19,21,42),	 (17,–9,–9)

	 3.	 Given covXY = 13.00, 2
Xs  = 12.00, and 2

Ys  = 10.00, show that the corresponding 
correlation is out of bounds.

	 4.	 Calculate the covariance matrix for the incomplete data in Table 3.3 using pair-
wise deletion. Show that this matrix is nonpositive definitive. Also show that 
the corresponding correlation matrix contains an out-of-bounds value.
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	 5.	 Use a computer tool for statistics to construct the normal probability plot for 
the data in Figure 3.2.

	 6.	 Remove the outlier (the score of 27) from the distribution in Figure 3.2 and 
recalculate the skew index and the kurtosis index for N = 63.

	 7.	 Why is it necessary to add a constant to the scores so that the lowest score 
equals 1.0 before applying a square root transformation or a logarithmic trans-
formation?

	 8.	 Apply the square root transformation to the scores in Figure 3.2, but apply it 
to the original scores, not to the rescaled scores where a constant is added so 
that the lowest score equals 1.0. Then calculate the skew index and the kurtosis 
index. Compare these results to those reported in the text for the data in Figure 
3.2 but rescaled where the lowest score is 1.0.

	 9.	 Presented next are scores on five dichotomously scored items (0 = wrong, 1 = 
correct) for eight cases (A–H). Use a computer tool for general statistical analy-
ses to calculate internal consistency reliability using Equation 3.6 for these 
scores. If your computer tool has a reliability analysis procedure, then use it to 
verify your calculations:

	 A: 1, 1, 0, 1, 1	 B: 0, 0, 0, 0, 0 
	 C: 1, 1, 1, 1, 0	 D: 1, 1, 1, 0, 1 
	 E: 1, 0, 1, 1, 1	 F: 0, 1, 1, 1 ,1 
	 G: 1, 1, 1, 1, 1	 H: 1, 1, 0, 1, 1
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4

Computer Tools

Described in this chapter are major software tools. These include eight programs or 
procedures specifically intended for SEM: Amos, CALIS/TCALIS of SAS/STAT, EQS, 
LISREL, Mplus, Mx, RAMONA of SYSTAT, and SEPATH of STATISTICA. Two other 
programs originally created for other kinds of statistical analyses but with SEM capa-
bilities are R and MATLAB, which are also described. Ways of interacting with SEM 
computer tools are outlined, and pros and con of different methods are considered. 
A major theme of this chapter is that the relative ease of use of modern computer 
tools should not lull you into thinking that SEM is easy or requires minimal conceptual 
understanding. In this sense, this adage by the Canadian scholar Marshall McLuhan is 
appropriate: We shape our tools and afterwards our tools shape us. I hope that com-
puter tool use sharpens, rather than dulls, your ability to think critically about SEM.

Ease of Use, Not Suspension of Judgment

Computer programs are critical tools for the conduct of SEM. About 30 years ago, LIS-
REL was essentially the only widely available SEM program. At that time, LISREL and 
related programs were rather difficult to use because they (1) required users to gener-
ate a lot of rather arcane code for each analysis and (2) were generally available only on 
mainframe computers with stark command-line user interfaces. The abundance of rela-
tively inexpensive yet powerful personal computers has dramatically changed this situa-
tion. Specifically, statistical software for personal computers with a graphical user inter-
face (GUI) is easier to use than their character-based predecessors. “User friendliness” 
in contemporary SEM computer tools—and others for general statistical analyses—is a 
near-revolution compared with older programs.

For example, consider a feature of the most recent versions of Amos, EQS, LISREL, 
and the graphical version of Mx for personal computers. Users of any of these packages 
can still choose to write code in each application’s native syntax. As an alternative, they 
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can use a graphical editor to draw the model on the screen with geometric symbols such 
as boxes, circles, and arrows. The program then translates the figure into lines of code, 
which are then used to generate the output. Thus, (1) the user need not know very much 
(if anything) about how to write code in order to run a sophisticated statistical analysis, 
and (2) the importance of highly technical programming skills for conducting SEM is 
likely to diminish even further. For researchers who understand the fundamental con-
cepts of SEM, this development can only be a boon—anything that reduces the drudgery 
and gets one to the results quicker is a benefit.

There are some potential drawbacks to “push-button modeling.” For example, no- 
or low-effort programming could encourage the use of SEM in uninformed or careless 
ways. Thus, it is more important than ever to be familiar with the conceptual and statis-
tical bases of SEM. Computer programs, however easy to use, should be only the tools 
of your knowledge and not its master. Steiger (2001) makes the related point that the 
emphasis on ease of use of computer tools can give beginners the false impression that 
SEM itself is easy. Indeed, some computer tools for SEM have been advertised with the 
tagline “SEM made easy!” This message may give the false impression that all one has 
to do is draw the model on the screen and let the computer take care of the rest. Nothing 
could be further from the truth! The reality is that things can and do go wrong in SEM. 
Specifically, beginners often quickly discover that analyses fail because of technical 
problems, including a terminated program run with cryptic error messages or uninter-
pretable output (Steiger, 2001). These things happen because actual research problems 
can be technical, and the availability of user-friendly computer tools does not change 

No, you won’t need computer gurus to learn how to use modern SEM computer tools. Copyright 
2009 by Clive Goddard. Reprinted with permission from CartoonStock Ltd. (www.cartoonstock.
com)
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this fact. This is why there is so much emphasis in this book on conceptual knowledge 
instead of teaching you how to use a particular computer tool: In order to deal with prob-
lems in the analysis, you must understand what went wrong and why.

Human–Computer Interaction

There are basically three ways to interact with SEM computer tools:

1.	 Batch mode processing is the method for users who already know a program’s 
syntax. Lines of code that describe the model, data, and analysis are entered directly 
into an editor window that may be saved as an ASCII (text) file. Program code entered 
by the user is then executed with a “run” command. Virtually all SEM computer tools 
support this mode.

2.	 One method that does not require knowledge of program syntax uses “wiz-
ards,” which are a series of templates (dialog boxes) that build the model and analysis 
as the user clicks with the mouse cursor on GUI elements such as text fields or check 
boxes. Once the wizard has all the information, it automatically writes the program 
code, which can then be run.

3.	 Another method that requires no programming is based on a drawing editor, 
which is a GUI that allows the user to specify the model by drawing it on the screen. 
The model is drawn using a set of more-or-less standard graphical symbols for model 
diagrams, including squares or rectangles for observed variables and circles or ellipses 
for latent variables (Chapter 5). When the diagram is finished, the analysis is run within 
the program’s GUI. Although drawing editors are popular with beginners, you should 
note that there are times when using a drawing editor is actually a hindrance—see Topic 
Box 4.1 for more information.

Core SEM Programs and Book Website Resources

There are a total of eight computer programs specifically constructed for SEM, each of 
which is used by many researchers today. Listed alphabetically, they are:

	 Amos	 Mplus 
	 CALIS/TCALIS procedures (SAS/STAT)	 Mx 
	 EQS	 RAMONA procedure (SYSTAT) 
	 LISREL	 SEPATH procedure (STATISTICA)

There are free student versions of Amos, LISREL, and Mplus that place a limit on the size 
of the model or the number of variables that can be analyzed, but they are good learning 
tools. One of these programs, Mx, is a full-featured computer tool for model fitting that 
is available at no cost because it is not a commercial product. Other software programs 
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Topic Box 4.1

Graphical Isn’t Always Better

There are some possible drawbacks to controlling an SEM analysis by drawing 
the model on the computer screen:

1.	 It can be tedious to specify a complex model—one with lots of variables 
and paths—in a drawing editor. This is because the screen tends to fill up 
quickly with numerous graphical elements. The resulting visual clutter can 
make it difficult to keep track of what you are doing.

2.	 Conducting a multiple-group analysis where a model is simultaneously fit-
ted to data from two or more independent samples can be difficult to carry 
out in a drawing editor. This is because it may be necessary to look through 
several different screens or windows in order to get all the information 
about model specification and data for each group.

3.	 Standard graphical symbols for model diagrams in SEM do not “translate” 
well for doing a multilevel analysis. The issue is considered in Chapter 12, 
but it would be hard to use a drawing editor to conduct a multilevel SEM 
analysis.

4.	 It seems that it would be easy to produce a publication-quality model dia-
gram in a drawing editor, but this is not exactly true. Drawing editors in 
SEM programs offer limited options for “tweaking” the appearance of the 
diagram (e.g., changing line widths) compared with full-fledged drawing 
programs, such as Microsoft Visio.* To tell the truth, it takes a lot of time and 
fussing to make a publication-quality diagram in any drawing editor. But 
once you make a few examples, you can reuse graphical elements, such 
as those for error terms, in future diagrams.

As many researchers become more experienced using SEM computer tools, they 
tend to stop using a drawing editor to specify their models. For example, they 
may discover that it can be easier to specify a complicated model through a 
wizard that presents a series of templates. Other researchers eventually learn the 
syntax of their SEM computer tool and start working in batch mode. There are 
advantages to doing so. For example, it is often possible to work faster in batch 
mode than by using a drawing editor. All of the syntax for a complex model plus 
a matrix summary of the data may fit within a single screen of a text editor. The 
text file in which syntax is saved also serves as an archive that records the “his-

*I’ll share a trade secret with you: All model diagrams in this book were created using noth-
ing more than Microsoft Word AutoShapes. Maybe I’m biased, but I think these diagrams 
are not too bad. Sometimes you can do a lot with a simple but flexible tool. In this case, 
you do not need a professional-grade drawing program to make publication-quality model 
diagrams.



�		  Computer Tools	 79

can analyze structural equation models, but they are not used as often as the eight listed 
here. Some of these other computer tools are described later in this chapter.

The eight core SEM computer tools can analyze all of the structural equation mod-
els described in Part II of this book. Most of these programs can also analyze means or 
models across multiple samples, and EQS, LISREL, and Mplus each have special syntax 
for multilevel analyses (Chapter 12). The descriptions that follow emphasize the major 
features of each program. Specific capabilities of computer tools can change quickly as 
new versions are released, so refer to the websites listed here for the most current infor-
mation.

The website for this book (see p. 3) has resources to help you learn how to work in 
the syntax of EQS, LISREL, or Mplus, three of the most widely used computer tools. For 
each detailed example in Chapters 7–10, you can download all computer files (syntax, 
data, output) for analyzing that example in EQS, LISREL, and Mplus. This will allow to 
you to run the input files in the corresponding computer tool. All syntax files are anno-
tated with comments that help to explain model specification in a particular analysis. 
In addition, you can compare the contents of each syntax file with the corresponding 
model diagram in this book as a learning aid. Computer files can also be downloaded 
for research examples in Chapters 11–12.

Amos

Version 18.0 of Amos1 (Analysis of Moment Structures) (Arbuckle, 1995–2009) is a 
Microsoft Windows program sold by SPSS, Inc., as either a stand-alone application (it 
does not need the SPSS environment to run) or as an optional part of SPSS. The version 
number of Amos reflects the current version number of SPSS, now known as PASW Sta-
tistics. The Amos program is made up of two modules, Amos Graphics and Amos Basic. 
Amos Graphics provides a GUI through which the user can specify the model by draw-
ing it on the screen and control other aspects of the analysis. A set of graphical wizards 
is available that can automatically draw an entire latent growth model, among other 

tory” of the analysis (model, data, output options, etc.). Syntax for modern SEM 
computer programs is not all that difficult to learn, no more so than, say, learn-
ing syntax for SPSS or SAS/STAT. Yes, there is tedium in working with syntax 
because every single line must be correct, but the same is true about working in 
a drawing editor: every single graphical element must be correct, or the analysis 
might fail. So don’t fear the prospect of learning syntax and working in batch 
mode for your SEM analyses. Indeed, doing so is probably in your future, too.

1www.spss.com/AMOS/
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tasks. A special utility for testing alternative models is available through the Specifica-
tion Search toolbar. In this utility, the user can designate particular paths in the model 
as optional, and Specification Search will analyze models with all possible subsets of the 
designated paths. Values of fit statistics for all tested models appear in a summary table, 
and the corresponding model diagram can be viewed by clicking with the mouse cursor 
in the table.

Amos Basic works in batch mode. Its syntax is flexible in that it does not use a fixed 
set of keywords for variable names. Instead, the user supplies labels for all variables. The 
Amos Basic editor is also a language interpreter for Microsoft Visual Basic. This means 
that users can write scripts in Visual Basic that modify the functionality of Amos Graph-
ics, such as calculating a model fit statistic that is not otherwise reported in default 
program output.

Special features of Amos include the capability to generate bootstrapped estimates of 
standard errors and confidence intervals for all parameter estimates. Both nonparamet-
ric and parametric bootstrapping are available. Amos has a special maximum likelihood 
(ML) method for raw data files, in which some observations are missing at random and 
special estimation methods for censored data and ordered-categorical (ordinal) outcome 
variables. It has extensive capabilities for Bayesian estimation of model parameters, but 
their correct use requires knowledge of Bayesian statistics (Kline, 2004, chap. 9). Amos 
can also analyze mixture models with latent categorical factors that represent class 
membership. A free student version is available. It is identical to Amos 5.0 except that 
the student version is limited to eight observed variables and 54 model parameters.2 
There are also training videos available for the Amos student version.3

CALIS and TCALIS

The CALIS (Covariance Analysis and Linear Structural Equations) procedure is part 
of SAS/STAT 9.2,4 a comprehensive package for general statistical analyses that runs 
under Microsoft Windows and operating systems for workstation computers, includ-
ing Linux, OpenVMS, AIX, and Solaris. It analyzes a wide variety of structural equa-
tion models and also estimates parameters in analyses such as MR or multivariate 
linear regression. The TCALIS procedure is a new (“experimental”) procedure in SAS/
STAT 9.2. It allows greater flexibility than CALIS in testing structural equation mod-
els across multiple samples and in analyzing models with both a covariance structure 
and a mean structure. Because TCALIS is more capable than CALIS, the latter is not 
described further.

The TCALIS procedure runs only in batch mode; that is, the user must type com-
mands in an editor window that describe the data and model and then run the program 

2www.amosdevelopment.com/download/

3www.amosdevelopment.com/video/index.htm

4www.sas.com/technologies/analytics/statistics/stat/index.html
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in the SAS environment. Models can be specified in TCALIS using one of seven different 
representational notations. These include LISREL-type matrix-based syntax, EQS-type 
equations-based syntax, and a notational system based on an approach to causal model-
ing known as the reticular action model (RAM) (McArdle & McDonald, 1984). The 
RAM approach includes a matrix-based system for specifying structural equation mod-
els and a set of graphical symbols for model diagrams. The RAM symbolism for model 
diagrams is used in this book and is introduced in the next chapter. Special features of 
TCALIS include the possibility of selecting from among eight different methods for cal-
culating start values, or initial estimates of model parameters. Other options control the 
estimation process, such as the particular statistical search method used to find optimal 
parameter estimates. Output from an analysis in TCALIS can be automatically saved for 
input into the next run of the program for the same model and data. This capability is 
handy for checking whether or not a complex model is identified (Chapter 9).

EQS

Version 6.1 of EQS5 (Equations) (Bentler, 2006) is a Microsoft Windows program that 
can be used for all stages of the analysis from data entry and screening to exploratory 
statistical analyses to SEM. There are also versions of EQS for UNIX or LINUX environ-
ments. The EQS data editor has many of the capabilities of a general statistical package, 
including conditional case selection, variable transformation, and merging of separate 
data files. Exploratory statistical analyses that can be conducted in EQS include ANOVA, 
covariate analysis, and factor analysis. There are also options for analyzing missing data 
patterns and model-based imputation of missing observations with the EM algorithm 
(Chapter 3).

The user can interact with EQS in three different ways: through batch mode; through 
wizards that collect information about the model and data and automatically write EQS 
programming syntax; or through a drawing editor. The last two ways do not require 
knowledge of EQS syntax. The drawing editor in EQS is its Diagrammer, which offers 
graphical tools for drawing the model on the screen. Tools available in the Diagrammer 
can automatically draw an entire path, factor, or latent growth curve model after the user 
completes a few templates about the variables, direct effects, measurement occasions, or 
residual terms. Both the Diagrammer and template-based wizards automatically write 
EQS syntax into a background window, which is then run by the user.

The syntax of EQS is based on the Bentler–Weeks representational system, in 
which the parameters of any covariance structure are regression coefficients for effects 
on dependent variables and the variances and covariances of independent variables. In 
the Bentler–Weeks model, dependent variables have error terms, but not the indepen-
dent variables. All types of models in EQS are thus set up in a consistent way. Special 
strengths of EQS include the availability of several different estimation methods for non-

5www.mvsoft.com/
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normal data, model-based bootstrapping, and the ability to correctly analyze a correla-
tion matrix without standard deviations. The latest version features built-in syntax and 
special estimation methods for multilevel analyses. A future version of EQS will include 
capabilities for mixture modeling, latent class modeling, and analysis of item response 
theory measurement models.

LISREL

Version 8.8 of LISREL6 (Linear Structural Relationships) for Microsoft Windows 
(Jöreskog & Sörbom, 2006) is an integrated suite of programs for all stages of the analy-
sis, from data entry and management to exploratory data analyses to the evaluation of 
a wide range of structural equation models. Included with LISREL is PRELIS, which 
prepares raw data files and matrix summaries for analysis in LISREL or other computer 
programs. Many multivariate data screening and summarization options are available in 
PRELIS, including model-based imputation of missing data. The PRELIS program can 
also generate bootstrapped estimates, conduct simulation studies with variables speci-
fied to have particular distributional characteristics, and calculate polychoric and poly-
serial correlations.

The LISREL program offers an interactive mode that consists of a series of wizards 
that prompt the user for information about the model and data and then automatically 
write command syntax in a separate window. Interactive LISREL also allows the user 
to specify the model by drawing it onscreen through the Path Diagram functionality. 
Users already familiar with one of two different LISREL command syntaxes can as an 
alternative directly enter code into the LISREL editor and then run it by clicking with 
the mouse cursor on an icon. If the command “Path Diagram” is placed at the end of 
the editor file, LISREL will also automatically draw the model diagram that corresponds 
to the syntax file. This unique feature provides a way for the user to verify whether the 
model specified in syntax and estimated by LISREL is actually the one that he or she 
intended to analyze.

The original (classic) LISREL syntax is based on matrix algebra. This command 
syntax is not easy to use until after one has memorized the whole system. An advantage 
of the classic syntax is efficiency: one can often specify a complex model in relatively few 
lines of code. The other LISREL programming language is SIMPLIS (“simple LISREL”), 
which is not based on matrix algebra, nor does it require familiarity with the classic syn-
tax. Programming in SIMPLIS requires little more than naming the observed and latent 
variables (but not error terms) and specifying paths with equation-type statements. 
Residual terms are automatically specified when SIMPLIS is used, which is convenient. 
Features of the latest version of LISREL include the capability to conduct exploratory 
factor analyses of ordinal variables in PRELIS and the addition of syntax commands 
in LISREL’s classic, matrix-based programming language for multilevel analyses. (The 

6www.ssicentral.com/
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latter is not available in SIMPLIS.) The full commercial version of LISREL can be down-
loaded for a free 15-day trial. There are also free student versions of LISREL available for 
the Microsoft Windows, Apple Macintosh OS 9 and X, and LINUX operating systems. 
The student versions are restricted to a total of 15 observed variables for both SEM 
analyses and multilevel analyses.7

Mplus

Version 6.0 of Mplus8 (Muthén & Muthén, 1998–2010) runs under Microsoft Windows 
and is divided into a program for SEM, Mplus Basic, and three add-on modules for ana-
lyzing additional kinds of latent variable models. Mplus Base analyzes all core types of 
structural equation models plus discrete- and continuous-time survival models. A spe-
cial strength of Mplus is that it can analyze outcome variables that are any combination 
of continuous, dichotomous, ordinal, or count variables. For example, it automatically 
calculates odds ratios for dichotomous outcomes (Chapter 2). Also available in Mplus 
Base is an ML method for incomplete raw data files, special syntax for handling complex 
survey data (e.g., with stratification), and Monte Carlo methods for generating simulated 
random samples. Versions 5.1 and later feature the capability for exploratory structural 
equation modeling (ESEM) (Asparouhov & Muthén, 2009), which combines features of 
SEM and exploratory factor analysis. The logic of ESEM is introduced in the next chap-
ter. Version 6.0 includes capabilities for Bayesian estimation (Asparouhov & Muthén, 
2010). 

The Mplus Base user interacts with the program in one of two different ways, in 
batch mode by writing programs in the Mplus language that specify the model and data 
or through a language generator (wizard) that prepares files for batch analysis. Through 
the Mplus language generator, the user completes templates about analysis details, such 
as where the data file is to be found and variable names. The user’s responses are then 
automatically converted to Mplus language statements that are written to an editor win-
dow, but the user must write the syntax that specifies the model. There is no model dia-
gram input or output in Mplus Basic. However, it has a template-based module for gener-
ating data graphics, including histograms, scatterplots, and item characteristic curves.

The Multilevel Add-On to Mplus Basic is for the multilevel analyses. It estimates 
multilevel versions of models for regression analysis, factor analysis, SEM, and time 
survival analysis. The Mixture Model Add-On analyzes mixture models with categori-
cal latent variables. Mplus Base together with this add-on can analyze “classical” struc-
tural equation models with continuous latent variables, latent structure models with 
categorical latent variables, and models with both continuous and categorical latent 
variables. The third optional module is the Combination Add-On, which contains all the 
features of the other two add-ons. It also supports the analysis of multilevel models with 

7www.ssicentral.com/lisrel/student.html

8www.statmodel.com/



84	 CONCEPTS AND TOOLS

latent classes, such as a two-level mixture confirmatory factor analysis model or a two-
level regression mixture analysis. There is a free demonstration (student) version that 
contains all the capabilities of the full version of Mplus except that is limited to eight 
observed variables and two between variables in a two-level analysis.9

Mx

Version 1.66b of Mx10 (Matrix) (Neale, Boker, Xie, & Maes, 2003) is a matrix algebra 
processor and a numerical optimizer that can analyze structural equation models and 
other kinds of multivariate statistical models. It is freely available over the Internet and 
runs under several different operating systems, including Microsoft Windows, Apple 
Macintosh OSX, LINUX, and AIX. A new, open-source version of Mx, called OpenMx, 
is being developed for the R programming environment. A GUI for Mx is available for 
personal computers with Microsoft Windows. The installation of Mx with its GUI is 
referred to as Mx Graph. There are two different ways to specify a model in Mx Graph. 
The first is to write a script in the Mx programming language that describes the data 
and model and then run it in batch mode. The syntax of Mx is based on the McArdle–
McDonald RAM matrix formulation, which represents structural equation models with 
three different matrices: S (symmetric) for covariances, A (asymmetric) for effects of 
one variable on another, and F (filter) for specifying the observed variables. See Loehlin 
(2004, pp. 44–46) for examples.

The second way to specify a model in Mx Graph is to use its drawing editor. This 
method does not require knowledge of the Mx programming language. After defining 
an external data file, the user can click on a list of variables, and these variables are then 
automatically displayed in the drawing editor. Model diagrams in Mx Graph use the 
McArdle–McDonald RAM symbolism. Mx Graph automatically writes the Mx syntax for 
the analysis that corresponds to the user’s model diagram and then executes it. Special 
features of Mx Graph for SEM include the ability to calculate confidence intervals and 
statistical power for individual parameter estimates and analyze special types of latent 
variable models for genetics data. It also has nonparametric bootstrapping capabilities. 
Examples of Mx scripts for continuous or categorical variables of the kind analyzed in 
genetics research can be freely downloaded.11

RAMONA

M. Browne’s RAMONA,12 Reticular Action Model or Near Approximation, is the mod-
ule for SEM in SYSTAT 13 (Systat Software, Inc., 2009), a comprehensive program for 

9www.statmodel.com/demo.shtml

10www.vcu.edu/mx/

11www.vcu.edu/mx/examples.html

12www.systat.com/
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general statistical analysis for Microsoft Windows. The user interacts with RAMONA 
in the general SYSTAT environment by submitting a batch file with commands that 
describe the model and data or by typing these commands at a prompt for interactive 
sessions. An alternative method is to use a wizard with graphical dialogs for naming 
observed and latent variables and specifying the type of data to be analyzed, but syntax 
that specifies the model must be typed directly in a text window by the user. Syntax for 
RAMONA is straightforward and involves only two parameter matrices, one for direct 
effects and the other for covariances between independent variables. Special features of 
RAMONA include the ability to correctly fit a model to a correlation matrix only. There 
is also a “Restart” command that automatically takes parameter estimates from a prior 
analysis as initial estimates in a new analysis. The RAMONA module cannot analyze a 
structural equation model across multiple samples, and there is no direct way to analyze 
means. There is a free student version of SYSTAT called MYSTAT, but it does not include 
RAMONA. The full version of SYSTAT can be downloaded for a free 30-day trial.13

SEPATH

J. Steiger’s SEPATH14 (Structural Equation Modeling and Path Analysis) is the SEM mod-
ule in STATISTICA 9 Advanced (StatSoft Inc., 2009), an integrated program for general 
statistical analyses, data mining, and quality control. Structural equation models are 
specified in SEPATH with the PATH1 programming language that mimics the appear-
ance of a model diagram based on McArdle–McDonald RAM symbolism. There are 
three ways to enter PATH1 code in SEPATH. First, users who already know the PATH1 
language can enter syntax directly into a dialog box. The two other methods do not 
require PATH1 knowledge. One is a graphical path construction tool in which the user 
clicks with the mouse cursor on variable names or buttons that represent different types 
of paths for direct effects or covariances. The other method is a graphical wizard for 
specifying models with substantive latent variables, such as confirmatory factor analysis 
models. Both methods automatically write PATH1 syntax in a separate window.

The special strengths of SEPATH include the capabilities to correctly analyze a cor-
relation matrix without standard deviations and generate simulated random samples in 
Monte Carlo studies. This program offers many options to precisely control parameter 
estimation, but their effective use requires technical knowledge of nonlinear optimiza-
tion procedures. There is also a power analysis module in STATISTICA 9 Advanced (also 
by J. Steiger) that estimates the power of statistical tests of model fit in SEM (Chapter 8). 
The full version of STATISTICA can be downloaded for a free 30-day trial.15

13www.systat.com/Downloads.aspx

14www.statsoft.com/

15www.statsoft.com/support/free-statistica-trial/
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Other Computer Tools

Two other options for SEM are described next: R and MATLAB.

R

The R programming language and environment is an implementation of S, developed 
at Bell Labs as a computing environment for statistics, data mining, and graphics. The 
S-PLUS program by TIBCO Software, Inc., is a commercial version of S, but R is a free, 
cooperatively developed, and open-source version that can be downloaded over the 
Internet.16 It runs on Unix, Microsoft Windows, and Apple Macintosh families of oper-
ating systems. A basic R installation has about the same statistical capabilities as some 
commercial programs, such as SPSS, but there are now over 1,700 add-on modules, or 
packages, that further extend R’s analytical repertoire. For example, the package sem 
by J. Fox (2006) is designed specifically for structural equation modeling. Other pack-
ages for R support SEM analyses, including boot for bootstrapping and polychor for 
calculating polyserial and polychoric correlations.

The user interacts with R in one of two different ways. One is through a command 
prompt that accepts R programming language and numerical (data) input. Another is 
batch mode in which commands are entered in an editor before the entire file is executed 
(run). Researchers with no programming experience whatsoever may find the R user 
interface austere, but others should be able to work in a command-driven environment 
with little problem. The sem package uses the McArdle–McDonald RAM notational 
system to specify structural equation models. The model-fitting capabilities of sem are 
limited at present compared with those of commercial SEM tools. For example, sem 
cannot simultaneously estimate a model across multiple groups, but its capabilities may 
be extended in the future.

MATLAB

Version 7.10 of MATLAB17 (Matrix Laboratory) (The MathWorks, Inc., 2010) is a com-
mercial computing environment and programming language for data analysis. It has 
extensive capabilities for data manipulation and visualization, and there are many built-
in functionalities for linear algebra, curve fitting, and optimization and numerical inte-
gration, among others. There are also optional add-ons that support more specialized 
kinds of analyses, including those for multivariate statistical techniques. Widely known 
in engineering and the natural sciences, MATLAB is increasingly being used by behav-
ioral science researchers, too.

Similar to R, the main user interface for MATLAB is command-driven; that is, users 

16www.r-project.org/

17www.mathworks.com/
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enter MATLAB statements at a command prompt. However, this interface is supported 
by a GUI for the whole MATLAB environment. For example, users can drag a previous 
command from a command history window to the command prompt and then execute 
it. Many statistical and graphical functions are available by clicking with the mouse cur-
sor on program icons. The user can also program MATLAB to conduct a specific type 
of analysis in batch mode processing. There are now some MATLAB routines for SEM. 
For example, Steele (2009) describes MATLAB code for SEM analyses in functional 
Magnetic Resonance Imaging (fMRI) studies; this code can be freely downloaded.18 
Goldstein, Bonnet, and Rocher (2007) describe a MATLAB routine for multilevel SEM 
analyses of comparative data on educational performance across different counties. At 
present, there are relatively few SEM-specific routines for MATLAB, but I expect this 
situation will change. A student version of MATLAB available at a reduced cost, and the 
full version can be downloaded for a free 15-day trial.19

Summary

Many contemporary SEM computer tools are no more difficult to use than other com-
puter programs for general statistical analyses. Ideally, this situation should allow you to 
be more concerned with the logic and rationale of the analysis than with the mechanics 
of carrying it out. The capability to specify a structural equation model by drawing it on 
the screen helps beginners to be productive right away. However, with experience you 
may find that specifying models in syntax and working in batch mode are actually faster 
and more efficient methods, and thus easier. Problems can be expected in the analysis of 
complex models, and no amount of user friendliness in the interface of a computer tool 
can negate this fact. When (not if) things in the analysis go wrong, you need, first, to 
have a good conceptual understanding of the nature of the problem and, second, basic 
computer skills in order to correct the problem. You should also not let ease of computer 
tool use lead you to carry out unnecessary analyses or select analytical methods that you 
do not really understand. The fundamental concepts and tools discussed in Part I of this 
book set the stage for the overview of core SEM techniques in Part II.

Recommended Readings

Nachtigall, Kroehne, Funke, and Steyer (2003) describe an “SEM first-aid kit,” or a discussion 
of typical problems—including those that concern computer programs—that beginners often 
encounter and possible solutions. Steiger (2001) reminds us that the availability of graphical 
user interfaces in SEM computer tools should not be seen as a shortcut to understanding the 
conceptual and statistical bases of the analysis.

18www.dundee.ac.uk/medschool/staff/douglas_steele/structural_equation_modelling

19www.mathworks.com/downloads/web_downloads/trials
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5

Specification

The specification of path analysis (PA) models, confirmatory factor analysis (CFA) mea-
surement models, and structural regression (SR) models is the topic of this chapter. Out-
lined first are the basic steps of SEM and graphical symbols used in model diagrams. 
Some straightforward rules are suggested for counting the number of observations 
(which is not the sample size) in the analysis and the number of model parameters. 
Both of these quantities are needed for checking model identification (next chapter). 
Actual research examples dealt with in more detail in later chapters are also intro-
duced. The main goal of this presentation is to give you a better sense of the kinds of 
hypotheses that can be tested with core structural equation models.

Steps of SEM

Six basic steps are followed in most analyses, and two additional optional steps, in a per-
fect world, would be carried out in every analysis. Review of these steps will help you to 
understand (1) the relation of specification, the main topic of this chapter, to later steps 
of SEM and (2) the utmost importance of specification.

Basic Steps

The basic steps are listed next and then discussed afterward, and a flowchart of these 
steps is presented in Figure 5.1. These steps are actually iterative because problems at a 
later step may require a return to an earlier step. (Later chapters elaborate specific issues 
at each step beyond specification for particular SEM techniques.)

1.	 Specify the model.
2.	 Evaluate model identification (if not identified, go back to step 1).



92	 CORE TECHNIQUES

3.	 Select the measures (operationalize the constructs) and collect, prepare, and 
screen the data.

4.	 Estimate the model:

a.	 Evaluate model fit (if poor, skip to step 5).
b.	 Interpret parameter estimates.
c.	 Consider equivalent or near-equivalent models (skip to step 6).

5.	 Respecify the model (return to step 4).
6.	 Report the results.

Specification

The representation of your hypotheses in the form of a structural equation model is 
specification. Many researchers begin the process of specification by drawing a model 
diagram using a set of more or less standard graphical symbols (defined later), but the 
model can alternatively be described by a series of equations. These equations define 
the model’s parameters, which correspond to presumed relations among observed or 

FIGURE 5.1. Flowchart of the basic steps of SEM.
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latent variables that the computer eventually estimates with sample data. Specification 
is the most important step. This is because results from later steps assume that the model 
is basically correct. I also suggest that you make a list of possible changes to the initial 
model that would be justified according to theory or empirical results. This is because 
it is often necessary to respecify models (step 5), and respecification should respect the 
same principles as specification.

Identification

If life were fair, the researcher could proceed directly from specification to collection of 
the data to estimation. Unfortunately, the analysis of a structural equation model is not 
always so straightforward. The problem that potentially complicates the analysis is that 
of identification. A model is identified if it is theoretically possible for the computer to 
derive a unique estimate of every model parameter. Otherwise, the model is not identi-
fied. The word “theoretically” emphasizes identification as a property of the model and 
not of the data. For example, if a model is not identified, then it remains so regardless 
of the sample size (N = 100, 1,000, etc.). Therefore, models that are not identified should 
be respecified (return to step 1); otherwise, attempts to analyze them may be fruitless. 
Different types of structural equation models must meet the specific requirements for 
identification that are described in Chapter 6.

Measure Selection and Data Collection

The various activities for this step—select good measures, collect the data, and screen 
them—were discussed in Chapter 3.

Estimation

This step involves using an SEM computer tool to conduct the analysis. Several things 
take place at this step: (1) Evaluate model fit, which means determine how well the 
model explains the data. Perhaps more often than not, researchers’ initial models do 
not fit the data very well. When (not if) this happens to you, skip the rest of this step 
and go to the next, respecification, and then reanalyze the respecified model using the 
same data. Assuming satisfactory model fit, then (2) interpret the parameter estimates. 
In written summaries, too many researchers fail to interpret the parameter estimates 
for specific effects. Perhaps concern for overall model fit is so great that relatively little 
attention is paid to whether estimates of its parameters are meaningful (Kaplan, 2009). 
Next, (3) consider equivalent or near-equivalent models. Recall that an equivalent model 
explains the data just as well as the researcher’s preferred model but does so with a dif-
ferent configuration of hypothesized relations among the same variables (Chapter 1). 
For a given model, there may be many—and in some cases infinitely many—equivalent 
versions. Thus, the researcher needs to explain why his or her preferred model should 
not be rejected in favor of statistically equivalent ones. Too many authors of SEM stud-
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ies fail to even acknowledge the existence of equivalent models (MacCallum & Austin, 
2000). There may also be near-equivalent models that fit the same data just about as well 
as the researcher’s preferred model, but not exactly so. Near-equivalent models are often 
just as critical a validity threat as equivalent models, if not even more so.

Respecification

A researcher usually arrives at this step because the fit of his or her initial model is poor. 
In the context of model generation, now is the time to refer to that list of theoretically 
justifiable possible changes I suggested you make when you specified the initial model. 
We will deal with respecification in more detail in Chapter 8, but a bottom line of that 
discussion is that a model’s respecification should be guided more by rational consider-
ations than purely statistical ones. Any respecified model must be identified; otherwise, 
you will be “stuck” at this step until you have an estimable model.

Reporting the Results

The final step is to accurately and completely describe the analysis in written reports. 
The fact that too many published articles that concern SEM are seriously flawed in this 
regard was previously discussed. These blatant shortcomings are surprising considering 
that there are published guidelines for reporting results of SEM (e.g., Boomsma, 2000; 
McDonald & Ho, 2002; Schreiber, Nora, Stage, Barlow, & King, 2006). An integrated set 
of suggestions for reporting the results of SEM analyses is presented in Chapter 10.

Optional Steps

Two optional steps in SEM could be added to the basic ones just described:

7.	 Replicate the results.
8.	 Apply the results.

Replication

Structural equation models are seldom estimated across independent samples either by 
the same researchers who collected the original data (internal replication) or by other 
researchers who did not (external replication). The need for large samples in SEM com-
plicates replication. Nevertheless, it is critical to eventually replicate a structural equa-
tion model if it is ever to represent anything beyond a mere statistical exercise.

Application

Kaplan (2009) notes that despite about 40 years of application of SEM in the behavioral 
sciences, rarely are results from SEM analyses used for policy or clinically relevant pre-
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diction studies. Neglecting to properly carry out the basic steps (1–6) may be part of the 
problem.

The ultimate goal of SEM—or any other type of model-fitting technique—is to 
attain what I refer to as statistical beauty, which means that the final retained model 
(if any):

1.	 Has a clear theoretical rationale (i.e., it makes sense).
2.	 Differentiates between what is known and what is unknown—that is, what is 

the model’s range of convenience, or limits to its generality?
3.	 Sets conditions for posing new questions.

That most applications of SEM fall short of these goals should be taken as a positive 
incentive for all of us to do better. These issues are elaborated in Chapter 8 about hypoth-
esis testing in SEM.

Model Diagram Symbols

Model diagrams are represented in this book by using symbols from the McArdle–
McDonald reticular action model (RAM). The RAM symbolism explicitly represents 
every model parameter. This property has pedagogical value for learning about SEM. 
It also helps you to avoid mistakes when you are translating a diagram to the syntax 
of a particular SEM computer tool. Part of RAM symbolism is universal in SEM. This 
includes the representation in diagrams of

1.	 Observed variables with squares or rectangles (e.g.,  ,  ).
2.	 Latent variables with circles or ellipses (e.g.,  ,  ).
3.	 Hypothesized directional effects of one variable on another, or direct effects, 

with a line with a single arrowhead (e.g., →).
4.	 Covariances (in the unstandardized solution) or correlations (in the standard-

ized one) between independent variables—referred to in SEM as exogenous 
variables—with a curved line with two arrowheads ( ).

The symbol described in (4) also designates an unanalyzed association between 
two exogenous variables. Although such associations are estimated by the computer, 
they are unanalyzed in the sense that no prediction is put forward about why the two 
exogenous variables covary (e.g., does one cause the other?—do they have a common 
cause?). In RAM symbolism (this next symbol is not universal), two-headed curved 
arrows that exit and reenter the same variable ( ) represent the variance of an exog-
enous variable. Because the causes of exogenous variables are not represented in model 
diagrams, the exogenous variables are considered free to both vary and covary. The 
symbols  and , respectively, reflect these assumptions. Specifically, the symbol 
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 will connect every pair of observed exogenous variables, and the symbol  will 
connect every observed or latent exogenous variable to itself in RAM symbolism.

This is not so for dependent (outcome, criterion) variables in model diagrams, which 
are referred to as endogenous variables. Unlike exogenous variables, the presumed 
causes of endogenous variables are explicitly represented in the model. Accordingly, 
endogenous variables are not free to vary or covary. This means in model diagrams that 
the symbol for an unanalyzed association, or , does not directly connect two different 
endogenous variables, and the symbol for a variance  will not originate from and end 
with any endogenous variable. Instead, the model as a whole represents the researcher’s 
account about why endogenous variables covary with each other and also with the exog-
enous variables. During the analysis, this “explanation” based on the model is compared 
with the sample covariances (the data). If the two sets of covariances, predicted and 
observed, are similar, the model is said to fit the data; otherwise, the “explanation” is 
rejected.

Model parameters in RAM symbolism are represented with only three symbols: 
→, , and . The following rule for defining parameters in words parallels these 
symbols and is consistent with the Bentler–Weeks representational system for SEM that 
underlies the EQS computer program:

Parameters of structural equation models when means are not ana-	 (Rule 5.1)
lyzed include (1) direct effects on endogenous variables from other 
variables, either exogenous or endogenous; and (2) the variances and 
covariances of exogenous variables.

That’s it. The simple rule just stated applies to all of the core SEM models described 
in this chapter when means are not analyzed (i.e., the model has a covariance struc-
ture only, not also a mean structure). An advantage of RAM symbolism is that you can 
quickly determine the number of model parameters simply by counting the number of 
→, , and  symbols in its diagram. Several examples and exercises in counting 
parameters are presented later.

As mentioned in the previous chapter on SEM computer tools, model diagrams in 
Amos and Mx Graph are based on RAM symbolism. In other programs, such as LISREL 
and Mplus, error terms are represented by a line with a single arrowhead that points to 
the corresponding endogenous variables. This representation is more compact, but do 
not forget that error terms have parameters (variances) that are typically estimated in 
the analysis. This is one advantage of RAM symbolism: what you see is what you get 
concerning model parameters that require statistical estimates.

Specification Concepts

Considered next are key issues in model specification.



�		  Specification	 97

What to Include

The following is a basic specification issue: given a phenomenon of interest—health sta-
tus, unemployment, and so on—what variables affect it? Because the literature for newer 
research areas can be limited, so decisions about what to include in the model must 
sometimes be guided more by the researcher’s experience than by published reports. 
Consulting with experts in the field about plausible specifications may also help. In 
more established areas, sometimes there is too much information. That is, so many 
potential causal variables may be mentioned in the literature that it is virtually impos-
sible to include them all. To cope, the researcher must again rely on his or her judgment 
about the most crucial variables.

The specification error of omitting causal variables that covary with others in the 
model has the same general consequences in SEM as in multiple regression (MR) (Chap-
ter 2). However, it is unrealistic to expect all causal variables to be measured. Given 
that most structural equation models may be misspecified in this regard, the best way 
to minimize potential bias is preventive: make an omitted variable an included one 
through careful review of extant theory and research.

How to Measure the Hypothetical Construct

The selection of measures is a recurrent problem in research, and this is no less true in 
SEM (Chapter 3). Score reliability is especially important in the SEM technique of PA, 
which is characterized by single-indicator measurement. This means that there is only 
one observed measure of each construct. Therefore, it is critical that each measure have 
good psychometric characteristics. It is also assumed in PA that the exogenous variables 
are measured without error (rXX = 1.00). The potential consequences of measurement 
error in PA are basically the same as those in MR (Chapter 2). Recall that disattenuat-
ing correlations for measurement error is one way to take score reliability into account 
(Equation 3.7), but this is not a standard part of PA. However, a method to do so for 
single-indicator measurement is described in Chapter 10.

Another approach is multiple-indicator measurement, in which more than one 
observed variable is used to measure the same construct. Suppose that a researcher 
is interested in measuring reading skill among Grade 4 children. In a single-indicator 
approach, the researcher would be forced to select a sole measure of reading skill, such 
as a word recognition task. However, a single task would reflect just one facet of read-
ing, and some of its score variance may be specific to that task, not to general reading 
ability per se. In a multiple-indicator approach, additional measures can be selected and 
administered. In this example, a second measure could be a comprehension task, and 
a third measure could involve word attack skills. Use of the three tasks together may 
reflect more aspects of reading, and the reliability of factor measurement tends to be 
higher with multiple indicators.

Each measure in a multiple-indicator approach is represented in the model as a sep-
arate indicator of the same underlying factor. This representation assumes convergent 
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validity. Specifically, scores from multiple indicators presumed to measure a common 
construct should be positively correlated. Otherwise, the measurement model for these 
indicators may be rejected. The technique of CFA and the analysis of SR models both 
feature multiple-indicator measurement. The analysis of an SR model in particular can 
be seen as a type of latent-variable PA that accommodates multiple-indicator measure-
ment.

Directionality

The specification of directionalities of presumed causal effects, or effect priority, is an 
important part of SEM. In the technique of PA, specifications about directionality con-
cern observed variables only. In path diagrams, direct effects represented by the sym-
bol → (i.e., paths) correspond to the researcher’s hypotheses about effect priority. For 
example, if X and Y are two observed variables, the specification X → Y implies that X 
is causally prior to Y (X affects Y). This specification does not rule out other causes of Y. 
If other variables are believed to also affect Y, then the corresponding direct effects (e.g., 
W → Y) can be added to the model, too.

Five general conditions must be met before one can reasonably infer a cause–effect 
relation (e.g., Mulaik, 2009; Pearl, 2000):

1.	 Temporal precedence. The presumed cause (e.g., X) must occur before the pre-
sumed effect (e.g., Y).1

2.	 Association. There is an observed covariation; that is, variation in the presumed 
cause must be related to that in the presumed effect.

3.	 Isolation. There are no other plausible explanations (e.g., extraneous variables) 
of the covariation between the presumed cause and the presumed effect.

4.	 Correct effect priority. The direction of the causal relation is correctly specified. 
That is, X indeed causes Y (X → Y) instead of the reverse (Y → X) or X and Y 
cause each other in a reciprocal manner (X  Y).

5.	 Known distributional form. When dealing with probabilistic causality instead 
of deterministic causality, the forms of the distributions of the parameters are 
specified. Deterministic causality assumes that given a change in the causal 
variable, the same consequence is observed in all cases for the affected variable. 
It is probabilistic causality that is modeled in SEM, and it allows for changes to 
occur in affected variables at some probability < 1.0.2 Estimation of these prob-
abilities (effects) with sample data are typically based on specific distributional 

1See Rosenberg (1998) for a discussion of Immanuel Kant’s arguments about the possibility of simultaneous 
causation.

2Kenny (1979) suggested that probabilistic causality models are compatible with the view that some portion 
of unexplained variance is fundamentally unknowable because it reflects, for lack of a better term, free 
will—the ability of people to act on occasion outside of external influences on them.
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assumptions. If these assumptions are not reasonable, then the estimates may 
be incorrect.

The second and third conditions just listed require that the association between X 
and Y is not spurious when controlling for common causes or when other causes of Y are 
included in the model (e.g., W). Temporal precedence is established in experimental or 
quasi-experimental designs when treatment begins (and perhaps ends, too) before out-
come is measured. In nonexperimental designs, the hypothesis that X causes Y would be 
bolstered if X is measured before Y; that is, the design is longitudinal. But the expected 
value of the covariance between X and Y in a longitudinal design could still be relatively 
large even if Y causes X and the effect (X) is measured before the cause (Y) (Bollen, 1989, 
pp. 61–65). This could happen because X would have been affected by Y before either 
variable was actually measured in a longitudinal study. This phenomenon explains the 
fourth requirement for correct specification of directionality: Even if X actually causes 
Y, the magnitude of their association may be low if the interval between their mea-
surements is either too short (effects take time to materialize) or too long (temporary 
effects have dissipated). The fifth requirement explains the importance of distributional 
assumptions: Estimates of causal effects may be biased if assumptions about their distri-
butional forms, such as normality, across random samples are not tenable.

The assessment of variables at different times provides a measurement framework 
consistent with the specification of directional effects. But longitudinal designs pose 
potential difficulties, such as case attrition and extra resource demands. This is prob-
ably why most SEM studies feature concurrent rather than longitudinal measurement. 
If all variables are measured simultaneously, however, it is not possible to demonstrate 
temporal precedence. Therefore, the researcher needs a clear, substantive rationale for 
specifying that X causes Y instead of the reverse (or that X and Y mutually influence 
each other) when all variables are measured at once. This process relies heavily on the 
researcher to rule out alternative explanations of the association between X and Y and 
also to measure other presumed causes of Y. Both require strong knowledge about the 
phenomena under study. If the researcher cannot give a cogent account of directional-
ity specifications, then causal inferences in nonexperimental designs are unwarranted. 
This is why many researchers are skeptical about inferring causation in nonexperimen-
tal designs. An example follows.

Lynam, Moffit, and Stouthamer–Loeber (1993) hypothesized that poor verbal abil-
ity is a cause of delinquency, but both variables were measured simultaneously in their 
sample. This hypothesis raises some questions: Why this particular direction of causa-
tion? Is it not also plausible that certain behaviors associated with delinquency, such 
as truancy, could impair verbal ability? What about other causes of delinquency? Some 
arguments offered by Lynam et al. are summarized next: Their participants were rel-
atively young (about 12 years), which may preclude delinquent careers long enough 
to affect verbal ability. They cited the results of prospective studies which indicated 
that low verbal ability precedes antisocial acts. Lynam et al. measured other presumed 
causes of delinquency, including social class and motivation, and controlled for these 
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variables in the analysis. The particular arguments given by Lynam et al. are not above 
criticism (e.g., Block, 1995), but they exemplify the types of arguments that researchers 
should provide to justify directionality specifications. Unfortunately, too few authors of 
nonexperimental studies give such detailed explanations.

Given a single SEM study in which hypotheses about effect priority are tested, 
it would be almost impossible to believe that all of the logical and statistical require-
ments had been satisfied for interpreting the results as indicating causality. This is why 
the interpretation that direct effects in structural equation models correspond to true 
causal relations is typically without basis. It is only with the accumulation of the follow-
ing types of evidence that the results of SEM analyses may indicate causality (Mulaik, 
2000): (1) replication of the model across independent samples; (2) elimination of plau-
sible equivalent or near-equivalent models; (3) corroborating evidence from empirical 
studies of variables in the model that are manipulable; and (4) the accurate prediction of 
the effects of interventions.

Although as students we are told time and again that correlation does not imply cau-
sation, too many researchers seem to forget this essential truth. For example, Robinson, 
Levin, Thomas, Pituch, and Vaughn (2007) reviewed about 275 articles published in 
five different journals in the area of teaching and learning. They found that (1) the pro-
portion of studies based on experimental or quasi-experimental designs declined from 
about 45% in 1994 to 33% in 2004. Nevertheless, (2) the proportion of nonexperimental 
studies containing claims for causality increased from 34% in 1994 to 43% in 2004. It 
seems that researchers in the teaching-and-learning area—and, to be fair, in other areas, 
too—may have become less cautious than they should be concerning the inference of 
causation from correlation. Robinson et al. (2007) noted that more researchers in the 
teaching-and-learning area were using SEM in 2004 compared with 1994. Perhaps the 
increased use of SEM explains the apparent increased willingness to infer causation in 
nonexperimental designs, but the technique does not justify it.

There are basically three options in SEM if a researcher is uncertain about direc-
tionality: (1) specify a structural equation model but without directionality specifica-
tions between key variables; (2) specify and test alternative models, each with different 
causal directionalities; or (3) include reciprocal effects in the model as a way to cover 
both possibilities. The first option just mentioned concerns exogenous variables, which 
are basically always assumed to covary (e.g., X1   X2), but there is no specification 
about direct effects between exogenous variables. The specification of unanalyzed asso-
ciations between exogenous variables in SEM is consistent with the absence of hypoth-
eses of direct or indirect effects between such variables. A problem with the second 
option is that it can happen in SEM that different models, such as model 1 with Y1 → Y2 
and model 2 with Y2 → Y1, may fit the same data equally well (they are equivalent), or 
nearly so. When this occurs, there is no statistical basis for choosing one model over 
another. The third option concerns the specification of reciprocal effects (e.g., Y1   Y2), 
but the specification of such effects is not a simple matter. This point is elaborated on 
later, but the inclusion of even one reciprocal effect in a model can make it more dif-
ficult to analyze. So there are potential costs to the inclusion of reciprocal effects as a 
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hedge against uncertainty about directionality. If you are fundamentally uncertain about 
directionality, then you may not be ready to use SEM. In this case, conduct a minimally 
sufficient analysis, or use the simplest technique that will get the job done (Wilkinson 
& the Task Force on Statistical Inference, 1999). Simpler methods include regression 
techniques, such as canonical correlation when there are multiple predictor and out-
come variables. A canonical correlation analysis requires no directionality assumptions 
among the variables in either set, predictor or outcome. There is no “embarrassment” 
in using a simpler statistical technique over a more complicated one, especially if the 
simpler technique is sufficient to test your hypotheses and if your comprehension of the 
more complex method is not strong. In general, it is better to resist the temptation to 
use the “latest and greatest” (i.e., more complicated) statistical technique when a simpler 
method will accomplish the task.

Model Complexity

There is another limit that must be respected in specification. It concerns the total num-
ber of parameters that can be estimated, or model complexity. This total is limited by 
the number of observations available for the analysis. In this context, the number of 
observations is not the sample size. Instead, it is literally the number of entries in the 
sample covariance matrix in lower diagonal form.3 The number of observations can be 
calculated with a simple rule:

If v is the number of observed variables, then the number of obser-	 (Rule 5.2)
vations equals v (v + 1)/2 when means are not analyzed.

Suppose that v = 4 observed variables are represented in a model. The number of obser-
vations is 4(5)/2, or 10. This count (10) equals the total number of variances (4) and 
unique covariances (below the diagonal, or 6) in the data matrix. With v = 4, the greatest 
number of parameters that could be estimated by the computer is 10. Fewer parameters 
can be estimated in a more parsimonious model, but not > 10. The number of observa-
tions has nothing to do with sample size. If four variables are measured for 100 or 1,000 
cases, the number of observations is still 10. Adding cases does not increase the number 
of observations; only adding variables can do so.

The difference between the number of observations and the number of its param-
eters is the model degrees of freedom, or

	 dfM = p – q	 (5.1)

where p is the number of observations (Rule 5.2) and q is the number of estimated 

3Confusingly, LISREL uses the term number of observations in dialog boxes to refer to sample size, not the 
number of variances and unique covariances.
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parameters (Rule 5.1). The requirement that there be at least as many observations as 
parameters can be expressed as the requirement that dfM ≥ 0.

A model with more estimated parameters than observations (dfM < 0) is not ame-
nable to empirical analysis. This is because such a model is not identified. If you tried 
to estimate a model with negative degrees of freedom, an SEM computer tool would 
likely terminate its run with error messages. Most models with zero degrees of freedom 
(dfM = 0) perfectly fit the data. But models that are just as complex as the data are not 
interesting because they test no particular hypothesis. Models with positive degrees of 
freedom generally do not have perfect fit. This is because dfM > 0 allows for the possibil-
ity of model–data discrepancies. Raykov and Marcoulides (2000) describe each degree 
of freedom as a dimension along which the model can potentially be rejected. Thus, 
retained models with greater degrees of freedom have withstood a greater potential for 
rejection. The idea underlies the parsimony principle: given two models with similar 
fit to the same data, the simpler model is preferred, assuming that the model is theoreti-
cally plausible.

Parameter Status

Each model parameter can be free, fixed, or constrained depending on its specification. 
A free parameter is to be estimated by the computer with the data. In contrast, a fixed 
parameter is specified to equal a constant. The computer “accepts” this constant as 
the estimate regardless of the data. For example, the hypothesis that X has no direct 
effect on Y corresponds to the specification that the coefficient for the path X → Y is 
fixed to zero. It is common in SEM to test hypotheses by specifying that a previously 
fixed-to-zero parameter becomes a free parameter, or vice versa. Results of such analy-
ses may indicate whether to respecify a model by making it more complex (an effect is 
added—a fixed parameter becomes a free parameter) or more parsimonious (an effect is 
dropped—a free parameter becomes a fixed parameter).

A constrained parameter is estimated by the computer within some restriction, 
but it is not fixed to equal a constant. The restriction typically concerns the relative val-
ues of other constrained parameters. An equality constraint means that the estimates 
of two or more parameters are forced to be equal. Suppose that an equality constraint 
is imposed on the two direct effects that make up a feedback loop (e.g., Y1  Y2). This 
constraint simplifies the analysis because only one coefficient is needed rather than 
two. In a multiple-sample SEM analysis, a cross-group equality constraint forces the 
computer to derive equal estimates of that parameter across all groups. The specifica-
tion corresponds to the null hypothesis that the parameter is equal in all populations 
from which the samples were drawn. How to analyze a structural equation model across 
multiple samples is explained in Chapter 9.

Other kinds of constraints are not seen as often. A proportionality constraint 
forces one parameter estimate to be some proportion of the other. For instance, the 
coefficient for one direct effect in a reciprocal relation may be forced to be three times 
the value of the other coefficient. An inequality constraint forces the value of a param-
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eter estimate to be either less than or greater than the value of a specified constant. 
The specification that the value of an unstandardized coefficient must be > 5.00 is an 
example of an inequality constraint. The imposition of proportionality or inequality 
constraints generally requires knowledge about the relative magnitudes of effects, but 
such knowledge is rare in the behavioral sciences. A nonlinear constraint imposes 
a nonlinear relation between two parameter estimates. For example, the value of one 
estimate may be forced to equal the square of another. Nonlinear constraints are used 
in some methods to estimate curvilinear or interactive effects of latent variables, a 
topic covered in Chapter 12.

Path Analysis Models

Although PA is the oldest member of the SEM family, it is not obsolete. About 25% of 
roughly 500 articles reviewed by MacCallum and Austin (2000) concerned path mod-
els, so PA is still widely used. There are also times when there is just a single observed 
measure of each construct, and PA is a single-indicator technique. Finally, if you master 
the fundamentals of PA, you will be better able to understand and critique a wider variety of 
structural equation models. So read this section carefully even if you are more interested 
in latent variable methods in SEM.

Elemental Models

Presented in Figure 5.2 are the diagrams in RAM symbolism of three path models. 
Essentially, all more complex models can be constructed from these elemental models. 
A path model is a structural model for observed variables, and a structural model rep-
resents hypotheses about effect priority. The path model of Figure 5.2(a) represents the 
hypothesis that X is a cause of Y. By convention, causally prior variables are represented 
in the left part of the diagram, and their effects are represented in the right part. The 
line in the figure with the single arrowhead (→) that points from X to Y represents the 
corresponding direct effect. Statistical estimates of direct effects are path coefficients, 
which are interpreted just as regression coefficients in MR.

Variable X in Figure 5.2(a) is exogenous because its causes are not represented in 
the model. Accordingly, the symbol  represents the fact that X is free to vary. In 
contrast, variable Y in Figure 5.2(a) is endogenous and thus is not free to vary. Each 
endogenous variable has a disturbance, which for the model of Figure 5.2(a) is an error 
(residual) term, designated as D, that represents unexplained variance in Y. It is the 
presence of disturbances in structural models that signal the assumption of probabilistic 
causality. Because disturbances can be considered latent variables in their own right, 
they are represented with circles in RAM symbolism. Theoretically, a disturbance can 
be seen as a “proxy” or composite variable that represents all unmeasured causes of the 
corresponding endogenous variable. Because the nature and number of these omitted 
causes is unknown as far as the model is concerned, disturbances can be viewed as 
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unmeasured (latent) exogenous variables. Accordingly, the symbol for the variance of an 
exogenous variable ( ) appears next to the disturbance in Figure 5.2(a).

Measurement error in the endogenous variable Y is manifested in its disturbance, so 
disturbances typically reflect both omitted causes and score unreliability. If scores on Y 
are unreliable, then its disturbance will be relatively large, which would be confounded 
with omitted causes. The path that points from the disturbance to the endogenous vari-
able in Figure 5.2(a), or D → Y, represents the direct effect of all unmeasured causes on 
Y. The numeral (1) that appears in the figure next to this path is a scaling constant that 
represents the assignment of a scale to the disturbance. This is necessary because dis-
turbances are latent, and latent variables need scales before the computer can estimate 

FIGURE 5.2. Elemental path models.
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anything about them. A scaling constant for a disturbance is also called an unstan-
dardized residual path coefficient. The concept behind this specification for scaling a 
disturbance is explained in the next chapter, but it is required for identification. In con-
trast, exogenous variables do not have disturbances (e.g., X in Figure 5.2(a)). Therefore, 
it is generally assumed in PA that scores on exogenous variables are perfectly reliable. 
This assumption is just as unrealistic in PA as it is in MR.

Path coefficients are calculated holding all omitted causes constant (pseudoisola-
tion; Chapter 2), which requires the assumption that all unmeasured causes represented 
by the disturbance are uncorrelated with measured causes of the corresponding endog-
enous variable. In Figure 5.2(a), it is assumed that D and X are uncorrelated. This is a 
strong assumption, one that is directly analogous to the assumption of uncorrelated 
residuals and predictors in MR.

The path model of Figure 5.2(b) represents the hypothesis of correlated causes. 
In this case, it is hypothesized that (1) both X1 and X2 are causes of Y, and (2) these 
exogenous variables covary. However, the model gives no account about why X1 and X2 
covary. Accordingly, the curved line with two arrowheads that represents an unana-
lyzed association ( ) connects the squares for the two measured exogenous variables 
in Figure 5.2(b). Together, the symbols  and  in the figure represent the assump-
tions that X1 and X2 are free to, respectively, vary and covary, but for reasons that are 
unknown, at least according to the model. Measured exogenous variables are basically 
always assumed to covary, so the symbol  routinely connects every pair of such vari-
ables in structural models.

Path coefficients for the two direct effects in Figure 5.2(b), X1 → Y and X2 → Y, are 
each estimated controlling for the covariation between X1 and X2, just as in MR. This 
model assumes that all unmeasured causes of Y are uncorrelated with both X1 and X2. 
A natural question is: If measured exogenous variables can have unanalyzed associa-
tions, can a disturbance have an unanalyzed association with a measured exogenous 
variable, such as X1   D? Such an association would imply the presence of an omitted 
cause that is correlated with X1. This seems plausible, but, no, it is not generally possible 
to estimate covariances between and measured and unmeasured exogenous variables. 
(See Kenny, 1979, pp. 93–94 for conditions required to do so.) The only realistic way to 
cope with the restrictive assumption of uncorrelated measured and unmeasured causes 
is through careful specification.

Observe in the path model of Figure 5.2(c) that there are two direct effects on the 
endogenous variable Y2 from other observed variables, one from the exogenous variable 
X and another from the other endogenous variable, Y1. The latter specification gives Y1 a 
dual role as, in the language of regression, both a predictor and a criterion. This dual role 
is described in PA as an indirect effect or a mediator effect.4 Indirect effects involve 
one or more intervening variables, or mediator variables, presumed to “transmit” 

4Note that the separate concept of a “moderator effect” refers to an interaction effect. Likewise, a “moderator 
variable” is one variable involved in interaction effect with another variable. Chapter 12 deals with the 
estimation of interaction effects in SEM.
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some of the causal effects of prior variables onto subsequent variables. For the model 
of Figure 5.2(c), variable X is specified to affect Y2 both directly and indirectly first by 
affecting Y1, and then Y1 in turn is presumed to have an effect on Y2. The entire indirect 
effect just described corresponds to the three-variable chain X → Y1 → Y2.

Here is a concrete example: Roth, Wiebe, Fillingim, and Shay (1989) specified a 
path model of factors presumed to affect illness. Part of their model featured the indirect 
effect

	 Exercise → Fitness → Illness

The fitness variable is the mediator, one that, according to the model, is affected by 
exercise (more exercise, better fitness). In turn, fitness affects illness (better fitness, 
less illness). Just as direct effects are estimated in SEM, so too are indirect effects. The 
estimation of indirect effects is so straightforward in SEM that such effects are routinely 
included in structural models, assuming such specifications are theoretically justifi-
able.

Finally, the model of Figure 5.2(c) assumes that (1) the omitted causes of both Y1 
and Y2 are uncorrelated with X and (2) the omitted causes of Y1 are unrelated to those 
of Y2, and vice versa. That is, the disturbances are independent, which is apparent in 
the figure by the absence of the symbol for an unanalyzed association ( ) between D1 
and D2. This specification also represents the hypothesis that the observed covariation 
between that pair of endogenous variables, Y1 and Y2, can be entirely explained by other 
measured variables in the model.

Types of Structural Models

There are two kinds of structural models. Recursive models are the most straight-
forward and have two basic features: their disturbances are uncorrelated, and all causal 
effects are unidirectional. Nonrecursive models have feedback loops or may have cor-
related disturbances. Consider the path models in Figure 5.3. The model of Figure 5.3(a) 
is recursive because its disturbances are independent and no observed variable is repre-
sented as both a cause and effect of another variable, directly or indirectly. For example, 
X1, X2, and Y1 are specified as direct or indirect causes of Y2, but Y2 has no effect back 
onto one of its presumed causes. All of the models in Figure 5.2 are recursive, too. In 
contrast, the model of Figure 5.3(b) has a direct feedback loop in which Y1 and Y2 are 
specified as both causes and effects of each other (Y1  Y2). Each of these two vari-
ables is measured only once and also simultaneously. That is, direct feedback loops are 
estimated with data from a cross-sectional design, not a longitudinal design. Indirect 
feedback loops involve three or more variables, such as

	 Y1 → Y2 → Y3 → Y1

Any model with an indirect feedback loop is automatically nonrecursive, too.
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The model of Figure 5.3(b) also has a disturbance covariance (for unstandardized 
variables) or a disturbance correlation (for standardized variables). The term distur-
bance correlation is used from this point on regardless of whether or not the variables 
are standardized. A disturbance correlation, such as D1   D2, reflects the assumption 
that the corresponding endogenous variables (Y1, Y2) share at least one common omit-
ted cause. Unlike unanalyzed associations between measured exogenous variables (e.g., 
X1   X2), the inclusion of disturbance correlations in the model is not routine. Why 
this is true is explained momentarily.

There is another type of path model, one that has unidirectional effects and corre-
lated disturbances; two examples of this type are presented in Figures 5.3(c) and 5.3(d). 
Unfortunately, the classification of such models is not consistent. Some authors call 
these models nonrecursive, whereas others use the term partially recursive. But more 
important than the label for these models is the distinction made in the figure: Partially 
recursive models with a bow-free pattern of disturbance correlations can be treated in 
the analysis just like recursive models. A bow-free pattern means that correlated dis-
turbances are restricted to pairs of endogenous variables without direct effects between 

FIGURE 5.3. Examples of recursive and nonrecursive path models.
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them (see Figure 5.3(c)). In contrast, partially recursive models with a bow pattern of 
disturbance correlations must be treated in the analysis as nonrecursive models. A bow 
pattern means that a disturbance correlation occurs with a direct effect between that 
pair of endogenous variables (see Figure 5.3(d)) (Brito & Pearl, 2003). All ensuing ref-
erences to recursive and nonrecursive models include, respectively, partially recursive 
models without and with direct effects among the endogenous variables.

Implications of the distinction between recursive and nonrecursive structural mod-
els are considered next. The assumptions of recursive models that all causal effects 
are unidirectional and that the disturbances are independent simplify the statistical 
demands for their analysis. For example, in the past MR was used to estimate path 
coefficients and disturbance variances in recursive path models. Today we use SEM 
computer tools to estimate recursive path models and all other kinds of models, too. 
The occurrence of a technical problem in the analysis is less likely for recursive models. 
It is also true that recursive structural models are identified, given that the necessary 
requirements for identification are satisfied (Chapter 6). The same assumptions of recur-
sive models that ease the analytical burden are also restrictive. For example, causal 
effects that are not unidirectional, such as in a feedback loop, or disturbances that are 
correlated in a bow pattern cannot be represented in a recursive model.

The kinds of effects just mentioned can be represented in nonrecursive models, 
but such models require additional assumptions. Kaplan, Harik, and Hotchkiss (2001) 
remind us that data from a cross-sectional design give only a “snapshot” of an ongo-
ing dynamic process. Therefore, the estimation of reciprocal effects in a feedback loop 
with cross-sectional data requires the assumption of equilibrium. This means that any 
changes in the system underlying a presumed feedback relation have already manifested 
their effects and that the system is in a steady state. That is, the values of the estimates 
of the direct effects that make up the feedback loop do not depend on the particular time 
point of data collection. Heise (1975) described equilibrium this way: it means that a 
dynamic system has completed its cycles of response to a set of inputs and that the inputs 
do not vary over time. That is, the causal process has basically dampened out and is not 
just beginning (Kenny, 1979). It is important to realize that there is generally no statis-
tical way to directly evaluate whether the equilibrium assumption is tenable when the 
data are cross-sectional; that is, it must be argued substantively. Kaplan et al. (2001) note 
that rarely is this assumption explicitly acknowledged in the literature on applications of 
SEM where feedback effects are estimated with cross-sectional data. This is unfortunate 
because the results of computer simulation studies by Kaplan et al. (2001) indicate that 
violation of the equilibrium assumption can lead to severely biased estimates of the direct 
effects in feedback loops. Another assumption in the estimation of reciprocal effects in 
feedback loops with cross-sectional data is that of stationarity, the requirement that 
the causal structure does not change over time. Both assumptions just described, that of 
equilibrium and stationarity, are very demanding (i.e., probably unrealistic).

A feedback loop between Y1 and Y2 is represented in Figure 5.4(a) without distur-
bances or other variables. Another way to estimate reciprocal effects requires a longi-
tudinal design where Y1 and Y2 are each measured at ≥ 2 different points in time. For 
example, the symbols Y11 and Y21 in the panel model shown in Figure 5.4(b) without 
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disturbances or other variables represent, respectively, Y1 and Y2 at the first measure-
ment occasion. Likewise, the symbols Y12 and Y22 represent the same two variables at 
the second measurement. Presumed reciprocal causation is represented in Figure 5.4(b) 
by the cross-lag direct effects between Y1 and Y2 measured at different times, such as 
Y11 → Y22 and Y21 → Y12. A panel model may be recursive or nonrecursive depending 
on its pattern of disturbance correlations.

Panel models for longitudinal data offer potential advantages over models with 
feedback loops for cross-sectional data. One is the explicit representation of a finite 
causal lag that corresponds to the measurement occasions. In this sense, the measure-
ment occasions in a design where all variables are concurrently measured are always 
incorrect, if we assume that causal effects require a finite amount of time. However, the 
analysis of a panel model is no panacea for estimating reciprocal causality. For exam-
ple, it can be difficult to specify measurement occasions that match actual causal lags. 
Panel designs are not generally useful for resolving effect priority between reciprocally 
related variables—for example, does Y1 cause Y2 or vice versa?—unless some restrictive 
assumptions are met, including that of stationarity. Maruyama (1998) reminds us that 
the requirement that there are no omitted causes correlated with those in the model is 
even more critical for panel models because of repeated sampling over time. The com-
plexity of panel models can increase rapidly as more variables are added to the model 
(Cole & Maxwell, 2003). See Frees (2004) for more information about the analysis of 
panel data in longitudinal designs.

For many researchers, the estimation of reciprocal causation between variables 
measured simultaneously is the only viable alternative to a longitudinal design. Given 
all the restrictive assumptions for estimating such effects in a cross-sectional design, 
however, it is critical not to be too cavalier in the specification of feedback loops. One 
example is when different directionalities are each supported by two different theories 
(e.g., Y1 → Y2 according to theory 1, Y2 → Y1 according to theory 2). As mentioned, 
it can happen that two models with different directionality specifications among the 
same variables can fit the same data equally well. An even clearer example is when you 
haven’t really thought through the directionality question. In this case, the specification 
of Y1  Y2 may be a smokescreen that covers up the basic uncertainty.

FIGURE 5.4. Reciprocal causal effects between Y1 and Y2 represented with (a) a direct feedback 
loop based on a cross-sectional design and (b) a cross-lag effect based on a longitudinal design 
(panel model) shown without disturbances or other variables.
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Recall that the presence of a disturbance correlation reflects the assumption that the 
corresponding endogenous variables share at least one common unmeasured cause. The 
disturbances of variables involved in feedback loops are often specified as correlated. 
This specification often makes sense because if variables are presumed to mutually cause 
each other, then it seems plausible to expect that they may have shared omitted causes. 
In fact, the presence of disturbance correlations in particular patterns in nonrecursive 
models helps to determine their identification status (Chapter 6). In recursive models, 
disturbance correlations can be specified only between endogenous variables with no 
direct effect between them (e.g., Figure 5.3(c)). The addition of each disturbance correla-
tion to the model “costs” one degree of freedom and thus makes the model more com-
plicated. If there are substantive reasons for specifying disturbance correlations, then 
it is probably better to estimate the model with these terms than without them. This is 
because the constraint that a disturbance correlation is zero when there are common 
causes tends to redistribute this association toward the exogenous end of the model, 
which can result in biased estimates of direct effects. In general, disturbances should be 
specified as correlated if there are theoretical bases for doing so; otherwise, be wary of 
making the model overly complex by adding parameters without a clear reason.

Another complication of nonrecursive models is that of identification. There are 
some straightforward ways that a researcher can determine whether some, but not all, 
types of nonrecursive models are identified. These procedures are described in Chapter 
6, but it is worthwhile to make this point now: adding exogenous variables is one way to 
remedy an identification problem of a nonrecursive model. However, this typically can 
only be done before the data are collected. Thus it is critical to evaluate whether a nonre-
cursive model is identified right after it is specified and before the study is conducted.

Before we continue, let’s apply the rules for counting observations, parameters, and 
degrees of freedom to the recursive model in Figure 5.3(a). Because there are v = 4 
observed variables in this model, the number of observations is 4(5)/2 = 10 (Rule 5.2). 
It is assumed that the constants (1) in the figure, such as that for the path D1 → Y1, 
are fixed parameters that scale the disturbances. Applying Rule 5.1 for counting free 
parameters gives us the results that are summarized in Table 5.1. Because the number 
of observations and free parameters for this model are equal (10), the model degrees of 
freedom are zero (dfM = 0). Exercise 3 for this chapter asks you to count the number of 
parameters and dfM for the other path models in Figure 5.3.

PA Research Example

Presented in Figure 5.5 is a recursive path model of presumed causes and effects of 
positive teacher–pupil interactions analyzed in a sample of 109 high school teachers and 
946 students by Sava (2002).5 This model reflects the hypothesis that both the level of 

5I renamed some of the variables in Figure 5.5 in order to clarify the meaning of low versus high scores in 
the Sava (2002) data set.
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school support for teachers (e.g., resource availability) and a coercive view of student 
discipline that emphasizes a custodial approach to education affect teacher burnout. All 
three variables just mentioned are expected to affect the level of positive teacher–pupil 
interactions. In turn, better student–teacher interactions should lead to better school 
experience and general somatic status (e.g., less worry about school) on the part of 
students. Note in Figure 5.5 the absence of direct effects from school support, coer-
cive control, and burnout to the two endogenous variables in the far right side of the 
model, school experience and somatic status. Instead, the model depicts the hypothesis 
of “pure” mediation through positive teacher–pupil interactions.

The article by Sava (2002) is a model in that it offers a clear account of specifica-
tion and a detailed description of all measures, including internal consistency score 
reliabilities. Sava (2002) reported the data matrices analyzed (covariance, correlation) 
and used an appropriate method to analyze a correlation matrix without standard devia-
tions. This author also reported all parameter estimates, both unstandardized and stan-

TABLE 5.1.  Number and Types of Free Parameters for the Recursive Path Model 
of Figure 5.3(a)

Endogenous variables

Model
Direct effects on  

endogenous variables Variances ( ) Covariances Total

Figure 5.3(a) X1 → Y1 X2 → Y1 X1, X2 X1   X2 10
X1 → Y2 X2 → Y2 D1, D2

Y1 → Y2

FIGURE 5.5. A path model of causes and effects of positive teacher–pupil interactions.
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dardized, with the appropriate standard errors. However, Sava (2002) did not consider 
equivalent path models. Detailed analysis of the path model in Figure 5.5 is discussed 
in Chapter 7.

CFA Models

Issues in the specification of CFA models are considered next.

Standard CFA Models

The technique of CFA analyzes a priori measurement models in which both the number 
of factors and their correspondence with the indicators are explicitly specified. Pre-
sented in Figure 5.6 is an example of a standard CFA model—the type most often 
tested in the literature—with two factors and six indicators. This model represents the 
hypothesis that (1) indicators X1–X3 measure factor A, (2) X4–X6 measure factor B, and 
(3) the factors covary. Each indicator has a measurement error term, such as E1 for indi-
cator X1. Standard CFA models have the following characteristics:

1.	 Each indicator is a continuous variable represented as having two causes—a 
single factor that the indicator is supposed to measure and all other unique 
sources of influence (omitted causes) represented by the error term.

2.	 The measurement errors are independent of each other and of the factors.
3.	 All associations between the factors are unanalyzed (the factors are assumed to 

covary).

FIGURE 5.6. A standard confirmatory factor analysis model.
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The lines with single arrowheads that point from a factor to an indicator, such as 
A → X1 in Figure 5.6, represent the presumed causal effect of the factor on the observed 
scores. Statistical estimates of these direct effects are called factor loadings or pattern 
coefficients, and they are generally interpreted as regression coefficients that may be 
in unstandardized or standardized form. Indicators assumed to be caused by underly-
ing factors are referred to as effect indicators or reflective indicators. In this sense, 
indicators in standard CFA models are endogenous, and the factors are exogenous vari-
ables that are free to vary and covary. This also describes reflective measurement. The 
numeral (1) that appears in the figure next to the paths from the factors to one of their 
indicators (e.g., B → X4) are scaling constants that assign a metric to each factor, which 
allows the computer to estimate factor variances and covariances. The logic behind this 
specification and another option to scale factors is discussed in the next chapter, but 
scaling the factors is required for identification.

Each measurement error term in Figure 5.6 represents unique variance, a factor-
analytic term for indicator variance not explained by the factors. Like disturbances in 
path models, measurement errors are proxy variables for all sources of residual variation 
that are not explained by the model. That is, they are unmeasured exogenous variables, 
so the symbol  appears next to each of the error terms in the figure. The measure-
ment errors in Figure 5.6 are specified as independent, which is apparent by the absence 
of the symbol for an unanalyzed association ( ) that connects pairs of measurement 
error terms. This specification assumes that all omitted causes of each indicator are 
unrelated to those for all other indicators in the model. It is also assumed that the meas-
urement errors are independent of the factors.

Two types of unique variance are represented by measurement errors: random 
error (score unreliability) and all sources of systematic variance not due to the factors. 
Examples of the latter type include systematic effects due to a particular measurement 
method or the particular stimuli that make up a task. When it is said that SEM takes 
account of measurement error, it is the error terms in measurement models to which 
this statement refers. The paths in the figure that point to the indicators from the 
measurement errors represent the direct effect of all unmeasured sources of unique 
variance on the indicators. The constants (1) that appear in the figure next to paths 
from measurement errors to indicators (e.g., E1 → X1) represent the assignment of a 
scale to each term.

The representation in standard CFA models that each indicator has two causes, 
such as

	 A → X1 ← E1

in Figure 5.6, is consistent with the view in classical measurement theory that observed 
scores (X) are comprised of two components: a true score (T) that reflects the construct 
of interest and a random error component (E) that is normally distributed with a mean 
of zero across all cases, or
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	 X = T + E	 (5.2)

The rationale that underlies the specification of reflective measurement in a standard 
CFA model comes from the domain sampling model (Nunnally & Bernstein, 1994, 
chap. 6). In this view of measurement, effect indicators X1–X3 in Figure 5.6 should as a 
set be internally consistent. This means that their intercorrelations should be positive 
and at least moderately high in magnitude (e.g., > .50). The same should also hold for 
indicators X4–X6 in the figure. Also, correlations among indicators of the same factor 
should be greater than cross-factor correlations. The patterns of indicator intercorrela-
tions just described correspond to, respectively, convergent validity and discriminant 
validity in construct measurement. The domain sampling model also assumes that 
equally reliable effect indicators of the same construct are interchangeable (Bollen & 
Lenox, 1991). This means that the indicators can be substituted for each other without 
appreciably affecting construct measurement.

Sometimes the items of a particular indicator are negatively worded compared 
with other indicators of the same factor. Consequently, scores on that indicator will be 
negatively correlated with those from the other indicators, which is problematic from a 
domain sampling perspective. Suppose that a life satisfaction factor has three indicators. 
High scores on two indicators indicate greater contentment, but the third indicator is 
scaled to reflect degree of unhappiness, which implies negative correlations with scores 
from the other two indicators. In this case, the researcher could use reverse scoring or 
reverse coding, which reflects or reverses the scores on the negatively worded indicated 
indicator. One way to reflect the scores is to multiply them by –1.0 and then add a con-
stant to the reflected scores so that the minimum score is at least 1.0 (Chapter 3). In this 
example, high scores on the unhappiness indicator are reflected to become low happi-
ness scores, and vice versa. Now intercorrelations among all three indicators of the life 
satisfaction factor in this example should be positive.

It makes no sense to specify a factor with effect indicators that do not measure 
something in common. For example, suppose that the variables gender, ethnicity, and 
education are specified as effect indicators of a factor named “background” or some 
similar term. There are two problems here. First, gender and ethnicity are unrelated in 
representative samples, so one could not claim that these variables somehow measure a 
common domain.6 Second, none of these indicators, such as a person’s gender, is in any 
way “caused” by the some underlying “background” factor.

A common question about CFA concerns a minimum number of indicators per fac-
tor. In general, the absolute minimum for CFA models with two or more factors is two 
indicators per factor, which is required for identification. However, CFA models—and 
SR models, too—with factors that have only two indicators are more prone to problems 
in the analysis, especially in small samples. Also, it may be difficult to estimate measure-

6L. Wothke, personal communication, November 25, 2003.
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ment error correlation for factors with only two indicators, which can result in a speci-
fication error. Kenny’s (1979) rule of thumb about the number of indicators is apropos: 
“Two might be fine, three is better, four is best, and anything more is gravy” (p. 143; 
emphasis in original.)

Dimensionality of Measurement

The specifications that (1) each indicator loads on a single factor and (2) the error terms 
are independent describe unidimensional measurement. The first specification just 
mentioned describes restricted factor models. If any indicator loads on ≥ 2 factors or 
if its error term is assumed to covary with that of another indicator, then multidimen-
sional measurement is specified. For example, adding the direct effect B → X1 to the 
model of Figure 5.6 would specify multidimensional measurement. There is controversy 
about allowing indicators to load on multiple factors. On the one hand, some indicators 
may actually measure more than one domain. An engineering aptitude test with text 
and diagrams, for instance, may measure both verbal and visual-spatial reasoning. On 
the other hand, unidimensional models offer more precise tests of the convergent and 
discriminant validity. For example, if every indicator in Figure 5.6 were allowed to load 
on both factors, an exploratory factor analysis (EFA) model that allows correlated fac-
tors (an oblique rotation) would be specified. It is unrestricted factor models that are 
estimated in EFA. (Other differences between CFA and EFA are outlined below.)

The specification of correlated measurement errors is a second way to represent 
multidimensional measurement. An error correlation reflects the assumption that the 
two corresponding indicators share something in common that is not explicitly repre-
sented in the model. Because error correlations are unanalyzed associations between 
latent exogenous variables (e.g., E1   E2), what this “something” may be is unknown 
as far as the model is concerned. Error term correlations may be specified as a way to 
test hypotheses about shared sources of variability over and beyond the factors. For 
example, the specification of error correlations for repeated measures variables repre-
sents the hypothesis of autocorrelated errors. The same specification can also reflect 
the hypothesis of a common method effect. In contrast, the absence of a measurement 
error correlation between a pair of indicators reflects the assumption that their observed 
correlation can be explained by their underlying factors. This refers to the local inde-
pendence assumption that the indicators are independent, given the (correctly speci-
fied) latent variable model.7

The specification of multidimensional measurement makes a CFA model more 
complex compared with a standard (unidimensional) model. There are also implica-
tions for identification. Briefly, straightforward ways can be used to determine whether 
a standard CFA model is identified, but this may not be true for nonstandard models 

7W. Wothke, personal communication, November 24, 2003.
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(Chapter 6). It is important to evaluate whether nonstandard CFA models are identified 
when they are specified and before the data are collected. This is because one way to 
respecify a nonidentified CFA model is to add indicators, which increases the number of 
observations available to estimate effects.

Other Characteristics of CFA

The results of a CFA include estimates of factor variances and covariances, loadings of 
the indicators on their respective factors, and the amount of measurement error for each 
indicator. If the researcher’s model is reasonably correct, then one should see the fol-
lowing pattern of results: (1) all indicators specified to measure a common factor have 
relatively high standardized factor loadings on that factor (e.g., > .70); and (2) estimated 
correlations between the factors are not excessively high (e.g., < .90 in absolute value). 
The first result indicates convergent validity; the second, discriminant validity. For 
example, if the estimated correlation between factors A and B in Figure 5.6 is .95, then 
the six indicators can hardly be said to measure two distinct constructs. If the results of 
a CFA do not support the researcher’s a priori hypotheses, the measurement model can 
be respecified in the context of model generation (Chapter 1).

Hierarchical confirmatory factor analysis models depict at least one construct 
as a second-order factor that is not directly measured by any indicator. This exogenous 
second-order factor is also presumed to have direct effects on the first-order factors, 
which have indicators. These first-order factors are endogenous and thus do not have 
unanalyzed associations with each other. Instead, their common direct cause, the 
second-order factor, is presumed to explain the covariances among the first-order 
factors. Hierarchical models of intelligence, in which a general ability factor (g) is pre-
sumed to underlie more specific ability factors (verbal, visual-spatial, etc.), are examples 
of theoretical models that have been tested with hierarchical CFA. This special type of 
CFA model is discussed in Chapter 9.

Contrast with EFA

A standard statistical technique for evaluating measurement models is EFA. Originally 
developed by psychologists to test theories of intelligence, EFA is not generally con-
sidered a member of the SEM family. The term EFA refers to a class of procedures that 
include centroid, principal components, and principal (common) factor analysis meth-
ods that differ in their statistical criteria used to derive factors. This technique does not 
require a priori hypotheses about factor–indicator correspondence or even the number 
of factors. For example, all indicators are allowed to load on every factor; that is, EFA 
tests unrestricted factor models. There are ways to conduct EFA in a more confirmatory 
mode, such as instructing the computer to extract a certain number of factors based on 
theory. But the point is that EFA does not require specific hypotheses in order to apply 
it.
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Another difference between CFA and EFA is that unrestricted factor models are not 
generally identified. That is, there is no single, unique set of parameter estimates for a 
given EFA model. This is because an EFA solution can be rotated an infinite number of 
ways. Among rotation options in EFA—varimax, quartimin, and promax to name just 
a few—researchers try to select one that clarifies factor interpretation. A parsimonious 
explanation in EFA corresponds to a solution that exhibits simple structure where 
each factor explains as much variance as possible in nonoverlapping sets of indicators 
(Kaplan, 2009). There is no need for rotation in CFA because factor models estimated in 
this technique are identified. Factors are allowed to covary in CFA, but the specification 
of correlated factors is not required in EFA (it is optional).

Cause Indicators and Formative Measurement

The assumption that indicators are caused by underlying factors is not always appropri-
ate. Some indicators are viewed as cause indicators or formative indicators that affect 
a factor instead of the reverse. Consider this example by Bollen and Lennox (1991): The 
variables income, education, and occupation are used to measure socioeconomic status 
(SES). In a standard CFA model, these variables would be specified as effect indicators 
that are caused by an underlying SES factor (and by measurement errors). But we usually 
think of SES as the outcome of these variables (and others), not vice versa. For example, a 
change in any one of these indicators, such as a salary increase, may affect SES. From the 
perspective of formative measurement, SES is a composite that is caused by its indica-
tors. Chapter 10 deals with formative measurement models.

CFA Research Example

Presented in Figure 5.7 is a standard CFA measurement model for the Mental Process-
ing scale of the first edition Kaufman Assessment Battery for Children (KABC‑I) (Kauf-
man & Kaufman, 1983), an individually administered cognitive ability test for children 
2½ to 12½ years old. The test’s authors claimed that the eight subtests represented in 
the figure measure two factors, sequential processing and simultaneous processing. 
The three tasks believed to reflect sequential processing all require the correct recall 
of auditory stimuli (Word Order, Number Recall) or visual stimuli (Hand Movements) 
in a particular order. The other five tasks represented in the figure are supposed to 
measure more holistic, less order-dependent reasoning, or simultaneous processing. 
Each of these tasks requires that the child grasp a “gestalt” but with somewhat differ-
ent formats and stimuli.

The results of several CFA analyses of the KABC‑I conducted in the 1980–1990s 
generally supported the two-factor model presented in Figure 5.7 (e.g., Cameron et al., 
1997). However, other results have indicated that some subtests, such as Hand Move-
ments, may measure both factors and that some of the measurement errors may covary 
(e.g., Keith, 1985). Detailed analysis of the model in Figure 5.7 with data for 10-year-olds 
from the KABC‑I’s normative sample is described in Chapter 9.
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Structural Regression Models

The most general kind of core structural equation model is an SR model, also called a 
full LISREL model. This term reflects the fact that LISREL was one of the first computer 
programs to analyze SR models, but any contemporary SEM computer tool can do so 
now. An SR model is the synthesis of a structural model and a measurement model. 
As in PA, the specification of an SR model allows tests of hypotheses about direct and 
indirect causal effects. Unlike path models, though, these effects can involve latent vari-
ables because an SR model also incorporates a measurement component that represents 
observed variables as indicators of underlying factors, just as in CFA. The capability to 
test hypotheses about both structural and measurement relations within a single model 
affords much flexibility.

Presented in Figure 5.8(a) is a structural model with observed variables—a path 
model—that features single-indicator measurement. The observed exogenous variable 
of this model, X1, is assumed to be measured without error, an assumption usually 
violated in practice. This assumption is not required for the endogenous variables of 
this model, but measurement error in Y1 or Y3 is manifested in their disturbances. The 
model of Figure 5.8(b) is an SR model with both structural and measurement compo-
nents. Its measurement model has the same three observed variables represented in the 
path model, X1, Y1, and Y3. Unlike the path model, each of these three indicators in the 
SR model is specified as one of a pair for an underlying factor.8 Consequently, (1) all 
the observed variables in Figure 5.8(b) have measurement error terms, and (2) effects 
for the endogenous latent variables, such as direct effects (e.g., A → B) and disturbance 
variances (for DB and DC) are all estimated controlling for measurement error in the 
observed variables.

FIGURE 5.7. A confirmatory factor analysis model of the first-edition Kaufman Assessment 
Battery for Children.

8I saved space in Figure 5.8 by showing only two indicators per factor, but remember that it is generally 
better to have at least three indicators per factor.
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This SR model of Figure 5.8(b) also has a structural component that depicts the 
same basic pattern of direct and indirect causal effects as the path model but among 
latent variables (A → B → C) instead of observed variables. The structural model of 
Figure 5.8(b) is recursive, but it is also generally possible to specify an SR model with a 
nonrecursive structural model. Each latent endogenous variable in the structural model 
of Figure 5.8(b) has a disturbance (DB, DC). Unlike path models, the disturbances of 
SR models reflect only omitted causes and not also measurement error. For the same 
reason, path coefficients of the direct effects A → B and B → C in Figure 5.8(b) are cor-
rected for measurement error, but those for the paths X1 → Y1 and Y1 → Y3 in Figure 
5.8(a) are not.

The model of Figure 5.8(b) could be described as a fully latent SR model because 
every variable in its structural model is latent. Although this characteristic is desirable 
because it implies multiple-indicator measurement, it is also possible to represent in 
SR models an observed variable that is a single indicator of a construct. This reflects 
the reality that sometimes there is just a single measure of a some construct of interest. 
Such models could be called partially latent SR models because at least one variable 
in their structural model is a single indicator. However, unless measurement error of a 
single indicator is taken into account, partially latent SR models have the same limita-
tions as path models outlined earlier. A way to address this problem for single indicators 
is described in Chapter 10.

FIGURE 5.8. Examples of a path analysis model (a) and a structural regression model (b).
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SR Model Research Example

Within a sample of 263 full-time university employees, Houghton and Jinkerson (2007) 
administered multiple measures of four constructs, including constructive (opportu-
nity-oriented) thinking, dysfunctional (obstacle-oriented) thinking, subjective well-
being (sense of psychological wellness), and job satisfaction. Based on their review of 
theory and empirical results in this area, Houghton and Jinkerson (2007) specified the 
four-factor fully latent SR model presented in Figure 5.9. The structural part of this 
model represents the hypotheses that (1) dysfunctional thinking and subjective well-
being each have direct effects on job satisfaction; (2) constructive thinking has a direct 
effect on dysfunctional thinking; (3) the effect of constructive thinking on subjective 
well-being is mediated by dysfunctional thinking; and (4) the effects of constructive 
thinking on job satisfaction are mediated by the other two factors.

The measurement part of the SR model in Figure 5.9 features three indicators per 
factor. Briefly, indicators of (1) constructive thinking include measures of belief evalua-
tion, positive self-talk, and positive visual imagery; (2) dysfunctional thinking includes 
two scales regarding worry about performance evaluations and a third scale about need 
for approval; (3) subjective well-being include ratings about general happiness and two 
positive mood rating scales; and (4) job satisfaction include three scales that reflect one’s 
work experience as positively engaging.

FIGURE 5.9. A structural regression model of factors of job satisfaction.
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The article by Houghton and Jinkerson (2007) is exemplary in that the authors 
describe the theoretical rationale for each and every direct effect among the four factors 
in the structural model, provide detailed descriptions of all indicators including internal 
consistency score reliabilities, report the correlations and standard deviations for the 
covariance data matrix they analyzed, and test alternative models. However, Houghton 
and Jinkerson (2007) did not report unstandardized parameter estimates, nor did they 
consider equivalent versions of their final model. The detailed analysis of this SR model 
is described in Chapter 10.

Exploratory SEM

Recall that Mplus has capabilities for exploratory structural equation modeling (ESEM) 
(Chapter 4). In ESEM, some parts of the measurement model are unrestricted instead of 
restricted. That is, the analysis incorporates features of both EFA and SEM. This type 
of analysis may be suitable when the researcher has weaker hypotheses about multiple-
indicator measurement of some constructs than is ordinarily represented in CFA or SR 
models. Consider the ESEM model presented in Figure 5.10, which is also described in 
the Mplus 6 manual (Muthén & Muthén, 1998–2010, p. 90). The measurement model 
for factors A and B in the figure is an unrestricted EFA model where the indicators are 
allowed to load on every factor. In Mplus, the factor solution for this part of the model 
will be rotated according to the method specified by the user. Factors A and B are scaled 
by fixing their variances to 1.0, which standardizes them. In contrast, the measurement 
model for factors C and F in the figure is restricted where each indicator loads on a single 
factor. There is a structural model in Figure 5.10, too, and it features direct or indirect 
effects from the exogenous factors A and B onto the endogenous factors C and F. See 
Asparouhov and Muthén (2009) for more information about ESEM.

Summary

Considered in this chapter were the specification of core SEM models and the types of 
research questions that can be addressed in their analysis. Path analysis allows research-
ers to specify and test structural models that reflect a priori assumptions about spuri-
ous associations and direct or indirect effects among observed variables. Measurement 
models that represent hypotheses about relations between indicators and factors can 
be evaluated with the technique of confirmatory factor analysis. Structural regression 
models with both a structural component and a measurement component can also be 
analyzed. Rules that apply to all the kinds of models just mentioned for counting the 
number of observations and the number of model parameters were also considered. The 
counting rules just mentioned are also relevant for checking whether a structural equa-
tion model is identified, which is the topic of the next chapter.
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Recommended Readings

MacCallum and Austin (2000) and Shah and Goldstein (2006) describe various types of 
shortcomings in articles published in psychology, education, and business journals in which 
results of SEM analyses are reported. Holbert and Stephenson (2002) survey the use of SEM 
in communication and note some of the same problems. All three articles should provide you 
with a good sense of common specification pitfalls to avoid.

Holbert, R. L., & Stephenson, M. T. (2002). Structural equation modeling in the communication 
sciences, 1995–2000. Human Communication Research, 28, 531–551.

MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psy-
chological research. Annual Review of Psychology, 51, 201–236.

Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations man-
agement research: Looking back and forward. Journal of Operations Management, 24, 
148–169.

Exercises

	 1.	 What is the “explanation” of Figure 5.3a about why scores on Y1 and Y2 are cor-
related?

	 2.	 Does the CFA model of Figure 5.6 have a structural component?

	 3.	 Count the number of free parameters for the path models of Figures 5.3(b)–
5.3(d).

FIGURE 5.10. An exploratory structural equation model.
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	 4.	 Calculate the model degrees of freedom for (a) Figure 5.5, (b) Figure 5.7, and 
(c) Figure 5.9.

	 5.	 How are covariates represented in structural models?

	 6.	 Respond to this question: “I am uncertain about the direction of causality 
between Y1 and Y2. In SEM, why can’t I just specify two different models, one 
with Y1 → Y2 and the other with Y2 → Y1, fit both models to the same data, and 
then pick the model with the best fit?”

	 7.	 What is the difference between a measurement error (E) and a disturbance 
(D)?

	 8.	 Specify a path model where the effects of a substantive exogenous variable X1 
on the outcome variable Y2 are entirely mediated through variable Y1. Also 
represent in the model the covariate X2 (e.g., level of education in years).

	 9.	 What is the role of sample size in SEM?



124

6

Identification

The topic of this chapter corresponds to the second step of SEM: the evaluation 
of identification, or whether it is theoretically possible for the computer to derive a 
unique set of model parameter estimates. This chapter shows you how to evaluate the 
identification status of core types of structural equation models analyzed within single 
samples when means are not also estimated. A set of identification rules or heuristics 
is introduced. These rules describe sufficient requirements for identifying certain types 
of core structural equation models, and they are relatively straightforward to apply. 
There may be no heuristics for more complex models, but suggestions are offered 
about how to deal with the identification problem for such models. Some of the top-
ics discussed next require careful and patient study. However, many examples are 
offered, and exercises for this chapter give you additional opportunities for practice. 
A Chinese proverb states that learning is a treasure that will follow you everywhere. 
After mastering the concepts in this chapter, you will be better prepared to apply SEM 
in your own studies.

General Requirements

There are two general requirements for identifying any structural equation model. 
Expressed more formally, these requirements are necessary but insufficient for identifi-
cation; they are:

1.	 The model degrees of freedom must be at least zero (dfM ≥ 0).
2.	 Every latent variable (including the residual terms) must be assigned a scale 

(metric).
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Minimum Degrees of Freedom

Some authors describe the requirement for dfM ≥ 0 as the counting rule (Kaplan, 2009). 
Models that violate the counting rule are not identified. Specifically, they are underi-
dentified or underdetermined. As an example of how a deficit of observations leads to 
nonidentification, consider the following equation:

	 a + b = 6	 (6.1)

Look at this expression as a model, the 6 as an observation, and a and b as parameters. 
Because Equation 6.1 has more parameters (2) than observations (1), it is impossible to 
find unique estimates for its parameters. In fact, there are an infinite number of solu-
tions, including (a = 4, b = 2), (a = 8, b = –2), and so on, all of which satisfy Equation 6.1. 
A similar thing happens when a computer tries to derive a unique set of estimates for 
the parameters of an underidentified structural equation model: it is impossible to do 
so, and the attempt fails.

This next example shows that having equal numbers of observations and param-
eters does not guarantee identification. Consider the following set of formulas:

	 a + b = 6 	 (6.2) 
	 3a + 3b = 18

Although this model has two observations (6, 18) and two parameters (a, b), it does not 
have a unique solution. Actually, an infinite number of solutions satisfy Equation 6.2, 
such as (a = 4, b = 2), (a = 8, b = –2), and so on. This happens due to an inherent char-
acteristic of the model: the second formula in Equation 6.2 (3a + 3b = 18) is not unique. 
Instead, it is simply three times the first formula (a + b = 6), which means that it cannot 
narrow the range of solutions that satisfy the first formula. These two formulas can also 
be described as linearly dependent.

Now consider the following set of formulas with two observations and two param-
eters where the second formula is not linearly dependent on the first:

	 a + b = 6 	 (6.3) 
	 2a + b = 10

This two-observation, two-parameter model has a unique solution (a = 4, b = 2); there-
fore, it is just-identified or just-determined. Note something else about Equation 6.3: 
given estimates of its parameters, it can perfectly reproduce the observations (6, 10). 
Recall that most structural equation models with zero degrees of freedom (dfM = 0) that 
are also identified can perfectly reproduce the data (sample covariances), but such mod-
els test no particular hypothesis.

A statistical model can also have fewer parameters than observations. Consider the 
following set of formulas with three observations and two parameters:
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	 a + b = 6 	 (6.4) 
	 2a + b = 10 
	 3a + b = 12

Try as you might, you will be unable to find values of a and b that satisfy all three for-
mulas. For example, the solution (a = 4, b = 2) works only for the first two formulas in 
Equation 6.4, and the solution (a = 2, b = 6) works only for the last two formulas. At first, 
the absence of a solution seems paradoxical, but there is a way to solve this problem: 
Impose a statistical criterion that leads to unique estimates for an overidentified or 
overdetermined model with more observations than parameters. An example of such a 
criterion for Equation 6.4 is presented next:

Find values of a and b that are positive and yield total scores such that the
sum of the squared differences between the observations (6, 10, 12) 
and these totals is as small as possible.

Applying the criterion just stated to the estimation of a and b in Equation 6.4 yields a 
solution that not only gives the smallest squared difference (.67) but that is also unique. 
(Using only one decimal place, we obtain a = 3.0 and b = 3.3.) Note that this solution 
does not perfectly reproduce the observations (6, 10, 12) in Equation 6.4. Specifically, 
the three total scores obtained from Equation 6.4 given the solution (a = 3.0, b = 3.3) are 
(6.3, 9.3, 12.3). The fact that an overidentified model may not perfectly reproduce the 
data has an important role in model testing, one that is explored in later chapters.

Note that the terms just-identified and overidentified do not automatically apply to 
a structural equation model unless it meets both of the two necessary requirements 
for identification mentioned at the beginning of this section and additional, sufficient 
requirements for that particular type of model described later. That is:

1.	 A just-identified structural equation model is identified and has the same 
number of free parameters as observations (dfM = 0).

2.	 An overidentified structural equation model is identified and has fewer free 
parameters than observations (dfM > 0).

A structural equation model can be underidentified in two ways. The first case occurs 
when there are more free parameters than observations (dfM < 0). The second case hap-
pens when some model parameters are underidentified because there is not enough 
available information to estimate them but others are identified. In the second case, the 
whole model is considered nonidentified, even though its degrees of freedom could be 
greater than or equal to zero (dfM ≥ 0). A general definition by Kenny (2004) that covers 
both cases just described is:

3.	 An underidentified structural equation model is one for which it is not pos-
sible to uniquely estimate all of its parameters.
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Scaling Latent Variables

Recall that error (residual) terms in SEM can be represented in model diagrams as latent 
variables. Accordingly, each error term requires a scale just as every substantive latent 
variable (i.e., factor) must be scaled, too. Options for scaling each type of variable are 
considered next.

Error Terms

Scales are usually assigned to disturbances (D) in structural models or measurement 
errors (E) in measurement models through a unit loading identification (ULI) con-
straint. This means that the path coefficient for the direct effect of a disturbance or 
measurement error—the unstandardized residual path coefficient—is fixed to equal the 
constant 1.0. In model diagrams, this specification is represented by the numeral 1 that 
appears next to the direct effect of a disturbance or a measurement error on the corre-
sponding endogenous variable. For example, the specification

	 DY1
 → Y1 = 1.0

in the path analysis (PA) model of Figure 5.8(a) represents the assignment of a scale to 
the disturbance of endogenous variable Y1. This specification has the consequence of 
assigning to DY1

 a scale that is related to that of the unexplained variance of Y1. Like-
wise, the specification

	 EX1
 → X1 = 1.0

in the CFA model of Figure 5.8(c) assigns to the error term EX1
 a scale related to variance 

in the indicator X1 that is unexplained by the factor this indicator is supposed to reflect 
(A). Once the scale of a disturbance or measurement error is set by imposing a ULI con-
straint, the computer needs only to estimate its variance. If residual terms are specified 
as correlated (e.g., Figure 5.3(b)), then the residual covariance can be estimated, too, 
assuming that the model with the correlated residuals is actually identified.

The specification of any positive scaling constant, such as 2.1 or 17.3, would identify 
the variance of a residual term, but it is much more common for this constant to equal 
1.0. A benefit of specifying that scaling constants are 1.0 is that for observed endogenous 
variables, the sum of the unstandardized residual variance and the explained variance 
will equal the unstandardized sample (total) variance of that endogenous variable. Also, 
most SEM computer programs make it easier to specify a ULI constraint for distur-
bances or measurement errors, or they do so by default.

Factors

Two traditional methods for scaling factors are described next. A more recent method by 
Little, Slegers, and Card (2006) is described later in this section. The first method is to 
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use the same method as for error terms, that is, by imposing ULI constraints. For a fac-
tor this means to fix the unstandardized coefficient (loading) for the direct effect on any 
one of its indicators to equal 1.0. Again, specification of any other positive scaling con-
stant would do, but 1.0 is the default in most SEM computer tools. In model diagrams, 
this specification is represented by the numeral 1 that appears next to the direct effect 
of a factor on one of its indicators. The indicator with the ULI constraint is known as 
the reference variable or marker variable. This specification assigns to a factor a scale 
related to that of the explained (common, shared) variance of the reference variable. For 
example, the specification

	 A → X1 = 1.0

in the CFA model of Figure 6.1(a) makes X1 the reference variable and assigns a scale to 
factor A based on the common variance of X1. Assuming that scores on each multiple 
indicator of the same factor are equally reliable, the choice of which indicator is to be the 
reference variable is generally arbitrary. One reason is that the overall fit of the model to 
the data is usually unaffected by the selection of reference variables. Another is consis-
tent with the domain sampling model, wherein effect (reflective) indicators of the same 
factor are viewed as interchangeable (Chapter 5). However, if indicator scores are not 
equally reliable, then it makes sense to select the indicator with the most reliable scores 
as the reference variable. After all factors are scaled by imposing a ULI constraint on the 
loading of the reference variable for each factor, the computer must then only estimate 
factor variances and covariances.

The second basic option to scale a factor is to fix its variance to a constant. Speci-
fication of any positive constant would do, but it is much more common to impose a 
unit variance identification (UVI) constraint. This fixes the factor variance to 1.0 and 
also standardizes the factor. When a factor is scaled through a UVI constraint, all factor 
loadings are free parameters. A UVI constraint is represented in model diagrams in this 
book with the numeral 1 next to the symbol for the variance of an exogenous variable 
( ). For example, the variance of factor A is fixed to 1.0 in the CFA model of Figure 
6.1(b). This specification not only assigns a scale to A, but it also implies that the load-
ings of all three of its indicators can be freely estimated with sample data. With the 
factors standardized, the computer must then only estimate the factor correlation. Note 
that scaling factors either through ULI or UVI constraints reduces the total number of 
free parameters by one for each factor.

Both methods of scaling factors in CFA (i.e., impose ULI or UVI constraints) gener-
ally result in the same overall fit of the model, but not always. A special problem known 
as constraint interaction occurs when the choice between either method affects overall 
model fit. This phenomenon is described in Chapter 9, but most of the time constraint 
interaction is not a problem. The choice between these two methods, then, is usually 
based on the relative merits of analyzing factors in standardized versus unstandard-
ized form. When a CFA model is analyzed in a single sample, either method is probably 
acceptable. Fixing the variance of a factor to 1.0 to standardize it has the advantage of 
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simplicity. A shortcoming of this method, however, is that it is usually applicable only to 
exogenous factors. This is because although basically all SEM computer tools allow the 
imposition of constraints on any model parameter, the variances of endogenous variables 
are not considered model parameters. Only some programs, such as LISREL, SEPATH, 
and RAMONA, allow the predicted variances of endogenous factors to be constrained to 
1.0. This is not an issue for CFA models, wherein all factors are exogenous, but it can be 
for structural regression (SR) models, wherein some factors are endogenous.

There are times when standardizing factors is not appropriate. These include (1) 
the analysis of a structural equation model across independent samples that differ in 
their variabilities and (2) longitudinal measurement of variables that show increasing 
(or decreasing) variabilities over time. In both cases, important information may be lost 

FIGURE 6.1. Standard confirmatory factor analysis measurement models with unstandardized 
factors (a) and standardized factors (b).
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when factors are standardized. How to appropriately scale factors in a multiple-sample 
CFA analysis is considered in Chapter 9.

Exogenous factors in SR models can be scaled by imposing either a ULI constraint 
where the loading of one indicator per factor is fixed to 1.0 (the factor is unstandard-
ized) or a UVI constraint where the factor variance is fixed to 1.0 (the factor is standard-
ized). As mentioned, though, most SEM computer programs allow only the first method 
just mentioned for scaling endogenous factors. This implies that endogenous factors are 
unstandardized in most analyses. When an SR model is analyzed within a single sample, 
the choice between scaling an exogenous factor with either ULI or UVI constraints com-
bined with the use of ULI constraints only to scale endogenous factors usually makes 
no difference. An exception is when some factors have only two indicators and there is 
constraint interaction, which for SR models is considered in Chapter 10.

Little, Slegers, and Card (2006) describe a third method for scaling factors in models 
where (1) all indicators of each factor have the same scale (i.e., range of scores) and (2) 
most indicators are specified to measure (load on) a single factor. This method does not 
require the selection of a reference variable, such as when ULI constraints are imposed, 
nor does it standardize factors, such as when UVI constraints are imposed. Instead, 
this third method for scaling factors relies on the capability of modern SEM computer 
tools to impose constraints on a set of two or more model parameters, in this case the 
unstandardized factor loadings of all the indicators for the same factor. Specifically, 
the researcher scales factors in the Little–Sleger–Card (LSC) method by instructing the 
computer to constrain the average (mean) loading of a set of indicators on their common 
factor to equal 1.0 in the unstandardized solution. So scaled, the variance of the factor 
will be estimated as the average explained variance across all the indicators in their 
original metric, weighted by the degree to which each indicator contributes to factor 
measurement. Thus, factors are not standardized in this method, nor does the explained 
variance of any arbitrarily selected indicator (i.e., that of the reference variance when 
imposing a ULI constraint) determine factor variance. The LSC method results in the 
same overall fit of the entire model to the data as observed when imposing either ULI 
or UVI constraints to scale factors. Also, the LSC method is appropriate for the analysis 
of a model in a single group, across multiple groups, or across multiple occasions (i.e., 
repeated measures)—see Little, Slegers, and Card (2006) for more information.

Unique Estimates

This is the penultimate aspect of identification: It must be possible to express each and 
every model parameter as a unique function of elements of the population covariance 
matrix such that the statistical criterion to be minimized in the analysis is also satisfied. 
Because we typically estimate the population covariance matrix with the sample covari-
ance matrix, this facet of identification can be described by saying that there is a unique 
set of parameter estimates, given the data and the statistical criterion to be minimized.

Determining whether the parameters can be expressed as unique functions of the 
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sample data is not an empirical question. Instead, it is a mathematical or theoretical 
question that can be evaluated by resolving equations that represent the parameters in 
terms of symbols that correspond to elements of the sample covariance matrix. This 
exercise takes the form of a formal mathematical proof, so no actual numerical values are 
needed for elements of the sample covariance matrix, just symbolic representations of 
them. This means that model identification can—and should—be evaluated before the data 
are collected. You may have seen formal mathematical proofs for ordinary least squares 
(OLS) estimation in multiple regression (MR). These proofs involve showing that stan-
dard formulas for regression coefficients and intercepts (e.g., Equations 2.5, 2.7, 2.8) are, 
in fact, those that satisfy the least squares criterion. A typical proof involves working 
with second derivatives for the function to be minimized. Dunn (2005) describes a less 
conventional proof for OLS estimation based on the Cauchy–Schwartz inequality, which 
is related to the triangle inequality in geometry as well as to limits on the bounds of cor-
relation and covariance statistics in positive-definite data matrices (Chapter 3).

The derivation of a formal proof for a simple regression analysis would be a fairly 
daunting task for those without a strong mathematics background, and models ana-
lyzed in SEM are often more complicated than simple regression models. Also, the 
default estimation method in SEM, maximum likelihood (ML), is more complex than 
OLS estimation, which implies that the statistical criterion minimized in ML estima-
tion is more complicated, too. Unfortunately, SEM computer tools are of little help in 
determining whether or not a particular structural equation model is identified. Some 
of these programs perform rudimentary checks for identification, such as applying the 
counting rule, but these checks generally concern necessary conditions, not sufficient 
ones.

It may surprise you to learn that SEM computer tools are rather helpless in this 
regard, but there is a simple explanation: Computers are very good at numerical process-
ing. However, it is harder to get them to process symbols, and it is symbolic processing 
that is needed for determining whether a particular model is identified. Computer lan-
guages for symbolic processing, such as LISP (list processing), form the basis of some 
applications of computers in the areas of artificial intelligence and expert systems. But 
contemporary SEM computer tools lack any real capability for symbolic processing of 
the kind needed to prove model identification for a wide range of models.

Fortunately, one does not need to be a mathematician in order to deal with the iden-
tification problem in SEM. This is because a series of less formal rules, or identification 
heuristics, can be applied by ordinary mortals (the rest of us) to determine whether 
certain types of models are identified. These heuristics cover many, but not all, kinds of 
core structural equation models considered in this part of the book. They are described 
next for PA models, CFA models, and fully latent SR models. This discussion assumes 
that the two necessary requirements for identification (dfM ≥ 0; latent variables scaled) 
are satisfied. Recall that CFA models assume reflective measurement where indicators 
are specified as caused by the factors (Chapter 5). Formative measurement models in 
which underlying observed or latent composites are specified as caused by their indica-
tors have special identification requirements that are considered in Chapter 10.
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Rule for Recursive Structural Models

Because of their particular characteristics, recursive path models are always identified 
(e.g., Bollen, 1989, pp. 95–98). This property is even more general: Recursive structural 
models are identified, whether the structural model consists of observed variables only 
(path models) or factors only (the structural part of a fully latent SR model). Note that 
whether the measurement component of an SR model with a recursive structural model 
is also identified is a separate question, one that is dealt with later in this chapter. The 
facts just reviewed underlie the following sufficient condition for identification:

Recursive structural models are identified.		 (Rule 6.1)

Rules for Nonrecursive Structural Models

The material covered in this section is more difficult, and so readers interested in recur-
sive structural models only can skip it (i.e., go the section on CFA). However, you can 
specify and test an even wider range of hypotheses about direct and indirect effects (e.g., 

It is frustrating that computers are of little help in dealing with identification in SEM, but you can 
apply heuristics to verify the identification status of many types of models. Copyright 2004 by 
Betsy Streeter. Reprinted with permission from CartoonStock Ltd. (www.cartoonstock.com).



�		  Identification	 133

feedback loops) if you know something about nonrecursive structural models, so the 
effort is worthwhile.

The case concerning identification for nonrecursive structural models—whether 
among observed variables (path models) or factors (SR models)—is more complicated. 
This is because, unlike recursive models, nonrecursive models are not always identified. 
Although algebraic means can be used to determine whether the parameters of a nonre-
cursive model can be expressed as unique functions of its observations (e.g., Berry, 1984, 
pp. 27–35), these techniques are practical only for very simple models. Fortunately, there 
are alternatives that involve determining whether a nonrecursive model meets certain 
requirements for identification that can be checked by hand (i.e., heuristics). Some of 
these requirements are only necessary for identification, which means that satisfying 
them does not guarantee identification. If a nonrecursive model satisfies a sufficient 
condition, however, then it is identified. These requirements are described next for non-
recursive path models, but the same principles apply to SR models with nonrecursive 
structural components.

The nature and number of conditions for identification that a nonrecursive model 
must satisfy depend on its pattern of disturbance correlations. Specifically, the neces-
sary order condition and the sufficient rank condition apply to models with unana-
lyzed associations between all pairs of disturbances either for the whole model or within 
blocks of endogenous variables that are recursively related to each other. Consider the 
two nonrecursive path models in Figure 6.2. For both models, dfM ≥ 0 and all latent 
variables are scaled, but these facts are not sufficient to identify either model. The model 
of Figure 6.2(a) has an indirect feedback loop that involves Y1–Y3 and all possible dis-
turbance correlations (3). The model of Figure 6.2(b) has two direct feedback loops and 
a pattern of disturbance correlations described by some authors as block recursive. One 
can partition the endogenous variables of this model into two blocks, one with Y1 and 
Y2 and the other made up of Y3 and Y4. Each block contains all possible disturbance cor-
relations ( D1   D2 for the first block, D3   D4 for the second), but the disturbances 
across the blocks are independent (e.g., D1 is uncorrelated with D3). Also, the pattern of 
direct effects within each block is nonrecursive (e.g., Y1  Y2), but effects between the 
blocks are unidirectional (recursive). Thus, the two blocks of endogenous variables in 
the model of Figure 6.2(b) are recursively related to each other even though the whole 
model is nonrecursive.

Order Condition

The order condition is a counting rule applied to each endogenous variable in a non-
recursive model that either has all possible disturbance correlations or that is block 
recursive. If the order condition is not satisfied, the equation for that endogenous vari-
able is underidentified. One evaluates the order condition by tallying the number of 
variables in the structural model (except disturbances) that have direct effects on each 
endogenous variable versus the number that do not; let’s call the latter excluded vari-
ables. The order condition can be stated as follows:
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The order condition requires that the number of excluded variables for	 (Rule 6.2)
each endogenous variable equals or exceeds the total number of 
endogenous variables minus 1.

For nonrecursive models with correlations between all pairs of disturbances, the total 
number of endogenous variables equals that for the whole model. For example, the 
model of Figure 6.2(a) has all possible disturbance correlations, so the total number of 
endogenous variables equals 3. This means that a minimum of 3 – 1 = 2 variables must 
be excluded from the equation of each endogenous variable, which is true here: There 
are three variables excluded from the equation of every endogenous variable (e.g., X2, 
X3, and Y2 for Y1), which exceeds the minimum number (2). Thus, the model of Figure 
6.2(a) meets the order condition.

For nonrecursive models that are block recursive, however, the total number of 

FIGURE 6.2.  Two examples of nonrecursive path models with feedback loops.
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endogenous variables is counted separately for each block when the order condition is 
evaluated. For example, there are two recursively related blocks of endogenous vari-
ables in the model of Figure 6.2(b). Each block has two variables, so the total number 
of endogenous variables for each block is 2. To satisfy the order condition, at least 2 – 1 
= 1 variables must be excluded from the equation of each endogenous variable in both 
blocks, which is true here. Specifically, one variable is excluded from each equation 
for Y1 and Y2 in the first block (e.g., X2 for Y1), and three variables are excluded from 
each equation for Y3 and Y4 in the second block (e.g., X1, X2, and Y2 for Y3). Because the 
number of excluded variables for each endogenous variable in every block exceeds the 
minimum number, the order condition is satisfied for this model.

Rank Condition

Because the order condition is only necessary, we still do not know whether the nonre-
cursive models in Figure 6.2 are identified. Evaluation of the sufficient rank condition, 
however, will provide the answer. The rank condition is usually described in the SEM 
literature in matrix terms (e.g., Bollen, 1989, pp. 98–103), which is fine for those familiar 
with linear algebra but otherwise not. Berry (1984) devised an algorithm for checking 
the rank condition that does not require extensive knowledge of matrix operations, a 
simpler version of which is described in Appendix 6.A. A nontechnical description of 
the rank condition is given next.

For nonrecursive models with all possible disturbance correlations, the rank condi-
tion can be viewed as a requirement that each variable in a feedback loop has a unique 
pattern of direct effects on it from variables outside the loop. Such a pattern of direct 
effects provides a “statistical anchor” so that the parameters of variables involved in 
feedback loops can be estimated distinctly from one another. Look again at Figure 6.2(a). 
Each of the three endogenous variables of this model has a unique pattern of direct 
effects on it from variables external to their indirect feedback loop; that is:

	 X1 → Y1,  X2 → Y2,  and X3 → Y3

This analogy does not hold for those models considered in this book to be nonrecur-
sive that do not have feedback loops, such as partially recursive models with correlated 
disturbances in a bow pattern (e.g., Figure 5.3(d)). Therefore, a more formal means of 
evaluating the rank condition is needed; see Appendix 6.A. The identification rule for 
the rank condition for nonrecursive models that either have all possible disturbance cor-
relations or that are block recursive is stated next:

Nonrecursive models that satisfy the rank condition are identified.	 (Rule 6.3)

Rigdon (1995) describes a graphical technique for evaluating identification status 
that breaks the model down into a series of two-equation nonrecursive blocks, such 
as for a direct feedback loop. This graphical technique could complement or in some 



136	 CORE TECHNIQUES

cases replace evaluation of the order condition and the rank condition using the meth-
ods described here. Eusebi (2008) describes a graphical counterpart of the rank condi-
tion, but it requires knowledge of undirected, directed, and directed acyclic graphs from 
graphical models theory.

Respecification of Nonidentified Nonrecursive Models

Now let’s consider a nonrecursive model that is not identified and some options for its 
respecification. Presented in Figure 6.3 is a nonrecursive path model with all possible 
disturbance correlations based on an example by Berry (1984). In this model, let Y1 and 
Y2 represent, respectively, violence on the part of protesters and police. The direct feed-
back loop in this model reflects the hypothesis that as protesters become more violent, 
so do the police, and vice versa. The two measured exogenous variables, X1 and X2, 
represent, respectively, the seriousness of the civil disobedience committed by the pro-
testers and the availability of police riot gear (clubs, tear gas, etc.). Immediately after its 
specification but before the data are collected, the researcher evaluates its identification 
status. Two problems are discovered: the model has more parameters (11) than observa-
tions (10), and the order condition is violated because there are no excluded variables 
for Y2. Because this model fails the order condition, it will also fail the rank condition. 
An exercise will ask you to verify that dfM = –1 for the model of Figure 6.3 and also that 
it fails both the order condition and the rank condition.

What can be done about this identification problem? Because the data are not yet 
collected, one possibility is to add exogenous variables to the model such that (1) the 
number of additional observations afforded by adding variables is greater than the num-
ber of free parameters they bring to the model; (2) the number of excluded variables for 
Y1 and Y2 are each at least 1; and (3) the respecified model also meets the rank condition. 
Suppose that it is decided that a new exogenous variable, X3, would be protesters’ level of 

FIGURE 6.3. A nonrecursive model that is not identified.
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commitment to nonviolence. The addition of the path X3 → Y1 (Y1 is protester violence) 
and unanalyzed associations between X3 and the other two exogenous variables would 
accomplish the goals just listed. Thus, the model respecified in this way is identified. An 
exercise will ask you to verify this fact.

Equality and Proportionality Constraints

The imposition of an equality or a proportionality constraint on the direct effects of a 
feedback loop is one way to reduce the number of free parameters without dropping 
paths. For example, the specification that both direct effects of the reciprocal relation 
Y1   Y2 are equal means that only one path coefficient is needed rather than two. 
A possible drawback of imposing equality constraints on feedback loops is that they 
preclude the detection of unequal mutual influence. For example, Wagner, Torgeson, 
and Rashotte (1994) found in longitudinal studies that the effect of children’s phono-
logical processing abilities on their reading skills is about three times the magnitude of 
the effect in the opposite direction. If equality constraints were blindly imposed when 
bidirectional effects differ in magnitude, then not only may the model poorly fit the 
data but the researcher may miss an important finding. In contrast, a proportionality 
constraint allows for unequal mutual influence but on an a priori basis. For instance, 
it may be specified that the path Y1 → Y2 must be three times the value of that for the 
path Y2 → Y1. Like equality constraints, proportionality constraints reduce the number 
of free parameters, one for each pair of direct effects. However, the imposition of propor-
tionality constraints generally requires knowledge about relative effect magnitudes.

“None-of-the-Above” Nonrecursive Models

If a nonrecursive structural model has either no disturbance correlations or less than all 
possible disturbance correlations such that the model is not block recursive, the order 
and rank conditions are generally too conservative. That is, such “none-of-the-above” 
nonrecursive models that fail either condition may nevertheless be identified. Unfor-
tunately, there may be no sufficient condition that can be readily evaluated by hand to 
determine whether a none-of-the-above nonrecursive model is actually identified. Thus, 
the identification status of such models may be ambiguous. How to deal with structural 
equation models where identification status is unknown is discussed later.

Rules for Standard CFA Models

Meeting both necessary requirements also does not guarantee that a CFA measurement 
model is identified. For standard CFA models that specify unidimensional measure-
ment—every indicator loads on just one factor and there are no measurement error 
correlations—there are some straightforward rules that concern minimum numbers of 
indicators per factor. They are summarized next:



138	 CORE TECHNIQUES

If a standard CFA model with a single factor has at least three	 (Rule 6.4)
indicators, the model is identified.

If a standard CFA model with ≥ 2 factors has ≥ 2 indicators per	 (Rule 6.5)
factor, the model is identified.

That’s it. The first heuristic just listed for single-factor models is known as the three-
indicator rule, and the second heuristic for models with multiple constructs is the two-
indicator rule. Recall that CFA models (and SR models, too) with factors that have only 
two indicators are more prone to problems in the analysis. It is better to have at least 
three to four indicators per factor to prevent such problems, but two indicators per factor 
is the minimum for identification.

Let’s apply the requirements just discussed to the standard CFA models presented 
in Figure 6.4. The model of Figure 6.4(a) has a single factor with two indicators. This 
model is underidentified: With two observed variables, there are three observations but 
four parameters, including three variances of exogenous variables (of factor A and two 
measurement errors, E1 and E2) and one factor loading (of X2; the other is fixed to 1.0 to 
scale A), so dfM = –1 for the model in Figure 6.4(a). The imposition of a constraint, such 
as one of equality, or

	 A → X1 = A → X2 = 1.0

may make this model estimable because dfM would be zero in the respecified one-factor, 
two-indicator model. For such models Kenny (1979) noted that if the correlation between 
the two indicators is negative, then the just-identified model that results by imposing 
an equality constraint on the factor loadings does not exactly reproduce the correlation. 
This is an example of a just-identified structural equation model that does not perfectly 
fit the data.

Because the single-factor model in Figure 6.4(b) has three indicators, it is identified. 
Specifically, it is just-identified: There are 3(4)/2 = 6 observations available to estimate 
the six-model parameters, including four variances (of factor A and three measurement 
errors) and two factor loadings (dfM = 0). Note that a standard, one-factor CFA model 
must have at least four indicators in order to be overidentified. Because each of the two 
factors in the model of Figure 6.4(c) has two indicators, it is identified. Specifically, it is 
overidentified and dfM = 1.

Rules for Nonstandard CFA Models

There is a different—and more complicated—set of rules for nonstandard CFA models 
that specify multidimensional measurement where some indicators load on more than 
a single factor or some error terms covary. Readers interested in standard CFA models 
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only can skip this section (i.e., go to the section on SR models), but standard CFA models 
have more restrictive assumptions compared with nonstandard CFA models. Again, the 
reward of greater flexibility in hypothesis testing requires even more careful study, but 
you can do it.

O’Brien (1994) describes a set of rules for nonstandard measurement models where 
every indicator loads on a single factor but some measurement error correlations are 
freely estimated. These rules are applied “backwards” starting from patterns of inde-
pendent (uncorrelated) pairs of error terms to prove the identification of factor loadings, 
then of error variances, next of factor correlations in multiple-factor models, and finally 
of measurement error correlations. The O’Brien rules work well for relatively simple 

FIGURE 6.4. Identification status of three standard confirmatory factor analysis models.
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measurement models, but they can be awkward to apply to more complex models. A dif-
ferent set of identification rules by Kenny, Kashy, and Bolger (1998) that may be easier 
to apply is listed in Table 6.1 as Rule 6.6. This rule spells out requirements that must be 
satisfied by each factor (Rule 6.6a), pair of factors (Rule 6.6b), and indicator (Rule 6.6c) 
in order to identify measurement models with error correlations.

Rule 6.6a in Table 6.1 is a requirement for a minimum number of indicators per 
factor, either two or three depending on the pattern of error correlations or constraints 
imposed on factor loadings. Rule 6.6b refers to the specification that for every pair of 
factors, there must be at least two indicators, one from each factor, whose error terms 
are not correlated. Rule 6.6c concerns the requirement for every indicator that there is at 
least one other indicator in the model with which it does not share an error correlation. 
Rule 6.6 in Table 6.1 assumes that all factor covariances are free parameters and that 
there are multiple indicators of every factor. Kenny et al. (1998) describe additional rules 
not considered here for exceptions to these assumptions.

Kenny et al. (1998) also describe identification rules for indicators in nonstandard 
measurement models that load on ≥ 2 factors. Let’s refer to such indicators as complex 
indicators. The first requirement is listed in the top part of Table 6.2 as Rule 6.7, and 
it concerns sufficient requirements for identification of the multiple-factor loadings of 
a complex indicator. Basically, this rule requires that each factor on which a complex 
indicator loads has a sufficient number of indicators (i.e., each factor meets Rule 6.6a 
in Table 6.1). Rule 6.7 also requires that each one of every pair of such factors has an 
indicator that does not share an error correlation with a corresponding indicator of the 
other factor (see Table 6.2). If a complex indicator shares error correlations with other 
indicators, then the additional requirement listed as Rule 6.8 in Table 6.2 must also be 

TABLE 6.1. Identification Rule 6.6 for Nonstandard Confirmatory Factor Analysis 
Models with Measurement Errors

For a nonstandard CFA model with measurement error correlations to be 
identified, all three of the conditions listed next must hold:

(Rule 6.6)

For each factor, at least one of the following must hold: (Rule 6.6a)

1. There are at least three indicators whose errors are uncorrelated with  
     each other.

2. There are at least two indicators whose errors are uncorrelated and 
     either

a. the errors of both indicators are not correlated with the error term 
    of a third indicator for a different factor, or

b. an equality constraint is imposed on the loadings of the two 
    indicators.

For every pair of factors, there are at least two indicators, one from each 
factor, whose error terms are uncorrelated.

(Rule 6.6b)

For every indicator, there is at least one other indicator (not necessarily of 
the same factor) with which its error term is not correlated.

(Rule 6.6c)

Note. These requirements are described as Conditions B–D in Kenny, Kashy, and Bolger (1998, pp. 253–254).
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satisfied, too. This rule requires that for each factor on which a complex indicator loads, 
there is at least one other indicator with a single loading that does not share an error cor-
relation with the complex indicator. The requirements of Rules 6.6 and 6.7 are typically 
addressed by specifying that some indicators load on just a single factor.

Let’s apply the identification heuristics just discussed to the nonstandard CFA mod-
els presented in Figure 6.5. To save space, I use a compact notation in the figure where 
latent constructs are denoted by circles, indicators by Xs, and error terms by Es. How-
ever, do not forget the variance parameter associated with each exogenous variable in 
Figure 6.5 that is normally represented by the  symbol in model diagrams elsewhere 
in this book. The single-factor, four-indicator model in Figure 6.5(a) has two error cor-
relations, or

	 EX2
   EX4

  and  EX3
   EX4

This model is just-identified because it has no degrees of freedom (dfM = 0), its factor (A) 
has at least three indicators (X1–X3) whose error terms are uncorrelated (Rule 6.6a), and 
all other requirements of Rule 6.6 (Table 6.1) are met. The single-factor, four-indicator 
model in Figure 6.5(b) also has two error correlations (i.e., dfM = 0) but in a different 
pattern, or

	 EX1
   EX2

  and  EX3
   EX4

TABLE 6.2. Identification Rule 6.7 for Multiple Loadings of Complex Indicators 
in Nonstandard Confirmatory Factor Analysis Models and Rule 6.8 for Error 
Correlations of Complex Indicators

Factor loadings

For every complex indicator in a nonstandard CFA model: (Rule 6.7)

In order for the multiple factor loadings to be identified, both of the 
following must hold:

1. Each factor on which the complex indicator loads must satisfy  
    Rule 6.6a for a minimum number of indicators.

2. Every pair of those factors must satisfy Rule 6.6b that each factor 
    has an indicator that does not have an error correlation with a 
    corresponding indicator on the other factor of that pair.

Error correlations

In order for error correlations that involve complex indicators to be 
identified, both of the following must hold:

(Rule 6.8)

1. Rule 6.7 is satisfied.

2. For each factor on which a complex indicator loads, there must be 
    at least one indicator with a single loading that does not have an 
    error correlation with the complex indicator.

Note. These requirements are described as Condition E in Kenny, Kashy, and Bolger (1998, p. 254).
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FIGURE 6.5. Identification status of nonstandard confirmatory factor analysis models.
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Although this model has at least two indicators whose error terms are independent, such 
as X2 and X3, it nevertheless fails Rule 6.6a because there is no indicator of a different 
factor with which X2 and X3 do not share an error correlation. Therefore, the model in 
Figure 6.5(b) is not identified. However, this model would be identified if an equality 
constraint were imposed on the factor loadings of X2 and X3. That is, the specification 
that

	 A → X2 = A → X3

would be sufficient to identify the model in Figure 6.5(b) because then Rule 6.6 would 
be met.

The two-factor, four-indicator model of Figure 6.5(c) with a single error correla-
tion (EX2

   EX4
) is just-identified because dfM = 0 and all three requirements for Rule 

6.6 are satisfied (Table 6.1). However, the two-factor, four-indicator model in Figure 
6.5(d) with a different error correlation (EX3

   EX4
) is not identified because it vio-

lates Rule 6.6a. Specifically, factor B in this model does not have two indicators whose 
error terms are independent. In general, it is easier to uniquely estimate cross-factor 
error correlations (e.g., Figure 6.5(c)) than within-factor error correlations (e.g., Figure 
6.5(d)) when there are only two indicators per factor without imposing additional con-
straints. The three-factor, two-indicator model in Figure 6.5(e) with two cross-factor 
error correlations, or

	 EX1
   EX3

  and  EX2
   EX4

is overidentified because the degrees of freedom are positive (dfM = 4) and Rule 6.6 
is satisfied. This model also demonstrates that adding indicators—along with a third 
factor—allows the estimation of additional error correlations compared with the two-
factor model in Figure 6.5(c). The model in Figure 6.5(f) has a complex indicator that 
loads on two factors, or

	 A → X3  and  B → X3

Because this model meets the requirements of Rule 6.7 and has positive degrees of free-
dom (dfM = 3), it is overidentified. An exercise will ask you to add error correlations to 
this model with a complex indicator and then evaluate Rule 6.8 in order to determine 
whether the respecified models is identified.

The specification of either correlated measurement errors or of some indicators 
loading on multiple factors may not cause identification problems. The presence of both 
in the same model, though, can complicate matters. For example, it can be difficult 
to correctly apply the O’Brien rules or Kenny–Kashy–Bolger rules to complex models, 
especially models where some factors have at least five indicators. Because these require-
ments are sufficient, a complex nonstandard CFA model that is really identified could 
nevertheless fail some of these rules. Fortunately, most CFA models described in the 
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literature do not have complex indicators, so only Rule 6.6 for error correlations in mea-
surement models is applied most often in practice.

Rules for SR Models

This section deals with fully latent SR models in which each variable in the structural 
model (except disturbances) is a factor measured by multiple indicators. The identifica-
tion status of partially latent SR models where at least one construct in the structural 
model is measured by a single indicator is considered in Chapter 10. If one understands 
something about the identification of structural models and measurement models, there 
is relatively little new to learn about SR models. This is because the evaluation of whether 
an SR model is identified is conducted separately for each part of the model, measure-
ment and structural. Indeed, a theme of this evaluation is that a valid (i.e., identified) 
measurement model is needed before it makes sense to evaluate the structural part of 
an SR model.

As with CFA models, meeting the two necessary requirements does not guarantee 
the identification of an SR model. Additional requirements reflect the view that the anal-
ysis of an SR model is essentially a path analysis conducted with estimated variances 
and covariances among the factors. Thus, it must be possible for the computer to derive 
unique estimates of the factor variances and covariances before specific direct effects 
among them can be estimated. In order for the structural portion of an SR model to be 
identified then, its measurement portion must be identified. Bollen (1989) describes this 
requirement as the two-step rule, and the steps to evaluate it are outlined next:

In order for an SR model to be identified, both of the following must	 (Rule 6.9) 
hold:

1.	The measurement part of the model respecified as a CFA model  
is identified (evaluate the measurement model against Rules  
6.4–6.8).

2.	The structural part of the model is identified (evaluate the structural 
     model against Rules 6.1–6.3).

The two-step rule is a sufficient condition: SR models that satisfy both parts of this rule 
are identified. Evaluation of the two-step rule is demonstrated next for the fully latent SR 
model presented in Figure 6.6(a). This model meets the necessary requirements because 
every latent variable is scaled and there are more observations than free parameters. 
Specifically, with six observed variables, there are 6(7)/2 = 21 observations available to 
estimate this model’s 14 parameters, including nine variances of exogenous variables 
(of six measurement errors, one exogenous factor A, and two disturbances), three factor 
loadings, and two direct effects between factors (dfM = 7). However, we still do not know 
whether the model of Figure 6.6(a) is identified. To find out, we can apply the two-step 
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rule. The respecification of this SR model as a CFA measurement model is presented in 
Figure 6.6(b). Because this standard three-factor CFA model has at least two indicators 
per factor, it is identified (Rule 6.5). The first part of the two-step rule is satisfied. The 
structural part of the SR model is presented in Figure 6.6(c). Because the structural 
model is recursive, it too is identified (Rule 6.1). Because the original SR model in Figure 

FIGURE 6.6. Evaluation of the two-step rule for identification for a fully latent structural 
regression (SR) model.
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6.6(a) meets both parts of the sufficient two-step rule (Rule 6.9), it is identified, specifi-
cally, overidentified.

It is not always possible to determine the identification status of every fully latent 
SR model using the two-step identification heuristic. For example, suppose that the 
structural portion of an SR model is nonrecursive such that it does not have all possible 
disturbance correlations, nor is it block recursive. In this case, the rank condition (Rule 
6.3) is not a sufficient condition for identifying the structural model. Therefore, the 
nonrecursive structural model is “none-of-the-above” concerning identification. Con-
sequently, evaluation of the two-step rule cannot clearly establish whether the original 
SR model is identified. The same thing can happen when the measurement model of an 
SR model has both error correlations and complex indicators: If either the measurement 
or structural portions of an SR model is “none-of-the-above” such that its identification 
status cannot be clearly established, the two-step rule may be too strict. That is, an SR 
model of ambiguous identification status may fail the two-step rule but still be identi-
fied. Fortunately, many SR models described in the literature have standard measure-
ment models and recursive structural models. In this case, identification status is clear: 
such SR models are identified.

A Healthy Perspective on Identification

Respecification of a structural equation model so that it is identified can at first seem like 
a shell game: Add this path, drop another, switch an error correlation and—voilà!—the 
model is identified or—curses!—it is not. Although one obviously needs an identified 
model, it is crucial to modify models in a judicious manner. That is, any change to 
the original specification of a model for the sake of identification should be guided by 
your hypotheses and theory, not by empirical ones. For example, one cannot estimate a 
model, find that a path coefficient is close to zero, and then eliminate the path in order 
to identify a model (Kenny et al., 1998). Don’t lose sight of the ideas that motivated the 
analysis in the first place through haphazard specification.

Empirical Underidentification

Although it is theoretically possible (that word again) for the computer to derive a set of 
unique estimates for the parameters of identified models, their analysis can still be foiled 
by other types of problems. Data-related problems are one such difficulty. For example, 
extreme collinearity can result in what Kenny (1979) referred to as empirical underi-
dentification. For example, if two observed variables are very highly correlated (e.g., rXY 
= .90), then, practically speaking, they are the same variable. This reduces the effective 
number of observations below the value of v (v + 1)/2 (i.e., Rule 5.2). An effective reduc-
tion in the number of observations can also shrink the effective value of dfM, perhaps to 
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less than zero. The good news about this kind of empirical underidentification is that it 
can be detected through careful data screening.

Other types of empirical underidentification can be more difficult to detect, such 
as when estimates of certain key paths in a nonrecursive structural model equal a very 
small or a very high value. Suppose that the coefficient for the path X2 → Y2 in the non-
recursive model of Figure 6.2(b) is about zero. The virtual absence of this path alters 
the system matrix for the first block of endogenous variables such that the rank of the 
equation for Y1 for the model in Figure 6.2(b) without the path X2 → Y2 is zero, which 
violates the rank condition. You will be asked in an exercise to demonstrate this fact for 
Figure 6.2(b). Empirical underidentification can affect CFA and SR models, too. Suppose 
that the estimated factor loading for the path A → X2 in the single-factor, three-indicator 
model of Figure 6.4(b) is close to zero. Practically speaking, this model would resemble 
the one in Figure 6.4(a) in that factor A has only two indicators, which is too few for a 
single-factor model. A few additional examples are considered next.

The two-factor model of Figure 6.4(c) may be empirically underidentified if the esti-
mate of the covariance (or correlation) between factors A and B is close to zero. The vir-
tual elimination of the path A   B from this model transforms it into two single-factor, 
two-indicator models, each of which is underidentified. Measurement models where all 
indicators load on two factors, such as the classic model for a multitrait-multimethod 
(MTMM) analysis where each indicator loads on both a trait factor and a method fac-
tor (Chapter 9), are especially susceptible to empirical underidentification (Kenny et 
al., 1998). The identification status of different types of CFA models for MTMM data is 
considered in Chapter 9. The measurement model in Figure 6.5(f) where indicator X3 
loads on both factors may be empirically underidentified if the absolute estimate of the 
factor correlation is close to 1.0. Specifically, this extreme collinearity, but now between 
factors instead of observed variables, can complicate the estimation of X3’s factor load-
ings. Other possible causes of empirical underidentification include (1) violation of the 
assumptions of normality or linearity when using normal theory methods (e.g., default 
ML estimation) and (2) specification errors (Rindskopf, 1984).

Managing Identification Problems

The best advice for avoiding identification problems was given earlier but is worth repeat-
ing: Evaluate whether your model is identified right after it is specified but before the 
data are collected. That is, prevention is better than cure. If you know that your model 
is in fact identified yet the analysis fails, the source of the problem may be empirical 
underidentification or a mistake in computer syntax. If a program error message indi-
cates a failure of iterative estimation, another possible diagnosis is poor start values, or 
initial estimates of model parameters. How to specify better start values is discussed in 
Chapter 7 for structural models and Chapter 9 for measurement models.

Perhaps the most challenging problem occurs when analyzing a complex model 
for which no clear identification heuristic exists. This means that whether the model 
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is actually identified is unknown. If the analysis fails in this case, it may be unclear 
whether the model is at fault (it is not really identified), the data are to blame (e.g., 
empirical underidentification), or you made a mistake (syntax error or bad start values). 
Ruling out a mistake does not resolve the basic ambiguity about identification. Here are 
some tips on how to cope:

1.	 A necessary but insufficient condition for the identification of a structural equa-
tion model is that an SEM computer can generate a converged solution with no evidence 
of technical problems such as Heywood cases, or illogical estimates (described in the 
next chapter). This empirical check can be applied to the actual data. Instead, you can use 
an SEM computer program as a diagnostic tool with made-up data that are anticipated to 
approximate actual values. This suggestion assumes that the data are not yet collected, 
which is when the identification question should be addressed. Care must be taken not 
to generate hypothetical correlations or covariances that are out of bounds (but you can 
check whether the matrix is positive definite; Chapter 3) or that may result in empirical 
underidentification. If you are unsure about a particular made-up data matrix, then oth-
ers with somewhat different but still plausible values can be constructed. The model is 
then analyzed with the hypothetical data. If a computer program is unable to generate 
a proper solution, the model may not be identified. Otherwise, it may be identified, but 
this is not guaranteed. The solution should be subjected to other empirical checks for 
identification described in Chapter 9, but these checks concern only necessary require-
ments for identification.

2.	 A common beginner’s mistake in SEM is to specify a complex model of ambigu-
ous identification status and then attempt to analyze it. If the analysis fails (likely), it is 
not clear what caused the problem. Start instead with a simpler model that is a subset of 
the whole model and is also one for which the application of heuristics can prove iden-
tification. If the analysis fails, the problem is not identification. Otherwise, add param-
eters to the simpler model one at a time. If the analysis fails after adding a particular 
effect, try a different order. If these analyses also fail at the same point, then adding the 
corresponding parameter may cause underidentification. If no combination of adding 
effects to a basic identified model gets you to the target model, then think about how 
to respecify the original model in order to identify it and yet still respect your hypoth-
eses.

Summary

It is easy to determine whether recursive path models, standard confirmatory factor 
analysis models, and structural regression models with recursive structural models 
and standard measurement models are identified. About all that is needed is to check 
whether the model degrees of freedom are at least zero, every latent variable has a scale, 
and every factor has at least two indicators. However, the identification status of nonre-
cursive structural models or nonstandard measurement models is not always so clear. If 
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a nonrecursive model does not have all possible disturbance correlations or is not block 
recursive, there may be no easily applied identification heuristic. There are heuristics 
for measurement models with either correlated errors or indicators that load on multiple 
factors, but these rules may not work for more complicated models with both features 
just mentioned. It is best to avoid analyzing a complex model of ambiguous identifica-
tion status as your initial model. Instead, first analyze simpler models that you know are 
identified before adding free parameters. A later chapter (11) deals with identification 
when means are analyzed in SEM. The next chapter concerns the estimation step.

Recommended Readings

The works listed next are all resources for dealing with potential identification problems of more 
complex models. Rigdon (1995) devised a visual typology for checking whether nonrecursive 
structural models are identified. See Kenny et al. (1998) for more detail about the identifica-
tion rules for nonstandard measurement models discussed earlier. Some identification rules by 
O’Brien (1994) can be applied to measurement models with error correlations where some 
factors have five or more indicators.

Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. 
Gilbert, S. Fiske, & G. Lindzey (Eds.), The handbook of social psychology (Vol. 1, 4th ed., 
pp. 233–265). Boston, MA: McGraw-Hill.

O’Brien, R. M. (1994). Identification of simple measurement models with multiple latent vari-
ables and correlated errors. Sociological Methodology, 24, 137–170.

Rigdon, E. E. (1995). A necessary and sufficient identification rule for structural models esti-
mated in practice. Multivariate Behavioral Research, 30, 359–383.

Exercises

	 1.	 Write more specific versions of Rule 5.1 about model parameters for path mod-
els, CFA models, and SR models when means are not analyzed.

	 2.	 Explain why this statement is generally untrue: The specification B → X3 = 1.0 
in Figure 6.4(c) assigns to factor B the same scale as that of indicator X3.

	 3.	 Show that the factor models in Figures 6.1(a) and 6.1(b) have the same degrees 
of freedom.

	 4.	 Show for the nonrecursive path model in Figure 6.3 that dfM = –1 and also that 
this model fails both the order condition and the rank condition.

	 5.	 Show that the nonrecursive model in Figure 6.3 is identified when the path 
X3 → Y1 is included in the model.

	 6.	 Variable X3 of Figure 6.5(f) is a complex indicator with loadings on two factors. 
If the error correlation EX3

   EX5
 is added to this model, would the result-
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ing respecified model be identified? If yes, determine whether additional error 
correlations involving X3 could be added to the respecified model (i.e., the one 
with EX3

   EX5
).

	 7.	 Suppose that the estimate of the path X2  →  Y2 in the block recursive path 
model of Figure 6.2(b) is close to zero. Show that the virtual absence of this 
path may result in empirical underidentification of the equation for at least one 
endogenous variable.

	 8.	 Consider the SR model in Figure 6.6(a). If the error correlations DB   DC, 
EX1

   EY1
, and EX2

   EY2
 were all added to this model, would the resulting 

respecified model be identified?
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APPENDIX 6.A

Evaluation of the Rank Condition

The starting point for checking the rank condition is to construct a system matrix, in which the 
endogenous variables of the structural model are listed on the left side of the matrix (rows) and 
all variables in the structural model (excluding disturbances) along the top (columns). In each 
row, a 0 or 1 appears in the columns that correspond to that row. A 1 indicates that the variable 
represented by that column has a direct effect on the endogenous variable represented by that row. 
A 1 also appears in the column that corresponds to the endogenous variable represented by that 
row. The remaining entries are 0’s, and they indicate excluded variables. The system matrix for the 
model of Figure 6.2(a) with all possible disturbance correlations is presented here (I):

“Reading” this matrix for Y1 indicates three 1’s in its row, one in the column for Y1 itself, and 
the others in the columns of variables that, according to the model, directly affect it, X1 and Y3. 
Because X2, X3, and Y2 are excluded from Y1’s equation, the entries in the columns for these vari-
ables are all 0’s. Entries in the rows for Y2 and Y3 are read in a similar way.

The rank condition is evaluated using the system matrix. Like the order condition, the rank 
condition must be evaluated for the equation of each endogenous variable. The steps to do so for 
a model with all possible disturbance correlations are outlined next:

1.  Begin with the first row of the system matrix (the first endogenous variable). Cross out all 
entries of that row. Also cross out any column in the system matrix with a 1 in this row. Use the 
entries that remain to form a new, reduced matrix. Row and column labels are not needed in the 
reduced matrix.

2.  Simplify the reduced matrix further by deleting any row with entries that are all zeros. Also 
delete any row that is an exact duplicate of another or that can be reproduced by adding other rows 
together. The number of remaining rows is the rank. (Readers familiar with matrix algebra may 
recognize this step as the equivalent of elementary row operations to find the rank of a matrix.) 
For example, consider the following reduced matrix: 

(I)

(II)
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The third row can be formed by adding the corresponding elements of the first and second rows, 
so it should be deleted. Therefore, the rank of this matrix (II) is 2 instead of 3. The rank condition 
is met for the equation of this endogenous variable if the rank of the reduced matrix is greater than or 
equal to the total number of endogenous variables minus 1.

3.  Repeat steps 1 and 2 for every endogenous variable. If the rank condition is satisfied for 
every endogenous variable, then the model is identified.

Steps 1 and 2 applied to the system matrix for the model of Figure 6.2(a) with all possible 
disturbance correlations are outlined here (III). Note that we are beginning with Y1:

For step 1, all the entries in the first row of the system matrix (III) are crossed out. Also crossed out 
are three columns of the matrix with a 1 in this row (i.e., those with column headings X1, Y1, and 
Y3). The resulting reduced matrix has two rows. Neither row has entries that are all zero or can be 
reproduced by adding other rows together, so the reduced matrix cannot be simplified further. This 
means that the rank of the equation for Y1 is 2. This rank exactly equals the required minimum 
value, which is one less than the total number of endogenous variables in the whole model, or 3 – 1 
= 2. The rank condition is satisfied for Y1.

We repeat this process for the other two endogenous variables for the model of Figure 6.2(a), 
Y2 and Y3. The steps for the remaining endogenous variables are summarized next.

Evaluation for Y2 (IV):

Evaluation for Y3 (V):

The rank of the equations for each of Y2 and Y3 is 2, which exactly equals the minimum required 
value. Because the rank condition is satisfied for all three endogenous variables of this model, we 
conclude that it is identified.

(IV)

(III)

(V)
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The rank condition is evaluated separately for each block of endogenous variables in the 
block recursive model of Figure 6.2(b). The steps are as follows: First, construct a system matrix 
for each block. For example, the system matrix for the block that contains Y1 and Y2 lists only 
these variables plus prior variables (X1 and X2). Variables of the second block are not included in 
the matrix for the first block. The system matrix for the second block lists only Y3 and Y4 in its 
rows but represents all of the variables in the whole structural model in its columns. Next, the rank 
condition is evaluated for the system matrix of each block. These steps are outlined next.

Evaluation for block 1 (VI):

Evaluation for block 2 (VII):

Because the rank of the equation of every endogenous variable of each system matrix equals the 
number of endogenous variables minus 1 (i.e., 2 – 1), the rank condition is met. Thus, the block 
recursive model of Figure 6.2(b) is identified.

(VI)

(VII)
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7

Estimation

This chapter is organized into three main parts. Described in the first is the workhorse 
of SEM for the analysis, maximum likelihood (ML) estimation. It is the default method 
in most SEM computer tools and the most widely used method for analyses with con-
tinuous outcomes. Possible things that can go wrong in the analysis are considered 
and suggestions are offered about how to deal with these challenges. In the second 
major part of this chapter, how to interpret model parameter estimates is demonstrated 
through a detailed analysis of a recursive path model. Alternative estimation methods 
for outcomes that are not continuous are considered in the third part. The concepts and 
skills reviewed here will help to prepare you to learn about hypothesis testing in SEM, 
the subject of the next chapter.

Maximum Likelihood Estimation

The method of ML estimation method is the default in most SEM computer programs, 
and most structural equation models described in the literature are analyzed with this 
method. Indeed, use of an estimation method other than ML requires explicit justifica-
tion (Hoyle, 2000).

Description

The term maximum likelihood describes the statistical principle that underlies the der-
ivation of parameter estimates; the estimates are the ones that maximize the likelihood 
(the continuous generalization) that the data (the observed covariances) were drawn 
from this population. It is a normal theory method because multivariate normality is 
assumed for the population distributions of the endogenous variables. Only continuous 
variables can have normal distributions; therefore, if the endogenous variables are not 
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continuous or if their distributions are severely non-normal, then an alternative estima-
tion method is needed.

Most forms of ML estimation in SEM are simultaneous, which means that the esti-
mates of model parameters are calculated all at once. Thus, ML estimation is a full-
information method. When all statistical requirements are met and the model is cor-
rectly specified, ML estimates in large samples are asymptotically unbiased, efficient, 
and consistent.1 In this sense, ML estimation has an advantage under these ideal condi-
tions over partial-information methods that analyze only a single equation at a time. 
An example of the latter is two-stage least squares (TSLS), which was used in the late 
1970s to estimate nonrecursive path models before the advent of programs such as LIS-
REL. Nowadays, ML estimation is generally used to analyze nonrecursive models. How-
ever, the TSLS method is still relevant for SEM—see Topic Box 7.1. Implications of the 
difference between full- versus partial-information methods when there is specification 
error are considered later in this chapter.

The criterion minimized in ML estimation, or the fit function, is related to the 
discrepancy between sample covariances and those predicted by the researcher’s model. 
The mathematics of ML estimation are complex, and it is beyond the scope of this sec-
tion to describe them in detail—see Nunnally and Bernstein (1994, pp. 147–155), Ferron 
and Hess (2007), or Mulaik (2009, chap. 7) for more information. There are points of 
contact between ML estimation and more standard methods. For example, ordinary least 
squares (OLS) and ML estimates of coefficients in multiple regression (MR) analyses are 
basically identical. Estimates of error variances may differ slightly in small samples, but 
the two methods yield similar results in large samples.

Sample Variances

One difference between ML estimation and more standard statistical techniques con-
cerns estimation of the population variance σ2. In standard techniques, σ2 is estimated 
in a single sample as s2 = SS/df where the numerator is the total sum of squared devia-
tions from the mean and the denominator is the overall within-group degrees of free-
dom, or N – 1. In ML estimation, σ2 is estimated as S2 = SS/N. In small samples, S2 is 
a negatively biased estimator of σ2. In large samples, however, values of s2 and S2 are 
similar, and they are asymptotic in very large samples.

The implementations of ML estimation in some SEM computer programs, such as 
Amos and Mplus, calculate sample variances as S2, not s2. Thus, variances calculated 
as s2 using a computer program for general statistical analyses, such as SPSS, may not 
exactly equal those calculated in an SEM computer program as S2 for the same data. 
Check the documentation of your SEM computer tool to avoid possible confusion about 
this issue.

1A consistent estimator is one where increasing the sample size increases the probability that the estimator 
is close to the population parameter, and an efficient estimator has a low error variance among results from 
random samples.
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Topic Box 7.1

Two-Stage Least Squares Estimation

The method of two-stage least squares (TSLS) estimation provides a way to get 
around the requirement of ordinary least squares (OLS) estimation that the resid-
uals are uncorrelated with the predictors (Chapter 2). The TSLS technique is 
still widely used today in many disciplines, such as economics. Many computer 
programs for general statistical analyses, including SAS and SPSS, have TSLS 
procedures. Some SEM computer tools, such as LISREL, use a special form of 
TSLS for latent variable models (Bollen, 1996) to calculate initial estimates of 
model parameters, or start values. In my experience, the TSLS-generated start 
values in LISREL generally perform well even for nonrecursive models.

For nonrecursive path models, TSLS is nothing more than OLS but applied in 
two stages. The aim of the first stage is to replace a problematic causal variable 
with a newly created predictor. A “problematic” causal variable has a direct 
effect on an outcome variable and also covaries with the disturbance of that 
outcome variable (i.e., a predictor is correlated with the residuals). Variables 
known as instruments or instrumental variables are used to create the 
new predictors. An instrument has (1) a direct effect on the problematic causal 
variable but (2) no direct effect on the outcome variable. That is, the instrument 
is excluded from the equation of the criterion. Note that both conditions are 
given by theory, not statistical analysis. An instrument can be either exogenous 
or endogenous. Because exogenous variables are assumed to be uncorrelated 
with all disturbances, exogenous variables are good candidates as instruments. 
In a direct feedback loop, the same variable cannot serve as the instrument for 
both variables in that loop. Also, one of the variables does not need an instru-
ment if the disturbances of variables in the loop are specified as uncorrelated 
(Kenny, 2002).

The TSLS method works as follows. The problematic causal variable is 
regressed on the instrument. The predicted criterion variable in this analysis will 
be uncorrelated with the disturbance of the outcome variable. When similar 
replacements are made for all problematic causal variables, we proceed to the 
second stage of TSLS, which is just ordinary OLS estimation (multiple regression) 
conducted for each endogenous variable but using the predictors created in the 
first step whenever the original ones were replaced.

As an example, look back at Figure 6.2(b). This nonrecursive path model 
specifies two direct causes if Y1, the variables X1 and Y2. From the perspective 
of OLS estimation, Y2 is a problematic causal variable because it covaries with 
the disturbance of Y1. This model-implied association is represented in Figure 
6.2(b) by the path

D2  D1 → Y1
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Iterative Estimation and Start Values

Computer implementations of ML estimation are typically iterative, which means that the 
computer derives an initial solution and then attempts to improve these estimates through 
subsequent cycles of calculations. “Improvement” means that the overall fit of the model 
to the data gradually improves. For most just-identified models, the fit will eventually be 
perfect. For overidentified models, the fit of the model to the data may be imperfect, but 
iterative estimation will continue until the improvements in model fit fall below a pre-
defined minimum value. When this happens, the estimation process has converged.

Iterative estimation may converge to a solution more quickly if the procedure is 
given reasonably accurate start values, or initial estimates of the parameters. If these 
initial estimates are grossly inaccurate—for instance, the start value for a path coef-
ficient is positive when the actual direct effect is negative—then iterative estimation 
may fail to converge, which means that a stable solution has not been reached. Iterative 
estimation can also fail if the covariance matrix is ill scaled (Chapter 3).

Computer programs typically issue a warning if iterative estimation is unsuccess-
ful. When this occurs, whatever final set of estimates was derived by the computer war-
rants little confidence. Some SEM computer programs automatically generate their own 
start values. It is important to understand, however, that computer-derived start values do 
not always lead to converged solutions. Although, the computer’s “guesses” about initial 
estimates are usually pretty good, sometimes it is necessary for you to provide better 
ones in order for the solution to converge, especially for more complex models. The 
guidelines for calculating start values for structural models presented in Appendix 7.A 
may be helpful. Another tactic is to increase the program’s default limit on the number 
of iterations to a higher value, such as from 30 to 100. Allowing the computer more 
“tries” may lead to a converged solution.

In words, the disturbance of Y2, or D2, covaries with the disturbance of Y1, or 
D1. Because D2 is part of Y2, this means that Y2 is correlated with D1. Note that 
there is no such problem with X1, the other causal variable for Y1. The instrument 
here is X2 because it is excluded from the equation of Y1 and has a direct effect 
on Y2, the problematic causal variable (see Figure 6.2(b)). Therefore, we regress 
Y2 on X2 in a standard regression analysis. The predicted criterion variable from 
this first analysis, Ŷ  2, replaces Y2 as a predictor of Y1 in a second regression 
analysis where X1 is the other predictor. The regression coefficients from the sec-
ond regression analysis are taken as the estimates of the path coefficients for the 
direct effects of X1 and Y2 on Y1. See James and Singh (1978) and Kenny (1979, 
pp. 83–92) for more information about TSLS estimation for path models. Bollen 
(1996) describes variants of TSLS estimation for latent variable models.
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Inadmissible Solutions and Heywood Cases

Although usually not a problem when analyzing recursive path models, it can happen 
in ML estimation and other iterative methods that a converged solution is inadmis-
sible. This is most evident by a parameter estimate with an illogical value, such as Hey-
wood cases (after H. B. Heywood; e.g., Heywood, 1931). These include negative variance 
estimates (e.g., an unstandardized error variance is –12.58) or estimated correlations 
between factors or between a factor and an indicator with absolute values > 1.0. Another 
indication of a problem is when the standard error of a parameter estimate is so large 
that no interpretation seems plausible (e.g., 999,999.99). Some causes of Heywood cases 
(Chen, Bollen, Paxton, Curran, & Kirby, 2001) include:

1.	 Specification errors;
2.	 Nonidentification of the model;
3.	 The presence of outliers that can distort the solution;
4.	 A combination of small sample sizes (e.g., N < 100) and only two indicators per 

factor;
5.	 Bad start values; or
6.	 Extremely low or high population correlations that result in empirical underi-

dentification.

An analogy may help to give a context for Heywood cases: ML estimation (and 
related methods) is like a religious fanatic in that it so believes the model’s specifica-
tions that it will do anything, no matter how implausible, to force the model on the data. 
Some SEM computer programs do not permit certain Heywood cases to appear in the 
solution. For example, EQS does not allow the estimate of an error variance to be less 
than zero; that is, it sets a lower bound of zero (an inequality constraint) that prevents 
a negative variance estimate. However, solutions in which one or more estimates have 
been constrained by the computer to prevent an illogical value should not be trusted. 
Instead, you should try to determine the source of the problem instead of constraining 
an error variance to be positive and then rerunning the analysis.

In your own analyses, always carefully inspect the whole solution, unstandardized 
and standardized, for any sign that it is inadmissible. Computer programs for SEM gen-
erally issue warning messages about Heywood cases or other kinds of problems with 
the estimates, but they are not foolproof. It can therefore happen that the solution is 
inadmissible but no warning was given. It is you, not the computer, who provides the 
ultimate quality control check for admissibility.

Scale Freeness and Scale Invariance

The ML method is generally both scale free and scale invariant. Scale free means that if 
a variable’s scale is linearly transformed, a parameter estimated for the transformed vari-
able can be algebraically converted back to the original metric. Scale invariant means 
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that the value of the ML fitting function in a particular sample remains the same regard-
less of the scale of the observed variables (Kaplan, 2009). However, ML estimation may 
lose these properties if a correlation matrix is analyzed instead of a covariance matrix. 
That is, standard ML estimation assumes unstandardized variables, and it generally cal-
culates standard errors for the unstandardized solution only. Thus the level of statistical 
significance of an unstandardized parameter estimate may not apply to the correspond-
ing standardized estimate (Chapter 2).

Assumptions and Error Propagation

As just mentioned, default ML estimation assumes that the variables are unstandard-
ized. It also assumes there are no missing values when a raw data file is analyzed, but 
there is a special form of ML estimation for incomplete data files (Chapter 3). The sta-
tistical assumptions of ML estimation include independence of the scores, multivariate 
normality of the endogenous variables, and independence of the exogenous variables 
and error terms. An additional assumption when a path model is analyzed is that the 
exogenous variables are measured without error, but this requirement is not specific to 
ML estimation.

Perhaps the most important assumption of all is that the model is correctly specified. 
This is critical because of error propagation. Full-information methods, including ML, 
tend to propagate errors throughout the model. This means that a specification error in 
one parameter can affect results for other parameters elsewhere in the model. Suppose 
that the measurement error correlation for a factor with just two indicators is really sub-
stantial but cannot be estimated due to identification (e.g., Figure 6.5(d)). This specifica-
tion error may propagate to estimation of the factor loadings for this pair of indicators.2 
It is difficult to predict the direction or magnitude of this “contamination,” but the more 
serious the specification error, the more serious may be the resulting bias in other parts 
of the model.

When misspecification occurs, partial-information methods may outperform ML 
estimation. This is because the partial-information methods may better isolate the 
effects of errors to misspecified parts of the model instead of allowing them to spread 
to other parts. Bollen, Kirby, Curran, Paxton, and Chen (2007) found in a Monte Carlo 
simulation study that bias in ML and various TSLS estimators for latent variable models 
was generally negligible in large samples when a three-factor measurement model was 
correctly specified. However, when model specification was incorrect, there was greater 
bias of the ML estimator compared with that of TSLS estimators even in large sample 
sizes. Based on these results, Bollen et al. (2007) suggested that researchers consider a 
TSLS estimator as a complement to or substitute for ML estimation when there is doubt 
about specification.3

2B. Muthén, personal communication, November 25, 2003.

3A drawback of partial-information methods is that there is no statistical test of overall model fit.
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Interpretation of Parameter Estimates

This section concerns path models. Later chapters deal with the interpretation of param-
eter estimates for models with substantive latent variables. The interpretation of ML 
estimates for path models is straightforward:

1.	 Path coefficients are interpreted just as regression coefficients in MR. This is 
true for both the unstandardized and the standardized solution.

2.	 Disturbance variances in the unstandardized solution are estimated in the met-
ric of the unexplained variance of the corresponding endogenous variable. Suppose that 
the observed variance of endogenous variable Y is 25.00 and that the unstandardized 
variance of its disturbance, D, is 15.00. We can conclude that 15.00/25.00, or .60 of the 
variance in total variability in Y is unexplained. Accordingly, 1.00 – .60 = .40 is the pro-
portion of explained variance. This proportion also equals the squared multiple correla-
tion 2

smcR  for Y.
3.	 In the standardized solution, the variances of all variables (including distur-

bances) equal 1.0. However, some SEM computer programs, such as LISREL and Mplus, 
report standardized estimates for disturbances that are proportions of unexplained vari-
ance. These estimates equal 1 –  2

smcR  for each endogenous variable.

Detailed Example

Considered next is estimation of the parameters for the recursive path model of causes 
and effects of positive teacher–pupil interactions introduced in Chapter 5. In the next 
chapter, you will learn how to evaluate the overall fit of this model (and others, too) to 
the data. The discussion of parameter estimation now and of model fit later is inten-
tional. This is because too many researchers become so preoccupied with model fit that 
they do not pay enough attention to the meaning of the parameter estimates. Also, there 
is a “surprise” concerning the estimates for this example, one that could be missed by 
focusing too much on model fit. To not keep you in suspense, the surprise concerns 
suppression effects evident in the standardized solution. But you have to pay attention 
to the details of the computer output in order to detect such effects.

Briefly reviewed next is the work of Sava (2002), who administered measures of 
perceived school support, burnout, and extent of a coercive view of student discipline 
to 109 high school teachers. A total of 946 students of these teachers completed ques-
tionnaires about the degree of positive teacher–pupil interactions. These students also 
completed questionnaires about whether they viewed their school experience as positive 
and about their general somatic status.4 High scores on general somatic status indicate 
fewer somatic complaints related to stress. Student responses were averaged in order to 

4The Sava (2002) data set is actually hierarchical where students are nested under teachers, but a multilevel 
analysis was not conducted for this example.
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generate summary scores for each teacher. Thus, the overall sample size for this analy-
sis is N = 109, which is small. The path model in Figure 7.1 represents the hypothesis 
that teachers who suffer from burnout due to poor school support or a coercive view of 
discipline will have less positive interactions with students, which in turn negatively 
affects the school experience and somatic status of students. You should verify for this 

FIGURE 7.1. A recursive path model of causes and effects of teacher–pupil interactions.  
Standardized estimates for the disturbances are proportions of unexplained variance.
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model that dfM = 7 (Chapter 5, Exercise 4). Because the structural model in Figure 7.1 is 
recursive, it is identified (Rule 6.1).

Sava (2002) screened the data for skewness and kurtosis before applying trans-
formations to normalize scores on the teacher–pupil interactions variable. The origi-
nal covariance matrix analyzed by Sava (2002) was ill scaled because the ratio of the 
largest variance over the smallest variance exceeded 100.0. To remedy this problem, I 
multiplied scores on the variable with the lowest variance (school support) by the con-
stant 5.0, which increased its variance by a factor of 25.0. The sample correlations and 
rescaled standard deviations for this analysis are presented in Table 7.1. Note that the 
correlation between the variables teacher burnout and positive teacher–pupil interac-
tions is .0207. This near-zero association is related to suppression effects described later 
in this chapter.

I used the ML method of LISREL 8.8 to fit the path model of Figure 7.1 to a covari-
ance matrix constructed from the data in Table 7.1. You can download from this book’s 
website (see p. 3) the EQS, LISREL, and Mplus computer files for this analysis. The anal-
ysis in LISREL converged to an admissible solution. Reported in Table 7.2 are the esti-
mates of model parameters except for the variances and covariance of the two measured 
exogenous variables, school support and coercive control (Figure 7.1). The estimates of 
these parameters are just the sample values (Table 7.1).

Direct Effects

Let’s consider first the unstandardized direct effects in Table 7.2, which are also reported 
in Figure 7.1(a). For example, the unstandardized direct effect of school support on 
teacher burnout is –.384. This means that a 1-point increase on the school support 
variable predicts a .384-point decrease on the burnout variable, controlling for coer-
cive control. The estimated standard error for this direct effect is .079 (Table 7.2), so 
z = –.384/.079 = 4.86, which exceeds the critical value for two-tailed statistical signifi-
cance at the .01 level, or 2.58.5 The unstandardized path coefficient for the direct effect 
of coercive control on burnout is .294. Thus, a 1-point increase on coercive control 
predicts a .294-point increase on burnout, controlling for school support. The estimated 
standard error is .100, so z = .294/.100 = 2.94, which is also statistically significant at 
the .01 level. Other unstandardized path coefficients in Table 7.2 and Figure 7.1(a) are 
interpreted in similar ways.

Because these variables do not have the same scale, the unstandardized path coef-
ficients for school support and coercive control cannot be directly compared. However, 
this is not a problem for the standardized path coefficients, which are reported in Table 
7.2 and Figure 7.1(b). Note in the table that there are no standard errors for the standard-
ized estimates, which is typical in standard ML estimation. Consequently, no informa-

5Note that test statistics for individual parameter estimates are referred to in LISREL as t statistics, but in 
large samples they are actually z statistics.
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tion about statistical significance is associated with the standardized results in Table 
7.2. The standardized coefficients for the direct effects of school support and coercive 
control on teacher burnout are, respectively, –.413 and .250. That is, a level of school 
support one full standard deviation above the mean predicts a burnout level just over 
.40 standard deviations below the mean, holding coercive control constant. Likewise, a 
level of coercive control one full standard deviation above the mean is associated with a 
burnout level about .25 standard deviations above the mean, controlling for school sup-
port. The absolute size of the standardized direct effect of school support on burnout is 
thus about 1½ times that of coercive control. Results for the other standardized direct 
effects in the model are interpreted in similar ways.

Inspection of the standardized path coefficients for direct effects on teacher–pupil 
interactions indicates suppression effects. For example, the standardized direct effect of 
teacher burnout on teacher–pupil interactions is .278 (Table 7.2, Figure 7.1(b)), which 

TABLE 7.1. Input Data (Correlations and Standard Deviations) for Analysis of a 
Recursive Path Model of Causes and Effects of Positive Teacher–Pupil Interactions

Variable 1 2 3 4 5 6

1. Coercive Control     1.0000
2. Teacher Burnout     .3557   1.0000
3. School Support   −.2566     −.4774 1.0000
4. Teacher–Pupil Interactions −.4046   .0207 .1864   1.0000
5. School Experience −.1615   .0938 .0718   .6542 1.0000
6. Somatic Status −.3487  −.0133 .1570 .7277 .4964 1.0000
    SD 8.3072   9.7697 10.5212   5.0000 3.7178 5.2714

Note. These data are from Sava (2002); N = 109.  Means were not reported by Sava (2002).

TABLE 7.2.  Maximum Likelihood Estimates for a Recursive Path Model of Causes 
and Effects of Positive Teacher-Pupil Interactions

Parameter Unstandardized SE Standardized

Direct effects

Support → Burnout       −.384**     .079 −.413

Support → Teacher–Pupil       .097*     .046   .203

Coercive → Burnout         .294**     .100   .250

Coercive → Teacher–Pupil       −.272**     .055 −.451

Burnout → Teacher–Pupil         .142**     .052   .278

Teacher-Pupil → Experience        .486**     .055   .654

Teacher-Pupil → Somatic        .767**     .070   .728

Disturbance variances

Teacher Burnout     68.137**   9.359   .714

Teacher–Pupil Interactions     19.342**   2.657   .774

School Experience       7.907**   1.086   .572

Somatic Status      13.073**   1.796   .470

Note.  Standardized estimates for disturbance variances are proportions of unexplained variance.

*p < .05; **p < .01.
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is greater than the zero-order correlation between these two variables, or .021 at three-
decimal accuracy (Table 7.1). Also, the sign of this direct effect is positive, which says 
that teachers who reported higher levels of burnout were better liked by their students, 
controlling for school support and coercive control. This positive direct effect seems to 
contradict the results of many other studies on teacher burnout, which generally indi-
cate negative effects on teacher–pupil interactions. However, effects of other variables, 
such as school support, were not controlled in many of these other studies. This finding 
should be replicated, especially given the small sample size.

Disturbance Variances

The estimated disturbance variances reflect unexplained variability for each endoge-
nous variable. For example, the unstandardized disturbance variance for somatic status 
is 13.073 (Table 7.2). The sample variance of this variable (Table 7.1) at 3-decimal accu-
racy is s2 = 5.27142 = 27.788. The ratio of the disturbance variance over the observed 
variance is 13.073/27.788 = .470. That is, the proportion of observed variance in somatic 
status that is not explained by its presumed direct cause, teacher–pupil interactions, is 
.470, or 47.0%. The proportion of explained variance for somatic status is 2

smcR  = 1 – .470, 
or .530. Thus, the model in Figure 7.1 explains 53.0% of the total variance in somatic 
status. The estimated disturbance variances for the other three endogenous variables are 
interpreted in similar ways.

Note that all the unstandardized disturbance variances in Table 7.2 differ statisti-
cally from zero at the .01 level. However, these results have basically no substantive 
value. This is because it is expected that error variance will not be zero, so it is silly to 
get excited that a disturbance variance is statistically significant. This is an example of a 
statistical test in SEM that is typically pointless. However, results of statistical tests for 
error covariances are often of interest.

Indirect Effects and the Sobel Test

Indirect effects are estimated statistically as the product of direct effects, either stan-
dardized or unstandardized, that comprise them. They are also interpreted just as path 
coefficients. For example, the standardized indirect effect of school support on student 
school experience through the mediator teacher–pupil interactions is estimated as the 
product of the standardized coefficients for the constituent paths, which is .203 × .654, 
or .133 (see Figure 7.1(b)). The rationale for this derivation is as follows: school support 
has a certain direct effect on teacher–pupil interactions (.203), but only part of this 
effect, .654 of it, is transmitted to school experience. The result .133 says that the level of 
positive student school experience is expected to increase by about .13 standard devia-
tions for every increase in school support of one full standard deviation via its prior 
effect on teacher–pupil interactions.

The unstandardized indirect effect of school support on student school experience 
through teacher–pupil interactions is estimated as the product of the unstandardized 
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coefficients for the same two paths, which is .097 × .486, or .047 (see Figure 7.1(a)). That 
is, school experience in its original metric is expected to increase by about .05 points 
for every 1-point increase on the school support variable in its original metric via its 
prior effect on teacher–pupil interactions. A full standard deviation on the school sup-
port variable is 10.5212 (Table 7.1). Therefore, an increase of one full standard deviation 
on the school support variable predicts an increase of 10.5212 × .047, or .494 points on 
the school experience variable in its original metric through the mediator variable of 
teacher–pupil interactions. The standard deviation of the school experience variable 
is 3.7178 (Table 7.1). A raw score change of .494 on this variable thus corresponds to 
.494/3.7178, or .133 standard deviations, which matches the standardized estimate of 
this indirect effect calculated earlier.

Coefficients for indirect effects have complex distributions, so it can be difficult 
to estimate standard errors for these statistics. Baron and Kenny (1986) describe some 
hand-calculable statistical tests for unstandardized indirect effects with a single media-
tor. The best known of these tests for large samples is based on an approximate standard 
error by Sobel (1986), which is described next. Suppose that a is the unstandardized 
coefficient for the path X → Y1 and that SEa is its standard error. Let b and SEb, respec-
tively, represent the same things for the path Y1 → Y2. The product ab estimates the 
unstandardized indirect effect of X on Y2 through Y1. Sobel’s estimated standard error 
of ab is

	 2 2 2 2= +ab a bSE b SE a SE 	 (7.1)

In large samples, the ratio ab/SEab is interpreted as the z test of the unstandardized indi-
rect effect and is called the Sobel test. A webpage by K. Preacher automatically calcu-
lates the Sobel test after the required information is entered in graphical dialogs.6 Exer-
cise 2 will ask you to calculate the Sobel test for the unstandardized indirect effect of 
school support on school experience through teacher–pupil interactions for the model 
of Figure 7.1(a). However, we would not expect the results of this test to be accurate (i.e., 
the p value is probably wrong) because the sample size for this analysis is not large.

I am unaware of a hand-calculable test of the statistical significance of indirect 
effects through two or more mediators, but a rule of thumb by Cohen and Cohen (1983) 
seems reasonable: If all its component unstandardized path coefficients are statistically 
significant at the same level of α, then the whole indirect effect can be taken as statis-
tically significant at the same level of α, too. For example, all three of the component 
unstandardized coefficients of the path

School 
Support

→ Teacher 
Burnout

→ Teacher–Pupil 
Interactions

→ School 
Experience

6http://people.ku.edu/~preacher/sobel/sobel.htm

(7.2)
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meet this requirement at the .01 level (see Table 7.2), so the whole indirect effect could 
be considered statistically significant at the same level.

The hypothesis of “pure” mediation between two variables, such as school support 
and school experience in Figure 7.1, is often tested by predicting that the direct effect 
between those two variables is not statistically significant. An exercise will ask you to 
add the path

	 School Support → School Experience

to the model and then determine whether the corresponding unstandardized coefficient 
for this direct effect is statistically significant. If so, then the hypothesis of pure media-
tion would not be supported. Kenny (2008) reminds us of the points summarized next:

1.	 A mediational model is a causal model. For example, it is assumed in Equation 
7.2 for the model of Figure 7.1 that teacher–pupil interaction (a mediator) is a cause of 
student school experience (the outcome) and not vice versa. If this assumption is not 
correct, then the results of a mediational analysis are of little value.

2.	 Mediation is not statistically defined. Instead, statistics such as products of 
direct effects can be used to evaluate a presumed mediational model.

The two points just listed also explain why researchers cannot generally test competing 
models with different directionalities, such as Y1 → Y2 → Y3 versus Y2 → Y1 → Y3, in 
some kind of mediational model “horse race” in order to “discover” the correct model. 
See Baron and Kenny (1986), Shrout and Bolger (2002), and MacKinnon, Fairchild, and 
Fritz (2007) for more information about mediational analysis in SEM. The analysis of 
mediation and moderation (i.e., interaction) when both are represented in the same path 
model is described in Chapter 12.

MacKinnon, Krull, and Lockwood (2000) note that within a mediational model, a 
suppression effect may be indicated when the direct and mediated effects of one variable 
on another have opposite signs. They refer to this pattern as inconsistent mediation, 
which is apparent in this analysis. For example, the standardized direct effect of coer-
cive control on teacher–pupil interactions is negative, or –.451 (Figure 7.1(b)). However, 
the mediated effects of coercive control on teacher–pupil teacher interactions through 
teacher burnout is positive, or .070 (i.e., .250 × .278). The direct versus the mediated effect 
of school support on teacher–pupil interactions are also of different signs. Inconsistent 
mediation is contrasted with consistent mediation, wherein the direct and mediated 
effects have the same sign. See Maasen and Bakker (2001) for more information about 
suppression effects in SEM.

Total Effects and Effect Decomposition

Total effects are the sum of all direct and indirect effects of one variable on another. For 
example, the standardized total effect of school support on teacher–pupil interactions is 
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the sum of the direct effect and its sole indirect effect through teacher burnout (Figure 
7.1(b)), or

	 .203 + (–.413) (.278) = .203 – .115 = .088

Standardized total effects are also interpreted as path coefficients, and the value of .088 
means that increasing school support by one standard deviation increases students’ pos-
itive school experience by almost .10 standard deviations via all presumed direct and 
indirect causal links between these two variables. Unstandardized estimates of total 
effects are calculated in the same way but with unstandardized coefficients. For exam-
ple, the unstandardized total effect of school support on teacher–pupil interactions is 
the sum of its direct effect and its indirect effect via teacher burnout, or

	 .097 + (–.384) (.142) = .097 – .055 = .042

That is, for every 1-point increase on the school support variable in its original metric, 
we expect about a .04-point increase on the school experience variable in its original 
metric via all presumed causal pathways that link these variables.

Some SEM computer programs optionally generate an effect decomposition, a tab-
ular summary of estimated direct, indirect, and total effects. This is fortunate because 
it can be tedious to calculate all these effects by hand. The LISREL program can print 
both total effects and total indirect effects. The latter is the sum of all indirect effects 
of a causally prior variable on a subsequent one. Reported in Table 7.3 is the effect 
decomposition calculated by LISREL for direct, total indirect, and total effects of exog-
enous variables on endogenous variables with standard errors for the unstandardized 
results only. (Note that the direct effects in Table 7.3 match the corresponding ones 
in Table 7.2.) For example, teacher burnout is specified to have a single indirect effect 
on school experience (through teacher–pupil interactions; Figure 7.1). This sole indi-
rect effect is also (1) the total indirect effect because there are no other indirect effects 
between burnout and school experience and (2) the total effect because there is no direct 
effect between these variables (see Table 7.3). In contrast, school support has no direct 
effects on student school experience, but it has two indirect effects (see Figure 7.1), and 
the unstandardized total indirect effects of school support on this endogenous variable 
listed in Table 7.3, or .020, is the sum of these two indirect effects. Exercise 3 will ask 
you to verify this fact.

Presented in Table 7.4 is the decomposition for the effects of endogenous variables 
on other endogenous variables. For example, teacher burnout has no direct effects on 
the school experience and somatic status variables (see Figure 7.1). Instead, it has a 
single indirect effect on each of these variables, and these sole indirect effects are also 
total indirect effects and total effects (Table 7.4). Note that the standard errors printed 
by LISREL for each unstandardized indirect effect that involve a single mediator match 
those within rounding error calculated using Equation 7.1 for the Sobel test.

Not all SEM computer tools print standard errors for total indirect effects or total 



TABLE 7.3.  Decompositions for Effects of Exogenous on Endogenous Variables 
for a Recursive Path Model of Causes and Effects of Positive Teacher–Pupil 
Interactions

Causal variables

School Support Coercive Control

Endogenous variables Unst. SE St. Unst. SE St.

Teacher Burnout

    Direct 	 −.384** .079 	 −.413 	 .294** .100 	 .250
    Total indirect — — — — — —

    Total 	 −.384** .079 	 −.413 	 .294** .100 	 .250

Teacher–Pupil Interactions  

    Direct 	 .097* .046 	 .203 	 −.272**  .055 	 −.451
    Total indirect 	 −.055* .023 	 −.115 	 .042*    .021 	 .070
    Total 	 .042 .043 	 .088 	 −.230**  .055 	 −.382

School Experience

    Direct — — — — — —

    Total indirect 	 .020 .021 	 .058 	 −.112** .030 	 −.250
    Total 	 .020 .021 	 .058 	 −.112** .030 	 −.250

Somatic Status

    Direct — — — — — —

    Total indirect 	 .032 .033 	 .064 	 −.176** .045 	 −.278
    Total 	 .032 .033 	 .064 	 −.176** .045 	 −.278

Note. Unst., unstandardized; St., standardized.

*p < .05; **p < .01.

TABLE 7.4. Decompositions for Effects of Endogenous on Other Endogenous 
Variables for a Recursive Path Model of Causes and Effects of Positive Teacher–
Pupil Interactions

Causal variables

Teacher Burnout Teacher–Pupil Interactions

Endogenous variables Unst. SE St. Unst. SE St.

Teacher–Pupil Interactions

    Direct .142** .052 .278 — — —

    Total indirect — — — — — —

    Total .142** .052 .278 — — —

School Experience

    Direct — — — .486** .055 .654

    Total indirect .069** .026 .182 — — —

    Total .069** .026 .182 .486** .055 .654

Somatic Status

    Direct — — — .767** .070 .728

    Total indirect .109** .041 .203 — — —

    Total .109** .041 .203 .767** .070 .728

Note. Unst., unstandardized; St., standardized.

*p < .05; **p < .01.
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effects. However, some programs, such as Amos and Mplus, can use the bootstrapping 
method to estimate standard errors for unstandardized or standardized total indirect 
effects and total effects. When there is a statistically significant total effect, the direct 
effect, total indirect effect, or both may also be statistically significant, but this is not 
guaranteed.

Model-Implied (Predicted) Covariances and Correlations

The standardized total effect of one variable on another approximates the part of their 
observed correlation due to presumed causal relations. The sum of the standardized 
total effects and all other noncausal associations, such as spurious associations, repre-
sented in the model equal model-implied correlations that can be compared against 
the observed correlations. Model-implied covariances, or fitted covariances, have the 
same general meaning, but they concern the unstandardized solution.

All SEM computer programs that calculate model-implied correlations or covari-
ances use matrix algebra methods (e.g., Loehlin, 2004, pp. 40–44). There is an older 
method for recursive structural models amenable to hand calculation known as the 
tracing rule. It is worthwhile to know about the tracing rule more for its underlying 
principles than for its now limited utility. The tracing rule is as follows:

A model-implied correlation is the sum of all the causal effects and	 (Rule 7.1)
noncausal associations from all valid tracings between two variables  
in a recursive model. A “valid” tracing means that a variable is not

1.	Entered through an arrowhead and exited by the same arrowhead, nor

  2. Entered twice in the same tracing.

Two general principles follow from the tracing rule: (1) The model-implied correlation 
or covariance for two variables connected by all possible paths in a just-identified por-
tion of the structural model will typically equal the observed counterparts. (2) However, 
if the variables are not connected by all possible paths in an overidentified part of the 
model, then the predicted and observed values may differ.

As an example of the application of the tracing rule to calculate model-implied cor-
relations with the standardized solution, look again at Figure 7.1(b) and find the vari-
ables coercive control and teacher burnout. There are two valid tracings between them. 
One corresponds to the presumed direct causal effect

	 Coercive Control → Teacher Burnout

which equals .250. The other tracing involves the unanalyzed association of coercive 
control with another variable, school support, that has a direct effect on teacher burn-
out. This tracing is

	 Coercive Control  School Support → Teacher Burnout
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The estimate for the second tracing just listed is calculated in the same way as for indi-
rect effects: as the product of the relevant path coefficients or correlations. For the sec-
ond tracing, this estimate is calculated as

	 –.257 (–.413) = .106

where –.257 is the sample correlation between coercive control and school support and 
–.413 is the standardized direct effect of school support on teacher burnout (see Table 7.1 
and Figure 7.1(b)). The model-implied correlation between coercive control and teacher 
burnout thus equals

	 .250 + .106 = .356

which also equals the observed correlation between these two variables at three-decimal 
accuracy, or .356 (Table 7.1). Because the variables coercive control and teacher burnout 
are connected by all possible paths, it is not surprising that the structural model can 
perfectly reproduce their observed correlation.

Now find the variables coercive control and school experience in Figure 7.1(b). There 
are a total of four valid tracings between these two variables. These tracings include 
two indirect effects, one with a single mediator (teacher–pupil interactions) and the 
other with two mediators (teacher burnout, teacher–pupil interactions). The standard-
ized total indirect effect across the two tracings just mentioned is –.250 (Table 7.3). This 
value is also the standardized total effect between coercive control and school experi-
ence. There are also two valid tracings between coercive control and school experience 
that involve unanalyzed associations. One is the tracing

Coercive 
Control

School 
Support

→ Teacher–Pupil 
Interactions

→ School 
Experience

which is estimated as the product

	 –.257 (.203) (.654) = –.034

The other noncausal tracing between coercive control and school experience is

Coercive 
Control

School 
Support

→ Teacher 
Burnout

→ Teacher–Pupil 
Interactions

→ School 
Experience

which is estimated as the product

	 –.257 (–.413) (.278) (.654) = .019

Thus, the predicted correlation between coercive control and school experience is calcu-
lated as the sum of the total effect and all unanalyzed associations, or
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	 –.250 – .034 + .019 = –.265

The sample correlation between these two variables is –.162 (Table 7.1), so the model-
implied correlation does not perfectly reproduce the observed correlation. This is not 
unexpected because the structural model does not have a direct effect between coercive 
control and school experience (Figure 7.1). That is, this part of the model is overidenti-
fied. Use of the tracing rule is error prone even for relatively simple recursive models 
because it can be difficult to spot all of the valid tracings. This is a reason to appreciate 
that many SEM computer tools automatically calculate predicted correlations and cova-
riances.

Residuals

The difference between a model-implied correlation and an observed (sample) correlation 
is a correlation residual. Correlation residuals are standardized covariance residuals 
or fitted residuals, which are differences between observed and predicted covariances. 
There is a rule of thumb in the SEM literature that correlation residuals with absolute 
values > .10 suggest that the model does not explain the corresponding sample correla-
tion very well. Although it is difficult to say how many absolute correlation residuals 
greater than .10 is “too many,” the more there are, the worse the explanatory power of 
the model for specific observed associations. This is especially true for a smaller model, 
or one with relatively few observed variables. There is no comparable rule of thumb 
about values of covariance residuals that suggest a poor explanation because covari-
ances are affected by the scales of the original variables.

The LISREL and Mplus programs print a statistic referred to as a standardized 
residual, which is the ratio of a covariance residual over its standard error. In large sam-
ples, this ratio is interpreted as a z test of whether the population covariance residual is 
zero. If this test is statistically significant, then the hypothesis that the corresponding 
population covariance residual is zero is rejected. This test is sensitive to sample size, 
which means that covariance residuals close to zero could be statistically significant in a 
very large sample. In contrast, the interpretation of correlation residuals is not as bound 
to sample size. Note that the term standardized residual in EQS output refers to correla-
tion residuals, not z statistics.

Reported in the top part of Table 7.5 are the correlation residuals (calculated by 
EQS), and presented in the bottom part of the table are the standardized residuals (z 
statistics, calculated by LISREL) for the path model in Figure 7.1. Remember that the 
standardized residuals, not the correlation residuals, indicate whether the correspond-
ing covariance residual is statistically significant. Observe in the table that correlation 
residuals—and standardized residuals, too—for the variables school support, coercive 
control, teacher burnout, and teacher–pupil interactions are all zero. This is expected 
because the structural model for these variables is just-identified. There is one correla-
tion residual with an absolute value just > .10. This value, .103—shown in boldface in the 
top part of Table 7.5—is for the association between coercive control and school experi-
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ence. Recall that the sample correlation between these two variables is –.162 (Table 7.1) 
and that the model-implied correlation calculated earlier for this association is –.265. 
The difference between these two correlations, or

	 –.162 – (–.265) = .103

(i.e., observed minus predicted) equals the correlation residual for coercive control and 
school experience. The corresponding standardized residual for these two variables is 
not statistically significant (z = 1.536; p > .05; see Table 7.5), but the power of this test is 
probably low due to the small sample size for this analysis.

So we have evidence that the model in Figure 7.1 does not adequately explain the 
observed association between coercive control and school experience. This is a critical 
finding because the model posits only indirect effects between these two variables, but 
this specification may not be correct. We also need to assess the overall fit of this model 
to the data in a more formal way and also to test hypotheses about an apparent mis-
specification. Given the small sample size for this example (N = 109), it is also critical 
to estimate statistical power. Finally, whatever model is eventually retained (if any), the 
possibility that there are equivalent versions of it should be considered. Chapter 8 deals 
with all the topics just mentioned.

Brief Example with a Start Value Problem

This quick example concerns the analysis of a nonrecursive path model. The data for this 
example, summarized in Table 7.6, are from Cooperman (1996). The number of cases is 

TABLE 7.5. Correlation Residuals and Standardized Residuals for a Recursive 
Path Model of Causes and Effects of Positive Teacher–Pupil Interactions

Variable 1 2 3 4 5 6

Correlation residuals

1.  Coercive Control 0  

2.  Teacher Burnout 0 0

3.  School Support 0 0 0

4.  Teacher–Pupil Interactions 0 0 0 0

5.  School Experience   .103   .080 −.050 0 0

6.  Somatic Status −.054 −.028   .021 0 .020 0

Standardized Residuals

1.  Coercive Control 0

2.  Teacher Burnout 0 0

3.  School Support 0 0 0

4.  Teacher–Pupil Interactions 0 0 0 0

5.  School Experience 1.536 1.093 −.695 0 0

6.  Somatic Status −.891 −.426   .326 0 .404 0
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small (N = 84), but the purpose of this analysis is pedagogical. The sample consists of 
mothers participating in a longitudinal study. When these women were in elementary 
school, their classmates completed rating scales about aggressive or withdrawn behav-
ior, and these cases obtained extreme scores in either area. During evaluations 10–15 
years later, teachers completed rating scales about the conduct or emotional problems 
of the children of these women. The nonrecursive path model presented in Figure 7.2 
represents the hypothesis that maternal histories of aggression or withdrawal have both 
direct and indirect effects on conduct and emotional problems of their children. The 
indirect effects are mediated by maternity age and mother’s level of education, which 

TABLE 7.6. Input Data (Correlations and Standard Deviations) for Analysis of a 
Nonrecursive Path Model of Mother–Child Adjustment Problems

Variable 1 2 3 4 5 6

Mother characteristics

1.  Aggression 1.00

2.  Withdrawal   .19 1.00

3.  Education −.16 −.20   1.00

4.  Maternity Age −.37 −.06     .36   1.00

Child characteristics

5.  Emotional Problems −.06 −.05   −.03   −.25 1.00

6.  Conduct Problems   .13 −.06   −.09   −.28   .41 1.00

M   .51   .47 10.87 20.57   .08   .15

SD 1.09 1.03   2.17   2.33   .28   .36

Note. These data are from Cooperman (1996); N = 84. Means are reported but not analyzed.

FIGURE 7.2.  A nonrecursive path model of mother–child adjustment problems.
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in turn are specified as the reciprocal causes of each other. For example, young women 
may be more likely to leave school if they are pregnant, but leaving school could be a 
risk factor for pregnancy.

With six observed variables in the model of Figure 7.2, there are 21 observations. 
The total number of free parameters is 19, including six variances of exogenous variables, 
three unanalyzed associations, and 10 direct effects, so dfM = 2. This model satisfies the 
order and rank conditions for the equation of every endogenous variable. (You should 
verify these statements.) I used the ML method of EQS 6.1 to fit the model of Figure 7.2 
to the covariance matrix based on the data in Table 7.6. The program’s default start val-
ues were used. These warning messages were issued after the very first iteration:

You have bad start values to begin with 
Please provide better start values and re-run the job

Next, EQS recovered from this “stumble” and eventually went on to generate a con-
verged and an admissible solution. However, at other times the analysis of a nonrecur-
sive model may fail right away due to bad start values. The same thing can happen when 
analyzing an complex structural equation model of any type with many observed and 
latent variables.

When computer analysis is foiled by a start value problem, then it is up to you to 
provide better initial estimates. In the present example, I followed the suggestions in 
Appendix 7.A to generate start values for the reciprocal direct effects and disturbance 
variances for the variables maternity age and mother education in Figure 7.2. Specifi-
cally, a “typical” standardized effect size of .30 was assumed for the path from maternity 
age to education, and a “smaller” standardized effect size of .10 was assumed for the 
path from mother education to maternity age. Given the observed standard deviations 
for the variables mother education and maternity age—respectively, 2.17 and 2.33 (Table 
7.6)—start values were calculated as follows:

Maternity Age → Mother Education: .30 (2.17/2.33) = .28
Variance of DME: (1 – .10) 2.172 = .90 (4.71) = 4.24
Mother Education → Maternity Age: .10 (2.33/2.17) = .11
Variance of DMA: (1 – .01) 2.332 = .99 (5.43) = 5.38

In a second analysis with EQS, the start values just calculated were specified in program 
syntax. The second analysis terminated normally with no error messages, and this solu-
tion is admissible. The parameter estimates are not described here, but you can view 
them in the output file. Both the EQS syntax file with start value specifications and the 
output file for this analysis can be downloaded from this book’s website (p. 3). You can 
also download LISREL files for the same analysis.

Some additional issues specific to the estimation of nonrecursive models are 
described in the chapter appendices. These issues apply whether the structural model 
consists of observed variables only (nonrecursive path model) or has factors (nonre-
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cursive structural regression model). Appendix 7.B deals with effect decomposition in 
nonrecursive models and the assumption of equilibrium. Appendix 7.C is about the esti-
mation of corrected R2-type proportions of explained variance for endogenous variables 
involved in feedback loops.

Fitting Models to Correlation Matrices

Default ML estimation assumes the analysis of unstandardized variables. If the variables 
are standardized, ML results may be inaccurate, including estimates of standard errors 
and values of model fit statistics. This can happen if a model is not scale invariant, which 
means that its overall fit to the data depends on whether the variables are standardized 
or unstandardized. Whether or not a model is scale invariant is determined by a rather 
complex combination of its characteristics, including how the factors are scaled and the 
presence of equality constraints on certain parameter estimates (Cudeck, 1989). One 
symptom of scale invariance when a correlation matrix is analyzed with default ML 
estimation is the observation that some of the diagonal elements in the model-implied 
correlation matrix do not equal 1.0.

There is a method for correctly fitting a model to a correlation matrix instead 
of a covariance matrix known as constrained estimation or constrained optimiza-
tion (Browne, 1982). This method involves the imposition of nonlinear constraints 
on certain parameter estimation to guarantee that the model is scale invariant. These 
constraints can be quite complicated to program manually (e.g., Steiger, 2002, p. 221), 
and not all SEM computer tools support nonlinear constraints (LISREL, Mplus, Mx, 
and TCALIS do). However, some SEM computer programs, including SEPATH and 
RAMONA, allow constrained estimation to be performed automatically by selecting 
an option. These automated methods accept as input either a raw data file or a cor-
relation matrix. The EQS and Mplus programs can also correctly analyze correlations, 
but they require raw data files. There are at least three occasions for using constrained 
estimation:

1.	 A researcher is conducting a secondary SEM analysis based on a source wherein 
correlations are reported, but not standard deviations. The raw data are also not avail-
able.

2.	 There is a theoretical reason to impose equality constraints on standardized 
estimates, such as when the standardized direct effects of different predictors on the 
same outcome are presumed to be equal. When a covariance matrix is analyzed, equality 
constraints are imposed in the unstandardized solution only.

3.	 A researcher wishes to report correct tests of statistical significance for the stan-
dardized solution. This means that correct standard errors are needed for the standard-
ized estimates, too. Note that Mplus automatically reports correct standard errors for 
standardized effects when the standardized solution is requested.
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Alternative Estimators

Standard ML estimation works fine for 90% or more of the structural equation models 
described in the literature. However, you should be aware of some alternative methods. 
Some of these alternatives are options when the assumption of multivariate normality 
is not tenable, and others are intended for noncontinuous outcome variables. In some 
disciplines, such as education, categorical outcomes may be analyzed as often as con-
tinuous outcomes. The methods described next are generally iterative, simultaneous, 
full information, and available in many SEM computer programs.

Other Normal Theory Methods for Continuous Outcomes

Two methods for endogenous variables with multivariate normal distributions include 
generalized least squares (GLS) and unweighted least squares (ULS). The ULS 
method is actually a type of OLS estimation that minimizes the sum of squared differ-
ences between sample and model-implied covariances. It can generate unbiased esti-
mates across random samples, but it is not as efficient as ML estimation (Kaplan, 2009). 
A drawback of the ULS method is its requirement that all observed variables have the 
same scale. That is, this method is neither scale free nor scale invariant. A potential 
advantage is that, unlike ML, the ULS method does not require a positive-definite cova-
riance matrix (Chapter 3). It is also robust concerning initial estimates (Wothke, 1993). 
This means that ULS estimation could be used to generate start values for a second 
analysis of the same model and data but with ML estimation.

The GLS method is a member of a larger family of methods known as fully weighted 
least squares (WLS) estimation, and some other methods in this family can be used for 
severely non-normal data. In contrast to ULS, the GLS estimator is both scale free and 
scale invariant, and under the assumption of multivariate normality, the GLS and ML 
methods are asymptotic. One potential advantage of GLS over ML estimation is that it 
requires less computation time and computer memory. However, this potential advan-
tage is not as meaningful today, given fast processors and abundant memory in relatively 
inexpensive personal computers. In general, ML estimation is preferred to both ULS and 
GLS estimation.

Corrected Normal Theory Methods for Continuous but Non-normal 
Outcomes

The results of computer simulation studies generally indicate that it is best not to ignore 
the multivariate normality assumption of default ML estimation (e.g., Curran, West, 
& Finch, 1997; Olsson, Foss, Troye, & Howell, 2000). For example, when endogenous 
variables are continuous but have severely non-normal distributions:

1.	 Values of ML parameter estimates may be relatively accurate in large samples, 
but their estimated standard errors tend to be too low, perhaps by as much as 25–50%, 
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depending on the data and model. This results in rejection of the null hypothesis that 
the corresponding population parameter is zero more often than is correct (Type I error 
rate is inflated).

2.	 Values of statistical tests of model fit tend to be too high. This results in rejection 
of the null hypothesis that the model has perfect fit in the population more often than 
is correct. That is, true models tend to be rejected too often. The actual rate of this error 
may be as high as 50% when the expected rate assuming normal distributions is 5%, 
again depending on the data and model. The most widely reported model test statistic in 
SEM, the model chi-square 2

Mχ , is described in the next chapter. Depending on the par-
ticular pattern and severity of nonnormality, the value of 2

Mχ  may be too small, which 
would favor the researcher’s model. In other words, model test statistics calculated using 
normal theory methods when there is severe nonnormality are not trustworthy.

One option to avoid bias is to normalize the variables with transformations (Chap-
ter 3) and then analyze the transformed data with default ML estimation. Another option 
for continuous but non-normal outcome variables is to use a corrected normal theory 
method. This means to analyze the original data with a normal theory method, such 
as ML, but use robust standard errors and corrected model test statistics. Robust 
standard errors are estimates of standard errors that are supposedly robust against non-
normality. The best known example of corrected model test statistics is the Satorra–
Bentler statistic (Satorra & Bentler, 1994), which adjusts downward the value of 2

Mχ  
from standard ML estimation by an amount that reflects the degree of kurtosis. The 
Satorra–Bentler statistic was originally associated with EQS but is now calculated by 
other SEM computer programs. Results of computer simulation studies of the Satorra–
Bentler statistic are generally favorable (Chou & Bentler, 1995). Analysis of a raw data file 
is required for a corrected normal theory method. Of the various methods for analyzing 
continuous outcome variables with severely non-normal distributions described here, a 
corrected normal theory method may be the most straightforward to apply (Finney & 
DiStefano, 2006).

Normal Theory Methods with Bootstrapping for Continuous but 
Non-normal Outcomes

Another option for analyzing continuous but severely non-normal endogenous variables 
is to use a normal theory method (i.e., ML estimation) but with nonparametric boot-
strapping, which assumes only that the population and sample distributions have the 
same shape. In a bootstrap approach, parameters, standard errors, and model test sta-
tistics are estimated with empirical sampling distributions from large numbers of gen-
erated samples (e.g., Figure 2.3). Results of a computer simulation study by Nevitt and 
Hancock (2001) indicate that bootstrap estimates for a measurement model were gener-
ally less biased compared with those from standard ML estimation under conditions 
of non-normality and for sample sizes of N ≥ 200. For N = 100, however, bootstrapped 
estimates had relatively large standard errors, and many generated samples were unus-
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able due to problems such as nonpositive definite covariance matrices. These problems 
are consistent with the caution by Yung and Bentler (1996) that a small sample size will 
not typically render accurate bootstrapped results.

Elliptical and Arbitrary Distribution Estimators for Continuous but 
Non-normal Outcomes

Another option to analyze models with continuous but non-normal endogenous vari-
ables is to use a method that does not assume multivariate normality. For example, there 
is a class of estimators based on elliptical distribution theory that requires only sym-
metrical distributions (Bentler & Dijkstra, 1985). These methods estimate the degree 
of kurtosis in raw data. If all endogenous variables have a common degree of kurtosis, 
positive or negative skew is allowed; otherwise, zero skew is assumed. Various elliptical 
distribution estimators are available in EQS.

Another option known as arbitrary distribution function (ADF) estimation makes 
no distributional assumptions for continuous variables (Browne, 1984). This is because 
it estimates the degree of both skew and kurtosis in the raw data. The calculations for 
the ADF estimator are complex in part because the method derives a relatively large 
weight matrix that is applied to the covariance residuals as part of the fit function to 
be minimized. The number of rows or columns in this square weight matrix equals 
the number of observations, or v (v + 1)/2 where v is the number of observed variables. 
For a model with many observed variables, the size of this matrix can be so large that 
it can be difficult for the computer to derive the inverse of this matrix. For example, 
if there are 15 observed variables, the dimensions of the ADF weight matrix would be 
120 × 120, which would have a total of 1202 = 14,400 elements. Also, calculations in 
ADF estimation typically require very large sample sizes in order for the results to be 
reasonably accurate. Relatively simple (i.e., uninteresting) models may require sample 
sizes of 200–500, and thousands of cases may be required for more complex models. 
These requirements are impractical for many researchers. The results of some computer 
simulation studies indicate that ADF estimation yields overly optimistic values of fit 
statistics when the model is misspecified (Olsson et al., 2000).

Options for Analyzing Dichotomous or Ordered-Categorical 
Outcomes

Endogenous variables are not always continuous. The most obvious example is a binary 
or dichotomous outcome, such as relapsed–not relapsed (Chapter 2). There are also 
ordered-categorical (ordinal) variables with three or more levels that imply a rank order. 
For example, the following item has a Likert scale that indicates degree of agreement:

	 I am happy with my life (0 = disagree, 1 = uncertain, 2 = agree)
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The numeric scale for this variable (0–2) can distinguish among only three levels of 
agreement. It would be hard to argue that the numbers assigned to the three response 
alternatives of this item make up a scale with equal intervals. Also, scores on variables 
with so few levels cannot be normally distributed. Although there is no “golden rule” 
concerning the minimum number of levels that is required before scores can be approxi-
mately normally distributed, a score range of at least 15 points or so may be required.7 
However, Likert scales with about 5–10 points may be favorable in terms of people’s 
ability to reasonably discriminate between scale values (anchors). With more than 10 or 
so scale points for individual items, respondents may choose arbitrarily between adja-
cent points. Suppose that research participants are asked to rate their degree of agree-
ment with some statement on a 25-point Likert scale. It would be difficult to think of 
25 distinct verbal labels for each point along the scale that would indicate progressively 
increasing or decreasing levels of agreement. Even with fewer labels, participants may 
struggle with trying to decide what is the difference between ratings of, say, 13 versus 
14 or 23 versus 24. That is, it is not practical to somehow “force” a variable with a Likert 
scale to become continuous by adding levels beyond 10 or so.

Results of some computer simulation studies indicate that results from standard 
ML estimation may be inaccurate for models with dichotomous or ordinal endogenous 
variables. These simulation studies generally assume a true population measurement 
model with continuous indicators. Within generated samples, the indicators are cat-
egorized to approximate data from noncontinuous variables. Bernstein and Teng (1989) 
found that when there is only a single factor in the population but the indicators have 
few categories, one-factor measurement models tend to be rejected too often. That is, 
categorization can spuriously suggest the presence of multiple factors. DiStefano (2002) 
found that ML parameter estimates and their standard errors were both generally too 
low when the data analyzed were from categorical indicators, and the degree of negative 
bias was higher as distributions became increasingly non-normal. The message of the 
studies just cited and others is that standard ML is not an appropriate method for ana-
lyzing ordered-categorical variables.

Two analytical options for ordinal outcome variables are outlined. The first involves 
the case where ordered-categorical outcomes are analyzed as “stand-alone” variables 
that are not merged or combined across a set of similar variables. This approach requires 
special estimators for this type of data (i.e., not ML) related to the WLS family. The 
second option involves analyzing parcels. A parcel is a total score across a set of homo-
geneous items each with a Likert-type scale. Parcels are generally treated as continuous 
variables. The score reliability of parcels (total scores) tends to be greater than that for 
the individual items. If the distributions of all parcels are normal, then default ML esti-
mation could be used to analyze the data. Parcels are then typically specified as continu-

7The PRELIS program of LISREL automatically classifies a variable with less than 16 levels as ordinal, but 
this default can be changed.
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ous indicators of underlying latent variables in a measurement model, such as in a CFA 
model or when analyzing a structural regression (SR) model (e.g., Figures 5.6, 5.8). But 
parceling is controversial. The reasons why are outlined later in this chapter.

Special WLS Methods for Ordinal Outcomes

Muthén (e.g., 1984) describes an approach to estimating models with any combina-
tion of dichotomous, ordinal, or continuous outcome variables known as continuous/
categorical variable methodology (CVM). In CVM, bivariate associations among ob-
served variables are estimated with polychoric correlations, which assume that a normal, 
continuous process underlies each observed variable (Flora & Curran, 2004). The model 
is then estimated with a form of WLS, and values of corrected test statistics are provided.

In the CVM approach described by Muthén and Asparouhov (2002) that is imple-
mented in Mplus, each observed ordinal indicator is associated with an underlying 
latent response variable, which is the underlying amount of a continuous and normally 
distributed trait or characteristic that is required to respond in a certain category of 
the corresponding observed ordinal item. When the observed indicator is dichotomous, 
such as for items with a true–false response format, this amount, or threshold, is the 
point on the latent response variable where one answer is given (e.g., true) when the 
threshold is exceeded. It is also the point where the other response is given (e.g., false) 
when the threshold is not exceeded (Brown, 2006). Dichotomous items have a single 
threshold, but the number of thresholds for items with ≥ 3 response categories is the 
number of categories minus one. Each latent response variable is in turn represented as 
the continuous indicator of the underlying substantive factor that corresponds to a hypo-
thetical construct. The data matrix analyzed in this approach is an asymptotic correla-
tion matrix of the latent response variables. For dichotomous indicators, this estimated 
matrix will be a tetrachoric correlation matrix; for items with at least three response 
categories, the data matrix will be an estimated polychoric correlation matrix.

The arbitrary and elliptical estimators described earlier (e.g., ADF), which do not 
assume normality, are also members of the WLS family of estimators.8 The WLS estima-
tor can be applied to either continuous or ordinal outcomes because it does not assume 
a particular distributional form. In general, WLS estimation is just as computationally 
complex as ADF estimation, requires very large samples, and is subject to technical 
problems in the analysis (e.g., Finney & DiStefano, 2006, pp. 281–288), such as the 
failure of the computer to derive the inverse of the weight matrix. Muthén, du Toit, and 
Spisic (1997) describe forms of robust WLS estimation that deal with problems of 
using WLS when the sample size is not very large. These robust methods use somewhat 
simpler matrix calculations compared with WLS estimation.

In Mplus, two of these robust estimators are designated as mean-adjusted weighted 
least squares (WLSM) and mean- and variance-adjusted weighted least squares 

8The GLS estimator is also a member of this family, but it assumes multivariate normality.
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(WLSMV). The standard errors and parameter estimates from these two methods are 
the same, but WLSMV does not calculate the model degrees of freedom in the stan-
dard way, and this method may be preferred when the number of observed variables 
is relatively small. This method is also the default in Mplus when ordered-categorical 
variables are analyzed. In computer simulation studies, the WLSMV method has gener-
ally performed well except when the sample size is only about N = 200 or distributions 
on ordered-categorical variables are markedly skewed (Muthén et al., 1997). Results 
of computer simulation studies by Flora and Curran (2004) also indicated generally 
positive performance of robust WLS estimation methods in the analysis of measurement 
models with ordinal indicators. In contrast, these authors observed technical problems 
with WLS estimation when the sample size was even as large as N = 1,000 for larger 
models with about 20 indicators.

Models with ordinal outcomes are analyzed in two steps in LISREL. First, the raw 
data are submitted to the PRELIS program, which estimates polychoric correlations 
among the observed variables. These correlations and other statistical information are 
used to compute an asymptotic covariance matrix, which is then analyzed in LISREL 
with WLS estimation. Another option in LISREL is diagonally weighted least squares 
(DWLS) estimation, which is a mathematically simpler form of WLS estimation that 
may be better when the sample size is not very large. See Jöreskog (2005) for examples.

The EQS program uses a two-stage method by Lee, Poon, and Bentler (1995) for 
analyzing models with any combination of continuous or categorical endogenous vari-
ables. In the first stage, a special form of ML estimation is used to estimate correlations 
between the continuous latent variables presumed to underlie the observed variables. In 
the second stage, an asymptotic covariance matrix is computed, and the model is ana-
lyzed with a method that in EQS is referred to as arbitrary generalized least squares 
(AGLS) estimation, which is basically equivalent to WLS estimation (Finney & DiSte-
fano, 2006).

Analyzing Items Parcels

Suppose that a questionnaire has 40 Likert scale items. Instead of analyzing all 40 items 
as “stand-alone” outcome variables, a researcher partitions the items into two nonover-
lapping sets of 20 items each. The items within each set are presumed to be homoge-
neous; that is, they reflect a common domain. A total score is derived across the 20 
items within each set, and the two resulting total scores, or parcels, are analyzed instead 
of the 40 items. Because the total scores are continuous and normally distributed, the 
researcher opts for standard ML estimation, which is easier to use than WLS estimators. 
This is the basic rationale of parceling. But this technique is controversial because it 
assumes that items within each parcel are known to measure a single construct, or are 
unidimensional. This knowledge may come from familiarity with the item domain or 
results of prior statistical analyses, such as an exploratory factor analysis.

Parceling is not recommended if unidimensionality cannot be assumed. Specifi-
cally, parceling should not be part of an analysis aimed at determining whether a set of 
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items is unidimensional. This is because it is possible that parceling can mask a mul-
tidimensional factor structure in such a way that a seriously misspecified model may 
nevertheless fit the data reasonably well (Bandalos, 2002). There are also different ways 
to parcel items, including random assignment of items to parcels and groupings of items 
based on rational grounds (e.g., the items share similar content), and the choice can 
affect the results. See Bandalos and Finney (2001) and Little, Cunningham, Shahar, and 
Widamin (2002) for descriptions of the potential advantages and drawbacks of parcel-
ing in SEM. Williams and O’Boyle (2008) review human resource management research 
using parcels.

A Healthy Perspective on Estimation

The availability of so many different estimation methods can sometimes seem over-
whelming for newcomers to SEM. Loehlin (2004) cites the following proverb that may 
describe this experience: a person with one watch always knows what time it is; a per-
son with two never does. It also doesn’t help that the same general estimator may be 
referred to using different names in the documentation or syntax of different SEM com-
puter tools. Actually, the situation is not so bewildering because standard ML estima-
tion works just fine for most types of structural equation models if the data have been 
properly screened and distributions of continuous endogenous variables are reasonably 
multivariate normal. But if the normality assumption is not tenable or if you are working 
with outcome variables that are not continuous, you need alternative methods.

Summary

The method of maximum likelihood estimation is a normal theory, full-information 
method that simultaneously analyzes all model equations in an iterative algorithm. 
General statistical assumptions include independence of the scores, independence of 
exogenous variables and residuals, multivariate normality, and correct specification of 
the model. Correct specification of the model is especially important because of error 
propagation, or the tendency for misspecification in one part of the model to affect esti-
mates in other parts. Sometimes iterative estimation fails due to poor start values. When 
this happens, it may be necessary to specify better initial estimates in order to “help” 
the computer reach a converged solution. It can happen in estimation that the solution 
contains illogical values, such as Heywood cases, which renders the solution inadmis-
sible. Thus, you should always carefully inspect the solution even if the computer output 
contains no error or warning messages. When endogenous variables are continuous but 
their distributions are severely non-normal, the most straightforward option is to use 
a corrected normal theory method that generates robust standard errors and corrected 
test statistics. When the endogenous variables are not continuous, then other estimation 
methods, including forms of robust weighted least squares, should be applied.
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Recommended Readings

Finney and DiStefano (2006) is an excellent resource for learning more about estimation 
options for analyzing non-normal and categorical data in SEM. Kaplan (2009, chap. 5) offers 
a detailed discussion of assumptions of maximum likelihood estimation and alternative estima-
tors.

Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation 
modeling. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation 
modeling (pp. 269–314). Greenwich, CT: Information Age Publishing.

Kaplan, D. (2009). Structural equation modeling: Foundations and extensions (2nd ed.). Thou-
sand Oaks, CA: Sage.

Exercises

	 1.	 Calculate 2
smcR  for each endogenous variable in Figure 7.1 using the informa-

tion in Tables 7.1 and 7.2.

	 2.	 Use the information in Table 7.2 to calculate for the model in Figure 7.1(a) the 
Sobel test for the unstandardized indirect effect of school support on school 
experience through teacher–pupil interactions.

	 3.	 Calculate for the model of Figure 7.1(a) the unstandardized total indirect effect 
of school support on school experience using the information in Table 7.2. 
Compare your result with the corresponding entry in Table 7.3.

	 4.	 Using a computer tool for SEM, analyze the model in Figure 7.1 using the data 
in Table 7.1 and default ML estimation. See whether your results replicate the 
parameter estimates listed in Table 7.2 within slight rounding error. Now rerun 
the analysis but add to the model the path listed next:

		  School Support → School Experience

		  What are values of the parameter estimates for this new path? Is this direct 
effect statistically significant? Also, compare the values of 2

smcR  for the school 
experience variable in the models with and without the new direct effect.

	 5.	 Now analyze the model in Figure 7.1 but this time impose an equality con-
straint on the two direct effects for the paths listed next:

		  School Support → Teacher Burnout

		  Coercive Control → Teacher Burnout

		  What are the values of the unstandardized direct effects? the standardized 
direct effects?

	 6.	 A researcher submits a covariance matrix as the input data for the analysis of 
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a model with a corrected normal theory method. The program ends with an 
error message. Why?

	 7.	 Use an SEM computer tool to fit the nonrecursive model in Figure 7.2. to the 
data summarized in Table 7.6. Was it necessary for you to specify start val-
ues?

	 8.	 Interpret these results: The observed correlation between a pair of endogenous 
variables is .41, and the estimated disturbance correlation is .38. 
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APPENDIX 7.A

Start Value Suggestions for Structural Models

These recommendations concern structural models, whether those models are path models or 
part of a structural regression model. First, think about the expected direction and magnitude of 
standardized direct effects. For example, in some research areas, an absolute standardized direct 
effect < .10 may be considered a “smaller” effect; values around .30 a “typical” or “medium” effect; 
and values > .50 a “larger” effect. If the numerical values just stated do not match the qualitative 
interpretations for “smaller,” “typical,” or “larger” effects, then substitute the appropriate values 
(e.g., Bollen, 1989, pp. 137–138). A meta-analytic study is a good way to gauge the magnitude 
of “typical” versus “smaller” or “larger” effect sizes in a particular research area. Suppose that a 
researcher believes that the direct effect of X on Y is positive and of standardized magnitude, .30. 
Thus, a reasonable start value for the unstandardized coefficient for the path X → Y would be .30 
(SDY /SDX).

Start values for disturbance variances can be calculated in a similar way, but now think about 
standardized effect size in terms of the proportion of explained variance (i.e., R2). For example, 
in some research areas a proportion of explained variance < .01 may indicate a “smaller” effect; 
values of about .10 a “typical” or “medium” effect; and values > .30 a “larger” effect. Again, the 
numerical values just stated can be adjusted up or down for a particular research area. Suppose that 
a researcher believes that the magnitude of the predictive power of all variables with direct effects 
on Y (including X) is “typical.” This corresponds to a proportion of explained variance of about 
.10 and a proportion of unexplained variance to 1 – .10, or .90. Thus, a reasonable start value for 
the disturbance variance would be .90 (

2
Ys ).
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APPENDIX 7.B

Effect Decomposition in Nonrecursive Models  
and the Equilibrium Assumption

The tracing rule does not apply to nonrecursive structural models. This is because variables in 
feedback loops have indirect effects—and thus total effects—on themselves, which is apparent 
in effect decompositions calculated by SEM computer programs for nonrecursive models. Con-
sider the reciprocal relation Y1  Y2. Suppose that the standardized direct effect of Y1 on Y2 is 
.40 and that the effect in the other direction is .20. An indirect effect of Y1 on itself would be the 
sequence

	 Y1 → Y2 → Y1

which is estimated as .40 × .20, or .08. There are additional indirect effects of Y1 on itself through 
Y2, however, because cycles of mutual influence in feedback loops are theoretically infinite. The 
indirect effect

	 Y1 → Y2 → Y1 → Y2 → Y1

is one of these, and its estimate is .40 × .20 × .40 × .20, or .0064. Mathematically, these terms head 
fairly quickly to zero, but the total effect of Y1 on itself is an estimate of all possible cycles through 
Y2. Indirect and total effects of Y2 on itself are similarly derived.

Calculation of indirect and total effects among variables in a feedback loop as just described 
assumes equilibrium (Chapter 5). It is important to realize, however, that there is generally no 
statistical way to directly evaluate whether the equilibrium assumption is tenable when the data 
are cross-sectional; that is, it must be argued substantively. Kaplan, Harik, and Hotchkiss (2001) 
note that rarely is this assumption explicitly acknowledged in the literature on applications of SEM 
where feedback effects are estimated with cross-sectional data. This is unfortunate because the 
results of a computer simulation study by Kaplan et al. (2001) indicate that violation of the equi-
librium assumption can lead to severely biased estimates. They also found that the stability index 
did not accurately measure the degree of bias due to lack of equilibrium. This index is printed in 
the output of some SEM computer programs when a nonrecursive model is analyzed. It is based on 
certain mathematical properties of the matrix of coefficients for direct effects among all the endog-
enous variables in a structural model, not just those involved in feedback loops. These properties 
concern whether estimates of the direct effects would get infinitely larger over time. If so, the sys-
tem is said to “explode” because it may never reach equilibrium, given the observed direct effects 
among the endogenous variables. The mathematics of the stability index are complex (e.g., Kaplan 
et al., 2001, pp. 317–322). A standard interpretation of this index is that values less than 1.0 are 
taken as positive evidence for equilibrium but values greater than 1.0 suggest the lack of equilib-
rium. However, this interpretation is not generally supported by Kaplan and colleagues’ computer 
simulation results, which emphasize the need to evaluate equilibrium on rational grounds.
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APPENDIX 7.C

Corrected Proportions of Explained Variance  
for Nonrecursive Models

Several authors have noted that 2
smcR  calculated as one minus the ratio of the disturbance variance 

over the total variance may be inappropriate for endogenous variables involved in feedback loops. 
This is because the disturbances of such variables may be correlated with one of their presumed 
causes, which violates the least squares requirement that the residuals (disturbances) are uncor-
related with all predictors (causal variables). Some corrected R2 statistics for nonrecursive models 
are described next:

1.  The Bentler–Raykov corrected R2 (Bentler & Raykov, 2000) is based on a respecifica-
tion that repartitions the variance of endogenous variables controlling for correlations between 
disturbances and causal variables. This statistic is automatically printed by EQS for nonrecursive 
models.

2.  The LISREL program prints a reduced-form R2 (Jöreskog, 2000) for each endogenous 
variable in a structural model. In reduced form, the endogenous variables are regressed on the 
exogenous variables only. This regression also has the consequence that all direct effects of distur-
bances on their respective endogenous variables are removed or blocked, which also removes any 
contribution to all other endogenous variables (Hayduk, 2006). For recursive models, the value of 
the reduced-form R2 can be substantially less than that 2

smcR  for the same variable.
3.  Hayduk (2006) describes the blocked-error-R2 for variables in feedback loops or with 

correlated errors. It is calculating by blocking the influence of the disturbance of just the variable 
in question (the focal endogenous variable). An advantage of this statistic is that it equals the value 
of 2

smcR  for each endogenous variable in a recursive model. The blocked-error-R2 is not yet auto-
matically printed by SEM computer programs, but Hayduk (2006) describes a method for doing 
so using any program that reports the model-implied covariance matrix when all parameters are 
fixed to equal user-specified values.

Depending on the model and data, the corrected R2s just described can be either smaller or 
larger than that of 2

smcR  for endogenous variables in feedback loops. For example, reported next are 
values of 2

smcR , the Bentler–Raykov R2, and the reduced-form R2 for the variables mother education 
and maternity age in Figure 7.2:

Endogenous variable 2
smcR BR R2 RF R2

Mother Education .161 .162 .055
Maternity Age .097 .100 .137

Note. BR, Bentler–Raykov; RF, reduced form.
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The values of 2
smcR  and the Bentler–Raykov R2 are similar and indicate proportions of explained 

variance of about .16 and .10 for, respectively, mother education and maternity age. However, 
proportions of explained variance estimated by the reduced-form R2 are somewhat different. Spe-
cifically, they are about .06 and .14, respectively, for the same two endogenous variables. Both sets 
of results just described are equally correct because they represent somewhat methods to cor-
rect for model-implied correlations between disturbances and causal variables. In written reports, 
always indicate the particular R2 statistic used to estimate the proportions of explained variance for 
endogenous variables in nonrecursive models.
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8

Hypothesis Testing

Outlined in this chapter are methods and strategies for (1) evaluating whether a struc-
tural equation model is consistent with the sample data and (2) hypothesis-testing strate-
gies in SEM. Two related topics are (3) statistical power analysis and (4) consideration 
of equivalent models or near-equivalent models that fit the same data just as well as 
the researcher’s preferred model or nearly so. There is an emerging consensus—one 
expressed in a recent special issue on SEM in the journal Personality and Individual 
Differences (Vernon & Eysenck, 2007)—that standard practice about model fit evalu-
ation has been lax. Accordingly, next I describe an even more rigorous approach to 
model testing compared with the one presented in the previous edition of this book. 
This modified approach includes the reporting of diagnostic information about specific 
sources of model misfit. Because the issues discussed here generalize to most SEM 
analyses, they warrant careful study.

Eyes on the Prize

Newcomers to SEM sometimes mistakenly believe that “success” means that, at the end 
of the analysis, the researcher will have a model that fits the data. However, this outcome 
by itself is not very impressive. This is because any model, even one that is grossly mis-
specified, can be made to fit the data simply by adding free parameters (i.e., reduce dfM). 
If all possible free parameters are estimated (dfM = 0), fit will likely be perfect, but such 
a model would have little scientific value.

Hayduk, Cummings, Boadu, Pazderka-Robinson, and Boulianne (2007) remind us 
that the real goal is to test a theory by specifying a model that represents predictions of 
that theory among plausible constructs measured with the appropriate indicators. If 
such a model does not ultimately fit the data, then this outcome is interesting because 
there is value in reporting models that challenge or debunk theories. But the story is 
hardly over if the researcher happens to retain a model. This is because there could be 
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equivalent or near-equivalent models that explain the same data just as well. Among 
plausible models with equal or near-equal fit, the researcher must explain why any one 
of them may actually be correct. This includes (1) directly acknowledging the exis-
tence of equivalent or near-equivalent models and (2) describing what might be done 
in future research to differentiate between any serious competing models. So success in 
SEM is determined by whether the analysis dealt with substantive theoretical issues regard-
less of whether a model is retained. In contrast, whether or not a scientifically meaningless 
model fits the data is irrelevant (Millsap, 2007).

State of Practice, State of Mind

For at least 30 years the literature has carried an ongoing discussion about the best ways 
to test hypotheses and assess model fit. This is also an active research area, especially 
concerning computer simulation (Monte Carlo) studies. Discussion and research about 
this topic are likely to continue because there is no single, black-and-white statistical 
framework within which we can clearly distinguish correct from incorrect hypotheses 
in SEM. Nor is there ever likely to be such a thing. Part of the problem is that behavioral 
scientists typically study samples, not whole populations, so the problem of sampling 
error looms over analyses conducted with sample data. (This is not unique to SEM.) 
Another problem is the philosophical question of whether correct models really exist. 
The recognition of this possibility is based on the view that basically all statistical mod-
els are wrong to some degree; that is, they are imperfect reflections of a complex reality. 
Specifically, a statistical model is an approximation tool that helps researchers to struc-
ture their thinking (i.e., generate good ideas) in order to make sense of a phenomenon 
of interest (Humphreys, 2003). If the approximation is too coarse, then the model will 
be rejected. Otherwise, the failure to reject a model must not provide unjustified enthu-
siasm over the implied accuracy of that model; that is, a retained model is not proved 
(Chapter 1). MacCallum and Austin (2000) put it this way:

With respect to model fit, researchers do not seem adequately sensitive to the fundamental 
reality that there is no true model . . . , that all models are wrong to some degree, even in 
the population, and that the best one can hope for is to identify a parsimonious, substan-
tively meaningful model that fits observed data adequately well. At the same time, one 
must recognize that there may well be other models that fit the data to approximately the 
same degree. Given this perspective, it is clear that a finding of good fit does not imply that 
a model is correct or true, but only plausible. These facts must temper conclusions drawn 
about good-fitting models. (p. 218)

A related complication is that there is no statistical “gold standard” in SEM that 
automatically and objectively leads to the decision about whether to reject or retain a 
particular model.

Researchers typically consult various statistical measures of model–data corre-
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spondence in the analysis, but, as explained in the next section, no set of fit statistics is 
definitive. This means that fit statistics in SEM do not generally provide a simple yes or 
no answer to the question, should this model be retained? Various guidelines about how 
to interpret various fit statistics as providing something like a yes-or-no answer have 
been developed over the years, but these rules of thumb are just that. The fact that some 
of these interpretive guidelines probably do not apply to the whole range of structural 
equation models actually analyzed by researchers is becoming ever more clear. It is also 
true that we in the SEM community have collectively relied too much on unsubstanti-
ated principles about what fit statistics say about our models. However, there is no dis-
guising the fact that decisions about the viability of hypotheses and models in SEM are 
ultimately a matter a judgment. This judgment should have a solid basis in theory (i.e., 
think like a researcher) and a correct appreciation of the strengths and limitations of fit 
statistics. There is also no need to apologize about the role of human judgment in SEM 
or science in general. As Kirk (1996) and others note, a scientific decision is ultimately a 
qualitative judgment that is based on the researcher’s domain knowledge, but it will also 
reflect the researcher’s personal values and societal concerns. This is not “unscientific” 
because the evaluation of all findings in science involves some degree of subjectivity. It is 
better to be open about this fact, however, than to base such decisions solely on statistics 
that seem to offer absolute objectivity, but do no such thing. As aptly put by Huberty 
and Morris (1988, p. 573), “As in all statistical inference, subjective judgment cannot be 
avoided. Neither can reasonableness!”

Described in this chapter is what I believe is a rigorous approach to hypothesis test-
ing that addresses problems seen in too many published reports of SEM analyses. Not all 
experts in SEM may agree with each and every specific detail of this approach, but most 
experts would likely concur that authors of SEM studies need to give their readers more 
information about model specification and its correspondence with the data. Specifi-
cally, I want you to be hardheaded in the way you test hypotheses by being your model’s 
toughest critic and by holding it to higher standards than have been applied in the past. 
But I do not want you to be bullheaded and blindly follow the method described here as 
though it were the path to truth in SEM. Instead, you should use your good judgment 
about what makes the most sense in your research area at every step of the process at the 
same time you follow a rigorous method of hypothesis testing. To paraphrase Millsap 
(2007), this is SEM made difficult, not easy. The hard part is thinking for yourself in a 
lucid, disciplined way instead of hoping that fit statistics can somehow make decisions 
for you.

A Healthy Perspective on Fit Statistics

There are dozens of fit statistics described in the SEM literature, and new ones are being 
developed all the time. Evaluation of the statistical properties of fit statistics in com-
puter simulation studies is also an active research topic; thus, the state of knowledge is 
continually changing. It is also true that SEM computer programs usually print in their 
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output the values of many more fit statistics than are typically reported for the analysis, 
which presents a few problems. One problem is that different fit statistics are reported 
in different articles, and another is that different reviewers of the same manuscript may 
request statistics that they know or prefer (Maruyama, 1998). It can therefore be diffi-
cult for a researcher to decide on which particular statistics and which values to report. 
There is also the possibility for selective reporting of values of fit statistics. For example, 
a researcher keen to demonstrate acceptable model fit may report only those fit statistics 
with favorable values. A related problem is “fit statistic tunnel vision,” a disorder appar-
ent among practitioners of SEM who become so preoccupied with overall model fit that 
other crucial information, such as whether the parameter estimates actually make sense, 
is overlooked. Fortunately, there is a cure, and it involves close inspection of the whole 
computer output (Chapter 7), not just the section on fit statistics.

A more fundamental issue is the ongoing debate in the field about the merits of the 
two main classes of fit statistics described in the next section: model test statistics and 
approximate fit indexes. To anticipate some of this debate now, some methodologists 
argue strongly against what has become a routine—and bad—practice for researchers to 
basically ignore model test statistics and justify retention of their preferred model based 
on approximate fit indexes. Others argue that there is a role for reasoned use of approxi-
mate fit indexes in SEM, but not at the expense of what test statistics say about model 
fit. I will try to convince you that (1) there is real value in the criticisms of those who 
argue against the uncritical use of approximate fit indexes, and (2) we as practitioners 
of SEM need to “clean up our act” by taking a more skeptical, discerning approach to 
model testing. That is, we should walk disciplined model testing as we talk it (practice 
the rigor that we as scientists preach).

The main benefit of hypothesis testing in SEM is to place a reasonable limit on 
the extent of model–data discrepancy that can be attributed to mere sampling error. 
Specifically, if the degree of this discrepancy is less than that expected by chance, there 
is initial support for the model. This support may be later canceled by results of more 
specific diagnostic assessments, however, and no testing procedure ever “proves” mod-
els in SEM (Chapter 1). Discrepancies between model and data that clearly surpass the 
limits of chance require diagnostic investigation of model features that might need to be 
respecified in order to make the model consistent with the evidence.

Before any individual fit statistic is described, it is useful to keep in mind the fol-
lowing limitations of basically all fit statistics in SEM:

1.	 Values of fit statistics indicate only the average or overall fit of a model. That is, 
fit statistics collapse many discrepancies into a single measure (Steiger, 2007). It is thus 
possible that some parts of the model may poorly fit the data even if the value of a fit 
statistic seems favorable. In this case, the model may be inadequate despite the values of 
its fit statistics. This is why I will recommend later that researchers report more specific 
diagnostic information about model fit of the type that cannot be directly indicated by 
fit statistics alone. Tomarken and Waller (2003) discuss potential problems with models 
that seem to fit the data well based on values of fit statistics.
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2.	 Because a single statistic reflects only a particular aspect of fit, a favorable value 
of that statistic does not by itself indicate acceptable fit. That is, there is no such thing as 
a magical, single-number summary that says everything worth knowing about model fit.

3.	 Unfortunately, there is little direct relation between values of fit statistics and 
the degree or type of misspecification (Millsap, 2007). This means that researchers can 
glean relatively little about just where and by how much the model departs from the data 
from inspecting values of fit statistics. For example, fit statistics cannot tell whether you 
have the correct number of factors (3, 4, etc.) in a measurement model. Other kinds of 
diagnostic information, such as covariance residuals and correlation residuals, speak 
more directly to this issue.

4.	 Values of fit statistics that suggest adequate fit do not also indicate that the pre-
dictive power of the model is also high as measured by statistics for individual endog-
enous variables such as 2

smcR . In fact, overall model fit and 2
smcR  for individual outcomes 

are relatively independent characteristics. For example, disturbances in structural mod-
els with perfect fit can still be large (i.e., 2

smcR s are low), which means that the model 
accurately reflects the relative lack of predictive validity.

5.	 Fit statistics do not indicate whether the results are theoretically meaningful. 
For instance, the sign of some path coefficients may be unexpectedly in the opposite 
direction (e.g., Figure 7.1). Even if values of fit statistics seem favorable, results so anom-
alous require explanation.

Types of Fit Statistics and “Golden Rules”

Described next are the two broad categories of fit statistics and the status of interpreta-
tive guidelines associated with each. Each category actually represents a different mode 
or contrasting way of considering model fit.

Model Test Statistics

These are the original fit statistics in SEM. A model test statistic is a test of whether 
the covariance matrix implied by the researcher’s model is close enough to the sample 
covariance matrix that the differences might reasonably be considered as being due to 
sampling error. If not, then (1) the data covariances contain information that speak 
against the model, and (2) this outcome calls for the researcher to explain model-data 
discrepancies that exceed those expected by chance.

Most model test statistics are generally scaled as “badness-of-fit” statistics because 
the higher their values, the worse the model’s correspondence with the data. This 
means that a statistically significant result (e.g., p < .05) indicates problematic model–
data correspondence. That is, it is the failure to reject the null hypothesis (e.g., p ≥ .05) 
that the model-implied covariance matrix is identical to the population covariance 
matrix that generated the sample covariance matrix that supports the researcher’s 
model. This logic is “backward” from the usual reject–support context for statisti-
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cal tests where it is the rejection of the null hypothesis that supports the researcher’s 
theory. But it is perfectly consistent with an accept–support context where the null 
hypothesis represents the researcher’s beliefs, or in this case where the model is con-
sistent with the data matrix.

Steiger (2007) reminds us that accept–support tests are logically weak because lack 
of evidence to disprove an assertion (the null hypothesis) does not prove that the asser-
tion is true. Low statistical power can lead to failure to reject the null hypothesis, which 
for an accept–support test would favor the researcher’s model. Specifically, low power 
for accept–support tests means that if the researcher’s model is false, then the probabil-
ity of detecting this specification error is low. This explains the need to be especially 
concerned about the statistical power of accept–support tests in SEM. In contrast, low 
power works against the researcher’s hypotheses in more conventional reject–support 
tests. In this case, low power means that if the researcher’s hypotheses are correct, then 
the probability of detecting this outcome is low.

Model test statistics in SEM are usually evaluated at the conventional levels of sta-
tistical significance (α), either .05 or .01. Recall that there is nothing “magical” about 
either α = .05 or α = .01. These levels are actually just rules of thumb that some of us 
nevertheless treat as “golden rules” that somehow hold across all research areas. But just 
because we treat some rather arbitrary cutoff point or threshold value, such as p < .05 
for test statistics, does not somehow turn a rule of thumb into a universal truth (Chapter 
2). It is rare for researchers to specify α levels higher than .05. The main reason is edi-
torial policy: Manuscripts may be rejected for publication if α > .05. This policy would 
make more sense if the context for testing model fit were always reject–support where a 
Type I error is akin to a false positive because the evidence is incorrectly taken as sup-
porting the researcher’s hypotheses.

As noted by Steiger and Fouladi (1997), the value of α should be as low as pos-
sible in reject–support testing from the perspective of journal editors and reviewers, 
who may wish to guard against false claims. In accept–support testing, however, they 
should worry less about Type I error and more about Type II error because false claims 
in this context arise from not rejecting the null hypothesis. Insisting on low values of α 
in this case may facilitate publication of erroneous claims. Hayduk (1996) reminds us 
that is perfectly legitimate to specify a level of α higher than the conventional value of 
.05 when evaluating model test statistics in SEM. Higher levels of α in accept–support 
testing make it even more difficult to retain the null hypothesis, which works against 
the researcher’s model. Whatever level of α is selected, it places a limit on what can be 
dismissed as expected random variation and what should be interpreted as evidence 
against the model. The outcome of the test is then the binary decision (yes or no) about 
whether or not to reject the null hypothesis that the researcher’s model is consistent 
with the data within the bounds of chance. However, the yes-or-no decision just described 
does not by itself determine whether to reject the model or retain it. Other information about 
model–data correspondence must be considered, but a statistically significant model 
test statistic does provide preliminary evidence against the model. In this sense, a model 
test statistic is analogous to a smoke detector. When the alarm sounds, there may or may 
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not be a fire (serious model–data discrepancy), but it is prudent to treat the alarm seri-
ously (conduct more detailed diagnostic evaluation of fit).

Probabilities (p values) for test statistics are typically calculated assuming certain 
distributional characteristics of the data, such as multivariate normality in default maxi-
mum likelihood (ML) estimation. But if distributional assumptions are not tenable, then 
p values printed by the computer may be incorrect. If so, then p values may be too high 
or low, and small differences in p can make a big difference in hypothesis testing, such 
as p = .03 versus p = .07 when α = .05. The p values for test statistics are also estimated 
in sampling distributions that assume random sampling from known populations. Ran-
dom sampling is a crucial part of the population inference model, which concerns the 
validity of sample results. But most samples in SEM are not randomly selected. Instead, 
they are often samples of convenience, or ad hoc samples that happen to be available. A 
data set collected at a local hospital where cases were not selected using a chance-based 
method is an example of an ad hoc sample. Whether p values from test statistics apply 
to ad hoc samples is unknown. Lunneborg (2001) described this issue as a mismatch 
between statistical analysis, which assumes random sampling, and design, which rarely 
includes true random sampling in SEM studies.

Approximate Fit Indexes

A different mode of evaluating model fit is represented by approximate fit indexes. In 
contrast to model test statistics, (1) approximate fit indexes do not distinguish between 
what may be sampling error and what may be real covariance evidence against the model. 
(2) The outcome of an approximate fit index is not the dichotomous decision to reject 
or retain a null hypothesis. Instead, these indexes are intended as continuous measures 
of model–data correspondence. However, there is no direct relation between the degree 
of this correspondence and substantive problems or specification errors in the model. 
(Remember, there is no magic in fit statistics of any kind.) Some approximate fit indexes 
are scaled as badness-of-fit statistics, but most are scaled instead as goodness-of-fit sta-
tistics because the higher their values, the closer the model–data correspondence. Val-
ues of some goodness-of-fit indexes are more or less standardized so that their range is 
0–1.0 where a value of 1.0 indicates the best fit.

Four categories of approximate fit indexes are described next. These categories are 
not mutually exclusive because some indexes can be classified under more than one 
category:

1.	 Absolute fit indexes are generally interpreted as proportions of the covariances 
in the sample data matrix explained by the model. For example, if the value of an abso-
lute fit index is .85, then we can say that the model explains 85% of the observed covari-
ances. These indexes are analogous to R2 statistics except that they concern model–data 
matrix correspondence, not explanatory power for individual outcomes. Explaining a 
high proportion of the sample covariances, such as .95, does not by itself indicate the 
model is adequate. This is because any incorrect model can be made to explain the data 
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by adding parameters to the point where no degrees of freedom remain (dfM = 0). That 
is, most just-identified models will perfectly explain the observed covariances.

2.	 Incremental fit indexes—also known as comparative fit indexes—indicate the 
relative improvement in fit of the researcher’s model compared with a statistical baseline 
model. The baseline model is typically the independence (null) model, which assumes 
zero population covariances among the observed variables. When means are not ana-
lyzed, the only parameters of the independence model are the population variances. But 
the assumption of zero covariances is implausible in most studies. For this reason, Miles 
and Shevlin (2007) noted that incremental fit indexes based on the independence model 
“effectively say, `How well is my model doing, compared with the worst model that there 
is?’ ” (p. 870). Understand that incremental fit indexes do not measure model adequacy 
in any absolute sense. They indicate only the relative improvement in fit over a statistical 
model based on a “strawman” argument (zero covariances) that is likely to be false.

3.	 A parsimony-adjusted index includes in its formula a built-in correction (“pen-
alty”) for model complexity. This correction is related to the value of dfM. (Recall that 
more parsimonious models have higher degrees of freedom.) Given two models with 
similar fit to the same data, a parsimony-adjusted index would generally favor the sim-
pler model. That simpler model should have adequate fit to the data. Otherwise, it makes 
little sense to prefer one of two failing models on the basis of parsimony, and there is 
nothing wrong with claiming that both models are problematic.

4.	 There are also predictive fit indexes that estimate model fit in hypothetical rep-
lication samples of the same size and randomly drawn from the same population as the 
original sample. Thus, these indexes may be seen as population based rather than sam-
ple based. There is a specific context for predictive fit indexes, but most applications of 
SEM do not fall under it. Predictive fit indexes may also correct for model parsimony.

There is a close connection between model test statistics and many approximate fit 
indexes: formulas of the latter include the value of the former. There is a similar rela-
tion in more standard analyses between test statistics and measures of effect size: many 
effect sizes can be expressed as functions of test statistics, and vice versa (Kline, 2004). 
This relation between model test statistics and approximate fit indexes means that both 
are based on the same distributional assumptions. If these assumptions are not tenable, 
however, then values of both the approximate fit index and the corresponding test sta-
tistic (and its p value) may be inaccurate.

A natural question about continuous approximate fit indexes concerns the range 
of values that indicates “acceptable” model fit. Unfortunately, there is no simple answer 
to this question because there is no direct correspondence between continuous val-
ues of approximate fit indexes and the seriousness or type of specification error. Most 
interpretive guidelines in use until recently originate from computer simulation stud-
ies conducted in the 1980s and 1990s about the behavior of approximate fit indexes 
under varying data and model conditions. Gerbing and Anderson (1993) review many of 
these early studies, and more recent examples include Hu and Bentler (1998) and Marsh, 
Balla, and Hau (1996). Based on these findings as well as their own simulation studies, 
Hu and Bentler (1999) proposed a set of thresholds for approximate fit indexes that are 
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the most widely known and cited in the SEM literature. Whether these thresholds are 
really accurate—that is, should they be trusted?—is a critical question (e.g., Vernon & 
Eysenck, 2007).

Hu and Bentler (1999) never intended their rules of thumb for approximate fit 
indexes to be treated as anything other than just that. One reason is that it is impos-
sible in Monte Carlo studies to evaluate the whole range of models and data analyzed in 
real studies. Another is that seriously misspecified models are not typically studied in 
computer simulations. Instead, authors of such studies tend to impose relatively minor 
specification errors on known models, such as a three-factor measurement model but 
where the factor variances are misspecified in generated samples. The case of a more 
serious specification error, such as when sample models have the wrong number of fac-
tors or incorrect factor–indicator correspondence, may not even be studied at all.

Despite Hu and Bentler’s (1999) cautions that their suggested thresholds for approx-
imate fit indexes should not be overgeneralized, too many researchers treat these cutoffs 
as “golden rules.” For example, it has become common practice for researchers to claim 
that a model has acceptable fit based on the observation that the values of a select few 
approximate fit indexes fall on the “good news” (for the model) sides of their respective 
thresholds. This practice is especially problematic when researchers ignore significant 
model test statistics and decide to retain the model based on values of approximate fit 
indexes without looking at other statistical information about model fit. There are two 
problems with this practice (Barrett, 2007; Hayduk et al., 2007):

1.	 Approximate fit indexes ignore (disregard) beyond-chance deviations between 
the model and the data. There is some arbitrariness concerning levels of statistical sig-
nificance for model test statistics (e.g., α = .05 is not a golden rule), but outcomes of 
test statistics at least provide a relatively clear traditional demarcation between whether 
discrepancies with the covariance data are likely mere sampling fluctuations or whether 
the outcome should be taken as greater-than-chance evidence against the model. Rely-
ing on thresholds for approximate fit indexes has the consequence that they are treated 
as though they generate two qualitative outcomes, “acceptable” versus “unacceptable” 
fit (Markland, 2007). This practice is flawed because approximate fit indexes do not 
measure sampling error, and values of these indexes for the same model vary across 
samples.

2.	 Relying on thresholds for approximate fit indexes to determine model adequacy 
would not be justified even if such thresholds were universal truths. The reason was 
stated earlier: models with apparently “acceptable” overall fit can still poorly explain 
the observed associations between certain pairs of variables. This means that diagnostic 
assessment about fit is needed regardless of the values of approximate fit indexes and espe-
cially when test statistics indicate problems with the model.

The results of some recent computer simulation studies cast even more doubt on the 
generality of thresholds for approximate fit indexes. For example, Marsh, Hau, and Wen 
(2004) found that the accuracy of Hu and Bentler’s (1999) thresholds depends on the 
particular misspecified model studied in computer simulations. This was especially true 
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for models with approximate fit index values very close to their suggested thresholds. 
Yuan (2005) studied properties of approximate fit indexes based on model test statistics 
when distributional assumptions were violated. Under these less than ideal but probably 
more realistic conditions, (1) expected values of approximate fit indexes had little rela-
tion to their threshold values; and (2) shapes of their distributions varied as functions 
of sample size, model size, and the degree of misspecification. Yuan (2005) also noted 
that we generally do not know the exact distributions of approximate fit indexes even 
for correctly specified models. Beauducel and Wittman (2005) studied the behavior of 
approximate fit indexes for a relatively small range of measurement models of a kind 
fairly typical in personality research. They found that the accuracy of thresholds was 
affected by the relative sizes of factor loadings and whether unidimensional or multidi-
mensional measurement was specified. There were also relatively low intercorrelations 
among different approximate fit indexes calculated for the same model and data. That is, 
different indexes did not generally agree with each other.

Given results of the kind just summarized, Barrett (2007) suggested an outright ban 
on approximate fit indexes. Hayduk et al. (2007) argue that thresholds for such indexes 
are so untrustworthy and of such dubious utility that it is only model test statistics (and 
their degrees of freedom and p values) that should be reported and interpreted. These 
arguments have theoretical and empirical bases and cannot be blithely dismissed. Oth-
ers argue that there is a place for such indexes in model testing (e.g., Mulaik, 2007, 2009), 
but there is general agreement that treating thresholds for approximate fit indexes as 
“golden rules” is no longer up to standard. Barrett (2007) also suggested that research-
ers pay more attention to the accuracy of predictions generated by the model as a crucial 
way of assessing its scientific value. True prediction studies in SEM are rare. A kind of 
proxy prediction analysis concerns the reporting of R2-type statistics or effect decom-
positions for outcome variables. For pure measurement models of the kind estimated 
and analyzed in CFA, however, there are no external criteria predicted by the model, so 
reporting R2s for the indicators is about the only way to address this issue.

My own view is that (1) model test statistics provide invaluable information about 
model–data discrepancies taking sampling error into account especially when the sam-
ple size is not large and (2) there are no grounds for ignoring evidence against the model 
as indicated by a statistically significant result. This is because model test statistics can 
provide the first detectable sign of possible severe specification (Hayduk et al., 2007), and 
approximate fit indexes can do no such thing. If the model fails a statistical test, then 
this result should be taken seriously. This means that the researcher should report more 
specific diagnostic information about the apparent sources of model–data discrepancy. 
In a very large sample, the magnitudes of these discrepancies could be slight but never-
theless large enough to trigger a statistically significant test result. If so, then (1) failing 
the statistical test may have been due more to the very large sample size than to absolute 
magnitudes of model–data discrepancies, and (2) it may be possible to retain the model 
despite a significant model test statistic. Otherwise, the model should be respecified in 
a theoretically meaningful way. If no such respecifications exist, then no model should 
be retained.

I also argue that diagnostic information about fit is needed even if a model “passes” 
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a significance test, especially when the sample size is not very large. In this case, the 
power of the test may be so low that it is unlikely to detect appreciable differences 
between observed and predicted covariances. Finally, there is a certain set of approxi-
mate fit indexes the values of which I believe can be helpful for reviewers or other read-
ers of an SEM study to know, if such readers can refrain from blindly applying threshold 
values to these indexes. As the author of the written summary of the analysis, you can 
help your readers do so by not making the same mistake yourself. At the end of the 
analysis, readers (and the primary researcher, too) should look to see whether model–
data discrepancies are slight based on diagnostic information and be convinced that 
model specification is theoretically sound before tentatively concluding that model fit is 
adequate. But never forget that “adequate fit” (e.g., small residuals) does not mean “cor-
rectly specified” about models analyzed in SEM!

Model Chi-Square

The most basic model test statistic is the product (N – 1) FML where FML is the value of 
the statistical criterion (fit function) minimized in ML estimation and (N – 1) is one less 
than the sample size. In large samples and assuming multivariate normality, the product 
(N – 1) FML follows a central chi-square distribution with degrees of freedom equal to 
that of the researcher’s model, or dfM. This statistic is referred to as the model chi-square,  

2
Mχ ; it is also known as the likelihood ratio chi-square or generalized likelihood ratio. 

The value of 2
Mχ  for a just-identified model generally equals zero, but technically it is not 

defined for models with no degrees of freedom. If 2
Mχ  = 0, the model perfectly fits the data 

(each observed covariance equals its counterpart implied by the model). If the fit of an 
overidentified model that is not correctly specified becomes increasingly worse, then the 
value of 2

Mχ  increases, so 2
Mχ  is scaled as a badness-of-fit statistic.

We continue to assume large samples and multivariate normality. For an overiden-
tified model, 2

Mχ  tests the exact-fit hypothesis, or the prediction that there are no dis-
crepancies between the population covariances and those predicted by the model. For a 
correct model analyzed over random samples, (1) the expected value of 2

Mχ  equals that 
of its degrees of freedom, dfM; and (2) 2

Mχ  would not be statistically significant in 19 out 
20 samples regardless of the number of cases (N) when α = .05. That is, 2

Mχ  estimates 
sampling error only for correct models. For such models, 2

Mχ  should be as likely to have 
a p value in the .95 region as in the .05 region. This is also true for the .75 region and the 
.25 region, and hence striving for properly specified models is striving for models whose 
p values should ideally be considerably > .05 (Hayduk, 1996). Suppose that 2

Mχ  = 6.50 
for a model where dfM = 5. The precise level of statistical significance associated with 
this statistic is p = .261.1 Given this result, the researcher would not reject the exact-fit 
hypothesis at the .05 level.

1This result was obtained from a central chi-square probability calculator available at http://statpages.org/
pdfs.html
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Another way of looking at 2
Mχ  is that it tests the difference in fit between a given 

overidentified model and whatever unspecified model would imply a covariance matrix 
that perfectly corresponds to the data covariance matrix. Suppose for an overidentified 
model that 2

Mχ  > 0 and dfM = 5. Adding five more free parameters to this model would 
make it just-identified—thereby making its covariance implications perfectly match the 
data covariance matrix even if that model were not correctly specified—and reduce both 

2
Mχ  and dfM to zero.

If 2
Mχ  is not statistically significant, then the only thing that can be concluded is 

that the model is consistent with the covariance data, but whether that model is actually 
correct is unknown. The model could be seriously misspecified but one of potentially 
many other equivalent or nearly equivalent models that imply covariance matrices iden-
tical or similar to the observed data (Hayduk et al., 2007). This is why Markland (2007) 
cautioned that “even a model with a non-significant chi square test needs to have a 
serious health warning attached to it” (p. 853). More information about fit is needed, so 
passing the chi-square test is hardly the final word in model testing. This is because 2

Mχ  
tends to miss a single large covariance residual or a pattern of smaller but systematic 
residuals that indicate a problem with the model. It is also blind to whether the signs 
and magnitudes of the parameter estimates make sense (but you are not).

The observed value of 2
Mχ  for some misspecified models—those that do not imply 

covariance matrices that closely match the one in the sample—will exceed the expected 
value by so much that the exact-fit hypothesis is rejected. Suppose that 2

Mχ  = 15.30 for 
a model where dfM = 5. For this result, p = .009, so the exact-fit hypothesis is rejected 
at the .01 level (and at α = .05, too). Thus, the discrepancy between the observed and 
model-implied covariances is statistically significant, so the model fails the chi-square 
test. The next step is to try to diagnose the reason(s) for the failed test. How to do so is 
considered later.

The model chi-square test has some limitations. Some authors argue that the exact-
fit hypothesis may be implausible in many applications of SEM (Miles & Shevlin, 2007; 
Steiger, 2007). This is because perfection is not the usual standard for testing statistical 
models. Instead, we generally expect that a model should closely approximate some 
phenomenon, but not perfectly reproduce it. But the model chi-square test does allow 
for imperfection up to a level within the bounds of sampling error that correspond 
to the level of α selected by the researcher. It is only when model–data discrepan-
cies exceed those expected by chance (i.e., 2

Mχ  > dfM) that 2
Mχ  begins to “penalize” 

the model by approaching statistical significance. The rationale for the exact-fit test 
assumes that there is a correct model in the population. As mentioned earlier, it is not 
clear whether this assumption is always justifiable in statistical modeling. Probabilities 
(p values) associated with 2

Mχ  are estimated by the computer in sampling distributions 
that assume random sampling and specific distributional forms. The fact that most 
samples in SEM are not random was mentioned earlier, and untenable distributional 
assumptions mean that p values could be wrong. It is easy to reduce the value of 2

Mχ  
simply by adding free parameters, which makes models more complex. If parameters 
are added without justification, however, the resulting overparameterized model may 
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have little scientific value. This is actually a misuse of the chi-square test, not an inher-
ent flaw of it. Again, do not forget that “closer to fit” in SEM does not mean “closer to 
truth.”

The observed value of 2
Mχ  can be affected by:

1.	 Multivariate non-normality. Depending on the particular pattern and severity of 
non-normality, the value of 2

Mχ  can be either increased so that model fit appears either 
worse than it really is or decreased so that model fit looks better than it really is (Hayduk 
et al., 2007; Yuan, Bentler, & Zhang, 2005). This is why it is so important to screen your 
data for severe non-normality when using a normal theory method (Chapter 3). You can 
also report a corrected chi-square, such as the Satorra–Bentler statistic that controls for 
non-normality, instead of 2

Mχ  (Chapter 7).
2.	 Correlation size. Bigger correlations among observed variables generally lead 

to higher values of 2
Mχ  for incorrect models. This happens because larger correlations 

allow greater discrepancies between observed and predicted correlations (and covari-
ances, too).

3.	 Unique variance. Analyzing variables with high proportions of unique vari-
ance—which could be due to score unreliability—results in loss of statistical power. 
This property of 2

Mχ  could potentially “reward” the selection of measures with poor 
psychometrics because low power in accept–support tests favors the researcher’s model. 
If there is low power to detect problems, but the model still fails the chi-square test, then 
those problems may be serious. Thus, the researcher should pay especially careful atten-
tion to 2

Mχ  in this case.
4.	 Sample size. For incorrect models that do not imply covariance matrices similar 

to the sample matrix, the value of 2
Mχ  tends to increase along with the sample size. In 

very large samples, such as N = 5,000, it can happen that the chi-square test is failed 
even though differences between observed and predicted covariances are slight. This 
result is less likely for sample sizes that are more typical in SEM, such as N = 200–300. 
In my experience, statistically significant values of 2

Mχ  for models tested in samples 
with only 200–300 cases often signal a problem serious enough to reject the model. In 
very large samples, though, it is possible that rather small model–data discrepancies can 
result in a statistically significant value of 2

Mχ . But you won’t know whether this is true 
without inspecting diagnostic information about model fit.

The results of some recent computer simulation studies (Cheung & Rensvold, 2002; 
Meade, Johnson, & Braddy, 2008) described in Chapter 9 suggest that the chi-square 
test is overly sensitive to sample size when testing whether the same factor structure 
holds across different groups, that is, whether a measurement model is invariant over 
samples. In contrast, the values of some approximate fit indexes were less affected by 
sample size in these studies. Mooijaart and Satorra (2009) remind us that the model 
chi-square test is generally insensitive to the presence of interaction (moderator) effects. 
This is because the theoretical distribution of 2

Mχ  may not be distorted even when there 
is severe interaction effect misspecification. Consequently, they cautioned against con-
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cluding that if a model with linear (main) effects only passes the chi-square test, then 
the underlying model must be truly linear. However, approximate fit indexes based on 

2
Mχ  would be just as insensitive to interaction misspecification. The estimation of inter-

action effects in SEM is described in Chapter 12.
Due to the increasing power of 2

Mχ  to detect model–data discrepancies with increas-
ing sample size, it was once common practice for researchers to (1) ignore a failed model 
chi-square test but then (2) refer to threshold values for approximate fit indexes in order 
to justify retaining the model. Many published models had statistically significant 2

Mχ  
values (e.g., Markland, 2007), but authors tended to pay little attention to this fact. 
This practice is lax and increasingly viewed as unacceptable. One reason was mentioned: 
Thresholds for approximate fit indexes are not golden rules. Another reason is an emerg-
ing consensus that the chi-square test must be taken more seriously. This means that a 
failed test should be treated as an indication of a possible problem, one that must be explicitly 
diagnosed in order to explain just why the model failed.

One way to perform this diagnosis is to report and describe the correlation residu-
als, paying special attention to those with absolute values > .10 (e.g., Table 7.5). Cor-
relation residuals are easier to interpret than covariance residuals, but, unfortunately, 
there is no dependable or trustworthy connection between the size of the residuals and 
the type or degree of model misspecification. For example, the degree of misspecifica-
tion indicated by low-correlation residuals may indeed be slight but yet may be severe. 
One reason is that the values of residuals and other diagnostic statistics described 
later are themselves affected by misspecification. An analogy in medicine would be a 
diagnostic test for some illness that is less accurate in patients who actually have that 
illness. This problem in SEM is a consequence of error propagation when some parts 
of the model are incorrectly specified. But we do not know in advance which parts of 
the model are incorrect, so it can be difficult to understand exactly what the residuals 
are telling us.

Inspecting the pattern of residuals can sometimes be helpful. For example, if the 
residuals between variables in a structural model connected by indirect effects only are 
positive, this means that the model underpredicts their observed associations. In this 
case, the hypothesis of pure mediation may be cast in doubt, and a possible respecifica-
tion is to add direct effects between some of these variables. Another possibility consis-
tent with the same pattern of positive residuals is to specify a disturbance correlation. 
But just which type of effect to add to the model (direct effect vs. disturbance correla-
tion) and the directionalities of direct effects (e.g., Y1 → Y3 vs. Y3 → Y1) are not things 
that the residuals can tell you. Likewise, a pattern of negative residuals suggests that 
the model overpredicts the associations between variables. In this case, respecification 
may involve deleting unnecessary paths between the corresponding variables. Possible 
respecifications in measurement models based on patterns of residuals are considered in 
the next chapter. Just as there is no magic in fit statistics, there is also none in diagnostic 
statistics, at least none that would relieve researchers from the burden of having to think 
long and hard about respecification.
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Sometimes it happens that no theoretically justifiable respecification results in 
a model that generates residuals that are not large and do not indicate an obvious fit 
problem. If so, no model should be retained. I want to emphasize again that this is an 
interesting result, one with just as much scientific merit—if not even more—as retain-
ing a structural equation model. This is because disconfirmatory evidence is necessary 
for science. Often the inability to support a theory points out ways that the theory may 
be incorrect or problems with its operationalization. This kind of result is invaluable 
and just as publication worthy—thesis worthy, too—as the failure to reject (retain) 
a model. Indeed, the latter outcome can be rather boring compared with finding a 
puzzle with no clear solution (at least at present). It is unexpected results that tend to 
motivate the biggest changes in scientific thinking, not the routine or expected. This 
is why there is no “shame” whatsoever in not retaining a model at the end of an SEM 
analysis.

Some special comment is needed for LISREL. Under ML and generalized least 
squares (GLS) estimation (Chapter 7), when the observed (uncorrected) covari-
ance matrix is analyzed, LISREL prints two model chi-squares. One is the product 
(N – 1) FML (i.e., 2

Mχ ), which is labeled minimum fit function chi-square in LISREL out-
put and C1 in program documentation. The other chi-square is labeled normal theory 
weighted least squares (WLS) chi-square in output and C2 in documentation. The lat-
ter equals the product (N – 1) and the value of the fit function from WLS estimation 
assuming multivariate normality.2 If the normality assumption is tenable, then the val-
ues of these two test statistics are usually similar. I recommend reporting C1 instead of 
C2 in order to more closely match results generated by other SEM computer tools for 
the same model and data in “standard” analyses (i.e., ML estimation, continuous and 
normal endogenous variables). By default, LISREL calculates the values of approximate 
fit indexes based on the model chi-square using C2 (i.e., the WLS chi-square), not C1 
(i.e., 2

Mχ ). In syntax, specification of the option “FT” in the “LISREL Output” com-
mand results in the calculation of two sets of approximate fit indexes, one based on 
C2 and another based on C1.

Under ML and GLS estimation and when the covariance matrix is asymptotic (i.e., 
it is estimated in PRELIS), the LISREL program prints two additional chi-squares. The 
third is labeled Satorra–Bentler scaled chi-square in output and C3 in documentation. 
The fourth statistic is labeled chi-square corrected for non-normality in output and C4 in 
documentation. The latter is (N – 1) times the WLS fit function estimated under non-
normality. When analyzing continuous but non-normal endogenous variables, it would 
make sense to report C3 (i.e., the Satorra–Bentler statistic). However, the test statistic 
C4 may be preferred when analyzing models with ordinal endogenous variables with a 
robust WLS method (Chapter 7). In such analyses, specification of the “FT” option in 

2A related test statistic printed by EQS is referred to in program output as the normal theory reweighted least 
squares (RLS) chi-square.
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the “LISREL Output” command instructs the program to print values of approximate fit 
indexes based on C1–C4. See Jöreskog (2004) and Schmukle and Hardt (2005) for more 
information about test statistics and approximate fit indexes printed by LISREL under 
different combinations of estimation methods and data matrices analyzed.

A brief mention of a statistic known as the normed chi-square (NC) is needed 
mainly to discourage you from ever using it. In an attempt to reduce the sensitivity of 
the model chi-square to sample size, some researchers in the past divided this statistic 
by its expected value, or NC = 2

Mχ /dfM, which generally reduced the value of this ratio 
compared with 2

Mχ . There are three problems with NC: (1) 2
Mχ  is sensitive to sample size 

only for incorrect models; (2) dfM has nothing to do with sample size; and (3) there were 
really never any clear-cut guidelines about maximum values of the NC that are “accept-
able” (e.g., NC < 2.0?—3.0?). Because there is little statistical or logical foundation for 
NC, it should have no role in model fit assessment.

Approximate Fit Indexes

Reviewed in this section are a total of four approximate fit indexes that are among the 
most widely reported in the SEM literature. Each describes model fit from a different 
perspective. These indexes are as follows.

1.	 Steiger–Lind root mean square error of approximation (RMSEA; Steiger, 1990), 
a parsimony-corrected index, with its 90% confidence interval.

2.	 Jöreskog–Sörbom Goodness of Fit Index (GFI; Jöreskog & Sörbom, 1982), an 
absolute fit index originally associated with LISREL but now also printed by 
other programs.

3.	 Bentler Comparative Fit Index (CFI; Bentler, 1990), an incremental fit index 
originally associated with EQS but now also printed by other programs.

4.	 Standardized Root Mean Square Residual (SRMR), a statistic related to the cor-
relation residuals.

All these indexes are generally available under default ML estimation. When a different 
method is used, some of these indexes may not be printed by the computer. Check the 
documentation of your SEM computer tool for more information. There are many other 
approximate fit indexes in SEM, so many that they could not all be described here in 
any real detail. Some older indexes have problems, so it would do little good to describe 
them because I could not recommend their use. See Kaplan (2009, chap. 6) or Mulaik 
(2009, chap. 15) for more information about other fit statistics in SEM.

Before characteristics of the four indexes just listed are reviewed, we need to 
address some critical limitations of basically all approximate fit indexes. These limita-
tions explain why I think it is a bad idea to rely solely on thresholds for approximate fit 
indexes when deciding whether or not to respecify a structural equation model:
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1.	 Approximate fit indexes do not demarcate the limit between where expected 
levels of chance deviations between the predicted and sample covariance matrices begin 
and where evidence against the model begins. This is what the model chi-square test 
does.

2.	 Never ignore evidence of a potentially serious specification error indicated by a 
failed chi-square test by emphasizing values of approximate fit indexes that look “favor-
able” for your model. That is, do not hide behind approximate fit indexes when there is 
other evidence of a potential problem.

3.	 Although approximate fit indexes are continuous measures, they are not as pre-
cise as they seem for a few reasons: (a) Their values do not reliably or directly indicate 
the type or degree of model misspecification. For example, there are few (if any) impli-
cations for respecification if the value of a goodness-of-fit index with a range of 0–1.0 
equals, say, .97 versus .91. (b) The distributions of only some approximate fit indexes are 
known under ideal conditions. Whether such conditions hold in real studies is doubtful. 
(c) Suggested thresholds for approximate fit indexes originate from computer simula-
tion studies of a small range of models that were not grossly misspecified. Evidence that 
these thresholds may not generalize to actual studies was summarized earlier.

4.	 A healthy perspective on approximate fit indexes is to view them as provid-
ing qualitative or descriptive information about model fit. The value of this information 
increases when you report values of indexes that as a set assess model fit from different 
perspectives, such as the four indexes described next. The drawback is the potential for 
obfuscation, or the concealment of evidence about poor fit. This is less likely to happen 
if you follow a comprehensive approach to assessing model fit that includes taking the 
model chi-square test seriously and describing patterns of residuals.

Root Mean Square Error of Approximation

The Root Mean Square Error of Approximation (RMSEA) is scaled as a badness-of-fit 
index where a value of zero indicates the best fit. It is also a parsimony-adjusted index 
that does not approximate a central chi-square distribution. Instead, the RMSEA theo-
retically follows a noncentral chi-square distribution where the noncentrality parameter 
allows for discrepancies between model-implied and sample covariances up to the level 
of the expected value of 2

Mχ , or dfM. Specifically, if 2
Mχ  ≤ dfM, then RMSEA = 0, but note 

that this result does not necessarily mean perfect fit (i.e., RMSEA = 0 does not say that 
2
Mχ  = 0). For models where 2

Mχ  > dfM, the value of RMSEA is increasingly positive. The 
formula is

	 RMSEA = 
2
M M

M ( 1)
χ −

−
df

df N
 
	 (8.1)

The model degrees of freedom and one less than the sample size are represented in the 
denominator of Equation 8.1. This means that the value of the RMSEA decreases as 
there are more degrees of freedom (greater parsimony) or a larger sample size, keeping 
all else constant. However, the RMSEA does not necessarily favor models with more 
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degrees of freedom. This is because the effect of the correction for parsimony diminishes 
as the sample size becomes increasingly large (Mulaik, 2009). See Mulaik (pp. 342–345) 
for more information about other parsimony corrections in SEM.

The population parameter estimated by the RMSEA is often designated as ε (epsi-
lon). In computer output, the lower and upper bounds of the 90% confidence interval for 
ε are often printed along with the sample value of the RMSEA, the point estimate of ε. 
As expected, the width of this confidence interval is generally larger in smaller samples, 
which indicates less precision. The bounds of the confidence interval for ε may not 
be symmetrical around the sample value of the RMSEA, and, ideally, the lower bound 
equals zero. Both the lower and upper bounds are estimated assuming noncentral chi-
square distributions. If these distributional assumptions do not hold, then the bounds 
of the confidence interval for ε may be wrong.

Some computer programs, such as LISREL and Mplus, calculate p values for the 
test of the one-sided hypothesis H0: ε0 ≤ .05, or the close-fit hypothesis. This test is an 
accept–support test where failure to reject this null hypothesis favors the researcher’s 
model. The value .05 in the close-fit hypothesis originates from Browne and Cudeck 
(1993), who suggested that RMSEA ≤  .05 may indicate “good fit.” But this threshold is 
a rule of thumb that may not generalize across all studies, especially when distributional 
assumptions are in doubt. When the lower limit of the confidence interval for ε is zero, the 
model chi-square test will not reject the null hypothesis that ε0 = 0 at α = .05. Otherwise, 
a model could fail the more stringent model chi-square test but pass the less demand-
ing close-fit test. Hayduk, Pazderka-Robinson, Cummings, Levers, and Beres (2005) 
describe such models as close-yet-failing models. Such models should be treated as 
any other that fails the chi-square test. That is, passing the close-fit test does not justify 
ignoring a failed exact-fit test.

If the upper bound of the confidence interval for ε exceeds a value that may indicate 
“poor fit,” then the model warrants less confidence. For example, the test of the poor-
fit hypothesis H0: ε0 ≥ .10 is a reject–support test of whether the fit of the researcher’s 
model is just as bad or even worse than that of a model with “poor fit.” The threshold 
of .10 in the poor-fit hypothesis is also from Browne and Cudeck (1993), who suggested 
that RMSEA ≥  .10 may indicate a serious problem. The test of the poor-fit hypothesis 
can serve as a kind of reality check against the test of the close-fit hypothesis. (The 
tougher exact-fit test serves this purpose, too.) Suppose that RMSEA = .045 with the 
90% confidence interval .009–.155. Because the lower bound of this interval (.009) is 
less than .05, the close-fit hypothesis is not rejected. The upper bound of the same con-
fidence interval (.155) exceeds .10, however, so we cannot reject the poor-fit hypothesis. 
These two outcomes are not contradictory. Instead, we would conclude that the point-
estimate RMSEA = .045 is subject to a fair amount of sampling error because it is just as 
consistent with the close-fit hypothesis as it is with the poor-fit hypothesis. This type of 
“mixed” outcome is more likely to happen in smaller samples. A larger sample may be 
required in order to obtain more precise results.

Some limitations of the RMSEA are as follows:
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1.	 Interpretation of the RMSEA and the lower and upper bounds of its confidence 
interval depends on the assumption that this statistic follows noncentral chi-square 
distributions. There is evidence that casts doubt on this assumption. For example, Ols-
son, Foss, and Breivik (2004) found in computer simulation studies that empirical dis-
tributions from smaller models with relatively few variables and relatively small non-
centrality parameters (less specification error) generally followed noncentral chi-square 
distributions. Otherwise, the empirical distributions did not typically follow noncentral 
chi-square distributions, including models with more specification error. These results 
and others (e.g., Yuan, 2005) question the generality of the thresholds for the RMSEA 
mentioned earlier.

2.	 Nevitt and Hancock (2000) evaluated in Monte Carlo studies the performance 
of robust forms of the RMSEA corrected for non-normality, one of which is based on 
the Satorra–Bentler corrected chi-square. Under conditions of data non-normality, 
this robust RMSEA statistic generally outperformed the uncorrected version (Equation 
8.1).

3.	 Breivik and Olsson (2001) found in Monte Carlo studies that the RMSEA tends 
to impose a harsher penalty for complexity on smaller models with relatively few vari-
ables or factors. This is because smaller models may have relatively few degrees of free-
dom, but larger models may have more “room” for higher dfM values. Consequently, the 
RMSEA may favor larger models. In contrast, Breivik and Olsson (2001) found that the 
Goodness-of-Fit Index (GFI), was relatively insensitive to model size.

Goodness-of-Fit Index and Comparative Fit Index

The range of values for this pair of approximate fit indexes is generally 0–1.0 where 1.0 
indicates the best fit. The Jöreskog–Sörbom GFI is an absolute fit index that estimates 
the proportion of covariances in the sample data matrix explained by the model. That is, 
the GFI estimates how much better the researcher’s model fits compared with no model 
at all (Jöreskog, 2004). A general formula is

	 GFI = res

tot

1 − C
C

	 (8.2)

where Cres and Ctot estimate, respectively, the residual and total variability in the sample 
covariance matrix. The numerator in the right side of Equation 8.2 is related to the sum 
of the squared covariance residuals, and the denominator is related to the total sum of 
squares in the data matrix. Specific calculational formulas depend on the estimation 
method (Jöreskog, 2004).

A limitation of the GFI is that its expected values vary with sample size. For exam-
ple, in computer simulation studies of CFA models by Marsh, Balla, and McDonald 
(1988), the mean values of the GFI tend to increase along with the number of cases. 
As mentioned, the GFI may be less affected by model size than the RMSEA. Values of 
the GFI sometimes fall outside of the range 0–1.0. Values > 1.0 can be found with just-
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identified models or with overidentified models where 2
Mχ  is close to zero, and values 

< 0 are most likely in small samples or when fit is very poor.
The Bentler Comparative Fit Index (CFI) is an incremental fit index that measures 

the relative improvement in the fit of the researcher’s model over that of a baseline 
model, typically the independence model. For models where 2

Mχ  ≤ dfM, CFI = 1.0; oth-
erwise, the formula is

	 CFI = 
2
M M
2
B B

1 df
df

χ −−
χ −  

	 (8.3)

where the numerator and the denominator of the expression in the right side of Equation 
8.3 estimate the chi-square noncentrality parameter for, respectively, the researcher’s 
model and the baseline model. Note that CFI = 1.0 means only that 2

Mχ  < dfM, not that 
the model has perfect fit ( 2

Mχ  = 0). The CFI is a rescaled version of the Relative Noncen-
trality Index (McDonald & Marsh, 1990), the values of which can fall outside the range 
0–1.0. This is not true of the CFI.

All incremental fit indexes have been criticized when the baseline model is the 
independence model, which is almost always true. This is because the assumption of 
zero covariances among the observed variables is improbable in most studies. There-
fore, finding that the researcher’s model has better relative fit than the corresponding 
independence model may not be very impressive. Although it is possible to specify a 
different, more plausible baseline model—such as one that allows the exogenous vari-
ables only to covary—and compute by hand the value of an incremental fit index with 
its equation, this is rarely done in practice. Widaman and Thompson (2003) describe 
how to specify more plausible baseline models. Check the documentation of your SEM 
computer program to find out the type of baseline model it assumes when calculating 
the CFI.

The CFI depends on the same distributional assumptions as the RMSEA, so values 
of the CFI may not be accurate when these assumptions are not tenable. Hu and Bentler 
(1999) suggested using the CFI together with an index based on the correlations residu-
als described next, the SRMR. Their rationale was that the CFA seemed to be most sen-
sitive to misspecified factor loadings, whereas the SRMR seemed most sensitive to mis-
specified factor covariances in CFA when testing measurement models. Their combina-
tion threshold for concluding “acceptable fit” based on these indexes was CFI ≥ .95 and 
SRMR ≤ .08. This combination rule was not supported in Monte Carlo studies by Fan 
and Sivo (2005), who suggested that the original Hu and Bentler (1999) findings about 
the CFI and SRMR were artifacts. Results of other computer studies also do not support 
the respective thresholds just listed for this pair of indexes (e.g., Yuan, 2005).

Standardized Root Mean Square Residual

The indexes described next are based on covariance residuals, differences between 
observed and predicted covariances. Ideally, these residuals should all be about zero for 
acceptable model fit. A statistic called the Root Mean Residual Square (RMR) was origi-
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nally associated with LISREL but is now calculated by other SEM computer tools, too. 
It is a measure of the mean absolute covariance residual. Perfect model fit is indicated 
by RMR = 0, and increasingly higher values indicate worse fit. One problem with the 
RMR is that because it is computed with unstandardized variables, its range depends on 
the scales of the observed variables. If these scales are all different, it can be difficult to 
interpret a given value of the RMR.

The SRMR is based on transforming both the sample covariance matrix and the 
predicted covariance matrix into correlation matrices. The SRMR is thus a measure of 
the mean absolute correlation residual, the overall difference between the observed and 
predicted correlations. The Hu and Bentler (1999) threshold of SRMR ≤ .08 for accept-
able fit was not a very demanding standard. This is because if the average absolute cor-
relation residual is around .08, then many individual values could exceed this value, 
which would indicate poor explanatory power at the level of pairs of observed variables. 
It is better to actually inspect the matrix of correlation residuals and describe their pat-
tern as part of a diagnostic assessment of fit than just to report the summary statistic 
SRMR.

Visual Summaries of Fit

It can be informative to view visual summaries of distributions of the residuals. For 
example, frequency distributions of the correlation residuals or covariance residuals 
should generally be normal in shape. A quantile-plot (Q-plot) of the standardized resid-
uals (z statistics) ordered by their size and against their expected position in a normal 
curve should follow a diagonal line. Obvious departures from these patterns may indi-
cate misspecification or violation of the multivariate normality assumption. An example 
is presented later in this chapter.

Recommended Approach to Model Fit Evaluation

The method outlined next calls on researchers to report more specific information about 
model fit than has been true of recent practice. The steps are as follows:

1.	 Always report 2
Mχ —or the appropriate chi-square statistic if the estimation 

method is not ML—and its degrees of freedom and p value. If the model fails the exact-
fit test, then explicitly note this fact and acknowledge the need to diagnose both the 
magnitude and possible sources of misfit. The rationale is to detect statistically signifi-
cant but slight model–data discrepancies that explain the failure. This is most likely to 
happen in a very large sample. But even if the model passes the exact-fit test, you still 
need to diagnose both the magnitude and possible sources of misfit. The rationale is 
to detect model–data discrepancies that are not statistically significant but still great 
enough to cast doubt on the model. This is most likely in a small sample.
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2.	 Report the matrix of correlation residuals, or at least describe the pattern of 
residuals for a large model. This includes the locations of the larger residuals and their 
signs. Look for patterns that may be of diagnostic value in understanding how the model 
may be misspecified.

3.	 If you report values of approximate fit indexes, then include those for the set 
described earlier. If possible, also report the p value for the close-fit hypothesis. Explic-
itly note whether the model fails the close-fit test. Do not try to justify retaining the 
model by relying solely on suggested thresholds for approximate fit indexes. This is 
especially so if the model failed the chi-square test and the pattern of residuals suggests 
a particular kind of specification error that is not trivial in magnitude.

4.	 If you respecify the initial model, then explain your rationale for doing so. You 
should also explain the role that diagnostic statistics, such as residuals or other test 
statistics described later, played in this respecification. That is, point out the connection 
between the numerical results for your initial model, relevant theory, and modifications 
of your original model. If you retain a respecified model that still fails the model chi-
square test, then you must demonstrate that discrepancies between model and data are 
truly slight. Otherwise, you have failed to show that there is no appreciable ill covari-
ance-fit evidence that speaks against the model.

5.	 If no model is retained, then your skills as a scholar are needed to explain the 
implications for the theory tested in your analysis. At the end of the day, regardless of 
whether or not you retained a model, the real honor comes from following to the best of 
your ability the process of science to its logical end. The poet Ralph Waldo Emerson put 
it this way: The reward of a thing well done is to have done it.

Detailed Example

The data set for this example was introduced in Chapter 3. Briefly, Roth et al. (1989) 
administered measures of exercise, hardiness—or mental toughness, also a good trait 
for learning about SEM— fitness, stress, and illness to 373 university students. The cor-
relations and rescaled standard deviations among these variables are presented in Table 
3.4. Presented in Figure 8.1 is one of the recursive path models tested by Roth et al. This 
model represents the hypothesis that the effects of exercise and hardiness on illness are 
purely indirect and that each effect is transmitted through a single mediator, fitness for 
exercise and stress for hardiness. You should verify that the model degrees of freedom 
are dfM = 5.

The model in Figure 8.1 was fitted to the covariance matrix based on the rescaled 
data in Table 3.4 with the ML method of EQS 6.1. You can download the EQS syntax and 
output files from this book’s website (see p. 3) plus all LISREL and Mplus computer files 
for this example. The analysis in EQS converged to an admissible solution. Reported in 
Table 8.1 are the estimates of model parameters except for the variances and covariance 
of the observed exogenous variables. The latter estimates are just the sample values 
(Table 3.4). Briefly, the parameter estimates in Table 8.1 appear logical. For example, the 
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direct effect of exercise on fitness is positive (the standardized path coefficient is .390), 
and higher levels of fitness predict lower illness levels (–.253). Proportions of explained 
variance ( 2

smcR ) range from .053 for the stress variable to .160 for the illness variable. You 
should verify this statement based on the information in Table 8.1.

Presented in column 2 of Table 8.2 are values of fit statistics for the Roth et al. 
path model in Figure 8.1. The model chi-square is just statistically significant at the .05 
level— 2

Mχ (5) = 11.078, p = .049—so the exact-fit hypothesis is rejected. Thus, there is 
a need to diagnose the source(s) of this failed test. Values of approximate fit indexes for 

FIGURE 8.1. A recursive path model of illness factors.

TABLE 8.1.  Maximum Likelihood Estimates for a Recursive Path Model of Illness 
Factors

Parameter Unstandardized SE Standardized

Direct effects

Exercise → Fitness            .216**     .026   .390

Hardiness → Stress         −.406**     .089 −.230

Fitness → Illness         −.424**     .080 −.253

Stress → Illness           .287**     .044   .311

Disturbance variances

Fitness 1,148.260**   84.195 .848

Stress 4,251.532** 311.737 .947

Illness 3,212,567** 253.557 .840

Note. Standardized estimates for disturbance variances are proportions of unexplained variance.

**p < .01.
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the Roth et al. model present a mixed picture. The value of the RMSEA is .057, and the 
close-fit hypothesis is not rejected (p = .336) based on the value of the lower bound of 
the 90% confidence interval, or .001 (see Table 8.2). However, the upper bound of the 
RMSEA’s 90% confidence interval, or .103, is large enough so that the poor-fit hypothesis 
cannot be rejected. The covariance matrix predicted by the model in Figure 8.1 explains 
about 99% of the total variability in the sample covariance matrix (GFI = .988), and 
the relative fit of the model is about a 96% improvement over that of the independence 
model fit (CFI = .961). Also reported in Table 8.2 are the values of the chi-square statistic 
and its degrees of freedom for the independence model.

Presented in Figure 8.2 is a Q-plot of the standardized residuals for the Roth et al. 
path model generated by LISREL. In a model with acceptable fit, the points in a Q-plot 
of the standardized residuals should fall along a diagonal line, but this is clearly not the 
case in the figure. Altogether, the results in Table 8.2 and the data graphic in Figure 8.2 
indicate problems with the fit of the Roth et al. model. But fit statistics and visual sum-
maries do not provide enough detail to further diagnose the apparent sources of these 
problems.

Presented in the top part of Table 8.3 are the correlation residuals for the Roth et al. 
path model. One of these residuals, –.133 for the fitness and stress variables, exceeds .10 
in absolute value. Thus, the model does not explain very well the observed correlation 
between these two variables; specifically, the model underpredicts their association. 
Two other correlation residuals in Table 8.3 are close to .10 in absolute value, including 
.082 for the fitness and hardiness variables and –.092 for the fitness and illness vari-
ables. The standardized residuals are reported in the bottom part of Table 8.3. The test 
for the fitness–stress covariance residual is statistically significant (z = 2.563, p < .05). 
Other statistically significant z tests indicate that the model may not adequately explain 

TABLE 8.2. Values of Fit Statistics for Two Recursive Path Models

Model

Index Roth et al. model (Figure 8.1) Sava model (Figure 7.1)

2
Mχ 11.078 3.895

dfM 5 7

p .049 .791

RMSEA (90% CI) .057 (.001–.103) 0 (0–.077)

pclose-fit H0
.336 .896

GFI .988 .989

CFI .961 1.000

SRMR .051 .034

2
Bχ 165.499 217.131

dfB 10 15

Note. CI, confidence interval. Probabilities for the close-fit hypothesis were computed by LISREL. All other 
results were computed by EQS.
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TABLE 8.3. Correlation Residuals and Standardized Residuals for a Recursive 
Path Model of Illness Factors

Variable 1 2 3 4 5

Correlation residuals

1.  Exercise        0

2.  Hardiness        0         0

3.  Fitness        0    .082             0    

4.  Stress −.057         0      −.133             0    

5.  Illness   .015  −.092      −.041        .033     .020    

Standardized residuals

1.  Exercise           0

2.  Hardiness           0           0

3.  Fitness           0    1.707      0    

4.  Stress −1.125           0 −2.563**    0    

5.  Illness     .334 −1.944 −2.563** 2.563** 2.563**

Note. The correlation residuals were computed by EQS, and the standardized residuals were computed by 
LISREL.

**p < .01.

FIGURE 8.2. LISREL-generated quantile plot of standardized residuals for a recursive model 
of illness factors.
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the observed variance of the illness variable or its covariances with the fitness and stress 
variables. These diagnostic results indicate that the fit of the path model in Figure 8.1 to 
the data in Table 3.4 is unacceptable.

Now look back and scan the fit statistics listed in column 3 of Table 8.2. These results 
are for the Sava (2002) path model of causes and effects of teacher–pupil interactions 
(Figure 7.1) calculated by LISREL. This model passes both the exact-fit test ( 2

Mχ (7) = 
3.895, p = .791) and the close-fit test (p = .896). Values of all approximate fit indexes seem 
reasonable, too. For example, RMSEA = 0 with .077 as the upper bound of its 90% con-
fidence interval, so the poor-fit hypothesis is rejected. However, recall that this model 
has problems concerning its correlation residuals (Table 7.5). Thus, I would conclude that 
the fit of this relatively small model is unacceptable despite what the global fit statistics say. 
We will see later in this chapter that statistical power is very low for analysis of the Sava 
path model in a small sample (N = 109). For the accept–support test provided by 2

Mχ , 
low power favors the researcher’s model (i.e., we are unlikely to detect that this model 
is false when it is really is so).

Testing Hierarchical Models

This section concerns ways to test hypotheses about hierarchical models with the same 
data. Two models are hierarchical or nested if one is a proper subset of the other. For 
example, if a free parameter is dropped from model A (i.e., the parameter is replaced 
with a fixed value that is usually zero) to form model B, the two models are hierarchi-
cally related (model B is nested under model A).

Model Trimming and Building

Hierarchical models are compared within two main contexts: model trimming and 
building. In model trimming, the researcher typically begins the analysis with a just-
identified model and simplifies it by eliminating free parameters (paths). This is done 
by specifying that at least one path previously estimated freely is now constrained to 
equal zero. The starting point for model building is an overidentified model to which 
paths are added. Typically, at least one previously fixed-to-zero path is specified as a free 
parameter. As a model is trimmed, its overall fit to the data usually becomes worse ( 2

Mχ  
increases). Likewise, model fit generally improves as paths are added ( 2

Mχ  decreases). 
The goal of both trimming and building is to find the model with the properly specified 
covariance structure that fits the data and is theoretically justifiable (keep those eyes on 
the prize).

Models can be trimmed or built according to one of two different standards, theo-
retical or empirical. The first represents tests of specific, a priori hypotheses. Suppose 
that a path model contains a direct effect of X on Y2 and an indirect effect through Y1. 
If the researcher believed that the relation of X to Y2 was entirely mediated by Y1, then 
he or she could test this hypothesis by constraining the coefficient for the path X → Y2 
to zero. If the fit of this constrained model is not appreciably worse than the one with 
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X → Y2 as a free parameter, the hypothesis about a mediated relation is supported. The 
main point, however, is that respecification of a model to test hierarchical versions of it 
is guided by the researcher’s hypotheses.

This is not the case for empirically based respecification, in which free parameters 
are deleted or added according to statistical criteria. For example, if the sole basis for 
trimming paths is that their coefficients are not statistically significant, then model 
respecification is guided by purely empirical considerations. The distinction between 
theoretically or empirically based respecification has implications for interpreting the 
results of model trimming or building, which are considered after a model comparison 
test statistic is introduced.

Chi-Square Difference Test

The chi-square difference statistic, 2
Dχ , can be used to test the statistical significance 

of the decrement in overall fit as free parameters are eliminated (trimming) or the 
improvement in fit as free parameters are added (building). As its name suggests, 2

Dχ  is 
simply the difference between the 2

Mχ  values of two hierarchical models estimated with 
the same data. Its degrees of freedom, dfD, equal the difference between the two respec-
tive values of dfM. The 2

Dχ  statistic tests the equal-fit hypothesis for two hierarchical 
models. Specifically, smaller values of 2

Dχ  lead to failure to reject the equal-fit hypoth-
esis, but larger values lead to its rejection. In model trimming, rejection of the equal-fit 
hypothesis suggests that the model has been oversimplified. The same result in model 
building, however, supports retention of the path that was just added. Ideally, the more 
complex of the two models compared with 2

Dχ  should fit the data reasonably well. Oth-
erwise, it makes little sense to compare the relative fit of two nested models, neither of 
which adequately explains the data.

Suppose for an overidentified model that

	
2
Mχ (5) = 18.30,  p = .003

A direct effect is added to the model (dfM is reduced by 1), and the result is

	
2
Mχ (4) = 9.10,  p = .059

Given both results,

	 dfD = 5 – 4 = 1

	
2
Dχ (1) = 18.30 – 9.10 = 9.20,  p = .002

which says that the overall fit of the new model with an additional path is statistically 
better than that of the original model at the .01 level. In this example, the chi-square 
difference test is a univariate one because it concerned a single path (dfD = 1). When 
two hierarchical models that differ by two or more paths are compared (dfD ≥ 2), the 
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chi-square difference test is essentially a multivariate test of all added (or deleted) paths 
together. If p < .05 for 2

Dχ  in this case, at least one of the paths may be statistically sig-
nificant at the .05 level if tested individually, but this is not guaranteed.

Note that differences between corrected (scaled) model chi-squares of two hier-
archical models cannot generally be interpreted as a statistic that tests the equal-fit 
hypothesis. One corrected model chi-square is the Satorra–Bentler statistic, which is 
calculated taking account of the extent of non-normality in the data (Chapter 7). The 
difference between the Satorra–Bentler statistics for two hierarchical models fitted to 
the same data does not follow a chi-square distribution. However, the researcher can 
still compare the relative fits of the hierarchical models to the same data based on each 
model’s set of fit statistics ( 2

Mχ , RMSEA, SRMR, etc.). If the simpler model has obvi-
ously worse correspondence with the data than the more complex model, the more 
complex model would be preferred. (This assumes that the fit of the more complex 
model is good.) Otherwise, the simpler model would be favored. Satorra and Bentler 
(2001) describe a way to calculate a scaled chi-square difference based on the difference 
between the Satorra–Bentler statistics from two hierarchical models, but this method is 
not yet widely implemented in SEM computer tools.

Empirical versus Theoretical Respecification

The interpretation of 2
Dχ  as a test statistic depends in part on whether the new model is 

derived empirically or theoretically. For example, if individual paths that are not statisti-
cally significant are dropped from the model, it is likely that 2

Dχ  will not be statistically 
significant. But if the deleted path is also predicted in advance to be zero, then 2

Dχ  is of 
utmost interest. If model specification is entirely driven by empirical criteria such as 
statistical significance, the researcher should worry—a lot, actually—about capitaliza-
tion on chance. That is, a path may be statistically significant due only to chance varia-
tion, and its inclusion in the model would be akin to a Type I error. Likewise, a path 
that corresponds to a true nonzero causal effect may not be statistically significant in a 
particular sample, and its exclusion from the model would be essentially a Type II error. 
A sort of buffer against the problem of sample-specific results, though, is a greater role 
for theory in model respecification.

The issue of capitalization on chance is especially relevant when the researcher 
uses an “automatic modification” option available in some SEM computer tools such 
as LISREL. Such purely exploratory procedures drop or add paths according to empiri-
cal criteria such as statistical significance at the .05 level of a modification index, 
which is calculated for every path that is fixed to zero. A modification index is actu-
ally a univariate Lagrange Multiplier (LM),3 which in this case is expressed as a 

3A Lagrange Multiplier is named after the mathematician and astronomer Giuseppe Lodovico Lagrangia 
(1736–1813), who is known for his work in the areas of number theory and celestial mechanics. The LM 
statistic measures in an estimation algorithm the rate of change in the optimal value of a fit function 
as constraints on estimation change. A larger value means a greater potential improvement in the fit 
function.
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chi-square statistic with a single degree of freedom, or 2χ (1). The value of an LM in 
the form of a modification index estimates the amount by which the overall model 
chi-square statistic, 2

Mχ , would decrease if a particular fixed-to-zero parameter were 
freely estimated. That is, a modification index estimates 2

Dχ (1) for adding a single path. 
Thus, the greater the value of a modification index, the better the predicted improve-
ment in overall fit if that path were added to the model. Likewise, a multivariate LM 
estimates the effect of allowing a set of constrained-to-zero parameters to be freely 
estimated. Some SEM computer tools, such as Amos and EQS, allow the user to gener-
ate modification indexes for specific parameters, which lends a more a priori sense to 
this statistic.

Note two cautions about modification indexes. First, an SEM computer tool may 
print the value of a modification index for an “illegal” parameter, such as a covariance 
between an exogenous variable and an error term. If you actually tried to add that param-
eter in a subsequent run of the program, the analysis would fail. Second, modification 
indexes may be printed for a parameter that, if actually added to the model, would make 
the respecified model nonidentified. Both of these apparently anomalous results are due 
to the fact that modification indexes merely estimate 2

Dχ (1) values. These estimates are 
not derived by the computer actually adding the parameter to the model and rerunning 
the analysis. Instead, the computer uses a shortcut method based on matrix algebra that 
“guesses” at the value of 2

Dχ , given the covariance matrix and estimates for the more 
restricted (original) model.

The Wald W statistic (after the mathematician A. Wald; e.g., Wald, 1943) is a related 
index but one used for model trimming. A univariate Wald W statistic approximates the 
amount by which the overall 2

Mχ  statistic would increase if a particular freely estimated 
parameter were fixed to zero (trimmed). That is, a univariate Wald W statistic estimates 

2
Dχ (1) for dropping the same path. A value of a univariate Wald W that is not statistically 

significant at, say, the .05 level predicts a decrement in overall model fit that is not sta-
tistically significant at the same level. Model trimming that is entirely empirically based 
would thus delete paths with Wald W statistics that are not statistically significant. A 
multivariate Wald W statistic approximates the value of 2

Dχ  for trimming two or more 
paths from the model. Loehlin (2004) gives this good advice: A researcher should not feel 
compelled to drop from the model every path that is not statistically significant, especially 
when the sample size is not large. Removing such paths might also affect the solution 
in an important way. If there was a theoretical rationale for including the path in the 
first place, it would be better to leave that path in the model until replication indicates 
otherwise.

All of the test statistics just described are sensitive to sample size. Thus, even a 
trivial change in overall model fit due to adding or dropping a free parameter could 
be statistically significant in a very large sample. In addition to noting the statistical 
significance of a modification index, the researcher should also consider the absolute 
magnitude of the change in the coefficient for the parameter if it is allowed to be freely 
estimated, or the expected parameter change. If the expected change (i.e., from zero) 
is small, the statistical significance of the modification index may reflect more the 
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sample size than it does the magnitude of the corresponding effect (see Kaplan, 2009, 
pp. 124–126).

Specification Searches

The results of two early computer simulation studies of specification searches by Mac-
Callum (1986) and Silvia and MacCallum (1988) are eye opening. They took known 
structural equation models, imposed different types of specification errors on them, 
and evaluated the erroneous models using data generated from populations in which 
the known models were true. In MacCallum’s study (1986), models were modified using 
empirically based methods (e.g., modification indexes). Most of the time the changes 
suggested by empirically based respecification were incorrect, which means that they 
typically did not recover the true model. The pattern was even more apparent for small 
samples (e.g., N = 100). It is not hard to figure out what went wrong: Purely empirical 
respecification chases sample-specific variation and accordingly modifies the model, but 
covariance patterns in one sample probably do not precisely mimic those in the popula-
tion. Silvia and MacCallum (1988) followed a similar procedure except that the applica-
tion of automatic modification was guided by theoretical knowledge, which improved 
the chances of discovering the true model. The implication of these studies is clear: 
learn from your data, but your data should not be your teacher (think for yourself).

A relatively new research area in SEM concerns the development of automated yet 
“intelligent” specification searches based on heuristics that attempt to optimize respeci-
fication compared with “dumb” specification searches (e.g., automatic model modifica-
tion). These algorithms are generally based on principles of machine learning or data 
mining. For example, Marcoulides and Drezner (2001) describe an adaptive search algo-
rithm based on principles of genetics and natural selection that evaluates models through 
successive “generations” from parent to child models. Marcoulides and Drezner (2003) 
describe a search algorithm that mimics the behavior of an ant colony as it collectively 
tries to achieve a certain goal, in this case model optimization. Intelligent specifica-
tion searches are not yet widely implemented in SEM computer programs, but this may 
change. I am skeptical of any specification search method, “intelligent” or otherwise, 
that is not guided by reason. Otherwise, such methods may be little more than stepwise 
regression dressed in fancy clothes that give the illusion that the researcher does not 
have to think about respecification.

Example of Model Building

Recall that the Roth et al. recursive path model of illness factors (Figure 8.1) does not 
have acceptable fit to the data (Table 8.3). In EQS syntax for the analysis of this model, I 
requested values of modification indexes for all possible direct effects omitted from the 
original model, of which there are six altogether (see Figure 8.1). Listed in the middle 
column of Table 8.4 are the values of modification indexes for these six paths. Note in the 
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table that (1) the modification indexes for two omitted paths, from fitness to stress and 
the reverse, are each statistically significant; and (2) the values of these indexes are simi-
lar, respectively, 5.357 and 5.096. This means that the addition of either path to the model 
would result in about the same estimated decrease in 2

Mχ  for the respecified models.
Now, which respecified model just mentioned is correct (if either)? It does makes 

sense that level of physical fitness would affect the experience of stress: people who are 
in better shape may better withstand stress (Fitness → Stress). But is it not also plau-
sible that stress could affect fitness level? For example, highly stressed people may not 
perform well on a fitness test (Stress → Fitness). Without theory as a guide, there is no 
way to select the most reasonable directionality for a direct effect between stress and fit-
ness. Exercise 2 asks you to analyze a respecified model for this example with a direct 
effect between fitness and stress and then evaluate whether the respecified model has 
acceptable correspondence with the data. I am not suggesting, though, that this is the 
correct model.

None of the remaining modification indexes in Table 8.4 is statistically significant. 
They were all calculated for respecified models with no direct effect between fitness 
and stress, but the omission of a path between these variables could be a specification 
error. This is a limitation of any modification index: Specification errors elsewhere in 
the model could affect its accuracy. (The same is true of covariance and correlation 
residuals.) Listed in the third column of Table 8.4 are the 2

Dχ (1) values obtained by actu-
ally adding to the model the direct effect in each row and then rerunning the analysis in 
EQS. These results indicate that modification indexes only estimate the corresponding 

2
Dχ (1) values, although that estimation for this example is close.

Comparing Nonhierarchical Models

Sometimes researchers compare alternative models based on the same variables mea-
sured in the same sample that are not hierarchically related. The values of 2

Mχ  from two 
nonhierarchical models can be compared, but the difference between them cannot be 
interpreted as a test statistic. That is, the chi-square difference test does not apply. This 

TABLE 8.4. Modification Indexes for a Recursive Path Model of Illness Factors

Path Modification index 2
Dχ (1)

Stress → Fitness 	 5.357* 	 5.410*

Fitness → Stress 	 5.096* 	 5.157*

Hardiness → Fitness 	 2.931 	 2.943

Hardiness → Illness 	 2.459 	 2.471

Exercise → Stress 	 1.273 	 1.275

Exercise → Illness 	 .577 	 .577

*p < .05.
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is where the family of predictive fit indexes comes in handy. Recall that these statistics 
assess model fit in hypothetical replications of the same size randomly selected from the 
same population. Perhaps the best known predictive fit index under ML estimation is 
the Akaike Information Criterion (AIC). It is based on an information theory approach 
to data analysis that combines estimation and model selection under a single conceptual 
framework (Anderson, Burnham, & Thompson, 2000). It is also a parsimony-adjusted 
index because it may favor simpler models. Confusingly, two different formulas for the 
AIC are presented in the SEM literature. The first is

	 AIC1 = 2
Mχ  + 2q	 (8.4)

where q is the number of free model parameters. Equation 8.4 thus increases the chi-
square for the researcher’s model by a factor of twice the number of freely estimated 
parameters. The second formula is

	 AIC2 = 2
Mχ  – 2dfM	 (8.5)

which decreases the model chi-square by a factor of twice the model degrees of freedom. 
Although the two formulas are different, the key is that the relative change in the AIC 
is the same in both versions, and this change is a function of model complexity. Note 
that the relative correction for parsimony of the AIC becomes smaller and smaller as the 
sample size increases (Mulaik, 2009).

The AIC and related indexes are generally used in SEM to select among compet-
ing nonhierarchical models estimated with the same data. Specifically, the model with 
the smallest AIC value is chosen as the one most likely to replicate. This is the model 
with relatively better fit and fewer free parameters compared with competing models. 
In contrast, more complex models with comparable overall fit may be less likely to rep-
licate due to greater capitalization on chance. An example follows. Presented in Figure 
8.3 are two different path models of recovery after cardiac surgery evaluated by Rom-
ney, Jenkins, and Bynner (1992). The psychosomatic model of Figure 8.3(a) represents 
the hypothesis that patient morale dictates the effects of neurological dysfunction and 
diminished socioeconomic status (SES) on physical symptoms and social relationships. 
The conventional medical model of Figure 8.3(b) depicts different assumptions about 
causal relations among the same variables.

Reported in Table 8.5 are the correlations among the observed variables reported by 
Romney et al. for a sample of 469 patients. Unfortunately, Romney et al. did not report 
means or standard deviations, and the analysis of a correlation matrix with default ML 
estimation is not recommended. To deal with this problem, I used the SEPATH module 
of STATISTICA 9 Advanced to fit each model of Figure 8.3 to the correlation matrix in 
Table 8.5 using the method of constrained estimation (Chapter 7). Both analyses con-
verged to admissible solutions.

Values of selected fit indexes for the two alternative Romney et al. path models are 
reported in Table 8.6. It is no surprise that the overall fit of the more complex conven-
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FIGURE 8.3. Alternative nonhierarchical recursive path models of adjustment after cardiac 
surgery.

TABLE 8.5. Input Data (Correlations) for Analysis of Nonhierarchical Recursive 
Path Models of Recovery after Cardiac Surgery

Variable 1 2 3 4 5

1.  Low Morale 1.00

2.  Illness Symptoms   .53 1.00

3.  Neurological Dysfunction   .15   .18 1.00

4.  Poor Relationships   .52   .29 −.05 1.00

5.  Diminished SES   .30   .34   .23   .09 1.00

Note. These data are from Romney et al. (1992); N = 469.
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tional medical model (dfM = 3) is better than that of the more parsimonious psychosomatic 
model (dfM = 5). But the fit advantage of the more complex model is enough to offset the 
penalty for having more free parameters imposed by the AIC as defined by Equation 
8.4. For the more complex conventional medical model, AIC = 27.238, but for the psy-
chosomatic model, AIC = 60.402. (Exercise 4 asks you to verify these results.) Because 
the former model has the lowest AIC value, it is preferred. This model also passes the 
chi-square test, and values of approximate fit indexes are favorable, too (Table 8.6). See 
Mulaik (2009, pp. 346–358) for information about other predictive fit indexes.

Power Analysis

Researchers can estimate statistical power at one of two different levels in SEM. The 
first concerns the power to detect an individual effect (parameter), and the best known 
method for estimating the power of single-df tests is one by Saris and Satorra (1993). 
Suppose that a researcher believes that the population unstandardized direct effect of X 
on Y is 5.0 (i.e., a 1-point increase on X leads to an increase on Y of 5 points holding con-
stant all other causal variables). Using this and other a priori values of the parameters 
of the researcher’s model, the researcher next  generates a predicted covariance matrix 
under the alternative hypothesis (the model includes X → Y) by employing the tracing 
rule or methods based on matrix algebra. This model-implied covariance matrix is then 
specified as the input data to an SEM computer program. The model analyzed is the 
model under the null hypothesis, which does not include X → Y (it is fixed to zero), and 
the sample size specified is a planned value for the study (e.g., N = 400). The value of 2

Mχ  
from this analysis approximates a noncentral chi-square statistic. Next, the researcher 
consults a special table for noncentral chi-square for estimating power as a function of 
degrees of freedom and the level of α (e.g., Loehlin, 2004, p. 263). The researcher uses 
df  = 1 in these tables to obtain the estimated probability of detecting the added free 
parameter when testing for it.

TABLE 8.6.  Values of Selected Fit Statistics for Two Nonhierarchical Recursive 
Path Models of Adjustment After Cardiac Surgery

Model

Index
Psychosomatic model  

(Figure 8.3(a))
Conventional medical model  

(Figure 8.3(b))

2
Mχ 40.402 3.238

dfM 5 3

p < .001 .356

RMSEA (90% CI) .120 (.086–.156) .016 (0–.080)

GFI .968 .997

CFI .913 .999

SRMR .065 .016

Note. CI, confidence interval.
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A drawback of the method just described is that it must be repeated for every indi-
vidual parameter for which an estimate of power is desired. An alternative is to use a 
Monte Carlo method such as the one implemented in Mplus, which estimates the pro-
portion of generated samples where the null hypothesis that some parameter of interest 
equals zero is correctly rejected (Muthén & Muthén, 2002). Kaplan (1995) describes 
other approaches for estimating the power of tests for individual parameters in struc-
tural equation models.

An approach to power analysis at the model level by MacCallum, Browne, and Sug-
awara (1996) is based on the RMSEA and noncentral chi-square distributions for tests of 
three different null hypotheses. Two of these hypotheses include the close-fit hypothesis 
(H0: ε0 ≤ .05) and the exact-fit hypothesis (H0: ε0 = 0). The test of each hypothesis just 
stated is an accept–support where low power favors the researcher’s model. The third 
hypothesis is the not-close-fit hypothesis, or H0: ε0 ≥ .05, which is an inversion of the 
close-fit hypothesis. If the upper bound of the 90% confidence interval based on the 
RMSEA is < .05, then the hypothesis that the model does not have close fit in the popula-
tion is rejected. The test of the not-close-fit hypothesis is a reject–support test, for which 
low power works against the researcher’s model. This is because greater power here 
implies a higher probability of detecting a reasonably correct model, or at least one that 
implies a covariance matrix that approximates the sample data matrix. The accuracy of 
tests for the close-fit and not-close-fit hypotheses assumes that the RMSEA actually fol-
lows a noncentral chi-square distribution.

A power analysis in the MacCallum et al. (1996) method for any of the null hypoth-
eses just described is conducted by specifying N, α, dfM, and a suitable value of the 
parameter estimated by the RMSEA under the alternative hypothesis H1, or ε1. For 
example, ε1 could be specified for the close-fit hypothesis as .08, a suggested upper 
threshold for reasonable approximation error. (But not a golden rule!) For the not-close-
fit hypothesis, ε1 could be specified as .01, which may represent the case of “good” 
approximate fit. A variation is to determine the minimum sample size needed to reach a 
target level of power, such as .80, given α, dfM, ε1, and ε0. The latter (ε0) is the “terminal 
point” of the interval for the corresponding directional null hypothesis, which is ε0 = .05 
for both the close-fit and not-hypotheses.

Estimated power or sample sizes can be obtained by consulting special tables in 
MacCallum et al. (1996) or Hancock and Freeman (2001) for the not-close-fit hypothesis 
only or through use of a computer. In an appendix, MacCallum et al. (1996) give SAS/
STAT syntax for power analysis based on the methods just outlined. Friendly (2009) 
describes a related SAS/STAT macro that carries out a MacCallum–Browne–Sugawara 
power analysis that can be freely downloaded over the Internet.4 A webpage by Preacher 
and Coffman (2006) generates R code that conducts the same type of model-level power 
analysis for a given model, calculates the minimum sample size required to obtain a tar-
get level of power, estimates power for testing differences between two nested models, 

4www.math.yorku.ca/SCS/sasmac/csmpower.html
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and determines the minimum sample size needed to achieve a given level of power for 
a test of nested models.5 Another option is the Power Analysis module by J. Steiger in 
STATISTICA 9 Advanced, which can estimate power for structural equation models over 
ranges of ε1 (with ε0 fixed to its specified value), α, dfM, and N. The ability to inspect 
power curves as functions of sample size and other assumptions is useful for planning a 
study, especially when grant applications demand power estimates. The Power Analysis 
module in STATISTICA also allows the researcher to specify the values of both ε0 and 
ε1. This feature is handy if there are theoretical reasons not to use the values of these 
parameters suggested by MacCallum et al. (1996), such as ε0 = .05 and ε1 = .08 for the 
close-fit hypothesis.

I used the Power Analysis module in STATISTICA 9 to estimate power for tests of 
both the close-fit hypothesis and the not-close-fit hypothesis for the Roth et al. path 
model of illness factors (Figure 8.1) and the Sava (2002) path model of causes and effects 
of teacher–pupil interactions (Figure 7.1). Also estimated for both models are the mini-
mum sample sizes required in order to attain a level of power ≥ .80 for each of the close-
fit and not-close-fit hypotheses. The results are summarized in Table 8.7. For the Roth 
et al. model, the estimated power for the test of the close-fit hypothesis is .317. That is, 
if this model actually does not have close fit in the population, then the estimated prob-
ability that we can reject this incorrect model is somewhat greater than 30% for a sample 
size of 373 cases, given the other assumptions for this analysis (see Table 8.7). For the 
same model, the estimated power for the test of the not-close-fit hypothesis is .229. That 
is, there is only about a 23% chance of detecting a model with “good” approximate fit 
for the Roth et al. analysis. The minimum sample sizes required in order for power to 
be at least .80 for tests of the close-fit hypothesis and the not-close-fit hypothesis for the 

5http://people.ku.edu/~preacher/rmsea/rmsea.htm

TABLE 8.7. Power Analysis Results for Two Recursive Path Models

Model

Statistic
Roth et al. model  

(Figure 8.1)
Sava model  
(Figure 7.1)

N 373 109

dfM 5 7

Power

   Close-fit testa .317 .153

   Not-close-fit testb .229 .096

Minimum Nc

   Close-fit test 1,465 1,075

   Not-close-fit test 1,220    960

aH0: ε ≤ .05, ε1 = .08, α = .05.
bH0: ε ≥ .05, ε1 = .01, α = .05.
cSample size rounded up to closest multiple of 5 required for power ≥ .80.
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same model are, respectively, about 1,465 cases and 1,220 cases. Exercise 3 asks you to 
interpret the results of the power analysis in Table 8.7 for the Sava (2002) path model, 
but it is clear that power for this model is low, too.

The power analysis results just described reflect a general trend that power at the 
model level may be low when there are few model degrees of freedom even for a rea-
sonably large sample size (e.g., N = 373 for the Roth et al. model of Figure 8.1). For 
models with only one or two degrees of freedom, sample sizes in the thousands may 
be required in order for model-level power to be greater than .80 (e.g., MacCallum et 
al., 1996, p. 144). Sample size requirements for the same level of power drop to some 
300–400 cases for models when dfM is about 10. Even smaller samples may be needed 
for a minimum power of .80 if dfM > 20, but the sample size should not be less than 100 
in any event. As Loehlin (2004) puts it, the results of a power analysis in SEM can be 
sobering. Specifically, if an analysis has a low probability of rejecting a false model, this 
fact should temper the researcher’s enthusiasm for his or her preferred model.

Some other developments in power estimation at the model level are briefly sum-
marized next. MacCallum and Hong (1997) extended MacCallum et al.’s (1996) work on 
power analysis at the model level to the GFI and AGFI fit statistics. Kim (2005) studied a 
total of four approximate fit indexes, including the RMSEA and CFI, in relation to power 
estimation and the determination of sample size requirements for minimum desired lev-
els of power. Kim (2005) found that estimates of power and minimum sample sizes var-
ied as a function of the choice of fit index, the number of observed variables and model 
degrees of freedom, and the magnitude of covariation among the variables. This result 
is not surprising considering that (1) different fit statistics reflect different aspects of 
model–data correspondence and (2) there is little direct correspondence between values 
of different fit statistics and degrees or types of model misspecification. As noted by Kim 
(2005), a value of .95 for the CFI does not necessarily indicate the same misspecification 
as a value of .05 for the RMSEA.

Equivalent and Near-Equivalent Models

After a final model is selected from among hierarchical or nonhierarchical alternatives, 
equivalent models should be considered. Equivalent models yield the same predicted 
correlations or covariances but with a different configuration of paths among the same 
observed variables. Equivalent models also have equal values of fit statistics, including 

2
Mχ  (and dfM) and all approximate fit indexes. For a given structural equation model, 

there are probably equivalent versions. Thus, it behooves the researcher to explain why 
his or her final model should be preferred over mathematically identical ones.

You already know that just-identified path models perfectly fit the data. By default, 
any variation of a just-identified path model exactly matches the data, too, and thus is an 
equivalent model. Equivalent versions of overidentified path models—and overidenti-
fied structural models in general—can be generated using the Lee–Hershberger replac-
ing rules (Hershberger, 1994):
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Within a block of variables at the beginning of the model that is just-	 (Rule 8.1)
identified and with unidirectional relations to subsequent variables, 
direct effects, correlated disturbances, and equality-constrained recipro-
cal effects (i.e., the two unstandardized direct effects are constrained 
to be equal) are interchangeable. For example, Y1 → Y2 may be 
replaced by Y2 → Y1, D1   D2, or Y1  Y2. If two variables are 
specified as exogenous, then an unanalyzed association can be substi-
tuted, too.

At subsequent places in the model where two endogenous variables	 (Rule 8.2)
have the same causes and their relations are unidirectional, all of the 
following may be substituted for one another: Y1 → Y2, Y2 → Y1,  
D1   D2, and the equality-constrained reciprocal effect Y1  Y2.

Note that substituting reciprocal direct effects for other types of paths would make the 
model nonrecursive, but it is assumed that the new model is identified (Chapter 6). 
Some equivalent versions may be implausible due to the nature of the variables or the 
time of their measurement. For example, a model that contains a direct effect from an 
acculturation variable to chronological age would be illogical. Also, the assessment of Y1 
before Y2 in a longitudinal design is inconsistent with the specification Y2 → Y1. When 
an equivalent model cannot be disregarded, it is up to you to provide a rationale for pre-
ferring one model over another.

Relatively simple structural models may have few equivalent versions, but more com-
plicated ones may have hundreds or even thousands (see MacCallum, Wegener, Uchino, 
& Fabrigar, 1993). In general, more parsimonious structural models tend to have fewer 
equivalent versions. You will learn in the next chapter that measurement models can 
have infinitely many equivalent versions. Thus, it is unrealistic that researchers consider 
all possible equivalent models. As a compromise, researchers should generate at least a 
few substantively meaningful equivalent versions. Unfortunately, even this limited step 
is usually neglected. Few authors of SEM studies even acknowledge the existence of 
equivalent models (e.g., MacCallum & Austin, 2000). This type of confirmation bias is a 
pernicious problem in SEM, one that threatens the validity of most SEM studies.

Presented in Figure 8.4(a) is Romney and associates’ original conventional medical 
model shown without disturbances to save space. The other three models in Figure 8.4 
are generated from the original model using the Lee–Hershberger replacing rules. For 
example, the equivalent model of Figure 8.4(b) substitutes a direct effect for a cova-
riance between the illness symptoms and neurological dysfunction variables. It also 
reverses the direct effects between diminished SES and low morale and between dimin-
ished SES and neurological dysfunction. The equivalent model of Figure 8.4(c) replaces 
two of three direct effects that involve diminished SES with unanalyzed associations. 
The equivalent model of Figure 8.4(d) replaces the unanalyzed association between ill-
ness symptoms and neurological dysfunction with an equality-constrained direct feed-
back loop. It also reverses the direct effects between illness symptoms and diminished 
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SES and between neurological dysfunction and diminished SES. Because the models in 
Figure 8.4 are equivalent, they all have the same fit to the data (i.e., 2

Mχ (3) = 3.238 for 
each model).6 The choice among equivalent models must be based on theoretical rather 
than statistical grounds. Exercise 6 asks you to generate equivalent versions of the Sava 
(2002) path model in Figure 7.1.

In addition to equivalent models, there may also be near-equivalent models that 
do not generate the exact same predicted covariances, but nearly so. For instance, the 
path model in Figure 8.1 but with (1) a direct effect from fitness to stress or (2) a direct 
effect from stress to fitness are near-equivalent models (see Table 8.4). There is no spe-
cific rule for generating near-equivalent models. Instead, such models would be speci-
fied according to theory. In some cases, near-equivalent models may be more numer-
ous than truly equivalent models and thus are a more serious research threat than the 
equivalent models.

Summary

It is critical to begin the testing process with a model that represents a substantive 
research problem. The real goal of the analysis is not to find a model that fits the data. 
Instead, it is to test a theory and then to consider the implications for that theory of 
whether or not the model is consistent with the data. There is an ongoing debate in the 
SEM literature about optimal strategies for assessing model fit, but there is a general 
consensus that some routine practices are inadequate. One bad practice is ignoring a 
failed model chi-square test even though the sample size is not very large. Another is 
the claim for “good” model fit based mainly on values of approximate fit statistics that 
exceed—or, in some cases, fall below—suggested thresholds based on prior computer 
simulation studies. Instead, researchers should explicitly diagnose possible sources of 
misspecification by describing patterns of residuals or values of modification indexes for 
parameters with a basis in theory. If a model is eventually retained, then it is important 
also to estimate statistical power and generate at least a few plausible equivalent or near-
equivalent models. If the statistical power to reject a false model is low or there are few 
grounds to prefer the researcher’s model among equivalent versions, then little support 
for that model is indicated. The next chapter introduces the analysis of measurement 
models with the technique of confirmatory factor analysis.

Recommended Readings

The special issue of the journal Personality and Individual Differences on SEM concerns the 
roles of test statistics and approximate fit indexes in model testing (Vernon & Eysenck, 2007). 
MacCallum et al. (1993) describe many examples of generating equivalent versions of models 
from published articles. Chapter 15 in Mulaik (2009) about model evaluation provides detail 

6Applying the Lee–Hershberger replacing rules to any of the generated models in Figures 8.4(b)–8.4(d) may 
yield even more equivalent versions.
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about additional fit statistics and strategies for hypothesis testing. Tomarken and Waller (2003) 
consider examples of poor explanatory power for models with apparently “good” fit based on 
values of fit statistics. Humphreys (2003) compares the logic of statistical modeling in the social 
sciences with that in the natural sciences and finds many points of contact between the two.

Humphreys, P. (2003). Mathematical modeling in the social sciences. In S. P. Turner & P. A. 
Roth (Eds.), The Blackwell guide to the philosophy of the social sciences (pp. 166–184). 
Malden, MA: Blackwell.

MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of 
equivalent models in applications of covariance structure analysis. Psychological Bulletin, 
114, 185–199.

Mulaik, S. A. (2009). Linear causal modeling with structural equations. New York: CRC Press. 
(Chapter 15)

Tomarken, A. J., & Waller, N. G. (2003). Potential problems with “well-fitting” models. Journal 
of Abnormal Psychology, 112, 578–598.

Vernon, P. A., & Eysenck, S. B. G. (Eds.). (2007). Structural equation modeling [Special issue]. 
Personality and Individual Differences, 42(5).

Exercises

	 1.	 Based on the correlation residuals in Table 7.5, how would you respecify the 
Sava path model in Figure 7.1 by adding one path? Fit this respecified model to 
the data in Table 7.1. Evaluate the fit of this revised model.

	 2.	 Respecify the Roth et al. path model in Figure 8.1 by adding a direct effect from 
fitness to stress. Fit this revised model to the rescaled data in Table 3.4.

	 3.	 Interpret the power analysis results in Table 8.7 for the Sava path model in 
Figure 7.1.

	 4.	 Calculate the AIC for both Romney et al. models in Figure 8.3.

	 5.	 Using the MacCallum et al. (1996) article on power analysis, determine the 
minimum samples sizes needed to attain a power level of .80 for tests of both 
the close-fit hypothesis and the not-close-fit hypothesis at the following values 
of dfM: 2, 6, 10, 14, 20, 25, 30, and 40. Comment on the results.

	 6.	 Generate two equivalent versions of the Sava path model in Figure 7.1. Prove 
that these models are in fact equivalent to the original model.

	 7.	 Explain why these two models are not equivalent: (a) Figure 8.1 but with the 
path Fitness → Stress, (b) Figure 8.1 but with the path Stress → Fitness.

	 8.	 Show calculations for the CFI based on the information presented in Table 
8.2.
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9

Measurement Models and 
Confirmatory Factor Analysis

This is the first of two chapters about the analysis of core latent variable models in 
SEM, in this case measurement models as analyzed in CFA. The multiple-indicator 
approach to measurement of CFA represents literally half the basic rationale of analyz-
ing covariance structures in SEM—the analysis of structural models is the other half—so 
CFA is a crucial technique. It is also a primary technique for many researchers, espe-
cially those who conduct assessment-related studies. Also introduced in this chapter is 
multiple-sample CFA, in which a measurement model is fitted simultaneously to data 
from more than one group. The results provide a test of measurement invariance, or of 
whether a set of indicators has the same measurement properties across the groups. 
If you know something about CFA, then it is easier to learn about structural regression 
(SR) models, which have features of both path models and CFA models. The next 
chapter covers SR models.

Naming and Reification Fallacies

The specification and identification of CFA models were introduced in, respectively, 
Chapters 5 and 6 using model diagrams where factors were designated with letters, 
such as A and B (e.g., Figure 5.6). In real analyses, researchers usually assign meaning-
ful labels to factors such as sequential processing (Figure 5.7). However, it is important 
to avoid two logical errors concerning factor names. The first is the naming fallacy: 
Just because a factor is named does not mean that the hypothetical construct is under-
stood or even correctly labeled. Factors require some type of designation, though, if for 
no other reason than communication of the results. Although verbal labels are more 
“reader friendly” than more abstract symbols, such as A or ε (xi, a symbol from LISREL’s 
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matrix notation for exogenous factors), they should be viewed as conveniences and not 
as substitutes for critical thinking.

The second logical error to avoid is reification: the belief that a hypothetical con-
struct must correspond to a real thing. For example, a general ability factor, often called 
g, is a hypothetical construct. To automatically consider g as real instead of a concept, 
however, is a potential error of reification. Along these lines, Gardner (1993) reminded 
educators not to assume that “intelligence” corresponds to a single domain that is ade-
quately measured by IQ scores. Instead, he argued that intelligence is multifaceted and 
includes not only academic skills but also social, artistic, and athletic domains.

Estimation of CFA Models

This discussion assumes that all indicators are continuous variables. This is most likely 
to happen when each indicator is a scale that generates a total score over a set of items. A 
later section deals with the analysis of models where items are specified as indicators.

Interpretation of Estimates

Parameter estimates in CFA are interpreted as follows:

1.	 Factor loadings estimate the direct effects of factors on indicators and are inter-
preted as regression coefficients. For example, if the unstandardized factor loading is 4.0 
for the direct effect A → X1, then we expect a four-point difference in indicator X1 given 
a difference of 1 point on factor A. Loadings fixed to 1.0 to scale the corresponding factor 
remain so in the unstandardized solution and are not tested for statistical significance 
because they have no standard errors.

2.	 For indicators specified to load on a single factor, standardized factor loadings 
are estimated correlations between the indicator and its factor. Thus, squared standard-
ized loadings are proportions of explained variance, or 2

smcR . If a standardized loading is 
.80, for example, the factor explains .802 = .64, or 64.0% of the variance of the indicator. 
Ideally, a CFA model should explain the majority of the variance ( 2

smcR  > .50) of each 
indicator.

3.	 For indicators specified to load on multiple factors, standardized loadings are 
interpreted as beta weights that control for correlated factors. Because beta weights 
are not correlations, one cannot generally square their values to derive proportions of 
explained variance.

4.	 The ratio of an unstandardized measurement error variance over the observed 
variance of the corresponding indicator equals the proportion of unexplained variance, 
and one minus this ratio is the proportion of explained variance. Suppose that the vari-
ance of X1 is 25.00 and that the variance of its error term is 9.00. The proportion of 
unexplained variance is 9.00/25.00 = .36, and the proportion of explained variance is 

2
smcR  = 1 – .34 = .64.
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5.	 Estimates of unanalyzed associations between either a pair of factors or mea-
surement errors are covariances in the unstandardized solution. These estimates are 
correlations in the standardized solution.

The estimated correlation between an indicator and a factor is a structure coef-
ficient. If an indicator loads on a single factor, its standardized loading is a structure 
coefficient; otherwise, it is not. Graham, Guthrie, and Thompson (2003) remind us that 
the specification that a direct effect of a factor on an indicator is zero does not mean that 
the correlation between the two must be zero. That is, a zero pattern coefficient (factor 
loading) does not imply a zero structure coefficient. This is because the factors in CFA 
models are assumed to covary, which implies nonzero correlations between each indica-
tor and all factors. However, indicators should have higher estimated correlations with 
the factors they are specified to measure.

Problems

Failure of iterative estimation in CFA can be caused by poor start values; suggestions 
for calculating start values for measurement models are presented in Appendix 9.A. 
Inadmissible solutions include Heywood cases such as negative variance estimates or 
estimated absolute correlations greater than 1.0. Results of some computer studies indi-
cate that nonconvergence or improper solutions are more likely when there are only two 
indicators per factor or the sample size is less than 100–150 cases (Marsh & Hau, 1999). 
The authors just cited give the following suggestions for analyzing CFA models when 
the sample size is not large:

1.	 Use indicators with good psychometric characteristics that will each also have 
relatively high standardized factor loadings (e.g., > .70). Models with indicators that have 
relatively low standardized loadings are more susceptible to Heywood cases (Wothke, 
1993).

2.	 Estimation of the model with equality constraints imposed on the unstandard-
ized loadings of indicators of the same factor may help to generate more trustworthy 
solutions. This assumes that all indicators have the same metric.

3.	 When the indicators are items instead of continuous total scores, it may be bet-
ter to analyze them in groups (parcels) rather than individually. Recall that the analysis 
of parcels is controversial because it requires a very strong assumption, that the items of 
a parcel are unidimensional (Chapter 7).

Solution inadmissibility can also occur at the parameter matrix level. Specifically, 
the computer estimates in CFA a factor covariance matrix and an error covariance 
matrix. If any element of either parameter matrix is out of bounds, then that matrix is 
nonpositive definite. Causes of nonpositive definite parameter matrices include the fol-
lowing (Wothke, 1993):
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1.	 The data provide too little information (e.g., small sample, two indicators per 
factor).

2.	 The model is overparameterized (too many parameters).
3.	 The sample has outliers or severely non-normal distributions (poor data screening).
4.	 There is empirical underidentification concerning factor covariances (e.g., Fig-

ure 6.4).
5.	 The measurement model is misspecified.

Empirical Checks for Identification

It is theoretically possible for the computer to generate a converged, admissible solution 
for a model that is not really identified, yet print no warning message. However, that 
solution would not be unique. This is most likely to happen in CFA when analyzing a 
model with both correlated errors and complex indicators for which the application of 
heuristics cannot prove identification (Chapter 6). Described next are empirical checks 
for solution uniqueness that can be applied when analyzing any type of structural 
equation model, not just CFA models. These checks concern necessary but insufficient 
requirements. That is, if any of these checks is failed, then the solution is not unique, 
but passing them does not prove identification:

1.	 Conduct a second analysis of the same model but use different start values than 
in the first analysis. If estimation converges to a different solution working from differ-
ent initial estimates, the original solution is not unique and the model is not identified.

2.	 This check applies to overidentified models only: Use the model-implied covari-
ance matrix from the first analysis as the input data for a second analysis of the same 
model. If the second analysis does not generate the same solution as the first, the model 
is not identified.

3.	 Some SEM computer programs optionally print the matrix of estimated correla-
tions among the parameter estimates. Although parameters are fixed values that do not 
vary randomly in the population, their estimates are considered random variables with 
their own distributions and covariances. Estimates of these covariances are based on the 
information matrix, which is associated with full-information methods such as ML. If 
the model is identified, this matrix has an inverse, which is the matrix of covariances 
among the parameter estimates. Correlations among the parameters are derived from 
this matrix. An identification problem is indicated if any of these absolute correlations is 
close to 1.0, which indicates linear dependency. See Bollen (1989, pp. 246–251) for addi-
tional necessary-but-insufficient empirical checks based on linear algebra methods.

Detailed Example

This example concerns the analysis of the measurement model for the first edition Kauf-
man Assessment Battery for Children (KABC‑I) introduced in Chapter 5. The two-factor, 
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eight-indicator theoretical model for this test is presented in Figure 9.1. Briefly, the first 
three subtests are specified to load on one factor (sequential processing) and the other 
five subtests on a second factor (simultaneous processing).1 The data for this analysis are 
summarized in Table 9.1, which are from the test’s standardization sample for 10-year-
old children (N = 200).

Test for a Single Factor

When theory is not specific about the number of factors, this is often the first step in 
a series of analyses: if a single-factor model cannot be rejected, there is little point in 
evaluating more complex ones. Even when theory is more precise about the number of 
factors (e.g., two for the KABC‑I), it should be determined whether the fit of a simpler, 
one-factor model is comparable. I submitted to Mplus 5.2 the covariance matrix based 
on the data in Table 9.1 for ML estimation of a single-factor CFA model. The unstandard-
ized loading of the Hand Movements indicator was fixed to 1.0 to scale the single factor. 
With v = 8 indicators, there are 36 observations available to estimate a total of 16 free 
parameters, including nine variances of exogenous variables (of the single factor and 
eight measurement errors) and seven factor loadings, so dfM = 20. Estimation in Mplus 
converged to an admissible solution. Values of selected fit indexes for the one-factor 
model are listed next (Mplus does not print the GFI). The 90% confidence interval asso-
ciated with the RMSEA is reported in parentheses:

	
2
Mχ (20) = 105.427,  p < .001 

	 RMSEA = .146 (.119–.174),  pclose-fit H0
 < .001 

	 CFI = .818;  SRMR = .084

FIGURE 9.1. A confirmatory factor analysis model of the Kaufman Assessment Battery for 
Children, first edition.

1Keith (1985) suggested alternative names for the factors in the KABC-I’s theoretical model, including 
“short-term memory” instead of “sequential processing” and “visual-spatial reasoning” instead of 
“simultaneous processing.” One reason is that all three sequential tasks are immediate recall tasks, and all 
five simultaneous tasks involve responding to visual stimuli.
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The overall fit of a one-factor model to the data in Table 9.1 is obviously poor, so it is 
rejected.

The test for a single factor is relevant not just for CFA models. For example, Kenny 
(1979) noted that such models could also be tested as part of a path analysis. The inabil-
ity to reject a single-factor model in this context would mean the same thing as in CFA: 
the observed variables do not show discriminant validity; that is, they seem to measure 
only one domain. I conducted a test for single-factoredness for the five variables of the 
Roth et al. (1989) path model of illness factors analyzed in Chapter 8 (see Figure 8.1). 
A single-factor model for these variables was fitted to a covariance matrix based on the 
data summarized in Table 3.4 with the ML method of Mplus 5.2. Values of selected fit 
statistics clearly show that a single-factor model poorly explains the Roth et al. (1989) 
data and provide a “green light” to proceed with evaluation of a path model:

	
2
Mχ (5) = 60.549,  p < .001 

	 RMSEA = .173 (.135–.213),  pclose-fit H0
 < .001 

	 CFI = 644;  SRMR = .096

Two-Factor Model

There are also 36 observations available for the analysis of the two-factor model of the 
KABC‑I in Figure 9.1. To scale the two factors, the unstandardized loadings of the Hand 
Movements task and the Gestalt Closure task on their respective factors were each fixed 
to 1.0. A total of 17 free parameters remain to be estimated, including 10 variances (of 
two factors and eight error terms), one factor covariance, and six factor loadings (two on 
the first factor, four on the second), so dfM = 19.

I used Mplus 5.2 to fit the two-factor model of Figure 9.1 to the data in Table 9.1 

TABLE 9.1. Input Data (Correlations, Standard Deviations) for Analysis of a Two-
Factor Model of the Kaufman Assessment Battery for Children

Variable 1 2 3 4 5 6 7 8

Sequential scale

  1.  Hand Movements   1.00

  2.  Number Recall     .39   1.00

  3.  Word Order     .35     .67   1.00

Simultaneous scale

  4.  Gestalt Closure     .21     .11     .16   1.00

  5.  Triangles     .32     .27     .29     .38   1.00

  6.  Spatial Memory     .40     .29     .28     .30     .47   1.00

  7.  Matrix Analogies     .39     .32     .30     .31     .42     .41   1.00

  8.  Photo Series     .39     .29     .37     .42     .58     .51     .42 1.00

        SD   3.40   2.40   2.90   2.70   2.70   4.20   2.80  3.00

Note. Input data are from Kaufman and Kaufman (1983); N = 200.
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with ML estimation. You can download the Mplus syntax, data, and output files for 
this analysis from this book’s website (see p. 3) and all EQS and LISREL computer files 
for the same analysis, too. The analysis in Mplus converged to an admissible solution. 
Presented in Table 9.2 are the parameter estimates for the two-factor model. Note in 
the table that unstandardized loadings of the reference variables (Hand Movements, 
Gestalt Closure) equal 1.0 and have no standard errors. The other six unstandardized 
loadings were freely estimated, and their values are all statistically significant at the 
.01 level. Although statistical significance of the unstandardized estimates of factor 
variances is indicated in the table, it is expected that these variances are not zero (i.e., 
there are individual differences). It would be senseless in most analyses to get worked 
up about the statistical significance of these terms, but results of significance tests for 

TABLE 9.2. Maximum Likelihood Estimates for a Two-Factor Model of the KABC‑I

Parameter Unstandardized SE Standardized

Factor loadings

Sequential factor

  Hand Movements    1.000a — .497

  Number Recall   1.147 .181 .807

  Word Order   1.388 .219 .808

Simultaneous factor

  Gestalt Closure   1.000a — .503

  Triangles  1.445 .227 .726

  Spatial Memory  2.029 .335 .656

  Matrix Analogies  1.212 .212 .588

  Photo Series  1.727 .265 .782

Measurement error variances

Hand Movements    8.664    .938 .753

Number Recall    1.998    .414 .349

Word Order    2.902    .604 .347

Gestalt Closure    5.419    .585 .747

Triangles    3.425    .458 .472

Spatial Memory    9.998     1.202 .570

Matrix Analogies    5.104    .578 .654

Photo Series    3.483    .537 .389

Factor variances and covariance

Sequential    2.839    .838 1.000

Simultaneous    1.835    .530 1.000

Sequential  Simultaneous    1.271 .324   .557

Note. KABC‑I, Kaufman Assessment Battery for Children, first edition. Standardized estimates for measurement 
errors are proportions of unexplained variance.
aNot tested for statistical significance. All other unstandardized estimates are statistically significant at 
p < .01.
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factor covariances may be of greater interest. Note that Mplus can automatically print 
correct standard errors for standardized estimates, but these values are not reported 
in Table 9.2.

Of greater interpretive import are the standardized factor loadings in Table 9.2. 
Because each indicator loads on a single factor, the square of each standardized loading 
equals 2

smcR  for the corresponding indicator. Some standardized loadings are so low that 
convergent validity seems doubtful. For example, the loadings of Hand Movements and 
Gestalt Closure on their respective factors are both only about .50, and 2

smcR  < .50, for a 
total of four out of eight indicators. That is, the model in Figure 9.1 explains the minor-
ity of the observed variance for exactly half of the indicators. On the other hand, the 
estimated factor correlation (.557) is only moderate in size, which suggests discriminant 
validity.

Reported in Table 9.3 are values of structure coefficients (estimated factor-indicator 
correlations) for all eight indicators in the two-factor model of Figure 9.1. Coefficients 
presented in boldface in the table are also standardized factor loadings for indicators 
specified to measure either factor. For example, the Hand Movements is not specified 
to measure simultaneous processing (Figure 9.1). Therefore, the pattern coefficient for 
the Hand Movements-simultaneous processing correspondence is zero. However, the 
structure coefficients for the Hand Movements task are .497 and .277 (Table 9.3). The 
former, .497, equals the standardized loading of this indicator on the sequential process-
ing factor (Table 9.2). The latter, .277, is the model-implied correlation between the Hand 
Movements task and the simultaneous processing factor. It is calculated using the trac-
ing rule as the product of the standardized loading for the Hand Movements task and 
the estimated correlation between the factors, or .497 (.557) = .277. Exercise 1 asks you 
to derive the other structure coefficients in Table 9.3 using the tracing rule. The results 
in the table clearly show that the structure coefficients are not typically zero for corre-
sponding zero pattern coefficients when the factors are substantially correlated.

TABLE 9.3. Structure Coefficients for a Two-Factor Model of the KABC‑I

Factor

Indicator Sequential Simultaneous

Hand Movements .497 .277

Number Recall .807 .449

Word Order .808 .450

Gestalt Closure .280 .503

Triangles .404 .726

Spatial Memory .365 .656

Matrix Analogies .328 .588

Photo Series .436 .782

Note. KABC‑I, Kaufman Assessment Battery for Children, first edition.
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Tests for Multiple Factors

The chi-square reported by Mplus for the two-factor model in Figure 9.1 is 2
Mχ (19) = 

38.325, p = .005. Thus, this model fails the chi-square test, and so it is necessary to 
investigate the magnitude and patterns of discrepancies between model and data. We 
will do so momentarily, but at this point we can infer that the fit of the two-factor model 
is better than that of the one-factor model fitted to the same data based on their respec-
tive 2

Mχ  values. Now, can we compare the relative fits of these two models with the chi-
square difference test? Recall that this test is only for hierarchical models (Chapter 8). Is 
this true of the one- and two-factor models of the KABC‑I?

Yes, and here is why: the one-factor model is actually a restricted version of the two-
factor model. Look again at Figure 9.1. If the correlation between the two factors is fixed 
to equal 1.0, then the two factors will be identical, which is the same thing as replacing 
both factors with just one. The results of the chi-square difference test are

	 1 factorMdf – 
2 factorsMdf = 20 – 19 = 1 

	 2
Dχ (1) = 

1 factor

2
Mχ – 

2 factors

2
Mχ  = 105.427 – 38.325 

	 = 67.102,  p < .001

which says that the fit of the two-factor model is statistically better than that of the 
single-factor model. The meaning of this particular result is not clear at this point because 
the fit of the more complex two-factor model is problematic. However, the comparison 
just described can be generalized to models with more factors. With a four-factor model, 
for instance, fixing all factor correlations to 1.0 generates a single-factor model that is 
nested under the unrestricted model. Merging any two factors (and their indicators) in a 
four-factor model into a single factor results in a three-factor model that is nested under 
the original model, and so on.

Assessment of Model Fit

Reported in Table 9.4 are values of fit statistics and results of model-level power analyses 
for the two-factor model of the KABC‑I (Figure 9.1). As mentioned, the model chi-square 
is statistically significant, so the exact-fit hypothesis is rejected. Results for the RMSEA 
are mixed. The lower bound of the 90% confidence interval for this statistic is .037, so 
the close-fit hypothesis is not rejected (p = .171). However, the upper bound exceeds .10, 
so the poor-fit hypothesis cannot be rejected. Values of the CFI and SRMR are, respec-
tively, .959 and .072. Levels of statistical power estimated in the Power Analysis module 
of STATISTICA 8 Advanced for tests of the close-fit hypothesis and the not-close-fit 
hypothesis are both low (respectively, .440 and .302). Minimum sample sizes of over 
twice that of the actual size for this analysis (N = 200) would be needed in order for 
power to be at least .80 (see Table 9.4).
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Reported in Table 9.5 are the correlation residuals (calculated in EQS) for the two-
factor model. Many of these residuals (shown in boldface in the table) exceed .10 in 
absolute value. Most of the larger residuals concern one of the indicators of sequential 
processing, Hand Movements, and most of the indicators of simultaneous processing. 
All of these residuals are positive, which means that the two-factor model generally 
underestimates correlations between Hand Movements and those specified to measure 
the other factor. Based on all the results described so far, the fit of the two-factor model 
in Figure 9.1 is unacceptable. Exercise 2 will ask you to use an SEM computer tool to 
derive the standardized residuals (z statistics) for this analysis.

TABLE 9.4. Values of Fit Statistics and Power Estimates for a Two-Factor Model of 
the KABC‑I

Fit statistics Power estimates

Statistic Result Statistic or test Result

2
Mχ 38.325 N 200

dfM 19 dfM 19

p .005 Power
RMSEA (90% CI) .071 (.038–.104)   Close-fit testa .440

pclose-fit H0
.132   Not-close-fit testb .302

CFI .959 Minimum Nc

SRMR .072   Close-fit test 455

  Not-close-fit test 490

Note. KABC‑I, Kaufman Assessment Battery for Children, first edition; CI, confidence interval.
aH0: ε ≤ .05, ε1 = .08, α = .05.
bH0: ε ≥ .05, ε1 = .01, α = .05.
cSample size rounded up to closest multiple of 5 required for power ≥ .80.

TABLE 9.5. Correlation Residuals for a Two-Factor Model of the KABC‑I

Variable 1 2 3 4 5 6 7 8

Sequential scale

  1.  Hand Movements        0

  2.  Number Recall −.011        0

  3.  Word Order −.052   .018        0

Simultaneous scale

  4.  Gestalt Closure   .071 −.116 −.066        0

  5.  Triangles   .119 −.057 −.037   .015        0

  6.  Spatial Memory   .218 −.005 −.015 −.030 −.007        0

  7.  Matrix Analogies   .227   .056   .035   .014 −.007   .024        0

  8.  Photo Series   .174 −.061   .018   .027   .012 −.003 −.040 0

Note. KABC‑I, Kaufman Assessment Battery for Children, first edition.
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Respecification of Measurement Models

In the face of adversity, the protagonist of Kurt Vonnegut’s novel Slaughterhouse-Five 
often remarks, “So it goes.” And so it often goes in CFA that an initial model does not 
fit the data very well. The respecification of a CFA model is even more challenging than 
that of a path model because there are more possibilities for change. For example, the 
number of factors, their relations to the indicators, and patterns of measurement error 
correlations are all candidates for modification. Given so many potential variations, 
respecification of CFA models should be guided as much as possible by substantive con-
siderations. Otherwise, the specification process could put the researcher in the same 
situation as the sailor in this adage attributed to Leonardo da Vinci: One who loves 
practice without theory is like a sailor who boards a ship without a rudder and compass 
and never knows where he or she may be cast.

Two general classes of problems can be considered in respecification. The first 
concerns the indicators. Sometimes the indicators fail to have substantial standardized 
loadings (e.g., < .20) on the factors to which they were originally assigned. One option 
is to specify that the indicator measures a different factor. Inspection of the correlation 
residuals can help to identify the other factor to which the indicator’s loading may be 
switched. Suppose that an indicator is originally specified to measure factor A, but the 
correlation residuals between it and the indicators of factor B are large and positive. 
This would suggest that the indicator may measure factor B more than it does factor A. 
Note that an indicator can have relatively high loadings on its own factor but also have 
high residual correlations between it and the indicators of another factor. The pattern 
just described suggests that the indicator in question measures more than one construct 
(i.e., allow it to load on > 1 factor). Another possibility consistent with this same pat-
tern is that these indicators share something that is unique to them, such as a particular 
method of measurement. This possibility would be represented by allowing that pair of 
measurement errors to covary.

The second class of problems concerns the factors. For example, the researcher may 
have specified the wrong number of factors. On the one hand, poor discriminant valid-
ity as evidenced by very high factor correlations may indicate that the model has too 
many factors. On the other hand, poor convergent validity within sets of indicators of 
the same factor suggests that the model may have too few factors.

A starting point for respecification often includes inspection of the correlation 
residuals and modification indexes. Earlier we examined the correlation residuals in 
Table 9.5 for the two-factor model of the KABC‑I. Most of the large and positive residuals 
are between the Hand Movements task and tasks specified to measure the other factor. 
Because the standardized loading of the Hand Movements task on its original factor is 
at least moderate (.497; Table 9.2), it is possible that this task may measure both factors. 
Reported in Table 9.6 are the 10 largest modification indexes computed by Mplus for 
factor loadings and error covariances that are fixed to zero in the original model (Figure 
9.1). Note in the table that the 2χ (1) statistics for the paths
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	 Simultaneous → Hand Movements  and  EWO  ENR

are nearly identical (respectively, 20.091 and 20.042). Thus, either allowing Hand Move-
ments to also load on the simultaneous processing factor or adding an error covariance 
between the Word Order and Number Recall tasks would reduce the value of 2

Mχ  by 
about 20 points. Among other changes suggested by the modification indexes, two have 
nearly the same 2χ (1) value: allow Number Recall to also load on the sequential pro-
cessing factor (7.010), or allow the errors of the Hand Movements and Word Order tasks 
to covary (7.015). The researcher needs a rationale for choosing among these potential 
respecifications. Based on my knowledge of the KABC‑I (e.g., Kline, Snyder, & Castel-
lanos, 1996) and results of other factor-analytic studies (e.g., Keith, 1985), allowing the 
Hand Movements task to load on both factors is plausible.

Special Topics and Tests

Different types of score reliability coefficients (test–retest, internal consistency, etc.) for 
individual indicators were described in Chapter 3. There are also a few different coef-
ficients for estimating the reliability of construct (factor) measurement through all its 
indicators in CFA. Two of these coefficients are described in Topic Box 9.1. Values of one 
of these coefficients for the two-factor model of the KABC‑I in Figure 9.1 are reported 
in the box.

For CFA models fitted to data from a single sample, the choice between analyzing 
factors in unstandardized versus standardized form (e.g., Figure 6.1) usually has no 
impact on model fit. Steiger (2002) describes an exception called constraint interac-

TABLE 9.6. Ten Largest Modification Indexes for a Two-Factor Model of the 
KABC‑I

Path MI

Simultaneous → Hand Movements   20.091**

EWO  ENR
  20.042**

Simultaneous → Number Recall     7.010**

EHM  EWO
    7.015**

EHM  ESM
  4.847*

EHM  EMA
3.799

Sequential → Matrix Analogies 3.247

ENR  EPS
3.147

Sequential → Gestalt Closure 2.902

EMA  EPS
2.727

Note. KABC‑I, Kaufman Assessment Battery for Children, first edition; MI, modification index; HM, Hand 
Movements; WO, Word Order; SM, Spatial Memory; MA, Matrix Analogies; PS, Photo Series.

*p < .05; **p < .01. 
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Topic Box 9.1

Reliability of Construct Measurement

Raykov (1997, 2004) describes coefficients that estimate the reliability of factor 
(construct) measurement. This coefficient is the factor rho coefficient, which 
is a ratio of explained variance over total variance that can be expressed in 
terms of CFA parameters. It can also be computed for factors in SR models. For 
factors with no error covariances that involve their indicators (i.e., uncorrelated 
measurement errors), the rho coefficient is estimated in the unstandardized solu-
tion as follows:

	

2

2

ˆ ˆ
ˆ

ˆ ˆ ˆi i

i
X X

i ii  

	 (9.1)

where ˆΣ λi  is the sum of the estimated unstandardized factor loadings among 
indicators of the same factor, φ̂  is the estimated factor variance, and ˆΣ θii  is 
the sum of the unstandardized error variances of those indicators. A different 
formula is needed for factors with indicators that share at least one error covari-
ance:
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where ˆΣ θij  is the sum of the nonzero unstandardized error covariances. Raykov 
(2004) describes variations of these equations for the standardized solution.

Calculation of ρ̂
i iX X  for the sequential processing construct of the two-factor 

model in Figure 9.1 is demonstrated next. The errors of the three indicators of 
this factor are independent, so we need Equation 9.1. From Table 9.2 we obtain 
these numerical results: The unstandardized factor loadings are 1.000, 1.147, 
and 1.388. The unstandardized error variances are 8.644, 1.998, and 2.902; 
the estimated variance of the sequential factor is 2.839; the sum of the factor 
loadings is 3.535; and the sum of the error variances is 13.564. Given these 
totals, the estimated reliability for measurement of the sequential processing 
factor is

ρ̂ =
i iX X  [3.5352 (2.839)]/[3.5352 (2.839) + 13.564] = .723

which is not a terrible result, but still the evidence for convergent validity among 
the indicators of this factor is questionable (see Table 9.2). The estimated reli-
ability for measurement of the simultaneous processing factor by its five indica-
tors (Figure 9.1) is somewhat higher, ρ̂

i iX X  = .786. See Hancock and Mueller 
(2001) for information about other factor reliability coefficients; Byrne (2006) 
describes factor reliability coefficients printed by EQS.



�		  Measurement Models and CFA	 243

tion that can occur for CFA models where some factors have only two indicators and a 
cross-factor equality constraint is imposed on the loadings of indicators on different 
factors. In some cases the value of 2

Dχ (1) for the test of the equality constraint depends 
on how the factors are scaled. Constraint interaction probably does not occur in most 
applications of CFA, but you should know something about this phenomenon in case it 
ever crops up in your own work. See Appendix 9.B for more information.

Some other kinds of tests with CFA models are briefly described. Whether a set of 
indicators is congeneric, tau-equivalent, or parallel can be tested in CFA by comparing 
hierarchical models with the chi-square difference test (Chapter 8). Congeneric indica-
tors measure the same construct but not necessarily to the same degree. The CFA model 
for congenerity does not impose any constraints except that a set of indicators is speci-
fied to load on the same factor. If this model fits reasonably well, one can proceed to test 
the more demanding assumptions of tau equivalence and parallelism. Tau-equivalent 
indicators are congeneric and have equal true score variances. This hypothesis is tested 
by imposing equality constraints on the unstandardized factor loadings (i.e., they are all 
fixed to 1.0). If the fit of the tau equivalence model is not appreciably worse than that of 
the congenerity model, then additional constraints can be imposed that test for parallel-
ism. Specifically, parallel indicators have equal error variances. If the fit of this model 
with equality-constrained residuals is not appreciably worse than that of the model for 
tau equivalence, the indicators may be parallel. All these models assume independent 
errors and must be fitted to a covariance matrix, not a correlation matrix; see Brown 
(2006, pp. 238–252) for examples.

It was noted earlier that fixing all factor correlations to 1.0 in a multifactor model 
generates a single-factor model that is nested under the original. In the factor analysis 
literature, the comparison with the chi-square difference test just described is referred 
to as the test for redundancy. A variation is to fix the covariances between mul-
tiple factors to zero, which provides a test for orthogonality. If the model has only 
two factors, this procedure is not necessary because the statistical test of the factor 
covariance in the unconstrained model provides the same information. For models 
with three or more factors, the test for orthogonality is akin to a multivariate test for 
whether all the factor covariances together differ statistically from zero. Note that each 
factor should have at least three indicators for the redundancy test; otherwise, the con-
strained model may not be identified; see Nunnally and Bernstein (1994, pp. 576–578) 
for examples.

Remember that estimates of equality-constrained factor loadings are equal in the 
unstandardized solution, but the corresponding standardized coefficients are typically 
unequal. This will happen when the two indicators have different variances. Thus, it 
usually makes no sense to compare standardized coefficients from equality-constrained factor 
loadings. If it is really necessary to constrain a pair of standardized loadings to be equal, 
then one option is to fit the model to a correlation matrix using the method of con-
strained estimation (Chapter 7).
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Items as Indicators and Other Methods  
for Analyzing Items

There are examples of “successful” CFA analyses where the indicators are Likert scale 
items instead of scales with continuous total scores (e.g., Harris, 1995), but there are 
potential problems. One is that default ML estimation is not generally appropriate for 
Likert-type items, which are ordinal variables. Some special methods for ordinal indi-
cators were described in Chapter 7, including robust WLS estimation. These special 
methods can be more difficult to apply than ML estimation.

Another problem is that item-level data tend to be “noisy.” Specifically, people’s 
responses to individual items may be unstable, so item reliabilities can be low. Items 
in exploratory factor analysis (EFA) often have relatively high secondary loadings 
(e.g.,  about .30) on factors other than the one on which they have primary loadings 
(e.g., > .50). Secondary loadings in EFA often account for relatively high proportions 
of the variance, so constraining them to zero in CFA may be too conservative. Con-
sequently, the more restrictive CFA model may not fit the data. This is one reason the 
specification of a CFA model based on EFA outcomes and analyzed with the same data 
may lead to the rejection of the CFA model (van Prooijen & van der Kloot, 2001). That 
is, CFA does not generally “confirm” the results of EFA.

An alternative to analyzing items as indicators with special estimators is to analyze 
parcels with a normal theory method, such as ML. Recall that (1) a parcel is a total score 
across a set of homogeneous items and (2) parceling is controversial because it requires 
items that are unidimensional for each parcel. If this assumption is not tenable, then the 
results may be misleading (Chapter 7).

In some situations, other statistical methods for item-level analyses are better alter-
natives than CFA. When constructing a scale, the derivation of classical items statis-
tics, such as item-total correlations and item difficulties (the proportion of respondents 
who responded correctly), with procedures in general statistical programs for analyzing 
scales, such as the Reliability procedure in SPSS, offers more flexibility. This is also 
true for EFA, which analyzes unrestricted models where each item is allowed to load 
on every factor. A more sophisticated alternative is the generation of item characteris-
tic curves (ICC) according to item response theory (IRT). Briefly, the analysis of ICC 
yields detailed estimates about characteristics of individual items, including their dif-
ficulty, discrimination (i.e., the degree to which an item discriminates among persons in 
different regions on a latent variable), and susceptibility to guessing. It is also assumed 
in IRT that relations between items and factors as represented by the ICC are nonlinear. 
For example, the probability of correctly answering a particular item may be slight for 
low-ability examinees but increases geometrically at increasingly higher levels of abil-
ity before leveling off. In contrast, CFA assumes linear associations between indicators 
(items in this case) and underlying factors. The IRT method is also oriented toward the 
development of tailored tests, subsets of items that may optimally assess a particu-
lar person based on the correctness of their previous responses. If the examinee fails 
initial items, for instance, then the computer presents easier ones. Testing stops when 
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more difficult items are consistently failed. See Reise, Widaman, and Pugh (1993) for a 
comparison of CFA and IRT for item-level analyses. Noar (2007) considers the role of 
SEM in test development, and Kamata and Bauer (2008) compare the specification of 
two-parameter IRT models and factor analysis models for dichotomous items. The use 
of IRT/ICC analysis as an alternative to CFA for estimating measurement invariance at 
the item level is considered later.

Estimated Factor Scores

When raw data are analyzed, it is possible to calculate factor scores for each case. Because 
factors are measured not directly but instead through their indicators, such scores are 
only estimates of the cases’ relative standings on the factor. There is more than one way 
to calculate factor scores, however, and although scores derived using different methods 
tend to be highly correlated, they generally do not all yield identical rank orderings of 
the cases. For example, given structure coefficients, multiple regression (MR) can be 
used to derive estimated factor scores that are weighted combinations of the indicators 
and the factor. The weights derived in MR are those that lead to the closest correspon-
dence between the underlying factor(s) and the estimated factor scores. An alternative 
to empirically derived weights is simply to add the scores for each case across the indi-
cators, which weights each variable equally. The application of equal weights is called 
unit weighting. This method has the advantage of simplicity and less susceptibility to 
sample-specific variation, but unit weights may not be optimal ones within a particular 
sample. Given that there is more than one way to derive estimated factor scores, Bollen’s 
(1989) perspective on this matter is relevant: researchers should probably refrain from 
making too fine a comparison on estimated factor scores.

Equivalent CFA Models

There are two sets of principles for generating equivalent CFA models—one for mod-
els with multiple factors and another for single-factor models. As an example of the 
former, consider the two-factor model of self-perception of ability and achievement by 
Kenny (1979) presented in Figure 9.2(a) without measurement errors to save space. I 
used the method of constrained ML estimation in the SEPATH module of STATISTICA 9 
Advanced to fit this model to the correlation matrix reported in a sample of 556 Grade 8 
students that is presented in Table 9.7. Values of selected fit statistics indicate acceptable 
overall model fit:

	
2
Mχ (8) = 9.256,  p = .321 

	 RMSEA = .012 (.017–.054) 
	 GFI = .994;  CFI = .999;  SRMR = .012
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The other three CFA models presented in Figure 9.2 are equivalent versions of the origi-
nal model that yield the same values of fit statistics and predicted correlations. The 
equivalent model of Figure 9.2(b) is a hierarchical CFA model in which the unanalyzed 
association between the factors of the original model is replaced by a second-order fac-
tor (A), which has no indicators and is presumed to have direct effects on the first-order 
factors (ability, plans). This specification provides a specific account of why the two 
lower-order factors (which are endogenous in this model) covary. Because the second-

FIGURE 9.2. Four equivalent measurement models of self-perceived ability and educational 
plans. Measurement errors are omitted. The symbol for an unanalyzed association in (c) 
represents an error correlation between the corresponding pair of indicators. AS, Ability Self-
Concept; PTE, Perceived Teacher Evaluation; PPE, Perceived Parental Evaluation; PFE, Perceived 
Friends’ Evaluation; EA, Educational Aspiration; CP, College Plans.

TABLE 9.7. Input Data (Correlations) for Analysis of Two-Factor Model of 
Perceived Ability and Educational Plans

Variable 1 2 3 4 5 6

1.  Ability Self-Concept  1.00

2.  Perceived Parental Evaluation   .73 1.00

3.  Perceived Teacher Evaluation   .70   .68  1.00

4.  Perceived Friends’ Evaluation   .58   .61   .57 1.00

5.  Education Aspiration   .46   .43   .40   .37 1.00

6.  College Plans   .56   .52   .48   .41   .71 1.00

Note. Input data are from Kenny (1979); N = 556.
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order factor has only two indicators, it is necessary to constrain its direct effects on the 
first-order factors to be equal; that is:

	 A → Ability = A → Plans = 1.0

The other two equivalent versions are unique to models wherein some factors have only 
two indicators. The equivalent model in Figure 9.2(c) features the substitution of the 
plans factor with a correlation between the measurement error of its indicators. The 
equivalent model in Figure 9.2(d) features replacement of the correlation between the 
ability and plans factor with the specification that some indicators are multidimensional. 
Although the factors are assumed to be orthogonal in this model, all six indicators have 
loadings on a common factor, which explains the sample correlations just as well as the 
original model. Note that because the factors are specified as independent in the model 
of Figure 9.2(d), it is necessary to constrain the factor loadings of the educational aspira-
tion and college plans indicators to be equal in order to identify this model.

For two reasons, the situation regarding equivalent versions of CFA models with 
multiple factors is even more complex than suggested by the last example. First, it is 
possible to apply the Lee–Hershberger replacing rules (Chapter 8) to substitute factor 
covariances (unanalyzed associations) with direct effects, which makes some factors 
endogenous. The resulting model is not a CFA model. It is an SR model, but it will fit the 
data equally well. For example, substitution of the factor covariance Ability  Plans in 
the original model of Figure 9.2(a) with the direct effect Ability → Plans generates an 
equivalent SR model. Second, Raykov and Marcoulides (2001) show that there is actually 
a set of infinitely many equivalent models for standard multifactor CFA models. For 
each equivalent model in this set, the factor covariances are eliminated (orthogonality 
is specified) and replaced by one or more factors not represented in the original model 
with fixed unit loadings (1.0) on all indicators. These models with additional factors 
explain the data just as well as the original.

Equivalent versions of single-factor CFA models can be derived using Hershberger’s 
(1994) reversed indicator rule, which involves the specification of one of the observed 
variables as a cause (formative) indicator while the rest remain as effect (reflective) indi-
cators. Consider the hypothetical single-factor model of reading presented in Figure 
9.3(a). The effect indicators represent different tasks, including word recognition, word 
attack, and phonics skills. An equivalent version is presented in Figure 9.3(b), and it fea-
tures phonics skill as a cause of reading. Note that the factor in this equivalent model is 
no longer exogenous: because a casually prior variable (phonics skill) has a direct effect 
on it, the factor here is endogenous and thus has a disturbance. Also, the phonics skill 
indicator is exogenous in Figure 9.3(b). Thus, this equivalent model is actually an SR 
model. A total of three other equivalent models could potentially be generated, one with 
each of the remaining indicators specified as causes, Not all of these equivalent versions 
may be theoretically plausible, but at least the one with phonics skill as a cause indicator 
is logical (e.g., Wagner, Torgeson, & Rashotte, 1994).

The factor in Figure 9.3(b) is an example of a multiple indicators and multiple 
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causes (MIMIC) factor. A MIMIC factor has both cause indicators and effect indicators, 
and they can be continuous as in the previous example or categorical. A categorical 
cause indicator represents group membership. We will see in Chapter 11 that a MIMIC 
model with a cause indicator is a special case of the SEM approach to estimating group 
differences on latent variables.

Hierarchical CFA Models

It is possible to represent hypotheses about hierarchical relations among constructs 
through the specification of higher-order factors with presumed direct causal effects on 

FIGURE 9.3. Application of the reversed indicator rule to generate an equivalent one-factor 
model of reading.
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lower-order factors. For example, the hierarchical CFA model in Figure 9.4 represents 
the hypotheses that (1) indicators X1–X3 measure verbal ability, X4–X6 reflect visual-
spatial ability, and X7–X9 depend on memory ability; and (2) each of these first-order 
factors has two direct causes. One is a second-order factor, which represents a general 
ability construct (g) with no indicators. This is because second-order factors are mea-
sured indirectly through the indicators of the first-order factors. The specification of g 
as a common cause of the first-order factors implies that associations between the latter 
are spurious. The other presumed direct cause of each first-order factor is a disturbance, 
which represents factor variance not explained by g. Thus, the disturbances and g are 
exogenous, but the first-order factors are endogenous in Figure 9.4.

To identify a hierarchical CFA model, there must be at least three first-order fac-
tors. Otherwise, the direct effects of the second-order factor on the first-order factors or 
the disturbance variances may be underidentified. Each first-order factor should have at 
least two indicators. The model in Figure 9.4 satisfies both of these requirements. There 
are two ways to scale the second-order factor g in the figure. One way is to fix any one 
of g’s unstandardized direct effects on a first-order factor to 1.0. This tactic corresponds 
to the specification

	 g → Verbal Ability = 1.0

in Figure 9.4. A second option is to fix the variance of g to 1.0 (standardize it). This 
approach leaves all three direct effects of g on the first-order factors as free parameters. 

FIGURE 9.4. A hierarchical confirmatory factor analysis model of the structure of cognitive 
ability.
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Either means of scaling g in a single-sample analysis is probably fine. In a multiple-
sample analysis, however, it is typically inappropriate to standardize factors. See Neu-
man, Bolin, and Briggs (2000), who analyzed a hierarchical model of cognitive ability 
similar to that represented in Figure 9.4 for a group-administered test.

Models for Multitrait–Multimethod Data

The method of CFA can also be used to analyze data from a multitrait–multimethod 
(MTMM) study, the logic of which was first articulated by Campbell and Fiske (1959). 
In an MTMM study, two or more traits are measured with two or more methods. Traits 
are hypothetical constructs that concern cognitive abilities, personality attributes, or 
other stable characteristics. Methods refer to multiple test forms, occasions, methods 
(e.g., self-report), or informants (e.g., parents) (Marsh & Grayson, 1995). The main goals 
are to (1) evaluate the convergent and discriminant validity of tests that vary in their 
measurement method and (2) derive separate estimates of the effects of traits versus 
methods on the observed scores.

The earliest procedure for analyzing data from an MTMM study involved inspec-
tion of the correlation matrix for all variables. For example, convergent validity would 
be indicated by the observation of high correlations among variables that supposedly 
measure the same trait but with different methods. If correlations among variables that 
should measure different traits but use the same methods are relatively high, then com-
mon method effects are indicated. This would imply that correlations among different 
variables based on the same method may be relatively high even if they measure unre-
lated traits.

The CFA method offers a more systematic way to analyze data from an MTMM 
study. When first applied to the problem in the 1970s, researchers typically specified 
CFA models like the one presented in Figure 9.5, a correlated trait-correlated method 
(CTCM) model. Such models have separate trait and method factors that are assumed to 
covary, but method factors are assumed to be independent of trait factors. In the figure, 
indicators X1–X3 are based on one method, X4–X6 are based on another method, and 
X7–X9 are based on a third method. This model also specifies that the set of indicators 
(X1, X4, X7) measures one trait but that each of the other two sets, (X2, X5, X8) and (X3, 
X6, X9), measures different traits. Given these specifications, relatively high loadings on 
trait factors would suggest convergent validity, high loadings on method factors would 
indicate common method effects, and moderate correlations (not too high) between the 
factors would indicate discriminant validity.

There are reports of “successful” analyses of CTCM models (e.g., Villar, Luengo, 
Gómez-Fraguela, & Romero, 2006), but others have found that such analyses tend to 
yield inadmissible or unstable solutions. For example, Marsh and Bailey (1991) found in 
computer simulation studies that illogical estimates were derived about three-quarters 
of the time for CTCM models. Kenny and Kashy (1992) noted part of the problem: 
CTCM models are not identified if the loadings on the trait or method factors are equal. 
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If the loadings are different but similar in value, then CTCM models may be empirically 
underidentified.

Some simpler alternatives to CTCM models have been proposed, including those 
with multiple but uncorrelated method factors, a single-method factor specified to affect 
all the indicators, and a model like the one in Figure 9.6, which is a correlated unique-
ness (CU) model (Marsh & Grayson, 1995). This model has measurement error correla-
tions among indicators based on the same method instead of separate method factors. 
That is, method effects are assumed to be a property of each indicator, and relatively high 
correlations among their residuals are taken as evidence for common method variance. 
Note that the similarity of methods for different traits is only one possible explanation 
for high measurement error correlations in CU models. Saris and Alberts (2003) evalu-
ated alternative CFA models that could account for correlated residuals in CU models, 
including models that represented response biases, effects due to relative answers (when 
respondents compare their answers), and method effects. See Brown (2006, chap. 6) and 
Eid et al. (2008) for more information about MTMM analyses with CFA.

Measurement Invariance and Multiple-Sample CFA

Broadly defined, measurement invariance (equivalence) concerns whether scores from 
the operationalization of a construct have the same meaning under different conditions 
(Meade & Lautenschlager, 2004). These different conditions could involve consistency of 
measurement over populations, time of measurement, or methods of test administration 

FIGURE 9.5. A correlated-trait correlated method (CTCM) model for multitrait–multimethod 
data. Measurement errors are omitted and assumed to be independent.
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(e.g., computer administered vs. paper-and-pencil format). Stability over time is referred 
to as longitudinal measurement invariance, and it concerns whether a set of indicators 
has the same factor structure across different occasions in a longitudinal design. If so, 
then measurement is invariant over time. Invariance over populations is related to the 
concept of construct bias, which implies that a test measures something different in 
one group (e.g., men) than in another (women). If not (i.e., there is no evidence for con-
struct bias), then measurement is invariant over groups. The CFA technique is widely 
used to test hypotheses about measurement invariance over groups. Because the basic 
logic of invariance testing over groups is the same as for invariance testing over time 
or modes of test administration, only the former is described next. See Brown (2006, 
pp. 252–266) for an example of testing for longitudinal measurement invariance. See 
also Whitaker and McKinney (2007), who studied the invariance of job satisfaction rat-
ings as a function of administration method (Internet vs. paper-and-pencil format) and 
respondent age and gender.

Testing Strategy

Hypotheses about measurement invariance over groups are tested in multiple-sample 
CFA where a measurement model is simultaneously fitted to the covariance matrices 
from at least two independent samples. The most basic form of measurement invariance 
is configural invariance or equal form invariance. It is tested by specifying the same 
measurement model across the groups. In this model, both the number of factors and 
the factor-indicator correspondence are the same, but all parameters are freely estimated 
within each sample. If this model does not fit the data, then measurement invariance 
does not hold at any level. Otherwise, the configural invariance hypothesis, Hform, is 
retained. If so, then the researcher could conclude that the same constructs are mani-
fested in somewhat different ways in each group. These “different ways” refer to the 

FIGURE 9.6. A correlated uniqueness (CU) model for multitrait–multimethod data.
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unstandardized factor loadings, which were freely estimated in each group. This means 
that if factor scores were calculated, a different weighing scheme would be applied to the 
indicators in each group.

A stronger form of measurement invariance is construct-level metric invariance 
or equal factor loadings, which means that the unstandardized factor loadings of each 
indicator are equal across the groups. If the equal factor loadings hypothesis, or HΛ, 
is retained, then the researcher could conclude that the constructs are manifested the 
same way in each group. This implies that if factor scores were calculated, the same 
weighing scheme could be applied across all groups. The hypothesis HΛ is tested by (1) 
imposing cross-group equality constraints on the factor loadings and (2) comparing 
with the chi-square difference test two hierarchical models, one that corresponds to HΛ 
and the other corresponds to Hform, which was estimated with no equality constraints. 
This assumes that Hform was not rejected.

If 2
Dχ  for the comparison just described is not statistically significant, then the fit of 

the model with equality-constrained factor loadings is not appreciably worse than that 
of the model without these constraints. That is, HΛ is retained. If so, the researcher can 
go on to test even stronger forms of measurement invariance, described momentarily. 
If HΛ is rejected, though, the less strict hypothesis of partial measurement invari-
ance, or Hλ, can be tested by releasing some, but not all, of the cross-group equality 
constraints on the unstandardized factor loadings. The goal is to locate the indicator(s) 
responsible for metric noninvariance at the construct level (Cheung & Rensvold, 2002). 
In subsequent analyses, the unstandardized loadings of these indicators are freely esti-
mated in each sample, but the loadings of the remaining indicators are constrained to 
be equal across the groups. Indicators with appreciably different loadings across groups 
are differential functioning indicators (items), and the pattern where some, but not 
all indicators have equal loadings in every group is indicator-level metric invariance 
(i.e., Hλ). The hypothesis of partial measurement invariance is tested by 2

Dχ  for the com-
parison of the less restricted model represented by Hform with the more restricted model 
represented by Hλ.

One can also test additional hypotheses about even stricter forms of invariance. The 
hypotheses described next all generally assume that HΛ (equal factor loadings hypoth-
esis) was not rejected. For example, the equivalence of construct variances and covar-
iances hypothesis, or HΛ, Φ, assumes that the factor variances and covariances are equal 
across the groups. The equivalence of residual variances and covariances hypothesis, 
or HΛ, Θ, assumes that the measurement error variance for each indicator and all corre
sponding error covariances (if any) are equal across the groups. Each of these hypoth-
eses is tested by comparing with 2

Dχ  the less restricted model implied by HΛ with the 
more restricted model represented by HΛ, Φ or HΛ, Θ. See Cheung and Rensvold (2002) 
for more information about measurement invariance hypotheses.

The testing strategy just outlined corresponds to model trimming where an ini-
tial unconstrained model (represented by Hform) is gradually restricted by adding con-
straints (e.g., next test HΛ by constraining factor loadings to be equal across groups). 
It is also possible to test for measurement invariance through model building where 
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constraints on an initially restricted model, such as one represented by HΛ, Θ (equal 
loadings and error variances–covariances), are gradually released (e.g., next test HΛ by 
allowing error variances–covariances to be freely estimated in each group). The goal 
of both approaches is the same: find the most restricted model that still fits the data 
and respects theory. That theory may dictate which hypothesis testing approach, model 
trimming or building, is best.

Cheung and Rensvold (2002) remind us that the chi-square difference test is affected 
by overall sample size. In invariance testing with very large samples, this means that 

2
Dχ  could be statistically significant, even though the absolute differences in parameter 

estimates are of trivial magnitude. That is, the outcome of the chi-square difference test 
could indicate the lack of measurement invariance when the imposition of cross-group 
equality constraints makes relatively little difference in model fit. One way to detect this 
outcome is to compare the unstandardized parameter estimates across the two solutions. 
Another is to inspect changes in values of approximate fit indexes, but there are few 
guidelines for doing so in invariance testing. In two-group computer simulation analy-
ses, Cheung and Rensvold (2002) studied the characteristics of changes in the values of 
20 different approximate fit indexes when invariance constraints were added. Changes 
in most indexes were affected by model characteristics, including the number of factors 
or the number of indicators per factor. That is, model size and complexity were generally 
confounded with changes in approximate fit indexes. An exception is the Bentler CFI, 
for which Cheung and Rensvold (2002) suggested that change in CFI values less than 
or equal to .01 (i.e., ∆CFI ≤ .01) indicate that the null hypothesis of invariance should 
not be rejected. Of course, this suggested threshold is not a golden rule, nor should it be 
treated as such. Specifically, it is unknown whether this rule of thumb would general-
ize to other models or data sets not directly studied by Cheung and Rensvold (2002). A 
second approximate fit index that performed relatively well in Cheung and Rensvold’s 
(2002) simulations is McDonald’s (1989) noncentrality index (NCI).2

Meade, Johnson, and Braddy (2008) extended the work of Cheung and Rensvold 
(2002) by studying the performance of several approximate fit indexes in generated data 
with different levels of lack of measurement invariance, from trivial to severe. Types of 
lack of measurement invariance studied by Meade et al. (2008) included different fac-
tor structures (forms), factor loadings, and indicator intercepts across two groups. In 
very large samples studied by Meade et al. (2008), such as n = 6,400 per group, the 2

Dχ  
statistic indicated lack of measurement invariance most of the time when there were 
just slight differences in measurement model parameters across the groups. In contrast, 
values of approximate fit indexes were generally less affected by group size and also by 
the number of factors and indicator than the chi-square difference test in large samples. 
The Bentler CFI was among the best performing approximate fit indexes along with the 
McDonald NCI. Based on their results, Meade et al. (2008) suggested that change in CFI 

2NCI = exp[ –½ ( 2
Mχ – dfM) / N ] where “exp” is the exponential function ex and e is the natural base, 

approximately 2.71828. The range of the NCI is 0–1.0 where 1.0 indicates the best fit. Mulaik (2009) notes 
that values of the NCI tend to drop off quickly from 1.0 with small increases in lack of fit. 
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values less than or equal to .002 (i.e., ∆CFI ≤ .002) may indicate that deviations from 
perfect measurement invariance are functionally trivial. These authors also provide a 
table of values for changes in the NCI that vary depending on the number of factors 
and indicators (Meade et al., 2008, p. 586). Again, these suggested thresholds are not 
golden rules, but results by Cheung and Rensvold (2002) and Meade et al. (2008) indi-
cate that researchers working with very large samples should look more to approximate 
fit indexes than statistical tests to establish measurement invariance.

Empirical Example

Sabatelli and Bartle–Haring (2003) administered to each spouse in a total of 103 married 
heterosexual couples three indicators of family-of-origin experiences (FOE) and two 
indicators of marital adjustment. The indicators of FOE are retrospective measures of 
the perceived quality of each spouse’s relationship with his or her own father or mother 
and of the relationship between the parents while growing up. The marital adjustment 
indicators are ratings of problems and intimacy in the marital relationship. Higher scores 
on all variables indicate more positive reports of FOE or marital adjustment. Presented 
in Table 9.8 are descriptive statistics for these variables in the samples of husbands and 
wives. Note that means are reported in the table, but they are not analyzed here.3

TABLE 9.8. Input Data (Correlations, Standard Deviations) for a Two-Factor 
Model of Family-of-Origin Experiences and Marital Adjustment Analyzed across 
Samples of Husbands and Wives

Husbands

Variable 1 2 3 4 5 M SD

Marital adjustment indicators

   1.  Problems  —   .658 .288 .171 .264 155.547 31.168

   2.  Intimacy .740  — .398 .295 .305 137.971 20.094

Family-of-origin experiences indicators

   3.  Father .265 .422  — .480 .554 82.764 11.229

   4.  Mother .305 .401 .791   — .422 85.494 11.743

   5.  Father–Mother .315 .351 .662 .587   — 81.003 13.220

      Wives M 161.779 138.382 86.229 86.392 85.046

SD   32.936   22.749 13.390 13.679 14.382   

Note. These data are from S. Bartle-Haring (personal communication, June 3, 2003); n1 = 103 husbands (above 
diagonal), n2 = 103 wives (below diagonal). Means are reported but not analyzed for the model in Figure 9.7, 
but means are analyzed for the model in Figure 11.5.

3It could be argued that the samples in this analysis—husbands and wives—are not really independent 
groups because each spousal pair is “linked” across the two samples. An alternative way to view this data 
set is that individuals are nested under pairs (couples); that is, the data are hierarchical and thus amenable 
to a multilevel analysis. This possibility is not pursued in this pedagogical example. 
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Scaling Factors in Multiple-Sample Analyses

The two factor, five-indicator model for this example is presented in Figure 9.7. The best 
way to scale the factors in a multiple-sample analysis is to select the same reference vari-
able for each factor in each group. Here, the unstandardized loadings of the father indica-
tor and the problems indicator were fixed to 1.0 in order to scale their respective factors 
in both samples. However, there are two potential complications: First, loadings fixed to 
1.0 in both groups cannot be tested for statistical significance. The second complication 
follows from the first: because fixed loadings are excluded from tests of measurement 
invariance, it must be assumed a priori that the reference variables measure their fac-
tors equally well over groups. This assumption means that if the researcher decides to 
fix the loading of an indicator that is not metric invariant across the groups, then the 
subsequent results may be inaccurate. One way to address this dilemma is to reanalyze 
the model after fixing the loadings of other indicators to 1.0. If the unstandardized factor 
loadings that were originally fixed are comparable in the new analysis in which they are 
free parameters, then that indicator may be metric invariant. See Reise et al. (1993) for 
more information about factor scaling when testing for measurement invariance. Little, 
Slegers, and Card (2006) describe a method to scale factors in a multiple-group analysis 
that involves neither the arbitrary selection of a reference variable nor the standardiza-
tion of factors. This method may be specially well suited to applications of CFA where 
group differences on factor means (i.e., the model has both a covariance structure and a 
mean structure) are also estimated (Chapter 11).

Invariance Testing

With five indicators in each of two samples, there are a total of 5(6)/2 × 2, or 30 observa-
tion for the analysis. Because the samples consist of married couples who share many 
experiences, the initial model assumed a strict form of invariance—one that corresponds 

FIGURE 9.7. A measurement model of family-of-origin experiences and marital adjustment 
evaluated across samples of husbands and wives.
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to HΛ, Φ, Θ, or equivalence of factors loadings, factor variances–covariance, and error 
variances–covariances for husbands and wives. This means that cross-group equality 
constraints were imposed on the estimates of three factor loadings (those not already 
fixed to 1.0), seven variances (of two factors and five measurement errors), and one factor 
covariance (see Figure 9.7). There are no error covariances in the initial model, so it is 
assumed that all of these values are zero in both samples. Because only one estimate of 
each free parameter was required when equality was assumed across the samples, a total 
of 11 parameters require estimates across both samples, so dfM = 30 – 11 = 19.

I used the ML method of EQS 6.1 to simultaneously fit the model of Figure 9.7 with 
cross-group equality constraints to the covariance matrices for husbands and wives 
based on the data in Table 9.8. The program printed this warning:

Do not trust this output 
Iterative process has not converged 

Maximum number of iterations was reached 
30 iterations have been completed and the program stopped

That is, a converged solution was not reached after 30 iterations, the default limit in EQS. 
In a second run with EQS, I increased its iteration limit to 100. In this second analysis, 
EQS generated a converged and admissible solution. Reported in Table 9.9 are values of 
selected fit statistics for the test of HΛ, Φ, Θ. Because the group sizes in this analysis are 
not large (n = 103), we focus on the chi-square difference test when comparing nested 
models. To summarize, the initial model passes the chi-square test ( 2

Mχ (19) = 23.190, 
p = .229), so the hypothesis of exact fit is not rejected. Values of some approximate fit 
indexes seem favorable (GFI = .959, CFI = .990), but the upper bound of the 90% con-
fidence interval based on the RMSEA (.103) just exceeds .10. The result for the SRMR, 
.127, is not favorable (Table 9.9). Across both samples, there were a total of 16 absolute 
correlation residuals > .10 (9 for husbands, 7 for wives). This is a terrible result; there-
fore, the initial model is rejected.

TABLE 9.9. Values of Selected Fit Statistics for Hypotheses about Measurement 
Invariance for a Two-Factor Model of Family-of-Origin Experiences and Marital 
Adjustment Analyzed across Samples of Husbands and Wives

Hypothesis 2
Mχ dfM

2
Dχ dfD

RMSEA  
(90% CI) GFI CFI SRMR

HΛ, Φ, Θ
23.190a 19 — — .047 (0–.103) .959   .990 .127

HΛ, Θ
16.127b 16 7.063c 3 0 (0–.092) .970   .999 .037

HΛ, Θ except EFa   EMo in 
both groups

  7.097d 14 9.030e 2 0 (0–.028) .987 1.000 .026

Note. CI, confidence interval; HΛ, Φ, Θ, equal loadings, factor variances–covariances, and measurement error 
variances–covariances.
ap = .229; bp = .444; cp = .070; dp = .931; ep = .011.
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In the next analysis, the factor variances–covariance for the model in Figure 9.7 
were freely estimated in each sample (i.e., the corresponding cross-group equality con-
straints were dropped). This respecified model corresponds to the invariance hypothesis 
HΛ, Θ, which assumes equal factor loadings and measurement error variances only. This 
second analysis converged to an admissible solution, and values of selected fit statistics 
are reported in Table 9.9. The second model passes the chi-square test ( 2

Mχ (16) = 16.127, 
p = .444), and the improvement in overall fit due to dropping the equality constraint 
on the factor variances-covariance is almost statistically significant ( 2

Dχ (3) = 7.063, p = 
.070). The value of the SRMR is better for the second model (.037) compared with that 
of the original model (.127). The largest absolute correlations are –.094 for husbands 
and .066 for wives, both for the association between the father and mother indicators of 
the FOE factor. The only statistically significant modification indexes in both samples 
were for the error covariances between the indicators just mentioned: husbands: 2χ (1) 
= 7.785, p < .01; wives: 2χ (1) = 7.959, p < .01.

Because it is plausible that reports about quality of relationships with one’s parents 
may have common omitted causes, the third CFA model was respecified so that the error 
covariances between the father and mother indicators of the FOE factor (EFa   EMo; 
Figure 9.7) were freely estimated in each sample. Values of selected fit statistics for 
this third model are reported in Table 9.9, and their values are generally favorable. For 
example, the improvement in overall fit compared with the second model without error 
covariances is statistically significant ( 2

Dχ (2) = 9.030, p = .011), and values of approxi-
mate fit indexes are generally good (e.g., RMSEA = 0). Furthermore, all absolute correla-
tion residuals in both samples are < .10.

Based on these results, the third CFA model was retained as the final measurement 
model. To summarize, this model assumes that all factor loadings and measurement 
error variances are equal for husbands and wives. In contrast, the factor variances and 
covariance and the error covariance between the father and mother indicators were 
freely estimated in each sample. Overall, it seems that the five indicators represented in 
Figure 9.7 measure the same two factors in similar ways for both husbands and wives. 
You can download from the website for this book (see p. 3) the EQS syntax and output 
files for this analysis. Computer files for the same analysis but in LISREL and Mplus are 
also available for download from the site, too.

Parameter Estimates

Reported in the top part of Table 9.10 are ML parameter estimates for the final mea-
surement model that were freely estimated in each sample. Wives may be somewhat 
more variable than husbands on both factors. For example, the estimated variance of 
the marital adjustment factor is 583.685 among wives but 452.140 among husbands. 
Although the estimated factor covariance is also somewhat greater for wives than for 
husbands (139.534 vs. 93.067, respectively), the estimated factor correlation in both 
samples is about .50. These correlations are consistent with discriminant validity in 
factor measurement because their values are not too high. Although neither error cova-
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riance between the father and mother indicators of the FOE factor is statistically sig-
nificant for husbands or wives, their values have opposite signs, negative for husbands 
(–12.617) but positive for wives (16.351).

Reported in the bottom part of Table 9.10 are estimates for parameters of the mea-
surement model constrained to have equal unstandardized values across the samples. 
Because the sizes of the groups are the same (n = 103), the standard errors of these esti-
mates are also equal for husbands and wives. The pattern of standardized factor loadings 
is generally similar within each sample and consistent with convergent validity in factor 
measurement. Note in the table that, although the unstandardized factor loadings are 
equal for every indicator across the two samples, such as .885 for the mother indicator 
of the FOE factor, the corresponding standardized factor loadings are not equal. For 
example, the standardized loading of the mother indicator is .698 for husbands and .779 
for wives (Table 9.10). This pattern is expected because EQS derives standardized esti-
mates based on the separate variances and covariances within each group. If the groups 

TABLE 9.10.  Maximum Likelihood Parameter Estimates for a Two-Factor Model 
of Family-of-Origin Experiences and Marital Adjustment Analyzed across 
Samples of Husbands and Wives

Husbands Wives

Parameter Unst. SE St. Unst. SE St.

Unconstrained estimates

Factor variances and covariance

  FOE   87.896   21.438 1.000 143.102   30.412 1.000

  Mar Adj 452.140 105.126 1.000 583.685 146.837 1.000

  FOE  Mar Adj   93.067   27.853   .467 139.534   40.774   .483

Measurement error covariance

  EFa  EMo −12.617a 15.364 −.246   16.351a   15.634   .319

Equality-constrained estimates

Factor loadings

  Mar Adj → Probs     1.000b   —   .685     1.000b   —   .730

  Mar Adj → Intim     .933     .146   .988      .933     .146   .991

  FOE → Father     1.000b   —   .841     1.000b   —   .893

  FOE → Mother     .885     .079   .698     .885     .079   .779

  FOE → Fa-Mo    .897     .143   .648     .897     .143   .735

Measurement error variances

  EPr 510.199   88.407   .530 510.199   88.407   .466

  EIn      9.687a   63.179   .024     9.687a   63.179   .019

  EFa   36.249c   16.928   .291     36.249c   16.928   .202

  EMo   72.411   16.533   .513   72.411   16.533   .392

  EFa-Mo   97.868   16.264   .580   97.868   16.264   .459

Note. Unst., unstandardized; St., standardized; FOE, family-of-origin experiences. Standardized estimates for 
measurement errors are proportions of unexplained variance.
ap ≥ .05; bNot tested for statistical significance; cp < .05; for all other unstandardized estimates, p < .01.
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do not have the same variances and covariances (likely), then one cannot directly com-
pare standardized estimates across the groups (Chapter 2).

Note that LISREL can optionally print up to four different standardized solutions 
in a multiple-sample analysis, including the within-group standardized solution and the 
within-group completely standardized solution. Both are derived from standardizing the 
within-group variances–covariance matrices except that only the factors are standard-
ized in the former solution versus all variables in the latter solution. The third is LISREL’s 
common metric standardized solution where the factors only are automatically scaled so 
that the weighted average of their covariance matrices across the samples is a correla-
tion matrix. In contrast, all variables are so scaled in the fourth solution, the common 
metric completely standardized solution. The common metric standardized estimates may 
be more directly comparable across the groups than are the within-group standardized 
estimates, but the unstandardized estimates are still preferred for this purpose. Check 
the documentation of your SEM computer tool to find out how it calculates a standard-
ized solution in a multiple-sample analysis. Raykov and Marcoulides (2000) describe 
a method for comparing completely standardized estimates across equal-size groups 
based on analyzing a correlation structure using the method of constrained estimation 
(Chapter 7).

Any type of structural equation model—path models, SR models, and so on—can 
be tested across multiple samples. The imposition of cross-group equality constraints 
on certain parameters allows for tests of group differences on these parameters, just as 
in testing for measurement invariance in CFA. In Chapter 11, I will show you how to 
compare two groups on latent variable means in SEM.

Alternative Methods for Item-Level Analysis of  
Measurement Invariance

The indicators in the empirical example just described are scales, not items. When the 
indicators are items instead of scales, however, IRT/ICC analysis may be a better alterna-
tive in some cases than CFA. Results of a recent computer simulation study by Meade 
and Lautenschlager (2004) are relevant in this regard. These authors studied the relative 
capabilities of CFA and IRT/ICC analysis to detect differential item functioning across 
groups in generated data sets for samples of three different sizes (N = 150, 500, and 
1,000) and for a six-item scale that measured a single factor (i.e., unidimensional items). 
Neither CFA nor IRT/ICC analysis performed well in the smallest sample size, but these 
results were expected. In larger samples, the CFA technique was generally inadequate at 
detecting items with differences in discrimination parameters. The CFA methods were 
also generally unable to detect items with differences in difficulty parameters. In con-
trast, the IRT/ICC methods were generally better at detecting items with either type of 
differential functioning just mentioned. As noted by Meade and Lautenschlager (2004), 
however, the application of IRT/ICC methods to multiscale tests where different sets of 
items are assigned to different scales (i.e., multiple factors are measured) is problematic 
compared with CFA. This is because IRT/ICC methods provide no information about 
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covariances between factors, which may be of interest in testing for measurement invari-
ance at the scale level. Accordingly, Meade and Lautenschlager (2004) suggested that 
both techniques could be applied in the same analysis: IRT/ICC methods for item-level 
analyses within each scale, and CFA methods for scale-level analyses, both of meas-
urement invariance. Along similar lines, Stark, Chernyshenko, and Drasgow (2006) 
describe and test in computer simulations a common strategy for identifying differential 
item functioning using either IRT/ICC of CFA.

Power in Multiple-Sample CFA

The relatively small group sizes (n = 103) in this example analysis limits the statisti-
cal power to detect lack of measurement invariance. In a recent computer simulation 
study, Meade and Bauer (2007) found that the power of tests to detect group differ-
ences in factor loadings was uniformly low (e.g., < .40) when the group size was 100. In 
contrast, power was generally high when the group size was 400, but power estimates 
for an intermediate group size of 200 were highly variable. This is because the power 
of tests for measurement invariance is affected not just by sample size but also by 
model and data characteristics, including the number of indicators per factor and the 
magnitudes of factor intercorrelations. Accordingly, Meade and Bauer’s (2007) results 
did not indicate a single rule of thumb regarding a ratio of group size to the number 
of indicators that could ensure adequate power to detect the absence of measurement 
invariance when the group size is not large. In any event, large group sizes are typi-
cally needed in order to have reasonable statistical power when testing for measure-
ment invariance.

Summary

Many types of hypotheses about measurement can be tested with standard CFA models. 
For example, the evaluation of a model with multiple factors that specifies unidimen-
sional measurement provides specific tests of both convergent and discriminant valid-
ity. Respecification of a measurement model can be challenging because many possible 
changes could be made to a given model. Another problem is that of equivalent mea-
surement models. The only way to deal with both of these challenges is to rely more on 
substantive knowledge than on statistical considerations in model evaluation. When 
analyzing structural equation models across multiple samples, it is common to impose 
cross-group equality constraints on certain unstandardized parameter estimates. In 
multiple-sample analyses, cross-group equality constraints are typically imposed to test 
hypotheses of measurement invariance. There are degrees of measurement invariance, 
but a common tactic is to constrain just the unstandardized factor loadings to be equal 
across the groups. If the fit of the measurement model with constrained factor loadings 
is much worse than that of the unconstrained model, then one may conclude that the 
indicators measure the factors in different ways across the groups.
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Recommended Readings

The book by Brown (2006) is an excellent resource for CFA. It also includes many examples of 
Amos, CALIS, EQS, LISREL, and Mplus syntax for analyzing measurement models. The shorter 
work by Harrington (2009) is less technical and intended for social work researchers, but 
readers from other disciplines would be familiar with the substantive examples. The accessible 
presentation by Thompson (2004) deals with both EFA and CFA. Schmitt and Kuljanin (2008) 
describe issues in the evaluation of measurement invariance in the human resource manage-
ment area.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford 
Press.

Harrington, D. (2009). Confirmatory factor analysis. New York: Oxford University Press.

Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and limita-
tions. Human Resource Management Review, 18, 210–222.

Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts 
and applications. Washington, DC: American Psychological Association.

Exercises

	 1.	 Reproduce the values of the structure coefficients in Table 9.3 using the tracing 
rule for the model in Figure 9.1 and the parameter estimates in Table 9.2.

	 2.	 Use an SEM computer tool to derive the standardized residuals for the corre-
sponding correlation residuals in Table 9.5 for the model in Figure 9.1 and the 
data in Table 9.1.

	 3.	 Show the calculation of ρ̂
i iX X = .786 for the simultaneous processing factor in 

Figure 9.1 with the parameter estimates in Table 9.2. (See Topic Box 9.1.)

	 4.	 Evaluate the fit of a respecified version of the model in Figure 9.1 but with a 
direct effect from the simultaneous processing factor to the Hand Movements 
task against the data in Table 9.1.

	 5.	 Derive dfM for the hierarchical CFA model in Figure 9.4.

	 6.	 Use an SEM computer tool to test the hypothesis Hform for the model in Fig-
ure 9.7 with the data in Table 9.8; do not include any error covariances in this 
analysis. Look carefully through the output. What did you find?

	 7.	 Why would it be incorrect to scale the factors in a multiple-sample CFA by fix-
ing their variances to 1.0 in all samples?
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APPENDIX 9.A

Start Value Suggestions for Measurement Models

These recommendations concern measurement models, whether those models are CFA models 
or part of an SR model. Unstandardized variables, including the factors, are assumed. Initial esti-
mates of factor variances should probably not exceed 90% of that of the observed (sample) vari-
ance for the corresponding reference variable. Start values for factor covariances follow the initial 
estimates of their variances. That is, they are the product of each factor’s standard deviation (the 
square root of the initial estimates of their variances) and the expected correlation between them. 
If the indicators of the same factor have similar variances to that of the reference variable, then 
initial estimates of their factor loadings can also be 1.0. If the reference variable is, say, one-tenth 
as variable as another indicator of the same factor, the initial estimate of the other indicator’s factor 
loading could be 10.0. Conservative start values for measurement error variances could be 90% 
of the observed variance of the associated indicator, which assumes that only 10% of the variance 
will be explained. Bentler (1995) suggests that it is probably better to overestimate the variances 
of exogenous variables than to underestimate them. This advice is also appropriate for Heywood 
cases of the type where a variance estimate is negative: in the reanalysis of the model, try a start 
value that is higher than that in the previous run.
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APPENDIX 9.B

Constraint Interaction in Measurement Models

Suppose that a researcher specifies a standard two-factor CFA model where the indicators of factors 
A are X1 and X2 and the indicators of factor B are X3 and X4. The sample covariance matrix where 
the order of the variables is X1 to X4 and N = 200 is as shown here:

It is believed that the unstandardized loadings of X2 and X4 on their respective factors are equal. To 
test this hypothesis, an equality constraint is imposed on the unstandardized estimates, or

		  A → X2 = B → X4

and this restricted model is compared to the one without this constraint. Ideally, the value of 
2
Dχ (1) for this comparison should not be affected by how the factors are scaled, but this ideal is not 

realized for this example. If X1 and X3 are the reference variables for their respective unstandard-
ized factors, then 2

Dχ (1) = 0. However, if instead the factor variances are fixed to 1.0 (standard-
ized), then 2

Dχ (1) = 14.017 (calculated in LISREL) for the same comparison. (Try it!)
This unexpected result is an example of constraint interaction, which means that the value of 

the chi-square difference statistic for the test of the equality constraint depends on how the factors 
are scaled. It happens in this example because the imposition of the cross-factor equality constraint 
has the unintended consequence of making unnecessary one of the two identification constraints 
that scale the factors. However, removing the unnecessary identification constraint from the model 
with the equality constraint would result in two nonhierarchical models with equal degrees of 
freedom. That is, we could not conduct the chi-square difference test.

Steiger (2002) describes this test for constraint interaction: Obtain 2
Mχ  for the model with the 

cross-factor equality constraint. If the factors are unstandardized, fix the factor loading of the refer-
ence variable to a different constant, such as 2.0. If the factors are standardized, fix the variance of 
one of these factors to a constant other than 1.0. Fit the model so modified to the same data. If the 
value of 2

Mχ  for the modified model is not identical to that of the original, constraint interaction is 
present. If so, the choice of how to scale the factors should be based on substantive grounds. If no 
such grounds exist, the test results for the equality constraint may not be meaningful. See Gonza-
lez and Griffin (2001) for a discussion about how the estimation of standard errors in SEM is not 
always invariant to how the factors are scaled.

(I)
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10

Structural Regression Models

Structural regression (SR) models are syntheses of path models and measurement mod-
els. They are the most general of all the core types of structural equation models 
considered to this point. As in path analysis, the specification of an SR model allows 
tests of hypotheses about effect priority. Unlike path models, though, these effects can 
involve latent variables because an SR model also incorporates a multiple-indicator 
measurement model, just as in CFA. The capability to simultaneously test hypotheses 
about both structural and measurement relations with a single model distinguishes 
SEM from other techniques. Discussed next are strategies for testing SR models. Also 
considered is the estimation of models where some latent variables have cause (forma-
tive) indicators instead of the more usual case where all factors have effect (reflective) 
indicators. The advanced techniques described in the next part of this book extend the 
rationale of SR models to other kinds of analyses.

Analyzing SR Models

A theme common to the specification and identification of SR models (Chapters 5, 6) is 
that a valid measurement model is needed before it makes sense to evaluate the struc-
tural part of the model. This theme carries over to the two approaches to testing SR 
models described next. One is based on an earlier method by Anderson and Gerbing 
(1988) known as two-step modeling. A more recent method by Mulaik and Millsap 
(2000) is four-step modeling. Both methods generally require a fully latent SR where 
every variable in the structural model is a factor measured by multiple indicators. Both 
methods deal with the problem of how to locate the source of a specification error. An 
example follows.

Suppose that a researcher specified the three-factor SR model presented in Figure 
10.1(a).1 The data are collected and the researcher uses one-step modeling to estimate 

1Only two indicators per factor are shown in Figure 10.1 to save space, but having at least three indicators 
per factor is better.
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FIGURE 10.1. Two-step testing of a structural regression (SR) model.
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this model, which means that the measurement and structural components of the SR 
model are analyzed simultaneously in a single analysis. The results indicate poor fit of the 
SR model. Now, where is the model misspecified? the measurement part? the structural 
part? or both? With one-step modeling, it is hard to precisely locate the source of poor fit. 
Two-step modeling parallels the two-step rule for the identification of SR models:

1.	 In the first step, an SR model is respecified as a CFA measurement model. The 
CFA model is then analyzed in order to determine whether it fits the data. If the fit of this 
CFA model is poor, then not only may the researcher’s hypotheses about measurement 
be wrong, but also the fit of the original SR model may be even worse if its structural 
model is overidentified. Look again at Figure 10.1. Suppose that the fit of three-factor 
CFA model in Figure 10.1(b) is poor. Note that this CFA model has three paths among 
the factors that represent all possible unanalyzed associations (covariances, which are 
not directional). In contrast, the structural part of the original SR model, represented in 
Figure 10.1(c), has only two paths among the factors that represent direct effects. If the 
fit of the CFA model with three paths among the factors is poor, then the fit of the SR 
model with only two paths may be even worse. The first step thus involves finding an 
adequate measurement model. If this model is rejected, follow the suggestions in Chap-
ter 9 about respecification of CFA models.

2.	 Given an acceptable measurement model, the second step is to compare the fits 
of the original SR model (with modifications to its measurement part, if any) and those 
with different structural models to one another and to the fit of the CFA model with 
the chi-square difference test. (This assumes that hierarchical structural models are 
compared.) Here is the procedure: If the structural part of an SR model is just-identified, 
the fits of that SR model and the CFA respecification of it are identical. These models 
are equivalent versions that generate the same predicted correlations and covariances. 
For example, if the path A → C were added to the SR model of Figure 10.1(a), then it 
would have just as many parameters as does the CFA measurement model of Figure 
10.1(b). The SR model of Figure 10.1(a) with its overidentified structural model is thus 
nested under the CFA model of Figure 10.1(b). However, it may be possible to trim a 
just-identified portion of an SR model without appreciable deterioration in fit. Structural 
portions of SR models can be trimmed or built according to the same principles as in 
path analysis (Chapter 8).

Given an acceptable CFA measurement model, one should observe only slight 
changes in the factor loadings as SR models with alternative structural components are 
tested. If so, then the assumptions about measurement may be invariant to changes in 
the structural part of the SR model. But if the factor loadings change markedly when 
different structural models are specified, the measurement model is not invariant. This 
phenomenon may lead to interpretational confounding (Burt, 1976), which here means 
that the empirical definitions of the constructs (factor loadings) change depending on 
the structural model. It is generally easier to avoid interpretational confounding in two-
step modeling than in one-step modeling.



268	 CORE TECHNIQUES

Four-step modeling is basically an extension of the two-step method that is intended 
to even more precisely diagnose measurement model misspecification. In this strategy, 
the researcher specifies and tests a sequence of at least four hierarchical models. In order 
for these nested models to be identified, each factor in the original SR model should have 
at least four indicators. As in two-step modeling, if the fit of a model in four-step model-
ing with fewer constraints is poor, then a model with even more constraints should not 
even be considered. The steps are outlined next:

1.	 The least restrictive model specified at the first step is an EFA model—one 
based on a principal (common) factor analysis, not a principal components analysis—
that allows each indicator to load on every factor and where the number of factors is the 
same as that in the original SR model. This EFA model should be analyzed with the same 
method of estimation, such as maximum likelihood (ML), as used to analyze the final SR 
model (at the fourth step). This first step is intended to test the provisional correctness 
of the hypothesis regarding the number of factors, but it cannot confirm that hypothesis 
if model fit is adequate (Hayduk & Glaser, 2000).

2.	 The second step of four-step modeling corresponds to the first step of two-step 
modeling: a CFA model is specified where some factor loadings (pattern coefficients) 
are fixed to zero. These specifications reflect the prediction that the indicator does not 
depend on that factor, not that the indicator is uncorrelated with that factor (i.e., the 
structure coefficient is not expected to equal zero). If the fit of the CFA model at the 
second step is acceptable, one goes on to test the original SR model. Otherwise, the mea-
surement model should be revised.

3.	 The third step involves testing the SR model with the same set of zero pattern 
coefficients as represented in the measurement model from the second step but where at 
least one unanalyzed association from the second step is respecified as a direct effect or 
reciprocal effect and some of the factors are specified as endogenous. That is, the CFA 
measurement model of the second step is respecified as an SR model.

4.	 The last step involves tests of a priori hypotheses about parameters free from the 
outset of model testing. These tests typically involve the imposition of zero constraints, 
or dropping a path from the structural model. The third and fourth steps of four-step 
modeling are basically a more specific statement of activities that would fall under the 
second step of two-step modeling.

Which approach to analyzing SR models is better, two-step or four-step modeling? 
Both methods have their critics and defenders (e.g., Hayduk, 1996; Herting & Costner, 
2000), and both capitalize on chance variation when hierarchical models are tested and 
respecified using the same data. The two-step method is simpler, and it does not require 
≥ 4 indicators per factor. Both two-step and four-step modeling are better than one-step 
modeling, where there is no separation of measurement issues from structural issues. 
Neither method is a “gold standard” for testing SR models, but there is no such thing in 
SEM (Bentler, 2000). Bollen (2000) describes additional methods for testing SR models.



�		  Structural Regression Models	 269

Estimation of SR Models

Discussed next are issues in the estimation of SR models.

Methods

The same estimation methods described in the previous chapters for path models and 
CFA models can be used with SR models. Briefly, standard ML estimation would nor-
mally be the method of choice for SR models with continuous indicators that are nor-
mally distributed. If the distributions are severely non-normal or the indicators are dis-
crete with a small number of categories (e.g., Likert scale items as indicators), then one 
of the alternative methods described in Chapters 7 or 9 should be used instead.

Interpretation of Parameter Estimates and Problems

Interpretation of parameters estimates from the analysis of an SR model should not be 
difficult if one knows something about path analysis and CFA (and you do by now). For 
example, path coefficients are interpreted for SR models as regression coefficients for 
effects on endogenous variables from other variables presumed to directly cause them. 
Total effects among the factors that make up the structural model can be broken down 
into direct and indirect effects using the principle of effect decomposition (Chapter 7). 
Factor loadings are interpreted for SR models as regression coefficients for effects of fac-
tors on indicators, just as in CFA (Chapter 9).

Some SEM computer programs print estimated squared correlations ( 2
smcR ) for each 

endogenous variable. For SR models this includes the indicators and endogenous factors. 
Values of 2

smcR  are usually computed for indicators in the unstandardized solution as one 
minus the ratio of the estimated measurement error variance over the sample variance 
of that indicator. Although variances of endogenous factors are not model parameters, 
they nevertheless have model-implied variances. Therefore, values of 2

smcR  are usually 
calculated for endogenous factors as one minus the ratio of the estimated disturbance 
variance over the model-implied variance for that factor. Look out for Heywood cases, 
such as negative variance estimates, that suggest a problem with the data, specification, 
sample size, number of indicators per factor, or identification status of the model. If 
iterative estimation fails due to poor start values set automatically by the computer, the 
guidelines in Appendix 7.A can be followed for generating your own start values for the 
structural model or in Appendix 9.A for the measurement model.

Most SEM computer programs calculate a standardized solution for SR models by 
first finding the unstandardized solution with unit loading identification (ULI) con-
straints for endogenous factors and then transforming it to standardized form. Steiger 
(2002) notes that this method assumes that the ULI constraints function only to scale 
the endogenous variables. In other words, there is no constraint interaction. See Appen-
dix 10.A for more information about constraint interaction in SR models.
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Detailed Example

This example of the two-step analysis of an SR model of factors of job satisfaction was 
introduced in Chapter 5. Briefly reviewed, Houghton and Jinkerson (2007) measured 
within a sample of 263 full-time university employees three indicators each of construc-
tive thinking, dysfunctional thinking, subjective well-being, and job satisfaction. They 
hypothesized that constructive thinking reduces dysfunctional thinking, which leads 
to an enhanced sense of well-being, which in turn results in greater job satisfaction. 
They also predicted that dysfunctional thinking directly affects job satisfaction. Their 
SR model with a standard four-factor, 12-indicator measurement model and an overiden-
tified recursive structural model (i.e., the whole SR model is identified) is presented in 
Figure 5.9. We will first evaluate whether its measurement model is consistent with the 
data summarized in Table 10.1. All results described next are from converged, admis-
sible solutions.

I submitted to Mplus 5.2 the correlations and standard deviations presented in Table 
10.1, and Mplus converted these statistics to a sample covariance matrix. The first model 
I analyzed with ML estimation was a standard one-factor CFA model with 12 indicators. 
Values of selected fit statistics for this initial measurement model are reported in Table 
10.2. It is clear that the fit of the one-factor measurement model is poor. For example, 

TABLE 10.1. Input Data (Correlations, Standard Deviations) for Analysis of a 
Structural Regression Model of Thought Strategies and Job Satisfaction

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Job satisfaction

  1.  Work1   1.00

  2.  Work2   .668   1.00

  3.  Work3   .635    .599   1.00

Subjective well-being

  4.  Happy   .263   .261   .164   1.00

  5.  Mood1   .290   .315   .247   .486   1.00

  6.  Mood2   .207   .245   .231   .251   .449   1.00

Dysfunctional thinking

  7.  Perform1 −.206 −.182 −.195 −.309 −.266 −.142   1.00

  8.  Perform2 −.280 −.241 −.238 −.344 −.305 −.230   .753   1.00

  9.  Approval −.258 −.244 −.185 −.255 −.255 −.215   .554   .587   1.00

Constructive thinking

10.  Beliefs   .080   .096   .094 −.017   .151   .141 −.074 −.111   .016   1.00

11.  Self-Talk   .061   .028 −.035 −.058 −.051 −.003 −.040 −.040 −.018   .284   1.00

12.  Imagery   .113   .174   .059   .063   .138   .044 −.119 −.073 −.084   .563   .379 1.00

      SD   .939 1.017   .937   .562   .760   .524   .585   .609   .731   .711 1.124 1.001

Note. Input data are from Houghton and Jinkerson (2007); N = 263.
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this model fails the chi-square test ( 2
Mχ (54) = 566.797, p < .001), the RMSEA with its 90% 

confidence interval is .190 (.176–.204), and the CFI is only .498. Next, I specified the 
measurement portion of the Houghton–Jinkerson SR model (Figure 5.9) as a standard 
four-factor CFA model. Values of selected fit statistics for this four-factor CFA model are 
also listed in Table 10.2. The model chi-square is not statistically significant— 2

Mχ (48) = 
62.468, p = .078—so the exact-fit hypothesis is not rejected. The relative improvement 
in fit of the four-factor CFA model over that of the one-factor CFA model is statistically 
significant— 2

Dχ (6) = 504.329, p < .001—and values of approximate fit indexes for the 
four-factor model are generally favorable (e.g., RMSEA = .034; CFI = .986; Table 10.2).

Close inspection of diagnostic information about the fit of the standard four-factor 
measurement indicated few apparent problems. For example, only two absolute correla-
tion residuals (calculated in EQS) just exceeded .10, which is not a bad result in a larger 
model. There were a total of four standardized residuals (z statistics) with absolute val-
ues of about 2.00. Two of these larger residuals were for two different pairs among the 
three indicators of subjective well-being. One of the largest modification indexes (about 
5.40) was for an error covariance between the indicators “Happy” (percent time happy) 
and “Mood2” of this factor (see Figure 5.9).

Because it seems reasonable that shared item content across the two indicators just 
mentioned could be the basis for a common omitted cause, I respecified the four-factor 
measurement model by allowing the error covariance EHa   EMo2

 to be freely esti-
mated in a third analysis. Reported in Table 10.2 are values of selected fit statistics for 
this modified measurement model. Its fit to the data is statistically better than that of 
the standard four-factor model with no correlated errors ( 2

Dχ (1) = 5.806, p = .016). The 
exact-fit hypothesis is not rejected for the respecified measurement model ( 2

Mχ (47) = 
56.662, p = .158). Values of other fit statistics are generally favorable (e.g., RMSEA = .028, 
SRMR = .037). Finally, no absolute correlation residuals exceeded .10.

Based on the results just described, the four-factor measurement model with an 
error correlation presented in Figure 10.2 was retained. In contrast, Houghton and Jink-

TABLE 10.2. Values of Selected Fit Statistics for Two-Step Testing of a Structural 
Regression Model of Thought Strategies and Job Satisfaction

Model 2
Mχ dfM

2
Dχ dfD

RMSEA 
(90% CI) CFI SRMR

Measurement model

  1-factor standard CFA 566.797a 54 — — .190 (.176–.204) .498 .143

  4-factor standard CFA   62.468b 48 504.329a 6 .034 (0–.056) .986 .040

  4-factor CFA with EHa   EMo2
  56.662c 47     5.806d 1 .028 (0–.052) .991 .037

Structural regression model

  Just‑identified structural model (6 paths)   56.662c 47 — .028 (0–.052) .991 .037

  Overidentified structural model (4 paths)   60.010e 49     3.348f 2 .029 (0–.052) .989 .043

Note. CI, confidence interval.
ap < .001; bp = .078; cp = .158; dp = .016; ep = .135; fp = .188.



272	 CORE TECHNIQUES

erson’s (2007) final measurement model was a standard four-factor model, so my con-
clusion differs somewhat from theirs. Reported in Table 10.3 are estimates of factor 
loadings and error variances for the measurement model in Figure 10.2. Values of the 
standardized factor loadings for indicators of some factors are uniformly high, which 
suggests convergent validity. For example, the range of these loadings for the job satis-
faction factor is .749–.839. A few other standardized loadings are somewhat low, such as 
.433 for the self-talk indicator of constructive thinking, so evidence for convergent valid-
ity is mixed. Values of 2

smcR  for indicators range from .188 to .817. (You should verify this 
statement based on the information in Table 10.3.)

Estimates of factor variances and covariances and of the sole measurement error 
covariance for the model of Figure 10.2 are listed in Table 10.4. Two-factor covariances 
are not statistically significant, including one for the pair of factors about thinking styles 
(constructive, dysfunctional) and the other for the association between constructive 
thinking and subjective well-being. Estimated factor correlations range from –.480 to 
.466. These moderate factor intercorrelations suggest discriminant validity. The sole 
error covariance (–.043) is statistically significant, and the corresponding correlation 

FIGURE 10.2. Measurement model for a structural regression model of thought strategies and 
job satisfaction.
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TABLE 10.3. Maximum Likelihood Estimates of Factor Loadings and Residuals for 
a Measurement Model of Thought Strategies and Job Satisfaction

Factor loadings Measurement errors

Indicator Unst. SE St. Unst. SE St.

Job satisfaction

  Work1  1.000a —   .839   .260 .042   .297

  Work2 1.035 .081   .802   .368 .050   .357

  Work3   .891 .073  .749   .384 .044   .439

Subjective well-being

  Happy  1.000a —   .671   .173 .025   .550

  Mood1 1.490 .219   .739   .261 .044   .453

  Mood2   .821 .126   .591   .178 .022   .651

Dysfunctional thinking

  Perform1  1.000a —   .830   .106 .016   .311

  Perform2 1.133 .080   .904   .068 .017   .183

  Approval   .993 .089   .660   .300 .029   .564

Constructive thinking

  Beliefs  1.000a —   .648   .292 .043   .580

  Self-Talk 1.056 .178   .433 1.022 .097   .812

  Imagery 1.890 .331   .870   .242 .123   .242

Note. Unst., unstandardized; St., standardized. Standardized estimates for measurement errors are proportions 
of unexplained variance.
aNot tested for statistical significance. For all other unstandardized estimates, p < .05.

TABLE 10.4. Maximum Likelihood Estimates of Factor Variances and Covariances 
and Error Covariance for a Measurement Model of Thought Strategies and Job 
Satisfaction

Parameter Unstandardized SE Standardized

Factor variances and covariances

Job Satisfaction  .618 .081 1.000

Subjective Well-Being  .142 .031 1.000

Dysfunctional Thinking  .235 .031 1.000

Constructive Thinking  .212 .049 1.000

Constructive  Dysfunctional −.028a .017 −.124

Constructive  Well-Being   .024a .014   .140

Constructive  Job Satisfaction  .060 .029   .165

Dysfunctional  Well-Being −.088 .017 −.480

Dysfunctional  Job Satisfaction −.131 .030 −.344

Well-Being  Job Satisfaction  .138 .028  . 466

Error covariance

Happy   Mood2
−.043 .018 −.243

ap ≥ .05. For all other unstandardized estimates, p < .05.
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is –.243. This correlation is not large, but its presence helps to “clean up” some local fit 
problem in parts of the standard four-factor measurement model without this param-
eter.

The analyses described next concern the second step of two-step modeling—the 
testing of SR models with the measurement model established in the first step but with 
alternative versions of the structural models. The first SR model analyzed is one with a 
just-identified structural component. Because this SR model and the CFA measurement 
model in Figure 10.2 have the same number of paths among the factors (6), they are 
equivalent models. This fact is verified by the observation of identical values of fit sta-
tistics for the two models just mentioned (see Table 10.2). Equivalence also implies that 
estimates of factor loadings and measurement error variances and covariance will be 
identical within rounding error for the two models. Accordingly, at this point we need 
to consider just the parameter estimates for the structural part of the SR model, which 
are unique to this model.

Estimates for the just-identified structural model are presented in Figure 10.3. The 
direct effects in the figure depicted with dashed lines were predicted by Houghton and 
Jinkerson (2007) to be zero. The unstandardized path coefficient for the direct effect of 
constructive thinking on dysfunctional thinking (–.131) is not statistically significant, 
and the corresponding standardized path coefficient (–.124) indicates a relatively small 
effect size. It is no surprise, then, that constructive thinking explains only about 1.5% 
of the variance in dysfunctional thinking ( 2

smcR = .015). The other two unstandardized 

FIGURE 10.3. Structural model for a structural regression model of thought strategies and job 
satisfaction. Estimates are reported as unstandardized (standard error) standardized. Standardized 
estimates for disturbances are proportions of unexplained variance. The unstandardized 
estimates are all statistically significant at the .01 level except for those designated “ns,” which 
means not significant.
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path coefficients for constructive thinking, .067 and .160 for, respectively, direct effects 
on subjective well-being and job satisfaction, are also not statistically significant. This 
is consistent with predictions (Figure 10.3). Direct effects of dysfunctional thinking on 
subjective well-being and of subjective well-being on job satisfaction are both statisti-
cally significant and appreciable in standardized magnitude (respectively, –.470, .382). 
These results support the hypothesis that the effects of dysfunctional thinking strat-
egies on job satisfaction are largely mediated through subjective well-being. Overall, 
about 25% of the variance in both the subjective well-being factor and job satisfaction 
factors is explained (the 2

smcR  values are, respectively, .237 and .245; see Figure 10.3).
The final SR model retained by Houghton and Jinkerson (2007) had the four paths 

in the structural model represented with the solid lines in Figure 10.3. Values of selected 
fit statistics for this restricted SR model are reported in Table 10.2. The exact-fit hypoth-
esis is not rejected for the restricted SR model ( 2

Mχ (49) = 60.010, p = .135), and its overall 
fit is not statistically worse than that of the unrestricted SR model with six direct effects 
( 2

Dχ (2) = 3.348, p = .188). However, inspection of the correlation residuals (calculated in 
EQS) for the restricted SR model indicated some localized fit problems. For example, the 
correlation residual for the association between the “Work2” indicator of job satisfaction 
and the “Imagery” indicator of constructive thinking is .142. Other absolute correlation 
residuals > .10 involved the “Beliefs” indicator of constructive thinking and both positive 
mood indicators of subjective well-being. Thus, dropping the two paths listed next:

	 Constructive Thinking → Job Satisfaction 
	 Constructive Thinking → Subjective Well-Being

from the just-identified structural model in Figure 10.3 results in poor explanations 
of the observed correlations between the pairs of indicators just mentioned. This is an 
example of how dropping paths that are not statistically significant—here, from the 
structural model—can deteriorate the fit of some other parts of the model. Based on 
these results, I would retain the SR model with the just-identified structural model with 
six direct effects. You can download from this book’s website (see p. 3) the Mplus syn-
tax, data, and output files for the final four-factor measurement model (Figure 10.2) and 
the final SR model with six paths (Figure 10.3). Also available on the site are computer 
files for the same analyses in EQS and LISREL.

I used the Power Analysis procedure of STATISTICA 9 Advanced to estimate power 
for the final SR model with six paths in its structural model. Given N = 263, dfM = 47, 
and assuming α = .05 and ε1 = .08, the power for the test of the close-fit hypothesis 
(H0: ε0 ≤ .05) is .869. Now assuming ε1 = .01, the power for the test of the not-close-fit 
hypothesis (H0: ε0 ≥ .05) is .767. Thus, the probability of either rejecting a false model 
or detecting a correct model is quite good in this analysis, despite a sample size that is 
not large. This happens here because the relatively high degrees of freedom (47) for this 
larger model offset the negative impact of a smaller sample size on power.
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Equivalent SR Models

It is often possible to generate equivalent versions of SR models. An equivalent version of 
an SR model with a just-identified structural model was mentioned earlier: the measure-
ment part of an SR model respecified as a CFA model, which assumes no causal effects 
among the factors, only unanalyzed associations (e.g., Table 10.2). Regardless of whether 
or not the structural model is just-identified, it may be possible to generate equivalent 
versions of it using the Lee–Hershberger replacing rules for path models (Chapter 8). For 
example, any rearrangement of the direct effects in the just-identified structural model 
in Figure 10.3 that respects these rules while holding the measurement model constant 
will result in alternative SR models that will fit the same data equally well. With the 
structural model held constant, it may also be possible to generate equivalent versions 
of the measurement model using Hershberger’s reversed indicator rule, which involves 
reversing the direction of the causal effect between a factor and one of its indicators. 
That is, one indicator is specified as a cause indicator rather than as an effect indicator 
(Chapter 9). Given no change in the structural model, alternative SR models with equiv-
alent measurement models would also fit the same data equally well. See Hershberger 
(1994) for more information and examples.

Equivalent versions of the just-identified structural model in Figure 10.3 for analy-
sis of the Houghton and Jinkerson (2007) data include any other possible just-identified 
variation of this model. This includes structural models where the causal effects “flow” 
in the opposite direction, such as from job satisfaction to subjective well-being to dys-
functional thinking to construct thinking. Houghton and Jinkerson (2007) offered a 
detailed rationale of their original directionality specifications. But without such an 
argument, there is no way to prefer one just-identified structural model over an equiva-
lent variation.

Single Indicators in Partially Latent SR Models

At times a researcher has only one measure of some construct. Scores from a single 
indicator are unlikely to be both perfectly reliable and valid. There is an alternative to 
representing a single indicator in the structural part of an SR model as one would in path 
analysis (i.e., without a measurement error term). This alternative requires an a priori 
estimate of the proportion of variance in a single indicator that is due to measurement 
error (10%, 20%, etc.). This estimate may be based on the researcher’s experience or on 
results of previous studies. Recall that (1) one minus a reliability coefficient, 1 – rXX, 
estimates the proportion of observed variance due to random error, which is only one 
source of measurement error (Chapter 3). (2) Specific types of reliability coefficients 
estimate only one kind of random error. Thus, the quantity 1 – rXX may underestimate 
the proportion of total variance due to measurement error.

Suppose that X1 is the only indicator of an exogenous factor A and that the researcher 
estimates that the 20% of X1’s variance is due to measurement error. Given this estimate, 
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it is possible to specify an SR model like the one presented in Figure 10.4(a). Note that 
X1 in the figure is specified as a single indicator and has an error term. The unstandard-
ized variance of the latter is fixed to equal .20 times the observed variance, or .2

1

2
Xs . For 

example, if the observed variance of X1 is 30.00, then 20% of this variance, or .2 (30.00) 
= 6.00, is the estimated error variance. Because factor A must be scaled, the unstandard-
ized loading of X1 on A is fixed to equal 1.0. With the specification of a residual term 

FIGURE 10.4. Two structural regression models with single indicators that correct for 
measurement error. It is assumed that the proportion of error variance for X1 is .20 and for Y1 it 
is .30.
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for X1, the direct effect of factor A is estimated controlling for measurement error in its 
single indicator.

Now look at the SR model of Figure 10.4(b), in which Y1 is specified as the sole 
indicator of the endogenous factor B. The proportion of measurement error in Y1 is 
estimated to be .30. Given this estimate, the variance of the error term for Y1 is fixed 
to equal .30 times the observed variance of Y1. Because Y1 has an error term, both the 
disturbance variance for B and the direct effect of this factor will be estimated while 
controlling for measurement error in its single indicator. Three points should be noted 
about this method for single indicators:

1.	 A common question is, why not just specify the error variance for a single indi-
cator as a free parameter and let the computer estimate it? Such a specification may 
result in an identification problem (see Bollen, 1989, pp. 172–175). A safer tactic with 
a single indicator is to fix the value of its measurement error variance based on a prior 
estimate.

2.	 A related question is, what if the researcher is uncertain about his or her esti-
mate of the error variance for a single indicator? The model can be analyzed with a range 
of estimates, which allows the researcher to evaluate the impact of different assumptions 
about measurement error on the solution (i.e., conduct a sensitivity analysis).

3.	 It is theoretically possible to specify a path model where every observed variable 
is represented as the single indicator of an underlying factor and every indicator has a 
measurement error term. This tactic would be akin to fitting a path model to a covari-
ance matrix based on correlations disattenuated for unreliability (Equation 3.7). See 
Bedeian, Day, and Kelloway (1997) for more information.

The models in Figure 10.4 illustrate that SR models with single indicators that are 
identified may nevertheless fail the two-step rule for identification (Rule 6.9): when 
either model in the figure is respecified as a CFA measurement model, one factor (A 
or B) will have only one indicator, which is one less than the minimum for a standard 
multifactor model (Rule 6.5). Fixing the error variance of X1 in the model of Fig-
ure 10.4(a) or Y1 in the model of Figure 10.4(b) to a constant, however, identifies the 
model.

Shen and Takeuchi (2001) administered within a stratified random sample of 983 
native-born Chinese Americans and immigrants of Chinese descent measures of the 
degree of acculturation, socioeconomic status (SES), stress, and depression. Descriptive 
statistics for these variables are summarized in Table 10.5. Note in the table that there 
is just a single indicator of depression. This data matrix is ill scaled because the ratio of 
the largest variance (11.834) over the smallest variance (.058) exceeds 200. Therefore, I 
multiplied the original variables by the constants listed in Table 10.5 in order to make 
their variances more homogeneous.

Presented in Figure 10.5 is the SR model analyzed by Shen and Takeuchi (2001). 
This model reflects the hypothesis that stress is directly affected by the degree of accul-
turation and that depression is directly affected by both SES and stress. Values of selected 
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fit statistics calculated by LISREL 8.8 with ML estimation for the model in Figure 10.5 
are as follows:

	
2
Mχ (16) = 59.715,  p < .001 

	 RMSEA = .053 (0.39–.068);  pclose-fit H0
 = .343 

	 GFI = .985;  CFI = .977;  SRMR = .032

The exact-fit hypothesis is rejected, so there is a need to understand why this test was 
failed. I inspected the correlation residuals (derived in EQS), and none of their absolute 
values are > .10. Also, the parameter estimates for the model in Figure 10.5 seemed rea-
sonable in the converged and admissible solution. In this case, the chi-square test may 
be failed due more to the relatively large sample size (N = 983) than to appreciable dis-
crepancies between observed and predicted correlations or covariances. This outcome 
indicates the need to routinely examine the residuals in every analysis.

The disturbance for the single indicator of depression in Figure 10.5 reflects both 
measurement error and omitted causes, which is not ideal. Assuming a score reliabil-
ity of rXX = .70, Exercise 2 will ask you to respecify the model in Figure 10.5 such that 
measurement error in the depression scale is estimated separately from the effects of 
omitted causes. Next, use an SEM computer tool to fit this respecified model to the data 

TABLE 10.5. Input Data (Correlations and Standard Deviations) for Analysis of a 
Structural Regression Model of Acculturation and Mental Health Status with a 
Single Indicator

Variable 1 2 3 4 5 6 7 8

Acculturation

  1.  Acculturation Scale 1.00

  2.  Generation Status   .44 1.00

  3.  Percent Life in U.S.   .69   .54 1.00

Socioeconomic status

  4.  Education   .37   .08   .24 1.00

  5.  Income   .23   .05   .26   .29 1.00

Stress

  6.  Interpersonal   .12   .08   .08   .08 −.03 1.00

  7.  Job   .09   .06   .04   .01 −.02   .38 1.00

Single indicator

  8.  Depression   .03   .02 −.02 −.07 −.11   .37   .46 1.00

Original s2 .608 .168 .058 10.693 11.834 .137 .203 .102

Constant 4.00 8.00 10.00 1.00 1.00 8.00 8.00 10.00

Rescaled s2 9.728 10.752 5.800 10.693 11.834 8.768 12.992 10.200

Rescaled SD 3.119 3.279 2.408 3.270 3.440 2.961 3.604 3.194

Note: These data are from Shen and Takeuchi (2001); N = 983.
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in Table 10.5. Look for a “surprise” among the parameter estimates. You can download 
the EQS and LISREL syntax and output files for the analysis just described from this 
book’s website (p. 3).

Cause Indicators and Formative Measurement

Observed variables in standard measurement models are represented as effect (reflec-
tive) indicators that are presumed to be caused by the underlying factors and their mea-
surement errors. This directionality specification describes reflective measurement. 
This approach assumes (1) that equally reliable indicators are interchangeable, which 
implies that they can be substituted for one another without affecting construct defini-
tion. It also requires (2) positive intercorrelations among the indicators of the same fac-
tor. Finally, (3) factors are conceptualized in reflective measurement as unidimensional 
latent variables (Chapter 5).

The assumptions just listed are not suitable for some research problems, espe-
cially in areas where composites, or index variables, are analyzed. Recall the example 
from Chapter 5 of SES as a composite that is determined by measured variables such 

FIGURE 10.5. A structural regression model of acculturation and mental health status with a 
single indicator.
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as income, education, and occupation, not the other way around. This view is consis-
tent with a formative measurement model wherein manifest variables are specified as 
cause (formative) indicators (Chapter 5). The origins of formative measurement lie in 
the operational definition model (Diamantopoulos & Winklhofer, 2001). An older, strict 
form of operationalism views constructs as synonymous with the single indicator that 
corresponds to its definition. More contemporary forms of operationalism allow for both 
multiple indicators and disturbance terms for composites. The latter permits the rep-
resentation of latent composites that are determined in part, but not entirely, by their 
cause indicators. Cause indicators are not generally interchangeable. This is because 
removal of a cause indicator is akin to removing a part of the underlying construct 
(Bollen & Lennox, 1991). Cause indicators may have any pattern of intercorrelations, 
including ones that are basically zero. This is because composites reflect the contribu-
tion of multiple dimensions, albeit with a single score for each case (i.e., composites are 
not unidimensional). There are many examples of the analysis of composites in econom-
ics and business research (Diamantopoulos, Riefler, & Roth, 2005).

Presented in Figure 10.6 are three “mini” measurement models that illustrate dif-
ferences between reflective measurement and formative measurement. The model of 
Figure 10.6(a) depicts standard reflective measurement. Grace and Bollen (2008) use 
the term L  → M block (latent to manifest) to describe the association between fac-
tors and their effect indicators in reflective measurement models. Measurement error 
in such models is represented at the indicator level by the error terms E1–E3 in Figure 
10.6(a).2

A formative measurement model is represented in Figure 10.6(b). It depicts an 
M → L block (manifest to latent) because the latent composite in this model is pre-
sumed to be caused in part by its formative indicators, X1–X3. In Figure 10.6(b) I used 
a circle to represent the latent composite because, like error terms but unlike factors, a 
latent composite is not unidimensional. With no disturbance, the composite in Figure 
10.6(b) would be just a linear combination across its cause indicators. To scale the latent 
composite, the unstandardized direct effect of one of its cause indicators, X1, is fixed 
to 1.0. Cause indicators in formative measurement models are exogenous variables and 
have no error terms. This means that (1) cause indicators are free to vary and covary, 
which explains the presence of the symbols in Figure 10.6(b) that represent their vari-
ances and covariances (respectively,  and ). Also, (2) measurement error in a 
formative measurement model like the one in Figure 10.6(b) is manifested in the distur-
bance term, DLC. That is, measurement error is represented at the construct level, not 
at the indicator level as in reflective measurement (e.g., Figure 10.6(a)). Note that the 
model in Figure 10.6(b) is not identified. In order to estimate its parameters, it would be 
necessary to embed it in a larger model. Identification requirements of formative mea-
surement models are considered momentarily.

2A factor can also be endogenous in a reflective measurement model, but the term L → M block still 
applies.
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Formative measurement is also represented in Figure 10.6(c), but the composite in 
this model has no disturbance. Consequently, this composite is not latent, and the whole 
model is described as an M → C block, which says that the composite (C) is just a total 
score over the manifest variables (cause indicators). Grace and Bollen (2008) represent 
composites in model diagrams with hexagons, which is also used in Figure 10.6(c). This 
is not a standard symbol, but it does convey the fact that a composite with no distur-
bance is not latent. These same authors distinguish between a fixed weights composite 
where loadings (weights) are specified a priori (e.g., unit weighting) and an unknown 
weights composite where the weights are estimated with sample data. The model in 
Figure 10.6(c) assumes an unknown weights composite.

There is a “compromise” between specifying that the indicators of a factor are either 
all effect or causal. It is achieved by specifying a MIMIC (multiple indicators and mul-
tiple causes) factor with both effect and cause indicators. A MIMIC factor with a single 
cause indicator and the rest effect indicators is an equivalent version of a standard one-

FIGURE 10.6. Directionalities of relations between indicators and a (a) latent variable, (b) latent 
composite, and (c) composite. M, manifest; L, latent; C, composite. 
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factor CFA model (Chapter 9). In other contexts, it is possible to specify MIMIC factors 
with ≥  1 cause indicators along with effect indicators. There are many examples in 
the literature of the analysis of SR models with MIMIC factors. For example, Hersh-
berger (1994) described a MIMIC depression factor with indicators that represented 
various behaviors. Some of these indicators, such as “crying” and “feeling depressed,” 
were specified as effect indicators because they are symptoms of depression. However, 
another indicator, “feeling lonely,” was specified as a cause indicator. This is because 
“feeling lonely” may cause depression rather than vice versa. Bruhn, Georgi, and Had-
wich (2008) describe the analysis of a MIMIC factor of customer equity management 
with latent cause indicators and manifest effect indicators.

The main stumbling block to analyzing measurement models where some factors 
have cause indicators only and the composite is latent is identification. This is because 
it can be difficult to specify such a model that reflects the researcher’s hypotheses and is 
identified. The need to scale latent composites was mentioned, but meeting this require-
ment is not difficult. MacCallum and Browne (1993) noted that in order for the distur-
bance variance of a latent composite to be identified, the latent composite must have 
direct effects on at least two other endogenous variables, such as endogenous factors 
with effect indicators. This requirement is known as the 2+ emitted paths rule. If a 
factor measured with cause indicators only emits a single path, its disturbance variance 
will be underidentified. Another requirement for models with ≥ 2 latent composites is 
that if factors measured with effect indicators only have indirect effects on other such 
factors that are mediated by different combinations of latent composites, then some of 
the constituent direct effects may be underidentified.

One way to deal with the problems just mentioned is to fix the disturbance vari-
ance for the latent composite to zero, which drops the disturbance from the model and 
“converts” the latent composite to a weighted manifest variable (e.g., Figure 10.6(c)). 
However, this is not an ideal option. Recall that the disturbance of a latent composite 
reflects measurement error in its cause indicators. Dropping the disturbance is akin 
to assuming that the cause indicators are measured without error, which is unlikely. 
MacCallum and Browne (1993) showed that dropping from the model a weighted com-
posite that emits a single path and converting the indirect effects of its cause indicators 
on other endogenous variables to direct effects result in an equivalent model. Another 
way to remedy identification problems is to add effect indicators for latent compos-
ites represented in the original model as measured with cause indicators only. That 
is, specify a MIMIC factor. For example, adding two effect indicators means that the 
formerly latent composite will emit at least two direct effects—see Diamantopoulos, 
Riefler, and Roth (2008) for examples. However, all such respecifications require a 
theoretical rationale.

Worland, Weeks, Janes, and Strock (1984) administered measures of the cognitive 
and achievement status of 158 adolescents. They also collected teacher reports about 
classroom adjustment and measured family SES and the degree of parental psychiatric 
disturbance. The correlations among these variables are reported in Table 10.6. Note 
that Worland and colleagues did not report standard deviations. For didactic reasons, 
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however, I assigned plausible standard deviations to each of the variables listed in Table 
10.6. Taking this pedagogical license does not affect the overall fit of the model described 
next. Instead, it allows you to reproduce this analysis or test alternative models for these 
data with any SEM computer tool.

Suppose that the construct of risk is conceptualized for this example as a latent 
composite with cause indicators family SES, parental psychopathology, and adolescent 
verbal IQ. That is, high risk is indicated by any combination of low family SES, a high 
degree of parental psychiatric impairment, or low adolescent verbal IQ. The intercor-
relations among these three variables are not all positive (see Table 10.6), but this is 
irrelevant for cause indicators. Presented in Figure 10.7 is an example of an identified SR 
model where a latent risk composite has cause indicators only. Note in the figure that the 
risk composite emits two direct effects onto factors each measured with effect indicators 
only, which satisfies the 2+ emitted paths rule. This specification identifies the distur-
bance variance for the risk composite. It also reflects the assumption that the association 
between achievement and classroom adjustment is spurious due to a common cause 
(risk). This assumption may not be plausible. For example, achievement probably affects 
classroom adjustment. Specifically, students with better scholastic skills may be better 
adjusted at school. But including the direct effect just mentioned— or, alternatively, the 
disturbance correlation DAc   DCA—between these two factors in the model of Figure 
10.7 would render it not identified.

I fitted the model of Figure 10.7 with a latent composite to the covariance matrix 
based on the data in Table 10.6 with the ML method of EQS 6.1. The syntax and output 
files for this analysis can be downloaded from this book’s website (p. 3). The analysis 
converged to an admissible solution. Values of selected fit indexes are reported next:

TABLE 10.6. Input Data (Correlations and Hypothetical Standard Deviations) for 
Analysis of a Model of Risk as a Latent Composite

Variable 1 2 3 4 5 6 7 8 9

Risk

  1.  Parental Psychiatric   1.00

  2.  Low Family SES     .42   1.00

  3.  Verbal IQ   −.43   −.50   1.00

Achievement

  4.  Reading   −.39    −.43     .78    1.00

  5.  Arithmetic   −.24    −.37     .69     .73    1.00

  6.  Spelling   −.31    −.33     .63     .87     .72   1.00

Classroom adjustment

  7.  Motivation   −.25    −.25     .49     .53     .60     .59 1.00

  8.  Harmony   −.25    −.26     .42     .42     .44     .45   .77   1.00

  9.  Stability   −.16    −.18     .23     .36     .38     .38   .59     .58 1.00

        SD 13.00 13.50 13.10 12.50 13.50 14.20 9.50 11.10 8.70

Note. These data are from Worland, Weeks, Janes, and Strock (1984); N = 158. 
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2
Mχ (22) = 75.421,  p < .001 

	 RMSEA = .124 (.094–.155) 

	 GFI = .915;  CFI = .941;  SRMR = .041

These results indicate poor overall fit of the model to the data. Inspection of the corre-
lation residuals verifies this conclusion: several absolute residuals are close to or > .10. 
These high-correlation residuals generally occurred between indicators of the achieve-
ment factor and the classroom adjustment factor (Figure 10.7). Specifically, the model 
tends to underpredict these cross-factor correlations. This pattern is consistent with the 
possibility that the coefficient for the direct effect of achievement on adjustment is not 
zero. However, the only way to estimate this path is to respecify the model of Figure 
10.7. Here are some possibilities:

1.	 Respecify the latent risk composite as a MIMIC factor with at least one effect 
indicator, such as adolescent verbal IQ.

FIGURE 10.7. An identified model of risk as a latent composite.
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2.	 Drop the disturbance DRi from the model in Figure 10.7, which would convert the 
latent risk composite into a weighted combination of its cause indicators. Grace (2006) 
argues that (a) error variance estimates for latent composites may have little theoreti-
cal significance in some contexts, and (b) the presence or absence of these error terms 
should not by itself drive decisions about the inclusion of composites in the model.

3.	 Drop the risk composite from the model in Figure 10.7 and replace it with direct 
effects from the three cause indicators to each of the two endogenous factors with effect 
indicators.

Each respecification option just described would identify the direct effect between 
achievement and classroom adjustment in Figure 10.7. Whether any of these options 
makes theoretical sense is another matter, one that in a particular study would dictate 
whether any of these respecifications is plausible.

Grace (2006, chap. 6) and Grace and Bollen (2008) describe many examples of the 
analysis of models with composites in the environmental sciences. Jarvis, MacKenzie, 
and Podsakoff (2003) and others advise researchers in the consumer research area—
and the rest of us, too—not to automatically specify factors with effect indicators only 
because doing so may result in specification error, perhaps due to lack of familiarity 
with formative measurement models. On the other hand, the specification of formative 
measurement is not a panacea. For example, because cause indicators are exogenous, 
their variances and covariances are not explained by a formative measurement model. 
This makes it more difficult to assess the validity of a set of cause indicators (Bollen, 
1989). The fact that error variance in formative measurement is represented at the con-
struct level instead of at the indicator level as in reflective measurement is a related prob-
lem. Howell, Breivik, and Wilcox (2007) note that formative measurement models are 
more susceptible than reflective measurement models to interpretational confounding 
where values of indicator loadings are affected by changes in the structural model. The 
absence of a nominal definition of a formative factor apart from the empirical values of 
loadings of its indicators exacerbates this problem. For these and other reasons, Howell 
et al. conclude that (1) formative measurement is not an equally attractive alternative 
to reflective measurement and (2) researchers should try to include reflective indica-
tors whenever other indicators are specified as cause indicators of the same construct, 
but see Bagozzi (2007) and Bollen (2007) for other views. See also the special issue on 
formative measurement in the Journal of Business Research (Diamantopoulos, 2008) for 
more information about formative measurement.

An alternative to SEM for analyzing models with both measurement and structural 
components is partial least squares path modeling, also known as latent variable 
partial least squares. In this approach, constructs are estimated as linear combinations 
of observed variables, or composites. Although SEM is better for testing strong hypoth-
eses about measurement, the partial least squares approach is well suited for situations 
where (1) prediction is emphasized over theory testing and (2) it is difficult to meet the 
requirements for large samples or identification in SEM. See Topic Box 10.1 for more 
information.
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Topic Box 10.1

Partial Least Squares Path Modeling

A good starting point for outlining the logic of partial least squares path model-
ing (PLS-PM) is to consider the distinction between principal components analy-
sis versus common factor analysis. Principal components analysis analyzes total 
variance and estimates factors as simple linear combinations (composites) of the 
indicators, but common factor analysis analyzes shared (common) variance only 
and makes an explicit distinction between indicators, underlying factors, and 
measurement errors (unique variances). Of these two EFA methods, it is principal 
components analysis that is directly analogous to PLS-PM.

The idea behind PLS-PM is based on soft modeling, an approach devel-
oped by H. Wold (1982) for situations in which theory about measurement is not 
strong, but the goal is to estimate predictive relations among latent variables. 
In PLS-PM, latent variables are estimated as exact linear combinations of their 
indicators with OLS but applied in an iterative algorithm. This method is basically 
an extension of the technique of canonical correlation but one that (1) explicitly 
distinguishes between indicators and factors and (2) permits the estimation of 
direct and indirect effects among factors. Similar to canonical correlation, indi-
cators in PLS-PM are weighted in order to maximize prediction. In contrast, the 
goal of estimation in SEM is to minimize residual covariances, which may not 
directly maximize the prediction of outcome variables.

The limited-information estimation methods in PLS-PM make fewer demands 
of the data. For example, they do not generally assume a particular distributional 
form, and the estimation process is not as complex. Consequently, PLS-PM can 
be applied in smaller samples than SEM, and there are generally no problems 
concerning inadmissible solutions. This makes the analysis of complex models 
with many indicators easier in PLS-PM compared with SEM. It is also possible to 
represent in PLS-PM either reflective or formative measurement but without the 
strict identification requirements in SEM for estimating latent composites (Chin, 
1998).

A drawback of PLS-PM is that its estimates are statistically inferior relative to 
those generated under full-information estimation (e.g., ML in SEM) in terms of 
bias and consistency, but this is less so in very large samples. Standard errors are 
estimated in PLS-PM using adjunct methods, including bootstrapping. There are 
generally no model fit statistics of the kind available in SEM. Instead, research-
ers evaluate models in PLS-PM by inspecting values of factor loadings, path 
coefficients, and R2-type statistics for outcome variables. One could argue that 
PLS-PM, which generally analyzes unknown weights composites, does not really 
estimate substantive latent variables compared with SEM.

Until recently, the application of PLS-PM was limited by the paucity of user-
cont.
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Invariance Testing of SR Models

Just as in CFA, it is also possible to test invariance hypotheses when SR models are ana-
lyzed either over time or groups. Because SR models have both measurement and struc-
tural components, the range of invariance hypotheses that can be tested is even wider. 
Listed next is a series of hierarchical SR models that could be tested for invariance in a 
model trimming context where equality constraints are gradually added. This list is not 
exhaustive, and it does not cover model building where the starting point is a restricted 
model from which constraints are gradually released. Invariance testing across multiple 
samples is emphasized next, but the same logic applies to analyzing an SR model over 
time in a longitudinal design:

1.	 The least restrictive model corresponds to the configural invariance hypothesis 
Hform, which is tested by estimating the same SR model but with no cross-group equality 
constraints. If Hform is rejected, then invariance does not hold at any level, measurement 
or structural.

2.	 Next test HΛ, the construct-level metric invariance hypothesis by imposing 
equality constraints on each freely estimated factor loading across the groups. If HΛ is 
rejected, then evaluate the less strict hypothesis Hλ by releasing some, but not all, of the 
equality constraints on factor loadings. Stop if all variations of Hλ are rejected.

3.	 Given evidence for at least partial measurement invariance (i.e., HΛ or Hλ is 
retained), then it makes sense to test for invariance of structural model parameters. 
For example, the hypothesis of equal direct effects, designated as HB, Γ , is tested by 
imposing cross-group equality constraints on the estimates of each path coefficient. The 
stricter hypothesis HB, Γ, Ψ assumes the equality of both direct effects and disturbance 

friendly software tools. However, there are now a few different computer tools 
for PLS-PM, some with graphical user interfaces. Presented on this book’s website 
(p. 3) are links to other sites about graphical computer tools for PLS-PM, includ-
ing PLS-Graph, SmartPLS, and Visual-PLS. These programs are either freely avail-
able over the Internet or offered without cost to academic users after registration. 
Temme, Kreis, and Hildebrandt (2006) describe the programs just mentioned 
and other computer tools for PLS-PM. They note that graphical PLS-PM computer 
tools rival their counterparts in SEM for ease of use, but PLS-PM programs do not 
yet offer the range of analytical options. For example, most PLS-PM programs 
analyze continuous indicators only and offer “classical” missing data techniques 
only. On the other hand, some programs, such as Visual-PLS and SmartPLS, can 
automatically estimate interactive effects of latent variables. See Vinzi, Chin, 
Henseler, and Wang (2009) for more information.
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variances–covariances over groups, and the even stricter invariance hypothesis HB, Γ, Ψ, Φ 
also assumes equivalence of the variances and covariances of the exogenous factors. See 
Bollen (1989, pp. 355–365) for more information. Tests for equal direct effects can also 
be described as tests of moderation, that is, of interaction effects. Specifically, if magni-
tudes or directions of direct effects in the structural model differ appreciably across the 
groups, then group membership moderates these direct effects. Chapter 12 deals with 
the estimation of interaction effects in SEM.

Reporting Results of SEM Analyses

With review of core structural equation models behind us, this is a good point to address 
the issue of what to report. Listed in Table 10.7 are citations for works about reporting 
practices, problems, and guidelines in SEM. Many of these works were cited in ear-
lier chapters, but they are listed all together in the table. Some of these articles con-
cern reporting practices in particular research areas (e.g., DiStefano & Hess, 2005), and 
others are specific to particular techniques, such as CFA (e.g., Jackson, Gillaspy, & Purc-
Stephenson, 2009). Thompson’s (2000) “ten commandments” of SEM, summarized in 
the table footnote, are also pertinent.

Presented next are recommendations for reporting SEM results organized by phases 

TABLE 10.7. Citations for Works about Reporting Practices and Guidelines for 
Written Summaries of Results in Structural Equation Modeling

Work Comment

Boomsma (2000) General reporting guidelines
Breckler (1990) Review of studies in personality and social psychology 

journals
DiStefano and Hess (2005) Review of CFA studies in assessment journals
Holbert and Stephenson (2002)  Reporting practices in communication sciences
Hoyle and Panter (1995) General reporting guidelines
Jackson, Gillaspy, and  

Purc-Stephenson (2009)
Review of CFA studies in psychology journals and specific 

reporting guidelines
MacCallum and Austin (2000) Review of studies in psychology journals
McDonald and Ho (2002) General reporting guidelines
Raykov, Tomer, and Nesselroade 

(1991)
Reporting guidelines for the psychology and aging area

Schreiber, Nora, Stage, Barlow, and 
King (2006)

Reporting practices in educational research

Schreiber (2008) Reporting practices in social and administrative pharmacy
Shah and Goldstein (2006) Reporting practices in operations management research and 

guidelines
Thompson (2000) “Ten commandments” of SEMa

aNo small samples; analyze covariance, not correlation matrices; simpler models are better; verify distributional 
assumptions; consider theoretical and practical significance, not just statistical significance; report multiple fit 
statistics; use two-step modeling for structural regression models; consider theoretically plausible alternative 
models; respecify rationally; acknowledge equivalent models.
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of the analysis, from specification up through the tabulation and reporting of the results. 
You can refer to these recommendations as a kind of checklist for preparing or evalu-
ating a written summary of SEM analyses. Study these suggestions carefully and use 
them wisely; see also Schumacker and Lomax (2004, chap. 11) for related recommenda-
tions. You already know that there are many problems concerning the reporting of SEM 
analyses in today’s research literature. By not repeating these common mistakes, you are 
helping to improve the state of practice. This saying attributed to the psychologist and 
philosopher William James is apropos here: Act as if what you do makes a difference; it 
does.

Specification

Describe the theoretical framework or body of empirical results that form the •	
basis for specification of your model. Identify the particular research problem addressed 
by your model and analysis. Explain why the use of SEM is relevant for this problem.

Give the rationale for directionality specifications. This includes both the mea-•	
surement model and the structural model. For example, is standard reflective measure-
ment appropriate for describing the directionality of factor-indicator correspondences? 
Or would the specification of formative measurement make more sense? For the struc-
tural model, clearly state the rationale for your hypotheses about effect priority, espe-
cially if your design is nonexperimental.

For presumed direct effects, state their expected directions, positive or negative. •	
Give a diagram of your initial model. Represent all error terms and unanalyzed associa-
tions in the diagram. Make sure that the diagram is consistent with your description of 
it in text.

Explain the rationale for any constraints to be imposed on parameter estimation. •	
Relate these constraints to relevant theory, previous results, or aims of your study.

Outline any theoretically plausible alternative models. State the role of these •	
alternative models in your plan for model testing. Describe this plan (e.g., testing nested 
models vs. comparing nonhierarchical models).

In multiple-sample analyses, state the particular forms of invariance to be tested •	
and in what sequence (i.e., model building or trimming).

Identification

Tally the number of observations and free parameters in your initial model. State •	
(or indicate in a diagram) how latent variables are scaled. That is, demonstrate that nec-
essary but insufficient conditions for identification are met.

Comment on sufficient requirements for identifying the type of structural equa-•	
tion model you are analyzing. For example, if the structural model is nonrecursive, is 
the rank condition sufficient to identify it? If the measurement model has error covari-
ances, does their pattern satisfy the required sufficient conditions?
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Data and Measures

Clearly describe the characteristics of your sample (cases) and measures. State •	
the psychometric properties of your measures, including evidence for score reliability 
and validity. Report values of reliability coefficients calculated in your sample. If this is 
not possible, then report the coefficients from other samples (reliability induction), but 
explicitly describe whether those other samples are similar to your own.

If the sample is archival—that is, you are fitting a structural equation model •	
within an existing data set—then mention possible specification errors due to the omis-
sion of relevant measures in this sample.

Verify the assumption of multivariate normality in your sample when using nor-•	
mal theory estimators. For example, report values of the skew index and kurtosis index 
for all continuous outcome variables.

Describe how data-related complications were handled. This includes the extent •	
and strategy for dealing with missing observations, how apparent extreme collinearity 
was dealt with, and the use of transformations, if any, to normalize the data.

Clearly state the type of data matrix analyzed, which is ordinarily a covariance •	
matrix. Report this matrix—or the correlations and standard deviations—and the 
means in a table or an appendix. To save space, reliability coefficients and values of skew 
and kurtosis indexes can be reported in the same place. Give the final sample size in this 
summary. You should report enough summary information so that someone else could 
take your model diagram(s) and data matrix and reproduce your analyses and results.

Verify that your data matrix is positive definite.•	

Estimation and Respecification

State which SEM computer tool was used (and its version), and list the syntax for •	
your final model in an appendix. If the latter is not feasible due to length limitations, 
then tell your readers how they can access your code (e.g., a website address).

State the estimation method used, even if it is default ML estimation. If some •	
other method is used, then clearly state this method and give your rationale for selecting 
it (e.g., some outcome variables are ordinal).

Say whether the estimation process converged and whether the solution is admis-•	
sible. Describe any complications in estimation, such as failure of iterative estimation 
or Heywood cases, and how these problems were handled, such as giving the computer 
new start values or increasing the default limit on the number of iterations.

Always report the model chi-square and its •	 p value for all models tested. If the 
model fails the chi-square test, then explicitly state this result.

Never conclude that model fit is satisfactory based solely on values of fit statistics, •	
which only indicate overall model–data correspondence. Along the same lines, do not 
rely on “golden rules” for approximate fit indexes to justify the retention of a particular 
model. This is especially true if the model chi-square test was failed.

Describe model fit at a more molecular level by conveying diagnostic information •	
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about patterns of correlation residuals, standardized residuals, or modification indexes. 
For a smaller model, report the correlation residuals and standardized residuals. The 
point is to reassure your readers that your model has acceptable fit on both a global level 
and at the level of pairs of observed variables.

When a model is respecified, explain the theoretical basis for doing so. That •	
is, how are the changes justified? Indicate the particular statistics, such as correlation 
residuals, standardized residuals, or modification indexes, consulted in respecification 
and how the values of these statistics relate to theory.

Clearly state the nature and number of respecifications such as, how many paths •	
were added or dropped and which ones?

If the final model is quite different from your initial model, reassure your read-•	
ers that its respecification was not merely chasing sample-specific (chance) variation. If 
there is no such rationale, then the model may be overparamterized (good fit is achieved 
at the cost of too many parameters).

When testing hierarchical models, report the information just described for all •	
candidate models. Also report results of the chi-square difference test for relevant com-
parisons of hierarchical models.

When testing SR models, establish that the measurement model is consistent •	
with the data before estimating versions with alternative structural models.

Tabulation

Report the parameter estimates for your final model (if a model is retained). This •	
includes the unstandardized estimates, their standard errors, and the standardized esti-
mates. In a multiple-sample analysis, describe how the standardized estimates were 
derived in your SEM computer tool.

Do not indicate anything about statistical significance for the standardized •	
parameter estimates unless you used a method, such as constrained estimation, that 
generates correct standard errors in the standardized solution.

Comment on whether the signs and magnitudes of the parameter estimates make •	
theoretical sense. Look for potential “surprises” that may indicate a suppression effect 
or other unexpected results.

Report information for individual outcome variables about predictive power, such •	
as 2

smcR  or a corrected‑R2 for endogenous variables in a nonrecursive structural model.
Interpret effect sizes (e.g., standardized path coefficients, •	 2

smcR ) in reference to 
results expected in a particular research area.

Avoid Confirmation Bias

Explicitly deal with the issue of equivalent models. Generate some plausible •	
equivalent versions of your final model and give logical reasons why your preferred 
model should be favored over equivalent versions.

It may also be possible to consider alternative models that are not equivalent but •	
are based on the same observed variables and fitted to the same data matrix. Among 
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alternative models that are near-covariance equivalent, give reasons why your model 
should be preferred.

If a structural model was tested, do •	 not make claims about verifying causality, 
especially if your design is nonexperimental and thus lacks design elements, such as 
control groups or manipulated variables, that support causal inference.

Bottom Lines and Statistical Beauty

If no model was retained, then explain the implications for theory. For example, •	
in what way(s) could theory be incorrect, based on your results?

If a model is retained, then explain to your readers just what was learned as a •	
result of your study. That is, what is the substantive significance of your findings? How 
has the state of knowledge in your area been advanced? What comes next? That is, what 
new questions or issues are posed?

If your sample is not large enough to randomly split and cross-validate your anal-•	
yses, then clearly state this as a limitation. If so, then replication is a necessary “what 
comes next” activity. Until then, restrain your enthusiasm about your model.

Summary

The evaluation of a structural regression model is essentially a simultaneous path analy-
sis and confirmatory factor analysis. Multiple-indicator assessment of constructs is rep-
resented in the measurement portion of a structural regression model, and presumed 
causal relations are represented in the structural part. In two-step analyses, a structural 
regression model is respecified as a confirmatory factor analysis model in the first step. 
An acceptable measurement model is required before going to the second step, which 
involves testing hypotheses about the structural model. The researcher should also con-
sider equivalent versions of his or her preferred structural regression model. Equiva-
lent versions of the structural part of a structural regression model can be generated 
using the same rules as for path models, and equivalent measurement models can be 
created according to the same principles as for CFA models. The specification of reflec-
tive measurement wherein effect indicators are specified as caused by latent variables 
is not appropriate in all research problems. An alternative is formative measurement 
where indicators are conceptualized as causes of composites. The evaluation of struc-
tural regression models represents the apex in the SEM family for the analysis of covari-
ances. The next few chapters in Part III consider some advanced methods, starting with 
the analysis of means. How to avoid fooling yourself with SEM is considered in the last 
chapter (13), which may be the most important one in this book.

Recommended Readings

Howell, Breivik, and Wilcox (2007) compare assumptions of standard reflective measurement 
with those of formative measurement. You can learn more about formative measurement in a 
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recent special issue of the Journal of Business Research (Diamantopoulos, 2008). The edited 
volume by Vinzi, Chin, Henseler, and Wang (2009) provides in-depth coverage of the tech-
nique of PLS‑PM.

Diamantopoulos, A. (Ed.). (2008). Formative indicators [Special issue]. Journal of Business 
Research, 61(12).

Howell, R. D., Breivik, E., & Wilcox, J. B. (2007). Reconsidering formative measurement. 
Psychological Methods, 12, 205–218.

Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2009). (Eds.). Handbook of partial least 
squares: Concepts, methods and applications in marketing and related fields. New York: 
Springer.

Exercises

	 1.	 Calculate the rho coefficient for each factor in Figure 10.2 using the parameter 
estimates in Tables 10.3 and 10.4.

	 2.	 Fit the model in Figure 10.5 and to the data in Table 10.5. Now respecify this 
model to take direct account of measurement error in the single indicator of 
depression (assume rXX = .70) and fit the respecified model to the same data. 
Compare estimates for direct effects on depression (from stress, SES) and also 
the disturbance variances for depression across the two analyses. Comment on 
the pattern. What is the “surprise” among other estimates?

	 3.	 Respecify the formative measurement model in Figure 10.6(b) to take direct 
account of measurement error at the indicator level, not the construct level.

	 4.	 Critique the model in Figure 10.5 in terms of reflective versus formative mea-
surement.

	 5.	 Calculate a standardized effect decomposition for the structural model in Fig-
ure 10.3.

	 6.	 Show that dfM = 47 for the measurement model in Figure 10.2.

	 7.	 Look through the EQS or LISREL output files for the analysis of the final 
Houghton–Jinkerson SR model (its structural model is shown in Figure 10.3) 
and in particular at the sections about effect decomposition. Besides effects of 
factors on other factors, what else do you notice in the decomposition?
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APPENDIX 10.A

Constraint Interaction in SR Models

Recall that constraint interaction for CFA models is indicated when the value of the chi-square 
difference ( 2

Dχ ) statistic for the test of the equality of the loadings of indicators for different fac-
tors depends on how the factors are scaled (Appendix 9.B). Steiger (2002) shows that the same 
phenomenon can happen with SR models where some factors have only two indicators and when 
estimates of direct effects on two or more different endogenous factors are constrained to be equal. 
Constraint interaction can also result in an incorrect standardized solution for an SR model if it is 
calculated in the way described earlier (in two steps).

The presence of constraint interaction can be detected the same way for SR and CFA mod-
els: while imposing the equality constraint, change the value of each identification constraint for 
the factors from 1.0 to another positive constant and rerun the analysis. If the value of the model 
chi square 2

Mχ  changes by an amount that exceeds what is expected by rounding error, there is 
constraint interaction. Steiger (2002) suggests a way to deal with constraint interaction in SR 
models: if the analysis of standardized factors can be justified, the method of constrained estima-
tion can be used to test hypotheses of equal standardized path coefficients and to generate correct 
standard errors. Constrained estimation of an SR model standardizes all factors, exogenous and 
endogenous.





Part III

Advanced Techniques, 
Avoiding Mistakes
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11

Mean Structures and Latent Growth 
Models

The basic datum of SEM, the covariance, does not convey information about means. 
If only covariances are analyzed, then all observed variables are effectively mean-
deviated (centered) so that substantive latent variables must have means of zero. 
Sometimes this loss of information is too restrictive, such as when means of repeated 
measures variables are expected to differ. Means are estimated in SEM by adding a 
mean structure to the model’s basic covariance structure (i.e., its measurement or struc-
tural components). The input data for the analysis of a model with a mean structure 
are covariances and means (or the raw scores). The SEM approach to the analysis of 
means is distinguished by the capability to test hypotheses about means of substantive 
latent variables and the error covariance structure. The analysis of latent growth models 
and the multiple-sample analysis of measurement models with structured means are 
also considered.

Logic of Mean Structures

The technique of multiple regression (MR) provides the basic logic for analyzing covari-
ance structures in SEM. It provides the rationale for analyzing means, too. Recall that 
unstandardized regression equations have both a covariance structure (B weights) and 
a mean structure in the form of the intercept (A) (Equation 2.1). For example, consider 
the scores on variables X and Y presented in Table 11.1. The unstandardized equation for 
predicting Y from X for these data is

	 Ŷ  = .455 X + 20.000

The regression coefficient, .455, conveys no information about the mean of either vari-
able. The intercept, 20.000, reflects the mean of both variables and the regression coef-
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ficient, albeit with a single number. Given MX = 11.000 and MY = 25.000 (Table 11.1), the 
intercept can be expressed according to Equation 2.5 as

	 A = 25.000 – .455 (11.000) = 20.000

Likewise, the mean of Y can be expressed as a function of the intercept, regression coef-
ficient, and mean of X, as follows:

	 MY = 20.000 + .455 (11.000) = 25.000

How a computer calculates the intercept of an unstandardized regression equation 
provides the key to understanding the analysis of means in SEM. Look again at Table 
11.1 and in particular at the column labeled 

 
1 , which represents a constant that equals 

1 for every case in this application of the McArdle–McDonald symbolism for SEM. Sum-
marized in Table 11.2 are the results of two regression analyses with the constant. Both 
analyses were conducted by instructing the computer to omit from the analysis the 
intercept term it would otherwise automatically calculate. (This is an option in most 
regression modules.) In the first analysis, Y is regressed on both X and the constant. 
Note that the regression coefficient for X is the same as before, .455, and for the con-

TABLE 11.1. Example Bivariate Data Set

Raw scores Constant

Case X Y
 

1 

  A   3 24 1

  B   8 20 1

  C 10 22 1

  D 15 32 1

  E 19 27 1

      M  11.000 25.000 —

      SD   6.205   4.690 —

      s2   38.500 22.000 —

Note. rXY = .601.

TABLE 11.2. Results of Regression Analyses with a 
Constant for the Data in Table 11.1

Regression Predictor(s)
Unstandardized 

coefficient(s)

1.  Y on X and 
 

1 X     .455

 
1 20.000

2.  X on 
 

1 
 

1 11.000
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stant it is 20.000, which is the intercept. The second analysis in Table 11.2 concerns the 
regression of X on the constant. The regression coefficient in this analysis is 11.000, or 
the mean of X. These results illustrate two principles about mean structures:

When a criterion is regressed on a predictor and a constant, the	 (Rule 11.1)
unstandardized coefficient for the constant is the intercept.

When a predictor is regressed on a constant, the unstandardized	 (Rule 11.2)
coefficient is the mean of the predictor.

A path analytic representation of the regression analyses just described is presented 
in Figure 11.1. Unlike a standard path model, the one in the figure has both a covariance 
structure and a mean structure. The covariance structure includes the direct effects of 
the measured and unmeasured exogenous variables (respectively, X and D) and their 
variances. Estimating this covariance structure with the data in Table 11.1 using stan-
dard regression (OLS estimation) yields an unstandardized path coefficient of .455—
the same as the unstandardized regression coefficient—and a disturbance variance of 
14.054.1 No information about the means is represented in this covariance structure.

The mean structure in Figure 11.1 consists of direct effects of the constant on both 
observed variables. Although the constant is depicted as exogenous in the figure, it is not 
an exogenous “variable” in the usual sense because it has no variance. The unstandard-
ized path coefficient for the direct effect of the constant on the predictor X is 11.000, or 
the mean of X, just as in the corresponding regression analysis (Table 11.2). The mean 
of X is thus explicitly represented in the mean structure of the path model in the form 
of an unstandardized path coefficient.2 Because the constant has no indirect effect on 
X through other variables, the unstandardized coefficient for the path 

 
1  → X is also 

the total effect. The unstandardized path coefficient for the direct effect of the constant 

1This error variance is calculated in OLS estimation as (1 – 2
XYr ) 2

Ys  = (1 – .6012) 22.000 = 14.054. 

2The standardized coefficient for the path 
 

1  → X is zero because the means of standardized variables 
are zero.

FIGURE 11.1. A path model with a mean structure.
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on the endogenous variable Y is 20.000, which is the intercept. In addition to this direct 
effect, the constant also has an indirect effect on Y through X. Using the tracing rule for 
this model, we obtain this result:

	 Total effect of  
 

1  on Y   =   Direct effect + Indirect effect 
	                        =   20.000 + .455 (11.000) = 25.000

which equals the mean of Y. Two additional principles about mean structures can thus 
be expressed in path analytic language:

The mean of an endogenous variable Y is a function of three 	 (Rule 11.3)
parameters—(1) the intercept, (2) the unstandardized path  
coefficient(s), and (3) the mean(s) of the exogenous variable(s).

The model-implied (predicted) mean for an observed variable is the	 (Rule 11.4)
total effect of the constant on that variable.

Because the mean structure of the model in Figure 11.1 is just-identified (i.e., two 
observed means, two direct effects of 

 
1 ), the predicted means for X and Y equal their 

observed counterparts. This fact is elaborated next.
When an SEM computer tool analyzes means, it automatically creates a constant on 

which variables in the model are regressed. A variable is included in the mean structure 
by specifying that the constant has a total effect on it. This leads to two more prin-
ciples:

For exogenous variables, the unstandardized path coefficient for the	 (Rule 11.5)
direct effect of the constant is a mean.

For endogenous variables, though, the direct effect of the constant	 (Rule 11.6)
is an intercept but the total effect is a mean.

If a variable is excluded from the mean structure, the mean of that variable is assumed to 
be zero. Residual terms (disturbances, measurement errors) are never included in mean 
structures because their means are assumed to be zero. In fact, the mean structure may 
not be identified if the mean of an error term is inadvertently specified as a free param-
eter. Three points warrant special mention:

1.	 There is no standard symbol in the SEM literature for mean structures. The 
symbol 

 
1  is used in diagrams here mainly as a pedagogical device so that you quickly 

recognize the presence of a mean structure and determine which variables it includes. 
But it is not absolutely necessary to explicitly represent mean structures in model dia-
grams. Some authors present just the covariance structure in a diagram and report esti-
mates about means in accompanying tables.
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2.	 It is theoretically possible to analyze means of observed variables in a path anal-
ysis, but this is rarely done in practice. It is more common in SEM to estimate means of 
latent variables (factors) represented in measurement models.

3.	 Special forms of maximum likelihood (ML) estimation for raw data files with 
missing observations, including the expectation–maximization (EM) algorithm, esti-
mate both covariances and means. That is, they add a mean structure to the model. 
Depending on how these special methods are implemented in a particular SEM com-
puter tool, it may or may not be necessary to explicitly specify a mean structure even if 
the original model has only a covariance structure.

Identification of Mean Structures

The two principles listed next concern identification of mean structures:

The parameters of a model with a mean structure include (1) the	 (Rule 11.7)
means of the exogenous variables, (2) the intercepts of the  
endogenous variables, and (3) the number of parameters in the 
covariance portion of the model counted in the usual way for that  
type of model.

A simple rule for counting the number of observations available to estimate the param-
eters of a model with both covariance and mean structures is stated next:

If v is the number of observed variables, then the number of	 (Rule 11.8)
observations equals v (v + 3)/2 when means are analyzed.

The value of the expression in Rule 11.8 gives the total number of variances, nonredun-
dant covariances, and means of observed variables. For instance, if there are three 
observed variables, then there are 3(6)/2, or nine observations, including three means, 
three variances, and three unique covariances (e.g., see the lower right side of Table 
3.2).

In order for a mean structure to be identified, the number of its parameters can-
not exceed the total number of means of the observed variables. Also, the identifica-
tion status of a mean structure must be considered separately from that of the covari-
ance structure. For example, an overidentified covariance structure will not identify an 
underidentified mean structure, and vice versa. If the mean structure is just-identified, it 
has as many free parameters as observed means; therefore (1) the model-implied means 
(total effects of the constant) will exactly equal the corresponding observed means; and 
(2) the fit of the model with just the covariance structure will be identical to that of the 
model with both the covariance structure and the mean structure.

For example, the mean structure of the model in Figure 11.1 has two parameters,  
1  → X and 

 
1  → Y (respectively, the mean of X, the intercept when regressing Y on 
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X). Because there are two observed means (MX, MY), the mean structure here is just-
identified. It was demonstrated earlier for this model that the total effect of the constant 
on X is 11.000 and on Y it is 25.000. Each of these predicted means equals the corre-
sponding observed mean (Table 11.1). It is only when the mean structure is overidenti-
fied that the predicted means could differ from the observed ones. That is, one or more 
mean residuals may not equal zero. Mean residuals are calculated as the difference 
between observed means and model-implied (predicted) means.

Estimation of Mean Structures

Many of the estimation methods described in earlier chapters for analyzing models with 
covariance structures only can be applied to models with both covariance and mean 
structures. This includes default ML estimation. However, incremental fit indexes, such 
as the Bentler CFI, may not be calculated for models with mean structures, or they 
may be calculated for just the covariance part of the model. When only covariances are 
analyzed, the baseline model is typically the independence model, which assumes zero 
population covariances. The independence model is more difficult to define when both 
covariances and means are analyzed. For example, an independence model where all 
covariances and means are fixed to zero may be very unrealistic. An alternative indepen-
dence model allows for the means of the observed variables to be freely estimated (they 
are not assumed to be zero). Check the documentation of your SEM computer tool to 
determine how it defines the independence model when means are analyzed.

Latent Growth Models

The term latent growth model (LGM) refers to a class of models for longitudinal data 
that can be analyzed in SEM or other statistical techniques, such as hierarchical linear 
modeling (HLM) (e.g., Raudenbush & Bryk, 2002). It may be the most common type 
of structural equation model with a mean structure evaluated in a single sample. The 
particular kind of LGM outlined below has been described by several different authors 
(e.g., Duncan, Duncan, Strycker, Li, & Alpert, 1999), is specified as an SR model with 
a mean structure, and can be analyzed with standard SEM software. The analysis of an 
LGM in SEM typically requires

1.	 A continuous dependent variable measured on at least three different occa-
sions.

2.	 Scores that have the same units across time and can be said to measure the same 
construct at each assessment.

3.	 Data that are time structured, which means that cases are all tested at the same 
intervals. These intervals need not be equal. For example, a sample of children may 
be observed at 3, 6, 12, and 24 months of age. If some children are tested at, say, 4, 10, 
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15, and 30 months, their data cannot for analyzed together with those tested at other 
intervals. In contrast, HLM does not require time-structured data. Another advantage 
of HLM is that it is more flexible than the SEM approach concerning missing observa-
tions or unbalanced data (different numbers of cases are tested at different occasions). In 
contrast, the SEM approach offers these relative advantages: the availability of statistical 
indexes of whole model fit, the simultaneous analysis of multiple growth curves (e.g., 
multiple outcomes measured over time), and the capability to model growth curves of 
factors (latent variables as repeated measures outcomes).

The raw scores are not required to analyze an LGM. This is because such models can 
be analyzed with matrix summaries of the data. However, these matrix summaries must 
include the covariances (or correlations and standard deviations) and means of all vari-
ables, even of those that are not repeated measures variables. Willett and Sayer (1994) 
note that inspection of the raw scores for each case, or the empirical growth record, 
can help to determine whether it may be necessary to include curvilinear growth terms 
in the model. It is also possible to generate predicted growth curves for individual cases, 
but only when a raw data file is analyzed.

As noted by Bauer (2003), Curran (2003), and others, latent growth models ana-
lyzed in SEM are in fact multilevel (two-level) models that explicitly acknowledge the 
fact that scores are clustered under individuals (repeated measures). Scores from the 
same case are probably not independent, and this lack of independence must be taken 
into account in the statistical analysis. An LGM is specified differently in HLM, but HLM 
and SEM computer programs generate the same basic parameter estimates for the same 
LGM and data. This point of isomorphism between HLM and SEM is a basis for relating 
the two techniques (e.g., Curran, 2003), an idea that is elaborated in the next chapter.

Empirical Example

The data for this example are from Duncan and Duncan (1996), who conducted a longi-
tudinal study of alcohol use among adolescents. A sample of 321 adolescents were sur-
veyed annually over a 4-year period. Higher scores on the alcohol use variable indicated 
increasing frequencies of monthly use. The means, standard deviations, and correla-
tions for annual reports of annual alcohol use are reported in Table 11.3. The year-to-
year increases in mean levels of drinking are consistent, which suggests a positive linear 
trend. Also reported in the table are descriptive statistics for gender and family status. 
The means of these variables are, respectively, the proportion of students who are female 
(.573) or live with both parents (.554). These variables are analyzed later in this chapter 
as predictors of change.

Modeling Change

Latent growth models are often analyzed in two steps. The first concerns a change model 
of just the repeated measures variables. This model attempts to explain the covariances 
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and means of these variables. Given an acceptable change model, the second step adds 
variables to the model that may predict change over time. This two-step approach makes 
it easier to identify potential sources of poor model fit compared with the analysis of a 
prediction model in a single step. There is a similar rationale for analyzing SR models in 
two steps (Chapter 9).

A basic model of change in alcohol use is presented in Figure 11.2. It has the fol-
lowing characteristics:

1.	 Each annual measurement is represented as an indicator of two latent growth 
factors, Initial Status (IS) and Linear Change (LC). The IS factor represents the baseline 
level of alcohol use corrected for measurement error. Because the IS factor is analogous 
to the intercept in a regression equation, the unstandardized loadings on this factor are 
all fixed to 1 (Figure 11.2). Loadings on the LC factor are fixed to constants that corre-
spond to times of measurement, beginning with 0 for the first measurement and ending 
with 3 for the last. Because these weights (0, 1, 2, 3) are positive and evenly spaced, they 
specify a positive linear trend. The specification that the loading of the Year 1 measure-
ment on the LC factor equals 0 sets the initial level at this time. This means that the IS 
factor will be defined based on the Year 1 measurement.3

2.	 The IS and LC factors are specified to covary. This covariance indicates the 
degree to which initial levels of drinking predict rates of subsequent rates of linear 
change. A positive covariance would indicate that adolescents with higher initial levels 

TABLE 11.3. Input Data (Correlations, Standard Deviations, Means) for Latent 
Growth Models of Change in Alcohol Use over 4 Years

Variable 1 2 3 4 5 6

Alcohol use

   1.  Year 1 1.000

   2.  Year 2   .640 1.000

   3.  Year 3   .586   .670 1.000

   4.  Year 4   .454   .566   .621 1.000

Predictors

   5.  Gender   .001   .038   .118   .091 1.000

   6.  Family Status −.214 −.149 −.135 −.163 −.025 1.000

      M          2.271 2.560 2.694 2.965   .573   .554

      SD       1.002   .960   .912   .920   .504   .498

Note. These data are from Duncan and Duncan (1996); N = 321.

3The initial level can be set to other times besides the first observation. For example, the weights (–1, 0, 1, 2) 
for the LC factor specify a linear trend but the initial level is now based on the second measurement. The 
point in time at which the initial level is set is arbitrary, but where it is set may affect estimates of factor 
covariances and means. It is probably simpler just to specify that the initial level corresponds to the first 
measurement. See Willett and Sayer (1994) for more information about where to set the initial level.
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of alcohol use at Year 1 show steeper linear increases over time, and a negative covari-
ance would indicate just the opposite.

3.	 The LGM of Figure 11.2 has a mean structure in which the constant has direct 
effects on the exogenous latent growth factors, IS and LC. This specification includes the 
mean of these factors as free parameters. The mean of the IS factor is the average initial 
level of reported alcohol use. This latent variable average is a characteristic of the whole 
sample. In contrast, the variance of the IS factor reflects the range of individual differ-
ences around the average initial level. Likewise, the mean of the LC factor reflects the 
average amount of year-to-year increase in average levels of drinking, also adjusted for 
measurement error. The variance of the LC factor provides information about the range 
of individual differences in the rate of linear annual increases in alcohol use over time.

4.	 The error terms of adjacent years are assumed to covary (e.g., E1   E2) in Fig-
ure 11.2. Other patterns are also possible, including no error covariances (the errors are 
independent) or the specification of additional error covariances (e.g., E1   E3 ). The 
capability to explicitly model measurement error is a potential advantage of SEM over 
more traditional methods for repeated measures data. For example, the analysis of vari-
ance (ANOVA) assumes that the error variances of repeated measures variables are equal 
and independent, which is unlikely. The technique of MANOVA (multivariate ANOVA) 
makes less restrictive assumptions about error variances (e.g., they can covary), but both 
ANOVA and MANOVA treat individual differences in growth trajectories as error vari-
ance. In contrast, one of the aims of analyzing an LGM is to model these differences.

It is no special problem to specify a linear trend if the measurement occasions are 
not evenly spaced. For example, Murphy, Chung, and Johnson (2002) measured levels 

FIGURE 11.2. Latent growth model of change in level of alcohol use over 4 years.
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of distress among parents at 4, 12, 24, and 60 months following the violent death of a 
child. Because the level of distress is expected to decline over time, the trend direction 
is negative. In latent growth models evaluated by Murphy et al. (2002), the loading for 
the initial assessment at 4 months on a linear change factor was fixed to 0 and the load-
ing for the 12-months measurement (conducted 8 months later) was fixed to –1. Because 
the period of 8 months equals –1 in the slope metric, the loading of the 24-months 
measurement—which took place 20 months after the initial assessment—was fixed to 
–20/8, or –2.5. By the same logic, the loading of the 60-months measurement was fixed 
to –7 because it took place 56 months after the initial measurement, and –56/8 = –7. 
The set of loadings for the linear change factor analyzed by Murphy et al. (2002) is thus 
(0, –1, –2.5, –7).

It is also possible to estimate curvilinear trends in the analysis of an LGM. For 
example, a positive quadratic growth factor could be added to the model of Figure 11.2 
by specifying that (1) loadings of the repeated measures indicators on this factor equal 
the square of the corresponding loadings on the LC factor (e.g., 0, 1, 4, 9); and (2) the 
quadratic change factor is included in the mean structure and covaries with the IS and 
LC factors. Improvement in model fit due to adding a quadratic growth factor to the 
model should be appreciable. Otherwise, the more parsimonious model with just the IS 
and LC factors would be preferred. It is rarely necessary to estimate curvilinear trends 
higher than a quadratic one for most behavioral data.

The change model of Figure 11.2 has 12 parameters. These include (1) six variances 
(of two factors and four measurement errors); (2) four covariances (one between the 
factors and three between temporally adjacent measurement errors); and (3) two factor 
means, or the direct effects 

 
1  → IS and 

 
1  → LC. With four observed variables (alco-

hol use over 4 years), there are 4(7)/2, or 14 observations (10 variances and unique cova-
riances, 4 means) available to estimate the model, so dfM = 2. I fitted the initial change 
model in Figure 11.2 to the correlations, standard deviations, and means in Table 11.3 
with the ML method of Mplus 5.2. The Mplus program has special syntax for latent 
growth models that is very compact. The analysis converged to an admissible solution. 
Values of selected fit statistics for the initial change model are reported in Table 11.4. 
Neither the exact-fit hypothesis ( 2

Mχ (2) = 4.877, p = .087) nor the close-fit hypothesis 
(p = .266) is rejected. However, the upper bound of the 90% confidence interval based on 

TABLE 11.4. Values of Selected Fit Statistics for a Latent Growth Model of Change 
in Level of Alcohol Use over 4 Years

Model
2
Mχ dfM

2
Dχ dfD

RMSEA  
(90% CI) pclose-fit H0 CFI SRMR

Initial change model   4.877a 2 — — .067 (0–.145) .266 .995 .019

Change model with no error  
  covariances

  8.155b 5 3.278c 3 .044 (0–.097) .498 .994 .033

Prediction model 13.823d 9 — — .041 (0–.081) .593 .992 .027

Note. CI, confidence interval.
ap = .087; bp = .148; cp = .351; dp = .129.
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RMSEA = .067, or .145, is so high as to be consistent with the poor-fit hypothesis. Values 
of other approximate fit indexes seem favorable (e.g., CFI = .995), but there is a need to 
examine the details of the solution more closely. I inspected the parameter estimates and 
found that the error covariances were generally zero (range is –.063 to –.033), and none 
were statistically significant.

These results suggest that the initial change model is overparameterized. In a second 
analysis, I trimmed all three error covariances from the model with the rationale that 
annual measurement intervals may make these terms unnecessary. Values of selected fit 
statistics for the respecified change model are reported in Table 11.4. As expected, the 
model chi-square is larger for the respecified change model ( 2

Mχ (5) = 8.155) compared 
with that for the initial change ( 2

Mχ (2) = 4.877). The difference between these two model 
chi-squares, or 2

Dχ (3) = 3.278, is not statistically significant (p = .351). However, the 
upper bound of the 90% confidence interval based on RMSEA = .044 for the respecified 
change model, or .097, is now more favorable. In addition, absolute correlation residuals 
(calculated in EQS) for the covariance structure of the change model are all < .06. Even 
though the respecified change model without error covariances departs more from per-
fect fit than the more complex change model with error covariances, the results for the 
RMSEA favor the simpler model. Based on all these results, the final model of change in 
reported alcohol use over 4 years is identical to the original model in Figure 11.3 except 
there are no measurement error correlations.

The parameter estimates for the final change model are reported in Table 11.5. The 
direct effects of the constant on the exogenous latent growth factors are means. The 
estimated mean of the IS factor is 2.291, which is close to the observed average level 
of alcohol use at Year 1 (2.271; see Table 11.3). The two mean values just stated are not 
identical because one is for an observed variable and the other is for a latent variable (IS). 
The estimated mean of the LC factor is .220, which indicates the average year-to-year 
increase in drinking. When estimating latent growth models, the statistical significance 
of the variances of the latent growth factors may be of substantive interest. For example, 
the estimated variances of the IS and LC factors are, respectively, .699 and .038, and 
each is statistically significant at the .01 level (Table 11.5). These results indicate that 
adolescents are not homogeneous in either their initial levels of drinking or the slopes 
of subsequent linear increases in drinking. The estimated covariance between the latent 
growth factors is –.080, and the corresponding estimated factor correlation is –.489. 
These results say that higher initial levels of alcohol use predict lower subsequent rates 
of linear annual increases, and vice versa. Other results reported in Table 11.5 con-
cern measurement errors. In general, the final change model explains about 65% of the 
observed total standardized variance in alcohol use across the 4 years.

Means of the indicators (Year 1–4), which are endogenous, are not model parameters. 
However, the unstandardized total effects of the constant on the indicators are predicted 
means that can be compared with the observed means. For example, application of the 
tracing rule shows that the total effect of the constant on the first measurement of alcohol 
use is the sum of the indirect effects through the IS factor and through the LC factor (see 
Figure 11.2). Using results from Table 11.5, this total effect is calculated as follows:
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	 Total effect of  
 

1  on Year 1   =   Indirect effect through IS +  
	                             Indirect effect through LC

	                            =   (
 

1  → IS) (IS → Year 1) + 
	                             (

 
1  → LC) (LC → Year 1)

	                            =   2.291 (1) + .220 (0) = 2.291

The observed mean for Year 1 is 2.271 (see Table 11.3), so the mean residual is

	 2.271 – 2.291 = –.020

that is, the predicted mean is quite close to the observed mean for Year 1. The other 
observed and predicted means are listed next. You should verify these results using the 
tracing rule:

Indicator Observed Predicted
Year 2 2.560 2.512
Year 3 2.694 2.732
Year 4 2.965 2.953

TABLE 11.5. Maximum Likelihood Parameter Estimates for the Final 
Latent Growth Model of Change in Alcohol Use over 4 Years

Parameter Unstandardized SE Standardized

Mean structure

Latent growth factor means

  
 

1  → IS   2.291 .054 0

  
 

1  → LC    .220 .018 0

Covariance structure

Variances and covariance

   Latent growth factors
     IS   .699 .077  1.000

     LC   .038 .010  1.000

     IS   LC −.080 .023 −.489

   Measurement errors
      E1   .342 .051  .328

      E2   .306 .033  .346

      E3   .273 .030  .339

      E4   .309 .046  .354

Note. p < .01 for all unstandardized estimates. Standardized estimates for measurement 
errors are proportions of unexplained variance. IS, Initial Status; LC, Linear Change.
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The final change model closely reproduces both the observed covariances and means. 
You can download the Mplus and EQS computer files for this analysis of the change 
model from this book’s website (see p. 3).

Predicting Change

With an adequate model of change in hand, a model that predicts this change can now 
be analyzed. Predictors are added to a basic change model by (1) including them in the 
mean structure and (2) regressing the latent growth factors on the predictors. Consider 
the LGM for predicting change in alcohol use presented in Figure 11.3. The constant has 
direct effects on the predictors, gender and family status, which are assumed to covary. 
Each predictor is specified to have direct effects on both latent growth factors. This 
makes these factors endogenous in the prediction model, so now each has a disturbance. 
These disturbances are specified as correlated, which reflects the assumption that the 
latent growth factors share omitted causes besides gender and family status. The rest 
of the prediction model in Figure 11.3 is identical to the final change model analyzed 
earlier. The prediction model is also a MIMIC (multiple indicators and multiple causes) 
model because the factors have both effect and cause indicators.

With six observed variables, there are a total of 6(9)/2 = 27 observations available 

FIGURE 11.3. Latent growth model of prediction of change in level of alcohol use over 4 
years.
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to estimate the 16 parameters of the prediction model in Figure 11.3. These include 
(1) eight variances (of two observed exogenous variables, two factor disturbances, and 
four measurement errors); (2) two covariances (one between the predictors and another 
between the disturbances); (3) four direct effects on the latent growth factors (two from 
each predictor); and (4) four direct effects of the constant. The last four effects include 
the means of the predictors and the intercepts of the latent growth factors. I fitted the 
prediction model of Figure 11.3 with dfM = 9 to the data summarized in Table 10.5 
with Mplus 5.2. Estimation in Mplus converged to an admissible solution, and values of 
selected fit statistics are reported in Table 11.4. To summarize, both the exact-fit hypoth-
esis ( 2

Mχ (9) = 13.823, p = .129) and close-fit hypothesis (p = .593) are retained. The poor-
fit hypothesis is rejected because the upper bound of 90% confidence for RMSEA = .041, 
or .081, is < .10. Values of other approximate fit indexes are reasonable (Table 11.4), and 
all absolute correlation residuals (calculated in EQS) are < .06. The Mplus and EQS com-
puter files for this analysis of the prediction model in Figure 11.3 can be downloaded 
from this book’s website (p. 3).

The ML parameter estimates for the prediction model are presented in Table 11.6. 
Estimates of the variances and covariance of the exogenous gender and family status 
variables are not reported in the table because these results are just the sample values 
(see Table 11.3). The results in the top part of the table concern the mean structure. 
The unstandardized direct effects of the constant on the exogenous predictors, gender 
(.573) and family status (.554), equal the observed means of each variable (Table 11.3). In 
contrast, unstandardized direct effects of the constant on the endogenous latent growth 
factors, IS (2.493) and LC (.159), are intercepts. They are intercepts because it is the total 
effects of the constant on IS and LC that are the estimated factor means. These means 
can be derived using the tracing rule as the sum of the direct effect of the constant (i.e., 
the intercepts) and the indirect effects through both predictors. Using results from Table 
11.6, one can estimate the mean of the latent growth factors as follows where G indicates 
gender and F family status:

	 Total effect of  
 

1  on IS   =   (
 

1  → IS) + 
	                          (

 
1  → G) (G → IS) + 

	                          (
 

1  → F) (F → IS)

	                         =   2.493 + .573 (.011) – .554 (.377) 
	                         =   2.290

	 Total effect of  
 

1  on LC   =   (
 

1  → LC) + 
	                           (

 
1  → G) (G → LC) + 

	                           (
 

1  → F) (F → LC)

	                          =   .159 + .573 (.065) + .554 (.044) 
	                          =   .221
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These values are identical within slight rounding error to those for the final change 
model (see Table 11.5), and they are interpreted the same way, too.

Parameter estimates reported in the lower part of Table 11.6 concern the covariance 
structure of the prediction model in Figure 11.3. Standardized estimates for the dis-
turbance variances expressed as proportions of unexplained variance indicate that the 
prediction model explains about 1 – .950 = .050, or 5.0% of the variance of the IS factor, 
and about 1 – .961 = .039, or 3.9% of the variance of the LC factor. The estimated distur-
bance correlation is negative (–.491), which says that higher initial levels of alcohol use 
are associated with lower rates of linear increases in alcohol use over time through their 
common omitted causes. This result parallels a similar one for the final change model 
described earlier (see Table 11.5).

The only unstandardized coefficient for a direct effect on the latent growth factors 

TABLE 11.6. Maximum Likelihood Parameter Estimates for a Latent 
Growth Model of Prediction of Change in Alcohol Use over 4 Years

Parameter Unstandardized SE Standardized

Mean structure

Predictor means

  
 

1  → Gender   .573 .028 0

  
 

1  → Family   .554 .028 0

Latent growth factor intercepts

  
 

1  → IS 2.493 .100 0

  
 

1  → LC   .159 .034 0

Covariance structure

Disturbance variances and covariance

  DIS   .666 .074   .950

  DLC   .037 .010   .961

  DIS   DLC −.077 .022 −.491

Direct effects

  Gender → IS   .011a .105   .007

  Family → IS −.377 .106 −.244

  Gender → LC   .065a .035   .166

  Family → LC   .044a .036   .122

Measurement error variances

  E1   .333 .050   .322

  E2   .310 .033   .349

  E3   .273 .029   .339

  E4   .312 .046   .357

Note. Standardized estimates for disturbances and measurement errors are proportions of 
unexplained variance. IS, Initial Status; LC, Linear Change.
ap ≥ .05. For all other unstandardized estimates, p < .01.
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that is statistically significant is that for the direct effect of family status on the IS fac-
tor. This unstandardized coefficients equals –.377, and the corresponding standardized 
coefficient equals –.244. Thus, adolescents with higher scores on the family status vari-
able have lower initial levels of alcohol use, when we adjust for measurement error and 
control for gender. Because this variable is coded 0 = single-parent family and 1 = two-
parent family, we can say that adolescents who live with two parents have lower initial 
levels of drinking by .244 standard deviations compared with adolescents who live with 
only one parent. The unstandardized coefficient for the direct effect of gender on the 
LC factor, or .065, is not statistically significant. However, the standardized estimate for 
this path, or .166, is nearly as large in absolute value as that for the direct effect of family 
status on the IF factor, so here we will not ignore the former result. Because gender is 
coded as 0 = male and 1 = female, this result indicates that the rates of linear increase in 
alcohol use over time were generally greater for female than for male adolescents.

The predicted means on the alcohol use indicators for the prediction model calcu-
lated by Mplus and their observed (sample) counterparts are as follows:

Indicator Observed Predicted
Year 1 2.271 2.291
Year 2 2.560 2.511
Year 3 2.694 2.732
Year 4 2.965 2.953

These predicted means are very similar to the corresponding observed means. Values 
of the predicted means just listed can also be calculated by hand using the tracing rule, 
but doing so is more complicated for the prediction model of Figure 11.3 than for the 
final change model. This is because the total effect of the constant on each indicator in 
the prediction model is made up of six different indirect effects through the predictors 
(gender, family status) and both latent growth factors. Fortunately, many SEM computer 
programs that analyze means can automatically calculate predicted means of endog-
enous variables. You can download from this book’s website (see p. 3) the Mplus and 
EQS computer files for analysis of the prediction model in Figure 11.3.

Extensions of Latent Growth Models

The basic framework for univariate growth curve modeling in a single sample just 
discussed can be extended in many ways. For example, the predictors in the empiri-
cal example (gender, family status) are time-invariant predictors in that they were 
measured only once. It is also possible to include time-varying predictors that are 
themselves repeated measures variables, typically measured at the same intervals as the 
indicators of the latent growth factors (e.g., Kaplan, 2009, chap. 8). Each predictor in 
the empirical example was represented as an error-free single indicator (e.g., see Figure 
11.3). Given a priori estimates of error variance for observed predictors in an LGM, one 
could use the method described in Chapter 10 to take account of measurement error in 
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single indicators (e.g., Figure 10.4(a)). Another way to control for measurement error is 
to use multiple indicators of an exogenous factor specified to predict the latent growth 
factors. That is, the prediction part of an LGM can be fully latent. The capability to 
represent latent variables as predictors in an LGM distinguishes SEM from HLM, which 
features no direct way to do so. It also possible to estimate in SEM indirect effects among 
the predictors of latent growth factors, but doing so in HLM is difficult. Even another 
variation that is possible in SEM is the analysis of an LGM where the repeated measures 
variables are all latent, each measured with multiple indicators.

It may also be possible within the limits of identification to specify that some load-
ings on a latent change factor as free parameters. One strategy to do so was described 
by Meredith and Tisak (1990) and referred to as nonlinear curve fitting by Kaplan 
(2009). In this approach for the empirical example, one would fix the loading of the Year 
1 report of alcohol use on a slope factor to zero in order to estimate the intercept, fix the 
loading of the Year 2 report to 1 in order to scale this factor, and let the remaining two 
loadings be freely estimated. This tactic results in what is basically an empirical devel-
opmental function that optimally fits the slope factor to the data in a particular sample. 
Ratios of freely estimated loadings on the slope factor can also be formed to compare 
rates of development at different points in time. For instance, if the relative increases in 
the freely estimated loadings on the slope factor are not constant over time, the overall 
pattern of change may be curvilinear.

It is possible to analyze multivariate latent growth models of change across two 
or more domains. If these domains are measured at the same points in time, then the 
model reflects a parallel growth process (Kaplan, 2009). For example, George (2006) 
analyzed data from a longitudinal annual survey of students from Grade 7 to Grade 
11 about their interest in science classes and attitudes about the utility of science in 
everyday life. George (2006) evaluated a model of cross-domain change in which the 
within-domain latent growth factors were allowed to covary across the domains. The 
results indicated that while students’ interest in science courses steadily declines during 
the middle school and high school years, their views of science utility generally increase 
over the same time. Higher initial interest in science classes predicted a more posi-
tive attitude about science utility, and changes in one domain covaried positively with 
changes in the other domain. Furthermore, initial levels in each of these domains were 
negatively associated with change in the other domain. For example, students who in 
Grade 7 expressed more positive attitudes about science utility exhibited a more gradual 
decline in their interest in science classes from Grade 7 to 11.

Like just about any other kind of structural equation model, an LGM can be ana-
lyzed across multiple samples. For example, Benyamini, Ein-Dor, Ginzburg, and Solo-
mon (2009) studied the impact of combat stress and posttraumatic stress symptoms 
on the level and growth trajectories of self-reported health among Israeli veterans of 
the 1982 Lebanon War who were tested at 1, 2, 3, and 20 years after the conflict. The 
veterans were divided into two groups, one diagnosed as exhibiting a combat stress 
reaction (CSR) during the war and a matched control group without this diagnosis but 
exposed to similar combat experiences. The CSR group showed poorer initial levels of 
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self-reported health status. The trajectory of these veterans was positive over time (they 
improved), but their levels of self-reported health remained lower than that of the con-
trol group. Also, the experience of posttraumatic stress symptoms in the first few years 
after the war slowed the rate of subsequent improvement within the CSR group.

Bollen and Curran (2004) describe a class of models they refer to as autoregres-
sive latent trajectory (ALT) models in which the indicators of latent growth factors are 
allowed to have direct and indirect effects on each other over time. An autoregressive 
structure is one where past values of a variable are used to predict future values of that 
same variable. That is, lagged (prior) variables are specified as the predictors of later 
measurements on the same variable. For example, the specification for the empirical 
example presented next

	 Year 1 → Year 2 → Year 3 → Year 4

illustrates an autoregressive model of one lag where the prior level of reported alcohol 
use has a direct effect on the current one. This model implies indirect effects, too, such 
as the impact of Year 1 on Year 3 through the mediator Year 2. There are many statis-
tical techniques for analyzing autoregressive structures, including the autoregressive 
integrative moving average (ARIMA) model, which uses shifts and lags in a time series 
to uncover patterns, such as seasonal trends or various kinds of intervention effects. 
In contrast, a standard LGM does not incorporate lagged effects among the indicators. 
Instead, indicators are assumed to be spuriously associated due to common causes, in 
this case the latent growth factors (e.g., Figure 11.2). Bollen and Curran (2004) argue 
that this assumption is unrealistic for certain types of data. They describe an ALT model 
as a kind of LGM that includes direct and indirect effects among the indicators. The 
basic logic of an ALT model can be extended to analysis of panel data from a series of 
one or more repeated measures variables.

Structured Means in Measurement Models

A standard CFA model assumes that the means of all variables are zero. However, it is 
possible to add a mean structure to a measurement model. An example is presented 
in Figure 11.4. This model’s covariance structure is the measurement model of family-
of-origin experiences (FOE) and marital adjustment evaluated in Chapter 9 with data 
collected by Sabatelli and Bartle–Haring (2003) in samples of husbands and wives. The 
model in Figure 11.4 also has a mean structure that includes the indicators and the fac-
tors. Based on the principles described earlier, the unstandardized path coefficients for 
the regression of the exogenous factors on the constant should theoretically equal the 
factor means. Because the indicators are endogenous, (1) the unstandardized coeffi-
cients for the direct effects of the constant on the indicators should equal the intercepts 
for the regressions of the indicators on the factors, and (2) the indicator means should 
be estimated by the total effect of the constant on each indicator.
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The model of Figure 11.4 is not identified if it was estimated with data from a 
single sample. This is because its mean structure would be underidentified: there are 
five observations (means of the five indicators), but the mean structure has seven param-
eters, including the means of the two factors and the intercepts of the five indicators. But 
if a measurement model with structured means is analyzed across multiple groups and 
constraints are imposed on certain parameter estimates, the model can be identified. A 
two-part strategy by Sörbom (1974) to analyze such a model is described next:

1.	 Fix the factor means to zero in one group, which is the same as constraining 
the direct effect of the constant on all factors to zero in that group. These constraints 
establish that group as the reference sample. The factor means are then freely estimated 
in all other groups, and their values are relative differences on the factors. Suppose that 
there is a treatment group and a control group. The latter is the reference sample. If the 
direct effect of the constant on a factor in the treatment group is –5.00, then the factor 
mean in the treatment group is 5 points higher than in the control group.

2.	 In order to reasonably estimate relative group differences on factor means, it 
must be assumed that the factors are defined the same way in both samples. One way 
to address this requirement is to scale the factors the same way by fixing the loadings 
of the same indicators (reference variables) to 1.0 across the groups. This tactic is rec-
ommended for multiple-sample CFA regardless of whether means are estimated (Chap-
ter 9). Little, Slegers, and Card (2006) describe other options for scaling the factors in 
multiple-sample analyses of models with mean structures. The second way is to test for 

FIGURE 11.4. A measurement model of family-of-origin experiences and marital adjustment 
with a mean structure evaluated across samples of husbands and wives.
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measurement invariance across the groups. Specifically, there should be evidence for at 
least partial measurement invariance concerning the factor loadings and indicator inter-
cepts. Without such evidence, there is little point in interpreting group mean differences 
on latent variables that are not measured the same way across the groups.

A strategy for testing measurement invariance is suggested next. First, test the equal 
form hypothesis, Hform, by freely estimating all model parameters, including those of 
the mean structure, in each group. If this model is rejected, then there is no basis for 
invariance at any level and thus none for interpreting factor mean differences. Other-
wise, next test the stronger hypothesis of equal factor loadings and intercepts, HΛ, τ, by 
imposing cross-group equality constraints on the unstandardized estimates of each fac-
tor loading and indicator intercept. Compare this model using the chi-square difference 
test with the less restricted model that corresponds to Hform. If HΛ, τ does not hold for a 
couple of indicators, then their factor loadings or intercepts can be estimated separately 
within each group (i.e., release the equality constraints on those parameters). This con-
trols for unequal loadings or intercepts for regressions of the indicators on the factors 
across the groups. However, if none of the loadings or intercepts are equal across the 
groups—that is, Hform is the only retained invariance hypothesis—there are no grounds 
for interpreting factor mean contrasts.4

Empirical Example

In Chapter 9, we determined in a multiple-sample CFA across samples of husbands 
and wives that the measurement model only in Figure 11.4 is invariant concerning the 
unstandardized factor loadings and measurement error variances. However, it was nec-
essary to freely estimate in each sample the factor variances and covariance and the 
error covariance between the mother and father indicators of the FOE factor (Tables 
9.9–9.10). In this analysis, the mean structure illustrated in Figure 11.4 was added to 
the measurement model just described. The husbands are the reference sample, so the 
direct effects of the constant on both factors (the factor means) were constrained to 
equal zero in this group. In contrast, these two parameters were freely estimated in the 
sample of wives, and their unstandardized values estimate relative mean differences 
between wives and husbands on each factor. The direct effects of the constant on each 
indicator (the intercepts) were constrained to be equal for husbands and wives. This set 
of cross-group equality constraints (five in total) tests the hypothesis of equal intercepts 
for regressions of indicators on the factors. With five indicators in each sample, the total 
number of observations is 5(8)/2 × 2, or 40. The total number of free parameters is 23. 
This includes (1) 13 parameters constrained to be equal for husbands and wives (five 
indicator intercepts, five measurement error variances, and three factor loadings); (2) 
four parameters freely estimated within each sample (three factor variances and covari-

4A variation is to test invariance of factors loadings and intercepts over two separate steps.
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ance and one error covariance) for a total of eight altogether; and (3) two factor mean 
differences estimated only for wives. Thus, dfM = 40 – 23 = 17.

The measurement model with structured means just described was simultaneously 
fitted using the ML method in EQS 6.1 to the covariance matrices and means based on 
the data summarized in Table 9.8 for husbands and wives. The default iteration limit of 
30 in EQS was increased to 200 for this relatively complex analysis. The initial run in 
EQS terminated with two types of error messages. First, the program “complained” of 
bad start values in the initial iterations. Second, the program issued “condition codes” 
for three different parameters, which means that EQS was unable to calculate “proper” 
(admissible) estimates of these parameters without imposing inequality constraints. The 
problematic parameters flagged by EQS included the variance of the marital adjustment 
factor, the error variance of the intimacy indicator of the same factor, and the factor 
loading of this indicator (see Figure 11.4).

To deal with these problems, I specified in a second run with EQS start values for 
the parameters just mentioned. I took these values from the final measurement model 
for husbands and wives estimated in Chapter 9 (Table 9.10). In the second analysis with 
these start values, EQS issued a warning (not error) message about bad start values 
in the first iteration and another message about a parameter matrix that may be non-
positive in the second through fourth iterations, but the program went on to generate a 
converged and admissible solution. You can download the EQS syntax and output files 
for this analysis from this book’s website (p. 3). The syntax file includes specification of 
the start values for the second analysis. Reported next are values of selected fit statistics 
calculated by EQS for the covariance structure only; the 90% confidence interval based 
on the RMSEA is reported in parentheses:

	
2
Mχ (17) = 13.599,  p = .695 

	 RMSEA = 0 (0–.033) 

	 GFI = .986;  CFI = 1.000;  SRMR = .027

All absolute correlation residuals were < .10 for both the husbands and wives. The EQS 
program also printed a value of the RMSEA and its 90% confidence interval based on the 
covariances and means (i.e., the whole model of Figure 11.4), and the results are RMSEA 
= 0 (0–.070). We will see later in this chapter that the predicted means are similar to the 
observed means in both samples. Finally, none of the standardized residuals (calculated 
in LISREL) were statistically significant for either husbands or wives. Given all these 
results, the model in Figure 11.4 with equality-constrained factor loadings, indicator 
error variances, and intercepts was retained. You can download from this book’s website 
(p. 3) all EQS, LISREL, and Mplus computer files for this analysis.

Reported in Table 11.7 are ML parameter estimates for the measurement model of 
Figure 11.4. These estimates are similar, but not identical, to those presented in Table 
9.10 for the multiple-sample CFA with no mean structure. The two sets of parameter 
estimates are not identical because the mean structure in Figure 11.4 was estimated 
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with cross-group equality constraints imposed on the indicator intercepts. However, the 
results in Table 11.7 for the measurement model are so close to those in Table 9.10 that 
no new interpretation is needed.

Presented in the top part of Table 11.8 are the unstandardized estimates of the 
direct effects of the constant on the factors calculated for wives only. They are inter-
preted as estimated factor mean differences between husbands and wives adjusted for 
measurement error. The result for the FOE factor is 3.196, indicating that the mean score 
for wives on this factor is predicted to be about 3.2 points higher than that for husbands. 
That is, wives generally report more positive FOE experiences than their husbands. The 
estimated standard error for this factor mean difference is 1.643. In a large sample—and 
if we assume normality and homogeneity of variance—the ratio 3.196/1.643 = 1.95 is 
interpreted as a z test of whether the estimated factor mean contrast differs statistically 
from zero. The positive two-tailed critical value of z at the .05 level is 1.96. Thus, the 

TABLE 11.7. Maximum Likelihood Parameter Estimates for the Covariance 
Structure of a Two-Factor Model of Family-of-Origin Experiences and Marital 
Adjustment with Structured Means Analyzed across Samples of Husbands and 
Wives

Husbands Wives

Parameter Unst. SE St. Unst. SE St.

Unconstrained estimates

Factor variances and covariance

  FOE   85.654   20.474 1.000 139.199   29.405 1.000

  Mar Adj 459.106 106.661 1.000 595.685 149.121 1.000

  FOE  Mar Adj   95.053   28.249   .479 140.477   40.883   .488

Measurement error covariance

  EFa  EMo −8.925a 14.293 −.161   20.781a   14.442   .374

Equality-constrained estimates

Factor loadings

  Mar Adj → Probs     1.000b      —   .688     1.000b      —   .734

  Mar Adj → Intim     .917     .142   .979      .917     .142   .984

  FOE → Father     1.000b      —   .828     1.000b      —   .883

  FOE → Mother     .859     .078   .668     .859     .078   .753

  FOE → Fa-Mo    .932     .139   .663     .932     .139   .749

Measurement error variances

  EPr 510.316   89.025   .526 510.316   80.025   .461

  EIn    16.757a   61.705   .042   16.757a   61.705   .032

  EFa   39.421c   15.789   .315     39.421c   15.789   .221

  EMo   78.371   15.438   .554   78.371   15.438   .433

  EFa-Mo   94.944   16.096   .560   94.944   16.096   .440

Note. Unst., unstandardized; St., standardized; FOE, family-of-origin experiences. Standardized estimates for 
measurement errors are proportions of unexplained variance.
ap ≥ .05; bnot tested for statistical significance; cp < .05. For all other unstandardized estimates, p < .01.
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estimated mean difference between wives and husbands of about 3.2 points on the FOE 
factor falls just short of statistical significance at the .05 level. However, the group size 
for this analysis is not large (n = 103), and the factor variances were estimated separately 
for wives and husbands, so the homogeneity of variance assumption may not hold. This 
means that the p value for this z test may not be very accurate. The estimated mean 
difference on the marital adjustment factor is .665 and is not close to being statistically 
significant because the ratio of this difference over its standard error is z = .665/3.275 
= .203.

Reported in the bottom part of Table 11.8 are the estimates of intercepts for regres-
sions of the indicators on the factors when equal values are assumed for husbands and 
wives. Because the direct effects of the constant on both factors are constrained to zero 
for the husbands, the constant has no indirect effects on the indicators through the fac-
tors in this group. Thus, (1) the total effects of the constant on the indicators consist 
of direct effects only, and (2) these total effects are the model-implied means of the 
indicators for the husbands. However, the intercepts for the wives reported in Table 11.8 
are not also predicted means. Because the constant has direct effects on the factors for 
wives, it has both direct and indirect effects on the indicators in this group. Thus, it is 
the total effects of the constant on the indicators that equal the model-implied means of 
the indicators for the wives. Presented in Table 11.9 are the predicted indicator means 
automatically calculated by EQS and also the observed means for husbands and wives. 

TABLE 11.8. Maximum Likelihood Parameter Estimates for the Mean Structure 
of a Two-Factor Model of Family-of-Origin Experiences and Marital Adjustment 
with Structured Means Analyzed across Samples of Husbands and Wives

Husbands Wives

Parameter Unstandardized SE Unstandardized SE

Estimated for wives only

Factor means

  
 

1  → FOE 0 —     3.196a 1.643

  
 

1  → Mar Adj 0 —        .665a 3.275

Equality-constrained estimates

Indicator intercepts

  
 

1  → Probs 158.330 2.664 158.330 2.664

  
 

1  → Intim 137.871 1.987 137.871 1.987

  
 

1  → Father   83.079 1.055   83.079 1.055

  
 

1  → Mother   84.493 1.009   84.493 1.009

  
 

1  → Fa-Mo   81.535 1.153   81.535 1.153

Note. FOE, family-of-origin experiences. All standardized estimates are zero.
ap ≥ .05. For all other unstandardized estimates, p < .01.
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Each predicted mean is generally similar to the corresponding observed mean in both 
samples.

For an example of the analysis of measurement models with means over time 
instead of groups, see Contrada, Boulifard, Idler, Krause, and Labouvie (2006), who 
estimated changes in factor means in a longitudinal study of depression among heart 
surgery patients.

SR Models with Structured Means

The analysis of an SR model with a mean structure over multiple groups follows the 
same basic rationale as for a CFA model with a mean structure. For example, factor mea-
surement should be specified the same way in all groups. For the group selected as the 
reference sample, all direct effects of the constant on the factors are fixed to zero in order 
to identify the mean structure. A notable difference is that direct effects of the constant 
on endogenous factors are interpreted as relative group differences in the intercepts for 
the regression of those factors on other variables specified as direct causes, such as exog-
enous factors. Because of different identification requirements for an LGM, it is possible 
to estimate the means and intercepts of latent growth factors in a single sample. This 
implies that these same parameters can be estimated separately for each group when an 
LGM is simultaneously analyzed across multiple samples.

MIMIC Models as an Alternative  
to Multiple-Sample Analysis

Another way to estimate group differences on latent variables is through the specifica-
tion of a MIMIC model where factors with effect indicators are regressed on one or more 
dichotomous cause indicators that represent group membership. The total sample in 

TABLE 11.9. Observed and Predicted Means for a Two-Factor Model of Family-
of-Origin Experiences and Marital Adjustment with Structured Means Analyzed 
across Samples of Husbands and Wives

Husbands Wives

Indicator Observed Predicted Observed Predicted

Marital adjustment indicators

  Problems 155.547 158.330 161.779 158.996

  Intimacy 137.971 137.871 138.382 138.482

Family-of-origin experiences indicators

  Father 82.764 83.079 86.229 86.276

  Mother 85.494 84.493 86.392 87.238

  Father-Mother 81.003 81.535 85.046 84.514
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this approach is not partitioned into subsamples (although subsamples are still required 
in the study design). Thus, there are no special identification requirements beyond the 
usual ones for single-sample analyses for the types of MIMIC models described next. 
However, the MIMIC approach described here assumes measurement invariance across 
the groups. Indeed, there is no way to test this assumption in the MIMIC approach to a 
multiple-sample analysis.

Consider the model in Figure 11.5. It is specified as a MIMIC alternative to the 
model of Figure 11.4, which was analyzed across separate samples of husbands and 
wives. The single-cause indicator in the MIMIC model of Figure 11.5 is a dichotomy 
that represents the spouse coded as 0 = husband and 1 = wife. This contrast variable is 
specified to have direct effects on an FOE factor with three effect indicators and a mari-
tal adjustment factor with two effect indicators. These are the same factors and indica-
tors as represented in Figure 11.4, but the factors are endogenous in the MIMIC model 
of Figure 11.5 and thus have disturbances. These disturbances are allowed to covary, 
which reflects the assumption that the factors have common omitted causes besides the 
difference between husbands and wives. The MIMIC model of Figure 11.5 does not have 
a mean structure; instead, it has just a covariance structure. This implies that all means 
are assumed to be zero (they are not analyzed). However, the path coefficients for the 

FIGURE 11.5. A MIMIC (multiple indicators and multiple causes) model of family-of-origin 
experiences and marital adjustment evaluated in a single sample with spouse as a cause indicator.  
Parameter estimates are reported as unstandardized (standard error) standardized.  Standardized 
disturbance variances are proportions of unexplained variance.
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direct effects of the spouse variable will provide information about whether the differ-
ence between husbands and wives predicts the factors.

Reported in Table 11.10 are the correlations, standard deviations, and means for 
the FOE indicators and marital adjustment indicators for the total sample of N = 206 
cases (103 couples) in the Sabatelli and Bartle–Haring (2003) data set. Also reported in 
Table 11.10 are the correlations (specifically, point-biserial correlations, rpb) between the 
spouse variable and each of the indicators calculated from the group means and standard 
deviations (Kline, 2004, p. 114). With six observed variables altogether—including five 
effect indicators and one cause indicator (spouse)—there are 6(7)/2 = 21 observations.

The MIMIC model of Figure 11.5 was fitted to the covariance matrix assembled 
from the correlations and standard deviations in Table 11.10 with the ML method of LIS-
REL 8.8. The factor loadings and measurement error variances were specified as fixed 
and equal to the corresponding values reported in Table 11.9, which assume equality of 
husbands and wives across these parameters. The MIMIC model of Figure 11.5 does not 
assume correlated errors between the father and mother indicators of the FOE factor. 
This is because this correlation was estimated earlier to be negative for husbands but 
positive for wives (Table 11.9). In the total sample, this error correlation may be about 
zero. With these specifications, the MIMIC model has six free parameters, including 
(1) three variances (of the spouse cause indicator and two-factor disturbances); (2) one 
covariance between the factor disturbances; and (3) the two direct effects of the dichoto-
mous cause indicator on the factors, so dfM = 21 – 6 = 15.

The analysis of the MIMIC model with ML estimation in LISREL converged to an 
admissible solution. This occurred even though the data matrix is ill scaled (see Table 
11.10)—rescale this matrix if you reproduce this analysis in a different SEM computer 

TABLE 11.10. Input Data (Correlations, Standard Deviations) for Analysis of 
a MIMIC (Multiple Indicators and Multiple Causes) Model of Family-of-Origin 
Experiences and Marital Adjustment

Variables 1 2 3 4 5 6

Martial adjustment indicators

   1.  Problems 1.000   

   2.  Intimacy   .700 1.000 

Family-of-origin experiences indicators

   3.  Father   .253   .409 1.000 

   4.  Mother   .247   .355   .659 1.000  

   5.  Father-Mother   .301   .330   .622   .513 1.000  

Predictor

   6.  Spouse   .097   .010   .139   .035   .145 1.000

        M    158.663 138.177 84.497 85.943 83.025   .500

        SD        32.064   21.463 12.357 12.748 13.813   .500

Note. These data are derived from those summarized in Table 9.8; N = 206. Means are reported but not 
analyzed.
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tool and encounter a problem. Overall model fit seems adequate based on the values of 
selected fit indexes:

	
2
Mχ (15) = 14.188,  p = .511 

	 RMSEA = 0 (0–.061);  pclose-fit H0
 = .890; 

	 GFI = .977;  CFI = 1.000;  SRMR = .032

Estimates for the free model parameters except for the variance of the spouse cause indi-
cator, which is just the sample value (Table 11.10), are presented in Figure 11.5 in the 
proper places. The unstandardized coefficients (and standard errors) for direct effects of 
the spouse cause indicator on the FOE factor and on the marital adjustment factor are, 
respectively, 3.101 (1.626) and .684 (3.273). Because spouse is coded as 0 = husband and 
1 = wife, these positive regression weights indicate higher predicted overall standings on 
both factors for wives than husbands. The coefficient for the direct effect of spouse on 
marital adjustment is not statistically significant at the .05 level because z = .684/3.273 
= .209, p = .835. The standardized coefficient for this path, .015, is also quite small. The 
unstandardized coefficient for the direct effect of spouse on FOE experiences is nearly 
statistically significant because z = 3.101/1.626 = 1.91, p = .057. The standardized coef-
ficient for this path is .144. These results obtained in the total sample for the MIMIC 
model are similar to those for the measurement model with structured means analyzed 
earlier across both samples. To summarize, wives report somewhat better FOE experi-
ences than their husbands, but not clearly better marital adjustment. You can download 
all LISREL and Mplus computer files for this analysis from the book’s website (p. 3). See 
Kano (2001) for information about the specification of MIMIC models in experimental 
designs where groups are compared across latent variables instead of observed variables 
only as in ANOVA or MANOVA.

Summary

Means are estimated in SEM by regressing exogenous or endogenous variables on a con-
stant that equals 1.0. It is usually not necessary to manually create a constant because 
most full-featured SEM computer programs do so automatically when means are ana-
lyzed. The parameters of a mean structure include the means of the exogenous variables 
and the intercepts of the endogenous variables. Means of endogenous variables are not 
considered model parameters, but predicted means on these variables, calculated as 
total effects of the constant, can be compared with the observed means. In order to be 
identified, the number of parameters in a mean structure cannot exceed the number of 
observed means. A latent growth model for longitudinal data is basically a structural 
regression model with a mean structure. Each repeated measures variable is specified 
as an indicator of at least two different factors—one representing the initial status and 
the other, the rate of change. These factors are usually assumed to covary, which allows 
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for the possibility that rate of change is related to initial status. When estimating group 
mean differences on factors, one way to identify the mean structure is to select one 
sample as the reference group, constrain the factors’ means or intercepts to zero in this 
group, but freely estimate these parameters in all other groups. The results indicate the 
relative difference between each of these groups and the reference sample on the factor 
mean or intercept. However, the hypothesis of at least partial measurement invariance 
of the factor loadings and indicator intercepts should be tenable in order to reasonably 
interpret group mean differences on factors. An alternative way to estimate group differ-
ences on latent variables is to analyze a MIMIC model with data from the total sample. 
The factors in the MIMIC model are regressed on at least one cause indicator that rep-
resents group membership. An advantage of this approach is that there are no special 
identification requirements beyond those for a single-sample analysis.

Recommended Readings

The Duncan et al. (1999) book on latent growth curve modeling is a seminal work, and the 
more recent book by Bollen and Curran (2006) in this area covers newer topics and analysis 
techniques. Green and Thompson (2006) contrast standard techniques for analyzing multiple 
means, including MANOVA and discriminant analysis, with structured means modeling in SEM 
including the analysis of MIMIC models.

Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. 
Hoboken, NJ: Wiley.

Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (1999). An introduction to 
latent variable growth curve modeling: Concepts, issues, and applications. Mahwah, NJ: 
Erlbaum.

Green, S. B., & Thompson, M. S. (2006). Structural equation modeling for conducting tests of 
differences in multiple means. Psychosomatic Medicine, 68, 706–717.
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Interaction Effects and Multilevel SEM

This chapter introduces two advanced techniques in SEM: (1) the estimation of interac-
tion effects of observed or latent variables and (2) multilevel SEM. Whole books have 
been written about these topics, so there is no way to cover both of them in great 
detail in a single chapter. Instead, I want to make you aware that these possibilities 
exist in SEM and cite enough advanced works in each area so that you can learn 
more through additional study. Each topic represents the expansion of SEM to other 
horizons, some of which may help you to evaluate an even wider range of hypotheses 
in the future. As the French chemist and microbiologist Louis Pasteur once said: Chance 
only favors invention for minds that are prepared for discoveries by patient study and 
persevering efforts. Keep this thought in mind as you read this chapter.

Interaction Effects of Observed Variables

Estimation of the interaction effects of continuous observed variables in SEM uses 
the same method as in moderated multiple regression (MMR). This method involves 
creating product terms that represent interaction effects. A product term is literally 
the product of the scores from two different variables, such as XW = X × W. The same 
method is used to estimate curvilinear relations (trends) except that product terms in 
this case are created by exponentiation where the scores (base numbers) are raised to a 
power, such as X2 = X × X, which represents a quadratic trend. These terms are known 
as power terms or polynomials. Estimation of the curvilinear effects of continuous 
observed variables in multiple regression is not described here, but see Cohen, Cohen, 
West, and Aiken (2003) for more information. There is also a supplemental reading 
about the estimation of curvilinear effects in SEM that you can download from this 
book’s website (see p. 3).

Consider the data in Table 12.1 where MW = 16.38. The multiple correlation of pre-
dictors X and W with the criterion Y is .183. This result summarizes the linear effects 
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of the predictors, but inspection of the scores in Table 12.1 indicates a more complex 
pattern: the relation of X to Y is linear and positive for cases with lower scores on W, but 
it is linear and negative for cases with higher scores on W. This conditional relation of 
X to Y is illustrated in the scatterplot of Figure 12.1 where cases with scores < MW are 
represented with closed circles and cases with scores > MW are represented with open 
circles. Although it is not as apparent, there is a similar change in the direction of the 
relation of W to Y: positive at higher levels of X, negative at lower levels. So W moderates 
the relation of X to Y, just as X moderates the relation of W to Y. This describes interac-
tion, which is always symmetrical.

The product term XW in Table 12.1 represents the interaction effect just described 
when entered in the regression equation along with X and W as predictors.1 The multiple 
correlation from this analysis is .910, much greater than the corresponding value with 
just X and W in the equation (.183). The unstandardized regression equation is

	 ˆ 1.768 .734 .108 3.118Y X W XW= + − − 	 (12.1)

The coefficient for the product term in Equation 12.1, or −.108, estimates the interac-
tion effect controlling for both main effects. A method to interpret this effect is briefly 
explained (Cohen et al., 2003). First, rearrange the unstandardized regression equation 
so that there is no product term. For example, the expression presented next

	 ˆ (1.768 .108 ) .734 3.118Y W X W= − + − 	 (12.2)

is algebraically equivalent to Equation 12.1 but has no product term. The regression 
coefficient for X in Equation 12.2 (or 1.768 – .108W) can be seen as one that depends on 
the level of W.

Next, substitute in Equation 12.2 meaningful values of W and inspect the effect 

TABLE 12.1. Data Set for an Interaction 
Effect of Continuous Observed Variables

Predictors Criterion

X W XW Y

  2 10   20  5
  6 12   72  9
  8 13 104 11
11 10 110 11
  4 24   96 11
  7 19 133 10
  8 18 144  7
11 25 275  5

1A common mistake is to omit the variables X and W when XW is entered into the equation, but XW by itself 
does not represent an interaction effect.
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on the coefficients for X. For instance, given MW = 16.38 and SDW = 6.02 for the data in 
Table 12.1, scores on W that fall –2, –1, 0, +1, and +2 standard deviations away from the 
mean are, respectively,

	 4.34, 10.36, 16.38, 22.40, and 28.42

Suppose that W = 22.40 (i.e., MW + SDW). Plugging this value for W in Equation 12.2 
generates the unstandardized regression equation presented next:

	 22.40ŴY =  = –.651 X + 13.324

Presented in Table 12.2 are all simple regressions for predicting Y from X at each of 
the five levels of W just defined. The slopes of these conditional equations, or simple 
slopes, progressively change from a negative slope of –1.301 for cases with scores on 
W two standard deviations above the mean to a positive slope of 1.299 for cases with 
scores on W two standard deviations below the mean. For cases with average scores 
on W, the simple slope is practically zero (–.001), so X and Y are unrelated at this level 
of W.

When the simple slope of a conditional regression line is divided by its standard 
error (Preacher, Rucker, & Hayes, 2007, p. 192), the resulting ratio is in large samples 
a z test of statistical significance. A related concept is that of regions of significance, 
or a range of values on W for which the conditional regression of Y on X is statistically 
significant. Preacher et al. (2007) refer to confidence intervals based on simple slopes 
as confidence bands, and these bands can be plotted in order to interpret interaction. 

FIGURE 12.1. Scatterplot for the data set in Table 12.1 for variables X and Y. Closed dots 
indicate scores on W below the mean, and open dots indicate scores on W above the mean.
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Specifically, a third variable W moderates the relation between X and Y where the confi-
dence bands do not include slopes of zero. Preacher, Curran, and Bauer (2006) describe 
computer tools for analyzing simple slopes, including some utilities freely available over 
the Internet.2 There are also freely available scripts for SAS/STAT for visualizing interac-
tions with three-dimensional spin plots.3

Standardized regression coefficients (beta weights) do not have the normal inter-
pretation for power terms that represent interaction effects. This is because, in most 
cases, the product of z scores from two different variables, such as zX × zW, does not 
equal the z score of the product of the corresponding unstandardized scores, or zXW. As 
noted by Whisman and McClelland (2005), multiple regression procedures in statistical 
computer programs typically report beta weights for the data in Table 12.1 equivalent 
to the model

	 ˆ
Yz  = b1 zX + b2 zW + b3 zXW 	 (12.3)

but the weight b3 does not correctly estimate the standardized interaction effect. The 
correct standardized model would include the term “b3 zX zW,” but this term does not 
appear in Equation 12.3. Whisman and McClelland (2005) offer this advice: It is best to 
avoid standardized regression coefficients in MMR, and instead one should focus on the 
unstandardized regression coefficients. Aiken and West (1991) describe how to obtain 
correct beta weights in MMR.

The method for unstandardized variables just described can be extended to esti-
mate higher-order interactions. For example, the product term XW represents the lin-
ear × linear interaction of X and W in predicting Y. Such an interaction means that the 
linear relation of X to Y changes uniformly over the levels of W (e.g., Table 12.2). The 
product term XW 2 represents a linear × quadratic interaction, which means that the 
linear relation of X to Y changes faster at higher (or lower) levels of W. Estimation of this 

TABLE 12.2  Regression Equations for Predicting Y from X 
Conditional on the Level of W for the Data Set in Table 12.1

W

Level Score Regression equation

+2 SD 28.42 ˆ 1.301 17.712Y X= − +

+1 SD 22.40 ˆ .651 13.324Y X= − +

Mean 16.38 ˆ .001 8.905Y X= − +

−1 SD 10.36 ˆ .649 4.486Y X= +

−2 SD 4.34 ˆ 1.299 .068Y X= +

2www.people.ku.edu/~preacher/interact/index.html

3www.ats.ucla.edu/stat/sas/faq/spplot/reg_int_cont.htm
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effect would require that the terms X, W, and W2 (i.e., the quadratic trend) are in the 
model along with XW2. It is also possible to estimate three-way or higher interactions. 
For example, the product term XWU represents the three-way linear interaction among 
these variables when all lower-order effects are also included in the equation. These 
include terms for the linear effects (X, W, U) and all linear × linear interactions (XW, 
XU, WU). A three-way linear interaction means that the linear × linear interaction of X 
and W changes uniformly across the levels of U. Because interaction is symmetrical, the 
same interpretation applies to each of the other two linear × linear interactions regard-
ing the corresponding third variable. Estimation of higher-order interactive (and cur-
vilinear) effects requires the analysis of numerous product terms, so very large samples 
may be needed for adequate statistical power. See Dawson and Richter (2006) for more 
information about the estimation of three-way interactions in MMR.

A problem that can occur when analyzing product terms is extreme collinearity. 
This is because correlations between product terms and their constituent variables can 
be so high that the analysis can fail or the results are unstable. One way to address 
this problem is to mean-center the original variables before calculating product terms 
based on them. Mean centering occurs when the average of a variable is adjusted to 
zero (the mean is subtracted from every score), and centering tends to reduce—but 
not typically to eliminate—correlations between product terms and constituent vari-
ables. An alternative is to create a residualized product term using the technique of 
residual centering that is calculated controlling for the main effects and consequently 
is uncorrelated with them (Lance, 1988; Little, Bovaird, & Widaman, 2006). A residu-
alized product term is created in two steps by first regressing the product term on all 
constituent main effect terms (e.g., XW scores are regressed on both X and W). The 
residuals from the regression analysis just described are uncorrelated with the main 
effects but still convey information about the interaction effect. In a second regression 
analysis, the criterion is regressed on X, W, and the residualized XW term created in 
the first analysis.

Another complication is measurement error. Score reliabilities of product terms can 
be lower than those of scores on the component variables. This in turn reduces both the 
absolute coefficient for the product term and the power of corresponding statistical tests 
(Jaccard & Wan, 1995). Measurement error in the outcome variable that varies across 
the levels of a predictor can bias the regression coefficient for product terms that involve 
that predictor (Baron & Kenny, 1986). One way to address these problems is to use pre-
dictor variables with excellent score reliabilities. Another is to estimate the interaction 
effects of latent variables in the multiple-indicator (i.e., SEM) approach described later. 
This method controls for score unreliability through the specification of a measurement 
model, just as in the technique of CFA or in the analysis of an SR model.

Interaction Effects in Path Models

The interactive effects of observed variables are represented in path models with the 
appropriate product terms and all constituent variables. Consider the moderated 
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path analysis (MPA) model in Figure 12.2 where X, W, and the interaction XW are all 
specified as direct causes of Y. These three exogenous variables are specified to covary, 
but creation of a residualized product term would eliminate the paths X   XW and 
W   XW in this model. The unstandardized coefficients for the paths

	 X → Y, W → Y, and XW → Y

estimate, respectively, the linear effect of X, the linear effect of W, and the linear × lin-
ear interactive effect, each controlling for all other effects on Y. When means are not 
analyzed in MPA, there are no intercepts. However, it is still possible to analyze sim-
ple slopes, regions of significance, and confidence bands for interaction effects in MPA 
(Preacher et al., 2007). Keep the following points in mind:

1.	 Kenny (2009) reminds us that just as a mediational model is a causal model 
(Chapter 7), so too is a model of moderation. This means that if the basic directionality 
assumptions are incorrect, then the results may be of little value. For example, an inter-
action effect XW can be reversed if the direct effect between X and Y is reversed (i.e., Y 
causes X instead of the opposite).

2.	 Kenny (2009) gives this example of how curvilinear effects can be confounded 
with interactive effects. Suppose that X is income and Y is work motivation. The rela-
tion between these two variables is curvilinear such that their covaration is stronger at 
lower levels of X. If variable W is age, then because younger workers earn less money, 
the “interaction” between age and income effect could be found, such that the rela-
tion between income and motivation is stronger for younger workers. In order to avoid 
confusing curvilinear and interactive effects, Edwards (2009) recommends the routine 
inclusion of the power terms X 2 and W 2 whenever estimating coefficients for the prod-

FIGURE 12.2. Path analytic representation of an interactive effect of continuous observed 
variables.
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uct term XW. That is, curvilinear testing cannot be disregarded when testing for interac-
tion.

3.	 Edwards (2009) reminds us that although product terms such as XW are repre-
sented as causal variables in MPA models (e.g., Figure 12.2), they actually have no causal 
potency by themselves. This is because a product term does not represent a unique 
entity apart from its component variables. Instead, it is a mathematical construction 
that represents conditional or joint effects on the outcome variable (controlling for main 
effects) that can be examined through inspection of simple slopes, regions of signifi-
cance, and confidence bands.

Mediation and Moderation Together

It is also possible to represent both mediation (indirect effects) and moderation (interac-
tive effects) in the same structural model. Baron and Kenny (1986) described mediated 
moderation, which involves the specification that an interactive effect is mediated by 
at least one other variable. Consider the MPA model in Figure 12.3, which represents 
the hypothesis that the interaction of X and W is entirely mediated by the prior variable 
M. In the analysis of a model basically identical to that of Figure 12.3, Lance (1988) 
studied the relation of memory demand (X), complexity of social perception (W), and 
their interaction effect (XW) on the overall accuracy of recall of the script of a lecture 
(Y). The model also included a mediator, recollection of specific behaviors mentioned 
in the script (M), through which the interaction effect was specified to influence overall 
accuracy of recall. Lance’s (1988) results suggested that (1) the indirect effect of the 
memory demand × cognitive complexity interaction was statistically significant, but (2) 
the direct effects of the individual component variables on overall accuracy were not 

FIGURE 12.3. Path model with mediated moderation.
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statistically significant. These results are consistent with “pure” mediation of the effects 
of memory demand, cognitive complexity, and their interaction on recall through recol-
lection of specific behaviors.

James and Brett (1984) described moderated mediation, also known as a condi-
tional indirect effect (Preacher et al., 2007). It is indicated when the strength of an indi-
rect effect varies across the levels of another variable. In the multiple-sample analysis of 
a path model, this other variable is group membership. If the magnitude of an indirect 
effect differs appreciably across the groups, there is evidence for moderated mediation. 
If the moderator is instead a continuous variable W, then moderated mediation can be 
represented in a moderated path model and estimated in a single sample. There is more 
than one kind of moderated mediation. For example, the model in Figure 12.4(a) rep-

FIGURE 12.4. Two examples of moderated mediation for the indirect effect X → M → Y. (a) Path 
X → M depends on W. (b) Path M → Y depends on W.
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resents first-stage moderation (Edwards & Lambert, 2007) where the first path of the 
indirect effect of X on Y through M, or X → M, depends on the fourth variable W. This 
moderation effect is represented in Figure 12.4(a) by the regression of M on X, W, and 
the product term XW. This model also represents the hypothesis that the first path of the 
indirect effect of W on Y through M, or W → M, depends on X.

The path model in Figure 12.4(b) represents second-stage moderation where the 
second path of the indirect effect of X on Y through M, or M → Y, is moderated by W. In 
this model, the interaction effect concerns variables W and M. The product term WM 
is specified to covary with the component variable W and the disturbance variance for 
the other component variable, M. The latter is required because mediators are always 
endogenous, and endogenous variables are not permitted to have unanalyzed associa-
tions with other variables in structural equation models. Regressing the outcome vari-
able Y on X, M, W, and the product term WM estimates whether the path M → Y depends 
on W. Other forms of moderated mediation described by Edwards and Lambert (2007) 
are as follows:

1.	 First- and second-stage moderation occurs when a fourth variable W moder-
ates both paths of the indirect effect X → M → Y. A variation is when one variable, such 
as W, moderates the first part of the indirect effect, or X → M, and a different variable, 
such as Z, moderates the second path, or M → Y.

2.	 Conditional indirect effects can also involve the direct effect, or the path X → Y 
in the examples to this point, and also the total effect of X on Y. For example, in direct 
effect and first-stage moderation, a fourth variable moderates both the direct effect 
between X and Y and just the first path of the indirect effect of X on Y, or X → M. In 
direct effect and second-stage moderation, an external variable moderates both the 
direct effect and the second path of the indirect effect, or M → Y. And in total effect 
moderation, an external variable moderates both paths of the indirect effect and also 
the direct effect.

Several recent works deal with the estimation of mediated moderation or moder-
ated mediation in MPA. The approach by Preacher et al. (2007) that features the analysis 
of simple slopes, regions of significance, and confidence bands was mentioned earlier. 
Edwards and Lambert (2007) describe an approach based on effect decomposition and 
graphical plotting of conditional indirect effects. Fairchild and MacKinnon (2009) give 
equations for standard errors of mediated moderation effects and moderated mediation 
effects, as well as step-by-step suggestions for testing models with both kinds of effects 
just mentioned. Hopwood (2007) does so for applications in the area of early interven-
tion research. For an example of the analysis of mediated moderation and moderated 
mediation in the same path model, see Clapp and Beck (2009). These authors, studying 
a sample of survivors of serious motor vehicle accidents, examined whether the indirect 
effects of posttraumatic stress disorder on social support through attitudes about the 
usefulness of social networks in coping with stress is moderated by childhood victim-
ization and elapsed time from the accident.
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Interactive Effects of Latent Variables

In the indicant product approach of SEM, product terms are specified as multiple indi-
cators of latent product variables that represent curvilinear or interactive effects. We 
will consider only the estimation of interactive effects of latent variables, but the same 
basic principles apply to the estimation of curvilinear effects of latent variables. Suppose 
that factor A has two indicators, X1 and X2, and factor B has two indicators, W1 and W2. 
The reference variable for A is X1, and the reference variable for B is X3. Equations that 
specify the measurement model for these indicators are:

1X  = 
1XA E+ 1W  = 

1WB E+

2X  = 
2 2X XA Eλ + 2W  = 

2 2W WB Eλ +

The parameters of this measurement model include the loadings of X2 and W2 on their 
respective factors (

2Xλ ,
2Wλ ), the variances of the four measurement errors, and the 

variances and covariance of factors A and B.
The latent product variable AB represents the interactive effect of factors A and B 

when they are analyzed together with A and B in the same structural model. Its indica-
tors are the four product indicators X1 W1, X1 W2, X2 W1, and X2 W2. By taking the prod-
uct of the corresponding expressions in Equation 12.4 for the nonproduct indicators, the 
equations of the measurement model for the product indicators are

1 1X W  = 
1 1 1 1W X X WAB AE BE E E+ + +

1 2X W  = 
2 2 2 1 1 2W W W X X WAB AE BE E Eλ + + λ +

2 1X W  = 
2 2 1 2 2 1X X W X X WAB AE BE E Eλ + λ + +

2 2X W  = 
2 2 2 2 2 2 2 2X W X W W X X WAB AE BE E Eλ λ + λ + λ +

These equations (12.5) show that the product indicators load on a total of eight addi-
tional latent product variables besides AB. For example, product indicator X1W1 loads on 
latent variables AB, 

1WAE , 
1XBE , and 

1 1X WE E . (The term 
1 1X WE E  is the residual for X1W1.) 

All the factor loadings in the model defined by Equation 12.5 are either the constant 1.0 
or functions of 

2Xλ and 
2Wλ , the loadings of the nonproduct indicators X2 and W2 on 

their respective factors (Equation 12.4). This means that no new factor loadings need to 
be estimated for the product indicators.

The only other parameters of the measurement model for the product indicators 
are the variances and covariances of the latent product variables implied by Equation 
12.5. Assuming normal distributions for all nonproduct latent variables (Equation 12.4), 
Kenny and Judd (1984) showed that (1) the covariances among the latent product vari-
ables and factors A and B are all zero; and (2) the variances of the latent product vari-
ables can be expressed as functions of the variances of the nonproduct latent variables 
as follows:

(12.4)

(12.5)
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2 2 2 2
,AB A B A Bσ = σ σ + σ

1 2 1 1

2 2 2
X W X WE E E Eσ = σ σ

1 1

2 2 2
X XBE B Eσ = σ σ

1 2 1 2

2 2 2
X W X WE E E Eσ = σ σ

2 2

2 2 2
X XBE B Eσ = σ σ

2 1 2 1

2 2 2
X W X WE E E Eσ = σ σ

1 1

2 2 2
W WAE A Eσ = σ σ

2 2 2 2

2 2 2
X W X WE E E Eσ = σ σ

2 2

2 2 2
W WAE A Eσ = σ σ

where the term 2
,A Bσ  represents the covariance between factors A and B. For example, 

the variance of the latent product variable AB equals the product of the variances for 
factors A and B plus their covariance. All variances of the other latent product variables 
are related to the variances of the nonproduct latent variables. Thus, no new variances 
need to be estimated, so the measurement model for the product indicators is theoreti-
cally identified.

Presented in Figure 12.5 is the whole SR model for the regression of Y on factors A, 
B, and their interactive effect represented by AB. The measurement models for the non-
product indicators and the product indicators defined by, respectively, Equations 12.4 
and 12.5 are also represented in the figure. Among estimates for the structural model in 
the figure, coefficients for the paths

	 A → Y, B → Y, and AB → Y

estimate, respectively, the linear effect of factor A, the linear effect of factor B, and the lin-
ear × linear interaction of these latent variables, each controlling for the other effects.

Estimation with the Kenny–Judd Method

Kenny and Judd (1984) were among the first to describe a method for estimating struc-
tural equation models with product indicators. The Kenny–Judd method is generally 
applied to observed variables in mean-deviation form (i.e., scores on nonproduct indi-
cators are centered before creating product indicators). It has two potential complica-
tions:

1.	 It requires the imposition of nonlinear constraints in order to estimate some 
parameters of the measurement model for the product indicators (see Equations 12.4, 
12.5). Not all SEM programs support nonlinear constraints; those that do include Mplus, 
Mx, the TCALIS procedure of SAS/STAT, and LISREL.4 Correctly programming all such 
constraints can be tedious and error prone.

(12.6)

4Nonlinear constraints must be specified in LISREL using its matrix-based programming language, not 
SIMPLIS.
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2.	 A product variable is not normally distributed even if each of its component 
variables is normally distributed. For example, the Kenny–Judd method assumes that 
factors A and B and the measurement errors for their nonproduct indicators in Figure 
12.5 are normally distributed. But the products of these latent variables, such as AB, are 
not normally distributed, which violates the normality requirement of default maxi-
mum likelihood (ML) estimation. Yang–Wallentin and Jöreskog (2001) demonstrate the 
estimation of a model with product indicators using a corrected normal theory method 
that can generate robust standard errors and corrected model test statistics. Also, mini-
mum sample sizes of 400–500 cases may be needed when estimating even relatively 
small models, but the need for large samples is not specific to the Kenny–Judd method 
per se.

FIGURE 12.5. Model with interactive and main effects of factors A and B.
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Presented in Table 12.3 is a covariance matrix generated by Kenny and Judd (1984) 
for a hypothetical sample of 500 cases. You can download from the website for this 
book (see p. 3) the Mplus 5.2 syntax and data files that specify the nonlinear constraints 
implied by Equations 12.4 and 12.5 and fit the model in Figure 12.5 to the data in Table 
12.3 using the Kenny–Judd method; the Mplus output file can be downloaded from the 
site, too. The Mplus syntax file is annotated with comments that explain the nonlinear 
constraints of this method. Because Kenny and Judd (1984) used a generalized least 
squares (GLS) estimator in their original analysis of these data, I specified the same esti-
mator in this analysis with Mplus. The input data for this analysis are in matrix form, so 
it is not possible to use a corrected normal theory method because such methods require 
raw data files. You can also download from the book’s website Mplus computer files for 
the analysis of a latent quadratic effect using the Kenny–Judd method with accompany-
ing text that explains this supplemental example.

With a total of nine observed variables (four nonproduct indicators, four prod-
uct indicators, and Y; see Figure 12.5), there are a total of 9(10)/2, or 45 observations 
available for this analysis. There are a total of 13 free parameters, including (1) two 
factor loadings (of X2 and W2); (2) seven variances (of A, B, EX1

, EX2
, EW1

, EW2
, and DY) 

and one covariance (A   B); and (3) three direct effects (of A, B, and AB on Y). There 
are no free parameters for the measurement model of the product indicators, so dfM 
= 45 – 13 = 32. The analysis in Mplus converged to an admissible solution. Values of 
selected fit statistics are reported next and generally indicate acceptable overall fit. The 
90% confidence interval based on the RMSEA is reported in parentheses:

	
2
Mχ (32) = 41.989,  p = . 111 

	 RMSEA = .025 (0–.044),  pclose-fit H0
 = .988 

	 CFI = .988;  SRMR = .046

The Mplus-generated GLS parameter estimates for the model of Figure 12.5 are very 
similar to those reported by Kenny and Judd (1984) in their original analysis. The main 

TABLE 12.3. Input Data (Covariances) for Analysis of a Model with an Interactive 
Effect of Latent Variables with the Kenny–Judd Method

Variable 1 2 3 4 5 6 7 8 9

1.  X1 2.395

2.  X2 1.254 1.542

3.  W1   .445   .202 2.097

4.  W2   .231   .116 1.141 1.370

5.  X1 W1 −.367 −.070 −.148 −.133 5.669

6.  X1 W2 −.301 −.041 −.130 −.117 2.868 3.076

7.  X2 W1 −.081 −.054   .038   .037 2.989 1.346 3.411

8.  X2 W2 −.047 −.045   .039 −.043 1.341 1.392 1.719 1.960

9.  Y −.368 −.179   .402   .282 2.556 1.579 1.623   .971 2.174

Note. These data for a hypothetical sample are from Kenny and Judd (1984, p. 205); N = 500.



340	 ADVANCED TECHNIQUES, AVOIDING MISTAKES

and interactive effects of factors A and B together explain 86.8% of the total variance in 
Y. The unstandardized equation for predicting Y is

	 Ŷ  = –.169 A + .321 B + .699 AB

This prediction equation has no intercept because means were not analyzed. However, 
you could use the same method described earlier to rearrange this unstandardized equa-
tion to (1) eliminate the product term and (2) generate simple regressions of, say, Y on 
factor B where the slope for B varies as a function of factor A. Following these steps 
will show that the relation between Y and B is positive for levels of A above the mean 
(i.e., > 0) but negative for levels of A below the mean (< 0) for the model in Figure 12.5 
and the data in Table 12.3.

Alternative Estimation Methods

When using the Kenny–Judd method to estimate latent interaction effects, Jöreskog and 
Yang (1996) recommend adding a mean structure to the model. (The basic Kenny–Judd 
method has no mean structure.) They argue that because the means of the indicators 
are functions of other parameters in the model, their intercepts should be added to the 
model in order for the results to be more accurate. They also note that a single product 
indicator is all that is needed for identification. In contrast, the analysis of all possible 
product indicators in the Kenny–Judd approach can make the model rather compli-
cated (e.g., Figure 12.5). As a compromise between analyzing a single-product indicator 
and all possible product indicators, Marsh, Wen, and Hau (2006) recommend analyzing 
matched-pair products in which information from the same indicator is not repeated. 
For example, given indicators X1 and X2 of factor A and indicators W1 and W2 of factor 
B, the pair of product indicators X1 W1 and X2 W2 is a set of matched-pair indicators 
because no individual indicator appears twice in any product term. The pair X1 W2 and 
X2 W1 is the other set of matched-pair indicators for this example.

Ping (1996) describes a two-step estimation method that does not require nonlinear 
constraints, which means that it can be used with just about any SEM computer tool. It 
requires essentially the same assumptions as the Kenny–Judd method. In the first step 
of Ping’s method, the model is analyzed without the product indicators. That is, only 
the linear effects of latent variables in the structural model are estimated. One records 
parameter estimates from this analysis and calculates the values of the parameters of 
the measurement model for the product indicators implied in the Kenny–Judd method. 
These values can be calculated either by hand or by using a set of templates for Micro-
soft Excel by R. Ping that can be freely downloaded over the Internet.5 These calculated 
values are then specified as fixed parameters in the second step where all indicators, 

5www.wright.edu/~robert.ping/
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product and nonproduct, are analyzed together. Included in the results of the second 
analysis are estimates of interaction effects of latent variables.

Bollen’s (1996) two-stage least squares (TSLS) method for latent variables is another 
estimation option. This method requires at least one product indicator of a latent prod-
uct variable and a separate product indicator that is used as an instrumental variable. An 
advantage of this method is that it does not assume normal distributions for the indica-
tors. Because it is not iterative, the TSLS method may also be less susceptible to techni-
cal problems in the analysis. A drawback is that because TSLS is a partial-information 
technique, there is no statistical test (e.g., 2

Mχ ) of the overall fit of the model to the data. 
In a simulation study, Yang–Wallentin (2001) compared standard ML estimation and 
Bollen’s (1996) TSLS method applied to the estimation of latent interaction effects. Nei-
ther method performed especially well for sample sizes of N < 400, especially TSLS. For 
larger samples, differences in bias were generally negligible, but TSLS tended to under-
estimate standard errors even in large samples.

Wall and Amemiya (2001) describe the generalized appended product indicator 
(GAPI) method for estimating latent curvilinear or interactive effects. As in the Kenny–
Judd method, products of observed variables are specified as indicators of latent product 
terms, but the GAPI method does not assume that any of the variables are normally 
distributed. Consequently, it is not assumed in the GAPI method that the latent prod-
uct variables are independent. Instead, these covariances are estimated as part of the 
analysis. A mean structure is also added to the model. However, all other constraints of 
the Kenny–Judd method, including the nonlinear constraints, are imposed in the GAPI 
method. A disadvantage of this method is that its implementation in computer syntax 
can be complicated (see Marsh et al., 2006).

Marsh, Wen, and Hau (2004) describe what is basically an unconstrained approach 
to the estimation of latent interaction and quadratic effects that imposes no nonlinear 
constraints and also does not assume multivariate normality. It features the specifica-
tion of product indicators of latent curvilinear or interaction effects, but it imposes no 
nonlinear constraints on estimates of the correspondence between product indicators 
and latent product terms. The unconstrained approach is generally easier to implement 
in computer syntax than the GAPI method (see Marsh et al., 2006). Results of com-
puter simulation studies by Marsh et al. (2004) generally support this method for large 
samples and when normality assumptions are not met.

Klein and Moosbrugger’s (2000) latent moderated structural equations (LMS) 
method uses a special form of ML estimation that assumes normal distributions for the 
nonproduct variables but takes direct account of the degree of non-normality implied 
by the latent product terms. This method adds a mean structure to the model, and it 
uses a form of the expectation–maximization (EM) algorithm (Chapter 3) in estima-
tion. The LMS method directly analyzes raw data (there is no matrix input) from the 
nonproduct indicators (e.g., X1, X2, W1, and W2 in Figure 12.5) to estimate a latent inter-
action or curvilinear effect without creating any product indicators. Of all the methods 
described here, the LMS method may be the most precise because it explicitly estimates 
the form of nonnormality. The LMS method is computationally intensive, but Klein 
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and Muthén (2007) describe a simpler algorithm known as quasi-maximum likelihood 
(QML) estimation that closely approximates results of the former. A version of the LMS/
QML method is incorporated in Mplus, along with special syntax for specifying latent 
interaction or curvilinear effects. This syntax is very compact and much less complex 
than the syntax required to implement the Kenny–Judd method and some other alter-
native methods just described. However, most traditional SEM fit statistics, including 
the model chi-square ( 2

Mχ ) and approximate fit indexes, are not available in the Mplus 
implementation of the LMS/QML method. Instead, the relative fit of different models is 
compared using the Akaike Information Criterion (AIC) (Chapter 8) or a related statistic 
known as the Bayesian Information Criterion (BIC) (Raftery, 1995).

Little, Bovaird, and Widaman (2006) describe an extension of the method of residu-
alized centering for estimating the interactive or curvilinear effects of latent variables. In 
this approach, the researcher creates every possible product indicator and then regresses 
each product indicator on its own set of constituent nonproduct indicators. The residu-
als from the analysis represent interaction but are uncorrelated with the corresponding 
set of nonproduct indicators. The residualized product indicators are then specified as 
the indicators of a latent product factor that is uncorrelated with the corresponding 
nonproduct latent factors (i.e., those that represent latent linear effects only). The only 
other special parameterization in this approach is that error covariances are specified 
between pairs of residualized product indicators based on common nonproduct indica-
tors (e.g., Little, Bovaird, & Widaman, 2006, p. 506). This method can be implemented 
in basically any SEM computer tool (i.e., it does not require a specific software package), 
and it relies on traditional fit statistics in the assessment of model–data correspondence. 
Based on computer simulation studies by Little, Bovaird, and Widaman (2006), their 
residualized product indicator method generally yielded similar parameter estimates 
compared with the LMS/QML method and also the Marsh et al. (2004) unconstrained 
method used with mean centering.

No single method for estimating curvilinear or interactive effects of latent vari-
ables has so far emerged as the “best” approach, but this is an active research area. For 
empirical examples, see Klein and Moosbrugger (2000), who applied the LMS method 
in a sample of 304 middle-aged men to estimate the latent main and interactive effects 
of flexibility in goal adjustment and perceived physical fitness on levels of complaining 
about one’s mental or physical state. They found that high levels of perceived fitness 
neutralized the effects of goal flexibility, but effects of goal flexibility on complaining 
were more substantial at lower levels of perceived fitness. In a sample of 792 employees 
in various commercial joint ventures, Song, Droge, Hanvanich, and Calantone (2005) 
used the Kenny–Judd method to estimate the latent interactive effects of company 
technological capabilities and marketing capabilities on marketing performance (sales, 
profits, etc.) They analyzed their moderation model across two different groups of 
companies—those in areas where industry technology rapidly changes versus areas 
where technological developments are minor. The results suggested that the interactive 
effects of company technological and marketing resources on sales success depend on 
industry context.
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Rationale of Multilevel Analysis

The term multilevel modeling (MLM)—also known as hierarchical linear modeling 
and random coefficient modeling, among other variations—refers to a family of sta-
tistical techniques for analyzing hierarchical (nested) data where (1) scores are clus-
tered into larger units and (2) scores within each level may not be independent. You 
already know that repeated measures data are hierarchical in that multiple scores are 
nested under the same person. Dependence among such scores is explicitly estimated in 
various techniques for repeated measures data. For example, the error term in repeated 
measures ANOVA takes account of score covariances across the levels of within-subject 
factors. In SEM, the capability to specify an error covariance structure for repeated mea-
sures variables, such as when analyzing a latent growth model (Chapter 11), also takes 
account of score dependencies.

Another situation for analyzing hierarchical data occurs in complex sampling 
designs, in which the levels of at least one higher-order variable are selected prior to 
sampling individual cases within each level. An example is the method of cluster sam-
pling. Suppose in a study of Grade 2 scholastic skills that a total of 100 public elementary 
schools in a particular geographic region is randomly selected, and then every Grade 2 
student in these schools is assessed. Here, students are clustered within schools. A vari-
ation is multistage sampling where only a portion of the students within each school 
are randomly selected (e.g., 10%) for inclusion in the sample. In stratified sampling, a 
population is divided into homogeneous, mutually exclusive subpopulations (strata), 
such as by gender or ethic categories, and then cases within each stratum are randomly 
selected. The resulting hierarchical data set may be representative on the variable(s) 
selected for stratification.

Scores clustered under a higher-level variable may not be independent. For instance, 
siblings are affected by their common family situation. Score dependence in complex 
samples means that the application of standard formulas for estimating standard errors 
in a single-level analysis that assume independence (e.g., Equation 2.14) may not yield 
correct results. Specifically, such formulas tend to underestimate sampling variance in 
complex samples. Because standard errors are the denominators of basic statistical tests 
(Chapter 2), underestimation tends to result in rejection of the null hypothesis too often 
(inflation of Type I error). This is a second motivation for MLM: the correct estimation 
of standard errors in a complex sampling design.

Increase of sampling error in complex samples compared with simple random 
sampling of individual cases with no clusters is known as the design effect. It is 
often estimated as the ratio of the variance of a statistic in a complex sample over 
the variance of the same statistic in a simple random sample for the same number of 
cases. For example, a design effect of 4.0 would mean that the variance is four times 
greater in a complex sampling design than if the study were based on simple random 
sampling. Another interpretation is that only ¼ or one-quarter as many cases would 
be needed in a simple random sample to measure the same statistic instead of a com-
plex sample where the design effect is 4.0. Thus, higher estimates of the design effect 
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indicate a lower effective sample size compared with a simple random sample without 
clusters.

The design effect is a function of the cluster size, design (sampling) weights, and 
degree of within-cluster score dependence. In a balanced complex sampling design, the 
cluster size, nC, is a constant (e.g., 100 students are measured in each of 75 different 
schools). In unbalanced designs, cluster size is calculated as
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where ng is the size of the gth cluster, G is the total number of clusters, and N is the over-
all sample size. Design (sampling) weights can be specified to adjust sample propor-
tions of cases that belong to each cluster in order to make them conform to known pop-
ulation base rates. For example, if too many higher-income households were sampled in 
a particular geographic area, then weights could be applied to reduce the relative contri-
bution of scores from such families. This will also increase the relative weight of scores 
from lower-income families. Weights can also be applied to compensate for differential 
response rates (missing data) over clusters; see Carle (2009) for more information.

The extent of score dependence in a complex sampling design is estimated by the 
unconditional intraclass correlation, designated here as ρ̂ . It estimates the propor-
tion of total score variability explained by the cluster variable(s). In a between-subject 
design with a single cluster variable, this proportion is calculated as
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where MSC and MSW are, respectively, the between-group (cluster) and pooled within-
group mean squares from a one-way ANOVA and dfC are the between-group degrees of 
freedom, or one less than the number of clusters. If ρ̂ = .10, for example, then scores 
within the same cluster are 10% more likely to have a similar value compared with two 
scores selected completely at random in the population. Thus, the higher the value of 
ρ̂ , the more scores in a complex sample depend on the cluster variable. There is no 
“golden rule” concerning cutoffs for ρ̂  above which would indicate the need for MLM. 
But a common rule of thumb is that ρ̂  ≥ .10 may be sufficient to result in appreciable 
bias in standard errors if multilevel statistical techniques are not used (e.g., Bickel, 2007, 
chap. 3; Maas & Hox, 2005).

There is more than one way to estimate the design effect (DEFF) (Gambino, 2009). 
The most common way to do so in a two-level design (e.g., students within schools) is 
based on the formula

	 CˆDEFF = ( 1) 1nρ − + 	 (12.9)

which indicates that the design effect is greater as either the unconditional intraclass 
correlation or cluster size increases. If ρ̂  = 0, then DEFF = 1.0, which means that scores 
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at the case level are independent within the clusters. Otherwise, DEFF > 1.0, and it 
estimates the ratio of the actual variance of a statistic in a complex sample over that 
expected in a simple random sample based on the same number of cases. For example, 
given nC = 50 cases in each of 100 clusters and ρ̂  = .10, then

	 DEFF = .10 (50 – 1) + 1 = 5.90

which says that the variance in this complex design is about six times greater than that 
expected in a simple random sample where N = 5,000. The actual size of a complex 
sample divided by DEFF estimates the effective sample size, taking account of score 
dependence and cluster size. The effective sample size in this example is 5,000/5.90, 
or 847.5. That is, the amount of sampling error in the complex sample is comparable to 
that expected in a simple random sample of about 850 cases. When estimating statistical 
power, the effective sample size in complex samples is used in these calculations, not 
the actual size (N).

A third motivation for MLM is the estimation of contextual effects of higher-order 
variables on scores of individuals in a hierarchical data set. Suppose in a study of achieve-
ment that a researcher measures gender and family income among Grade 2 students. 
The students attend a total of 100 different schools. The characteristics of the schools, 
such as size (total enrollment) and emphasis on academic excellence, are also measured. 
The variables just mentioned are contextual variables, or level-2 predictors, that could 
affect achievement in addition to student gender and family income, or level-1 predic-
tors. It is also possible to aggregate a student-level variable up to the school level and to 
consider this aggregated variable as a contextual variable. For example, the proportion 
of students in each school who are girls is a contextual variable. In a multilevel analysis, 
it would be possible in this example to (1) simultaneously analyze data from two differ-
ent levels, student and school; (2) correctly estimate standard errors at each level in the 
prediction of achievement; and (3) estimate cross-level interactions between individual 
(within) and school (between) variables on achievement. For example, if the effect of 
family income at the student level changes as a function of school size, then there is an 
interaction of a within variable and a between variable.

Basic Multilevel Techniques

There are multilevel versions of many standard statistical techniques for single-level 
analyses. The multilevel versions take account of design effects in complex sampling 
designs, and some also estimate contextual effects. For instance, two-level regression 
permits the estimation of separate regression coefficients, one for the between (cluster) 
level and another for the within (case) level, in a two-level data set. Results at these two 
different levels are not always the same. Suppose that the amount of time spent watching 
television (TV) and school achievement (Ach) are measured among students enrolled 
in four different schools. Hypothetical scatterplots for these schools are presented in 
Figure 12.6. Within each school, the association between TV and Ach is negative. That 
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is, more time spent watching television predicts lower achievement. From the perspec-
tive of traditional SEM, the same within-group covariance structure holds across the 
schools.

But another aspect of the relation between TV and Ach in Figure 12.6 is apparent 
from a between-group perspective: There is a positive association between the average 
number of hours of television watched and the average achievement across the schools. 
This positive covariance is apparent if you draw a line in the figure that connects the 
four points that represent the group means (centroids) on both variables. The fact that 
the within versus between relations of TV to Ach are of different signs in this example 
is not contradictory. This is because the between association is estimated using group 
statistics (school means), but the within association is estimated using scores from indi-
vidual students within the schools.

In Figure 12.6, the slopes of the within-school regression lines are identical. In a 
two-level data set with a more realistic number of schools, such as 100 or so, it is more 
likely that (1) both the slopes and the intercepts of the within regression lines will vary 
across schools. Furthermore, (2) part of this variability over schools may be explained 
by a contextual variable, such as school size. For example, the relation TV and Ach could 
be stronger in smaller schools but closer to zero in larger schools. It can also happen that 
(3) variability in slopes is related to variability in intercepts over schools. For example, a 
weaker versus stronger association between Ach and TV (slopes) may predict lower ver-
sus higher mean scores on both variables (intercepts). That is, the covariance between 
intercepts and slopes may not be zero.

All of the effects just mentioned can be estimated in a random coefficient regres-
sion, in which data from predictors at ≥ 2 levels can be simultaneously analyzed. In 
standard multiple regression (MR), slopes and intercepts are conceptualized as fixed 
population parameters. In contrast, slopes and intercepts in random coefficient regres-
sion can be specified as random effects that vary and covary across the population of 
clusters. Random coefficient regression does not estimate the slope and intercept in any 

FIGURE 12.6. Representation of within-school versus between-school variation in the relation 
between television watching (TV) and scholastic achievement (Ach).
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particular sample cluster. Instead, it uses sample information to estimate the population 
variances and covariance of the slopes and intercepts. When a predictor, such as a con-
textual variable, of the random slopes or intercepts is specified, the model analyzed is 
referred to as a slopes-and-intercepts-as-outcomes model. This means that the slopes 
and intercepts from regression analyses at the case level (level 1) become the outcome 
variables in the level-2 analysis where contextual variables are the predictors. Depending 
on theory, it is also possible to specify that slopes only are random (slopes-as-outcomes 
model) or that intercepts only are random (intercepts-as-outcomes model). The com-
plexity of the analysis increases quickly in designs with multiple level-1 or level-2 pre-
dictors or for hierarchical data sets with ≥ 3 levels (e.g., students within school within 
districts). This is probably why most applications of random coefficient regression in the 
literature concern just two levels.

The OLS method is not the typical estimation method in random coefficient regres-
sion. If the cluster sizes are all equal (a balanced design), then it may be possible to use 
full-information maximum likelihood (FIML) as the estimator. This requires that the 
number of clusters is reasonably large, say, > 75 or so, and also that the total number 
of cases across all clusters is large, too (Maas & Hox, 2005). In unbalanced designs, it 
may be necessary to use an approximate ML estimator, one that is computationally less 
intensive but accommodates unequal cluster sizes. An example is restricted maximum 
likelihood (REML), which is available in the Linear Mixed Models procedure of SPSS 
and in the MIXED procedure of SAS/STAT. Another widely used computer program for 
multilevel regression is Hierarchical Linear and Nonlinear Modeling (HLM) 6 (Rauden-
bush, Bryk, & Cheong, 2008).6 Using the computer tools for multilevel analyses just 
mentioned is relatively straightforward. For example, analyses can be specified in the 
Linear Mixed Models procedure of SPSS with just a few clicks of the mouse cursor in 
graphical dialogs or by writing a few lines of syntax (see Bickel, 2007).

Some limitations of MLM are as follows (Bauer, 2003; Curran, 2003):

1.	 Scores on individual- or cluster-level predictors in MLM are from observed vari-
ables that are assumed to be perfectly reliable. This is because there is no direct way in 
MLM to represent measurement error.

2.	 There is also no direct way in MLM to represent either predictors or outcomes 
as latent variables (constructs) measured by multiple indicators. In other words, it is dif-
ficult to specify a measurement model as part of a multilevel analysis.

3.	 Although there are methods to estimate indirect effects apart from direct effects 
in MLM, they can be difficult to apply in practice (see Krull & MacKinnon, 2001).

4.	 There are statistical tests of individual coefficients or of variances–covariances 
in MLM, but there is no single inferential test of the model as a whole. Instead, the rela-
tive predictive power of alternative multilevel models estimated in the same sample can 
be evaluated (e.g., Bickel, 2007, chap. 3).

6A free student version of HLM 6 for Microsoft Windows is available at www.ssicentral.com/hlm/student.
html
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Convergence of SEM and MLM

The relative weaknesses of MLM correspond to the strengths of SEM. To summarize, it 
is straightforward in SEM to represent measurement error for either single or multiple 
indicators through the specification of a measurement model. Factors can be represented 
as either predictors or outcomes in a structural model. The estimation of direct or indi-
rect effects in structural models is a routine part of SEM, and there are inferential tests 
of whether the model is consistent with the covariance data. But “unadorned” SEM has 
limited capabilities in areas where MLM is strong. For example, the analysis of a model 
across multiple samples in SEM is a kind of restricted multilevel analysis that assumes 
fixed population parameters for each group. Except when analyzing a particular class of 
latent growth model in a single-level analysis (Chapter 11), SEM does not directly take 
account of clustering in complex samples.

Early attempts to include more capabilities of MLM in SEM analyses were based on 
tricking SEM computer tools into analyzing two-level models (e.g., Duncan, Duncan, 
Hops, & Alpert, 1997). The trick was to exploit the capability of the software to simul-
taneously estimate a structural equation model across two groups. However, in this 
case the “groups” corresponded to two different models, a within (level-1) model and a 
between (level-2) model, both estimated in the same complex sample. The data matrix 
for the level-1 model is the pooled within-group covariance matrix based on variation 
of individual scores around cluster means. For the level-2 model, the data matrix is the 
between-group covariance matrix based on variation of cluster means around the grand 
means. Because older versions of most SEM computer programs had no built-in capabili-
ties for analyzing data from complex samples, it was usually necessary to calculate these 
two data matrices separately using an external program, such as SPSS. The two data 
matrices are then submitted to the SEM computer program as external files or included 
as part of the syntax (command) file.

Unfortunately, the syntax required to trick older versions of SEM computer tools into 
analyzing even relatively simple two-level models is awkward and complicated. Stapleton 
(2006, p. 361) gives an example of such syntax for getting an SEM computer program to 
analyze a two-level regression model that corresponds to the situation depicted in Figure 
12.6. Just as awkward is the use of standard SEM symbolism for model diagrams to repre-
sent a multilevel analysis. For example, the model presented in Figure 12.7(a) represents 
the trick just mentioned in McArdle–McDonald RAM symbolism for SEM, the system 
used for model diagrams in this book. Briefly, the observed variables TV and Ach are 
each specified as the single indicator of a within-school factor and a between-school fac-
tor. The scaling constants for the within factors equal 1, but for the between factors these 
constants equal the square root of the cluster size nC. At each level (within, between) of 
the model in Figure 12.7(a), the Ach factor is regressed on the TV factor. These specifica-
tions tell the computer to derive separate estimates of the within- and between-group 
regression coefficients. If the data resembled the pattern depicted in Figure 12.6, the 
within coefficient would be negative but the between coefficient would be positive.
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Bauer (2003) and Curran (2003) show that it is even more complicated to use 
standard SEM computer syntax to specify a slopes-and-intercepts-as-outcomes model. 
The model requires both a mean structure and an individual factor loading matrix 
where loadings on a slope factor are the scores from all the cases within each cluster. 
Not all SEM computer programs allow the specification of individual factor loading 
matrices, but one that does is Mx (Chapter 4). The programming becomes even more 
complicated if there are missing data or the cluster sizes are not all equal. Indeed, the 
task quickly “becomes a remarkably complex, tedious, and error-prone task” (Curran, 
2003, p. 557)—that is, a data management nightmare. Representation of a slopes-and-
intercepts-as-outcomes analysis with standard SEM symbolism for model diagrams is 
relatively complex, too.

FIGURE 12.7. Representation of a two-level regression model using (a) standard SEM symbolism 
for model diagrams and (b) compact symbolism associated with Mplus.
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Multilevel SEM

Fortunately, more and more computer programs for SEM, including EQS, LISREL, and 
Mplus, feature special syntax that makes it easier to specify and analyze multilevel 
models in complex samples. This special syntax is more compact to use for multilevel 
analysis than standard SEM computer programming languages. It also allows for the full 
integration of SEM and MLM in a framework known as multilevel structural equation 
modeling (ML‑SEM) that combines the capabilities of both families of techniques.

Because working with standard SEM model diagrams is not the best way to rep-
resent a multilevel analysis, the researcher typically conducts an ML‑SEM analysis by 
specifying the model in syntax, not in a graphical editor. An example of special syntax 
in Mplus for analyzing a hypothetical slopes-and-intercepts-as-outcomes model is listed 
in Table 12.4. The raw data from a complex sample are contained in an external file, 
and the four observed variables are Ach, TV, School (attended), and Size (total enroll-
ment). Next, the syntax in Table 12.4 specifies that TV is the within or level-1 predictor, 
the cluster variable is School, and the between or level-2 predictor is Size. Grand-mean 
centering of the TV variable is specified—centering is routine in this type of multilevel 
analysis (Bickel, 2007)—and the analysis type is designated as two-level with random 
coefficients. Syntax for the within model specifies that slopes, labeled “s” in the table, 
from within the regressions of Ach on TV are a random variable. Syntax for the between 
model specifies that the random slopes and intercepts are regressed on the school size 
contextual variable and that the random terms covary. See Stapleton (2006) for addi-
tional examples.

In the Mplus manual, Muthén and Muthén (1998–2010) use a special compact sym-
bolism for diagrams of multilevel structural equation models. For example, look back 
at Figure 12.7(a), which is the standard diagram for tricking an SEM computer program 
into analyzing a two-level regression model. Presented in Figure 12.7(b) is the model 

TABLE 12.4. Example of Special Mplus Syntax for a Hypothetical Slopes-and-
Intercepts-as-Outcomes Model

TITLE: Two-level slopes-and-intercepts-as-outcomes model
       Students within schools
DATA: FILE IS “school.dat”;
VARIABLE: NAMES ARE Ach TV School Size;
  WITHIN = TV; BETWEEN = Size;
  CLUSTER = School; CENTERING = GRANDMEAN (TV);
ANALYSIS: TYPE IS TWOLEVEL RANDOM;
MODEL:
  %WITHIN%
    s | Ach ON TV;
  %BETWEEN%
    Ach s ON Size;
    Ach WITH s;
OUTPUT:  SAMPSTAT;
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for the same analysis but represented as an Mplus-type model diagram. This diagram 
makes it clear that the regression of Ach on TV is calculated at two different levels, 
within and between. It is also simpler than the standard representation in Figure 12.7(a). 
Residual variance is represented in Figure 12.7(b) by the lines with arrowheads oriented 
at 45° angles and pointing to the endogenous variables. This representation for residual 
variance is compact, but does not convey the fact that residual terms are ordinarily con-
ceptualized as exogenous variables in an SEM analysis.

Another example of an Mplus-type diagram for a multilevel analysis is presented in 
Figure 12.8. This model corresponds to the slopes-and-intercepts-as-outcomes model 
specified in the syntax of Table 12.4. Random intercepts are represented in the within 
model of Figure 12.8 by the closed circle at the end of the path TV → Ach, and random 
slopes are represented by the closed circle in the middle of the same path. The random 
slopes are labeled “s” in the figure. Random slopes and intercepts are represented in the 
between model as latent variables that are regressed on school size, and the disturbances 
for the random terms are specified as correlated. A mean structure is implied in Figure 
12.8 because intercepts are estimated, but mean structures are not explicitly depicted in 
Mplus-style diagrams. Curran and Bauer (2007) describe an alternative compact sym-
bolism for diagrams of multilevel structural equation models in which mean structures 
are explicitly represented.

Using an SEM computer program with special syntax for multilevel analysis makes 
possible the basic types of ML‑SEM summarized next:

1.	 Estimation of correct standard errors when fitting a single model to data from 
a complex sample. This estimation takes account of the design effect and accordingly 
corrects standard errors and test statistics.

2.	 Analysis of one model at the within level but another model at the between level. 
The between model could be identical to the within model (e.g., Figure 12.7(b)), but the 
between model could also be a different model. For example, a set of indicators may have 

FIGURE 12.8. Representation in Mplus-type symbolism of the slopes-and-intercepts-as-
outcomes model corresponding to the syntax in Table 12.4.
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a three-factor structure at the within level, but at the between level the same indicators 
measure a single factor.

3.	 Analysis of a slopes-and-intercepts-as-outcomes model where random slopes 
and intercepts at the within level could be from either observed or latent variables that 
are predicted by either observed or latent variables at the between level. Structural mod-
els at either level can include indirect effects.

Two examples of ML-SEM analyses are described next. Wu (2008) administered 
to 333 students a series of questionnaires about life satisfaction, what respondents say 
they want (amount), and the gap between what they have and what they want (have–want 
discrepancy) in 12 different areas (social support, financial resources, etc.). Because rat-
ings across the 12 areas are repeated measures, Wu (2008) conceptualized these areas 
as nested under individuals. That is, the within level concerns variation among areas 
for each respondent, and the between level refers to differences across people that affect 
their satisfaction ratings over all areas. In a multilevel path analysis (ML‑PA), Wu 
(2008) tested the hypothesis that have–want discrepancy and amount have direct or indi-
rect effects on life satisfaction. The final path model retained in Wu’s (2008) analysis 
is presented in Figure 12.9(a) using Mplus symbolism. At the within level, have–want 
discrepancy has both direct and indirect effects on satisfaction. But at the between level, 
effects of have–want discrepancy are entirely mediated by amount. Wu (2008) interpreted 
these results as suggesting that life satisfaction involves an explicit have–want com-
parison, but whether its effect is entirely indirect through what people say they want 
depends on the level of analysis, within-person versus between-person.

Kaplan (2000, pp. 48–53) describes a multilevel confirmatory factor analysis 
(ML‑CFA) in a sample of over 10,000 high school students enrolled in about 1,000 
different schools. The students completed a questionnaire about their perceptions of 
teacher quality, negative school environment (e.g., students feel unsafe), and disruptive 
behavior by students. In a single-level CFA ignoring clusters (schools), Kaplan (2000) 
found that a three-factor model had reasonable fit to item data. The ML‑CFA model ana-
lyzed by Kaplan (2000) in the same sample is presented in Figure 12.9(b) using Mplus 
symbolism where “It” designates “item.” The within model is basically identical to the 
final model retained in the single-level CFA. However, the model at the between level 
is simpler in that all items load on a single factor. That is, variation in student ratings 
within schools is differentiated along three dimensions, but one general climate fac-
tor explains between-school variation. For additional examples of ML‑SEM analyses, 
see Kaplan (2009, chap. 7), Mulaik (2009, chap. 12), and Rabe–Hesketh, Skrondal, and 
Zheng (2007).

There are three basic steps in analyzing a multilevel structural equation model. The 
first step involves calculation of the unconditional intraclass correlation ρ̂ . If ρ̂ > .10, 
the need for ML‑SEM instead of single-level SEM is indicated. The next two steps parallel 
those of the two-step estimation of SR models (Chapter 10), but in ML‑SEM these steps 
correspond to analysis of the within model only prior to simultaneous estimation of the 
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within and between models. The goal is to distinguish specification error in either level, 
within versus between. Specifically, the within model is analyzed using the pooled-
within group covariances and means, which ignores the cluster variable. Although the 
fit of the within model may not be satisfactory due to the omission of between-group 
effects, the basic parameter estimates should make sense. Finally, the between model is 
specified, and then both models are simultaneously fitted to the data. Stapleton (2006) 
describes additional possible analytic steps.

FIGURE 12.9. (a) Two-level path analysis model analyzed by Wu (2008). (b) Two-level 
confirmatory factor analysis model analyzed by Kaplan (2000).
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Summary

In moderated path analysis, the interactive effects of observed variables are represented 
by product terms included in the model along with the main effect terms. Path coef-
ficients for direct effects of the product terms estimate the corresponding interaction 
effects. One way to interpret an interaction between two continuous predictors is to gen-
erate the simple regressions of the outcome variable on one predictor at different levels of 
the other predictor. One of the first approaches to estimating interactive effects of latent 
variables is the Kenny–Judd method, which features all possible product indicators of 
latent product variables, the imposition of nonlinear constraints, and the assumption 
of multivariate normality. Some alternative methods do not require all possible prod-
uct indicators, nonlinear constraints, or the normality assumption. Large samples are 
needed in all these methods regardless of the estimation method.

Researchers who know something about both SEM and multilevel modeling can 
test an even wider range of hypotheses compared with those who know about one 
technique, but not the other. The convergence of the two techniques in the form of 
multilevel SEM offers the capability to (1) calculate correct standard errors in hier-
archical datasets; (2) analyze predictors from both the individual level and the group 
level (contextual effects) in the same analysis; (3) take account of unreliability when 
latent variables are represented as measured by multiple indicators; and (4) estimate 
both direct and indirect effects when structural models are analyzed. The increasing 
availability of SEM computer tools that directly support multilevel analyses in complex 
sampling designs is making it easier for researchers to actually reap these potential 
benefits.

Recommended Readings

Interaction Effects

Preacher et al. (2007) describe the estimation and interpretation of conditional indirect effects 
in moderated path models. The edited volume by Schumaker and Marcoulides (1998) is a 
good resource in this area, and Marsh, Wen, and Hau (2006) describe additional estimation 
methods.

Marsh, H. W., Wen, Z., & Hau, K.‑T. (2006). Structural equation modeling of latent interaction 
and quadratic effects. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation model-
ing: A second course (pp. 225–265). Greenwich, CT: Information Age Publishing.

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypoth-
eses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–
227.

Schumacker, R. E., & Marcoulides, G. A. (Eds.). (1998). Interaction and nonlinear effects in 
structural equation modeling. Mahwah, NJ: Erlbaum.
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Multilevel Analysis

Bickel (2007) introduces multilevel analysis by comparing it with standard multiple regression. 
A more advanced work for readers with strong quantitative backgrounds is Raudenbush and 
Bryk (2002). Stapleton (2006) offers a clear introduction to multilevel analysis in SEM.

Bickel, R. (2007). Multilevel analysis for applied research: It’s just regression! New York: Guil-
ford Press.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand 
Oaks, CA: Sage.

Stapleton, L. M. (2006). Using multilevel structural equation modeling techniques with complex 
sample data. In G. R. Hancock and R. O. Mueller (Eds.), Structural equation modeling: A 
second course (pp. 345–383). Greenwich, CT: Information Age Publishing.
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How to Fool Yourself with SEM

The family of techniques that make up SEM provide researchers with a marvelously 
flexible set of tools for hypothesis testing. But as with any complex set of procedures, 
its use must be guided by reason. Although many ways to mislead yourself with SEM 
were mentioned in previous chapters, they are discussed altogether here. Potential 
pitfalls are considered under four categories that correspond to major phases of the 
analysis: specification, data preparation, analysis and respecification, and interpreta-
tion. These categories are not mutually exclusive, but they correspond to the usual 
sequence in which researchers should address these issues. You are encouraged to 
use the points presented next as a checklist to guide the conduct of your own analyses. 
Here they are: 52 ways to take leave of your senses in SEM. This list is not exhaustive, 
but it contains many of the more common mistakes. I thank members of SEMNET for 
their comments on an earlier version of this list.

Tripping at the Starting Line: Specification

Despite all the statistical machinations of SEM, specification is the most important part 
of the process. Occasionally, however, researchers spend the least amount of time on it. 
Listed here are several ways not to do your homework in this critical area:

1.	 Specify the model after the data are collected rather than before. This case concerns 
the specification of a model for an archival data set. Potential problems caused by plac-
ing the data cart before the theory horse are described under points that follow, but 
they include the realization that key variables are omitted or the model is not identified. 
With the data already collected, it may be too late to do anything about the identifica-
tion problem. Also, adding exogenous variables in one way to remedy an identification 
problem for a nonrecursive structural model and adding indicators can help to identify 
a measurement model.
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2.	 Omit causes that are correlated with other variables in a structural model. If an 
omitted cause is uncorrelated with causes already represented in the structural model, 
then estimates of direct effects are not biased because of this omission. It is rare, how-
ever, that the types of causal variables studied by behavioral scientists are independent. 
Depending on the pattern of correlations between an omitted variable and those in the 
model, estimates of causal effects can be too high or too low.

3.	 Fail to include unanalyzed associations between pairs of measured exogenous vari-
ables in path models or exogenous factors in structural regression models. Recall that these 
associations are represented by the symbol  in model diagrams and reflect the fact 
that the model offers no explanation of why exogenous variables covary (and vary, too, 
represented by the symbol ). Because most causal variables are correlated, omitting 
these paths is a specification error. Even if these intercorrelations are relatively small, 
their omission could adversely affect the estimation of other model parameters (i.e., 
error propagation).

4.	 Use psychometrically inadequate measures. The analysis of variables with a lot of 
measurement error in the scores (e.g., unreliability) can lead to inaccurate results. The 
general effect of measurement error is to underestimate causal effects, but—depending 
on the intercorrelations—estimates can be too high. Although measurement error is 
taken into account in the analysis of a measurement model or structural regression 
model, estimates about latent variables are more precise when the indicators are psycho-
metrically sound.

5.	 Fail to give careful consideration to the question of directionality. Directionality 
is a critical feature not only of structural models but also of measurement models. In 
structural models, specifications of direct and indirect effects are statements about the 
expected sequence of causality, or effect priority. Assumptions about directionality in 
measurement models are expressed by the specification of observed variables as either 
effect indicators (reflective measurement) or cause indicators (formative measurement). 
If solid reasons cannot be provided for the specification of directionality, then either use 
another type of statistical procedure (e.g., multiple regression) or test alternative models 
with different causal sequences. However, some alternative models may be equivalent 
or near-equivalent models that generate the same or very similar predicted covariances, 
which means that there is no way to statistically distinguish them. This is why SEM is 
described as being good for estimating effects when the underlying causal mechanism 
is known. It is also more a disconfirmatory method than a confirmatory one because 
SEM helps researchers to detect false models, but it basically never confirms whether a 
retained model is true.

6.	 Specify feedback effects in structural models (e.g., Y1   Y2 ) as a way to mask 
uncertainty about directionality. Not only do feedback relations have their own assump-
tions (e.g., equilibrium), but their presence also makes a structural model nonrecur-
sive, which introduces potential problems (e.g., identification) in analyzing the model. A 
related mistake is to fail to rationally evaluate the equilibrium assumption for a feedback 
loop.

7.	 Add disturbance or measurement error correlations without substantive reason. This 
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is a variation on the previous point. When there is justification (e.g., repeated measure-
ment, two indicators share a common method), specification of these types of unana-
lyzed associations is appropriate. Otherwise, they can be a way to improve fit simply by 
making a model more complex. This is especially true if the researcher initially specifies 
uncorrelated residuals because of the assumption of conditional independence of the 
indicators for a latent variable model. If the model in fact does not adequately explain 
the observed associations among the indicators, adding measurement error correlations 
without substantive reason can be a way to mask this shortcoming.

8.	 Fail to include design-driven correlated residuals. This mistake is the flip side of 
the one just described, and it is the failure to include theoretically justifiable correlated 
residuals, given measurement theory or research design. Cole, Ciesla, and Steiger (2007) 
remind us that the omission of such residual correlations may not in some cases harm 
model fit, but their omission could change the meaning of latent variables and thus lead 
to inaccurate results. In other disciplines such as econometrics, the specification of cor-
related residuals is more routine.1 So the specification of correlated residuals should not 
be seen as a necessary evil. Instead, they should be included in the model when there is 
justification. In this sense, correlated residuals are no different from any other type of 
effect that could potentially be included in structural equation models.

9.	 Overfit the model (i.e., forget the goal of parsimony). Any model, even theoretically 
nonsensical ones, will perfectly fit the data if they are specified to be just as complex 
as possible (i.e., dfM = 0). But models just as complex as the data test no particular 
hypothesis. It is only more parsimonious models, in which some effects are intentionally 
constrained to zero (dfM > 0), that allow tests of specific ideas. The goal of parsimony 
is also important in respecification. Here one must be careful not to modify the model 
solely for the sake of improving fit. These comments on parsimony are not intended to 
dissuade you from analyzing complex models per se. This is because a phenomenon that 
is complex in the real world may require a relatively complex statistical model in order 
to reflect it basic essence. The main point is that the model should be as parsimonious as 
possible while respecting theory and results of prior empirical studies. Models that are 
complex without theoretical justification are probably so specified in order to maximize 
fit (i.e., it capitalizes on sample-specific variance), but such models are unlikely to repli-
cate.

10.	Fail to have sufficient numbers of indicators of latent variables. Measurement mod-
els with more than one factor typically require only two indicators per factor for iden-
tification. However, having only two indicators per factor may lead to problems. Such 
models may be more likely to be empirically underidentified than models with at least 
three indicators per factor. Other problems, such as nonconvergence of iterative estima-
tion, are more likely to occur for models with only two indicators per factor, especially 
in small samples. It may be difficult to estimate measurement error correlations for 
factors with only two indicators, which can result in a specification error. Parts of the 
model where some factors have only two indicators are not “self-sufficient” in terms of 

1W. Wothke, personal communication, November 24, 2003.
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identification, which means that they have to “borrow” covariance information from 
other parts of the model. This may result in propagation of error from one part of the 
model to another. Suppose that the measurement error correlation for a factor with just 
two indicators is really substantial, but it cannot be estimated because of identification. 
This specification error may propagate to estimation of the factor loadings for this pair 
of indicators.2 Two indicators per factor is the technical minimum, but at least three or 
four indicators per factor is a better target.

11.	Specify that indicators load on > 1 factor without a substantive reason. The speci-
fication that an indicator depends on more than one factor may be appropriate if you 
really believe that it measures more than one construct. Just like measurement error 
correlations, though, adding factor loadings makes a measurement model less parsimo-
nious.

12.	Specify that a set of effect indicators with low intercorrelations loads on a com-
mon factor. The specification of effect indicators implies reflective measurement, which 
assumes that a set of effect indicators all measure the same underlying factor. This in turn 
means that their intercorrelations should all be positive and relatively high (e.g., > .50). 
If the assumptions of reflective measurement are not tenable, then consider the specifi-
cation of formative measurement where indicators are specified as causes of composites. 
Of course, the specification of reflective versus formative measurement requires a theo-
retical basis.

13.	In a complex sampling design, assume that the within-group model and the between-
group model are the same without verification. One lesson of multilevel modeling is that 
different models may describe covariance patterns at different levels of analysis, within 
versus between. Without a basic understanding of statistical techniques for hierarchical 
data, including multilevel SEM, the researcher could miss this possibility.

14.	Forget that the main goal of specification is to test a theory, not a model. The model 
analyzed in SEM represents predictions based on a particular body of theory or results 
of prior empirical studies. Outside this role, the model has no intrinsic value. That is, it 
provides a vehicle for testing ideas, and the real goal of SEM is to evaluate these ideas in 
a scientifically meaningful and valid way. Whether or not a model is retained is inciden-
tal to this purpose.

Improper Care and Feeding: Data

The potential missteps presented in this section involve leaping before you look, that is, 
not carefully screening the data before analyzing them:

15.	Don’t check the accuracy of data input or coding. Data entry mistakes are so easy 
to make, whether in recording the raw data or in typing the values of a correlation or 

2B. Muthén, personal communication, November 25, 2003.
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covariance matrix. Even machine-based data entry is not error free (e.g., smudges on 
forms can “fool” an electronic scanner, software errors can result in the calculation of 
incorrect scores). Mistaken specification of codes in statistical programs is also common 
(e.g., “9” for missing data instead of “–9”).

16.	Ignore whether the pattern of missing data loss is random or systematic. This point 
assumes that there are more than just a few missing scores. Classical statistical methods 
for dealing with incomplete data, such as case deletion or single-imputation methods, 
generally assume that the data loss pattern is missing completely at random, which is 
unlikely in perhaps most data sets analyzed in the behavioral sciences. These classical 
techniques have little basis in statistical theory and take little advantage of structure in 
the data. More modern methods, including those that impute multiple scores for miss-
ing observations based on predictive theoretical distributions, generally assume that 
the data loss pattern is missing at random, a less strict assumption about randomness. 
But even these methods may generate inaccurate results if the data loss mechanism is 
systematic. If so, then (1) there is no “statistical fix” for the problem, and (2) you need to 
explicitly qualify the interpretation of the results based on the data loss pattern.

17.	 Fail to examine distributional characteristics. The most widely used estimation 
methods in SEM, including maximum likelihood (ML), assume multivariate normal dis-
tributions for continuous endogenous variables. Although values of parameter estimates 
are relatively robust against non-normality, statistical tests of individual parameters 
tend to be positively biased (i.e., Type I error rate is inflated). If the distributions of con-
tinuous endogenous variables are severely non-normal, then use an estimation method 
that does not assume normality or use corrected statistics (e.g., robust standard errors, 
corrected model test statistics) when normal theory methods such as ML estimation 
are used. If the distributions are non-normal because the indicators are discrete with 
a small number of categories (i.e., they are ordered-categorical variables), then use an 
appropriate method for this type of data, such as robust weighted least squares (WLS).

18.	Don’t screen for outliers. Even a few extreme scores in a relatively small sample 
can distort the results. If it is unclear whether outlier cases are from a different popula-
tion, the analysis can be run with and without these cases in the sample. This strategy 
makes clear the effect of outliers on the results. This same strategy can be used to evalu-
ate the effects of different methods to deal with missing data.

19.	Assume that all relations are linear. A standard assumption in SEM is that variable 
relations are linear. Curvilinear or interactive relations can be represented with product 
terms but, in general, such terms must be created by the researcher and then included 
in the model. Simple visual scanning of scatterplots can detect bivariate relations that 
are obviously curvilinear, but there is no comparably easy visual check for interaction 
effects. Model test statistics, including 2

Mχ , are generally insensitive to serious interac-
tion misspecification (i.e., there is real interaction, but the model has no corresponding 
product terms that represent these effects).

20.	Ignore lack of independence among the scores. This problem may arise in two 
contexts. First, the scores are from a repeated measures variable. The ability to specify 
a model for the error covariances addresses this first context. The second context refers 
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to hierarchical data structures in which cases are clustered within larger units, such as 
employees who work under the same manager. Scores within the larger unit are proba-
bly not independent. The analysis of nested data with statistical techniques that assume 
independence may not yield accurate results. Awareness of the possibility to incorporate 
multilevel modeling in an SEM analysis helps to avoid this mistake.

Checking Critical Judgment at the Door:  
Analysis and Respecification

The potential pitfalls described next concern the analysis and interpretation stages. 
However, problems at earlier stages may make these problems more likely to happen:

21.	When identification status is uncertain, fail to conduct tests of solution uniqueness. 
The identification of only some types of models can be determined by heuristics with-
out resorting to algebraic manipulation of their equations. If it is unknown whether a 
model is theoretically identified but an SEM computer program yields a converged and 
an admissible solution, then the researcher should conduct empirical tests of the solu-
tion’s uniqueness. These tests do not prove that a solution is truly unique, but if they 
lead to the derivation of a different solution, then the model is not identified.

22.	Fail to recognize empirical underidentification. Estimation of models that are 
identified can nevertheless fail because of data-related problems, including extreme col-
linearity or estimates of key parameters that are close to zero or equal to each other. 
Modification of a model when the data are the problem may lead to a specification 
error.

23.	Ignore the problem of start values. Iterative estimation may fail to converge 
because of poor initial estimates, which is more likely with nonrecursive structural 
models or measurement models where some indicators load on multiple factors and with 
error correlations. Although many SEM computer programs can automatically generate 
their own start values, these values do not always lead to converged admissible solu-
tions, especially for complex models. When this happens, the researcher should try to 
generate his or her own initial estimates.

24.	Fail to check accuracy of computer syntax. Just as with data entry, it is easy to 
make an error in computer syntax that misspecifies the model or data. Although SEM 
computer programs have become easier to use, they still cannot generally detect a mis-
take that is logical rather than a syntax error. A logical error does not cause the analy-
sis to fail but instead results in an unintended specification (e.g., Y1 → Y2 is specified 
when Y2 → Y1 is intended). Carefully check to see that the model analyzed was actually 
the one that you intended to specify. This is where LISREL’s unique capability to auto-
matically draw the model specified in your syntax comes in handy: inspection of the 
computer-generated diagram gives an opportunity to verify the syntax.

25.	Fail to carefully inspect the solution for admissibility. The presence of Heywood 
cases or other kinds of illogical results indicates a problem in the analysis. That is, the 
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solution should not be trusted. For the same reason, avoid making interpretations about 
otherwise sensible-looking results in an inadmissible solution.

26.	Interpret results from a nonconverged solution or one where the computer imposed a 
zero constraint to avoid a Heywood case. This mistake is related to the one just described. 
Output from a nonconverged solution is not trustworthy. The same is true when the 
computer forces some estimates, such as for error variances, to be at least zero in order 
to avoid an illogical result, such as a negative variance estimate. Such solutions are also 
untrustworthy.

27.	Respecify a model based entirely on statistical criteria. A specification search 
guided entirely by statistical criteria such as modification indexes is unlikely to lead 
to the correct model. Use your knowledge of relevant theory and research findings to 
inform the use of such statistics.

28.	Analyze a correlation matrix without standard deviations when it is clearly inap-
propriate. These situations include the analysis of a model across independent samples 
with different variabilities, longitudinal data characterized by changes in variances over 
time, or a type of SEM that requires the analysis of means (e.g., a latent growth model), 
which needs the input of not only means but covariances, too.

29.	Estimate a covariance structure with a correlation matrix without using proper 
methods. Standard ML estimation assumes the analysis of unstandardized variables and 
may yield incorrect results when a model is fitted to a correlation matrix without stan-
dard deviations. Appropriate procedures such as the method of constrained estimation 
should be used to analyze a correlation matrix when it is not inappropriate to do so (see 
the previous point).

30.	Fail to check for constraint interaction when testing for equality of loadings across 
different factors or of direct effects on different endogenous variables. If the results of the 
chi-square difference test for the equality-constrained parameters depend on how the 
factors are scaled (i.e., unstandardized vs. standardized), there is constraint interaction. 
In this case, it makes sense to analyze the correlation matrix using the method of con-
strained estimation, assuming it is appropriate to analyze standardized variables.

31.	Analyze variables so highly correlated that a solution is unstable. If very high cor-
relations (e.g., r > .85) do not cause the analysis to fail or yield a nonadmissible solution, 
then extreme collinearity may cause the results to be statistically unstable.

32.	Estimate a complex model within a small sample. This is a related problem. As 
the ratio of cases to the number of parameters is smaller, the statistical stability of the 
estimates becomes more doubtful. Cases-to-free parameter ratios less than 10:1 may be 
cause for concern, as are sample sizes < 100. These recommendations assume ML esti-
mation. Some special methods, such as asymptotic distribution free (ADF) methods that 
make no distributional assumptions, may require very large samples.

33.	Report only standardized estimates. This mistake concerns the possible fooling of 
others; that is, always report the unstandardized estimates in a primary analysis. Other-
wise, it may be difficult to compare the results to those from later studies where either 
the same or a similar model is estimated in different samples. Along the same lines, 
do not associate information about statistical significance with standardized estimates 
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unless you used a method that calculates correct standard errors in the standardized 
solution.

34.	Set scales for latent variables inappropriately. In multiple-sample SEM, the tactic 
of standardizing factors by fixing their variances to 1.0 is incorrect if groups differ in 
their variabilities. Fixing the loading of an indicator to 1.0 (i.e., the factor is unstandard-
ized) is preferable, but note that (a) the same factor loading must be fixed for all groups 
and (b) indicators with fixed loadings are assumed to be invariant across all samples. In 
single-sample analyses, fixing to 1.0 the variances of factors measured over time is also 
inappropriate if factor variability is expected to change (see point 28).

35.	Fail to separately evaluate the measurement and structural portions of a structural 
regression model. Two-step (or four-step) estimation of structural regression models can 
help determine whether the source of poor fit of the original model lies in the measure-
ment component or in the structural component. These sources of poor fit are con-
founded in one-step estimation.

36.	Estimate relative group mean or intercept differences on latent variables without 
establishing at least partial measurement invariance of the indicators. If the observed vari-
ables do not have the same basic factor structure across all groups, then it makes lit-
tle sense to evaluate relative group mean differences in regression slopes or intercepts 
among the latent variables.

37.	Analyze parcels of items with Likert-type scales as continuous indicators without 
checking to see whether items in each parcel are unidimensional. If a set of items assigned 
to the same parcel do not measure one common domain, then analysis of the total score 
across the items may not be very meaningful.

The Garden Path: Interpretation

Potential mistakes described in this section concern the (mis)interpretation of the out-
put from an SEM computer program. Some of these errors may be consequences of mis-
takes listed in earlier sections of this chapter:

38.	Look only at values of fit statistics; ignore other types of information about fit. It is 
possible that the fit of some portion of the model is poor despite seemingly impressive 
values of its average correspondence to the data. Inspection of the magnitudes, direc-
tions, and pattern of correlation residuals can help to spot particular observed associa-
tions that are poorly explained by the model. A related mistake is selective reporting 
of fit statistics—specifically, reporting values of only those fit statistics that favor the 
researcher’s model when results on other statistics are clearly less favorable.

39.	Ignore a failed model chi-square test. In the past, it was common for researchers 
to ignore a statistically significant discrepancy between the model and the covariance 
data, yet justify retention of the model based on values of approximate fit indexes. This 
is bad practice, one that is no longer tolerable. Specifically, a failed chi-square test should 
result in (a) the tentative decision to reject the model and (b) the inspection of diagnos-
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tic information about possible sources of model–data disagreement. Any respecification 
suggested by the diagnostics must be theoretically justifiable. If such respecifications 
result in subsequently passing the chi-square test, then diagnostic information about 
the fit of the respecified model is still needed. This is because a passing model can still 
have fit problems concerning its explanations of the observed covariances. If this diag-
nostic assessment indicates a problem, then the model should be rejected despite pass-
ing the chi-square test.

40.	Rely solely on suggested thresholds for approximate fit indexes to justify retaining 
the model. Results of recent studies indicate that rules of thumb from the 1980s–1990s 
about cutoffs for approximate fit indexes that supposedly indicate “acceptable” fit are not 
trustworthy. This mistake is compounded when (a) the model fails the chi-square test 
when the sample size is not large and (b) the researcher neglects to report diagnostic 
information about model fit.

41.	Interpret “closer to fit” as “closer to truth.” Close model–data correspondence 
could reflect any of the following (not all mutually exclusive) possibilities: (a) the model 
accurately reflects reality; (b) the model is an equivalent or near-equivalent version of 
one that corresponds to reality but itself is incorrect; (c) the model fits the data in a non-
representative sample but has poor fit in the population; or (d) the model has so many 
freely estimated parameters that it cannot have poor fit even if it is grossly misspecified. 
In a single study, it is usually impossible to determine which of these scenarios explains 
the good fit of the researcher’s model. This is another way of saying that SEM is more 
useful for rejecting a false model than for somehow “proving” whether a given model is 
true (point 5).

42.	Interpret good fit as meaning that the endogenous variables are strongly predicted. 
If the exogenous and mediator variables account for a small proportion of the variances 
of the ultimate outcome variables and a model accurately reflects this lack of predictive 
validity, then the overall fit of the model may be good. Fit statistics in SEM indicate 
whether the model can reproduce the observed covariances, not whether substantial 
proportions of the variance of the endogenous variables are explained.

43.	Rely solely on statistical criteria in model evaluation. Other important consid-
erations include model generality, parsimony, and theoretical plausibility. As noted by 
Robert and Pashler (2000), good statistical fit of a model indicates little about (a) theory 
flexibility (e.g., what it cannot explain), (b) variability of the data (e.g., whether the data 
can rule out what the theory explain cannot explain), and (c) the likelihood of other out-
comes. These authors also suggest that a better way to evaluate a model is to determine 
(a) how well the theory limits outcomes (i.e., whether it can accurately predict), (b) how 
closely the actual outcome agrees with those limits, and (c) if plausible alternative out-
comes would have been inconsistent with the theory (Sikström, 2001). That is, whether 
a model is statistically beautiful involves not just numbers, but ideas, too.

44.	Rely too much on statistical tests. This entry covers several kinds of errors. One is 
to interpret statistical significance as evidence for effect size (especially in large samples) 
or for importance (i.e., substantive significance). Another is to place too much emphasis 
on statistical tests of individual parameters that may not be of central interest in hypoth-
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esis testing (e.g., whether an error variance differs statistically from zero). A third is 
to forget that statistical tests of individual effects tend to result in rejection of the null 
hypothesis too often when non-normal data are analyzed by methods that assume nor-
mality. See point 27 for related misuses of statistical tests in SEM.

45.	Interpret the standardized solution in inappropriate ways. This is a relatively com-
mon mistake in multiple-sample SEM—specifically, to compare standardized estimates 
across groups that differ in their variabilities. In general, standardized solutions are fine 
for comparisons within each group (e.g., the relative magnitudes of direct effects on the 
same endogenous variable), but only unstandardized solutions are usually appropriate 
for cross-group comparisons. A related error is to interpret group differences in the stan-
dardized estimates of equality-constrained parameters: the unstandardized estimates of 
such parameters are forced to be equal, but their unstandardized counterparts are typi-
cally unequal if the groups have different variabilities.

46.	Fail to consider equivalent or near-equivalent models. Essentially all structural 
equation models have equivalent versions that generate the same predicted correlations 
or covariances. For latent variable models, there may be infinitely many equivalent mod-
els. There are probably also near-equivalent versions that generate almost the same cova-
riances as those in the data matrix. Researchers must offer reasons why their models are 
to be preferred over some obvious equivalent or near-equivalent versions of them.

47.	Fail to consider (nonequivalent) alternative models. When there are competing 
theories about the same phenomenon, it may be possible to specify alternative models 
that reflect them. Not all of these alternatives may be equivalent versions of one another. 
If the overall fits of some of these alternative models are comparable, then the researcher 
must explain why a particular model is to be preferred.

48.	Reify the factors. Believe that constructs represented in your model must corre-
spond to things in the real world. Perhaps they do, but do not assume it.

49.	Believe that naming a factor means that it is understood (i.e., commit the naming 
fallacy). Factor names are conveniences, not explanations. For example, if a three-factor 
fits the data, this does not prove that the verbal labels assigned by the researcher to the 
factors are correct. Alternative interpretations of factors are often possible in many, if 
not most, factor analyses.

50.	Believe that a strong analytical method like SEM can compensate for poor study 
design or slipshod ideas. No statistical procedure can make up for inherent logical or 
design flaws. For example, expressing poorly thought out hypotheses with a path dia-
gram does not give them more credibility. The specification of direct and indirect effects 
in a structural model cannot be viewed as a replacement for an experimental or longi-
tudinal design. As mentioned earlier, the inclusion of a measurement error term for an 
observed variable that is psychometrically deficient cannot somehow transform it into 
a good measure. Applying SEM in the absence of good design, measures, and ideas is 
like using a chain saw to cut butter: one will accomplish the task, but without a more 
substantial base, one is just as likely to make a big mess.

51.	As the researcher, fail to report enough information so that your readers can repro-
duce your results. There are still too many reports in the literature where SEM was used 
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in which the authors do not give sufficient summary information for readers to re-create 
the original analyses or evaluate models not considered by the authors. At minimum, 
authors should generally report all relevant correlations, standard deviations, and 
means. Also describe the specification of the model(s) in enough detail so that a reader 
can reproduce the analysis.

52.	Interpret estimates of relatively large direct effects in a structural model as “proof” of 
causality. As discussed earlier, it would be almost beyond belief that all of the conditions 
required for inference of causality from covariances have been met in a single study. In 
general, it is better to view structural models as being “as if” models of causality that 
may or may not correspond to causal sequences in the real world.

Summary

So concludes this journey of discovery about SEM. As on any guided tour, you may have 
found some places along the way more interesting than others. Also, you may decide 
to revisit certain sites by using some of the related techniques in your work. Overall, I 
hope that reading this book has given you new ways of looking at your data and testing 
a broader range of hypotheses. Use SEM to address new questions or to provide new 
perspectives on older ones, but use it guided by your good sense and knowledge of your 
research area. Use it also as a means to reform methods of data analysis in the behavioral 
sciences by focusing more on models instead of specific effects analyzed with traditional 
statistical significance tests. The American politician Ivy Baker Priest once said: The 
world is round and the place which may seem like the end may also be the beginning. 
Go do yourself (and me, too) proud!

Recommended Readings

These works all deal with the potential advantages and pitfalls of SEM. McCoach, Black, and 
O’Connell (2007) outline various sources of inference error in drawing conclusions from SEM 
analyses. Tomarken and Waller (2005) survey recent developments in SEM and describe 
common misunderstandings. Tu (2009) addresses the application of SEM in epidemiology and 
reminds us that there is no magic in SEM for inferring causality.

McCoach, D. B., Black, A. C., & O’Connell, A. A. (2007). Errors of inference in structural 
equation modeling. Psychology in the Schools, 44, 461–470.

Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, 
and misconceptions. Annual Review of Clinical Psychology, 1, 31–65.

Tu, Y.-K. (2009). Commentary: Is structural equation modelling a step forward for epidemiolo-
gists? International Journal of Epidemiology, 38, 549–551.
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Suggested Answers to Exercises

Chapter 2

  1.	 For the data in Table 2.1, M1 = 11.00, M2 = 60.00, MY = 25.00, SD1 = 6.2048, SD2 = 14.5774, 
SDY = 4.6904, rY1 = .6013, rY2 = .7496, and r12 = .4699, so:

	 b1 = [.6013 – .7496 (.4699)]/(1 – .46992) = .3197

	 B1 = .3197 (4.6904/6.2048) = .2417

	 b2 = [.7496 – .6013 (.4699)]/(1 – .46992) = .5993

	 B2 = .5993 (4.6904/14.5774) = .1928

	 A = 25.00 – .2417 (11.00) – .1928 (60.00) = 10.7711

	 Ŷ  = .2417 X1 + .1928 X2 + 10.7711

	
2

12YR ⋅  = .3197 (.6013) + .5993 (.7496) = .6415; 12YR ⋅  = .8009

In the unstandardized solution, a 1-point difference on working memory (X1) predicts a .24-
point difference on reading achievement (Y), holding phonics skills (X2) constant; and the 
expected difference on reading achievement is .19 points given a difference on phonics skills 
of 1 point, with working memory held constant. When scores on both working memory and 
phonics skills are zero, the predicted reading achievement score is 10.77. In the standard-
ized solution, a difference of a full standard deviation on working memory predicts a differ-
ence of .32 standard deviations on reading achievement controlling for phonics skills; and 
a difference of a full standard deviation on phonics skills predicts a .60 standard deviation 
difference on reading achievement controlling for working memory. The total proportion of 
variance in reading achievement explained by working memory and phonics skills together 
is .6415, or 64.15%.

  2 and 3.  Unstandardized and standardized predicted scores and residuals for the data in Table 
2.1 are listed next:
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Case Ŷ − ˆY Y z1 z2 zY   Ŷz  
− Ŷz z

 A 24.0309  –.0309 –1.2893   .3430  –.2132 –.2066 –.0066
 B 22.3466 –2.3466  –.4835  –.6860 –1.0660 –.5657 –.5003
 C 20.9015  1.0985  –.1612 –1.3720  –.6396 –.8738  .2342
 D 27.8951  4.1049   .6447   .6860  1.4924  .6172  .8752
 E 29.8260 –2.8260  1.2893  1.0290   .4264 1.0289 –.6025

If you enter these scores in the data editor of a computer program for general statistical 
analyses, such as SPSS, you can show that the following results are correct within rounding 
error:

	 12YR ⋅ = ˆY Yr

	
ˆ( ) 1−Y Yr  = ˆ( ) 2−Y Yr  = 

1ˆ( )Y Yz z zr −  = 
2ˆ( )Y Yz z zr −  = 0

  4.	 Applying Equation 2.4 to 
2

12YR ⋅  = .6415 for the data in Table 2.1 gives us

	
2

12
ˆ

YR ⋅  = 1 – (1 – .6415) [4/(5 – 2 – 1)] = .2829

The shrinkage-adjusted proportion of explained variance, or .28, is substantially less than 
the observed proportion of explained variance, or .64, due to the small sample size (N = 5).

  5.	 Given rY1 = .40, rY2 = .50, and r12 = –.30:

	 b1 = [.40 – .50 (–.30)]/(1 – .302) = .6044

	 b2 = [.50 – .40 (–.30)]/(1 – .302) = .6813

	 12YR ⋅  = [.6790 (.40) + .7654 (.50)]1/2 = .7632

There is a suppression effect because b1 > rY1 and b2 > rY2, specifically, reciprocal suppres-
sion.

  6.	 Applying Equation 2.10 to rXY = .50, rXW = .80, and rYW = .60 gives us

	 X Y Wr ⋅  = [.50 – .80 (.60)]/[(1 – .802) (1 – .602)]1/2 = 0.042

  7.	 This is a variation of the local Type I error fallacy. This particular 95% confidence interval, 
75.25–84.60, either contains m1 – m2 or it does not. The “95%” applies only in the long run: Of 
the 95% confidence intervals from all random samples, we expect 95% to contain m1 – m2, but 
5% will not. Given a particular interval, such as 75.25–84.60, we do not know whether it is one 
of the 95% of all random intervals that contains m1 – m2 or one of the 5% that does not.

  8.	The answer to this question depends on the particular definitions you selected, but here is an 
example for one I found on Wikipedia: “In statistics, a result is called statistically significant 
if it is unlikely to have occurred by chance.”1 This is the odds-against-chance fallacy because 
p values do not estimate the likelihood that a particular result is due to chance. Under H0, it 
is assumed that all results are due to chance.

1Retrieved February 4, 2009, from http://en.wikipedia.org/wiki/Statistical_significance
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Chapter 3

  1.	 First, derive the standard deviations, which are the square roots of the main diagonal 
entries:

	 SDX = 42.251/2 = 6.50, SDY = 148.841/2 = 12.20, and SDW = 376.361/2 = 19.40

Next, calculate each correlation by dividing the associated covariance by the product of the 
corresponding standard deviations. For example:

	 rXY = 31.72/[6.50 × 12.20] = .40

The entire correlation matrix in lower diagonal form is presented next:

X Y W
X 1.00
Y  .40 1.00
W  .50  .35 1.00

  2.	The means are MX = 15.500, MY = 20.125, and MW = 40.375. Presented next are the correla-
tions in lower diagonal form calculated for these data using each of the three options for 
handling missing data:

Listwise N = 6
X Y W

X 1.000
Y  .134 1.000
W  .254  .610 1.000

Pairwise
 X Y W

X r 1.000
N 8

Y r  .134 1.000
N 6 8

W r  .112  .645 1.000
N 7 7 8

Mean Substitution N = 10
X Y W

X 1.000
Y  .048 1.000
W  .102  .532 1.000

The results change depending on the missing data option used. For example, the correlation 
between Y and W ranges from .532 to .645 across the three methods.
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  3.	 Given covXY = 13.00, 2
Xs  = 12.00, and 2

Ys  = 10.00. The covariance can be expressed as fol-
lows:

	 covXY = rXY (12.001/2) (10.001/2) = rXY (10.9545) = 13.00

Solving for the correlation gives us an out-of-bound value:

	 rXY = 13.00/10.9545 = 1.19

  4.	 The covariances and effective sample sizes derived using pairwise deletion for the data in 
Table 3.3 are presented next:

  X Y W
X cov  86.400 –26.333 15.900
 N 6 4 5
Y cov -26.333  10.000 –10.667
 N 4 5 4
W cov  15.900 –10.667   5.200
 N 5 4 6

I submitted the whole covariance matrix (without the sample sizes) to an online matrix cal-
culator. The eigenvalues are (98.229, 7.042, –3.671) and the determinant is –2,539.702. These 
results indicate that the covariance matrix is nonpositive definite. The correlation matrix 
implied by the covariance matrix for pairwise deletion is presented next in lower diagonal 
form:

X Y W
X 1.00
Y –.896  1.000
W  .750 –1.479 1.000

  5.	 I used SPSS to generate the normal probability plot (P–P) presented next. The departure of 
the data points in Figure 3.2 from a diagonal line indicates nonnormality:
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  6.	 For the data in Figure 3.2 with the outlier removed (N = 63), SI = .65 and KI = –.24. In con-
trast, SI = 3.10 and KI = 15.73 when the outlier is included (N = 64).

  7.	 The square root is not defined for negative numbers, and logarithms are not defined for num-
bers ≤ 0. Both functions treat numbers between 0 and 1.00 differently than they do numbers 
> 1.00. Specifically, both functions make numbers between 0 and 1.0 larger, and both make 
numbers greater than 1.0 smaller.

  8.	When the scores in Figure 3.2 are rescaled so that the lowest score is 1.0 before applying the 
square root transformation, SI = 1.24 and KI = 4.12. If this transformation is applied directly 
to the original scores in Figure 3.2, then SI = 2.31 and KI = 9.95. Thus, this transformation is 
not as effective if applied when the minimum score does not equal 1.0. See Osborne (2002) 
for additional examples.

  9.	 The interitem correlations are presented next:

I1 I2 I3 I4 I5
I1 1.0000
I2  .3333 1.0000
I3  .1491  .1491 1.0000
I4  .3333  .3333  .1491 1.0000
I5  .3333  .3333  .1491  .3333 1.0000

Presented next are calculations for αC:

	 ijr  = [6 (.3333) + 4 (.1491)]/10 = .2596

	 αC = [5 (.2596)]/[1 + (5 − 1) .2596] = 1.2981/2.0385 = .64

The value of αC reported by SPSS for these data is .63, which is within rounding error of the 
result just calculated by hand.

Chapter 5

  1.	 Part of the association between Y1 and Y2 in Figure 5.3(a) is presumed to be causal, specifi-
cally, Y1 has a direct effect on Y2. However, there also are noncausal aspects to their relation, 
specifically, spurious associations due to common causes. For example, X1 and X2 are each 
represented in the model as common causes of Y1 and Y2. These common causes covary, so 
this unanalyzed association between common causes is another type of spurious association 
concerning Y1 and Y2. The relevant paths for all causal and noncausal aspects of the correla-
tion between Y1 and Y2 are listed next:

Causal: Y1 → Y2

Noncausal: Y1 ←X1 → Y2 Y1 ← X2 → Y2 Y1 ← X1   X2 → Y2

  2.	Yes. It is assumed in all CFA models that the substantive latent variables are causal (along 
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with the measurement errors) and that the indicators are the affected (outcome) variables. 
These assumptions concern effect priority.

  3.	 Free parameter counts for Figures 5.3(b)–5.3(d) are as follows:

Exogenous variables

Model Direct effects on endogenous variables Variances Covariances Total

Figure 5.3(b) X1 → Y1 X2 → Y2 X1, X2 X1   X2 10

Y1 → Y2 Y2 → Y1 D1, D2 D1   D2

Figure 5.3(c) X1 → Y1 X2 → Y1 X1, X2 X1   X2 10

X2 → Y1 X2 → Y1 D1, D2 D1   D2

Figure 5.3(d) X1 → Y1 X2 → Y2 X1, X2 X1   X2 9

Y1 → Y2 D1, D2 D1   D2

4a.	 With six observed variables there are p = 6(7)/2 = 21 observations. In Figure 5.5, there are 
a total of seven direct effects on endogenous variables that need statistical estimates. These 
paths among the exogenous variables School Support and Coercive Control and among the 
endogenous variables Teacher Burnout, Teacher–Pupil Interactions (TPI), School Experi-
ence, and Somatic Status are listed next:

	 Support → Burnout, Coercive → Burnout,

	 Support → TPI, Coercive → TPI, Burnout → TPI,

	 TPI → Experience, TPI → Somatic

Variances of exogenous variables ( ) include two for the measured exogenous variables 
School Support and Coercive Control and another four for the unmeasured exogenous vari-
ables (disturbances) DTB, DTPI, DSE, and DSS, for a total of six variances. There is only one 
covariance between a pair of exogenous variables, or Support  Coercive. The total number 
of free parameters is

	 q = 7 + 6 + 1 = 14

so the model degrees of freedom are calculated as follows:

	 dfM = 21 – 14 = 7

4b.	 With eight observed variables there are p = 8(9)/2 = 36 observations. Among the eight factor 
loadings in Figure 5.7, a total of two are fixed to 1 in order to scale the factors, so there are 
only six that require estimation. The variances and covariance of the two factors, Sequential 
and Simultaneous, are free parameters plus the variances of each of the eight measurement 
errors. The total number of free parameters is thus

	 q = 6 + 3 + 8 = 17
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so the model degrees of freedom are

	 dfM = 36 – 17 = 19

4c.	 With 12 observed variables there are p = 12(13)/2 = 78 observations. Free parameters are for 
the model of Figure 5.9 and are listed next in the following categories:

Direct effects on endogenous variables
Indicators (factor loadings): 2 per factor, or 8

Exogenous factors (path coefficients): 4

Total: 12

Variances and covariances of exogenous variables
Measurement error variances: 12

Factor variances: 1 (Constructive Thinking)

Disturbance variances: 3

Total: 16

There are no covariances between exogenous variables. The total number of free parameters 
and model degrees of freedom are:

	 q = 12 + 16 = 28

	 dfM = 78 – 28 = 50

  5.	 A covariate is a variable that is concomitant with another variable of primary interest and 
is measured for the purpose of controlling for the effects of the covariate on the outcome 
variable(s). In nonexperimental designs, a covariate is often a potential confounding variable 
that, once held constant in the analysis, may reduce the predictive power of another substan-
tive predictor. Potential confounding variables often include demographic or background 
characteristics, such as level of education or amount of family income, and substantive pre-
dictors may include psychological variables. In a structural model, a covariate is typically 
represented as an exogenous variable with direct effects on the endogenous (outcome) vari-
able that is assumed to covary with a substantive variable, which also has direct effects on 
the endogenous variable. Just as in a regression analysis, the direct effect of the substantive 
predictor is estimated controlling for the covariate.

  6.	 It is possible that one model with Y1 → Y2 and another model with Y2 → Y1 are equivalent 
models with exactly the same fit to the data. Even if these two models are not equivalent, 
their fit to the data could be similar, in which case there is no statistical basis for preferring 
one model over the other. The matter is not clearer even if the fit of one model is quite bet-
ter than that of the other model: This pattern of results is still affected by sampling error; 
that is, the same advantage for one model may not be found in a replication sample. There is 
also the possibility of a specification error that concerns the omission of other causes, which 
could bias the estimation of path coefficients for both models. Again, if you know the causal 
process beforehand, then you can use SEM to estimate the magnitudes of the direct effects, 
but SEM will not generally help you to find the model with the correct directionalities.
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  7.	 Both measurement errors and disturbances are represented as latent variables in some SEM 
computer tools, and their variances are typically free parameters that require a statistical 
estimate. Both represent residual (unexplained) variance, including that due to all omitted 
causes and score unreliability, too. The term disturbance has its roots in path analysis, and 
disturbances are associated with endogenous variables in structural models. In path models, 
all endogenous variables are observed variables, but some factors in structural regression 
models are endogenous, and each of the latter variables has its own disturbance. Measure-
ment errors are associated exclusively with observed variables, specifically, with indicators 
in a measurement model.

  8.	Presented next is a basic path model shown without the symbols for disturbances (e.g., D1 
for Y1, D2 for Y2) and variances of measured (X1, X2) or unmeasured (D1, D2) exogenous 
variables ( ). Variable X2 is the covariate, and estimation of the effects of X1 are corrected 
for its covariance with the covariate:

  9.	 Sample size has nothing to do with the number of observations, the number of model param-
eters, dfM, or model identification. As in basically all statistical analyses, sample size in SEM 
affects the precision of the results in the form of standard errors (larger N, smaller standard 
errors, and vice versa). Large samples are generally required in SEM for acceptable precision, 
and some special methods may require even larger samples still. A larger sample size can 
also prevent some technical problems, such as iteration failure, that can occur in computer 
analyses.

Chapter 6

  1.	 Path models: Parameters of path models include (a) direct effects on endogenous variables 
from other endogenous variables or measured exogenous variables (i.e., path coefficients); 
and (b) variances and covariances of measured exogenous variables and disturbances.

	 CFA models: Parameters of CFA models include (a) direct effects on indicators from factors 
(i.e., factor loadings); and (b) variances and covariances of the factors and measurement 
errors.

	 SR models: Parameters of SR models include (a) direct effects on endogenous variables, includ-
ing factor loadings of indicators in the measurement model and direct effects on endogenous 
factors in the structural model; and (b) variances and covariances of exogenous variables, 
including measurement errors, disturbances, and exogenous factors.

  2.	Factor B and indicator X3 of Figure 6.4(c) would have the same scale only if the factor explains 
100% of the variance of the indicator (unlikely). Otherwise, the scale of B is related to the 
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scale of the explained variance X3, not typically the total (observed) variance of this indica-
tor.

  3.	 The number of observations for both CFA models in Figure 6.1 is 6(7)/2 = 21. The breakdown 
of parameters for both models is listed next. There are 13 parameters for each model, so 
dfM = 8 for both factor models:

Exogenous variables

Model Direct effects on indicators Variances Covariances Total

Figure 6.1(a) A → X2 B → X5 A, B A   B 13
A → X3 B → X6 E1–E6

Figure 6.1(b) A → X1 B → X4 E1–E6 A   B 13
A → X2 B → X5
A → X3 B → X6

  4.	 With four observed variables, there are 4(5)/2 = 10 observations available to estimate the 
parameters of the nonrecursive path model in Figure 6.3. The parameters of this model 
include these five direct effects

	 X1 → Y1, X1 → Y2, X2 → Y2, Y1 → Y2, and Y2 → Y1

and four variances (of X1, X2, D1, and D2) and two covariances (of X1  X2 and D1  D2) 
of exogenous variables for a total of 11, so dfM = –1. This model fails the order condition 
because there are no excluded variables for Y2 (i.e., the equation for this endogenous variable 
is underidentified). The same equation also fails the rank condition because the rank of the 
reduced system matrix for Y2 is zero:

X1 X2 Y1 Y2

Y1 1 0 1 1
→ Y2 1 1 1 1 → → Rank = 0

  5.	 After the path X3 → Y1 and the corresponding unanalyzed associations are added to the 
model in Figure 6.3, there are 5(6)/2 = 15 observations available to estimate the parameters 
of the respecified model, including five variances (of X1–X3, D1, and D2), four covariances (of 
X1  X2, X1  X3, X2  X3, and D1  D2), and these six direct effects

	 X1 → Y1, X1 → Y2, X2 → Y2, X3 → Y1, Y1 → Y2, and Y2 → Y1

for a total of 15 free parameters, so dfM = 0. There is at least one variable omitted from the 
equation of each endogenous variable (X2 for Y1, X3 for Y2), so the order condition is satisfied. 
Evaluation of the sufficient rank condition for the respecified model is outlined next:

Evaluation for Y1:

X1 X2 X3 Y1 Y2

→ Y1 1 0 1 1 1
Y2 1 1 0 1 1 → 1 → Rank = 1
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Evaluation for Y2:

X1 X2 X3 Y1 Y2

Y1 1 0 1 1 1
→ Y2 1 1 0 1 1 → 1 → Rank = 1

Because the rank of the equation for each endogenous variable equals the minimum required 
value, or 1, the sufficient rank condition is satisfied. Thus, the respecified model is just-
identified.

  6.	 Yes, the model in Figure 6.5(f) with complex indicator X3 but with the error correlation 
EX3

   EX5
 is identified because this respecified model satisfies Rule 6.8 in Table 6.2. Spe-

cifically, the respecified model satisfies Rule 6.7 (and by implication Rule 6.6; see Table 6.1) 
and there is at least one singly loading indicator on each of factor A and B with which the 
complex indicator X3 does not share an error correlation (e.g., X2 ← A, X4 ← B). For the sec-
ond part of this question, we are now working with the respecified model presented next:

Adding the error correlation EX3
   EX4

 to this respecified model would result in a non-
identified model that violates Rule 6.8 because there would be no indicator of B that does not 
share an error correlation with the complex indicator X3. It would be possible to add either 
EX1

   EX3
 or EX2

   EX3
 to the respecified model (i.e., each of the resulting models would 

be identified), but not both. This is because the respecified model but with both error cor-
relations just mentioned would violate Rule 6.8 in that there would be no indicator of A that 
shares no error correlation with X3.

  7.	 The virtual absence of the path X2 → Y2 alters the system matrix for the first block of endog-
enous variables in Figure 6.2(b). This consequence is outlined next, starting with the matrix 
for the model in the figure without the path X2 → Y2 (the rank for Y1’s equation is zero):

X1 X2 Y1 Y2

→ Y1 1 0 1 1
Y2 0 0 1 1 → 0 → Rank = 0

  8.	For the SR model in Figure 6.6(a), dfM = 7, so it seems as though there is “room” for more 
effects, but let’s apply the two-step rule: the measurement portion expressed as a CFA model 
with the error correlations EX1

   EY1
, and EX2

   EY2
 would be identical to the measure-
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ment model in Figure 6.5(e), which is identified. The structural model after adding the dis-
turbance correlation DB   DC is presented next:

This structural model is nonrecursive with all possible disturbance correlations. The order 
condition is satisfied because there is one variable omitted from the equation of every 
endogenous variable (A for B, B for C). The sufficient rank condition is also satisfied:

Evaluation for B:

A B C

→ B 1 1 0
C 0 1 1 → 1 → Rank = 1

Evaluation for C:

A B C

B 1 1 0
→ C 0 1 1 → 1 → Rank = 1

Therefore, the structural part of the respecified CFA model is identified. Because both the 
measurement and structural models are identified, the respecified SR model is identified, 
too.

Chapter 7

  1.	 Proportions of explained variance for the model in Figure 7.1:

Endogenous variable 2
smcR

Teacher Burnout 1 – (68.137/9.76972) = .286
Teacher–Pupil Interactions 1 – (19.342/5.00002) = .226
School Experience 1 – (7.907/3.71782) = .428
Somatic Status 1 – (13.073/5.27142) = .530

  2.	Sobel test for the model in Figure 7.1(a) of the unstandardized indirect effect of school sup-
port on student school experience through teacher-pupil interactions:

	 z = (.097 × .486)/ 2 2 2 2.486 (.046 ) .097 (.055 )+  = 2.051

Thus, this indirect effect is statistically significant at the .05 level but not at the .01 level. 
However, this result may not be accurate because the sample size is not large.
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  3.	Unstandardized total indirect effect of school support on school experience for the model 
in Figure 7.1(a):

	 (.097 × .486) + (–.384 × .142 × .486) = .021

This value matches within slight rounding error the corresponding entry in Table 7.3 for this 
unstandardized total indirect effect, or .020.

  4.	 I used the student version of LISREL 8.8 to conduct this analysis and the next. For the 
respecified model with the direct effect from school support to school experience, dfM = 6. 
The unstandardized path coefficient for this new direct effect is –.018, its estimated standard 
error is .026, z = –.696, and the standardized coefficient is –.052. The new direct effect is not 
statistically significant (z = –.696), but power is low, and the magnitude of this new effect 
in standardized terms is not large. These results are consistent with the hypothesis of pure 
mediation. The value of the test statistic from this analysis, or –.696, matches within round-
ing that of the standardized residual for the variables school and school experience in the 
original model, or –.695 (see Table 7.3). In this case, both statistics test the effect of adding 
a direct effect between these two variables to the original model. In the revised model with 
the path from school support to school experience, 2

smcR  = .431, which is only slightly greater 
than the corresponding statistic in the original model without this path, or 2

smcR  = .428.

  5.	 For the respecified model, dfM = 8 because just a single path coefficient is calculated for the 
two equality-constrained direct effects. In the unstandardized solution, the path coefficient 
for both direct effects is –.150. However, in the standardized solution, the coefficients for the 
direct effects of school support and coercive control on teacher burnout are, respectively, 
–.161 and –.127. Recall that equality constraints generally hold in the unstandardized solu-
tion only in default ML estimation.

  6.	 A corrected normal theory method requires the analysis of a raw data file, not a matrix sum-
mary of the data.

  7.	 This exercise concerned whether you could reproduce the parameter estimates in Table 7.7 
for the model in Figure 7.2 and the data in Table 7.6.

  8.	A disturbance correlation in a path model estimates the residual (partial) correlation between 
a pair of endogenous variables controlling for their common measured causes. In this case, 
the sign of the residual correlation (.38) is positive, which indicates that shared unmeasured 
(omitted) causes affect these two endogenous variables in the same direction. For exam-
ple, whatever omitted cause increases one endogenous variable also tends to increase the 
other endogenous variable, and vice versa. This makes sense because the sample correlation 
between this pair of endogenous variables is positive (.41). However, the residual correlation 
(.38) is nearly as large as the observed correlation (.41). This means that the explanatory 
power of the model without the disturbance correlation for this pair of endogenous variables 
is relatively low.
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Chapter 8

  1.	 The largest correlation residual in Table 7.5, or .103, is for the coercive control and school 
experience variables. Because the original model contains only indirect effects between 
these two variables, an obvious respecification is to add a direct effect from coercive control 
to school experience. For this revised model, EQS reported these values of the following fit 
statistics: 2

Mχ (6) = 1.464, p = .962, RMSEA = 0, GFI = .996, CFI = 1.000, and SRMR = .018. The 
program was unable to calculate a confidence interval based on the RMSEA, perhaps because 
the fit of this revised model is close to perfect. None of the correlation residuals exceed .10 
in absolute value:

Variable 1 2 3 4 5 6
1. Coercive Control     0
2. Teacher Burnout     0     0
3. School Support     0     0     0
4. Teacher-Pupil     0     0     0 0
5. School Experience     0  .035 –.028 0    0
6. Somatic Status –.054 –.028  .021 0 .020 0

For the new path from coercive control to school experience in the revised model, the 
unstandardized path coefficient, standard error, z statistic, and standardized coefficient are, 
respectively, .055, .035, 1.568, and .123. The unstandardized path coefficient is not statisti-
cally significant, but power is low. The proportion of explained variance for the school expe-
rience variable in the revised model is 2

smcR  = .441, which, as expected, is somewhat greater 
than the value in the original model, or 2

smcR  = .428 (see Exercise 1 for Chapter 7). Based 
on these results for the respecified model, overall fit is acceptable, but this revised model is 
hardly “proved.”

  2.	For the respecified Roth et al. path model with a direct effect from fitness to stress, EQS 
reported values of the following fit statistics: 2

Mχ (4) = 5.921, p = .205, RMSEA = .036 (0–.092), 
GFI = .994, CFI = .988, and SRMR = .034. None of the absolute correlation residuals exceed 
.10:

Variable 1 2 3 4 5
1. Exercise     0
2. Hardiness     0     0
3. Fitness     0  .082     0
4. Stress –.012 –.009 –.018 .004
5. Illness  .029 –.095 –.006 .006 .003

  3.	 There is only a 15.3% chance of rejecting a false model for this analysis with 109 cases, given 
the other assumptions stated in Table 8.7. The minimum sample size required for a minimum 
of power of .80 for the test of the close-fit hypothesis is about 1,075 cases. There is only a 
9.6% chance of detecting a model with close approximate fit for this analysis. The minimum 
sample size needed for power = .80 for the test of the not-close-fit hypothesis is about 960 
cases.

  4.	 For the model in Figure 8.3(a), dfM = 5, which implies 10 free parameters:

	 AICFig 8.3(a) = 40.402 + 2 (10) = 60.402
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For the model in Figure 8.3(b), dfM = 3, which implies 12 free parameters:

	 AICFig 8.3(b) = 3.238 + 2 (12) = 27.238

  5.	 These minimum sample sizes needed for power = .80 for the test of each null hypothesis 
listed next are from Table 4 of MacCallum et al. (1996, p. 144):

dfM dfM

H0 2 6 10 14 20 25 30 40

Close fit 3,488 1,238 782 585 435 363 314 252

Not close fit 2,382 1,069 750 598 474 411 366 307

These results make clear the reality that large samples are required for adequate statistical 
power when there are few model degrees of freedom.

  6.	 Several different equivalent models could be generated from Figure 7.1, but the real test is 
whether a candidate equivalent model has the same values of fit statistics when fitted to the 
same data as the original model. Presented next are two equivalent versions of Figure 7.1. 
Your models may not exactly match these two models, but all equivalent versions will obtain 
the same values of all fit statistics (e.g., 2

Mχ (7) = 3.895, GFI = .989, etc.):

  7.	 The two models for this problem are not equivalent because the variables fitness and stress 
in Figure 8.1 do not have common causes, which violates a requirement of Rule 8.2 of the 
Lee–Hershberger replacing rules that a direct path between two endogenous variables can be 
reversed if those variables have the same causes.

  8.	For the Roth et al. model:

	 CFI = 1 – [(11.078 – 5)]/[(165.499 – 10)] = 1 – (6.078/155.499) = .961
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For the Sava model:

	 CFI = 1.000 because 2
Mχ  = 3.895 < dfM = 7

Chapter 9

  1.	 Values of cross-factor structure coefficients are calculated as follows:

Indicator Simultaneous Indicator Sequential

HM .497 (.557) = .277 GC .503 (.557) = .280
NR .807 (.557) = .449 Tr .726 (.557) = .404
WO .808 (.557) = .450 SM .656 (.557) = .365

MA .588 (.557) = .328
PS .782 (.557) = .436

  2.	Listed here are values of standardized residuals for this analysis computed by the student 
version of LISREL. Absolute values > 1.96 are statistically significant at the .05 level:

Indicator HM NR WO GC Tr SM MA PS
HM      0
NR  –.555      0
WO –2.642  4.472      0
GC  1.141 –2.237 –1.280     0
Tr  2.141 –1.463  –.959  .438     0
SM  3.769  –.111  –.350 –.758 –.259     0
MA  3.791  1.166   .741  .326 –.240  .688      0
PS  3.247 –1.816   .538  .971  .763 –.141 –1.647 0

  3.	 Sum of unstandardized factor loadings:

	 (1.000 + 1.445 + 2.029 + 1.212 + 1.727) = 7.413

Sum of error variances:

	 (5.419 + 3.425 + 9.998 + 5.104 + 3.483) = 27.429

Estimated factor variance: 1.835

	 ρ̂ =
i iX X  [7.4132 (1.835)]/[7.4132 (1.835) + 27.567] = .786

  4.	 These results for the model where the Hand Movements task loads on the simultaneous 
processing factor are from EQS: 2

Mχ (18) = 18.017, p = .454; RMSEA = .002 with the 90% 
confidence interval 0–.063; CFI = .999; GFI = .977; SRMR = .035; and all absolute correlation 
residuals are < .10. However, the correlation residual for the Number Recall task and the 
Gestalt Closure task is –.098, so all problems of fit are not “cured” by this respecification.

  5.	 The free parameters of the model in Figure 9.4 include 13 variances (of nine measurement 
errors, three disturbances, and g) and eight direct effects (six on indicators from first-order 
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factors, two on first-order factors from g) for a total of 21. With nine indicators, there are 
9(10)/2 = 45 observations, so dfM = 45 – 21 = 24.

  6.	 The model in Figure 9.8 that corresponds to Hform is analyzed with no cross-group equality 
constraints, so the number of free parameters is 22 and dfM = 30 – 22 = 8. However, the solu-
tion is inadmissible owing to a Heywood case that involves the error variance of the intimacy 
indicator of the marital adjustment factor for wives, for which LISREL gives an estimate of 
–40.282. In EQS, the estimate for this error variance is 0, but this is because EQS automati-
cally constrains error variances to be ≥ 0. But EQS issues a few error messages about this 
parameter estimates for the wives:

	 E2,E2 VARIANCE OF PARAMETER ESTIMATE IS SET TO ZERO 

	* WARNING * TEST RESULTS MAY NOT BE APPROPRIATE DUE TO CONDITION CODE

The Heywood case here is probably due to the combination of small group sizes and the pres-
ence of a factor (marital adjustment) with just two indicators.

  7.	 Standardizing the factors assumes that the groups are equally variable on all factors. If this 
assumption is not correct, then the results may not be accurate.

Chapter 10

  1.	 Values of the rho coefficient are using values from Tables 10.3 and 10.4 as follows:

Job Satisfaction: Loadings: (1.000 + 1.035 + .891)2 = 8.5615

Variance: .618

Errors: (.260 + .368 +.384) = 1.012

ρ̂
i iX X = [8.5615 (.618)]/[(8.5615 (.618) + 1.012] = .839

Well-Being: Loadings: (1.000 + 1.490 + .821)2 = 10.9627

Variance: .142

Errors: (.173 + .261 + .178) = .612

Covariance: –.043

ρ̂
i iX X = [10.9627 (.142)]/[10.9627 (.142) + .612 + 2 (−.043)] = .747

Dysfunctional: Loadings: (1.000 + 1.133 + .993)2 = 9.7719

Variance: .235

Errors: (.106 + .068 + .300) = .474

ρ̂
i iX X = [9.7719 (.235)]/[9.7719 (.235) + .474] = .829

Constructive: Loadings: (1.000 + 1.056 + 1.890)2 = 15.5709

Variance: .212

Errors: (.292 + 1.022 + .242) = 1.556

ρ̂
i iX X = [15.5709 (.212)]/[15.5709 (.212) + 1.5560] = .680
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  2.	The rescaled variance of the depression single indicator is 10.200 (Table 10.5). If

	 1 – rXX = 1 – .70 = .30

or 30% of its variance is error, then the error variance for the depression single indicator is 
fixed to

	 .3 (10.200) = 3.06

and its loading on an underlying depression factor is fixed to 1.0. This specification is 
included in the LISREL and EQS syntax files for this analysis that can be downloaded from 
this book’s website (p. 3). The overall fit of the respecified model is the same as that of the 
original model in Figure 10.5 (e.g., 2

Mχ (16) = 59.715). Listed next are LISREL estimates of 
the direct effects on depression and the disturbance variance for depression outcome for the 
original model wherein the depression scale is represented as a single indicator but without 
an error term (Figure 10.5) and for the respecified model wherein the measurement error of 
this single indicator is directly estimated:

Parameter Unst. SE St.

No error term for depression single indicator

Stress → Depression 1.321 .114  .690
SES → Depression –.257 .060 –.177
Variance of DDe 5.247 .465  .517

Error term for depression single indicator

Stress → Depression 1.321 .114  .825
SES → Depression –.257 .060 –.212
Variance of DDe 2.187 .465  .307

Note. Unst., unstandardized; St., standardized.

Because the predictors of depression in both models are factors (stress, SES) and measure-
ment errors in their indicators are taken into account, the unstandardized regression weights 
are not affected by measurement error in the depression outcome. When the outcome is 
measured with error (i.e., the original model with no error term for the depression scale), 
standardized regression coefficients tend to be too small (Chapter 2). Also, the proportion of 
error variance is higher in the original model due to measurement error in the single indi-
cator of depression. When this error is controlled, standardized regression coefficients are 
higher and the proportion of error variance is lower in the respecified model. What could 
be considered a “surprise” is that the estimate for the direct effect of acculturation on stress 
is positive in both models. Thus, participants who reported a higher degree of acculturation 
also reported experiencing more stress.

  3.	 A diagram for this respecification where r11, r22, r33 are reliability coefficients and 
2
1s , 

2
2s , and 

2
3s  are the sample variances for the indicators is presented next. This model is not identified 

in isolation, but it shows how to take direct account of measurement error in cause indica-
tors:
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  4.	 Socioeconomic status (SES) is represented in Figure 10.5 as a reflective construct that causes 
its indicators, but this specification is backward from how we usually think of SES. Along 
the same lines, stress is also represented in the figure as a reflective construct, but one could 
argue that overall stress level is affected by the experience of either work-related stress or 
relationship-oriented stress, not the other way around. However, because each of these fac-
tors in Figure 10.5 emits just one path, it would not be possible to respecify the model such 
that SES and stress each are represented as a formative construct with cause indicators only 
and a disturbance without changing the original structural model. But it would be possible to 
estimate a model where SES and stress composites each have no disturbance term and emit a 
single direct effect. Another alternative would be to use the technique of PLS‑PM to estimate 
this model.

  5.	 Standardized effect decomposition for the structural model in Figure 10.3:

Predictor

Outcome Constructive Dysfunctional Well-Being

Dysfunctional Direct –.124 — —
Indirect — — —
Total –.124 — —
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Well-Being Direct  .082 –.470 —
Indirect –.124 (–.470) =

.058

— —

Total .082 + .058 =

.140

–.470 —

Satisfaction Direct  .093 –.149 .382
Indirect –.124 (–.149) +

.082 (.382) +

–.124 (–.470) (.382) =

.072

–.470 (.382) =

–.179

—

Total .165 –.329 .382

  6.	 With 12 observed variables, there are 12(13)/2 = 78 observations for this analysis. There are 
a total of 31 free parameters, including 16 variances (of four factors and 12 measurement 
errors), seven covariances (six between each pair of the four factors and one between a pair 
of measurement errors), and eight factor loadings (two per factor), so dfM = 78 – 31 = 47.

  7.	 Predictor (causally prior) factors have indirect effects on the indicators of outcome factors. 
For example, the constructive thinking factor in Figure 10.3 has indirect effects on all three 
indicators of the dysfunctional thinking factor, such as

	 Constructive → Dysfunctional → Approval

For example, LISREL reports that the completely standardized total effects of constructive 
thinking on the approval indicator of the dysfunctional thinking factor is –.082. This total 
effect consists of the indirect effect just listed. The standardized direct effect of construc-
tive thinking on dysfunctional thinking is –.124, and the standardized factor loading of the 
approval indicator on the dysfunctional thinking factor is .660 (Table 10.3), so the whole 
indirect effect is estimated as –.124 (.660) = –.082.
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ill-scaled, 67
model test statistics, 193–195
overview, 48, 49

Covariance residuals, 171
Covariance structure

analysis, 7
common mistakes in estimating, 362
defined, 10
modeling, 7

Cox–Small test, 60
Criterion-related validity, 71
Critical ratio, 33
Cronbach’s alpha, 69
Cross-domain change, 315
Cross-factor equality constraint, 243
Cross-group equality constraint, 102
Cross-lag direct effects, 109
Cross-level interactions, 345
Cross-sectional data, 108
Curve fitting, nonlinear, 315
Curvilinear effects

confounding with interactive effects, 
332–333

estimating for latent variables, 342
Curvilinear trends, 308

Data
common mistakes with, 359–361
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