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Abstract

These lecture notes are based on a revised and LaTexed version of the Master thesis
defended at ISAS [1]. The research part being omitted, they include a review of the bosonic
closed string �a la Polyakov and of the one-loop background �eld method of quantization
de�ned through the zeta-function. In an appendix some basic features of the Riemann's
zeta-function are also reviewed. The pedagogical aspects of the material here presented
are particularly emphasized. These notes are used, together with the Scherk's article in
Rev. Mod. Phys. [2] and the �rst volume of the Polchinski book [3], for the mini-course
on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-
Witten two-volumes book [4] is also used for consultative purposes.

First version, Rio de Janeiro, October 30th, 2000.
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Introduction.

These lecture notes contain a self-contained and pedagogical exposition of the heat-
kernel method and of the generalized Riemann's zeta-functions associated to elliptic oper-
ators. Their role in de�ning one-loop partition functions for Euclidean Field Theories in
a given background is explained.

Later these results are employed to investigate the Polyakov functional quantization of
the closed bosonic string and to derive its d = 26 critical dimensionality by requiring the
vanishing of its conformal anomaly.

The material here presented is divided as follows. In the �rst chapter the heat kernel
method and the zeta-function prescription are presented. Their connection is shown in
paragraph 1.2. In paragraph 1.3 the relation between zeta-function and the trace anomaly
is made explicit. In paragraph 1.4 the connection with the index theorem for elliptic
operators is mentioned.

Chapter two is entirely devoted to explicitly compute the trace anomaly by making
use of the heat-kernel techniques.

In chapter three the Polyakov prescription for the quantization of the closed bosonic
string is reviewed. In paragraph 3.1 the symmetries of the closed bosonic string are
presented. In paragraph 3.2 its functional quantization is introduced. In paragraph 3.3

the results obtained in the �rst part are applied to derive the critical dimensionality
(d = 26) of the bosonic string.

Four appendices are included. The real and complex notations for oriented two-
dimensional manifolds are presented, as well as the explicit form of the covariant deriva-
tives acting on tensor �elds and of the formulas for the cancellation of the conformal
anomaly. An extra appendix is devoted in reviewing the basic features of the Riemann's
zeta-function, its role in mathematics and physics and the fundamental problems still
opened.

The exposition of chapter 1 is mostly based on the works [5]-[8], while chapter 3 has
been prepared on the basis of some of the fundamental references for the �rst period of
string theory (the original papers of the 070s and of the 080s)[9]-[13]. References concerning
the most recent developments can be found in the Polchinski book [3].
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1 The heat kernel method and the zeta-function pre-

scription.

1.1 Introductory remarks and notations.

It is here presented a method which enables to give a precise meaning to the one-
loop partition functions of Euclidean Field Theories formulated on a curved space-time
background or, equivalently stated, to the evaluation of the determinant of a certain class
of di�erential operators.

The Euclideanized version of the path integral is required in order to deal with well-
de�ned mathematical objects. Moreover, in order to make use of the desirable spectral
properties of the compact linear operators [14], the Euclidean manifolds under considera-
tion are assumed to be compact. For the purpose of applying the results here derived to
the theory of the closed bosonic string, for simplicity the manifolds we are dealing with
will be also assumed boundaryless and oriented.

Let gab(x) be a riemannian metric (thought to be an external background) for a given
manifoldM. The real �elds � over M (� :M! R) are assumed to belong to a Hilbert
space whose scalar product is given by

< �j	 > =def

Z
M
dx
q
g(x)�(x)	(x)

g(x) = det(gab) (1.1)

The eigenstates of the position are the generalized vectors jy > such that

8j� >; < yj� >= �(y);

therefore

jy >� 	(x) = �(x; y)
1q
g(y)

: (1.2)

The two following relations hold, the orthonormality condition

< yjz > = �(y; z)
1q
g(y)

(1.3)

and the completeness relation Z
dx
q
g(x)jx >< xj = 1: (1.4)

Let 
 be an operator (
 : � 7! �0) admitting a complete set of proper eigenstates �n, i.e.


j�n > = �nj�n >X
n

j�n >< �nj = 1

< �nj�m > = �nm: (1.5)

The operator 
 is speci�ed by giving all its matrix elements, either < �j
j	 > 8�;	, or
< xj
jy > 8x; y.
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Let < xj
j	 >= 
(x)	(x), then

< xj
jy >=def 
(x; y) = 
(x)�(x; y)
1q
g(y)

= 
(x) < xjy > : (1.6)

Following the �nite-dimensional case, the trace tr(
) is formally de�ned as follows

tr(
) =
X
n

�n =
X
n

< �nj
j	n >=
Z
dx
q
g(x) < xj
jx > : (1.7)

A generic state j� > can be expressed through its mode expansion as

j� > =
X
n

cnj�n > : (1.8)

Let us consider now the following partition function

Z(g) = e�
1
�h
W (g) =

Z
D�(x)e� 1

�h

R
dx
p

g(x)�(x)
(x)�(x) (1.9)

For the moment the eigenvalues of the operator 
 are supposed to be strictly positive
(
�n = �n�n, with �n > 0 8n).

In a d-dimensional space the mass dimension of �n(x) and of 
(x) can be �xed to be

[�n(x)] =
d

2
;

[
(x)] = 2: (1.10)

As a consequence, the mass dimension of �(x), �n and cn is given by

[�(x)] =
d

2
� 1

[�n] = 2

[cn] = �1: (1.11)

The measure D�(x) can be de�ned through the mode expansion of �(x), following a
procedure similar to the one introduced by Fujikawa [15] for computing the chiral anomaly

Z
D�(x) =def

Y
n

(�dcn); (1.12)

where an arbitrary massive factor � has been inserted in order to deal with a dimensionless
measure.

Naively the functional integral will be given by

Z(g) =
Y
n

(�
Z
dcne

��ncn
2

�h ): (1.13)

>From the formula

Z +1

�1
dxe��x

2
=

r
�

�
(1.14)
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we can formally compute

Z(g) =Y
n

(�

s
��h

�n
) =

Y
n

(
�2��h

�n
)
1
2 =

 Y
n

�n
�2��h

!� 1
2

=

 
det(




��h�2
)

!� 1
2

: (1.15)

In order to give a precise meaning to the partition function we have introduced we need
a prescription which allows to deal with the product of an in�nite number of eigenvalues;
on the other hand the presence of the arbitrary factor � is unavoidable and simply reects
the arbitrariness in the choice of the normalization constant for the path integral.

In order to make sense of expressions such as (1.15), the zeta-function prescription
will be adopted. Before introducing it, let us mention another equivalent approach, worth
to know since it is widely used in the literature [10]. This is the so-called proper-time
regularization. It is based on the following representation of the logarithm function

log x = �
Z +1

0

dt

t
(e�tx � e�t): (1.16)

The determinant of a �nite-dimensional operator A can be expressed through

log detA = �
Z +1

0

dt

t
(e�tA � e�t1): (1.17)

Similarly, the determinant of the in�nite-dimensional operator 
 that we are considering
can be regularized by introducing a cuto� � as follows

log det�
 = �tr
Z +1

�

dt

t
(e�t
) =

X
n

Z +1

�

dt

t
e�t�n: (1.18)

This method assumes implementing a renormalization prescription, required in order to
remove the dependence of the results from the cuto� �.

We �nally point out that the presence of the cuto� � spoils the scale invariance that
one naively would expect from the (formally in�nite) expressions such as

F (x) =
Z +1

0

dt

t
e�tx:
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1.2 The heat equation and the zeta-function.

In this paragraph only non-negative, self-adjoint, elliptic operators (for a de�nition of
the elliptic operators see e.g. [16]) will be considered.

To any given operator 
 satisfying the above properties it can be associated the fol-
lowing equation (the heat equation)

@

@�
G
(x; y; � ) = �
(x)G
(x; y; � ) (1.19)

with the given boundary condition

lim
�!0+

G
(x; y; � ) = �(x; y)
1q
g(y)

: (1.20)

The heat kernelG
(x; y; � ) represents the di�usion in a parameter time � of a unit quantity
of heat (or ink) placed at the point y at � = 0.

The equation can be formally solved by writing down

G
(x; y; � ) =
X
n

e��n��n(x)�n(y) = e��
(x)�(x; y)
1q
g(y)

: (1.21)

Another expression for G
(x; y; � ) is

G
(x; y; � ) = < xje��
jy > (1.22)

since for a generic function f(
) we have

< xjf(
)jy > = f(
(x))�(x; y)
1q
g(y)

: (1.23)

A natural choice for de�ning the trace of G
(x; y; � ) is expressed through

tr(G
(x; y; � )) =def tr(e
��
) =

X
n

e��n� : (1.24)

It follows then

tr(G
(x; y; � )) =
Z
dx
q
g(x) < xje��
jx >=

Z
dx
q
g(x)G
(x; x; � ): (1.25)

Let us now introduce the generalized Riemann zeta-function �
(s) associated to the non-
negative operator 
. It is de�ned through the position

�
(s) =
X
n

0 1
�n

s ; (1.26)

where the sum is taken over the positive eigenvalues only and s 2 C is a complex variable.
The sum is convergent for large Re s > 0; for other values of s �
(s) must be de�ned by
means of analytic continuation. It can be proven that �
(s) is a meromorphic function
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and in particular analytic at s = 0. The usual Riemann's zeta-function � is de�ned in
terms of the eigenvalues of the harmonic oscillator

� =
X
n

1

ns
(1.27)

and is absolutely convergent for Re s > 1. It is one of the most celebrated mathematical
functions and is linked with the statistical distribution of the prime numbers (for more
information and references see the appendix 4).

For a given 
 the primed determinant det0
 built up with the positive eigenvalues only
is formally given by

det0
 =
Y
n

0
�n;

ln det0
 =
X
n

0
ln�n: (1.28)

For �
(s) we can write

d

ds
�
(s) =

d

ds

X
n

0
e�s ln�n = �X

n

0
ln�ne

�s ln�n: (1.29)

At a formal level we obtain

�

0(0) = � ln det0
: (1.30)

Therefore, since the de�nition of �
 is such that at s = 0 �
 is analytical, it makes sense
to regularize det0
 through the prescription

ln det0
 =def � d

ds
�
(s)js=0: (1.31)

Let us now make explicit the connection between the zeta-function and the heat kernel by
expressing �
(s) in terms of G
(x; y; � ) or, more speci�cally, its trace.

Let us call 
̂ the operator obtained by restricting the action of 
 to the subspace
(Ker
)? and let �(Ker
) be the projector over Ker
.

We recall that the operators that we are considering are Fredholm operators, having a
�nite-dimensional kernel. We obtain

1


̂s
=
Z +1

0
d�e�� 
̂

�s

=
X
n

0 1
�n

s j�n >< �nj (1.32)

and therefore

tr0
1


̂s
=
X
n

0
< �nj 1


s
j�n >=

X
n

0 1
�n

s = �
(s): (1.33)

By making use of the Mellin transform

Z +1

0
d�� s�1e�� 
̂ =

1


̂s

Z +1

0
d�e��� s�1 (1.34)
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(which can be easily understood by applying both sides to an eigenvector j�n >), we can
write

1


̂s
=

1

�(s)

Z +1

0
d�� s�1e�� 
̂: (1.35)

Here �(s) is the Gamma-function given, for Re s > 0, by

�(s) =
Z +1

0
d�� s�1e�� : (1.36)

We can therefore write

�
(s) = tr0
1


̂s
=
X
n

0
< �nj 1

�(s)

Z +1

0
d�� s�1e�� 
̂j�n >=

=
X
n

< �nj 1

�(s)

Z +1

0
d�� s�1

�
e��
 � �(Ker
)

�
j�n > : (1.37)

The �nal expression

�
(s) =
1

�(s)

Z
dx
q
g(x)

Z +1

0
d�� s�1 (G
(x; x; � )� dim(Ker
)) (1.38)

gives the generalized zeta-function in terms of the trace of its corresponding heat kernel.
Let us conclude this paragraph with a remark. The operator 
C, acting on complex

�elds, can be thought to correspond to the \doubling" of a real operator 
R acting on
real �elds. Naively one would expect det
C = (det
R)

2. The zeta-function prescription
is consistent with this requirement.
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1.3 The connection between zeta-function and the trace anomaly.

In this paragraph the connection between zeta-function and the trace anomaly will be
explained .

Let, as before, the operator 
 be associated to �
(s). The operator �
, for a given
constant � > 0, is in its turn associated to

��
(s) =
1

�s
�
(s): (1.39)

It follows that

ln det0�
 = � d

ds
(��
(s)) js=0 = lndet0
 + ln� � �
(0): (1.40)

We remark in particular that

��
(0) = �
(0): (1.41)

This relation, as it will be shown later, means that the trace anomaly does not depend on
the arbitrary parameter � which normalizes the path integral.

The following classical action

S =
1

2

Z
dx
q
g(x)gab@a�(x)@b�(x) (1.42)

for a real bosonic �eld �(x) describing bosonic scalars, is invariant under di�eomorphisms
and, in d = 2 dimensions, also under the Weyl transformations

gab(x) 7! e�(x)gab(x)

�(x) 7! �(x) (unchanged): (1.43)

Taking the parameter of the Weyl transformations being a constant independent of the
space-time we get the dilatation invariance

0 = �S =
Z
dx�gab(x)

�S
�gab(x)

= �� �
Z
dxgab(x)

�S
�gab(x)

: (1.44)

The stress-energy tensor T ab(g) is de�ned as

T ab(g) =def

2q
g(x)

�S
�gab(x)

: (1.45)

The relation (1.44), due to the property that
q
g(x) > 0 8x, implies the tracelessness of

T ab, i.e.

T a
a = 0 (1.46)

(the Einstein convention over repeated indices is assumed). Please notice that the above
relation is obtained without making use of the equations of motion.
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At a quantum level we have to consider the partition function

Z(g) = e�
1
�hW (g) =

Z
D�(x)e� 1

2�h

R
dx
p

g(x)gab@a�@b�: (1.47)

With the prescripion discussed in the previous paragraph we have

Z(g) = e
� 1

2�h
lndet0 


�2 ; (1.48)

where 
 is now the operator


(x) = � 1q
g(x)

@a
q
g(x)gab@b: (1.49)

Therefore

W (g) = = ��h

2

d

ds
� 

�2
(s)js=0: (1.50)

Under an in�nitesimal dilatation we get

�W (g) =
�h

2
��� 


�2
(0) =

�h

2
���
(0): (1.51)

Since, as we will prove later, �
(0) is di�erent from zero, this relation means that the
dilatation invariance is broken at the quantum level.

Let us now de�ne the quantum energy-momentum tensor T ab through the position

T ab(x) =def

2q
g(x)

�W

�gab(x)
: (1.52)

We obtain Z
dx
p
g(x)T a

a = �h�
(0); (1.53)

which means that the energy-momentum tensor is no longer traceless.
Until now we have just performed formal manipulations, without worrying about how

explicitly performing computations. The machinery which enables us to extract informa-
tion from the operators we are interested in will be developed in the next chapter. Here,
for convenience, let us just anticipate some results that will be later proven. If we �x to
work in d = 2 dimensions the heat kernel G
(x; x; � ) can be expanded at small � as follows

G
(x; x; � ) =
a�1
�

+ a0(x) +O(
p
� ); (1.54)

where the �rst coe�cient a�1 is independent of x.
Let us now prove that the value of �
(s) at s = 0 is related to the coe�cient a0(x)

appearing in the above expansion, so that (almost) all the information about the trace
anomaly is encoded in this coe�cient.

Let us consider �
(s) as given by the equation (1.38). At small s the expansion for
�(s)�1 is given by

1

�(s)
� s+ s2 +O(s3);
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where  is the Euler constant (see appendix 4). In order to have a non-vanishing �
(s) at
s = 0 we have therefore to look to the contributions of the poles 1

s
arising from the inte-

gration
R+1
0 d�� s�1(:::). The integration

R+1
0 d� (:::) can be decomposed, for an arbitrary

�0, as
R+1
0 (:::) =

R �0
0 (:::)+

R+1
�0

(:::). The integration
R+1
�0

d� (:::) gives an analytic function
of s, so that the only terms containing poles can arise from the integration

R �0
0 d� (:::).

If �0 is chosen to be small enough, the small-� expansion (1.54) for G
(x; x; ; � ) can be
inserted inside the integration. At this point it can be easily realized that a pole is present
with residue

�R
dx
p
g(x)a0(x)� dim(Ker
)

�
. The �nal result is

�
(0) =
�Z

dx
q
g(x)a0(x)� dim(Ker
)

�
: (1.55)

It must be observed that in the case of string theories we are interested in the full Weyl
invariance and not just the scale invariance. To extract the dependence of the determinant
of the operators under Weyl transformations some extra work and an additional hypothesis
is needed. Let us think of an in�nitesimal transformation 
 7! 
+�
, parametrized by the
in�nitesimal function ��(x). Let us suppose that under the transformation the variation
of the eigenvalue �n would be given by

��n = k�n < �nj��̂j�n >; (1.56)

where k is a constant, �n the eigenvectors corresponding to �n and ��̂jx >= ��(x)jx >.
We therefore obtain

�
 = k��̂
: (1.57)

The formula that one gets under such assumptions can be easily applied to the case of the
laplacian operators acting in string theory. We notice that, with the above hypothesis, we
get

Ker
 = Ker(
 + �
): (1.58)

After some manipulations we arrive at the intermediate step

��
(s) = � s

�(s)

Z +1

0
d�� s�1

�
dx
q
g(x)��(x)G
(x; x; � )� tr(��̂�(Ker
))

�
:

(1.59)

By inserting now the small-� expansion for the heat kernel G
(x; x; � ) as explained before,
we obtain the �nal result

� ln det0
 = k
�Z

dx
q
g(x)��(x)a0(x)� tr(��̂�(Ker
))

�
: (1.60)
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1.4 The connection between the heat kernel and the index the-
orem.

In order to fully appreciate the mathematical consequences of the heat kernel approach
that we have reviewed in the previous paragraphs, it is useful in this �nal section of the �rst
chapter to sketch an argument showing its connection with a well-celebrated mathematical
result known under the name of index theorem [17].

Indeed the relation is such that the heat kernel can be used to furnish an independent
proof of the index theorem. We will use this property in the following, where the Riemann-
Roch theorem will be re-derived by using the heat kernel formalism.

Let for our purposes consider a compact, oriented, boundaryless manifoldM which is
thought to be the base manifold of some vector bundles (say V+ and V�). Let us denote as
E+ and respectively as E� the sets of sections of the vector bundles under consideration,
therefore

E� = f�j� :M! V�g (1.61)

Let us furthermore suppose that E� have the structure of a Hilbert space with a well-
de�ned, positive, scalar product (as a concrete example we can think of E� as the set of
tensor �elds introduced in appendix 1). Let us now denote as P an operator connecting
E+ and E�,

P : E+ ! E�; (1.62)

while the adjoint P y is de�ned so that P y : E� ! E+.
We de�ne as 
+ and respectively 
� the operators


+ =def P
yP (
+ : E+ ! E+);


� =def PP
y (
� : E� ! E�): (1.63)

It turns out that 
� are self-adjoint operators (
�
y = 
�). We suppose them to be

elliptic in order to guarantee the completeness of their eigenvectors.
Operators ful�lling the above hypothesis satisfy important properties. The �rst one is

expressed by the relations

Ker
+ = KerP;

Ker
� = KerP y; (1.64)

which follows from the fact that any given � 2 E+ such that P� = 0 implies 
+� = 0
and that, conversely, for any given � such that 
+� = 0, the following chain is implied

(�j
+j� >= 0)) (< P�jP� >= 0)) (P� = 0):

A second important property is the isomorphism between the spaces (Ker
+)? � E+

and (Ker
�)? � E�. Such an isomorphism arises due to the fact that for any �n 2 E+

eigenvector of E+ with positive eigenvalue �n > 0 (
�n = �n�n), we obtain that 	n =
P�n (	n 2 E�) is an eigenvector of 
� with positive eigenvalue �n, due to the relations

P
+ = P (P yP ) = (PP y)P = 
�P: (1.65)
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As a further consequence, this not just implies an isomorphism between (Ker
+)? and
(Ker
�)?, as well as a one-to-one correspondence between the positive eigenvalues of 
+

and 
�, but the full identi�cation of the spectrum of positive eigenvalues of 
+ with the
spectrum of positive eigenvalues of 
�.

Let the eigenvector �n, labeled by n, be chosen in such a way to form an orthonormal
basis for (Ker
+)?. It turns out as a consequence that the eigenvectors 	n

0 = 1p
�n
	n

form a orthonormal basis for (Ker
�)?.
It is convenient to recall that the kernel of the operators under consideration is �nite-

dimensional. As a consequence it turns out to be a meaningful expression to introduce
the analytic index IA(P ) associated to the operator P through the following position

IA(P ) =def dim(KerP )� dim(KerP y): (1.66)

The index theorem connects the analytical properties (expressed through the above de�ned

analytic index IA(P )) of the operators P , P y, with some topological properties, expressed
through the so-called topological index, by stating that the two indices are equal.

Let us now illustrate how the scheme developed in the previous paragraphs enables to
compute the analytic index IA(P ).

From the above discussion it is clear that the relation

IA(P ) =
X
n

e��n� �X
m

e��m� (1.67)

holds (here the parameters n;m label the eigenvalues of 
+ and 
� respectively). Such a
relation can also be stated as follows

IA(P ) = tr
�
G
+(x; x; � )

�
� tr

�
G
�(x; x; � )

�
; (1.68)

where G
�(x; y; � ) denote the heat kernel for 
�. It should be noticed that this equality
is valid for arbitrary � . In particular � can be chosen to be small enough so that the
small-� expansion for G
�(x; x; � ) can be inserted in the right hand side of the above
expression . Therefore in order to compute IA(P ) it is enough just to compute (when
working in d = 2 dimensions) the coe�cient a0(x) appearing in the small-� expansion for
both G
+ (x; x; � ) and G
�(x; x; � ), see (1.54). When applied to the laplacian operators
introduced in appendix 1, the index so computed turns out to be a topological quantity
(as explained in appendix 2).

Let us close this chapter by pointing out that the discussion concerning the index
theorem can be repeated in the framework of the Witten's approach to the index of
supersymmetric theories [18]. In this context the supersymmetry is introduced as follows.
At �rst a Hilbert space H is introduced given by the direct sum of E+ and E�, i.e.

H = E+ � E�: (1.69)

It is now possible to introduce a hermitian operator Q acting on H, which plays the role
of a \supersymmetry operator", through the position

Q =def

 
0 P y
P 0

!
: (1.70)
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The operator (�)F , given by

(�)F =def

 
1 0
0 �1

!
(1.71)

plays the role of the \fermion number operator" while H

H = Q2 (1.72)

plays the role of the supersymmetric hamiltonian [18, 19].
The following set of (anti-)commutation relations are satis�ed

[H;Q] = [H; (�)F ] = fQ; (�)Fg = 0: (1.73)

It is easily checked that for each positive eigenvalue of H there exists a pairing of a
\bosonic" state with a \fermionic" one. This correspondence is broken for the state ad-
mitting \zero energy". As a consequence the analytic index IA(P ) can be expressed as a
supersymmetric index given by

IA(P ) = tr(�)F : (1.74)

This viewpoint is at the basis of an alternative way of looking at the heat kernel expansion,
which exploits its connection with the supersymmetric quantum mechanical systems [20].
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2 A computation of the trace anomaly.

2.1 The method.

In the previous chapter it has been mentioned that in order to obtain the trace anomaly
it is not needed to know the full solution of the heat equation. Actually it is su�cient to
know the behaviour of G
(x; y; � ) at x = y and at small � .

In this chapter a method will be presented allowing to compute the coe�cient a0(x) in
the expansion (1.54) for a certain class of elliptic operators acting on functions which are
sections over a 2-dimensional manifold. The method will be explained in detail because
it is interesting in itself and because it can be easily generalized to obtain information for
operators acting on objects de�ned over higher-dimensional manifolds.

It is made use of a perturbative approach. The operator 
(x) that we are considering
can be thought to be split into two pieces


(x) = 
0(x) + V (x); (2.75)

where 
0(x) is an unperturbed operator for which the exact solution of the heat equation
is assumed to be known. The term e��
(x) can be expressed as

e��
(x) =
�
e��
(x)e�
0(x)

�
e��
0(x): (2.76)

In the following the Campbell-Hausdor� formula will be used

eA � eB = eC(A;B);

C(A;B) = A+B +
1

2
[A;B] +

1

12
[A; [A;B]] +

1

12
[B; [B;A]]+ ::: : (2.77)

Therefore

eA+B =
�
eA+Be�B

�
eB = eC(A;B)eB: (2.78)

Identifying A = ��
0, B = ��V and applying both sides of (2.76) to �(x; y) 1p
g(y)

, we

can write the following equation

G
(x; y; � ) =
�
e��V�

1
2 [�V;�
0]+

1
12 [�V;[�V;�
0]]� 1

12 [�
0 ;[�
0;�V ]]+:::
�
G
0(x; y; � )

1q
g(y)

;

(2.79)

with

G
0 (x; y; � ) = e��
0(x)�(x; y): (2.80)

When we work in d = 2 dimensions we can take as 
0(x) the at laplacian


0 = ��(@x12 + @x2
2) +m2: (2.81)

It can be easily veri�ed that the function G
0(x; y; � ) which solves the equation

@

@�
G
0(x; y; � ) = �
0G
0 (x; y; � ) (2.82)
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with the boundary condition

lim
�!0+

G
0(x; y; � ) = �(x; y) (2.83)

is given by

G
0 (x; y; � ) =
1

4���
e�

(x�y)2

4�� �m2� : (2.84)

Before going ahead let us just mention that the elliptic operators that we are interested in
are the laplacians which play a role in string theory and which are introduced in appendix
2.

It turns out that, when expressed in real coordinates, such laplacians have the following
form


(x) = �[A(x)(@x12 + @x2
2) +B(x)(@x1 + i@x2) + C(x)]: (2.85)

In this chapter it is convenient to work with real coordinates, the �nal formula being
translated into the complex notation used for the strings.

The theories under consideration are invariant under di�eomorphisms. As a conse-
quence we can �x y = 0 and compute G
(x; 0; � ) at x = 0 working in a particular frame of
reference. The particular frame is given by the normal coordinates expansion [21] around
x = 0. It implies that for our laplacian operators we can �x

A(0) = 1 ; @x1;2A(x)jx=0 = 0: (2.86)

Since the heat kernel G
(x; y; � ), as evident from the de�nition given, is scalar both in x
and in y, the results obtained, which depend on the particular frame of reference chosen,
can be re-expressed at the end in a manifestly covariant form.

We are interested in computing the corrections of G
0 (0; 0; � ) at small � . We notice
that the application of the operator @2 = @x1

2 + @x2
2 to G
0(x; 0; � ) has the e�ect of

multiplying G
0(x; 0; � ) by the factor

�
�1
��

+ x2

4�2�2

�
: (2.87)

The term x2

4�2�2
vanishes when we evaluate the trace (i.e. at x = 0). It is then possible to in-

troduce a sort of � -dimensionality of the operators. A derivative @x has a � -dimensionality
[@x] = �1

2, while a factor x has � -dimensionality [x] = 1
2 since, in order to give a non-

vanishing contribution when computed G
0(x; 0; � ) at x = 0, it must be \eaten" by a
derivative.

Let us now expand the functions A(x), B(x), C(x) in Taylor series around x = 0. We
get the following expressions


 = 
1 + 
2 + 
3;


1 = �
�
a+ xafa +

1

2
xaxb�ab + :::

�
(@x1

2 + @x2
2);


2 = � (b+ xada + :::) (@x1 + @x2)


3 = � (c+ :::) ; (2.88)
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where

a = A(0); fa =
@

@xa
A(x) jx=0; �ab =

@2

@xa@xb
A(x) jx=0;

b = B(0); da =
@

@xa
B(x) jx=0;

c = C(0); (2.89)

while the at laplacian is now given by


0 = �
�
a(@x1

2 + @x2
2) + c

�
: (2.90)

As explained, we can �x a = 1 and fa = 0.
Clearly the only operators in �V giving contribution to the lowest order in � are those

whose � -dimensionality is � 1. This implies that the only operators which play a role are
given by

�V1 = �1

2
xaxb�ab� (@x1

2 + @x2
2); (� � dim: = 1);

�V2 = �b� (@x1 + i@x2); (� � dim: =
1

2
);

�V3 = xada� (@x1 + i@x2); (� � dim: = 1): (2.91)

Let us now evaluate the commutator of these operators with �
0. We get

[�
0; �V1] = � 2[@2;
1

2
xaxb�ab@

2] = � 2(�c
c@2 + 2xa�ac@

2@c); (� � dim: = 1);

[�
0; �V2] = 0;

[�
0; �V3] = � 2[@2; xada(@x1 + i@x2)] = 2�dc@
c� 2(@x1 + i@x2); (� � dim: = 1):

(2.92)

When we evaluate the commutators of three operators we have

[�
0; [�
0; �V ]] = [�
0; [�
0; �V1]] = [��@2; 2� 2xa�ac@2@c]] =
= �4� 3�ac@a@c@2; (� � dim: = 1): (2.93)

In [�V; [�V; �
0]] the only operator which, by dimensionality argument, can give contribu-
tion is V2; however its commutator with 
0 is vanishing.

Clearly all the remaining commutators give no contribution at the lowest order in � .
At this point we can apply the formula (2.79). The exponential will be expanded in

power series and we get

G
(0; 0; � ) = f1� �V � 1

2
[�V; �
0] +

1

12
[�V; [�V; �
0]]� 1

12
[�
0; [�
0; �V ]] +

1

2!
(�V )2g

�G
0(x; 0; � ) jx=0 �
1q
g(0)

+O(
p
� ): (2.94)

Taking the derivatives @x1
2, @x2

2 of G
0 (x; 0; � ) and setting x = 0 has the same e�ect as
multiplying G
0(0; 0; � ) by a factor:

@x1
2 � @x2

2 � � 1

2�
; @2 � �1

�
; @2@2 � 2

� 2
;

1

2!
� 2V2

2 � 1

2
b2� 2(@x1

2 � @x2
2) � 0:

(2.95)
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We get the �nal result

G
(0; 0; � ) = [1 +
1

6
��c

c � 1

2
� (dx1 + idx2) + �c]

1

4��
+O(

p
�): (2.96)

2.2 The results.

It is convenient to re-express the �nal result in compact form, both in real and complex
notations (for complex notations see the appendices 1 and 2).

Let


(x) = �[A(x)(@x12 + @x2
2) +B(x)(@x1 + i@x2) + C(x)];

A(0) = 1; @x1;2A(x) jx=0= 1; (2.97)

Then

G
(0; 0; � ) =
1

4��
+

1

4�

�
1

6
(@x1

2 + @x2
2)A jx=0 �1

2
(@x1 + i@x2)B jx=0 +C(0)

�
+O(

p
� ):

(2.98)

In complex notations we have


C = � [4A@z@z + 2B@z + C] ; (2.99)

and therefore

G
C
=

1

2��
+

1

2�

�
2

3
@z@zA j0 �@zB j0 +C(0)

�
+O(

p
�):

(2.100)

In this formula a factor 2 has been inserted w.r.t. formula (2.98) in order to take into
account that 
C is assumed to act on complex �elds.
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3 The bosonic string theory.

3.1 An introduction to string theory.

In this chapter we will review the Polyakov functional approach to the quantization
of the closed, oriented, bosonic string and we will show how in this approach the critical
dimensionality d = 26 is singled out. Di�erent approaches to the quantization of the
non-interacting bosonic string, like the canonical quantization or the BRST-quantization,
turn out to be equivalent to the Polyakov formulation. In such approaches the critical
dimensionality is recovered by di�erent mathematical structures [22]. For instance in
the operatorial formalism the critical dimension is related to the central extension of the
Virasoro algebra.

In this introduction the basic ingredients of the classical string theory that are needed
to know, will be briey discussed.

A string theory [2, 4] is characterized by the fact that the fundamental dynamical ob-
jects are not point-like, but one-dimensional. It is a theory of a curve whose time-evolution
sweeps out a 2-dimensional surface (the so-called world-sheet) in a given, external, space-
time known as target.

At a classical level the equations of motion are determied by the Nambu-Goto action,
expressed by the geometrical area of the swept surface. Such an action is highly non-linear
in the coordinates and therefore quite di�cult to quantize.

According to the Polyakov prescription [23], an alternative and more convenient start-
ing point consists in assuming a classical action which depends on additional (Lagrange
multipliers-like) functions given by the intrinsic metric gab of the world-sheet surface.

The new action is given by

I0(
�!
X ;g) =

1

2

Z
M
d2x

p
ggab@aX

�@bX�: (3.101)

HereM is a compact 2-dimensional, oriented surface, g is a riemannian (positive-de�nite)
metric on M. X� is an embedding of M into a d-dimensional space-time, i. e.

�!
X : M! Rd: (3.102)

The space-time is thought to be at and Euclidean (it has been assumed that a Wick
rotation from Minkowski to the Euclidean has been performed both on the 2-dimensional
world-sheet, as well as on the d-dimensional target space).

When using the variational principle we are free to vary independently both X� and
gab. The metric gab is non-dynamical and may be solved for, so that we are led again to
the same equations of motion for X� as those derived from the Nambu-Goto action.

The string action I0 admits three groups of invariance at the classical level:
i) invariance under di�eomorphisms of the 2-dimensional manifoldM

xa 7! (x0)a = x0(xb)
a
;

gab(x) 7! @x0c

@xa
@x0d

@xb
gcd; (3.103)

ii) conformal (Weyl) invariance under local rescaling of the metric

gab(x) 7! e2�(x)gab(x); (3.104)
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iii) invariance under global rotations and translations of Rd (Euclidean transformations).
As already seen in chapter 1, the conformal invariance is in general not preserved at

the quantum level. As a consequence when, let's say, the partition function is regularized
according to the proper-time prescription, the criterion of renormalizability forces us to
consider the most general action having coupling of non-negative dimensions, consistent
with the symmetries i) and iii).1

For boundaryless manifolds, the most general action is given by

I(X;g) =
Z
M
d2x

�
1

2
A
q
g(x)gab@aX

�@bX� +
1

4�
B
q
g(x)R+ C

q
g(x)

�
: (3.105)

The second term in the right hand side is a topological invariant quantity giving no con-
tribution to the dynamics while, at the classical level, the compatibility of the equations
of motion requires the vanishing of the coe�cient C (C = 0 for consistency).

1the zeta-function prescription, as already remarked, allows to bypass this step since counterterms are
not needed being explicitly computed with this method.
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3.2 Quantization of the bosonic string.

The Polyakov functional approach to the quantization of the bosonic string is essentially
a perturbative approach which postulates a partition function Z given by

Z = NX
h

�h
Z
metrics

Dg
Z
embeddings

DX� � e�I0(X;g); (3.106)

where h is an integer, the number of handles of the world-sheet surface. The sum over h is
a sum over the di�erent topologies of the world-sheet surface and takes into account the ef-
fects due to the string interactions; � is a coupling constant and N the usual normalization
factor.

In order to compute S-matrix amplitudes the insertion of vertex operators, representing
states of in and out strings, is required.

To be de�nite, it is of course necessary to specify the functional measure. It turns out
that a natural measure DX� for the con�guration space C of strings (C = fX :M!Mg)
is the one corresponding to the metric

k�X�k2 =
Z
M
d2x

q
g(x)�X��X���� (3.107)

between two maps X�, X� 0 = X�+ �X� (we recall that in an ordinary Riemannian space
of �nite dimension N with metric ds2 = gijdx

idxj the volume element dV is given by

dV = dNx
q
g(x)).

The word \natural" is employed for the following reasons. The (3.107) metric is the
simplest expression invariant under global translations of X� and under di�eomorphisms,
not involving either a derivative of g or a derivative of X�. We further point out that the
measure DX� is not conformally invariant.

A similar procedure is used to single out the measure Dg. Let G be the space of
Riemannian metrics g of the world-sheet manifold. G turns out to be a convex, non-
compact space. A natural metric (\natural" has a similar meaning as before) for G is
expressed by the relation

k�gk2 =
Z
M
d2x

q
g(x)(Gabcd + ugabgcd)�gab�gcd (3.108)

where u is an arbitrary positive constant (u > 0). Gabcd is a projector onto the space of
symmetric, traceless tensors

Gab
cd =

1

2
(�a

c�b
d + �a

d�b
c � gabg

cd): (3.109)

Dg is of course the measure associated with such a metric and, just like DX�, is not con-
formally invariant. We will later prove that for d = 26 the conformal anomaly associated
with Dg precisely cancels the conformal anomaly associated with DX�.

Both the action and the measure are covariantly de�ned so that, at least formally, the
partition function is invariant under a reparametrization of the world-sheet. Physically
equivalent con�gurations are counted many times, since the con�guration space over which
one is integrating is the tensor product space G�C, while the space of physically equivalent
con�gurations is the quotient space G � C=diff(M).
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The functional integral contains an overall in�nite factor which has to be removed by
restricting the integral to a gauge slice, i.e. to a subspace of metrics meeting each orbit
of the local gauge group exactly once. The full di�eomorphisms group diff(M) may be
thought to be expressed by a discrete transformation in combination with an element of
diff0(M), the subgroup of di�eomorphisms connected with the identity.

As a matter of fact, it turns out that the \large", discrete di�eomorphisms may be
anomalous. Here we will use the Fadeev-Popov technique in order to factor out the
integration over diff0(M). In order to apply the Fadeev-Popov method, let us decompose
the most general variation �gab as follows

�gab = �hab + 2gab��; (3.110)

with

�hab = Gab
cd�gcd (3.111)

(�hab is a symmetric traceless tensor).
Inserting the above decomposition in k�gk2 we can write

k�gk2 =
Z
M
d2x

q
g(x)(Gabcd�hab�hcd + 16u�� 2); (3.112)

which implies the following relation

Dg = (Dh) � (D� ): (3.113)

It has to be warned that (3.113) is a decomposition of a tangent vector in an unspeci�ed
orthonormal frame which is in general not integrable and does not lead to a coordinate
system labeled by h and � .

The in�nitesimal variation �gab is speci�ed by three arbitrary functions, two of them
for the traceless tensor �hab and one for �� . At this point it is useful to express the generic
variation �gab in terms of an in�nitesimal di�eomorphism connected with the identity
(such a di�eomorphism involves two arbitrary functions) and of an in�nitesimal Weyl
transformation involving one arbitrary function (as a matter of fact, not all �gab can be
expressed in such a way, we will however come back on this point later on).

Our in�nitesimal di�eomorphism is now speci�ed by the in�nitesimal vector �eld
�V a(x). The corresponding variation of gab is given by

�Dgab = ra�Vb +rb�Va; (3.114)

where ra is the covariant derivative introduced in appendix 2.
Under an in�nitesimal Weyl transformation we have

�W gab = 2��gab: (3.115)

Therefore

�gab = �Dgab + �W gab: (3.116)

It then follows

�hab = Gab
cd�gcd = 2Gab

cdrc�Vd = (P�V )ab;

2gab�� =
1

2
gabg

cd�gcd = gab(2�� + gcdrc�Vd); (3.117)
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and the latter equality implies

�� = �� +
1

2
gcdrc�Vd: (3.118)

The operator P maps vectors into traceless tensors.
Changing our variables from �hab, �� to �Va, ��, we can write the measure as

(Dh) � (D� ) = (D�)(DV )J; (3.119)

where J is the jacobian

J = j @(�; h)
@(�; V )

j = jdet
 
1 �
0 P

!
j = (detP yP )

1
2 (3.120)

(the term denoted as \�" gives no contribution to the determinant since the matrix is
triangular).

P y is the adjoint of P and maps traceless tensors into vectors.
There are two crucial observations to be made. The �rst one concerns the zero-modes

of the operator P . The vectors �V satisfying P�V = 0 belong to Ker(P ) and are called
\conformal Killing vectors". A di�eomorphism generated by such vectors is equivalent
to a change in the conformal factor and must be omitted since the deformation of the
metric has to be counted only once. The correct jacobian is therefore given by the primed
determinant (det0P yP )

1
2 , which is built only with the positive eigenvalues.

The second observation concerns the fact that no every deformation �hab can be ex-
pressed as P�V . This point can be easily understood if we go back to the discussion in
paragraph 1.4. There exists a one-to-one correspondence between the subspace of vector
�elds given by (KerP )? and the subspace of traceless tensor �elds given by (KerP y)?.
The procedure used to isolate the volume of the gauge group is incomplete due to this
fact, and we are still required to integrate over the deformations which belong to the
�nite-dimensional subspace KerP y. Such deformations are known as \Teichm�uller defor-
mations".

We are thus led to write our partition function Z as follows

Z = N X
topolgies

Z
D� � 
diff0

?(DX�)(det0P yP )
1
2 � e�I0(X;ĝte

2�); (3.121)

where 
diff0
? is the volume of di�eomorphisms which are perpendicular to the conformal

Killing vectors, while \t" denotes the Teichm�uller deformations (Dt is the integration over
the Teichm�uller deformations) and ĝ is a given reference metric.

Since the action I0 is quadratic in X�, the integration over X� can be performed in the
usual way. Let X̂� be a classical solution of motion in presence of the background metric
ĝ. We have Z

DX�e�I0(X;ĝ) = e�I0(X̂;ĝ) � (det0�0)
� d

2 �
Z
0�modes

DX0
�: (3.122)

Here �0 is the laplacian operator (1.49) associated with the action I0 (see paragraph 1.3).
The symbol

R
0�modes DX0

� denotes the eventual integration over the zero-modes of the
laplacian operator.

Since our classical action is conformally invariant we have

I0(X̂; ĝ) = I0(X̂; ĝe
2�): (3.123)

.
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3.3 The conformal anomaly of the bosonic string.

In this paragraph the conformal anomaly of the bosonic string (i.e. the dependence of
the partition function Z (3.121) on the conformal factor �(x)) will be computed.

If in Z the integrand is not a�ected by a change of �(x), (�(x) 7! �(x) + ��(x)),
then the measure D�(x) can be absorbed in the normalization factor N and the resulting
theory is conformally invariant.

In order to leave the derivation as simple as possible, we will not be worried by the
complications introduced by the Teichm�uller deformations. For this purpose it is su�cient
to work in the sector h = 0, which means that our base manifolds M is topologically
equivalent to a sphere, known to admit no Teichm�uller deformations. Our derivation
however can be easily extended to the more general case. In particular it can be proven
that the cancellation of the conformal anomaly of the bosonic string in critical dimension is
realized independently of the topological sector of the worldsheet. The situation however
is no longer the same in the case of superstrings, see [24], where topological obstructions
to the conformal invariance can arise.

The partition function (3.121) can, in this simpli�ed case, be re-written as

Z = N
Z
D�
diff0

?


diff0

� 
diff0(det
0P yP )

1
2 (det0�0)

� d
2

Z
0�modes

DX0
�; (3.124)

where the ratio

diff0

diff0

? is basically 
CKV , the volume of the conformal Killing vectors.

Let us observe at this point that the operator P introduced in (3.117) and mapping
vectors (speci�ed by two real components) into traceless tensors (also speci�ed by two
components), is expressed in the complex formalism introduced in appendix 2 by the
covariant derivative r1

z which maps tensors belonging to � 1 (2 real components) into
tensors belonging to � 2 (also 2 real components). Therefore the operator P yP coincides
with the laplacian �1

+ of appendix 2.
In the same way �0 is related to �0

+ of appendix 2 (the only di�erence is that the
latter one acts on complex �elds, while we have assumed �0 acting on real �elds).

In order to compute the conformal anomaly for the string theory we have to apply the
method explained in chapter 1 and 2 to the operators �n

+, �n
� of appendix 2.

At �rst we have to compute the small-� expansion for the heat kernel G�n
�(x; x; � ). In

order to do so, we have to specialize the formula (2.98) to this class of operators, inserting
the correct coe�cients.

We recall that the invariance under di�eomorphisms allows us to �x at x = 0

�(0) = 0; @a�(x) jx=0= 0: (3.125)

With this choice we can write

G�n
+(0; 0; � ) =

1

2��
+
3n + 1

12�
� (�2@2�) jx=0 +O(

p
�);

G�n
�(0; 0; � ) =

1

2��
� 3n � 1

12�
� (�2@2�) jx=0 +O(

p
� ): (3.126)

In order to express G�n
�(x; x; � ) in a manifestly covariant form we have to notice that,

with the position (3.125), we have

R(0) = �2@2� jx=0 : (3.127)
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The traces are therefore given by

tr(G�n
+(x; x; � )) =

1

2��

Z
d2x

q
g(x) +

3n + 1

12�

Z
d2x

q
g(x)R(x) +O(

p
�);

tr(G�n
�(x; x; � )) =

1

2��

Z
d2x

q
g(x)� 3n � 1

12�

Z
d2x

q
g(x)R(x) +O(

p
� ):

(3.128)

The Riemann-Roch theorem is at this point easily derived. Indeed the analytical index
IA(rn

z) is given by

IA(rn
z) = dim(Kerrn

z)� dim(Ker(rn
z)y) = tr(G�n

+(x; x; � ))� tr(G�n+1
�(x; x; � ));

(3.129)

therefore

IA(rn
z) = (2n + 1)

1

4�

Z
d2x

q
g(x)R(x) = (2n+ 1) � �(M) (3.130)

(we point out that in such a formula the dimension of the kernel is given by counting the
number of real components). The latter equality (see appendix 2) makes use of the Gau�-
Bonnet theorem and shows that the analytical index is a topological invariant quantity. By
the way, our analysis can prove, without previous knowledge of the Gau�-Bonnet theorem,
that 1

4�

R p
gR is indeed an integer and as such a topological quantity, being unmodi�ed

by smooth in�nitesimal deformations .
For n = 1 we obtain in particular the relation

](conf: Kill: vect:)� ](Teichm: deform:) = 6� 6h: (3.131)

The variation of the operator �n
�(�) under an in�nitesimal Weyl transformation � 7!

� + �� is given by

��n
�(�) = �n

�(� + ��)��n
�(�) = �2(n + 1)���n

�(�) + 4(rn
z)y��rn

z:

(3.132)

The corresponding variation of a positive eigenvalue �i of �n
+(�) is

��i = < �ij��n
+(�)j�i >; (3.133)

where j�i > is the normalized eigenvector of �n
+(�) corresponding to the eigenvalue �i

(therefore j�i >2 (Ker�n
+(�))? and is a n-rank tensor).

It follows

��i = �2(n+ 1) < �ij���n
+(�)j�i > +4n < rn

z�ij��jrn
z�i >=

= �2(n+ 1)�i < �ij��j�i > +2n�i <  ij��j i >; (3.134)

where j i >=
q

2
�i
rn

z�i belongs to �n+1 and is a normalized eigenvector of �n+1
�(�)

(�n+1
�(�)j i >= �ij i >, which means j i >2 (Ker�n+1

�)?).
We de�ne ln det0�n

+(�) by making use of the generalized zeta-function. It is clear by
now that in order to compute the variation � ln det0�n

+(�) we have to repeat, with slight
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modi�cations, the procedure explained at the end of the paragraph 1.3. We get the �nal
result

� ln det0�n
+(�) = �6n2 + 6n + 1

6�

Z
d2x

q
g(x)R(x)��(x) +

+2(n + 1)tr(���Kerrn
z)� 2n � tr(���Kerrn

zy): (3.135)

The above expression is a di�erential equation which can be integrated. In order to do so
we have to express the quantities g(x), R(x) in terms of the reference metric ĝ. We then
have g = ĝe2�.

The �rst term in the r.h.s. can be easily integrated, while the terms containing a trace
can be re-expressed as

(2n + 1)tr(���Ker�n
+) = � lnH(�n

+)

�2n � tr(���Ker�n+1
�) = � lnH(�n+1

�): (3.136)

Here H(�n
+) is a �nite-dimensional matrix, de�ned as

Hrs =def< �r
0j�s0 >;

where �r
0, �s

0 span a basis forKer(�n
+) and are taken to be independent of the conformal

factor. A similar position allows to introduce H(�n+1
�), de�ned in terms of Ker(�n+1

�).
At the end we get

ln det0�n
+(�) = �6n2 + 6n+ 1

12�

Z
M
d2x

q
ĝ(x)

�
ĝab@a�@b� + R̂�

�
+

+ lndetH(�n
+ + lndetH(�n+1

�) + F (ĝ); (3.137)

where F (ĝ) is a term which is independent of the conformal factor.
We are now ready to compute the conformal anomaly. A careful analysis conducted in

[25, 11] and taking into account the contribution of the conformal Killing vectors and of
the Teichm�uller deformations shows that the correct Fadeev-Popov determinant is given
by

J =

 
det0�1

+

detH(�n
+) � detH(�n+1

�)

! 1
2

: (3.138)

The contribution of the jacobian to the conformal anomaly is therefore contained in the
term

� 13

12�

Z
M
d2x

q
ĝ
�
ĝab@a�@b� + R̂�

�
: (3.139)

The last thing which has still to be computed is the contribution (det0�0)�
d
2
R
0�modesDX0

�.
For what concerns det0�0, it is obtained from (3.135) by setting n = 0 and an overall factor
1
2
which is due to the fact that �0 acts on real �elds. We therefore obtain

� ln det0�0
+ = � 2

12�

Z p
gR�� + 2tr(���Ker�0

+);

� ln det0�0 = � 1

12�

Z p
gR�� + 2tr(���Ker�0): (3.140)
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The second term in the r.h.s. which depends on Ker�0 is compensated by the variation
�
R
0�modesDX0

� of the integration over the zero-modes of the laplacian as the following
analysis prove. Let us expand a function ' 2 � 0 in an orthonormal basis as done in
paragraph 1.1. We get at �(x) and respectively �(x)0 = �(x) + ��(x),

' =
X
n

cnj�n >�; < �nj�m >�= �nm;

' =
X
n

cn
0j�n0 >�0 ; < �n

0j�m0 >�0= �nm: (3.141)

We have to take into account only the zero-modes. The eigenvectors which correspond to
a zero eigenvalue for the laplacian operator �0

+ are independent of �(x). Therefore, if
j�0 >, j�00 > are zero-modes at � and �0 respectively, it then follows

j�00 > = (1 + ��)j�0 >; (3.142)

where �� is a constant.
Since Z

d2x
q
ĝ(1 + 2��(x))(1 + ��)�0

�(1 + ��)�0 =
Z
d2x

q
ĝ�0

��0 = 1; (3.143)

we have

�� = �
R
d2x

p
ĝ���0

��0R
d2x

p
ĝ�0

��0
: (3.144)

We obtain c00 = c0(1� ��) and therefore

Z
0�modes at �0

�
Z
0�modes at �

=
Z
dc0

0 �
Z
dc0 = ���

Z
dc0: (3.145)

R
dc0 is a constant factor appearing in the normalization of the partition function. The

variation inside the partition function is then precisely given by tr(��Ker�0
+). Since in

our case the laplacian operator �0 acts on d �elds, we get that at the endZ
0�modes at �0

�
Z
0�modes at �

= d � tr(���Ker�0); (3.146)

which precisely cancels the corresponding term appearing in (det0�0)�
d
2 .

The �nal result is that in d = 26 dimensions the contribution of the laplacian operator
precisely cancels the contribution of the Fadeev-Popov determinant and the partition
function in this critical dimension is conformally invariant.

In dimensions d 6= 26, di�erent from the critical one, we get that the partition function
Z contains a term which is the Liouville model, given by

Z
D�e d�2624�

R
d2x
p

ĝ(ĝab@a�@b�+R̂�+Ae�): (3.147)

The term proportional to the constant A is present in the regularized theory, in order to
have the most general action invariant under di�eomorphisms (it should be recalled the
discussion at the end of paragraph 3.1).
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Appendix 1.

Real and complex notation for 2D, oriented, manifolds.

Every oriented 2-dimensional real manifold is a complex manifold of complex dimension
1. If such a manifols is also connected, it is then called a Riemann surface.

Let x1, x2 be the real coordinates which, in a given chart, specify a point of our surface.
The connection between real and complex notation is given by the following relations

z = x1 + ix2; z = x1 � ix2;

@z =
1

2
(@x1 � i@x2); @z =

1

2
(@x1 + i@x2);

4@z@z = @x1
2 + @x2

2 = �0:

The condition @zf = 0 (or respectively @zf = 0) is the Cauchy-Riemann equation which
implies the analiticity (antianaliticity) of f .

A basic feature of the 2 dimensions can be stated as follows; for any given riemannian
metric gab(x1; x2) it is always possible to �nd a reparametrization xa 7! (x0)a = x0(xb) (a
change of chart) which at least locally, i.e. in a given chart, makes the metric conformally
euclidean. We can therefore make use of the reparametrization invariance to put ourselves
locally in the so-called \conformal coordinate system", with the metric given by

ds2 = e2�(x1;x2)(dx1
2 + dx2

2) = e2�dzdz:

In the new system we can write the metric ds2 in terms of complex coordinates as

ds2 = gzzdzdz + gzzdzdz;

with metric tensor components given by

gzz = gzz = 0;

gzz = gzz =
1

2
e2�:

We remark that an analytic change of coordinates z 7! z0 = f(z), with @zf = 0, corre-
sponds to the most general transformation of coordinates preserving the conformal nature
of our local coordinate system.Under such an analytic change of coordinates the metric
component gzz transforms as a tensor, so that gzzdzdz is a scalar.

In general an n-rank tensor �eld T (for n integer) is a function of z, z which under the
analytic reparametrization z 7! z0 = z0(z) transforms as follows

T 7! T 0 =

 
@z0

@z

!n

T:

If n � 0 such a tensor will be denoted as T z:::z, with n upper indices, while if n < 0 it will
be denoted with �n lower indices as Tz:::z.

It is just su�cient to consider tensors having only z-type of indices since the metric
gzz can be used to trade a z index for a z index.

The space of n-rank tensor �elds T z:::z will be denoted as �n.
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�n has the structure of a Hilbert space with an inner product speci�ed, for S; T 2 �n,
by

< SjT > =def

Z
d2z
p
g(gzz)

nS�T

(if S is an n-rank tensor in z, S� is an n-rank tensor in z).
Such a de�nition makes our inner product an invariant quantity under reparametriza-

tion.
The conventions used in the previous formula are speci�ed by the following relations

q
det gab(x1; x2) =

q
g(x1; x2) = e2�;q

det g(z; z) =
q
g(z; z) = gzz =

1

2
e2�;

gzz = (gzz)
�1 = 2e�2�;

d2z = 2dx1dx2:
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Appendix 2.

Covariant derivatives.

In appendix 1 we have introduced the space �n of n-rank tensor �elds. Here we will
introduce the covariant derivatives which transform a tensor �eld into a tensor �eld.

It can be easily checked that the operator rn
z, expressed in local coordinates by

rn
z = gzz@z;

has the property of mapping n-rank tensors into (n+ 1)-rank tensors

rn
z : �n ! �n+1;

which makes it a \raising operator".
Conversely, the operator rz

n, expressed by

rz
n = (gzz)n@z(gzz)

n = @z + 2n@z�

in the local coordinate system, satis�es

rz
n : �n ! �n�1;

therefore rz
n is a \lowering operator".

It is easy to verify that, with the scalar product introduced in the previous appendix,
the raising and lowering operators are mutually adjoint

(rn
z)y = �rz

n+1:

With our raising and lowering operators we can build two di�erent kinds of self-adjoint
elliptic operators, denoted as �n

�, such that

�n
� : �n ! �n:

They are de�ned, respectively, by

�n
+ =def �2rz

n+1 � rn
z;

�n
� =def �2rn�1

z � rz
n:

In the conformal coordinate system they are given by

�n
+ =def �4e�2�[@z@z + 2n(@z�)@z];

�n
� =def �4e�2�[@z@z + 2n(@z�)@z + 2n(@z@z�)]:

In real coordinates we have

�n
+ =def �e�2�[�0 + 2n((@x1 � i@x2)�)(@x1 + i@x2)];

�n
� =def �e�2�[�0 + 2n((@x1 � i@x2)�)(@x1 + i@x2) + 2n��]:
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�n
� are called generalized laplacians because in the limit of at metric they coincide

with the usual at laplacian (this explains the choice of 2 as normalizing factor in their
de�nition).

We �nally introduce the curvature R, which is expressed by the following relation

rz
n+1rn

z �rn�1zrz
n =

n

2
R:

Despite the form of the left hand side, R is a function and not an operator.
R turns out to be a scalar object which is expressed, in the local coordinate system,

by

R = �2e�2��0�:

The Gau�-Bonnet theorem ensures us that the quantity 1
4�

R
M d2x

p
gR is a topological

invariant quantity which precisely equals the Euler characteristic �(M) of the manifold
M

�(M) =
1

4�

Z
M
d2x

p
gR:

We recall here that a compact, boundaryless, orientable, real 2-dimensional manifold is
topologically equivalent to a sphere with some handles. For such a manifold �(M) is given
by

�(M) = 2 � 2h;

where h is the number of handles.
A standard way of introducing (and computing) the Euler characteristic �(M) is

through the formula

�(M) = V � E + F;

where V , E, and F denote respectively the number of vertices, edges and faces in any
given triangularization of the manifoldM (this number being independent of the chosen
triangularization).
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Appendix 3.

Cancellation of the conformal anomaly for the bosonic string.

In this appendix we present the �nal computation which shows the cancellation of the
conformal anomaly in the bosonic string.

Notations and explanations have been furnished in chapter 3.
The operators that we are interested to compute are given by �0 and �1

+. Indeed
for a d-dimensional bosonic string the conformal invariance is guaranteed whenever the
expression

�
ln det�1

+
� 1
2 + (ln det�0)

� d
2

is conformally invariant.
The computation for �0 can be recovered from the computation of �0

+ since we have

ln det�0 =
1

2
ln det�0

+:

The variations (see (3.137)) of �0
+, �1

+ are given by

� ln det�0
+ = � 2

12�

Z p
gR��;

� ln det�1
+ = � 26

12�

Z p
gR��:

Therefore the cancellation of the conformal anomaly requires the vanishing of the following
formula

1

2

�
� 26

12�

�
� d

2

�
1

2
� �2

12�

�
;

which implies the critical dimensionality

d = 26:
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Appendix 4.

Basic properties of the Riemann's zeta-function.

In this appendix the basic features and the mathematical importance of the Riemann's
zeta-function to the number theory will be briey reviewed. The still open problem known
as Riemann's hypothesis will be stated.

A nice discussion concerning the relevance of zeta-function to physics can be found
e.g. in the Gutzwiller's book [26]. This appendix is limited to state the main properties
of zeta-function, following as main references [27] and [28], without bothering with actual
proofs. Some of the statements made below (for instance its connection with heat kernel
and the Gamma function, the computation of its value at speci�c points) however, have
already been proven in Chapter 1 and 2 of these Lecture Notes.

The Riemann's zeta-function can be introduced in two equivalent ways, either as an
in�nite sum over positive integers

�(s) =def

1X
n=1

n�s;

or as an in�nite product over the prime numbers

�(s) =def

Y
p

(1 � p�s)�1 (p primes):

The equivalence of the two above de�nitions can be easily checked to be a consequence of
the unique factorization of any integer number in its prime factors.

The latter de�nition is also known as Euler's product for Riemann's zeta-function,
quite a peculiar name since Euler introduced it in 1748, one century before Riemann.

The Riemann's zeta function is absolutely convergent for Re s > 1, (such a conver-
gence can be easily understood by comparing the in�nite sum with the continuous integralR1
1 dx � x�s).
The function �(s) extends by analytic continuation to a meromorphic function in the

complex planeC, where the only singularity is a pole of order 1 at s = 1, with residue equal
to 1 (that is �(s) � 1

s�1 is an entire function). Based on its product decomposition Euler
proved the existence of the pole at s = 1 and as a corollary he obtained an independent
proof of the existence of in�nite prime numbers.

The constant , introduced through the limit

 = lim
N!1

 
1

1
+
1

2
+ :::+

1

N
�
Z N

1
dx � 1

x

!

is known as Euler's constant.
Already at this stage the Riemann's zeta-function appears related to fundamental

properties in prime numbers theory. The connection however is even more explicit. The
prime number distribution function, denoted as �(x), is according to a conjecture �rst
stated by Gau� and Legendre and later proved by Hadamard and de La Vall�ee Poussin at
the end of the nineteenth century, well approximated by the function Li(x) =

R x
0 dt � 1

log t .
In the mid-nineteenth century Tchebychev introduced the function

�(x) = �(x) +
1

2
�(
p
x) +

1

3
�( 3
p
x) + :::
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and from the Euler's product deduced its integral representation

1

s
log �(s) =

Z 1

1
�(x)x�s�1dx:

In a memoir published in 1859 Riemann obtained an analytic formula for the number of
primes up to a pre-assigned limit. Such a formula is expressed in terms of the zeros of the
zeta-function, namely the solutions � 2 C of the equation �(�) = 0.

The zeta-function has zeros (referred to as \trivial zeros") at the negative even integers
�2, �4, ... . Another class of zeros (the \non-trivial ones") are encountered for complex
numbers whose real part is equal to 1

2
. The Riemann's hypothesis is the conjecture that

all non-trivial zeros of the Riemann's zeta-function have real part equal to 1
2
. According

to many mathematicians [28], the Riemann's Hypothesis is considered the most important
open problem in pure mathematics. Its validity is equivalent to saying that the deviation
of the number of primes from Li(x) is

�(x) = Li(x) +O(
p
x log x);

so that its failure would create havoc in the distribution of prime numbers. For a more
complete account on that see e.g. [28].

Let us now collect some useful formulas concerning the connection of the zeta-function
with the Gamma-function, as well as functional equations satis�ed by the zeta-function.
Such formulas can be used to compute the values of �(s) at some speci�c points s as later
reported.

The Gamma function �(s) can be introduced through the Mellin integral

�(s) =
Z 1

0
e�xxs�1dx:

It is a meromorphic function on C with simple poles at s = 0;�1;�2;�3; ::: and residue
(�1)k
k

at s = �k.
Since it satis�es the relations

�(1) = 1;

�(s+ 1) = s�(s);

it can be considered the analytic continuation of the factorial.
It satis�es the following functional equations, known respectively as \complement for-

mula"

�(s)�(1 � s) =
�

sin�s
;

and \duplication formula"

�(
s

2
)�(

s+ 1

2
) = �

1
221�s�(s):

The connection between the Riemann's zeta-function and the Gamma function is guaran-
teed by the following equation

�(s) =
1

�(s)

Z +1

0

xs�1

ex � 1
� dx:
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It turns out that �(s) satis�es the functional equation

�(1 � s) = 21�s��s�(s) cos
�s

2
�(s):

The above relations allows us to compute the values of the zeta-function for speci�c integer
values of s. We have indeed, apart the pole at s = 1,

lim
s!1

�(s) =
1

s� 1
+  +O(s);

that

�(�2) = �(�4) = �(�6) = ::: = 0;

while

�(2) =
�2

6
; �(4) =

�4

90
; �(6) =

�6

945
; �(8) =

�8

9450
; ::: ;

�(�1) = � 1

12
; �(�3) = 1

120
; �(�5) = � 1

252
; :::

and

�(0) = �1

2
;

d�(s)

ds
js=0= �1

2
log 2�:

As explained in Chapter 1, speci�c values of the zeta-function can be used to regularize
otherwise in�nite expressions. This procedure has been vastly used in the context of String
Theory (see e.g. [2]).

To give some examples the value of �(s) at s = �1 can be used to make sense of an
expression like the in�nite sum of positive integers and we get

1 + 2 + 3 + :::+ n + ::: = � 1

12
:

On the other hand the in�nite sum

d�(s)

ds
= �X

n

(log n)n�s;

formally evaluated at s = 0, can be used to regularize the following in�nite sum

X
n

log n =
1

2
log(2�):

By formally exponentiating both sides of the above equation we can even regularize the
factorial of in�nite to be

1! =
p
2�:
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