Trapezoids

A TRAPEZOID HAS EXACTLY ONE PAIR OF PARALLEL SIDES (Page 536) (The parallel sides are called the bases and the other two sides are called the legs.)

In trapezoid WXYZ:	$\overline{W X}$ and $\overline{Z Y}$ are the bases.	
$\overline{W X} \\| \overline{Z Y} ; \overline{W Z} \psi \overline{X Y}$	$\overline{W Z}$ and $\overline{X Y}$ are the legs.	

Because $\overline{W X} \| \overline{Z Y}$ and $\angle \mathrm{W}$ and $\angle \mathrm{Z}$ are consecutive interior angles, $\angle \mathrm{W}$ and $\angle \mathrm{Z}$ are supplementary; likewise $\angle \mathrm{X}$ and $\angle \mathrm{Y}$ are supplementary.

ISOSCELES TRAPEZOID: Properties:

1. It has \cong legs. (Definition-page 537)
2. The base angles are \cong. (Theorem-page 537)
3. The diagonals are \cong. (Theorem-page 537)

In isosceles trapezoid RSTV,

1. $\overline{R V} \cong \overline{S T}$
2. $\angle R \cong \angle S ; \angle V \cong \angle T$
3. $\overline{R T} \cong \overline{S V}$

MIDSEGMENT OF A TRAPEZOID is the segment that connects the midpoints of the legs. The midsegment is parallel to the bases and its length is one half the sum of the legs. (Theorem-page 538)

In trapezoid WXYZ, $\overline{M N}$ is the midsegment
(Points M and N and the midpoints of the legs.)
Therefore, $\overline{W X}\|\overline{M N}\| \overline{Z Y}$ and

$$
M N=\frac{1}{2}(W X+Z Y) \quad O R \quad 2 M N=W X+Z Y
$$

Vocabulary

A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the bases. For each of the bases of a trapezoid, there is a pair of base angles, which are the two angles that have that base as a side.

The nonparallel sides of a trapezoid are the legs of the trapezoid. If the legs of a trapezoid are congruent, then the trapezoid is an isosceles trapezoid. The midsegment of a trapezoid is the segment that connects the midpoints of its legs.

Theorem 8.14: If a trapezoid is isosceles, then each pair of base angles is congruent.
Theorem 8.15: If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.
Theorem 8.16: A trapezoid is isosceles if and only if its diagonals are congruent.

Theorem 8.17 Midsegment Theorem for Trapezoids:
The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

EXAMPLE 1 Use properties of trapezoids

In the diagram, $A B C D$ is an isosceles trapezoid and $\overline{P Q}$ is the midsegment.
a. Find $m \angle B$.
b. Find $P Q$.

Solution

a. Because $\angle D$ and $\angle A$ are consecutive interior angles formed by intersecting two parallel lines, they are supplementary. So, $m \angle A=180^{\circ}-75^{\circ}=105^{\circ}$. By
 Theorem 8.14, $\angle A \cong \angle B$. So, $m \angle B=105^{\circ}$.
b. By Theorem 8.17, $P Q=\frac{1}{2}(A B+C D)=\frac{1}{2}(25+35)=\frac{1}{2}(60)=30$.

Exercises for Examples 1 and 2.

Find the value of x.
1.

2.

Answers:

1. 7
2. 9
