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Preface 

The term smart antenna is often used in  mobile communications to describe an 
adaptive process designed to improve the capacity of a base station by focusing 
the radiated electromagnetic energy on transmit while improving the gain pattern 
on receive from a mobile system. This is called space division multiple access. 
Here, the transmitted signals from a base station are spatially directed to an 
intended mobile. In addition, the receive gain of the base station is also increased 
by spatially forming a beam along the direction of a mobile which is on a 
transmit mode. In this way the capacity of a base station can be increased, as it 
can now serve many mobile units simultaneously by directing a beam along each 
one of them. However, this promise of increased capacity through space division 
multiplexing can be further enhanced if one understands the true nature of an 
antenna (the source of radiating and/or the sensor of electromagnetic energy) 
which is the central point of this methodology. An antenna may be considered to 
be a device that maps spatial-temporal signals into the time domain, thus making 
them available for further analysis in a digital signal processor. In this 
philosophical framework, an ideal antenna is one that converts the spatial- 
temporal signals arriving at an antenna into a temporal signal without distortion. 
Hence, there is a tacit assumption that no information is destroyed by the 
antenna. This may be true when dealing with narrowband signals, but when 
considering the transmission of broadband signals, even a small radiator called a 
Hertzian dipole operating in free space behaves differently on transmit than it 
does on receive. It is important to note that in electromagnetics there does not 
exist any isotropic radiator, as even a Hertzian dipole has a directive pattern. 
However, along a certain plane the pattern can be omni-directional. On transmit 
the far field of an antenna (even that of a small Hertzian dipole operating in free 
space) is the time derivative of the input transient waveform fed to its input 
terminal. While on receive, the same antenna acts as a spatial integrator of the 
fields that are incident on i t .  Hence, the temporal and spatial properties of an 
antenna are intimately related and it is not advisable to separate them if one 
wants to realize the full potential of an antenna system. In this book the term 
smart antenna is used to imply that one is dealing appropriately with the dual 
spatial and temporal properties of an antenna on both transmit and receive. 

An admirer of James Clerk Maxwell (the actual discoverer of 
electromagnetism) or Heinrich Hertz (the true father of radio, as he not only 
formulated the four equations of Maxwell that are available in electromagnetic 
textbooks today but also produced an experimental device to generate, transmit, 
propagate, and receive electromagnetic energy) will realize immediately that 
antennas act simultaneously as temporal and spatial filters. In addition, an 
antenna is a spatial sampler of the electric fields. One of the objectives of this 
book is to explain the basic difference between adaptive antennas and adaptive 
signal processing. Whereas for the former an antenna acts as a spatial filter, and 
therefore processing occurs in the angular domain, a signal-processing algorithm 

xiii 
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is applied in the temporal domain. To identify whether one is dealing with 
adaptive antennas or adaptive signal processing is to ask the following simple 
question: For a narrowband communication, can the adaptive system separate a 
desired signal from its coherent multipath components‘? In this case, there is not 
only a signal, but also multipath components that are correlated with the desired 
signal and interact (in either a constructive or destructive fashion) with the signal. 
Only an adaptive antenna can isolate the desired signal from its coherent 
multipath, as the information on how to separate them is contained in the angle of 
arrival (i.e., in the spatial domain). There is little information in the temporal 
domain for this case. In a conventional signal-processing algorithm, this type of 
coherent multipath separation is not trivial, and secondary processing that utilizes 
spatial concepts from electromagnetics is necessary. The critical point is that 
temporal processing cannot separate coherent signals spatially, since the 
differences between the signals manifest themselves in the spatial domain and 
not in  the temporal domain. The signal-processing community sometimes views 
an antenna as a temporal channel, whereas practitioners of electromagnetics 
always consider an antenna to be a spatial filter. We want to distinguish between 
these disjoint temporal and spatial properties by adding the term smart antennas 
which we imply that we are merging these two distinct methodologies to provide 
better systems. In fact, in an adaptive system, one is shaping the spatial response 
of an antenna by processing the time domain signal. Hence, we do not treat these 
two spatial and temporal properties separately. An additional advantage to using 
this coupled spatial-temporal methodology is that we have a well-established 
mathematical tool, which treats this space-time continuum in an exact way. This 
mathematical framework for such a system is described by one of the oldest sets 
of equations in mathematical physics, equations that have withstood the test of 
erosion and corrosion of time. Even the advent of relativity has had little effect 
on them. This analytical framework is given by Maxwell’s equations. A related 
problem that also needs to be addressed is what actually limits the speed of 
communication: is it based on the channel capacity defined by Shannon which 
does not include the speed of light or is it based on the dispersion introduced by 
the propagation medium as per Maxwell’s equations? A moment of reflection on 
this critical question will reveal that we need to develop the problem along the 
space-time continuum as formulated by the Maxwell’s equations. 

Another objective of this book is to illustrate procedures for adaptive 
processing using directive elements in a conformal array. Under the current 
philosophy, it is uncommon to use directive elements in a phased array or 
antenna elements that are not uniformly spaced. The current thinking is that if 
one does not use omnidirectional antenna elements, it may not be possible to 
scan over wide angles. To increase the directive gain of the phased array, one 
increases the total number of elements by hundreds or even thousands. This 
increases the cost significantly, as one needs an analog-to-digital converter at 
each antenna element in addition to a complete receiver channel for 
downconversion of the radio-frequency signal to baseband. The complexity of a 
phased array can also be reduced if we employ directive antenna elements on a 
conformal surface. In addition, individual antenna elements may be 
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nonuniformly spaced, or the conformal array can even be nonplanar. To treat 
such general array configurations in this book, we describe an electromagnetic 
preprocessing technique using an array transformation matrix which broadens the 
fundamental principles of adaptive antennas. Here we address phased array 
applications, including direction finding or angle-of-arrival estimation and 
adaptive processing utilizing directive elements that may be nonuniformly spaced 
and operating in the presence of near-field scatterers. 

We also address problems in radar and mobile communications. To perform 
adaptive processing we need to have some a priori information about the signals 
that we are trying to detect. For dealing with phased array radars, we generally 
know or assume the direction of arrival of the signal of interest, as we know a 
priori along which direction the mainbeam of the array was pointing, or 
equivalently, along what spatial direction the energy was transmitted. Thus in 
radar, our goal is to estimate the strength of the reflected signal of interest, whose 
direction of arrival is known. What is unknown is the jammer interference and 
clutter scenario. Furthermore, we present a direct data domain approach that 
processes the data on a snapshot-by-snapshot basis to yield the desired 
information. Here, a snapshot is defined as the voltages available at the terminals 
of the antenna at a particular instance of time. Since we are processing the data in 
a batch mode, it is highly suitable for characterizing a dynamic environment 
where the nature of the interference and clutter may change over time. The direct 
data domain least squares approach presented in this book estimates the signal in 
the presence of jammer interference, clutter, and thermal noise. In this technique 
no statistical information about the clutter is necessary. Also, since no covariance 
matrix is formed in this procedure, the process can be implemented in real time 
on an inexpensive digital signal processing chip. We also present an extension of 
this technique to include traditional statistical processing when dealing with 
space-time adaptive processing. 

Unlike radar, in mobile communications it is difficult to know a priori the 
direction of arrival of the signal. In this case, we exploit the temporal 
characteristics of the signal through introduction of the principles of 
cyclostationarity. Again a direct data domain method is presented to solve this 
problem on a snapshot-by-snapshot basis using the principles of cyclostaionarity. 
The advantage of exploiting the temporal characteristics of the signals is that the 
number of interferers can be greater than the number of antennas. However, the 
number of coherent interferers at the same frequency needs to be no more than 
half the number of antenna elements. Also shown is a method to incorporate the 
effects of mutual coupling between antenna elements and the effects of near-field 
scatterers, to improve the overall system performance. 

One unique topic in this book is a multistage analysis procedure that 
combines electromagnetic analysis with signal processing. Initially, 
electromagnetic principles are applied to compensate for the effects of mutual 
coupling between antenna elements, including the effect of nonuniformity in the 
spacing between the elements and the presence of near-field scatterers. Then a 
direct data domain methodology is implemented to yield the signal of interest. A 
deterministic model for the signal of interest yields a lower value for the Cramer- 
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Rao bound than those using stochastic methods. In this approach, no statistical 
information about the interference environment is necessary. This makes it 
possible to perform real-time processing in a dynamic environment. These 
principles have been applied for space-time adaptive processing of experimental 
data obtained from an airborne multichannel radar system. 

We also present a survey of various models for characterizing radio-wave 
propagation in urban and rural environments. We describe a method where it is 
possible to identify and eliminate multipath without spatial diversity and 
optimize the location of base stations in a complex environment. 

Finally, it is demonstrated that in mobile communication where the transmit 
and receive ports can be clearly defined, it is possible to direct the signal from 
base stations to mobile units without having any a priori knowledge about their 
spatial coordinates or knowing the near-field electromagnetic environment in 
which they are radiating. This is possible through invocation of the principle of 
reciprocity. This approach will make space division multiplexing more than just 
an experimental concept but a commercial success. 

Every attempt has been made to guarantee the accuracy of the material in the 
book. We would, however, appreciate readers bringing to our attention any 
errors that may have appeared in the final version. Errors and any comments 
may be e-mailed to either author. 
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