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1 Representation of the Charge Density in the

Pakage WIEN97

This setion summarizes the way the harge density is alulated by lapw5 from

the oeÆients stored in lmsum or lmval.

The harge density is represented by a plane wave expansion in the inter-

stitial region (I) and as the ombination of a radial funtion times spherial

harmonis inside the muÆn-tin spheres, in this way,
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The subroutine main1

1

reads the mesh where the harge density is going to

be alulated from ase.in5. The oeÆients of the harge density expansion

are stored in ase.lmsum. The �rst part of this �le ontains the oeÆients

of the spherial expansion and the last part the representative reiproal lattie

vetor of eah star and the orresponding oeÆient. This former part is read

in outin, where the stars are also rebuilt.

1.1 The harge density alulation in the interstitial re-

gion

When the point ~r is in the interstitial region the harge density is alulated as

the Fourier expansion shown in Eq. (1) by the routine rhoout. This is a very

simple routine that performs the summation over

~

G spae of the oeÆients.

The summation over

~

G is done over stars of

~

G. In the �le lmsum, after the

oeÆients of the expansion inside the spheres, NK lines are stored with the

~

G

and the orresponding �

~

G

. These are not all the

~

G inluded in the summation,

1

All the subroutine names refer to the �les loated in SRC lapw5 of the WIEN97 distribu-

tion and are written in typewriter font.
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these are the representatives of eah star. When these lines are read in outin

the star for eah one of these representatives is built by stern.

The stars are built applying eah of the rotations in the symmetry group

(COMMON /SYM2/) to the representative

~

G. In this way, INST(I) new

~

G are

reated and stored in KREC (�rst member of COMMON /OUT/). In this proess of

reating the starts, some symmetry operations map the representative onto the

same star member, for these symmetry operations the summation �(

~

G) has to

be done as
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where the summation is done over all the symmetry operations that map

~

G

onto the same

~

G

0

and the normalization with the number of elements of the

star INST(I) is inluded here. These �(

~

G

0

) are stored in TAUK (fourth member

of COMMON /OUT/).

With the stars rebuilt the summation of the Fourier series is done as
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1.2 The harge density alulation inside the muÆn-tin

spheres

When main1 determines that the point ~r where the harge density is to be

alulated falls inside a muÆn-tin sphere (inter is false) the following steps are

performed:

� The point ~r is rotated using the symmetry operation that maps the atom

where ~r fell lose to the representative atom. This is done taking ar of

the ortho swith.

� The point ~r is redued to the smallest possible with redu. (No rotation

performed here)

� The loal rotation matrix is applied to the point.

� The index i

r

of r = j~rj in the logarithmi radial grid is alulated through

i

r

= 1+

ln

�

r

R

0

(j)

�

�X(j)

: (3)

Here j is the index of the inequivalent atom, �X(j) the mesh separation

given by

�X(j) =

ln

�

R

MT

(j)

R

0

(j)

�

n� 1

; (4)

where R

0

(j) is the �rst radial mesh point, R

MT

(j) the muÆn-tin radius,

and n the number of radial mesh points for atom j as read form the strut

�le.
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� The module harge is alled, where the summation over lm is done as

�(r; �; �) =

LMMAX

X

lm=1

�

lm

(r) �

lm

(�; �) ; (5)

with �(r; �; �) stored in CHG, �

lm

(r) stored in RHO(ILM), and �

lm

(�; �)

stored in ANG(ILM). To perform this sum the ode follows this steps:

{ The spherial harmonis Y

m

l

(�; �) are alulated in ylm using a re-

ursion method and stored in YL(l(l + 1) +m+ 1).

{ For eah lm pair �

lm

(r) is alulated by radial interpolating the

CLM read from lmsum and dividing by r

2

.

{ In the same loop �

lm

(�; �) is alulated as

�
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=

8
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if m 6= 0 and l > 0 ;

where l and m are stored in LM(1; ILM; j) and LM(2; ILM; j) respetively,

and read from in2.

{ Finally the summation of Eq. (5) is performed talking are if the

loal symmetry of the atom is ubi or not.

� With the harge density stored in CHG, main1 writes it to a temporary

unformatted �le (unit 10).

2 Calulation of the harge density gradient

Using lapw5 as our starting point, we have written a program, alled bader,

whih adds to the funtionality of lapw5 a swith GRAD to alulate the harge

density gradient. In this setion we desribe the details of the implementations

of this swith.

The input �les are read by main1 as before and the deision is made if

the point where the harge density or gradient are to be alulated falls inside

or outside the muÆn tins. If the point is interstitial, r�(~r) is alulated inside

grhoinst, if the point is inside a muÆn tin, the alulation is done in grhosphe.

These routines are desribed in the following sub-setions. After the gradient is

returned, it is projeted on the plane where ~r is onstrained.
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2.1 Gradient of the harge density in the interstitial re-

gion

Before alling grhoinst to alulater�(~r) in the interstitial region, main1 takes

are of the normalization di�erene between ortho false and true. If ortho is

true, ~r is given to grhoinst in units of the lattie onstants and the

~

G's in

units of the inverse of lattie onstants. On the other hand, if ortho is false, ~r

is given in Bohr and the

~

G's in Bohr

�1

. This di�erene in the treatment has to

be taken into aount to orret the units one grhoinst returns the gradient.

In grhoinst the alulation of the gradient is very simple, the derivative of

the harge density in the interstitial region is given by the gradient of � given

by Eq. (2), as

r�(~r) =

X

i2stars

�

i

X

~

G2star i

i

~

G e

i

~

G�~r

�(

~

G) : (6)

In ase of a real alulation, with inversion symmetry, the harge density is

alulated using the real part of Eqs. (2) and (6). This saves the spae required

for omplex storage.

2.2 Gradient of the harge density inside the spheres

In the ase of the harge density inside the spheres, before alling grhosphe

the vetor ~r is rotated twie. First, a symmetry rotation is applied that maps

the atom where ~r fell lose to, onto the representative atom. Seond, the loal

rotation matrix for that atom is applied. After the vetor r� is returned by

grhosphe this rotations have to be reversed, this is done by rotat bak for the

loal rotation matrix, and by rotate bak for the symmetry rotation.

The alulation of the gradient harge density in grhosphe is done in four

parts: the initialization part, a loop over ilm with the alulation of the radial

and angular parts of the expansion and its derivatives, the summation over ilm,

and the transformation to Cartesian oordinates.

During the initialization part we alulate the spherial harmonis with a

all to ylm, the derivative of the spherial harmonis with respet to � in dtylm,

and the matrix hange that maps the derivatives of � with respet to r, �, and �

to its derivatives respet to x, y, and z. Details on the alulation of �

�

Y

m

l

(�; �)

are given in Appendix A. The storage of �

�

Y

m

l

(�; �) is similar to the one used

to store the Y

m

l

, i.e. �

�

Y

m

l

(�; �) is stored in dtyl(l(l + 1) +m+ 1).

In the loop over lm the values of �

lm

, �

r

�

lm

, �

lm

, �

�

�

lm

, and �

�

�

lm

are

obtained and stored in rho(ilm), drrho(ilm), ang(ilm), dtang(ilm), and

dfang(ilm) respetively.

The sum over lm is done to alulate the partial derivatives of the harge

density respet to r. �, and � as,

�

r

� =

LMMAX

X

lm=1

�

r

�

lm

(r) �(�; �) (7)
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�

�

� =

LMMAX

X

lm=1

�

lm

(r) �

�

�(�; �) (8)

�

�

� =

LMMAX

X

lm=1

�

lm

(r) �

�

�(�; �) ; (9)

the partial derivatives of � in spherial oordinates are stored in the vetor

dsrho.

Finally, the transformation to Cartesian oordinates is done. If we all u

1

=

r, u

2

= �, u

3

= �, x

1

= x, x

2

= y, and x

3

= z, the omponents of the gradient

in Cartesian oordinates ��=�x

i

are obtained as

��

�x

i

=

3

X

j=1

��

�u

j

�u

j

�x

i

;

The terms �u

j

=�x

i

are stored in hange(j,i) and are given by

�r

�x

= sin � os�

��

�x

=

os � os�

r

��

�x

= �

sin�

r sin �

�r

�y

= sin � sin�

��

�y

=

os � sin�

r

��

�y

=

os�

r sin �

�r

�z

= os �

��

�z

=

sin �

r

��

�z

= 0

This expressions are oded in gen hange, where hange is loaded.

A Derivatives of the spherial harmonis

The expression for the spherial harmonis is [1℄

Y

m

l

(�; �) =

s

2l+ 1

4�

(l �m)!

(l +m)!

P

m

l

(os �) e

im�

:

The derivative of the spherial harmoinis with respet to � is just

�

�

Y

m

l

(�; �) = imY

m

l

(�; �)

and does not need any speial onsideration.

The derivative respet to � is essentialy the derivative of the assoiated

Legendre polynomial

�

�

Y

m

l

(�; �) = �

s

2l+ 1

4�

(l �m)!

(l +m)!

�

dP

m

l

(x)

dx

�

x=os �

sin � e

im�

;
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and from the de�nition of these polynomials

P

m

l

(x) = (�1)

m

�

1� x

2

�

m=2

d

m

dx

m

P

0

l

(x)

the derivative an be evaluated as

dP

m

l

(x)

dx

= �

mx

1� x

2

P

m

l

(x)�

1

(1� x

2

)

1=2

P

m+1

l

(x) :

Replaing this derivative in the expresion for the derivative of the spherial

harmonis we get

�

�

Y

m

l

(�; �) = m

os �

sin �

Y

m

l

(�; �) + e

�i�

p

l(l + 1)�m(m+ 1)Y

m+1

l

(�; �) :

This is the expresion we oded in dtylm. In this expresion, there is a detail

to be taken into aount regrading the limit when � is zero. In this limit the

seond member on the right is zero, beause the spherial harmonis is zero.

The �rst member instead has a non-zero limit if jmj = 1 and zero otherwise. In

the ase � = 0, the expression

�Y

m

l

(0; 0) =

8

>

>

<

>

>

:

�m

p

l(l + 1)(2l+ 1)

4

p

�

if jmj = 1 ;

0 other ase

is used.
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