A NOTE ON EXPONENTIAL DIVISORS AND RELATED ARITHMETIC FUNCTIONS

József Sándor

Babes University of Cluj, Romania

§1. Introduction

Let $n>1$ be a positive integer, and $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ its prime factorization. A number $d \mid n$ is called an Exponential divisor (or e-divisor, for short) of n if $d=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$ with $b_{i} \mid a_{i}(i=\overline{1, r})$. This notion has been introduced by E.G. Straus and M.V. Subbarao[1]. Let $\sigma_{e}(n)$, resp. $d_{e}(n)$ denote the sum, resp. number of e-divisors of n, and let $\sigma_{e}(1)=d_{e}(1)=1$, by convention. A number n is called e-perfect, if $\sigma_{e}(n)=2 n$. For results and References involving e-perfect numbers, and the arithmetical functions $\sigma_{e}(n)$ and $d_{e}(n)$, see [4]. For example, it is well-known that $d_{e}(n)$ is multiplicative, and

$$
\begin{equation*}
d_{e}(n)=d\left(a_{1}\right) \cdots d\left(a_{r}\right), \tag{1}
\end{equation*}
$$

where $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is the canonical form of n, and $d(a)$ denotes the number of (ordinary) divisors of a.
The e-totient function $\varphi_{e}(n)$, introduced and studied in [4] is multiplicative, and one has

$$
\begin{equation*}
\varphi_{e}(n)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{r}\right), \tag{2}
\end{equation*}
$$

where φ is the classical Euler totient function.
Let $\sigma(a)$ denote the sum of (ordinary) divisors of a. The product of e-divisors of n, denoted by $T_{e}(n)$ has the following expression (see [9]):

$$
\begin{equation*}
T_{e}(n)=p_{1}^{\sigma\left(a_{1}\right) d\left(a_{2}\right) \cdots d\left(a_{r}\right)} \cdots p_{r}^{\sigma\left(a_{r}\right) d\left(a_{1}\right) \cdots d\left(a_{r}-1\right)} \tag{3}
\end{equation*}
$$

A number n is called multiplicatively e-perfect if $T_{e}(n)=n^{2}$. Based on (3), in [9] we have proved that n is multiplicatively e-perfect iff n can be written as $n=p^{m}$, where $\sigma(m)=2 m$, and p is a prime. Two notions of exponentiallyharmonic numbers have been recently introduced by the author in [11]. Finally, we note that for a given arithmetic function $f: N^{*} \rightarrow N^{*}$, in [5], [6] we have introduced the minimun function of f by

$$
\begin{equation*}
F_{f}(n)=\min \{k \geq 1: n \mid f(k)\} \tag{4}
\end{equation*}
$$

Various particular cases, including $f(k)=\varphi(k), f(k)=\sigma(k), f(k)=$ $d(k), f(k)=S(k)$ (Smarandache function), $f(k)=T(k)$ (product of ordinary divisors), have been studiedrecently by the present author. He also studied the duals of these functions (when these have sense) defined by

$$
\begin{equation*}
F_{f}^{*}(n)=\max \{k \geq 1: f(k) \mid n\} \tag{5}
\end{equation*}
$$

See e.g. [10] and the References therein.

§2. Main notions and Results

The aim of this note is to introduce certain new arithmetic functions, related to the above considered notions.
Since for the product of ordinary divisors of n one can write

$$
\begin{equation*}
T(n)=n^{d(n) / 2} \tag{6}
\end{equation*}
$$

trying to obtain a similar expression for $T_{e}(n)$ of the product of e-divisors of n, by (3) the following can be written:

Theorem 1.

$$
\begin{equation*}
T_{e}(n)=(t(n))^{d_{e}(n) / 2} \tag{7}
\end{equation*}
$$

where $d_{e}(n)$ is the number of exponential divisors of n, given by (1); while the arithmetical function $t(n)$ is given by $t(1)=1$

$$
\begin{equation*}
t(n)=p_{1}^{2 \frac{\sigma\left(a_{1}\right)}{d\left(a_{1}\right)}} \cdots p_{r}^{2 \frac{\sigma\left(a_{r}\right)}{d\left(a_{r}\right)}} \tag{8}
\end{equation*}
$$

$n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ being the prime factorization of $n>1$.
Proof. This follows easily by relation (3), and the definition of $t(n)$ given by (8).
Remark For multiplicatively perfect numbers given by $T(n)=n^{2}$, see [7]. For multiplicatively deficient numbers, see [8].

Remark that

$$
\begin{equation*}
d_{e}(n) \leq d(n) \tag{9}
\end{equation*}
$$

for all n, with equality only for $n=1$. Indeed, by $d(a)<a+1$ for $a \geq 2$, via (1) this is trivial.

On the other hand, the inequality

$$
\begin{equation*}
t(n) \leq n \tag{10}
\end{equation*}
$$

is not generally valid. Let e.g. $n=p_{1}^{q_{1}} \cdots p_{r}^{q_{r}}$, where all $q_{i}(i=\overline{1, r})$ are primes. Then, by (8) $t(n)=p_{1}^{q_{1}+1} \cdots p_{r}^{q_{r}+1}=\left(p_{1} \cdots p_{r}\right) n>n$. However, there is a particular case, when (10) is always true, namely suppose that $\omega\left(a_{i}\right) \geq 2$ for all $i=\overline{1, r}$ (where $\omega(a)$ denotes the number of distinct prime
factors of a). In [3] it is proved that if $\omega(a) \geq 2$, then $\frac{\sigma(a)}{d(a)}<\frac{a}{2}$. This gives (10) with strict inequality, if the above conditions are valid.

Without any condition one can prove:
Theorem 2. For all $n \geq 1$,

$$
\begin{equation*}
T_{e}(n) \leq T(n), \tag{11}
\end{equation*}
$$

with equality only for $n=1$ and $n=$ prime.
Proof. The inequality to be proved becomes

$$
\begin{equation*}
\left(p_{1}^{\frac{\sigma\left(a_{1}\right)}{\left(a_{1}\right)}} \cdots p_{r}^{\frac{\sigma\left(a_{r}\right)}{d\left(a_{r}\right)}}\right)^{d\left(a_{1}\right) \cdots d\left(a_{r}\right)} \leq\left(p_{1}^{a_{1}} \cdots p_{r}^{\left.a_{r}\right)^{\left(a_{1}+1\right) \cdots\left(a_{r}+1\right) / 2}}\right. \tag{12}
\end{equation*}
$$

We will prove that

$$
\frac{\sigma\left(a_{1}\right)}{d\left(a_{1}\right)} d\left(a_{1}\right) \cdots d\left(a_{r}\right) \leq \frac{a_{1}\left(a_{1}+1\right) \cdots\left(a_{r}+1\right)}{2}
$$

with equality only if $r=1$ and $a_{1}=1$. Indeed, it is known that (see [2]) $\frac{\sigma\left(a_{1}\right)}{d\left(a_{1}\right)} \leq \frac{a_{1}+1}{2}$, with equality only for $a_{1}=1$ and $a_{1}=$ prime. On the other hand, $d\left(a_{1}\right) \cdots d\left(a_{r}\right) \leq a_{1}\left(a_{2}+1\right) \cdots\left(a_{r}+1\right)$ is trivial by $d\left(a_{1}\right) \leq a_{1}$, $d\left(a_{2}\right)<a_{2}+1, \cdots, d\left(a_{r}\right)<a_{r}+1$, with equality only for $a_{1}=1$ and $r=1$. Thus (12) follows, with equality for $r=1, a_{1}=1$, so $n=p_{1}=$ prime for $n>1$.
Remark In [4] it is proved that

$$
\begin{equation*}
\varphi_{e}(n) d_{e}(n) \geq a_{1} \cdots a_{r} \tag{13}
\end{equation*}
$$

Now, by (2), $d_{e}(n) \geq \frac{a_{1}}{\varphi\left(a_{1}\right)} \cdots \frac{a_{r}}{\varphi\left(a_{r}\right)} \geq 2^{r}$ if all $a_{i}(i=\overline{1, r})$ are even, since it is well-known that $\varphi(a) \leq \frac{a}{2}$ for $a=$ even. Since $d(n)=\left(a_{1}+1\right) \cdots\left(a_{r}+1\right) \leq$ $2^{a_{1}} \cdots 2^{a_{r}}=2^{a_{1}+\cdots+a_{r}}=2^{\Omega(n)}$ (where $\Omega(n)$ denotes the total number of prime divisors of n), by (9) one can write:

$$
\begin{equation*}
2^{\omega(n)} \leq d_{e}(n) \leq 2^{\Omega(n)} \tag{14}
\end{equation*}
$$

if all a_{i} are even, i.e. when n is a perfect square (right side always).
Similarly, in [4] it is proved that

$$
\begin{equation*}
\varphi_{e}(n) d_{e}(n) \geq \sigma\left(a_{1}\right) \cdots \sigma\left(a_{r}\right) \tag{15}
\end{equation*}
$$

when all $a_{i}(i=\overline{1, r})$ are odd. Let all $a_{i} \geq 3$ be odd. Then, since $\sigma\left(a_{i}\right) \geq$ $a_{i}+1$ (with equality only if $a_{i}=$ prime), (15) implies

$$
\begin{equation*}
\varphi_{e}(n) d_{e}(n) \geq d(n), \tag{16}
\end{equation*}
$$

which is a converse to inequality (9).
Let now introduce the arithmetical function $t_{1}(n)=p_{1}^{2 \sqrt{a_{1}}} \cdots p_{r}^{2 \sqrt{a_{r}}}, t_{1}(1)=$ 1 and let $\gamma(n)=p_{1} \cdots p_{r}$ denote the "core" of n (see [2]). Then:

Theorem 3.

$$
\begin{equation*}
t_{1}(n) \geq t(n) \geq n \gamma(n) \quad \text { for all } n \geq 1 \tag{17}
\end{equation*}
$$

Proof. This follows at once by the known double-inequality

$$
\begin{equation*}
\sqrt{a} \leq \frac{\sigma(a)}{d(a)} \leq \frac{a+1}{2} \tag{18}
\end{equation*}
$$

with equality for $a=1$ on the left side, and for $a=1$ and $a=$ prime on the right side. Therefore, in (17) one has equality when n is squarefree, while on the right side if n is squarefree, or $n=p_{1}^{q_{1}} \cdots p_{r}^{q_{r}}$ with all $q_{i}(i=\overline{1, r})$ primes. Clearly, the functions $t_{1}(n), t(n)$ and $\gamma(n)$ are all multiplicative.
Finally, we introduce the minimun exponential totient function by (4) for $f(k)=$ $\varphi_{e}(k)$:

$$
\begin{equation*}
E_{e}(n)=\min \left\{k \geq 1: n \mid \varphi_{e}(k)\right\} \tag{19}
\end{equation*}
$$

where $\varphi_{e}(k)$ is the e-totient function given by (2). Let

$$
\begin{equation*}
E(n)=\min \{k \geq 1: n \mid \varphi(k)\} \tag{20}
\end{equation*}
$$

be the Euler minimum function (see [10]). The following result is true:

Theorem 4.

$$
\begin{equation*}
E_{e}(n)=2^{E(n)} \quad \text { for } n>1 \tag{21}
\end{equation*}
$$

Proof. Let $k=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$. Then $k \geq 2^{\alpha_{1}+\cdots+\alpha_{s}} \geq 2^{s}$. Let s be the least integer with $n \mid \varphi(s)$ (i.e. $s=E(n)$ by (20)). Clearly $\varphi_{e}\left(2^{s}\right)=\varphi(s)$, so $k=2^{s}$ is the least $k \geq 1$ with property $n \mid \varphi_{e}(k)$. This finishes the proof of (21). For properties of $E(n)$, see [10].

Remark It is interesting to note that the "maximum e-totient", i.e.

$$
\begin{equation*}
E_{e}^{*}(n)=\max \left\{k \geq 1: \varphi_{e}(k) \mid n\right\} \tag{22}
\end{equation*}
$$

is not well defined. Indeed, e.g. for all primes p one has $\varphi_{e}(p)=1 \mid n$, and $E_{e}^{*}(p)=+\infty$, so $E_{e}^{*}(n)$ given by (22) is not an arithmetic function.

References

[1] E.G.Straus and M.V.Subbarao, On exponential divisors, Duke Math. J. 41 (1974), 465-471.
[2] D.S.Mitronović and J.Sándor, Handbook of Number Theory, Kluwer Acad. Publ., 1995.
[3] J.Sándor, On the Jensen-Hadamard inequality, Nieuw Arch Wiskunde (4)8 (1990), 63-66.
[4] J.Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math. 41 (1996), no.3, 91-94.
[5] J.Sándor, On certain generalizations of the Smarandache functions, Notes Number Th. Discr. Math. 5 (1999), no.2, 41-51.
[6] J.Sándor, On certain generalizations of the Smarandache function, Smarandache Notion Journal 11 (2000), no.1-3, 202-212.
[7] J.Sándor, On multiplicatively perfect numbers, J.Ineq.Pure Appl.Math. 2 (2001), no.1, Article 3,6 pp.(electronic).
[8] J.Sándor, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press, Rehoboth, 2002.
[9] J.Sándor, On multiplicatively e-perfect numbers, to appear.
[10] J.Sándor, On the Euler minimum and maximum functions, to appear.
[11] J.Sándor, On exponentially harmonic numbers, to appear.

