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József Sándor
Babes University of Cluj, Romania

§1. Introduction
Let n > 1 be a positive integer, and n = pα1

1 · · · pαr
r its prime factorization.

A number d | n is called an Exponential divisor (or e-divisor, for short) of n

if d = pb1
1 · · · pbr

r with bi | ai(i = 1, r). This notion has been introduced by
E.G. Straus and M.V. Subbarao[1]. Let σe(n), resp. de(n) denote the sum,
resp. number of e-divisors of n, and let σe(1) = de(1) = 1, by convention.
A number n is called e-perfect, if σe(n) = 2n. For results and References
involving e-perfect numbers, and the arithmetical functions σe(n) and de(n),
see [4]. For example, it is well-known that de(n) is multiplicative, and

de(n) = d(a1) · · · d(ar), (1)

where n = pα1
1 · · · pαr

r is the canonical form of n, and d(a) denotes the number
of (ordinary) divisors of a.
The e-totient function ϕe(n), introduced and studied in [4] is multiplicative,
and one has

ϕe(n) = ϕ(a1) · · ·ϕ(ar), (2)

where ϕ is the classical Euler totient function.
Let σ(a) denote the sum of (ordinary) divisors of a. The product of e-divisors
of n, denoted by Te(n) has the following expression (see [9]):

Te(n) = p
σ(a1)d(a2)···d(ar)
1 · · · pσ(ar)d(a1)···d(ar−1)

r (3)

A number n is called multiplicatively e-perfect if Te(n) = n2. Based on (3),
in [9] we have proved that n is multiplicatively e-perfect iff n can be written as
n = pm, where σ(m) = 2m, and p is a prime. Two notions of exponentially-
harmonic numbers have been recently introduced by the author in [11]. Finally,
we note that for a given arithmetic function f : N∗ → N∗, in [5], [6] we have
introduced the minimun function of f by

Ff (n) = min{k ≥ 1 : n | f(k)} (4)
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Various particular cases, including f(k) = ϕ(k), f(k) = σ(k), f(k) =
d(k), f(k) = S(k) (Smarandache function), f(k) = T (k) (product of ordi-
nary divisors), have been studiedrecently by the present author. He also studied
the duals of these functions (when these have sense) defined by

F ∗
f (n) = max{k ≥ 1 : f(k) | n} (5)

See e.g. [10] and the References therein.

§2. Main notions and Results
The aim of this note is to introduce certain new arithmetic functions, related

to the above considered notions.
Since for the product of ordinary divisors of n one can write

T (n) = nd(n)/2, (6)

trying to obtain a similar expression for Te(n) of the product of e-divisors of
n, by (3) the following can be written:

Theorem 1.

Te(n) = (t(n))de(n)/2, (7)

where de(n) is the number of exponential divisors of n, given by (1); while the
arithmetical function t(n) is given by t(1) = 1

t(n) = p
2

σ(a1)

d(a1)

1 · · · p2
σ(ar)
d(ar)

r (8)

n = pa1
1 · · · par

r being the prime factorization of n > 1.
Proof. This follows easily by relation (3), and the definition of t(n) given

by (8).
Remark For multiplicatively perfect numbers given by T (n) = n2, see [7].
For multiplicatively deficient numbers, see [8].

Remark that

de(n) ≤ d(n) (9)

for all n, with equality only for n = 1. Indeed, by d(a) < a + 1 for a ≥ 2, via
(1) this is trivial.
On the other hand, the inequality

t(n) ≤ n (10)

is not generally valid. Let e.g. n = pq1
1 · · · pqr

r , where all qi (i = 1, r) are
primes. Then, by (8) t(n) = pq1+1

1 · · · pqr+1
r = (p1 · · · pr)n > n. How-

ever, there is a particular case, when (10) is always true, namely suppose that
ω(ai) ≥ 2 for all i = 1, r (where ω(a) denotes the number of distinct prime
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factors of a). In [3] it is proved that if ω(a) ≥ 2, then σ(a)
d(a) < a

2 . This gives
(10) with strict inequality, if the above conditions are valid.
Without any condition one can prove:

Theorem 2. For all n ≥ 1,

Te(n) ≤ T (n), (11)

with equality only for n = 1 and n = prime.

Proof. The inequality to be proved becomes

(
p

σ(a1)

d(a1)

1 · · · p
σ(ar)
d(ar)
r

)d(a1)···d(ar)

≤ (pa1
1 · · · par

r )(a1+1)···(ar+1)/2 (12)

We will prove that

σ(a1)
d(a1)

d(a1) · · · d(ar) ≤ a1(a1 + 1) · · · (ar + 1)
2

with equality only if r = 1 and a1 = 1. Indeed, it is known that (see [2])
σ(a1)
d(a1) ≤ a1+1

2 , with equality only for a1 = 1 and a1 = prime. On the other
hand, d(a1) · · · d(ar) ≤ a1(a2 + 1) · · · (ar + 1) is trivial by d(a1) ≤ a1,
d(a2) < a2 + 1, · · ·, d(ar) < ar + 1, with equality only for a1 = 1 and r = 1.
Thus (12) follows, with equality for r = 1, a1 = 1, so n = p1 = prime for
n > 1.
Remark In [4] it is proved that

ϕe(n)de(n) ≥ a1 · · · ar (13)

Now, by (2), de(n) ≥ a1
ϕ(a1) · · · ar

ϕ(ar) ≥ 2r if all ai (i = 1, r) are even, since it
is well-known that ϕ(a) ≤ a

2 for a =even. Since d(n) = (a1+1) · · · (ar+1) ≤
2a1 · · · 2ar = 2a1+···+ar = 2Ω(n) (where Ω(n) denotes the total number of
prime divisors of n), by (9) one can write:

2ω(n) ≤ de(n) ≤ 2Ω(n) (14)

if all ai are even, i.e. when n is a perfect square (right side always).
Similarly, in [4] it is proved that

ϕe(n)de(n) ≥ σ(a1) · · ·σ(ar) (15)

when all ai (i = 1, r) are odd. Let all ai ≥ 3 be odd. Then, since σ(ai) ≥
ai + 1 (with equality only if ai = prime), (15) implies

ϕe(n)de(n) ≥ d(n), (16)
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which is a converse to inequality (9).
Let now introduce the arithmetical function t1(n) = p

2
√

a1

1 · · · p2
√

ar
r , t1(1) =

1 and let γ(n) = p1 · · · pr denote the "core" of n (see [2]). Then:

Theorem 3.

t1(n) ≥ t(n) ≥ nγ(n) for all n ≥ 1. (17)

Proof. This follows at once by the known double-inequality

√
a ≤ σ(a)

d(a)
≤ a + 1

2
, (18)

with equality for a = 1 on the left side, and for a = 1 and a = prime on the
right side. Therefore, in (17) one has equality when n is squarefree, while on
the right side if n is squarefree, or n = pq1

1 · · · pqr
r with all qi (i = 1, r) primes.

Clearly, the functions t1(n), t(n) and γ(n) are all multiplicative.
Finally, we introduce the minimun exponential totient function by (4) for f(k) =
ϕe(k):

Ee(n) = min{k ≥ 1 : n | ϕe(k)}, (19)

where ϕe(k) is the e-totient function given by (2). Let

E(n) = min{k ≥ 1 : n | ϕ(k)} (20)

be the Euler minimum function (see [10]). The following result is true:

Theorem 4.

Ee(n) = 2E(n) for n > 1. (21)

Proof. Let k = pα1
1 · · · pαs

s . Then k ≥ 2α1+···+αs ≥ 2s. Let s be the least
integer with n | ϕ(s) (i.e. s = E(n) by (20)). Clearly ϕe(2s) = ϕ(s), so
k = 2s is the least k ≥ 1 with property n | ϕe(k). This finishes the proof of
(21). For properties of E(n), see [10].
Remark It is interesting to note that the "maximum e-totient", i.e.

E∗
e (n) = max{k ≥ 1 : ϕe(k) | n} (22)

is not well defined. Indeed, e.g. for all primes p one has ϕe(p) = 1 | n, and
E∗

e (p) = +∞, so E∗
e (n) given by (22) is not an arithmetic function.
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