
An Emprical Study of Energy Consumption in
Distributed Simulations*

Richard Fujimoto
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia USA

Aradhya Biswas
Department of Computer Science and Engineering

Indian Institute of Technology Hyderabad
Yeddumailaram, Telangana, India

Abstract—Power and energy consumption are important
concerns in the design of high performance and mobile
computing systems, but have not been widely considered in the
design of parallel and distributed simulations. The importance of
these factors is discussed and metrics for power and energy
overhead in parallel and distributed simulations are proposed.
Factors affecting the energy consumed by synchronization
algorithms and software architectures are examined. An
experimental study is presented examining energy consumption
of the well-known Chandy/Misra/Bryant algorithm executing on
a peer-to-peer mobile computing platform and compared with a
centralized client-server approach using the YAWNS
synchronization algorithm. Initial results concerning queueing
network simulations are also presented. The results of this study
suggest that existing distributed simulation algorithms require a
significant amount of additional energy compared to a sequential
execution. Further, different synchronization algorithms can
yield different energy consumption behaviors.

Keywords—parallel discrete event simulation; distributed
simulation; power aware computing

I. INTRODUCTION
Power consumption has become a major concern for many

parallel and mobile computing applications. The need to reduce
energy use is clear in mobile and embedded computing where
reductions result in increased battery life or enable the use of
smaller batteries thereby reducing the size and weight of
devices. In high-end computing energy consumption is a
dominant cost associated with operating large data centers and
supercomputers, and a substantial amount of effort has gone
into developing techniques to mitigate this expense. Power
consumption has become the key factor preventing substantial
further improvements in clock speed and now limits computer
performance. It has been cited as a major obstacle to creating
supercomputers yielding exascale performance. Despite the
importance of power and energy in computation today, very
little attention to date has focused on understanding and
developing techniques to minimize power and energy
consumption in parallel and distributed simulations.

Energy is the capacity of a system to perform work. It is
typically measured in units called joules where one joule is the
work performed by an electrical circuit to move a charge of
one coulomb through an electrical potential difference of one
volt. Power is the amount of energy consumed per unit time

with one watt of power defined as the expenditure of one joule
of energy per second.

Minimizing energy usage and power consumption are not
the same thing [1]. For example, decreasing the clock rate of
the processor can lead to less power consumption. However,
this will usually lead to longer execution times and an increase
in the total amount of energy needed to complete a given
computation. Battery operated devices are energy-constrained
systems because they operate with a finite amount of available
energy; thus a design goal might be to minimize the amount of
energy utilized by the computation as a whole, subject to
certain execution time constraints. On the other hand, in
power-constrained systems such as supercomputers and data
centers the amount of available energy is effectively unlimited,
but a design goal may be to minimize the amount of time
required to complete the computation given a certain maximum
level of power consumption, or to minimize power
consumption, subject to certain execution time constraints.

Power-aware and energy-aware systems are those where
power or energy consumption is a principal design
consideration. For example, power-aware systems may utilize
techniques to change the system’s behavior based on the
amount of power being consumed. Energy-aware systems may
modify the operation of the system based the amount of energy
remaining in batteries.

It should be noted that minimizing execution time does not
necessarily result in minimal energy consumption. Energy
consumption is affected by many factors, e.g., the operation of
the memory system, the number and complexity of
computations performed by arithmetic circuits, and
importantly, the amount of inter-processor communication that
is required. A parallel or distributed computation that executes
in a shorter amount of time may consume both more energy
and more power if more communications are required.

Power- and energy-aware computing is increasing in
importance for parallel and distributed simulation systems and
applications. The main contribution of this paper is to highlight
the increasing importance of power and energy consumption in
parallel and distributed simulations. We propose performance
metrics to quantitatively assess energy consumption in parallel
and distributed simulations and report initial empirical
measurements of the energy consumed by concervative
synchronization algorithms.

* This research was supported by AFOSR grant FA9550-13-1-0100.

The next section describes a motivating application to
highlight the relevance of energy consumption in distributed
simulation. This is followed by a discussion of related work in
this area by briefly surveying power- and energy-aware
computing. Metrics for measuring energy and power
consumption in distributed simulations are then proposed. The
two distributed simulation systems examined in this study – a
peer-to-peer system using the Chandy/Misra/Bryant algorithm
and a client-server architecture using the YAWNS algorithm
are then described. The experimental configuration and
benchmark programs used in this study are presented, followed
by a discussion of the power measurement methodology that is
used. Experimental results are then presented and discussed,
followed by concluding remarks and discussion of areas
requiring further investigation.

II. A MOTIVATING APPLICATION
Embedded mobile distributed simulations can be used to

create adaptive sensor networks to monitor dynamically
changing physical systems. For example, consider a collection
of small, battery-operated unmanned aerial vehicles (UAVs)
tasked with monitoring a physical system, e.g., tracking a set of
vehicles moving throughout a city, monitoring the spread of a
forest fire, or assessing the dispersion of a hazardous chemical
plume following an accident (see Figure 1). Assume each UAV
is equipped with sensors, an on-board computer, and wireless
communications. Each UAV may initially be assigned to
monitor a certain geographical area. It collects information
concerning the state of the physical system in its immediate
vicinity. Collectively the team of UAVs may then execute a
distributed simulation to project the future state of the system,
e.g., to project the location of the fire some time into the future
in order to determine how best to relocate the UAVs in order to
continue monitoring its spread. In some cases more UAVs may
be assigned to monitor regions of particular interest, e.g., areas
with higher traffic congestion, a larger density of fires, or
higher concentrations of chemicals, leaving fewer UAVs to
monitor areas projected to be less important to the monitoring
activity. One can envision other similar surveillance
applications involving teams of people carrying handheld
devices or autonomous battery-powered ground vehicles.

Figure 1. Notional Diagram of a mobile data-driven

distributed simulation system for monitoring traffic.

Adaptive sensor networks such as these could utilize
centralized computing capabilities where sensors report
information back to a command center where predictive
simulations could be executed and the network reconfigured
accordingly. Placing the simulations within the sensor network
itself offers several advantages. First, it reduces or eliminates
reliance on connectivity to the central command center,
mitigating a potential point of failure. Further, a distributed
implementation enables greater scalability than the centralized
approach; one can envision many teams of UAVs that
collaborate to monitor larger scale systems than would
otherwise be possible. In certain applications embedding the
simulation within the physical system itself enables faster
response time for latency-critical applications.

Systems such as these are referred to as dynamic data-
driven application systems (DDDAS) [2]. DDDAS involves
incorporating live data from instrumented systems into
executing applications in order to optimize the system and/or
steer the measurement process. The DDDAS paradigm
involves repeatedly executing a processing cycle of (1) sense,
(2) predict future system states, and (3) adapt or reconfigure
the system to optimize the physical system or to continue the
monitoring process. DDDAS has been studied in a variety of
applications. Our focus here is concerned with using embedded
distributed simulation to implement the second step of the
DDDAS processing cycle. It is clear that for these situations,
energy consumption is an important concern when the
simulation operates within battery-operated mobile devices.
Exploitation of the DDDAS paradigm in UAVs is an active
field of study and are discussed in (for example) [3, 4].

III. RELATED WORK
There is a substantial literature in power- and energy-aware

computing systems, and a variety of techniques that may be
employed. Dynamic voltage and frequency scaling (DVFS) is
concerned with altering the voltage and/or clock speed of the
processor by taking into consideration energy and performance
constraints [5-7]. Dynamic power consumption in CMOS
circuits is proportional to FV2 where F is the frequency at
which the circuit is clocked, and V is the power supply voltage.
Several commercial microprocessors support modification of
the processor’s frequency and voltage to trade off power
consumption and performance. Scheduling algorithms for
embedded systems have been designed to balance energy
saving with meeting real-time deadlines, e.g., see [8-10].
Processors also commonly provide different modes of
operation that utilize different amounts of power. Some work
examines the utilization of these modes of operation,
sometimes in conjunction with DVFS [11-13]. Other research
examines issues such as predictive modeling of energy and
power [14-16]; and embedded systems evaluations [17-20].

To date, work in power and energy aware computing has
largely focused on low-level aspects of the computing system.
Existing work focuses on effectively utilizing specific
hardware capabilities, the development of operating systems
and compilers, and communication protocols (e.g., routing
algorithms in sensor and ad hoc networks) to reduce energy
usage.

Only a modest amount of work to date has addressed
energy and power consumption in parallel and distributed
simulations. Some work has focused on characterizing power
consumption for scientific computing applications [21-24].
One early effort examined power consumption for
disseminating state information in distributed virtual
environments, highlighting dead-reckoning algorithms and
tradeoffs between state consistency and power consumption
[25]. More recent work examined power consumption related
to the implementation of data distributed management (DDM)
services defined in the High Level Architecture [26]. To our
knowledge, no prior work has examined power and energy
consumption of synchronization algorithms for parallel and
distributed simulations, the primary focus of the work
described here.

IV. ENERGY AND POWER METRICS
In general, the three key metrics of greatest interest are the

amount of energy, power, and time required to complete a
computation. These metrics may be traded off against each
other. For example, as discussed earlier one can trivially reduce
power consumption by reducing clock frequency at the
expense of increased execution time. In high performance
computing contexts both execution time and power
consumption are of interest, and balanced based on constraints
such as a maximum level (ceiling) of power consumption.
Similarly, in real-time applications both energy consumption
and maximum execution time are important for best use of
system resources while still meeting real-time constraints. For
this reason the product of energy (or power) and execution
time, referred to as the energy-delay product, is sometimes
used as a metric that simultaneously considers both energy
consumption and execution time [27].

A central concern here is the amount of additional energy
consumed by the parallel/distributed execution that takes into
account parallel/distributed computing overheads such as
interprocessor message communication and synchronization.
For this purpose we define a metric termed the energy
overhead. Energy overhead refers to the amount of additional
energy that is expended in the execution of a particular
implementation of a parallel or distributed simulation on some
hardware configuration relative to an energy-efficient
sequential execution of the same computation.

This definition is motivated by the traditional definition of
speedup. Like the speedup definition, “performance” is defined
relative to an efficient sequential implementation. Also like
speedup, this definition is meant to encourage the development
of approaches to minimizing energy consumption recognizing
that a baseline amount of energy must necessarily be consumed
by the computation, just as speedup recognizes that a certain
amount of time is required to complete the computation on a
sequential machine. Energy overhead highlights the cost of the
parallel/distributed implementation in terms of energy
consumption.

Just as speedup may be determined using strong or weak
scaling, similar methodologies apply in measuring energy
overhead. In strong scaling the speedup is computed by
comparing the execution time of a fixed sized sequential

computation with a parallel implementation of the same
computation distributed across a parallel processor. In this light
strongly scaled energy overhead is computed as EP(N) – ES
where ES is the energy consumed by a sequential
implementation of the computation, and EP(N) is the energy
consumed by a parallel/distributed implementation of the same
computation distributed over N processors.

Alternatively, speedup computed using weak scaling
involves scaling the size of the computation in proportion with
the number of processors. Here, weakly scaled energy
overhead is defined as EP’(N) – ES’ where ES’ is the energy
consumed by a computation C on a sequential machine and
EP’(N) is the energy consumed by the same computation C
executing on a single processor of the parallel/distributed
machine with N processors and where the entire computation
executed on the parallel/distributed machine is of size C*N.
Weakly scaled energy overhead provides insight into the
amount of additional energy consumed by the parallel or
distributed computation as it is scaled to larger sizes in
proportion to the size of the parallel/distributed computer.

The energy overhead is impacted by several factors. It
clearly depends on the hardware configuration, including
consideration of memory and communications circuits, and
system software on which the parallel/distributed simulation
executes. Energy consumption depends on any energy-saving
techniques such as DVFS that are used. Our particular concern
is the overhead associated with the synchronization algorithm.
As will be discussed next, energy consumption depends on the
software architecture used for the implementation.

The above discussion focused on energy overhead. Similar
metrics for power overhead can also be defined. In this context,
the power overhead refers to the additional amount of power
required to execute the parallel/distributed simulation relative
the sequential simulation.

V. DISTRIBUTED SIMULATION SYSTEMS
In this study we compare two distributed simulation

middleware approaches using conservative synchronization
algorithms. These two approaches utilize a peer-to-peer and a
client-server architecture, respectively. The context in which
we envision these architectures to be deployed might be an
embedded DDDAS application where the distributed
simulation executes on a power-constrained mobile computing
platform, possibly connected via wireless links to a local
server. This architecture places the simulations in close
physical proximity to online sources of data.

The “classic” approach to implementing a parallel discrete
event simulation (PDES) program is to use a peer-to-peer
architecture where each processor or node has approximately
the same computational capabilities as other nodes. The logical
processes (LPs) making up the PDES program are mapped to
different computation nodes using a mapping algorithm or
heuristic. LPs communicate directly with other LPs by sending
messages to the appropriate nodes. Early work in PDES
focused almost exclusively on this approach, and to this day,
this is often considered to be the “default” approach to
implementing a parallel or distributed simulation. It is depicted
in Figure 2(a) below.

Figure 2. Peer-to-peer and client-server approaches.

In the peer-to-peer architecture a distributed algorithm is
typically used to implement synchronization. Asynchronous
algorithms use direct peer-to-peer communications between
LPs (or processors). The Chandy/Misra/Bryant (CMB)
algorithm is perhaps the most well known example of this
approach [28, 29]. The principal source of energy overhead for
this algorithm results from transmitting null messages between
processors.

A second approach to distributed simulation is the
client/server architecture, as shown in Figure 2(b). Logical
processes execute within client processors while the simulation
engine executes within the server. Here, in the context of the
applications described earlier, we envision a mobile server that
might reside in a special device, e.g., a larger gasoline-powered
UAV. In general, however, the server might utilize the same
mobile processor as client nodes in which case the distinction
between clients and servers is largely logical, or the server
might utilize a different, likely more powerful, machine.

Clients only communicate with the server; direct client-to-
client communications are not allowed. Two key functions
performed by the server include forwarding messages sent
between LPs residing in different clients and synchronization
among the LPs/clients. This architecture is sometime used in
federated distributed simulations, e.g., those based on the High
Level Architecture standard, where RTI services are for the
most part implemented within the server.

A natural, straightforward approach to implementing
synchronization in client-server architectures are synchronous
algorithms that utilize global synchronization points. The
computation executes through a sequence of epochs where
each involves determining those events that can be executed in
this epoch with timestamps that are guaranteed to be smaller

than any event that might later be received. Well known
synchronous algorithms include YAWNS [30] and Bounded
Lag [31]. A principal source of energy overhead for this
algorithm lies in the barrier synchronization mechanism and
LBTS computation that is required. Each epoch includes a
barrier and computation of the lower-bound-on-timestamp
(LBTS) value indicating the minimum timestamp of any event
it might be generated in the future. More precisely, each client
processor computes the smallest time stamp for any new
message it might produce in the absence of receiving any
additional messages as Ti + L whee Ti is the timestamp of the
next unprocessed local event within the processor and L is the
looakhead for the processor. LBTS is defined as the minimum
among all of these values produced by the different processors.
All events with timestamp less than LBTS are safe to process.

VI. EXPERIMENTAL CONFIGURATION AND BENCHMARK
APPLICATION

The experimental configuration is intended to mimic an
embedded distributed simulation application where the
distributed simulation executes within a set of mobile
processors. In the peer-to-peer system the mobiles make up the
entire hardware platform. In the client-server architecture we
posit the server resides in a location where a power source is
readily available so energy use within the server is of
secondary importance.

Experiments were performed to compare the CMB (peer-
to-peer) and YAWNS (client-server) algorithms. A LG Nexus
5 cellular phone with a quadcore Qualcomm MSM8974
Snapdragon 800 processor, 2 GB memory, and 16 GB storage
was used as the mobile computing platform. While the systems
we envision may not necessarily use cellular phones as their
compute engine, they most likely will utilize the same mobile
processors that are used in cellular phones. The phone runs the
Android version 5.0.1 (Android Lollipop) operating system and
was used in the peer-to-peer experiments. The same phone was
used as the client in the client server architecture. A laptop was
used as the server for the latter architecture. Hardware-based
techniques to reduce power consumption such as voltage or
frequency scaling were not used in these experiments.

All inter-processor communications utilizes wireless links.
In both cases the device’s 802.11n WiFi network interface was
used for communications between processors. A private
wireless network was established among the devices to avoid
interference resulting from Internet traffic. The cellular
network capability of the phone is not used in these
experiments.

The energy and power consumption data are derived from
direct measurement of the Android device. Specifically, the
value of the instantaneous power being consumed by the
device is calculated by multiplying the instantaneous battery
current given by the constant integer
BATTERY_PROPERTY_CURRENT_NOW and the current
battery voltage level given by the constant string
EXTRA_VOLTAGE. Both of these appear in the
“BatteryManager” class of the “android.os” API. The
instantaneous power consumption so obtained is then used to
calculate the energy consumption over time.

A. Energy Used By Synchronization Algorithms
An initial set of experiments were conducted to measure the

amount of power used by the synchronization algorithm. This
was accomplished by creating benchmark programs where
each LP only processed local events, and did not exchange
events with other processors. This ensures that interprocessor
communication is only utilized by the synchronization
algorithm rather than passing event messages. In these
experiments each LP is initialized with some number of local
events, and processing each event causes one new locally
scheduled event to be scheduled with a fixed time stamp
increment. A set of experiments were then performed using the
CMB and YAWNS implementations as lookahead was varied.
Because no events are scheduled between processors, the
lookahead could be set to arbitrary values without concern of
violating lookahead constraints. In these experiments the
simulation benchmark program is the same across all
lookahead values and both synchronization algorithms,
enabling fair comparisons.

The amount of energy consumed by the benchmark
programs for different lookahead values are shown in Figure 3.
In this figure both lookahead and energy are plotted on
logarithmic scales.

It is seen that lookahead can have a dramatic effect on the
amount of power consumed by the synchronization algorithm –
two orders of magnitude across the lookahead values used in
these experiments.

The CMB algorithm yielded energy consumption that
steadily decreased as the lookahead was increased. For very
small lookahead values CMB is prone to a phenomena called
lookahead creep where null messages must be sent among the
processors to, in effect, enable them to advance by an amount
of simulation time equal to the lookahead. To a first-order
approximation, doubling the lookahead value approximately
doubles the amount of time advance that can be gained with

each “round” of null messages. Assuming the primary cause of
energy utilization is the time to send null messages, the data
shown in Figure 2 is consistent with this observation where it is
seen a steady decline in energy consumption results as the
lookahead value is increased.

The YAWNS experiments yielded a decidely different
behavior. Here, the energy consumptions remains at a
relatively constant level for small to moderate lookahead
values. However, energy consumption then steadily decreses
with lookahead increases at relatively high lookahead values.
In contrast to CMB, YAWNS is not prone to the lookahead
creep problem in the sense that the algorithm exploits
knowledge of the timestamp of the next unprocessed event to
advance simulation time. Consider the case where the
lookahead is very small, say 1, and the average time between
events is 10 units of simulation time. In accordance with time
creep, CMB must advance each LP by increments of 1 with
each round of null messages to advance LPs to the point where
they can process the next (non-null) event. On the other hand,
YAWNS will immediately advance the LP to the time of the
next event. If the lookahead is small, YAWNS will, again to a
first-order estimate, advance LBTS to the timestamp of the
next unprocessed simulation event. Therefore the energy
required for synchronization is in proportion to the number of
events, independent of the lookahead value, explaining why
energy consumption remains flat for small lookahead values.
This remains true until the lookahead becomes large. With
large lookahead values, many events can be processed in each
epoch of YAWNS. Roughly speaking, doubling the lookahead
value approximately doubles the number of events that can be
processed within each epoch. Thus, for large lookahead values,
the energy overhead steadily declines as the lookahead
increases. The data in Figure 2 is consistent with this
explaination.

Overall, it can be seen that YAWNS and CMB use roughly
comparable amounts of energy in the experiments with large
lookahead values. However, these measuements also suggest
CMB expends considerably more energy at very low
lookahead values due to the lookahead creep problem.

B. Queueing Network Simulations
A second benchmark program used in this study is a

simulation of a closed queueing network with J jobs circulating
among the nodes of the network. The queueing network is
configured as a three-dimensional toroid topology. Each
processor is assigned one two-dimensional plane of the toroid.
Once a job receives service it is routed to a randomly selected
neighboring node, with each neighbor equally likely to be
selected. Each node of the network contains a single server
with service time drawn from an exponential distribution plus a
constant value L. Jobs arriving at each network node are placed
into a single queue, and are served in first-come-first-serve
order. The minimum service time L is used as a control
variable to facilitate experimentation with increased lookahead
values. In these experiments the lookahead is enhanced by pre-
sampling the random number generator to produce the service
time of the next job to be processed by the server; if the pre-
sampled value is P, then the time stamp of the next message
generated by the LP must be at least L+P units of simulation

Figure 3. Energy consumed for Chandy/Misra/Bryant
and YAWNS synchronization algorithms as lookahead is

varied.

time into the future [32]. Further, the simulation is optimized to
exploit the fact that the queue uses a FCFS queueing discipline,
resulting in increased lookahead in proportion to the queueing
delay. The benchmark program is written in C.

Figure 4 shows the energy consumed by the three
simulations for queueing networks of size 4 (2x2), 49 (7x7),
484 (22x22), and 1024 (32x32) nodes executing on each
processor. The total number of events processed by the
simulators was kept constant across all of these runs, i.e., the
total amount of simulation computation remained the same
across the runs. This figure shows energy consumption data;
power consumption data demonstrated similar trends to that
shown in the figure.

It can be seen that the energy consumed by the sequential
and P2P-CMB simulations remains about constant as network
size is increased, but there is a modest reduction of
approximately 13% in energy consumed by the CS-YAWNS
simulation for the largest network compared to the smallest.
We believe this is due to a much smaller number of
synchronization messages in CS-YAWNS in the larger sized
queueing networks. YAWNS operates on a time window
scheme where all events in the current time window can be
safely processed without concern for events later arriving with
a smaller timestamp. For these experiments the lookahead, i.e.,
the minimum timestamp increment, remains the same across
all runs. Therefore, there will be more events within a single
time window that may be processed before the next global
synchronization. Since the total number of events in the
computation remains the same, this results in fewer global
synchronization points. The number of synchronization
messages in YAWNS was reduced in approximately the same
proportion as the size of the network (a factor of 256) across
these experiments.

Varying the size of the network changes the amount of
computation performed between communications. Larger
networks will have more simulation computations to complete

between successive interprocessor message communications,
likely accounting for the difference shown in this figure.

The energy overhead resulting from the distributed
execution of the simulation program relative the sequential
implementation using these two synchronization algorithms
and architectures is shown in Figure 5. These data are derived
by subtracting the energy consumed by the sequential
implementation from the distributed execution for each
network size, and plotting the resulting value as a percentage of
the energy expended in the sequential execution. As can be
seen, the distributed simulations expend from 35% to 54%
more energy than the sequential simulation executing the same
number of events. While the P2P implementation of CMB
remains approximately the same percentage of energy
overhead for the different sized networks, there is more
variability in the client-server YAWNS implementation.

VII. DISCUSSION
One can observe a few trends that emerge across these

experiments. First, these data highlight the energy cost
resulting from the distributed execution of a simulation
program is significant. Without more detailed measurements of
the architecture itself, one cannot definitively pinpoint all of
the causes of this increased energy usage, however it seems
clear that interprocessor communication for event passing and
synchronization is most likely a principal factor. These
measurements indicate that the energy overhead is significant
for these conservative synchronization algorithms.

Second, we observe that different synchronization
algorithms and architectures exhibit different behaviors with
respect to energy consumption. It is clear that different
synchronization algorithms will exhibit different message
passing behaviors, so in this sense it is not surprising that they
yield different energy consumption characteristics. These data
indicate that these differences can be significant, and can lead
to observable differences in energy consumption. Thus, for
applications where energy is a critical factor, e.g., for
distributed simulations executing on mobile devices, some care
should be taken with respect to the choice of synchronization
algorithm in order to maximize battery life.

Figure. 4. Energy consumption for 2x2, 7x7, 22x22, and 32x32
queueing networks. Note network size is plotted on a logarithmic
scale.

Figure 5. Energy overhead of CMB and YAWNS for different sized
queueing networks as a percentage of the energy expended by the
sequential execution.

Third, aspects of the distributed simulation application such
as lookahead that impact the behavior of the synchronization
algorithm may have a significant impact on the energy
efficiency of the distributed simulation. Further investigation is
required to examine the impact of aspects such as lookahead on
energy efficiency and to gain a deep understanding of this
relationship.

When comparing the energy consumption of these two,
very different, synchronization algorithms, two observations
are apparent. First, to a first order approximation, the overall,
average energy overhead observed for these synchronization
algorithms is significant, and to some extent, relatively similar.
One the other hand, the two algorithms exhibit different energy
characteristics as parameters of the simulation such as the
number of LPs and lookahead change. One must be cautionary
in that these observations are based on a very limited amount
of experimental data. Nevertheless, these results suggest that
further exploration of the relationship between the
synchronization algorithm and energy and power consumption
is warranted.

VIII. CONCLUSIONS AND FUTURE WORK
We have argued that power and energy consumption are

areas of increasing concern for parallel and distributed
simulation systems. In contexts such as embedded and mobile
systems and some high performance computing applications
we believe these aspects are of sufficient importance to merit
explicit consideration in the design of the system.

Metrics are proposed focusing on the energy and power
efficiency of parallel and distributed simulations relative to a
sequential simulation. The metrics focused on developing
measures that are consistent and complementary to standard
metrics used for some time, specifically speedup under strong
and weak scaling assumptions.

The empirical work presented here represents an initial
evaluation of the energy and power consumed for parallel and
distributed simulations, focusing on the synchronization
algorithm that is used. Experimental measurements of
operational distributed simulation systems demonstrate that
distributed execution incurs a significant overhead in energy
consumption to execute the simulation. Clearly the amount of
this overhead will depend on the application, but queueing
networks, a standard benchmark used for parallel and
distributed simulation, of various sizes all demonstrate
significant energy overhead. Architectural choices and the
synchronization algorithm can lead to different results
concerning the amount of energy and power that is consumed.
In these experiments the client-server YAWNS implementation
and the Chandy/Misra/Bryant algorithm executing on a peer-
to-peer architecture using WiFi communications yielded
comparable energy overheads overall, though the two
approaches exhibited different detailed behaviors for different
network sizes.

Power- and energy- consumption of parallel and distributed
simulations represents a new area of research that has many
unanswered questions. Deep understandings of the power and
energy consumed by distributed simulations, and those aspects
that are different relative to other types of computing

applications do not yet exist. Accurate, predictive models of
energy consumption of parallel and distributed simulations
taking into account the machine architecture as well as the
behavior of the simulation application are needed. A
comprehensive examination of alternate conservative
synchronization algorithms and their execution on different
distributed system architectures across a wide variety of
parameter settings is required. Similar evaluations and
comparisons with optimistic synchronization techniques are
needed. Extensive analyses for real world applications are
needed both for embedded and mobile simulations as well as
high performance computing systems.

Beyond analysis studies, the development and evaluation of
techniques to reduce energy- and power- consumption of
distributed simulations is an unexplored area of research. We
refer to techniques that take into consideration power and
energy consumption in the design and operation of the system
energy- and power-aware distributed simulations. One can
envision dynamically changing the behavior of the distributed
simulation based on the energy available in batteries, or based
on the power being consumed on a high performance
computing platform. Distributed simulations executing in a
real-time context such as those that arise in DDDAS impose
time constraints to completing the computation. Moreover, we
believe power- and energy-aware parallel and distributed
simulation represents a rich area of future research for the field
with many unsolved problems.

REFERENCES
[1] O. S. Unsal, "System-Level Power-Aware Computing In Complex Real-

Time and Multimedia Systems," Doctor of Philosophy Doctoral
Dissertation, Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, 2008.

[2] F. Darema, "Dynamic Data Driven Applications Systems: A New
Paradigm for Application Simulations and Measurements," presented at
the International Conference on Computational Science, Kraków,
Poland, 2004.

[3] F. Kamrani and R. Ayani, "Using On-Line Simulation for Adaptive Path
Planning of UAVs," in Proceedings of the 11th IEEE International
Symposium on Distributed Simulation and Real-Time Applications,
2007, pp. 167-174.

[4] G. R. Madey, M. B. Blake, C. Poellabauer, H. Lu, R. R. McCune, and
Y. Wei, "Applying DDDAS Principles to Command, Control and
Mission Planning for UAV Swarms," in Proceedings of the
International Conference on Compuational Science, 2012.

[5] R. Ge, X. Feng, and K. W. Cameron, "Performance-constrained
Distributed DVS Scheduling for Scientific Applications on Power-aware
Clusters," presented at the Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, 2005.

[6] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.
Rountree, et al., "Analyzing the Energy-Time Trade-Off in High-
Performance Computing Applications," IEEE Trans. Parallel Distrib.
Syst., vol. 18, pp. 835--848, June 2007.

[7] S. Hua and G. Qu, "Approaching the Maximum Energy Saving on
Embedded Systems with Multiple Voltages," presented at the
IEEE/ACM International Conference on Computer-Aided Design, 2003.

[8] S. Saewong and R. Rajkumar, "Practical voltage- scaling for fixed-
priority rt-systems," presented at the IEEE Real- Time and Embedded
Technology and Applications Symposium, 2003.

[9] G. Quan and X. Hu, "Energy efficient fixed- priority scheduling for real-
time systems on variable voltage processors," presented at the Design
Automation Conference, 2001.

[10] K.-M. Cho, C.-H. Liang, J.-Y. Huang, and C.-S. Yang, "Design and
implementation of a general purpose power-saving scheduling algorithm
for embedded systems," presented at the IEEE International Conference

on Signal Processing, Communications and Computing, Xi'an, China,
2011.

[11] A. Hoeller, L. Wanner, and A. Fröhlich, "A hierarchical approach for
power management on mobile embedded systems," in From Model-
Driven Design to Resource Management for Distributed Embedded
Systems, ed, 2006, pp. 265–274.

[12] K. Bhatti, C. Belleudy, and M. Auguin, "Power management in real time
embedded systems through online and adaptive interplay of DPM and
DVFS policies," presented at the International Conference on Embedded
and Ubiquitous Computing, Hong Kong, China, 2010.

[13] L. Niu and G. Quan, "Reducing both dynamic and leakage energy
consumption for hard real- time systems," presented at the international
conference on Compilers, architecture, and synthesis for embedded
systems, 2004.

[14] K. Czechowski and R. Vuduc, "A Theoretical Framework for
Algorithm-Architecture Co-design," presented at the Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on,
2013.

[15] S. Williams, A. Waterman, and D. Patterson, "Roofline: an insightful
visual performance model for multicore architectures," Commun. ACM,
vol. 52, pp. 65--76, April 2009.

[16] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
"GPUs and the Future of Parallel Computing," Micro, IEEE, vol. 31, pp.
7 -17, sept.-oct. 2011.

[17] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez,
"Energy Efficient HPC on Embedded SoCs: Optimization Techniques
for Mali GPU," presented at the Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, 2014.

[18] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and M.
Valero, "Supercomputing with Commodity CPUs: Are Mobile SoCs
Ready for HPC?," presented at the Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, New York, NY, USA, 2013.

[19] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and A. Ramirez,
"Experiences with mobile processors for energy efficient HPC,"
presented at the Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, 2013.

[20] L. Stanisic, B. Videau, J. Cronsioe, A. Degomme, V. Marangozova-
Martin, A. Legrand, et al., "Performance analysis of HPC applications
on low-power embedded platforms," presented at the Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, 2013.

[21] J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver, "Energy
Footprint of Advanced Dense Numerical Linear Algebra using Tile
Algorithms on Multicore Architecture," presented at the The 2nd
International Conference on Cloud and Green Computing, 2012.

[22] X. Feng, R. Ge, and K. W. Cameron, "Power and Energy Profiling of
Scientific Applications on Distributed Systems," presented at the
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2005.

[23] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
"PowerPack: Energy Profiling and Analysis of High-Performance
Systems and Applications," IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 21, pp. 658-671, May 2010.

[24] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S.
McKinley, "Looking back and looking forward: power, performance,
and upheaval," Commun. ACM, vol. 55, pp. 105--114, July 2012.

[25] W. Shi, K. S. Perumalla, and R. M. Fujimoto, "Power-aware State
Dissemination in Mobile Distributed Virtual Environments," in
Workshop on Parallel and Distributed Simulation, San Diego, 2003.

[26] S. Neal, G. Kanitkar, and R. M. Fujimoto, "Power Consumption of Data
Distribution Management for On-Line Simulations," presented at the
Principles of Advanced Discrete Simulation, Denver, Co., 2014.

[27] R. Gonzalez and M. Horowitz, "Energy Dissipation in General Purpose
Microprocessors," IEEE Journal of Solid-State Circuits, vol. 31, pp.
1277-1284, September 1996.

[28] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs," IEEE Transactions
on Software Engineering, vol. SE-5, pp. 440-452, 1979.

[29] R. E. Bryant, "Simulation of Packet Communication Architecture
Computer Systems," M.S. thesis, MIT-LCS-TR-188, Computer Science
Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1977.

[30] D. M. Nicol, "The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations," Journal of the Association for Computing
Machinery, vol. 40, pp. 304-333, June 1993.

[31] B. D. Lubachevsky, "Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks," Communications of the ACM, vol. 32, pp.
111-123, 1989.

[32] D. M. Nicol, "Parallel Discrete-Event Simulation of FCFS Stochastic
Queueing Networks," SIGPLAN Notices, vol. 23, pp. 124-137, 1988

