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Abstract—Power and energy consumption are important 
concerns in the design of high performance and mobile 
computing systems, but have not been widely considered in the 
design of parallel and distributed simulations. The importance of 
these factors is discussed and metrics for power and energy 
overhead in parallel and distributed simulations are proposed. 
Factors affecting the energy consumed by synchronization 
algorithms and software architectures are examined. An 
experimental study is presented examining energy consumption 
of the well-known Chandy/Misra/Bryant algorithm executing on 
a peer-to-peer mobile computing platform and compared with a 
centralized client-server approach using the YAWNS 
synchronization algorithm. Initial results concerning queueing 
network simulations are also presented. The results of this study 
suggest that existing distributed simulation algorithms require a 
significant amount of additional energy compared to a sequential 
execution. Further, different synchronization algorithms can 
yield different energy consumption behaviors. 

Keywords—parallel discrete event simulation; distributed 
simulation; power aware computing 

I. INTRODUCTION 
Power consumption has become a major concern for many 

parallel and mobile computing applications. The need to reduce 
energy use is clear in mobile and embedded computing where 
reductions result in increased battery life or enable the use of 
smaller batteries thereby reducing the size and weight of 
devices. In high-end computing energy consumption is a 
dominant cost associated with operating large data centers and 
supercomputers, and a substantial amount of effort has gone 
into developing techniques to mitigate this expense. Power 
consumption has become the key factor preventing substantial 
further improvements in clock speed and now limits computer 
performance. It has been cited as a major obstacle to creating 
supercomputers yielding exascale performance. Despite the 
importance of power and energy in computation today, very 
little attention to date has focused on understanding and 
developing techniques to minimize power and energy 
consumption in parallel and distributed simulations. 

Energy is the capacity of a system to perform work. It is 
typically measured in units called joules where one joule is the 
work performed by an electrical circuit to move a charge of 
one coulomb through an electrical potential difference of one 
volt. Power is the amount of energy consumed per unit time 

with one watt of power defined as the expenditure of one joule 
of energy per second.  

Minimizing energy usage and power consumption are not 
the same thing [1]. For example, decreasing the clock rate of 
the processor can lead to less power consumption. However, 
this will usually lead to longer execution times and an increase 
in the total amount of energy needed to complete a given 
computation. Battery operated devices are energy-constrained 
systems because they operate with a finite amount of available 
energy; thus a design goal might be to minimize the amount of 
energy utilized by the computation as a whole, subject to 
certain execution time constraints. On the other hand, in 
power-constrained systems such as supercomputers and data 
centers the amount of available energy is effectively unlimited, 
but a design goal may be to minimize the amount of time 
required to complete the computation given a certain maximum 
level of power consumption, or to minimize power 
consumption, subject to certain execution time constraints. 

Power-aware and energy-aware systems are those where 
power or energy consumption is a principal design 
consideration. For example, power-aware systems may utilize 
techniques to change the system’s behavior based on the 
amount of power being consumed. Energy-aware systems may 
modify the operation of the system based the amount of energy 
remaining in batteries. 

It should be noted that minimizing execution time does not 
necessarily result in minimal energy consumption. Energy 
consumption is affected by many factors, e.g., the operation of 
the memory system, the number and complexity of 
computations performed by arithmetic circuits, and 
importantly, the amount of inter-processor communication that 
is required. A parallel or distributed computation that executes 
in a shorter amount of time may consume both more energy 
and more power if more communications are required. 

Power- and energy-aware computing is increasing in 
importance for parallel and distributed simulation systems and 
applications. The main contribution of this paper is to highlight 
the increasing importance of power and energy consumption in 
parallel and distributed simulations. We propose performance 
metrics to quantitatively assess energy consumption in parallel 
and distributed simulations and report initial empirical 
measurements of the energy consumed by concervative 
synchronization algorithms. 
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The next section describes a motivating application to 
highlight the relevance of energy consumption in distributed 
simulation. This is followed by a discussion of related work in 
this area by briefly surveying power- and energy-aware 
computing. Metrics for measuring energy and power 
consumption in distributed simulations are then proposed. The 
two distributed simulation systems examined in this study – a 
peer-to-peer system using the Chandy/Misra/Bryant algorithm 
and a client-server architecture using the YAWNS algorithm 
are then described. The experimental configuration and 
benchmark programs used in this study are presented, followed 
by a discussion of the power measurement methodology that is 
used. Experimental results are then presented and discussed, 
followed by concluding remarks and discussion of areas 
requiring further investigation. 

II. A MOTIVATING APPLICATION 
Embedded mobile distributed simulations can be used to 

create adaptive sensor networks to monitor dynamically 
changing physical systems. For example, consider a collection 
of small, battery-operated unmanned aerial vehicles (UAVs) 
tasked with monitoring a physical system, e.g., tracking a set of 
vehicles moving throughout a city, monitoring the spread of a 
forest fire, or assessing the dispersion of a hazardous chemical 
plume following an accident (see Figure 1). Assume each UAV 
is equipped with sensors, an on-board computer, and wireless 
communications. Each UAV may initially be assigned to 
monitor a certain geographical area. It collects information 
concerning the state of the physical system in its immediate 
vicinity. Collectively the team of UAVs may then execute a 
distributed simulation to project the future state of the system, 
e.g., to project the location of the fire some time into the future 
in order to determine how best to relocate the UAVs in order to 
continue monitoring its spread. In some cases more UAVs may 
be assigned to monitor regions of particular interest, e.g., areas 
with higher traffic congestion, a larger density of fires, or 
higher concentrations of chemicals, leaving fewer UAVs to 
monitor areas projected to be less important to the monitoring 
activity. One can envision other similar surveillance 
applications involving teams of people carrying handheld 
devices or autonomous battery-powered ground vehicles. 

 
Figure 1. Notional Diagram of a mobile data-driven 

distributed simulation system for monitoring traffic. 

Adaptive sensor networks such as these could utilize 
centralized computing capabilities where sensors report 
information back to a command center where predictive 
simulations could be executed and the network reconfigured 
accordingly. Placing the simulations within the sensor network 
itself offers several advantages. First, it reduces or eliminates 
reliance on connectivity to the central command center, 
mitigating a potential point of failure. Further, a distributed 
implementation enables greater scalability than the centralized 
approach; one can envision many teams of UAVs that 
collaborate to monitor larger scale systems than would 
otherwise be possible. In certain applications embedding the 
simulation within the physical system itself enables faster 
response time for latency-critical applications. 

Systems such as these are referred to as dynamic data-
driven application systems (DDDAS) [2]. DDDAS involves 
incorporating live data from instrumented systems into 
executing applications in order to optimize the system and/or 
steer the measurement process. The DDDAS paradigm 
involves repeatedly executing a processing cycle of (1) sense, 
(2) predict future system states, and (3) adapt or reconfigure 
the system to optimize the physical system or to continue the 
monitoring process. DDDAS has been studied in a variety of 
applications. Our focus here is concerned with using embedded 
distributed simulation to implement the second step of the 
DDDAS processing cycle. It is clear that for these situations, 
energy consumption is an important concern when the 
simulation operates within battery-operated mobile devices. 
Exploitation of the DDDAS paradigm in UAVs is an active 
field of study and are discussed in (for example) [3, 4]. 

III. RELATED WORK 
There is a substantial literature in power- and energy-aware 

computing systems, and a variety of techniques that may be 
employed. Dynamic voltage and frequency scaling (DVFS) is 
concerned with altering the voltage and/or clock speed of the 
processor by taking into consideration energy and performance 
constraints [5-7]. Dynamic power consumption in CMOS 
circuits is proportional to FV2 where F is the frequency at 
which the circuit is clocked, and V is the power supply voltage. 
Several commercial microprocessors support modification of 
the processor’s frequency and voltage to trade off power 
consumption and performance. Scheduling algorithms for 
embedded systems have been designed to balance energy 
saving with meeting real-time deadlines, e.g., see [8-10]. 
Processors also commonly provide different modes of 
operation that utilize different amounts of power. Some work 
examines the utilization of these modes of operation, 
sometimes in conjunction with DVFS [11-13]. Other research 
examines issues such as predictive modeling of energy and 
power [14-16]; and embedded systems evaluations [17-20]. 

To date, work in power and energy aware computing has 
largely focused on low-level aspects of the computing system. 
Existing work focuses on effectively utilizing specific 
hardware capabilities, the development of operating systems 
and compilers, and communication protocols (e.g., routing 
algorithms in sensor and ad hoc networks) to reduce energy 
usage.  



Only a modest amount of work to date has addressed 
energy and power consumption in parallel and distributed 
simulations. Some work has focused on characterizing power 
consumption for scientific computing applications [21-24]. 
One early effort examined power consumption for 
disseminating state information in distributed virtual 
environments, highlighting dead-reckoning algorithms and 
tradeoffs between state consistency and power consumption 
[25]. More recent work examined power consumption related 
to the implementation of data distributed management (DDM) 
services defined in the High Level Architecture [26]. To our 
knowledge, no prior work has examined power and energy 
consumption of synchronization algorithms for parallel and 
distributed simulations, the primary focus of the work 
described here. 

IV. ENERGY AND POWER METRICS 
In general, the three key metrics of greatest interest are the 

amount of energy, power, and time required to complete a 
computation. These metrics may be traded off against each 
other. For example, as discussed earlier one can trivially reduce 
power consumption by reducing clock frequency at the 
expense of increased execution time. In high performance 
computing contexts both execution time and power 
consumption are of interest, and balanced based on constraints 
such as a maximum level (ceiling) of power consumption. 
Similarly, in real-time applications both energy consumption 
and maximum execution time are important for best use of 
system resources while still meeting real-time constraints. For 
this reason the product of energy (or power) and execution 
time, referred to as the energy-delay product, is sometimes 
used as a metric that simultaneously considers both energy 
consumption and execution time [27]. 

A central concern here is the amount of additional energy 
consumed by the parallel/distributed execution that takes into 
account parallel/distributed computing overheads such as 
interprocessor message communication and synchronization. 
For this purpose we define a metric termed the energy 
overhead. Energy overhead refers to the amount of additional 
energy that is expended in the execution of a particular 
implementation of a parallel or distributed simulation on some 
hardware configuration relative to an energy-efficient 
sequential execution of the same computation. 

This definition is motivated by the traditional definition of 
speedup. Like the speedup definition, “performance” is defined 
relative to an efficient sequential implementation. Also like 
speedup, this definition is meant to encourage the development 
of approaches to minimizing energy consumption recognizing 
that a baseline amount of energy must necessarily be consumed 
by the computation, just as speedup recognizes that a certain 
amount of time is required to complete the computation on a 
sequential machine. Energy overhead highlights the cost of the 
parallel/distributed implementation in terms of energy 
consumption. 

Just as speedup may be determined using strong or weak 
scaling, similar methodologies apply in measuring energy 
overhead. In strong scaling the speedup is computed by 
comparing the execution time of a fixed sized sequential 

computation with a parallel implementation of the same 
computation distributed across a parallel processor. In this light 
strongly scaled energy overhead is computed as EP(N) – ES 
where ES is the energy consumed by a sequential 
implementation of the computation, and EP(N) is the energy 
consumed by a parallel/distributed implementation of the same 
computation distributed over N processors. 

Alternatively, speedup computed using weak scaling 
involves scaling the size of the computation in proportion with 
the number of processors. Here, weakly scaled energy 
overhead is defined as EP’(N) – ES’ where ES’ is the energy 
consumed by a computation C on a sequential machine and 
EP’(N) is the energy consumed by the same computation C 
executing on a single processor of the parallel/distributed 
machine with N processors and where the entire computation 
executed on the parallel/distributed machine is of size C*N. 
Weakly scaled energy overhead provides insight into the 
amount of additional energy consumed by the parallel or 
distributed computation as it is scaled to larger sizes in 
proportion to the size of the parallel/distributed computer. 

The energy overhead is impacted by several factors. It 
clearly depends on the hardware configuration, including 
consideration of memory and communications circuits, and 
system software on which the parallel/distributed simulation 
executes. Energy consumption depends on any energy-saving 
techniques such as DVFS that are used. Our particular concern 
is the overhead associated with the synchronization algorithm. 
As will be discussed next, energy consumption depends on the 
software architecture used for the implementation. 

The above discussion focused on energy overhead. Similar 
metrics for power overhead can also be defined. In this context, 
the power overhead refers to the additional amount of power 
required to execute the parallel/distributed simulation relative 
the sequential simulation. 

V. DISTRIBUTED SIMULATION SYSTEMS 
In this study we compare two distributed simulation 

middleware approaches using conservative synchronization 
algorithms. These two approaches utilize a peer-to-peer and a 
client-server architecture, respectively. The context in which 
we envision these architectures to be deployed might be an 
embedded DDDAS application where the distributed 
simulation executes on a power-constrained mobile computing 
platform, possibly connected via wireless links to a local 
server. This architecture places the simulations in close 
physical proximity to online sources of data. 

The “classic” approach to implementing a parallel discrete 
event simulation (PDES) program is to use a peer-to-peer 
architecture where each processor or node has approximately 
the same computational capabilities as other nodes. The logical 
processes (LPs) making up the PDES program are mapped to 
different computation nodes using a mapping algorithm or 
heuristic. LPs communicate directly with other LPs by sending 
messages to the appropriate nodes. Early work in PDES 
focused almost exclusively on this approach, and to this day, 
this is often considered to be the “default” approach to 
implementing a parallel or distributed simulation. It is depicted 
in Figure 2(a) below. 



 
Figure 2. Peer-to-peer and client-server approaches. 

In the peer-to-peer architecture a distributed algorithm is 
typically used to implement synchronization. Asynchronous 
algorithms use direct peer-to-peer communications between 
LPs (or processors). The Chandy/Misra/Bryant (CMB) 
algorithm is perhaps the most well known example of this 
approach [28, 29]. The principal source of energy overhead for 
this algorithm results from transmitting null messages between 
processors. 

A second approach to distributed simulation is the 
client/server architecture, as shown in Figure 2(b). Logical 
processes execute within client processors while the simulation 
engine executes within the server. Here, in the context of the 
applications described earlier, we envision a mobile server that 
might reside in a special device, e.g., a larger gasoline-powered 
UAV. In general, however, the server might utilize the same 
mobile processor as  client nodes in which case the distinction 
between clients and servers is largely logical, or the server 
might utilize a different, likely more powerful, machine. 

Clients only communicate with the server; direct client-to-
client communications are not allowed. Two key functions 
performed by the server include forwarding messages sent 
between LPs residing in different clients and synchronization 
among the LPs/clients. This architecture is sometime used in 
federated distributed simulations, e.g., those based on the High 
Level Architecture standard, where RTI services are for the 
most part implemented within the server. 

A natural, straightforward approach to implementing 
synchronization in client-server architectures are synchronous 
algorithms that utilize global synchronization points. The 
computation executes through a sequence of epochs where 
each involves determining those events that can be executed in 
this epoch with timestamps that are guaranteed to be smaller 

than any event that might later be received. Well known 
synchronous algorithms include YAWNS [30] and Bounded 
Lag [31]. A principal source of energy overhead for this 
algorithm lies in the barrier synchronization mechanism and 
LBTS computation that is required. Each epoch includes a 
barrier and computation of the lower-bound-on-timestamp 
(LBTS) value indicating the minimum timestamp of any event 
it might be generated in the future. More precisely, each client 
processor computes the smallest time stamp for any new 
message it might produce in the absence of receiving any 
additional messages as Ti + L whee Ti is the timestamp of the 
next unprocessed local event within the processor and L is the 
looakhead for the processor. LBTS is defined as the minimum 
among all of these values produced by the different processors. 
All events with timestamp less than LBTS are safe to process. 

VI. EXPERIMENTAL CONFIGURATION AND BENCHMARK 
APPLICATION 

The experimental configuration is intended to mimic an 
embedded distributed simulation application where the 
distributed simulation executes within a set of mobile 
processors. In the peer-to-peer system the mobiles make up the 
entire hardware platform. In the client-server architecture we 
posit the server resides in a location where a power source is 
readily available so energy use within the server is of 
secondary importance. 

Experiments were performed to compare the CMB (peer-
to-peer) and YAWNS (client-server) algorithms. A LG Nexus 
5 cellular phone with a quadcore Qualcomm MSM8974 
Snapdragon 800 processor, 2 GB memory, and 16 GB storage 
was used as the mobile computing platform. While the systems 
we envision may not necessarily use cellular phones as their 
compute engine, they most likely will utilize the same mobile 
processors that are used in cellular phones. The phone runs the 
Android version 5.0.1 (Android Lollipop) operating system and 
was used in the peer-to-peer experiments. The same phone was 
used as the client in the client server architecture. A laptop was 
used as the server for the latter architecture. Hardware-based 
techniques to reduce power consumption such as voltage or 
frequency scaling were not used in these experiments. 

All inter-processor communications utilizes wireless links. 
In both cases the device’s 802.11n WiFi network interface was 
used for communications between processors. A private 
wireless network was established among the devices to avoid 
interference resulting from Internet traffic. The cellular 
network capability of the phone is not used in these 
experiments. 

The energy and power consumption data are derived from 
direct measurement of the Android device. Specifically, the 
value of the instantaneous power being consumed by the 
device is calculated by multiplying the instantaneous battery 
current given by the constant integer 
BATTERY_PROPERTY_CURRENT_NOW and the current 
battery voltage level given by the constant  string 
EXTRA_VOLTAGE. Both of these appear in the   
“BatteryManager” class of the “android.os” API. The 
instantaneous power consumption so obtained is then used to 
calculate the energy consumption over time. 



A. Energy Used By Synchronization Algorithms 
An initial set of experiments were conducted to measure the 

amount of power used by the synchronization algorithm. This 
was accomplished by creating benchmark programs where 
each LP only processed local events, and did not exchange 
events with other processors. This ensures that interprocessor 
communication is only utilized by the synchronization 
algorithm rather than passing event messages. In these 
experiments each LP is initialized with some number of local 
events, and processing each event causes one new locally 
scheduled event to be scheduled with a fixed time stamp 
increment. A set of experiments were then performed using the 
CMB and YAWNS implementations as lookahead was varied. 
Because no events are scheduled between processors, the 
lookahead could be set to arbitrary values without concern of 
violating lookahead constraints. In these experiments the 
simulation benchmark program is the same across all 
lookahead values and both synchronization algorithms, 
enabling fair comparisons.  

The amount of energy consumed by the benchmark 
programs for different lookahead values are shown in Figure 3. 
In this figure both lookahead and energy are plotted on 
logarithmic scales. 

It is seen that lookahead can have a dramatic effect on the 
amount of power consumed by the synchronization algorithm – 
two orders of magnitude across the lookahead values used in 
these experiments. 

The CMB algorithm yielded energy consumption that 
steadily decreased as the lookahead was increased. For very 
small lookahead values CMB is prone to a phenomena called 
lookahead creep where null messages must be sent among the 
processors to, in effect, enable them to advance by an amount 
of simulation time equal to the lookahead. To a first-order 
approximation, doubling the lookahead value approximately 
doubles the amount of time advance that can be gained with 

each “round” of null messages. Assuming the primary cause of 
energy utilization is the time to send null messages, the data 
shown in Figure 2 is consistent with this observation where it is 
seen a steady decline in energy consumption results as the 
lookahead value is increased. 

The YAWNS experiments yielded a decidely different 
behavior. Here, the energy consumptions remains at a 
relatively constant level for small to moderate lookahead 
values. However, energy consumption then steadily decreses 
with lookahead increases at relatively high lookahead values. 
In contrast to CMB, YAWNS is not prone to the lookahead 
creep problem in the sense that the algorithm exploits 
knowledge of the timestamp of the next unprocessed event to 
advance simulation time. Consider the case where the 
lookahead is very small, say 1, and the average time between 
events is 10 units of simulation time. In accordance with time 
creep, CMB must advance each LP by increments of 1 with 
each round of null messages to advance LPs to the point where 
they can process the next (non-null) event. On the other hand, 
YAWNS will immediately advance the LP to the time of the 
next event. If the lookahead is small, YAWNS will, again to a 
first-order estimate, advance LBTS to the timestamp of the 
next unprocessed simulation event. Therefore the energy 
required for synchronization is in proportion to the number of 
events, independent of the lookahead value, explaining why 
energy consumption remains flat for small lookahead values. 
This remains true until the lookahead becomes large. With 
large lookahead values, many events can be processed in each 
epoch of YAWNS. Roughly speaking, doubling the lookahead 
value approximately doubles the number of events that can be 
processed within each epoch. Thus, for large lookahead values, 
the energy overhead steadily declines as the lookahead 
increases. The data in Figure 2 is consistent with this 
explaination. 

Overall, it can be seen that YAWNS and CMB use roughly 
comparable amounts of energy in the experiments with large 
lookahead values. However, these measuements also suggest 
CMB expends considerably more energy at very low 
lookahead values due to the lookahead creep problem. 

B. Queueing Network Simulations 
A second benchmark program used in this study is a 

simulation of a closed queueing network with J jobs circulating 
among the nodes of the network. The queueing network is 
configured as a three-dimensional toroid topology. Each 
processor is assigned one two-dimensional plane of the toroid. 
Once a job receives service it is routed to a randomly selected 
neighboring node, with each neighbor equally likely to be 
selected. Each node of the network contains a single server 
with service time drawn from an exponential distribution plus a 
constant value L. Jobs arriving at each network node are placed 
into a single queue, and are served in first-come-first-serve 
order. The minimum service time L is used as a control 
variable to facilitate experimentation with increased lookahead 
values. In these experiments the lookahead is enhanced by pre-
sampling the random number generator to produce the service 
time of the next job to be processed by the server; if the pre-
sampled value is P, then the time stamp of the next message 
generated by the LP must be at least L+P units of simulation 

Figure 3. Energy consumed for Chandy/Misra/Bryant 
and YAWNS synchronization algorithms as lookahead is 

varied. 

 



time into the future [32]. Further, the simulation is optimized to 
exploit the fact that the queue uses a FCFS queueing discipline, 
resulting in increased lookahead in proportion to the queueing 
delay. The benchmark program is written in C. 

Figure 4 shows the energy consumed by the three 
simulations for queueing networks of size 4 (2x2), 49 (7x7), 
484 (22x22), and 1024 (32x32) nodes executing on each 
processor. The total number of events processed by the 
simulators was kept constant across all of these runs, i.e., the 
total amount of simulation computation remained the same 
across the runs. This figure shows energy consumption data; 
power consumption data demonstrated similar trends to that 
shown in the figure. 

 

It can be seen that the energy consumed by the sequential 
and P2P-CMB simulations remains about constant as network 
size is increased, but there is a modest reduction of 
approximately 13% in energy consumed by the CS-YAWNS 
simulation for the largest network compared to the smallest. 
We believe this is due to a much smaller number of 
synchronization messages in CS-YAWNS in the larger sized 
queueing networks. YAWNS operates on a time window 
scheme where all events in the current time window can be 
safely processed without concern for events later arriving with 
a smaller timestamp. For these experiments the lookahead, i.e., 
the minimum timestamp increment, remains the same across 
all runs. Therefore, there will be more events within a single 
time window that may be processed before the next global 
synchronization. Since the total number of events in the 
computation remains the same, this results in fewer global 
synchronization points. The number of synchronization 
messages in YAWNS was reduced in approximately the same 
proportion as the size of the network (a factor of 256) across 
these experiments. 

Varying the size of the network changes the amount of 
computation performed between communications. Larger 
networks will have more simulation computations to complete 

between successive interprocessor message communications, 
likely accounting for the difference shown in this figure. 

The energy overhead resulting from the distributed 
execution of the simulation program relative the sequential 
implementation using these two synchronization algorithms 
and architectures is shown in Figure 5. These data are derived 
by subtracting the energy consumed by the sequential 
implementation from the distributed execution for each 
network size, and plotting the resulting value as a percentage of 
the energy expended in the sequential execution. As can be 
seen, the distributed simulations expend from 35% to 54% 
more energy than the sequential simulation executing the same 
number of events. While the P2P implementation of CMB 
remains approximately the same percentage of energy 
overhead for the different sized networks, there is more 
variability in the client-server YAWNS implementation. 

VII. DISCUSSION 
One can observe a few trends that emerge across these 

experiments. First, these data highlight the energy cost 
resulting from the distributed execution of a simulation 
program is significant. Without more detailed measurements of 
the architecture itself, one cannot definitively pinpoint all of 
the causes of this increased energy usage, however it seems 
clear that interprocessor communication for event passing and 
synchronization is most likely a principal factor. These 
measurements indicate that the energy overhead is significant 
for these conservative synchronization algorithms. 

Second, we observe that different synchronization 
algorithms and architectures exhibit different behaviors with 
respect to energy consumption. It is clear that different 
synchronization algorithms will exhibit different message 
passing behaviors, so in this sense it is not surprising that they 
yield different energy consumption characteristics. These data 
indicate that these differences can be significant, and can lead 
to observable differences in energy consumption. Thus, for 
applications where energy is a critical factor, e.g., for 
distributed simulations executing on mobile devices, some care 
should be taken with respect to the choice of synchronization 
algorithm in order to maximize battery life. 

 
Figure. 4. Energy consumption for 2x2, 7x7, 22x22, and 32x32 
queueing networks. Note network size is plotted on a logarithmic 
scale. 

 
Figure 5. Energy overhead of CMB and YAWNS for different sized 
queueing networks as a percentage of the energy expended by the 
sequential execution. 



Third, aspects of the distributed simulation application such 
as lookahead that impact the behavior of the synchronization 
algorithm may have a significant impact on the energy 
efficiency of the distributed simulation. Further investigation is 
required to examine the impact of aspects such as lookahead on 
energy efficiency and to gain a deep understanding of this 
relationship. 

When comparing the energy consumption of these two, 
very different, synchronization algorithms, two observations 
are apparent. First, to a first order approximation, the overall, 
average energy overhead observed for these synchronization 
algorithms is significant, and to some extent, relatively similar. 
One the other hand, the two algorithms exhibit different energy 
characteristics as parameters of the simulation such as the 
number of LPs and lookahead change. One must be cautionary 
in that these observations are based on a very limited amount 
of experimental data. Nevertheless, these results suggest that 
further exploration of the relationship between the 
synchronization algorithm and energy and power consumption 
is warranted. 

VIII.  CONCLUSIONS AND FUTURE WORK 
We have argued that power and energy consumption are 

areas of increasing concern for parallel and distributed 
simulation systems. In contexts such as embedded and mobile 
systems and some high performance computing applications 
we believe these aspects are of sufficient importance to merit 
explicit consideration in the design of the system. 

Metrics are proposed focusing on the energy and power 
efficiency of parallel and distributed simulations relative to a 
sequential simulation. The metrics focused on developing 
measures that are consistent and complementary to standard 
metrics used for some time, specifically speedup under strong 
and weak scaling assumptions. 

The empirical work presented here represents an initial 
evaluation of the energy and power consumed for parallel and 
distributed simulations, focusing on the synchronization 
algorithm that is used. Experimental measurements of 
operational distributed simulation systems demonstrate that 
distributed execution incurs a significant overhead in energy 
consumption to execute the simulation. Clearly the amount of 
this overhead will depend on the application, but queueing 
networks, a standard benchmark used for parallel and 
distributed simulation, of various sizes all demonstrate 
significant energy overhead.  Architectural choices and the 
synchronization algorithm can lead to different results 
concerning the amount of energy and power that is consumed. 
In these experiments the client-server YAWNS implementation 
and the Chandy/Misra/Bryant algorithm executing on a peer-
to-peer architecture using WiFi communications yielded 
comparable energy overheads overall, though the two 
approaches exhibited different detailed behaviors for different 
network sizes. 

Power- and energy- consumption of parallel and distributed 
simulations represents a new area of research that has many 
unanswered questions. Deep understandings of the power and 
energy consumed by distributed simulations, and those aspects 
that are different relative to other types of computing 

applications do not yet exist. Accurate, predictive models of 
energy consumption of parallel and distributed simulations 
taking into account the machine architecture as well as the 
behavior of the simulation application are needed. A 
comprehensive examination of alternate conservative 
synchronization algorithms and their execution on different 
distributed system architectures across a wide variety of 
parameter settings is required. Similar evaluations and 
comparisons with optimistic synchronization techniques are 
needed. Extensive analyses for real world applications are 
needed both for embedded and mobile simulations as well as 
high performance computing systems. 

Beyond analysis studies, the development and evaluation of 
techniques to reduce energy- and power- consumption of 
distributed simulations is an unexplored area of research. We 
refer to techniques that take into consideration power and 
energy consumption in the design and operation of the system 
energy- and power-aware distributed simulations. One can 
envision dynamically changing the behavior of the distributed 
simulation based on the energy available in batteries, or based 
on the power being consumed on a high performance 
computing platform. Distributed simulations executing in a 
real-time context such as those that arise in DDDAS impose 
time constraints to completing the computation. Moreover, we 
believe power- and energy-aware parallel and distributed 
simulation represents a rich area of future research for the field 
with many unsolved problems. 
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