
Discovering and Representing
Systematic Code Changes

“What did Bob change? Did he implement the intended changes correctly?”

Miryung Kim
Electrical and Computer Engineering

University of Texas at Austin

David Notkin
Computer Science & Engineering

University of Washington

Motivating Scenarios

• “Did Bob implement the intended changes correctly?”

• “There’s a merge conflict. What did Alice change?”

What Changed?
Check-in comment:
“Common methods go in an abstract class. Easier to
extend/maintain/fix” [Revision 429 of the carol project]

Changed Code Changed Code Changed Code
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change: 9 files, 723 linesTotal Change: 9 files, 723 linesTotal Change: 9 files, 723 lines

Was it indeed an extract
superclass refactoring?

Were any parts of the refactoring missed?
Did Bob make some other changes along

the way?

Diff Output

- public class CmiRegistry implements
NameService {
+ public class CmiRegistry extends
AbsRegistry implements NameService {
- private int port = ...
- private String host = null
- public void setPort (int p) {
- if (TraceCarol. isDebug()) { ...
- }
- }
- public int getPort() {
- return port;
- }
- public void setHost(String host)
{
 ...

Changed Code Changed Code Changed Code
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change: 9 files, 723 linesTotal Change: 9 files, 723 linesTotal Change: 9 files, 723 lines

Existing Program Differencing
Approaches

diff, Syntactic Diff (Cdiff), Semantic Diff, Jdiff,
BMAT, Eclipse diff, UMLdiff, Change Distiller, etc.

Individually compare code elements
 at particular granularities
 using similarity measures

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al.
99, Griswold 01...]

• Consistent updates on code clones [Miller&Myers 02,
Toomim et. al. 04, Kim et. al. 05]

While high-level changes often consist of systematic
transformations, existing program differencing tools

 do not identify systematic relationships.

Limitations of Existing
Differencing Approaches

Do not group related changes

+ ...
- start();
+ begin();

+ ...
- start();
+ begin();

+ ...
- start();
+ begin();

Kia.java GM.java BMW.java

Difficult to notice missed changes

...
start();
...

+ ...
- start();
+ begin();

+ ...
- start();
+ begin();

Kia.java GM.java BMW.java

Limitations of Existing
Differencing Approaches

Lack of contextual information

class Car
...

run () {
...
}

Class GM
extends Car

.....
+ }

class Kia
extends Car
..

class BMW
extends Car

+ run(){
+ ...
+ }

+ run(){
+ ...
+ }

+ run(){
+ ...
+ }

Kia.java GM.java Car.javaBMW.java

Limitations of Existing
Differencing Approaches

Outline

• Limitations of diff

• Rule-based program differencing approach

• LSdiff change-rule representation and
inference algorithm

• Quantitative evaluation and focus group
study

Our Logical Structural Diff
Approach

• LSdiff computes structural differences
between two versions using logic rules and
facts.

• Each rule represents a group of
transformations that share similar
structural characteristics.

• Our inference algorithm automatically
discovers such rules.

Our Contribution 1.
Conciseness

+ ...

+ ~~~~~~~

+ ...

+ ~~~~~~~

+ ...

+ ~~~~~~~
- start();
+ begin();

Rule

- start();
+ begin();

- start();
+ begin();

+ ...

+ ...
start()

Our Contribution 2.
Explicit Exceptions

+ ...

+ ...

Rule with an exception

in GM.run() method

- start(); - start();

Our Contribution 3.
Additional Context

 Rule

class Car
...

run () {
...
}

Class GM
extends Car

class Kia
extends Car

class BMW
extends Car

+ run(){
+ ...
+ }

+ run(){
+ ...
+ }

+ run(){
+ ...
+ }

Kia.java GM.java Car.javaBMW.java

Outline

• Limitations of diff

• Rule-based program differencing approach

• LSdiff rule representation and inference
algorithm

• Quantitative evaluation and focus group
Study

Predicates in LSdiff

package typeintype

type accesses

method calls

field subtype

return inheritedfield

fieldoftype inheritedmethod

Code Elements
Structural Dependencies

Old Program (FBo)Fact-base Representation

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

- set
difference

=
deleted_access(“Key.on”,”Bus.start”)
added_calls(“Bus.start”,”log”)
deleted_method(“Key.out”,”out”,”Key”)
added_method(“Key.output”,”output”,”Key”)...

Differences (∆FB) added_* / deleted_*

Fact-Level Differences

=

LSdiff Rule
Each rule represents systematic structural

differences by relating groups of facts in the three
fact-bases.

LSdiff Rule

∀m ∀t method(m, “setHost”, t)

By binding some of a predicate’s arguments to universally
quantified variables, a logic literal represents a group of similar
facts at once.

Each rule represents systematic structural
differences by relating groups of facts in the three

fact-bases.

LSdiff Rule

∀m ∀t method(m, “setHost”, t)
∀t subtype(“Service”, t)

By binding some of a predicate’s arguments to universally
quantified variables, a logic literal represents a group of similar
facts at once.

Each rule represents systematic structural
differences by relating groups of facts in the three

fact-bases.

LSdiff Rule

∀m ∀t method(m, “setHost”, t)
∀t subtype(“Service”, t)
∀m calls(m, “SQL.exec”)

By binding some of a predicate’s arguments to universally
quantified variables, a logic literal represents a group of similar
facts at once.

Each rule represents systematic structural
differences by relating groups of facts in the three

fact-bases.

LSdiff Rule

∀m ∀t method(m, “setHost”, t) ∧
subtype(“Service”, t)
⇒ calls(m, “SQL.exec”)

Rules are horn clauses where a conjunction of logic literals
implies a single consequent literal.

Each rule represents systematic structural
differences by relating groups of facts in the three

fact-bases.

LSdiff Rule

∀m ∀t past_method(m, “setHost”, t) ∧
past_subtype(“Service”, t)
⇒ deleted_calls(m, “SQL.exec”)

Rule styles are restricted to represent regularities about
changes between two versions.

Each rule represents systematic structural
differences by relating groups of facts in the three

fact-bases.

LSdiff Rule

∀m ∀t past_method(m, “setHost”, t) ∧
past_subtype(“Service”, t)
⇒ deleted_calls(m, “SQL.exec”)
[except t=“NameSvc” m=”NameSvc.setHost”]

Each rule represents systematic changes by relating
groups of facts in the three fact-bases.

Rules explicitly note exceptions.

LSdiff Rule Example
∀m ∀t past_method(m, “setHost”, t) ∧
past_subtype(“Service”, t)
⇒ deleted_calls(m, “SQL.exec”)
[except t=“NameSvc” m=”NameSvc.setHost”]

“All setHost methods in Service’s subclasses in the
old version deleted calls to SQL.exec except the
setHost method in the NameSvc class.”

deleted_calls(”CmiSvc.setHost”,“SQL.exec”)
deleted_calls(”RmiSvc.setHost”,“SQL.exec”)
deleted_calls(”LmiSvc.setHost”,“SQL.exec”)
exception [t=“NameSvc” m=”NameSvc.setHost”]

3 matches, 1 exception, accuracy 0.75

LSdiff Algorithm Overview

1. Extract a set of logic facts from programs using JQuery
[Jensen & DeVolder 03] and compute fact-level
differences

2. Learn rules by using our customized inductive logic
programming algorithm

3. Select a subset of rules and then winnow out the facts
in ΔFB using the learned rules

input: two program versions

output: logic rules and facts that explain
structural differences

Step 1. Fact-base Preparation

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

-

A fact-base program representation approach has been used
by many tools such as JQuery [Jenzen&DeVolder 03],
CodeQuest [Hajiev et. al. 06], Grok [Holt et. al.] , etc.

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

- set difference

deleted_access(“Key.on”,”Bus.start”)
added_calls(“Bus.start”,”log”)
deleted_method(“Key.out”,”out”,”Key”)
added_method(“Key.output”,”output”,”Key”)

Differences (∆FB) added_* / deleted_*

Step 1. Fact-base Preparation

=

Remove spurious facts using inferred renamings [Kim et al.’s ICSE 2007]

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

- set difference

=

Step 1. Fact-base Preparation

deleted_access(“Key.on”,”Bus.start”)
added_calls(“Bus.start”,”log”)
deleted_method(“Key.out”,”out”,”Key”)
added_method(“Key.output”,”output”,”Key”)

Differences (∆FB) added_* / deleted_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
calls(“Bus.start”,”log”)
method(“Key.output”,”output”,”Key”)...

New Program (FBn) current_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

Old Program (FBo) past_*

- set difference

=
deleted_access(“Key.on”,”Bus.start”)
added_calls(“Bus.start”,”log”)

Differences (∆FB) added_* / deleted_*

Step 1. Fact-base Preparation

Remove spurious facts using inferred renamings [Kim et al.’s ICSE 2007]

Step 2. Learn Rules

• Our rule learner uses a bounded depth search
algorithm with beam search heuristics to find rules

• We have input parameters that determine the
validity of a rule.

• a: the minimum accuracy of a rule

• m: the minimum # of facts a rule must match

• k : the maximum # of literals in an antecedent

• β: the window size for beam search

R := {} // a set of ungrounded rules.

D := reduced ΔFB using default winnowing rules
L := {} // a set of valid learned rules.
for each antecedent size, i = 0...k :

 R := extend all rules in R by adding all
 possible literals.

 for each ungrounded rule, r:

 for each possible grounded rule g of r:

 if (g is valid) L:= L ∪ g.

 R := select the best β rules in R.
 D := D - { facts covered by L}

Step 2. Learn Rules

Step 3. Post Processing

• Select a subset of L that cover the same set of
facts covered by L using the SET-COVER
algorithm.

• Output the selected rules and remaining
uncovered facts in ∆FB.

LSdiff Output

• “All methods that removed calls to the SQL.exec method
added calls to the SafeSQL.exec method ”

• “All setHost methods in Service’s subclasses in the old
version deleted calls to SQL.exec except the setHost
method in the NameSvc class.

past_subtype(“Service”, t) ∧
past_method(m, “setHost”, t)
⇒ deleted calls(m, “SQL.exec”)
except t=“NameSvc”

deleted_calls(m,“SQL.exec”)=>
added_calls(m,“SafeSQL.exec”)

Outline

• Limitations of diff

• Rule-based program differencing approach

• LSdiff change-rule representation and
inference algorithm

• Quantitative evaluation and focus group
study

LSdiff Quantitative Evaluation

1. How often do individual changes form systematic change
patterns? Measure coverage, # of facts in ∆FB matched by
inferred rules

2. How concisely does LSdiff describe structural differences
in comparison to existing differencing approach at the
same abstraction level? Measure conciseness, ∆FB / (#
rules + # facts)

3. How much contextual information does LSdiff find from
unchanged code fragments? Measure the number of facts
mentioned by rules but are not contained in ∆FB

LSdiff Quantitative Evaluation

FBo/FBn ∆FB Rule Fact Cvrg. Conc. Ad’tl.

carol
10 revisions

3080~10746 15~1812 1~36 3~71 59~98% 2.3
~27.5 0~19

dnsjava
29 releases

3109~7204 4~1500 0~36 2~201 0~98% 1.0
~36.1 0~91

LSdiff
10 versions

8315~9042 2~396 0~6 2~54 0~97% 1.0
~28.9 0~12

a=0.75, m=3, k=2, β=100

LSdiff Quantitative Evaluation

FBo/FBn ∆FB Rule Fact Cvrg. Conc. Ad’tl.

carol
10 revisions

3080~10746 15~1812 1~36 3~71 59~98% 2.3
~27.5 0~19

dnsjava
29 releases

3109~7204 4~1500 0~36 2~201 0~98% 1.0
~36.1 0~91

LSdiff
10 versions

8315~9042 2~396 0~6 2~54 0~97% 1.0
~28.9 0~12

On average, 75% coverage,
9.3 times conciseness

improvement, and
9.7 additional contextual facts

a=0.75, m=3, k=2, β=100

Textual Delta vs. LSdiff
Textual DeltaTextual DeltaTextual DeltaTextual Delta LSdiffLSdiff

Changed
Files

Changed
Lines Hunk

%
Touched Rule Fact

carol
10 revisions

1~35 67~4313 9~132 1~19% 1~36 3~71

dnsjava
29 releases

1~117 5~15915 1~344 2~100% 0~36 2~201

LSdiff
10 versions

2~11 9~747 2~39 2~9% 0~6 2~54

a=0.75, m=3, k=2, β=100

Textual Delta vs. LSdiff
Textual DeltaTextual DeltaTextual DeltaTextual Delta LSdiffLSdiff

Changed
Files

Changed
Lines Hunk

%
Touched Rule Fact

carol
10 revisions

1~35 67~4313 9~132 1~19% 1~36 3~71

dnsjava
29 releases

1~117 5~15915 1~344 2~100% 0~36 2~201

LSdiff
10 versions

2~11 9~747 2~39 2~9% 0~6 2~54

When an average TD consists of
997 lines across 16 files, LSdiff

outputs an average of 7 rules and
27 facts.

a=0.75, m=3, k=2, β=100

Focus Group Study

• Pre-screener survey

• Participants: five professional software engineers

• industry experience ranging from 6 to over 30 years

• use diff and diff-based version control system daily

• review code changes daily except one who did weekly

• One hour structured discussion

• I worked as the moderator. We also had a note-taker
transcribe the discussion. Discussion was audio-taped
and transcribed.

http://users.ece.utexas.edu/~miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Overview

A hand-generated html based on LSdiff output

http://users.ece.utexas.edu/~miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Show related changes

“You can’t infer the intent of a programmer,
but this is pretty close.”

“This ‘except’ thing is great!”

Focus Group Participants’
Comments

*

“You can start with the summary of changes and dive
down to details using a tool like diff.”

“This looks great for big architectural changes, but I
wonder what it would give you if you had lots of random

changes.”

“This will look for relationships that do not exist.”

Focus Group Participants’
Comments

*

“This wouldn’t be used if you were just working with one
file.”

Other Related Work

• Identification of related changes

• Logic-based program representation

• Source transformation languages and tools

• Framework evolution

Conclusions

• LSdiff automatically identifies systematic
structural differences as logic rules.

• LSdiff represents 75% structural differences as
rules on average, improving conciseness
measure by 9.3 times on average.

• Our focus group study shows that LSdiff is
promising as a complement to diff’s file-based
approach and can help programmers discover
potential bugs.

Acknowledgment: Special thanks to Marius Nita and Jonathan Beall

