FUZZY EXPERT SYSTEMS AND FUZZY REASONING

FUZZY EXPERT SYSTEMS AND FUZZY REASONING

William Siler

Kemp-Carraway Heart Institute, Birmingham, AL 35234

James J. Buckley

Mathematics Dept., University of Alabama at Birmingham, Birmingham, AL 35294

This book is printed on acid-free paper. ⊚

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Siler, William.
Fuzzy expert systems and fuzzy reasoning / by William Siler, James J. Buckley.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-38859-9
1. Expert systems (Computer science) 2. Fuzzy systems. I. Buckley, James J., 1936-II.
Title

QA76.76.E95S557 2005 006.3'3-dc22

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

Pre	Preface 2			
1	1 Introduction			
	1.1 Characteristics of Expert Systems			
		1.1.1 Production Systems	3	
		1.1.2 Data-Driven Systems	4	
		1.1.3 Special Features of Fuzzy Systems	4	
		1.1.4 Expert Systems for Fuzzy Control and for Fuzzy Reasoning	5	
	1.2	Neural Nets	6	
	1.3	Symbolic Reasoning	7	
	1.4	Developing a Rule-Based Expert System	8	
	1.5	Fuzzy Rule-Based Systems	9	
	1.6	Problems in Learning How to Construct Fuzzy Expert Systems	10	
	1.7	Tools for Learning How to Construct Fuzzy Expert Systems	11	
	1.8	Auxiliary Reading	12	
	1.9 1.10	Summary Questions	13 13	
	1.10	Questions	15	
2	Rule	-Based Systems: Overview	15	
	2.1	Expert Knowledge: Rules and Data	15	
	2.2	Rule Antecedent and Consequent	16	
		2.2.1 Antecedents	16	
		2.2.2 Admissible Data Types	17	
		2.2.3 Consequents	17	
	2.3	Data-Driven Systems	18	
	2.4	Run and Command Modes	19	
		2.4.1 Run Mode: Serial and Parallel Rule Firing	21	
		2.4.2 Checking which Rules are Fireable:		
		The RETE Algorithm	22	
		2.4.3 Serial Rule Firing	22	
		2.4.4 Parallel Rule-Firing	23	
	2.5	Forward and Backward Chaining	24	
	2.6	Program Modularization and Blackboard Systems	24	
	2.7	Handling Uncertainties in an Expert System	25	

	2.8 2.9	Summ Questi		26 28
3	Fuzz	ν Γρσία	c, Fuzzy Sets, and Fuzzy Numbers: I	29
5				
	3.1		cal Logic	29
		3.1.1 3.1.2	Evaluating A AND B and A OR B The Implication Operator	30 34
	3.2		entary Fuzzy Logic and Fuzzy Propositions	36
	3.3	Fuzzy		38
		3.3.1	Discrete Fuzzy Sets	39
		3.3.2	Fuzzy Numbers	40
		3.3.3	Linguistic Variables and Membership Functions	42
	3.4	Fuzzy	Relations	43
		3.4.1	Matrices of Truth Values	43
		3.4.2	Relations Between Sets	44
	3.5	Truth	Value of Fuzzy Propositions	47
		3.5.1		47
		3.5.2	Comparing Fuzzy Numbers	48
	3.6	Fuzzif	ication and Defuzzification	49
		0.0.1	Fuzzification	49
		3.6.2	Defuzzification	51
	3.7	Questi	ions	54
4	Fuzz	y Logic	c, Fuzzy Sets, and Fuzzy Numbers: II	57
	4.1	Introd	uction	57
	4.2	Algeb	ra of Fuzzy Sets	57
		4.2.1	T-Norms and t-Conorms: Fuzzy AND and OR Operators	57
			Correlation Fuzzy Logic	60
			Combining Fuzzy Numbers	63
	4.3		ximate Reasoning	65
	4.4	Hedge		69
	4.5	-	Arithmetic	72
			Extension Principle	72 73
		4.5.2 4.5.3	Alpha-Cut and Interval Arithmetic Comparison of Alpha-Cut and Interval	15
		ч.э.э	Arithmetic Methods	74
	4.6	Comp	arisons between Fuzzy Numbers	74
		4.6.1	Using the Extension Principle	74
		4.6.2	Alternate Method	76
	4.7	Fuzzy	Propositions	78
	4.8	Questi	ions	82

5	Com	bining Uncertainties	85
	5.1	Generalizing AND and OR Operators	85
		5.1.1 Correlation Logic: A Family of Fuzzy Logical Operators	
		that Obeys Excluded Middle and Non-Contradiction Laws	86
	5.2	Combining Single Truth Values	88
	5.3	Combining Fuzzy Numbers and Membership Functions	89
	5.4	Bayesian Methods	92
	5.5	The Dempster-Shafer Method	94
	5.6	Summary	96
	5.7	Questions	97
6	Infe	rence in an Expert System I	99
	6.1	Overview	99
	6.2	Types of Fuzzy Inference	100
	6.3	Nature of Inference in a Fuzzy Expert System	100
	6.4	Modification and Assignment of Truth Values	102
		6.4.1 Monotonic Inference	102
		6.4.2 Non-monotonic Inference	103
		6.4.3 Downward Monotonic Inference	103
	6.5	Approximate Reasoning	105
	6.6	Tests of Procedures to Obtain the Truth Value of a	
		Consequent from the Truth Value of Its Antecedent	105
		6.6.1 Desirable Properties	105
		6.6.2 Summary of Candidate Methods	106
		6.6.3 Tests of Methods Against Desirable Properties	107
		6.6.4 Implementation of Choices Among Types of Reasoning	109
	6.7	Summary	110
		6.7.1 Data Types and Truth Values	111
		6.7.2 Types of Fuzzy Reasoning	112
	6.8	Questions	113
7	Infe	rence in a Fuzzy Expert System II: Modification of	
		and Truth Values	115
	7.1	Modification of Existing Data by Rule	
		Consequent Instructions	116
	7.2	Modification of Numeric Discrete Fuzzy Sets:	
		Linguistic Variables and Linguistic Terms	117
	7.3	Selection of Reasoning Type and	
		Grade-of-Membership Initialization	118
	7.4	Fuzzification and Defuzzification	119
		7.4.1 Fuzzification and Evaluation of Antecedent Confidence	119
		7.4.2 Modification of Consequent Membership Functions	119

		7.4.3	Aggregation of Consequent Membership Functions		
			for Each Consequent Linguistic Variable	120	
		7.4.4	Determination of Defuzzified Value for	101	
			Consequent Attribute	121	
	7.5		numeric Discrete Fuzzy Sets	122	
	7.6		ete Fuzzy Sets: Fuzziness, Ambiguity, and Contradiction	124	
		7.6.1	Fuzziness and Ambiguity	124	
		7.6.2	8	125	
		7.6.3	6 6	126	
	7.7		dation of Data: Non-monotonic Reasoning	127	
	7.8		fication of Values of Data	129	
	7.9		ling the Entire Rule Space	129	
		7.9.1			
		700	Configuration (IRC)	131	
		7.9.2	6	132	
		7.9.3		133	
		7.9.4 7.9.5	1 0	133 134	
		7.9.5		134	
		7.9.0	-	135	
	7.10		combs Method Summary	155	
	7.10		entional Intersection Rule Configuration	135	
	7.11	Sumn	•	135	
	/.11	7.11.1	•	130	
		7.11.1	51	137	
	7 10				
	7.12	Quest	IOIIS	138	
8	Resolving Contradictions: Possibility and Necessity			141	
	8.1	Defini	ition of Possibility and Necessity	142	
	8.2	Possił	bility and Necessity Suitable for MultiStep Rule-Based		
		Fuzzy	Reasoning	142	
		8.2.1	Data Types and Their Truth Values	142	
		8.2.2	Initialization of Data and Truth Values	144	
	8.3	Modif	fication of Truth Values During a Fuzzy		
			ning Process	144	
	8.4	Formulation of Rules for Possibility and Necessity			
	8.5	Resol	ving Contradictions Using Possibility in		
		a Nec	essity-Based System	146	
		8.5.1	Input Data: Useful Ambiguities	147	
		8.5.2	Output Data: Contradictions	147	
		8.5.3	Reaching Preliminary Classifications Using Supporting		
			Evidence and Necessities	147	
		8.5.4	Resolving Contradictions Using Refuting	4.46	
			Evidence and Possibilities	148	

	8.6 8.7	Summa Questio		149 149
9	Exne	-	m Shells and the Integrated Development	
1		ronment		151
	9.1	Overvie		151
	9.2	Help Fi		153
	9.3		n Editing	153
	9.4 9.5		g the Program	154
	9.5 9.6		s of General-Purpose Fuzzy Expert Systems n Debugging	154 155
	9.7	Summa		156
	9.8	Questio	•	157
10	Simp	ole Exam	ple Programs	159
	10.1	Simple	FLOPS Programs	159
	10.2	Number		159
		10.2.1	Program Listing	159
		10.2.2	Program Structure	161
		10.2.3	6 6	161
			Using Basic Debugging Commands	162
		10.2.5	Confidence Terminology: Antecedent Confidence, Rule Confidence, and Posterior Confidence (pconf)	163
	10.2	Come for		
	10.3	Sum.fp		164
		10.3.1	6 6	164 166
		10.3.2	Running sum.fps Running sum.fps with Debugging Commands	100
		10.5.5	prstack; and Run 1;	167
	10.4	Sum.pa	-	168
	10.1	10.4.1		169
		10.4.1	6 6	170
		10.4.3	Running sum.par with prstack; and Run 1; Commands	171
	10.5		rison of Serial and Parallel FLOPS	173
	10.6	1	rship Functions, Fuzzification and Defuzzification	173
		10.6.1	Membership Functions in FLOPS/	173
		10.6.2	Fuzzifying Numbers in FLOPS	175
		10.6.3	Defuzzification in FLOPS	177
	10.7	Summa	ry	179
	10.8	Questio	ns	180
11	Runi	ning and	Debugging Fuzzy Expert Systems I: Parallel Programs	181
	11.1	Overvie	2W	181
	11.2	Debugg	ting Tools	181

x CONTENTS

	11.3	Debugging Short Simple Programs	182 189			
	11.4	8 8 9				
	11.5	The Debug Run	189			
	11.6	Interrupting the Program for Debug Checks	190			
	11.7	Locating Program Defects with Debug Commands	191			
		11.7.1 Program Structure	191			
		11.7.2 Sample Debugging Session	192			
	11.8	Summary	196			
	11.9	Questions	197			
12	Run	ning and Debugging Expert Systems II: Sequential Rule-Firing	199			
	12.1	Data Acquisition: From a User Versus Automatically Acquired	199			
	12.2	Ways of Solving a Tree-Search Problem	201			
	12.3	Expert Knowledge in Rules; auto1.fps	202			
		12.3.1 auto1.fps Program: Partial Listing	202			
		12.3.2 Running auto1.fps	204			
	12.4	Expert Knowledge in a Database: auto2.fps	207			
		12.4.1 Expert Knowledge Database Structure	207			
		12.4.2 auto2.fps Program Listing	208			
		12.4.3 Running and Debugging auto2.fps	210			
		12.4.4 Advantages of Database-Defined Tree Search Method	214			
	12.5	Other Applications of Sequential Rule Firing	214			
		12.5.1 Missionaries and Cannibals	214			
	12.6	Rules that Make Themselves Refireable: Runaway Programs				
		and Recursion	217			
	12.7	Summary	218			
	12.8	Questions	218			
13	Solvi	ing "What?" Problems when the Answer is Expressed in Words	219			
	13.1	General Methods	219			
	13.2	Iris.par: What Species Is It?	220			
		13.2.1 Planning Our Data Elements and Membership Functions	221			
		13.2.2 Writing Our Rules: Getting Started	223			
		13.2.3 Writing Our Rules: Classifying the Specimens	224			
		13.2.4 Writing Our Rules: Reporting Results	225			
		13.2.5 Setting Our Initial Data	225			
		13.2.6 Running iris.par	226			
		13.2.7 Improving iris.par	227			
	13.3	Echocardiogram Pattern Recognition	227			
		13.3.1 Echocardiogram Pattern Recognition: Data Declarations	228			
		13.3.2 Echocardiogram Pattern Recognition: Creating				
		Classification Rules from a Database	230			

		13.3.3	The Organization of echo.par	231
		13.3.4	Metarules to Control Activation of Rule Blocks	231
		13.3.5	New Features of Rules in echo.par	233
		13.3.6	Running echo.par	235
	13.4	Schizo.	par	235
		13.4.1	Data Declarations in schizo.par	235
		13.4.2	Structure of schizo.par	236
		13.4.3	Rules for schizo.par; Block 0, Inputting Data	237
		13.4.4	Rules for schizo.par; Block 1, Getting Truth Values	
			of Generalized Symptoms	237
		13.4.5	Rules for schizo.par; Block 2, Getting Basic Diagnoses	238
		13.4.6	Rules for schizo.par; Block 3, Getting Final Diagnoses	238
		13.4.7	Rules for schizo.par; Block 4, Output of Diagnoses	239
		13.4.8	Rules for schizo.par; Block 5, Block Firing Control	239
		13.4.9	Running schizo.par with Debugging Commands	240
	13.5	Discuss		240
	13.6	Questic	ons	240
14	Prog	rams th	at Can Learn from Experience	243
	14.1		l Methods	243
	14.1		1.par: Learning by Adding Rules	243 244
	14.2			
			Data for Pavlov1.par	244
			Rules for Pavlov1.par	246 249
	14.0		Exercise: Pavlov1.par	249
	14.3		2.par: Learning by Adding Facts to Ferm Memory	250
		-	Data for Pavlov1.par	250
			Rules for Pavlov2.par	251
		14.3.3	*	252
	14.4	Definin	g New Data Elements and New: RULEGEN.FPS	253
		14.4.1	Running: RULEGEN.FPS	253
	14.5	Most G	General Way of Creating New Rules and Data Descriptors	254
	14.6	Discuss	sion	254
	14.7	Questic	ons	255
15	Rum	ning On	-Line in Real-Time	257
	15.1		ew of On-Line Real-Time Work	257
	15.2		Output On-Line in Real-Time	258
	15.3		e Real-Time Processing	259
		15.3.1 15.3.2	Detection of Obvious Artifacts in the Input Data Stream Data Smoothing and Time Delays and Baselines:	260
		10.0.2	Exponential Smoothing	260

	15.3.3	Rates of Change: Differentiating Noisy Data	263
	15.3.4	Rates of Change: Differentiating Wandering Data	264
15.4	Types of	of Rules Useful in Real-Time On-Line Work	265
	15.4.1	Fuzzy Control Rules	265
	15.4.2	Focused Control-Type Rules and Focused	
		Membership Functions	267
	15.4.3	Fuzzy Reasoning with Approximate	
		Numerical Comparisons	269
15.5	Memor	y Management	270
15.6 Developmen		pment of On-Line Real-Time Programs	270
15.7	Speeding Up a Program		
15.8	Debugging Real-Time Online Programs		
15.9	Discuss	sion	273
15.10	Questio	ons	273
Appendix			275
Answers			377
References			399
Index			403

PREFACE

In this book, we will explore the emulation of human thought, capable of dealing with uncertainties, ambiguities, and contradictions.

We agree with Anderson (1993) that much human thought can be expressed in rules (Anderson, 1993). To handle uncertainties, ambiguities, and contradictions, we will use fuzzy systems techniques, implemented by a fuzzy expert system. We supply the fuzzy expert system language FLOPS with this book, so that the readers can actually use our supplied example programs and write their own programs.

An overwhelmingly important fact about human reasoning is that it is not a static process. Data are gathered; some preliminary hypotheses are advanced and tested; some of these may be rejected, and new hypotheses advanced; more data may be required, until finally some conclusion is reached. A computer program to emulate reasoning must proceed similarly. Unfortunately, in much mathematical description of the thought process the dynamic nature is lost. We cannot afford to make this error.

Expert systems are computer programs, designed to make available some of the skills of an expert to nonexperts. Since such programs attempt to emulate in some way an expert's thinking patterns, it is natural that the first work here was done in Artificial Intelligence (AI) circles. Among the first expert systems were the 1965 Dendral programs (Feigenbaum and Buchanan, 1993), which determined molecular structure from mass spectrometer data; R1 (McDermott, 1980) used to configure computer systems; and MYCIN (Shortliffe, 1976) for medical diagnosis. Since the middle 1960s there have been many expert systems created for fields ranging from space shuttle operations through intensive-care-unit patient alarm systems to financial decision making.

There is a variety of ways in which the problem of creating computer programs to act like an expert has been approached; a valuable reference is Jackson (1999). One of the earliest methods employs *rule-based systems*, which use "If ... Then ..." rules to represent the expert's reasoning process (*if* the data meet certain specified conditions, *then* take appropriate actions). Other approaches include *semantic or associative nets* (Quillian, 1968), *frames* (Minsky, 1975) and *neural nets* (Haykin, 1994), currently very popular in a wide variety of fields. Of these, clearly dominant are the complementary rule-based systems and neural net approaches.

Neural nets do not require that the thinking patterns of an expert be explicitly specified. Instead, two sets of data are required from the real world. These data include all the inputs to the system, and the correct outputs corresponding to these input values. The first data set or *training set* is used to train the neural network so that, as nearly as possible, the correct outputs are produced for each set of input values. The second data set or *validation set* is used after the neural net has been trained to make sure that correct answers are produced on different input data. An advantage of neural nets is that it is not necessary to extract the thinking patterns of the expert and to render these explicit. Disadvantages are that a substantial training set is required, and that while the neural net may produce reasonably correct answers, in general, we have little or no idea how it does this. Considerable work has been done on extracting rules from a trained neural net, but this work is not yet advanced to a very satisfactory state.

Rule-based systems require that the expert's knowledge and thinking patterns be explicitly specified. Usually two persons (or groups) develop a system. These are the domain expert, who knows how to solve the problem at hand but who is seldom acquainted with computer programming; and the knowledge engineer, who is thoroughly familiar with the computer technology involved and expert systems but who has little or no knowledge of the problem at hand. Obtaining this knowledge and writing proper rules is called the knowledge acquisition phase (Scott et al., 1991). After the system has been written, it must be tuned for accuracy using a tuning data set similar to the training set of a neural net, but usually much smaller. After tuning, a rule-based system must be validated in the same way as a neural net. Rule-based systems have two advantages. A large training set is usually not required, and since the expert's thinking is explicitly spelled out we now know how he thinks about the problem. They have the disadvantage that the knowledge acquisition phase may be difficult. A great advantage of fuzzy expert systems is that most rules can be written in language that the expert can directly understand, rather than in computer jargon; communication between domain expert and knowledge engineer is greatly eased.

Another advantage of rule-based expert systems is the potential ability of rulebased expert systems to learn by creation of new rules and addition of new data to the expert knowledge data base. Probably the first example of a rule-based expert system to rival human experts was DENDRAL, which deduced the molecular structure of organic compounds from knowledge about fragments into which the compound had been broken (Jackson, 1999, pp. 383 ff). One set of DENDRAL's programs worked directly with the data to produce candidate structures. An additional program, Meta-DENDRAL, worked directly with the DENDRAL rules to improve them and discover new rules, thus discovering new concepts about the data. Meta-DENDRAL was not itself written as a rule-based expert system, but the ability of a rule to generate new rules and new expert factual knowledge opens the possibility for writing expert systems that can create new rules and store new expert factual knowledge. This exciting possibility has not as yet been well explored, perhaps due to the common (and, we think, quite incorrect) assumption among conventional AI practitioners that expert systems are no longer to be considered as artificial intelligence.

Rules, called *production rules* or simply *productions* have a long history in computer science, ranging from the simple "if ... then ..." statements employed in such

computer languages as BASIC, FORTRAN, and C to complex systems especially designed for processing rules such as the OPS family of languages by Charles Forgy (Brownston et al., 1985) and the AI language Prolog and its fuzzy version Fril (Baldwin et al., 1995). Their use in AI for psychological modeling was pioneered by Newell and Simon (1972), and in expert systems by a number of AI pioneers (Buchanan and Shortliffe, 1984). Certainly rule-based expert systems are capable of emulating human thought patterns that are well defined; they are also capable of emulating human learning, as we shall show. An appreciable body of thought, especially among cognitive psychologists, agrees (Anderson, 1993). Since the authors are deeply interested in the emulation of human thought, this book is concerned with rule-based expert systems.

The systems we describe require that the knowledge engineer/programmer learn three important new concepts: non-procedural data-driven languages; fuzzy systems theory (fuzzy logic, fuzzy sets, and fuzzy numbers); and a parallel language, rather than the conventional one-statement-at-a-time languages that dominate programming at the present.

Most of the systems we shall describe are *data-driven* and *nonprocedural*. Common computer languages (C, Fortran, Basic) are *procedural*; that is, program statements are executed in the order in which they appear, unless explicit transfers of control are executed. In data-driven rule-based programs, rules may be fired (executed), whenever the data permit and the rules are enabled; the sequence in which the rules appear in the program has little or nothing to do with the order in which they are executed.

The systems are based on fuzzy systems theory, and include data types new to most programmers: *fuzzy sets*, *fuzzy numbers*, and *truth values*. The use of discrete fuzzy sets permits convenient handling of ambiguities and contradictions. All data and rules are associated with *truth values* or *confidences*.

Finally, rules may be fired either *sequentially*, one rule at a time, or may be fired effectively in *parallel*. (Few programmers have any experience with parallel languages.)

The effect of these new concepts is a considerable increase in both power and speed of conventional expert systems, at the expense of some mind stretching.

The FTP site that accompanies this book has a complete demonstration version of a fuzzy expert system Integrated Development Environment (IDE) and run-time package, and a number of example programs. Whenever possible, we use extremely simple examples to illustrate the techniques involved. We hope the reader will not confuse *simple* with *trivial*. For example, in illustrating a blackboard system example programs will exchange one word of information; if we can exchange one word, we can exchange a dozen or a thousand. Our examples of programs that learn are equally simple.

Most books written for academic use concentrate on presenting didactic knowledge. This book, while presenting a fair amount of didactic knowledge, concentrates on teaching a *skill*: actually writing and debugging a fuzzy expert system. This is by no means an easy task. Learning how to construct a fuzzy expert system by reading a book is much like learning how to play tennis by reading a book; you have to play the game, hit keys, write and debug programs on the computer. The theory of fuzzy mathematics is highly advanced; with the exception of fuzzy control systems, the theory behind fuzzy expert systems for other than numeric outputs is quite ill developed. Much of the fuzzy expert systems theory in this book is original, and sometimes differs substantially from existing theory. For fuzzy reasoning, as distinct from fuzzy control (in which there are several excellent books), there is little literature to which we can refer, except for the work of William Combs, Earl Cox, James Baldwin and his colleagues and Nikola Kasabov; consequently, there are far fewer references listed than is usual in a technical book. We hope that the theory in this book will stimulate others to develop the theory of multistep fuzzy reasoning further.

The debt that those of us in the fuzzy field owe to Professor Lotfi Zadeh is incalculable; see Klir and Yuan (1996) for a selection of his most important papers, and Klir and Yuan (1995) for an exposition of the most important concepts in fuzzy systems theory. Not only did he originate the entire field and define its basic concepts many years ago, but also he continues through the years to challenge and inspire us with new ideas. We can only thank him and wish him many more productive years.

> WILLIAM SILER JAMES J. BUCKLEY