An Introduction to $\[Mathbb{MT}_{E}X\]$

Iryna Schlackow Mathematical Institute

This talk and other useful LATEX related information is available at http://www.maths.ox.ac.uk/help/faqs/latex/

November 21, 2011

The name of the game

 $T_{\mbox{\rm EX}}$ is a computer program created by Donald E. Knuth. It is aimed at typesetting text and mathematical formulae. Knuth started working on it in 1977, and $T_{\mbox{\rm EX}}$ as we use it today was released in 1982.

TEX is renowned for being extremely stable and virtually bug free. The version number of TEX is converging to π and is now at 3.1415926.

TEX is pronounced "Tech," with a "ch" as in the German "Ach." In an ASCII environment, TEX becomes TeX.

The name of the game

LATEX is a TEX macro package. It enables authors to typeset and print their work at the highest typographical quality, using a predefined, professional layout.

ETEX was originally written by Leslie Lamport in 1980s, and its current version, $\text{ETEX} 2_{\mathcal{E}}$, was released in 1994.

 \mbox{MT}_{EX} (LaTeX in an ASCII environment) is pronounced "Lay-tech" or "Lah-tech." $\mbox{MT}_{EX} 2_{\varepsilon}$ (LaTeX2e) is pronounced "Lay-tech two e".

- The typesetting of mathematical formulae is supported in a convenient way.
- Complex structures (cross-references, bibliography) can be generated easily.
- Professionally crafted predefined layouts are available, and another document class styles can be easily superimposed.
- Many scientific journals accept manuscripts in LATEX only.
- The system is free and runs on almost any hardware and software platform available.

 ${\tt \mbox{\sc built}}$ on a programming language and is extensible. There exist many (free!) add-ons:

- customised class styles for scientific journals, theses (ociamthesis), presentations (beamer) and letters;
- packages for writing CV, typesetting music and linguistic papers and producing coffee stains;
- LATEX can be integrated with other programs (e.g. *Sweave* combines R and LATEX);
- • •

Any disadvantages?

• Not (traditionally) a WYSIWYG system.

ETEX vs WYSIWYG systems

WYSIWYG systems (Word)	LATEX (traditional approach)
The output is precisely what you type in. $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	You type in LATEX "code", which needs to be compiled first. \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)
The document layout is speci- fied by means of <i>visual design</i> .	A suitable layout is chosen by LATEX once the <i>logical structure</i> of the document has been specified.
You may spend too much time fiddling with fonts and margins. The document is likely to have little or inconsistent structure.	It is very hard to write unstruc- tured and disorganised documents in LATEX.

ETEX vs WYSIWYG systems

So, coming back to our matrix:

This is

- an array with
- 2 columns: all centred;
- & acting as a column separator;
- \\ acting as a row separator;
- surrounded by round brackets (,) of the appropriate size.

ETEX vs WYSIWYG systems

So, coming back to our matrix:

		-		\$\le	eft	∶[\be	egi	in{array}{crl}
[11	12	ך 25	11	&	12	&	25 \\
	3	4	6	3	&	4	&	6 \\
	_ 342	234	232]	342	&	234	&	232
				\setminus end	l{a	irray	7}\	right]\$

This is

- an array with
- 3 columns: centred, right-aligned, left-aligned;
- & acting as a column separator;
- \\ acting as a row separator;
- surrounded by square brackets [,] of the appropriate size.

ETEX vs WYSIWYG systems

There exist LATEX-based WYSIWYG and the like programs:

- Scientific Word (for Windows, commercial)
- LyX (Unix, Mac OS X and Windows, free)

Introduction Input File Brief Overview Output File Additional Information Typesetting

Every $\[Mathbb{L}T_EX\]$ input file possesses a certain structure. You start with specifying what sort of document you intend to write

```
\class[options]{class}
```

This is followed by the preamble where you can include commands influencing the style of the whole document or load packages adding new features to the $\[AT_{E}X\]$ system

```
\usepackage[options]{package}
```

When all the setup work is done you start the body of the text

```
\begin{document}
```

Now you enter the text mixed with $\ensuremath{{\mbox{ET}}\xspace EX}$ commands. At the end of the document you add

 $\end{document}$

Anything that follows this command will be ignored by LATEX.

Once the $\[AT_{EX}\]$ file is compiled, a viewable output file is produced. It can be a .dvi or a .pdf file.

- If the file is compiled with the latex command, it usually produces a .dvi file.
- If the file is compiled with the pdflatex command, it usually produces a .pdf file.
- Several auxiliary files are also created.

Many LATEX editors can produce both .dvi and .pdf files.

Special characters

The following symbols are reserved characters that have a special meaning in $\[Mathbb{E}]_{EX}$ and, when entered directly in text, will coerce $\[Mathbb{E}]_{EX}$ to do things you did not intend

\$ & % #
$$_{-}$$
 { } \sim ^ \setminus

(for example % comments out the line following it)

You can still produce these characters in the text:

- for \$, &, %, #, _, { and } type a backslash \setminus in front of them (for example type \setminus \$ to produce \$);
- \bullet for $\sim,~\hat{}$ and \setminus you need to use special commands.

LATEX commands

 $\ensuremath{\text{LATEX}}$ commands are case-sensitive and consist of a backslash \setminus followed by

- a string of letters, or
- exactly one non-letter (e.g. a special character).

Commands may have

- no arguments,
- $\bullet\,$ mandatory arguments, which are input in braces { },
- optional arguments, which are input in square brackets [].

For example,

Various fonts are supported by LATEX.

If the command name is already defined, use $\$ renewcommand.

E.g. $\result = \$ with \leq .

Environments

Environments are building blocks of a $\ensuremath{\texttt{LTEX}}$ file. Each declaration of an environment has the following syntax

```
\label{eq:login} $$ environment $$ text \end{environment} $$
```

Examples include

- $\begin{document} \dots \ \end{document},$
- $\begin{enumerate} \ldots \end{enumerate}$,
- $\begin{displaymath} \dots \ \displaymath\}$...

Environments can be nested within each other so long as the correct nesting order is maintained:

```
\begin{aaa}
...
\begin{bbb}
...
\end{bbb}
...
\end{aaa}
```

Typesetting Mathematics

$$\alpha = \sum_{i=1}^{n} \beta^{i}.$$

To produce in line formulae with \displaymath layout, use $\delta = 0.5$

To number your equation, use the equation environment. To vertically align equations, use the align or align* environment.

Input File Output File Typesetting

Including graphics

There are several ways of including graphics in LATEX and you will most likely need the graphicx and color packages.

Creating graphics in ${\rm I\!I\!E\!X}$ is possible, but might be quite time-consuming and you cannot create complex pictures.

Including graphics

However, you can draw a picture elsewhere and then insert it in \Particle TeX using special commands!

To include EPS graphics, e.g. file.eps type

```
\begin{figure}[ht]
  \centering
  \includegraphics[options]{file.eps}
  \caption{My figure}
  \label{the-label-for-cross-referencing}
 \end{figure}
```

Note that you cannot insert an .eps file into a .pdf file.

To include PDF/PNG/JPEG graphics, use the same algorithm but only if $\ensuremath{\texttt{ATEX}}$ generates a .pdf file.

Including graphics

Using the program called xfig you can draw figures and write $\[AT_EX\]$ on them. Insert such figures into $\[AT_EX\]$ using the following commands:

```
\begin{figure}[ht]
  \centering
  \input{file.pstex_t}
  \caption{My figure}
  \label{the-label-for-cross-referencing}
 \end{figure}
```


 $B_{\mbox{\tiny IB}}T_{\mbox{\scriptsize EX}}X$ is a tool that generates a list of references from a bibliographical database.

- You maintain one file in which you contain information about all possible articles you may wish to reference.
- You only specify the style and location of the bibliography.
- No need to retype the same references for your next article.

A typical entry in a .bib file looks as follows:

```
@article {GM,
   AUTHOR={Gowers, W. T. and Maurey, B.},
   TITLE={Banach spaces with small spaces of operators},
   JOURNAL={Math. Ann.},
    YEAR={1997},
   NUMBER={4}
   PAGES={543--568}}
```

Often you are able to copy-paste this information directly from MathSciNet — go to "Select alternative format" and select $B_{IB}T_{E}X$.

Introduction	Input File
Brief Overview	Output File
Additional Information	Typesetting

All this was just the tip of the iceberg. With $\ensuremath{\text{LATEX}}\xspace$ you can do $\underline{\textit{much}}\xspace$ more:

- create title pages, fancy headers and footnotes;
- split text into chapters, sections, ..., and create table of contents;
- create enumerated and bullet point lists;
- create theorems and proofs;
- label and cross-reference;
- manipulate counters;
- insert hyperlinks;
- write text in different languages;

• . . .

In order to have $\[Mathbb{E}]$ on your home PC, you will need to install

- TEX distribution
 - MiKTeX (Windows), TeX Live (most common operating systems), proTeXt (Windows), MacTeX (Mac OS X), ...
- LATEX editor (although you can write LATEX even in notepad)
 - Texmaker (Windows, Unix, Mac OS X), LEd (Windows), kile (Unix/Linux X-windows systems, Mac OS X), TeXnikCenter (Windows), Emacs (most systems), Google Docs (LaTeX lab),
- program(s) for viewing output LATEX files
 - YAP, Adobe Reader, ...
- possibly something else
 - GhostScript, ...

Watch compatibility between various, particularly the newest, versions of software.

> You know we all became mathematicians for the same reason: we were lazy.

> > Max Rosenlicht

Be lazy! Let LATEX do as much of your work as possible. Use

- labels and cross-references,
- sectioning commands and theorem environments,
- enumeration environments,
- tabular, array and align environments,
- macros,
- ВівТЕХ.

To avoid errors:

- compile the document as often as possible;
- having written \begin{xxx}, add \end{xxx} and only then typeset the middle part; same for { and }.

• Distinguish between *italic* and roman fonts in math mode. Compare

$$\int_0^1 e^{inx} cosnx dx = 1 \quad \text{for } n = 0$$

and

$$\int_0^1 e^{inx} \cos nx dx = 1 \quad \text{for } n = 0.$$

Use roman alphabet for

- non-mathematical symbols,
- differential d, exponential e, complex i and other reserved letters,
- functions like sin, cos, log etc. (for these you need to use the backslash version, i.e. write \cos instead of cos).

- Add punctuation after equations and inside enumeration environments.
- Differentiate between
 - hyphen X-ray,
 - en-dash pages 1-12, Cauchy-Schwartz inequality, and
 - em-dash a punctuation dash like this.

How many authors does the Birch–Swinnerton-Dyer conjecture have?

- Do not use " for quotation marks. Instead type
 - two ` (grave accent) for opening quotation marks, and two ' (vertical quote) for closing quotation marks.
- Don't be frustrated if something doesn't work out Google is always there to help you! (just don't google the word "latex" on its own ...)

Introduction	LaTeX on your home PC
Brief Overview	A few tips
Additional Information	Links

- This talk, The Not So Short Introduction to LATEX 2_E on which the talk is based, plus a lot of other information is available at http://www.maths.ox.ac.uk/help/faqs/latex/;
- MiKTeX: http://miktex.org/;
- TeX Live: http://www.tug.org/texlive;
- Texmaker: http://www.xm1math.net/texmaker/;
- LEd: http://www.latexeditor.org;
- Kile: http://kile.sourceforge.net;
- The Comprehensive TeX Archive Network (CTAN): http://www.ctan.org;
- Detexify: http://detexify.kirelabs.org/classify.html;
- Google.