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Abstract

With respect to generalized trigonometric functions, since the dis-

covery of double-angle formula for a special case by Edmunds, Gurka

and Lang in 2012, no double-angle formulas have been found. In

this paper, we will establish new double-angle formulas of generalized

trigonometric functions in two special cases.
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1 Introduction

Let p, q > 1 and

F (x) :=

∫ x

0

dt

(1− tq)1/p
, x ∈ [0, 1].

We will denote by sinp,q the inverse function of F , i.e.,

sinp,q x := F−1(x).
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Clealy, sinp,q x is an increasing function in [0, πp,q/2] to [0, 1], where

πp,q := 2F (1) = 2

∫

1

0

dt

(1− tq)1/p
.

We extend sinp,q x to (πp,q/2, πp,q] by sinp,q (πp,q − x) and to the whole real
line R as the odd 2πp,q-periodic continuation of the function. Since sinp,q x ∈
C1(R), we also define cosp,q x by cosp,q x := (d/dx)(sinp,q x). Then, it follows
that

| cosp,q x|
p + | sinp,q x|

q = 1.

In case (p, q) = (2, 2), it is obvious that sinp,q x, cosp,q x and πp,q are re-
duced to the ordinary sin x, cos x and π, respectively. This is a reason why
these functions and the constant are called generalized trigonometric func-

tions (with parameter (p, q)) and the generalized π, respectively.
The generalized trigonometric functions are well studied in the context

of nonlinear differential equations (see [3] and the references given there).
Suppose that u is a solution of the initial value problem of p-Laplacian

−(|u′|p−2u′)′ =
(p− 1)q

p
|u|q−2u, u(0) = 0, u′(0) = 1,

which is reduced to the equation −u′′ = u of simple harmonic motion for
u = sin x in case (p, q) = (2, 2). Then,

d

dx
(|u′|p + |u|q) =

(

p

p− 1
(|u′|p−2u′)′ + q|u|q−2u

)

u′ = 0.

Therefore, |u′|p + |u|q = 1, hence it is reasonable to define u as a generalized
sine function and u′ as a generalized cosine function. Indeed, it is possible to
show that u coincides with sinp,q defined as above. The generalized trigono-
metric functions are often applied to the eigenvalue problem of p-Laplacian.

Now, we are interested in finding double-angle formulas for generalized
trigonometric functions. It is possible to discuss addition formulas for these
functions, but for simplicity we will not develop this point here.

No one doubts that the most basic formula is

sin2,2 2x = 2 sin2,2 x cos2,2 x, x ∈ R,

which is said to have been developed by Abu al-Wafa’ (940–998), a Persian
mathematician and astronomer. In case (p, q) = (2, 4), it is easy to see that
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sin2,4 x coincides with the lemniscate function. Since this classical function
has the double-angle formula (see, e.g. [4, p.81]), which is due to Euler in
1751, we have

sin2,4 2x =
2 sin2,4 x cos2,4 x

1 + sin4

2,4 x
, x ∈ R.

The case (p, q) = (3/2, 3) goes back to the work of Dixon [1] in 1890. It is
simple matter to check that sin3/2,3 x is identical to his elliptic function for
x ∈ [0, π3/2,3/2], so that the double-angle formula of his function yields

sin3/2,3 2x =
sin3/2,3 x(1 + cos

3/2
3/2,3 x)

cos
1/2
3/2,3 x(1 + sin3

3/2,3 x)
, x ∈ [0, π3/2,3/4]. (1.1)

Recently, Edmunds, Gurka and Lang [2] give a remarkable formula for (p, q) =
(4/3, 4). Function sin4/3,4 x can be written in terms of Jacobian elliptic func-
tion, hence the double-angle formula of Jacobian elliptic function gives

sin4/3,4 2x =
2 sin4/3,4 x cos

1/3
4/3,4 x

(1 + 4 sin4

4/3,4 x cos
4/3
4/3,4 x)

1/2
, x ∈ [0, π4/3,4/4].

As far as the generalized trigonometric functions are concerned, no other
double-angle formulas have never been published.

In this paper, we will deal with the cases (p, q) = (2, 3) and (4/3, 2). The
following double-angle formulas for the two special cases will be established.

Theorem 1.1. Let (p, q) = (2, 3). Then,

sin2,3 2x =
4 sin2,3 x cos2,3 x(3 + cos2,3 x)

3

(1 + cos2,3 x)(8 + sin3

2,3 x)
2

, x ∈ [0, π2,3/2].

Theorem 1.2. Let (p, q) = (4/3, 2). Then,

sin4/3,2 2x =
4 sin4/3,2 x cos

1/3
4/3,2 x(1 + cos

4/3
4/3,2 x)

(2 cos
2/3
4/3,2 x+ sin2

4/3,2 x)
2

, x ∈ [0, π4/3,2/2].

The double-angle formulas for cos2,3 x and cos4/3,2 x are also obtained by
differentiating both sides of those for sin2,3 x and sin4/3,2 x, respectively.

Finally, we summarize the relationship between parameters in which
double-angle formulas have been obtained (Table 1). Lemma 2.1 (resp.
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Lemma 2.2) below connects (2, p) to (p∗, p) (resp. (p∗, 2)), where p∗ :=
p/(p − 1). Thus, there also exists an alternative proof of case (4/3, 4) such
that one uses Lemma 2.1 and the double-angle formula for (2, 4) (see [5,
Section 3.1]). Nevertheless, the case (3/2, 2) is an open problem because of
difficulty of the inverse problem corresponding to (2.8).

p (p∗, 2) (2, p) (p∗, p)
2 (2, 2) by Abu al-Wafa’ (2, 2) by Abu al-Wafa’ (2, 2) by Abu al-Wafa’
3 (3/2, 2) open (2, 3) Theorem 1.1 (3/2, 3) by Dixon
4 (4/3, 2) Theorem 1.2 (2, 4) by Euler (4/3, 4) by Edmunds et al.

Table 1: The parameters in which the double-angle formulas have been ob-
tained.

2 Proofs of theorems

To prove Theorem 1.1, we use the following multiple-angle formulas.

Lemma 2.1 ([5]). Let p > 1 and p∗ := p/(p − 1). If x ∈ [0, π2,p/(2
2/p)] =

[0, πp∗,p/2], then

sin2,p (2
2/px) = 22/p sinp∗,p x cos

p∗−1

p∗,p x, (2.1)

cos2,p (2
2/px) = cosp

∗

p∗,p x− sinp
p∗,p x

= 1− 2 sinp
p∗,p x = 2 cosp

∗

p∗,p x− 1. (2.2)

Proof of Theorem 1.1. From (2.2) in Lemma 2.1, we have

sinp∗,p x =

(

1− cos2,p (2
2/px)

2

)1/p

, (2.3)

cosp∗,p x =

(

1 + cos2,p (2
2/px)

2

)1/p∗

. (2.4)

Let x ∈ [0, π2,3/2] and y := x/(22/3). It follows from (2.1) in Lemma 2.1
that since 2y ∈ [0, π2,3/(2

2/3)] = [0, π3/2,3/2],

sin2,3 (2x) = sin2,3 (2
2/3 · 2y)

= 22/3 sin3/2,3 (2y) cos
1/2
3/2,3 (2y). (2.5)
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Dixon’s formula (1.1) with (2.3) and (2.4) yields

sin3/2,3 (2y) =
sin3/2,3 y(1 + cos

3/2
3/2,3 y)

cos
1/2
3/2,3 y(1 + sin3

3/2,3 y)
=

(1− C)1/3(3 + C)

(1 + C)1/3(3− C)
,

where C = cos2,3 (2
2/3y) = cos2,3 x. Moreover,

cos
1/2
3/2,3 (2y) = (1− sin3

3/2,3 (2y))
1/3 =

24/3C

(1 + C)1/3(3− C)
.

Therefore, from (2.5) we have

sin2,3 (2x) = 22/3 ·
(1− C)1/3(3 + C)

(1 + C)1/3(3− C)
·

24/3C

(1 + C)1/3(3− C)

=
4(1− C2)1/3C(3 + C)3

(1 + C)(9− C2)2
.

Since 1− C2 = sin3

2,3 x, the proof is complete.

To show Theorem 1.2, the following lemma is useful.

Lemma 2.2 ([2], [5]). Let p, q > 1. For x ∈ [0, 2],

qπp,q = p∗πq∗,p∗,

sinp,q

(πp,q

2
x
)

= cosq
∗
−1

q∗,p∗

(πq∗,p∗

2
(1− x)

)

.

Proof of Theorem 1.2. Let x ∈ [0, π4/3,2/2]. Then, since 4x/π4/3,2 ∈ [0, 2], it
follows from Lemma 2.2 that

sin4/3,2 2x = cos2,4

(

π2,4

2

(

1−
4x

π4/3,2

))

= cos2,4

(π2,4

2
− x

)

.

Thus,

sin4/3,2 2x =

√

1− sin4

2,4

(π2,4

2
− x

)

. (2.6)

Function sin2,4 coincides with the lemniscate function, it has the addition
formula: for any u, v ∈ R,

sin2,4 (u+ v) =
sin2,4 u cos2,4 v + sin2,4 u cos2,4 v

1 + sin2

2,4 u sin
2

2,4 v
. (2.7)
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Applying (2.7) to the right-hand side of (2.6), we obtain

sin4/3,2 2x =
2 sin2,4 x

1 + sin2

2,4 x
.

We need only consider case x ∈ (0, π4/3,2/2) = (0, π2,4). Let f(x) :=
sin4/3,2 x and g(x) := sin2,4 x. Then, g(x) 6= 0 and

f(2x) =
2g(x)

1 + g(x)2
=

2

1/g(x) + g(x)
. (2.8)

Therefore, it is easy to see that

1

g(x)
+ g(x) =

2

f(2x)
,

1

g(x)2
+ g(x)2 =

4

f(2x)2
− 2, (2.9)

1

g(x)2
− g(x)2 =

4

f(2x)

√

1

f(2x)2
− 1. (2.10)

Moreover, letting u = v = x/2 in (2.7), we see that g(x) satisfies

g(x) =
2g(x/2)

√

1− g(x/2)4

1 + g(x/2)4
. (2.11)

Thus, substituting (2.11) into (2.8), we obtain

f(2x) =
4(1/g(x/2)2 + g(x/2)2)

√

1/g(x/2)2 − g(x/2)2

(1/g(x/2)2 + g(x/2)2)2 + 4(1/g(x/2)2 − g(x/2)2)
.

Since (2.9) and (2.10) hold true for x replaced with x/2, we can express f(2x)
in terms of f(x), i.e.,

f(2x) =
4f(x)(1− f(x)2)1/4(2− f(x)2)

(f(x)2 + 2
√

1− f(x)2)2
.

Since 1− f(x)2 = cos
4/3
4/3,2 x, the proof is complete.
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