IR For Dummies: a brief non-technical introduction to what you can't see

Infrared (IR) Radiation

In everyday life we encounter electromagnetic radiation in many different forms. Visible light, ultraviolet light, radio waves, and X-rays are all examples of electromagnetic radiation, differing only in wavelength. Infrared radiation occupies that region of the electromagnetic spectrum between visible light and microwaves. The figure below shows the major divisions of the electromagnetic spectrum, along with some specific features within the spectrum.

Figure 1. The Electromagnetic Spectrum

All objects constantly emit IR radiation as a function of their temperature. As an object gets hotter, it gives off more intense infrared radiation, and it radiates at shorter wavelengths. At moderate temperatures (above 200°F), the intensity of the radiation gets high enough so that the human body can detect that radiation as heat. At high enough temperatures (above 1200°F), the intensity gets high enough and the wavelength gets short enough so that the radiation crosses over the threshold to the red end of the visible light spectrum. This is why hot steel glows red. As an object gets even hotter (for example, the tungsten filament of a light bulb at 5000°F), the intensity gets even higher (that is, it glows brighter) and the wavelength gets even shorter (more white). But even at low temperatures, below the threshold of visible light emission, everything glows with this longer wavelength infrared light, and objects at different temperatures glow with different wavelengths and intensities. The radiation from these objects creates an infrared scene, similar in nature to a visible light scene.

IR Imaging Systems

The human eye cannot detect infrared light. But infrared energy can be detected electronically. Sophisticated electronic instruments exist which can scan a scene and convert the infrared light to an electrical signal which can be displayed on a video

monitor, analyzed by a computer, or recorded on film. Electrically, the output of these instruments is very similar to the output of a conventional video camera.

Unlike the human eye or a conventional video camera, which rely on reflected visible light to illuminate the objects in a scene, these infrared cameras are detecting IR energy which is being *emitted* by the objects in the scene. So an infrared camera works as well in total darkness as it does in normal daylight.

IR imaging systems are designed to satisfy different performance parameters, depending on their intended use. Military applications, such as missile guidance, require the highest level of accuracy and reliability. Many commercial applications require low cost, ease of use, and ease of maintenance.

IR imaging applications are virtually limitless. They allow you to see at night or through haze and smoke. They allow you to measure the temperature profiles of objects at great distances with high accuracy. Military applications include target acquisition, missile and weapon guidance, navigation, reconnaissance, surveillance, and terrain analysis. Commercial applications exist in many fields: industrial (plant maintenance, quality control, non-destructive testing), environmental and scientific (earth and solar sciences, pollution control, energy conservation, resource development), medical (mammography, detection of arterial constriction, evaluation of soft tissue injury), and civil (law enforcement, fire fighting, surveillance, border patrol), to name just a few.

Figure 2 shows the breadth of applications for infrared technology. This table was compiled by Richard Hudson in his 1969 text, Infrared System Engineering, a universally respected infrared handbook. In the time since this publication first appeared, the majority of activity has been in military applications; the high cost of infrared imaging systems has limited its use in commercial applications. However, the last few years have yielded significant breakthroughs in detector technology and associated support electronics, resulting in major reductions in the cost of imaging infrared systems. The price of these new systems now makes practical the whole array of applications listed in Hudson, opening up vast new markets for IR equipment.

Testing and Evaluation of IR Imaging Systems

Due to their complexity, IR imaging systems are expensive, sensitive, high-maintenance devices. To assure proper operation of these systems and to achieve their full performance requires frequent test and calibration. Engineers, who design IR imaging systems, test them during the design and development stage to evaluate performance parameters and to refine designs to optimize performance. Manufacturers of IR imaging systems need to compare actual performance to specifications, and need to calibrate the systems prior to delivery. End users must test their systems regularly to verify proper operation, and must recalibrate them periodically while they are in the working environment.

	I			
	Military	Industrial	Medical	Scientific
Search,	Intrusion detection	Forest fire detection	Obstacle detection for the	Satellite detection
track, and	Bomber defense	Guidance for fire-fighting	blind	Space vehicle navigation
range	Missile guidance	missiles		and flight control
-	Navigation and flight	Fuel ignition monitor		Horizon sensors
	control	Locating hidden law		Sun followers for
	Proximity fuses	violators		instrument orientation
	Ship aircraft ICBM and	Monitoring parking meters		Studies of the optical
	mine detection	Detect fires in aircraft fuel		structure of the horizon
	Fire control	tanks		structure of the horizon
	Aircraft collision warning	tanks		
D I' (Alterate consion warning		M (C 1)	M (C1
Radiometry	l'arget signatures	Detection of not boxes on	Measurement of skin	Measurement of lunar,
		railroad cars	Entrature	planetary and stellar
		Noncontact dimensional	Early detection of cancer	temperatures
		determination	Monitor healing of wounds	Remote sensing of weather
		Process control	and onset of infection,	conditions
		Measurement of the temp-	without removing bandages	Study of heat transfer in
		eratures of brake linings,	Remote biosensors	plants
		power lines, cutting tools,	Studies of skin heating and	Measurements of the earth's
		welding and soldering	temperature sensation	heat balance
		operations, and ingots		
Spectro-	Terrain analysis	Detection of clear-air	Detection and monitoring of	Determination of the
radiometry	Poison gas detection	turbulence	air pollution	constituents of earth and
-	Target and background	Analysis of organic	Determination of carbon	planetary atmospheres
	signatures	chemicals	dioxide in the blood and in	Detection of vegetation or
	Fuel vapor detection	Gas analysis	expelled air	life on other planets
	Detection of contaminants	Determination of alcohol in	r r · · · · ·	Terrain analysis
	in liquid oxygen piping	the breath		Monitor spacecraft
	in inquite onlygen piping	Discovery of leaks in		atmospheres
		nipelines		Zero-G liquid level gauge
		Detection of oil in water		Measurement of magnetic
		Control of oxygen content		fields
		in germanium and silicon		lields
Thermal	Reconnaissance and	Nondestructive testing	Farly detection and	Farth resources surveys
imaging	surveillance	Inspection	identification of cancer	Locate and man the gulf
imaging	Thermal mapping	Locating piping hidden in	Determination of the	stream
	Submaring datastion	wells and floors	optimum site for an	Detect forest fires from
	Detection of underground	Inspection of infrared	apputation	satellites
	missile siles personnel	ontical materials	L configuration of the placental	Study volgenoos
	vehicles weepons cooking	Detect and display	site	Detect and study water
	fines and an asymptotic	microwaya field nettorna	Studios of the officiancy of	nollution
	Developments	Studes officiences of the surgel	A set is slathing	
	Damage assessment	Study efficiency of thermal	Arctic clothing	Locate crevasses
		insulators	Early diagnosis of incipient	Sea-ice reconnaissance
D (1 . 1	NT: 1 . 1	T 1	stroke	Petroleum exploration
Reflected	Night driving	Industrial surveillance and	Measurement of pupillary	Detection of forgeries
flux	Carbine firing	crime prevention	diameter	Determine thickness of
	Intrusion detection	Examination of	Location of blockage in a	epitaxial films
	Area surveillance	photographic film during	vein	Determination of the
	Camouflage detection	manufacture	Monitoring eye movements	surface constituents of the
	Station keeping	Detection of diseased trees	Study the nocturnal habits	moon and the planets
	Docking and landing	and crops	ot animals	Gem identification
		Traveling matte	Examination of the eye	Analysis of water quality
		photography	through corneal opacities	Detection of diseased crops
		Automatic focusing of	Monitor healing processes	
		projectors		
Cooperative	Terrestrial communications	Intrusion detection	Ranging and obstacle	Space communications
source	Command guidance for	Automobile collision	detection for the blind	Understand the mechanism
	weapons	prevention	Heat therapy	of animal communication
	Countermeasures for	Traffic counting		Peripheral input for
	infrared systems	Radiant heating and drying		computers
	Range finding	Data link		Study the nocturnal habits
	Drone command link	Intervehicle speed sensing		of animals
	Intrusion detection	Aircraft landing aid		Terrain illumination for
		Cable bonding		night photography

Figure 2. INFRARED APPLICATIONS MATRIX

(from Infrared System Engineering, by Richard D. Hudson Jr., John Wiley & Sons, 1969)

Some of the important performance characteristics of an IR imaging system are spatial resolution (ability to resolve fine detail), thermal resolution (ability to resolve small temperature differences), speed (ability to respond to a rapidly changing scene without blurring), and dynamic range (how large a temperature span it can view without saturating). Standard tests have been developed to quantify these characteristics. In addition, innumerable specialized tests exist to evaluate specific requirements. For more detail on IR testing, see the article "Automated Testing Improves Infrared Imaging Systems", by Peter L. Chua and Stephen W. McHugh of Santa Barbara Infrared, included in the appendix. This article details some of the complex tests necessary to characterize the various subsystems of an imaging system, and discusses the difficulties involved in achieving accurate and consistent results.

IR Test Equipment

Setup, test, and calibration of IR imaging systems requires the use of specialized test equipment. This test equipment is designed to create an infrared scene of precisely known characteristics, to project this scene to the input of the IR imaging system being tested, and to evaluate the quality of the output of the IR imaging system.

The nature of the testing needed depends on the application of the IR imaging system. Obviously, proper function of a camera used for parking lot surveillance is a less critical than proper function of an IR navigation and targeting system used by a supersonic jet fighter in low-altitude night battle. So different test equipment is needed for different IR imaging systems, and for different applications. For some applications, standard off-theshelf equipment exists that can be used to properly test an imaging system. For other applications, elaborate custom equipment must be developed to meet the testing requirements. Some of the standard IR test instruments are described below. Pictures of these instruments can be seen in the Product Information section of the Appendix.

Blackbodies. A blackbody is a precisely characterized source of infrared radiation. When used to test an IR imaging system, a blackbody is used to generate an accurate temperature difference between two surfaces, which yields a precise radiance contrast for an input to the IR imaging system being tested. A blackbody with suitable performance for testing state-of-the-art imaging systems is a very sophisticated instrument, controlling the temperature of the blackbody surface with resolution and stability on the order of .001°C.

Targets. A typical target used for IR testing consists of a flat copper plate with a testspecific pattern etched or machined through it. The target is placed in front of the blackbody, and the blackbody controls the temperature difference between the target and the blackbody's surface. When an IR imaging system views the blackbody surface through the target features, it sees an infrared image in the shape of the target pattern with a contrast determined by the temperature difference between the blackbody and the target. One common example of a target pattern is a set of rectangular bars etched through the copper plate. It is used in a test similar to the way an eye chart is used by an optometrist: this target, along with a blackbody, would generate patterns used to test the spatial resolution of an IR imaging system.

Target Wheels. To minimize handling of different targets, to automate target selection, and to speed up test time, several targets of different sizes and different features can be mounted into a motorized target wheel.

Collimators. A collimator is a optical assembly which projects the IR image generated by a blackbody and target onto the IR imaging system being tested. Typically, a collimator is used to create the illusion of the IR image existing at a great distance from the unit under test. This is needed, because an IR imaging system is normally used to view objects at distances greater than those achievable in a laboratory.

Target Projectors. A blackbody, targets, target wheel, and collimator, properly integrated together, form a system called a target projector. Frequently, the blackbody and target wheel in a target projector are designed to be controlled by a computer, to allow automation of the testing. Other special features such as range simulation or boresight alignment tooling are sometimes added as accessories to target projectors. These integrated components are sold as turnkey test equipment for IR imaging systems.

A target projector is analogous to a slide projector, with its components (blackbody, target, target wheel, and collimator) analogous to the slide projector's components (bulb, slide, slide carousel, and lens). A significant difference between the two is that a slide projector projects a *visible light* scene, typically onto a white screen; a target projector projects an *infrared light* scene, typically into the input optics of an IR imaging system. Another important difference is that unlike a slide projector's bulb with its constant light output, the target projector's blackbody provides a precisely variable illumination behind the slide (target).

SBIR's Role in IR Testing

Santa Barbara Infrared designs and manufactures both standard and custom test equipment used to measure performance of IR imaging systems. Products are sold as individual components or as integrated turnkey IR test stations. The company has a robust catalog of standard products which can be delivered in multiple configurations. The company's products are used to test IR imaging systems, in the lab or for field use, in a commercial or military environment. The company also manufactures test equipment for other electro-optical systems such as lasers and visible light cameras, to provide complete test solutions for sophisticated multi-sensor military systems.

The company has developed three distinct business areas related to IR test equipment: standard products, design-to-spec engineering, and build-to-print production. Standard products consist of instruments conceived and designed at SBIR and sold as catalog items, sometimes reconfigured to customer requirements. SBIR's design-to-spec engineering and build-to-print production both support the company's involvement in

program-specific products (in contrast to standard products). For the design-to-spec engineering, a customer's specification document is the basis for a custom design by SBIR's engineering staff, which the company will then build, test, and deliver to the customer. Build-to-print production utilizes the customer's engineering design, with SBIR supplying purchasing, fabrication, and test services along with engineering support during the project.