GCSE MATHEMATICS FORMULAE

ALGEBRA

NOTATION, VOCABULARY AND MANIPULATION

Kinematics

For an object moving at constant acceleration, where:

a = constant acceleration u = initial velocity v = final velocity

s = displacement from its initial position t = time taken

$$v = u + at$$

$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

$$v^2 = u^2 + 2as$$

GRAPHS

Equation of a line

m =gradient of the line c = where the line crosses the y-axis (y-intercept)

$$y = mx + c$$

Equation of a circle

For a circle with centre (0,0)and radius r

$$x^2 + y^2 = r^2$$

SOLVING EQUATIONS AND INEQUALITIES

Quadratic Formula

For an equation $ax^2 + bx + c = 0$ where $a \neq 0$, the solutions are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

RATIO, PROPORTION AND RATES OF CHANGE

Simple interest

P = principal amount and r = interest rate

Interest =
$$P \times \frac{r}{100}$$

Compound interest*

P = principal amount

r = interest rate

n = number of period of interest

Total accrued = $P \times \left(1 + \frac{r}{100}\right)^n$

Speed

 $Speed = \frac{Distance}{Time}$

Density

Density = $\frac{\text{Mass}}{\text{Volume}}$

Pressure

Pressure = $\frac{\text{Force}}{\text{Area}}$

Proportion

If A is directly proportional to

B then

 $A = k \times B$

for some constant k

If A is inversely proportional to

B then

 $A = k \times \frac{1}{B}$

for some constant k

PROBABILITY

For two outcomes, A and B:

P(A) = probability of outcome A

P(B) = probability of outcome B

P(A or B) = P(A) + P(B) - P(A and B) P(A or B) = P(A) when P(A) = P(B)

 $P(A and B) = P(A given B) \times P(B)$

^{*} Compound interest appears in both Foundation and Higher tiers, but working with general iterative processes is Higher tier only.

GEOMETRY

MENSURATION AND CALCULATION

Length

Perimeter of a rectangle = 2(length + width)

Perimeter of a square = 4 × length

Circumference of a circle =

$$2\pi r = \pi d$$

Arc length of a sector =

$$\frac{\theta}{180} \times \pi r = \frac{\theta}{360} \pi d$$

where θ is the angle of the sector

Areas

Area of a triangle = $\frac{1}{2}$ × base × height

In any triangle ABC with sides a, b, and c: Area of a triangle =

$$\frac{1}{2}ab\sin C$$

Area of a rectangle = length × width

Area of a parallelogram = base x perpendicular height

Area of a square = length²

Area of a kite = $\frac{1}{2}$ × long diagonal × short diagonal

Area of a trapezium =

$$\frac{1}{2}(a+b)h$$

where a and b are the parallel sides.

Area of a circle =

$$\pi r^2$$

Area of a sector =

$$\frac{\theta}{360} \times \pi r^2$$

where θ is the angle of the sector

GEOMETRY

MENSURATION AND CALCULATION (continued)

Surface Area

Curved surface area of a cone =

 πrl

Surface area of a sphere =

 $4\pi r^2$

Volume

Volume of a cuboid = length × width × height

Volume of a prism = area of the cross section × length

Volume of a cone =

$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =

$$\frac{4}{3}\pi r^3$$

Triangles

Within a right-angled triangle with sides a, b and c where c is the hypotenuse:

Pythagoras' theorem

$$a^2 + b^2 = c^2$$

Trigonometry formulae

$$\sin A = \frac{a}{c}$$
, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{b}$

In any triangle ABC with sides a, b, and c:

The sine rule:

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

The cosine rule:

$$a^2 = b^2 + c^2 - 2bc \cos A$$