Brighter Thinking

GCSE MATHEMATICS FORMULAE

ALGEBRA

NOTATION, VOCABULARY AND MANIPULATION

Kinematics
For an object moving at constant acceleration, where:
$a=$ constant acceleration $u=$ initial velocity $v=$ final velocity
$s=$ displacement from its initial position $t=$ time taken

$$
v=u+a t \quad s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s
$$

GRAPHS

Equation of a line $m=$ gradient of the line
$c=$ where the line crosses the y-axis
(y-intercept)

$$
y=m x+c
$$

Equation of a circle For a circle with centre $(0,0)$ and radius r

$$
x^{2}+y^{2}=r^{2}
$$

SOLVING EQUATIONS AND INEQUALITIES

Quadratic Formula

For an equation $a x^{2}+b x+c=0$ where $a \neq 0$, the solutions are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Brighter Thinking

RATIO, PROPORTION AND RATES OF CHANGE

Simple interest
$P=$ principal amount and $r=$ interest rate

Interest $=P \times \frac{r}{100}$

Compound interest*
$P=$ principal amount
$r=$ interest rate
$n=$ number of period of interest

* Compound interest appears in both Foundation and Higher tiers, but working with general iterative processes is Higher tier only.

Speed

Speed $=\frac{\text { Distance }}{\text { Time }}$

Density
Density $=\frac{\text { Mass }}{\text { Volume }}$

Pressure
Pressure $=\frac{\text { Force }}{\text { Area }}$

Proportion
If A is directly proportional to B then
$A=k \times B$
for some constant k

If A is inversely proportional to B then
$A=k \times \frac{1}{B}$
for some constant k

PROBABILITY

For two outcomes, A and B :
$P(A)=$ probability of outcome A
$P(B)=$ probability of outcome B
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ and $B)=P(A$ given $B) \times P(B)$

Brighter Thinking

GEOMETRY
 MENSURATION AND CALCULATION

Length

length
Perimeter of a rectangle $=$ 2 (length + width)

length
Perimeter of a square $=$ $4 \times$ length

circumference
Circumference of a circle $=$
$2 \pi r=\pi d$

Arc length of a sector $=$ $\frac{\theta}{180} \times \pi r=\frac{\theta}{360} \pi d$

Areas

Area of a triangle $=$ $\frac{1}{2} \times$ base \times height

Area of a parallelogram = base x perpendicular height

Area of a trapezium =

$$
\frac{1}{2}(a+b) h
$$

where a and b are the parallel sides.

In any triangle $A B C$ with sides a, b, and c : Area of a triangle =
$\frac{1}{2} a b \sin C$

Area of a square $=$ length ${ }^{2}$

Area of a circle $=$
πr^{2}

Brighter Thinking

GEOMETRY
 MENSURATION AND CALCULATION (continued)

Surface Area

Curved surface area of a cone $=$ $\pi r \mid$

Surface area of a sphere $=$ $4 \pi r^{2}$

Volume

Volume of a cuboid $=$ length \times width \times height

Volume of a prism $=$ area of the cross section \times length

Volume of a cone $=$

Volume of a sphere $=$

$$
\frac{4}{3} \pi r^{3}
$$

Triangles

b

Within a right-angled triangle with sides a, b and c where c is the hypotenuse:
Pythagoras' theorem
$a^{2}+b^{2}=c^{2}$

Trigonometry formulae

$$
\sin A=\frac{a}{c}, \quad \cos A=\frac{b}{c}, \tan A=\frac{a}{b}
$$

In any triangle $A B C$ with sides a, b, and c :
The sine rule:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

