Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

Do Now: Find the lengths of the missing sides in each right triangle. Answers must be in radical form.
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

If we wanted to draw an angle of positive 30° starting at the x-axis, which direction would we go:

Clockwise or Counter-Clockwise

(hint - remember transformations)
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

- **Drawing an angle on a coordinate grid:**

 - **Initial Side:** The positive x-axis
 - **Terminal Side:** The ray where the measurement of an angle stops (counter-clockwise).
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

Unit Circle: A circle, centered at the origin, with a radius of 1.

How do we draw an angle of 30°?

How do we draw an angle of 60°?
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

Think - Pair - Share

Using a unit circle, determine the following:

- \(\sin(60^\circ) \) We'll do this one together
- \(\cos(45^\circ) \)
- \(\tan(30^\circ) \)
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

Turn and Talk

What are the coordinates of point A, B, and C?
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

\[
\sin(\theta) = \text{The y-coordinate of where the terminal side intersects the unit circle.}
\]

\[
\cos(\theta) = \text{The x-coordinate of where the terminal side intersects the unit circle.}
\]

\[
\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}
\]
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

Try this on your own: Fill in the following chart with exact values (radical form):

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cos(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tan(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

The left hand trick: