
Handbook of Research on
Cloud Infrastructures for
Big Data Analytics

Pethuru Raj
IBM India Pvt Ltd, India

Ganesh Chandra Deka
Ministry of Labour and Employment, India

A volume in the Advances in Data Mining
and Database Management (ADMDM)
Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

CIP Data (Pending)

978-1-4666-5864-6 (ISBN Hardcover)
978-1-4666-5865-3 (ISBN eBook)
978-1-4666-5867-7 (ISBN Print and Perpetual)

This book is published in the IGI Global book series Advances in Data Mining and Database Management (ADMDM)
(ISSN: 2327-1981; eISSN: 2327-199X)

Managing Director:
Production Editor:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder
Austin DeMarco
Kayla Wolfe
Michael Brehm
Jason Mull

444

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 18

Accessing Big Data in the
Cloud Using Mobile Devices

ABSTRACT

The amount of data acquired, stored, and processed annually over the Internet has exceeded the processing
capabilities of modern computer systems, including supercomputers with multiple-Petaflop processing
power, giving rise to the term Big Data. Continuous research efforts to implement systems to cope with
this insurmountable amount of data are underway. The authors introduce the ongoing research in three
different facets: 1) in the Acquisition front, they introduce a concept that has come to the forefront in the
past few years: Internet-of-Things (IoT), which will be one of the major sources for Big Data generation
in the following decades. The authors provide a brief survey of IoT to understand the concept and the
ongoing research in this field. 2) In the Cloud Storage and Processing front, they provide a survey of
techniques to efficiently store the acquired Big Data in the cloud, index it, and get it ready for process-
ing. While IoT relates primarily to sensor nodes and thin devices, the authors study this storage and
processing aspect of Big Data within the framework of Cloud Computing. 3) In the Mobile Access front,
they perform a survey of existing infrastructures to access the Big Data efficiently via mobile devices.
This survey also includes intermediate devices, such as a Cloudlet, to accelerate the Big Data collection
from IoT and access to Big Data for applications that require response times that are close to real-time.

Haoliang Wang
George Mason University, USA

Wei Liu
University of Rochester, USA

Tolga Soyata
University of Rochester, USA

DOI: 10.4018/978-1-4666-5864-6.ch018

445

Accessing Big Data in the Cloud Using Mobile Devices

INTRODUCTION

The amount of data generated annually over the
Internet has exceeded the zetabyte levels. Process-
ing data with such high volume far exceeds the
computational capabilities of today’s datacenters
and computers, giving rise to the term Big Data.
Although the growth rate of supercomputers that
are capable of processing such explosive amount
of data is also breathtaking (TOP500, n.d.), the
rate of data growth far surpasses the capabilities
of even the fastest supercomputers available today.
Even though the top supercomputers are able to
handle Big Data analysis, their highly-specialized
designs are not affordable for commercial use. In-
stead, large commodity computer clusters are used,
where faults are common and interconnect speeds
are limited. Also the storage and management
of Big Data poses different unique challenges:
While the storage has to be performed by high-
availability and high-performance distributed file
systems, it must also be done in a way to allow
application of efficient data analytics later. Being
able to perform analytics on this data is crucial:
It has been reported that, performing analytics on
Big Data can save the government 14% all across
their budget (Big Data, 2013). This specific ex-
ample shows the importance of manipulating Big
Data while keeping both phases of usage in mind
concurrently: storage and computation.

By today’s standards, considering the utility
computing (termed Cloud Computing), is unavoid-
able for any organization, regardless of its size.
While it is possible for different organizations
to build their own datacenters, it is an expensive
business proposition to do so, since the econo-
mies of scale for organizations such as Amazon
(AWS, n.d.), Google (Google, n.d.), and Microsoft
(Microsoft, n.d.), will allow them to build these
datacenters for a fraction of the price. Furthermore,
while an organization that is building its own
datacenter must size it for the worst case, cloud
operators offer much more favorable pricing op-
tions, such as, per-hour usage pricing. This allows

corporations to rent much higher peak amounts of
computational power with zero upfront investment.
To make cloud computing even more appealing,
the responsibility of continuously upgrading the
underlying computational infrastructure is shifted
to the cloud operators, thereby permitting access
to modern high performance resources whenever
they are available without any investment.

Due to the wide scope of Big Data and cloud
computing, we restrict our focus to futuristic
concepts involving Big Data in this chapter. Spe-
cifically, we will investigate one emerging source
of Big Data, called Internet of Things (IoT). IoT,
introduced in 1999, conceptualizes a network of
numerous data-generating devices (things) such
as home energy meters, wireless sensors, and
other sensory devices. For IoT to be realized, a
unique Internet addressing scheme for each de-
vice, called IPv6, is necessary that significantly
expands what used to be the standard a decade
ago (IPv4). With the widespread use of IPv6, each
device (i.e., thing) can be assigned its unique ad-
dress to globally identify it over the Internet. The
acceptance of IPv6 is accelerating for desktop PCs
and is expected to expand over to IoT within the
following decade.

Cloud computing, as a new model for deliv-
ering computing resources on demand, provides
a powerful, flexible and elastic platform which
enables collection, analytics, processing and
visualization of Big Data. Storage of Big Data is
performed by file systems that are drastically dif-
ferent than traditional file systems such as NT File
System (NTFS). One such user-level distributed
file system – Google File System (GFS) allows
not only the distributed storage of Big Data, but
also its access with high availability (and fault-
tolerance) due to the built-in redundancy in GFS.
This file system also dictates how the processing
should be performed: Standardized methods, such
as MapReduce, ease the handling of Big Data and
provide a tool for cloud operators to make their
platform more accessible. Cloud computing ser-
vice providers have already releases of the public

446

Accessing Big Data in the Cloud Using Mobile Devices

platforms for Big Data analysis (Amazon Elastic
MapReduce and Google BigQuery).

Access to Big Data in the cloud through mo-
bile devices (termed Mobile-Cloud Computing)
significantly expands the reach of Big Data due
to the widespread availability of smartphones and
tablets. While multiple definitions are available in
the literature (Dinh et al., 2011; Fernando et al.,
2013), mobile-cloud computing can be defined as
the “co-execution of a mobile application within
the expanded mobile/cloud computational plat-
forms to optimize an objective function (Soyata et
al., 2013).” An objective function can be defined
for the mobile application such as the application
response time, and the goal of the mobile appli-
cation is to minimize this objective function. In
applications requiring real-time response (e.g.,
real-time face recognition), mobile devices cannot
achieve this objective function alone. Mobile-
cloud computing allows the mobile device to
utilize cloud resources to achieve this goal.

This chapter is organized as the lifecycle of
Big Data shown in Figure 1: First, we will be
providing a survey of IoT as a source for Big Data
generation, followed by a survey of storage and
computational methodologies and algorithms for

Big Data in the cloud computing environment. We
will conclude our chapter with an introduction
of mobile-cloud computing which allows access
to the Big Data in the cloud via mobile devices.

GENERATION AND ACQUISITION

As mentioned in the previous section, a portion
of future Big Data will be generated by a network
of numerous data-generating devices called In-
ternet of Things (IoT). The phrase IoT was first
presented by Kevin Ashton at Procter & Gamble
(P&G) in 1999 (Ashton, 2009). The basic idea
of this concept is that, the pervasive presence
of varieties of things or objects, through unique
addressing schemes, ubiquitous computation and
communication infrastructures, are able to interact
with each other and cooperate to reach a common
goal. These things or objects have their own means
of gathering information. Emerging technologies,
including RFID, sensor, and wireless communica-
tions enable things or objects to observe, identify,
and understand the world. IoT blurs the lines
between the real world and the digital world by
providing awareness about situations and status

Figure 1 Illustration for the lifecycle of big data (Generation, storage and processing, accessing)

447

Accessing Big Data in the Cloud Using Mobile Devices

of things and people in digital format, bridging
the real world with the digital world.

IoT will have a profound and disruptive impact
on transportation, environment, living, e-health,
military and defense. This new paradigm will play
a leading role in the near future. The increased
autonomous decision making capabilities can be
used by service technologies and enterprise sys-
tems of tomorrow: the real world awareness will
be provided by the IoT. Our social interactions
will be greatly enhanced with information and
intelligence enabling feedback and control loops
which are cumbersome, slow and fault ridden. By
2025 Internet nodes may reside in everyday things
– food packages, furniture, paper documents, and
more (NIC, 2008).

The development of IoT depends on dynamic
technical innovation in a number of important
fields. First, for object identification, a ubiquitous
addressing scheme is crucial., which can be of-
fered by Radio Frequency IDentification (RFID).
Second, with emerging technologies, data can be
collected and processed to perceive status changes
of physical objects. Third, wireless communica-
tion technologies link the real world with the
digital world, by connecting each object. Finally,
advances in miniaturization and nanotechnology
mean things will become more integrated, pro-
viding the strong ability to interact. Eventually
a full interoperability of interconnected devices
will enable adaptation and autonomous behavior
while guaranteeing trust, privacy, and security
(Atzori, 2010). However, many issues remain to
be addressed. Both industry and academia need
to be involved to formulate solutions to fulfill
major technological requirements before IoT is
widely applicable.

The rest of this section is organized as follows.
We introduce vision and applications of IoT first,
followed by a presentation of key technologies
which enable IoT. We conclude this section with
a cloud-centric view of IoT and the issues that
must be addressed before IoT is widely applicable.

Vision and Applications

In the past 50 years, the Internet has grown from
a small research network to a worldwide network
with billions of human users. In the past decade,
Internet of Things has evolved and became capable
of connecting physical objects (smart objects). A
new era of networking, computing and service
provisioning and management has started (Mio-
randi, et al., 2012).

Conceptually, IoT is based on smart objects
which are identifiable, Internet-accessible and
interoperable among each other. A smart object
is a physical embodiment that senses physical
phenomena; and it is equipped with limited com-
munication and computing capabilities; each smart
object is associated with both a human-readable
name and a unique universally identifiable ma-
chine-readable address. IoT focuses on data and
information related to physical world rather than
point to point communication, which distinguishes
it from traditional network systems.

From a system perspective, the Internet of
Things can be viewed as a highly distributed and
dynamic network of many smart objects commu-
nicating with each other. Since smart objects can
move and create ad hoc connections unexpectedly,
the IoT network encounters a very high level of
parallelism. The extremely large scale of the
system makes scalability a major issue for IoT.
So, self-management is expected to accelerate the
development of IoT greatly (Guinard et al., 2011).
From the service perspective, integration of smart
objects’ functionalities and resources into services
(Chen et al., 2010) is a major issue, which requires a
standardized representation of ‘virtualized’ smart
objects in the information world.

The IoT has evolved as the next technology to
transform the Internet to a fully integrated future
Internet with a variety enabling wireless tech-
nologies like RFID tags, embedded sensor and
actuator nodes. A wide range of applications can
be deployed to improve the quality of our lives

448

Accessing Big Data in the Cloud Using Mobile Devices

with IoT. Depicted in Figure 2, these applications
can be itemized as follows (Atzori et al., 2010):

• Transportation and Logistics
 With RFID and NFC technology, real time

monitoring of the entire supply chain in
logistics makes it possible to obtain product-
related information timely and accurately so
that the customer service time can be greatly
improved.

 Car drivers can benefit from the informa-
tion obtained from the road system for
better navigation and safety. More accurate
information for planning activities can also
be obtained.

• Health Care
 In the health care domain, real time track-

ing of a person or object (e.g. patient-flow
monitoring) can be achieved with the IoT
technology. Also, it can provide identifi-
cation to prevent mismatching so that no
harmful effects will occur to patients (wrong
drug or time). IoT enabled data collection
and sensing can help improve health care to
patients as well.

• Smart Environment
 With sensors and actuators distributed

around our living environment, IoT tech-

nology makes our living environment more
comfortable in that room heating, lighting
can adaptively change according to our pref-
erence and certain incidents can be avoided
with appropriate monitoring and alarming.

 Also, with massive deployment of RFID
tags, quality control can be performed to
industrial plants to help improve automation
quality.

• Personal and Social
 IoT helps people interact with each other to

build social relationship by automatically
and intelligently sending messages about
our activities to friends. Also, lost or stolen
objects can be easily identified and tracked
with the attached electronic tags.

According to the IoT vision, a smart planet
where the world economy and support system
will seamlessly and efficiently cooperate will
evolve in the future.

Enabling Technologies

Radio-Frequency Identification (RFID)

As the size, weight, energy consumption and cost
of radio transmitters decrease, the possibility of

Figure 2. Illustration for application areas of IoT

449

Accessing Big Data in the Cloud Using Mobile Devices

integrating radio transmitters in almost anything
will be the key enabler for the IoT concept. The
RFID system usually consists of RFID tags embed-
ded in every smart object and one or more readers
that collect and transmit the object information
(e.g. identity, location) to remote computer serv-
ers (Atzori et al., 2010). With no human interac-
tion while monitoring the objects in real time,
mapping of the real world to the virtual world
becomes possible.

Physically, an RFID tag contains an IC chip
for information and signal processing (RFID,
n.d.) and an antenna for receiving and transmit-
ting signals. RFID tags can be categorized into
passive tags and active tags. Passive RFID tags
have no power supply and can harvest energy from
the electromagnetic energy received from RFID
readers. Although the gain from an RFID reader
is very low, tag IDs can still be correctly retrieved
within a radio range of a few meters. Active RFID
tags have their own power supply (e.g. a battery)
on-board. The lifetime of an active tag is thus
limited by the power supply. However, active tags
can transmit over a much longer distance, typi-
cally a few hundred meters. RFID reader act as a
gateway between physical objects with RFID tags
and the Internet by resolving all the mismatches
in the architecture, naming convention and com-
munication protocols (Kopetz, 2011).

Wireless Sensor Networks

A Wireless sensor network (WSN) is an infra-
structure composed of sensing, computing, and
communication elements that can trace the status
of things and is aware of its environment. It can
act as a bridge connecting the physical world to
the digital world, and can instruct administrators
to react to events and phenomena in a specified
way (Sohraby et al., 2007).

A WSN typically consists of density diverse
sensor nodes. Each sensor node has several parts:

• A localized and application-specific sen-
sor operating in the seismic, radio, acous-
tic, optical and chemical or biological
domains.

• A radio transceiver with an internal or
external antenna whose communication
bandwidth and distance are limited.

• A micro computing unit to process signals
and data.

• A battery or an embedded form of power
harvest.

The sensor nodes are often aware of their lo-
cations through a local positioning algorithm or
the Global Positioning System (GPS). Because
of the limited communication distance, there is
also another kind of node called the sink node,
whose responsibility is to forward data from sensor
nodes to the center node of the information cluster.
Because of the small number of sink nodes, they
can cost more than the sensor nodes, and therefore
have a stronger communication ability.

When a sensor node is deployed in the field,
it needs to self-organize a network. It first detects
its neighbors and establishes communication with
them. It, then, needs to learn the topology in which
the nodes are connected to each other, and build
an ad-hoc multi-hop communication path to a sink
node. When a sensor node or a sink node fails, it
must reconfigure its network.

To support the operation of nodes, it is im-
portant to have an operating system designed
specifically for WSNs. Such an operating system
should have a small code size which can adjust to
memory constraints of nodes, and utilize modular
architecture. An example is TinyOS (Levis, 2005),
which is an open-source operating system designed
for WSNs and low-power embedded devices. Ti-
nyOS combines flexible, fine-grain components
with an execution model that supports complex
yet safe concurrent operations. Its core size is
about 400 Bytes.

450

Accessing Big Data in the Cloud Using Mobile Devices

Most commercial WSNs are based on the
IEEE 802.15.4 standard. IEEE 802.15.4 speci-
fies the fundamental physical layer and media
access control for wireless personal area networks
(WPANs) which focus on low-cost and low speed
communication amongst devices.

Current WSNs have several limitations:

• Power efficiency. The lifetime of a node
depends on the battery-power or harvested
power and its power consumption.

• Environment. WSNs are often deployed
in harsh environments. Nodes in WSNs
may need to withstand high/low tempera-
ture, nuclear radiation, sand storm, and so
on. Such environment conditions give rise
to challenges in the manufacturing and
management of the nodes.

• Node cost. There are typical hundreds and
even thousands of nodes in WSNs. The
cost of one node is critical to the overall
cost of WSNs.

Sensing RFID systems will allow building
small-size and low-power RFID sensor networks
(Buettner & Wetherall, 2008), which consist of
small, RFID-based sensing and computing de-
vices, and RFID readers. Nodes in this system
transmit data generated by sensing RFID tags and
provide the power for network operations. Their
lifetime is usually not limited by the battery dura-
tion. This technology has the potential of producing
long-lasting, low-cost ubiquitous sensor nodes that
may revolutionize many embedded applications.

The WISP (Wireless Identification and Sensing
Platform) project from Intel Research is a sensing
and computing device that is powered and read
by off the shelf UHF RFID readers (WISP, n.d.).
WISPs have on board microcontrollers that can
sample a variety of sensing devices, creating a
wirelessly-networked, and battery-less sensor
device. WISPs have the capabilities of RFID tags,
but also support sensing and computing. Like any
passive RFID tag, WISP is powered and read by

a standard off-the-shelf RFID reader, harvesting
the power from the reader’s emitted radio signals.
WISPs have been used to sense light, temperature,
acceleration, strain, liquid level, and to investi-
gate embedded security. Integration of sensing
technologies and RFID tags allow building RFID
sensor network (RSN) (Guinard, 2011) which
consists of RFID-based sensors, and RFID readers.

Middleware

Middleware is a software layer placed between
underlying technologies and the application layer,
which hides the underlying technological details
and provides application interfaces, simplifying
the development of new applications. Recent
proposed middleware architecture often follows
Service-Oriented Architecture (SOA), which is
based on discrete pieces of software that provides
application functionality called service. A service
is a self-contained representation of reusable func-
tions (SOA, n.d.). The purpose of SOA is to provide
an easy way to cooperate large number of objects
or things connected over a network. In an SOA
environment, objects on the network make their
resources available to others as an independent
service in a standardized way (Josuttis, 2007).

An SOA solution for IoT composes of, in a
top-down order, 1) application layer, 2) service
composition layer, 3) service management layer,
4) object abstraction layer and 5) object layer (At-
zori, 2010). Application layer provides application
interfaces. The service composition layer provides
independent services to build specific applica-
tions. The independent services are provided by
objects in the network. Service management layer
manages the objects over the network including
object discovery, service deployment and status
monitoring. The object abstraction layer provides
standard interfaces for object access.

One challenge of SOA is managing metadata.
In an SOA-based solution, it becomes complex to
manage the way many services interact. Another
challenge is that conventional application-man-

451

Accessing Big Data in the Cloud Using Mobile Devices

aged security is sufficient, since the application
exposes itself as a service to the outside world,
which would be used by other untrusted applica-
tions.

Internet of Things and Cloud Computing

A framework for integrating ubiquitous sensing
devices and the cloud provides great flexibility
and scalability for IoT systems. Sensing devices
can join the network and provide data to the cloud
and the cloud can analyze the data and offer such
infrastructure services as shown in Figure 3.

A cloud platform using Manjrasoft Aneka and
Microsoft Azure (Microsoft, n.d.) utilizes a hybrid
cloud (combining private and public cloud) to
provide computing, storage and visualization to
form a seamless framework for IoT systems
(Kürschner et al., 2008). It provides a clear frame-
work of cloud APIs for IoT applications to easily
utilize Cloud services and greatly reduce develop-
ment time and cost. An important feature of
Aneka is that it provisions both resources on
public clouds (e.g. Microsoft Azure) and re-
sources on private clouds (e.g. clusters and vir-
tual data centers). When scheduling an application,

it determines whether to use private clouds or
public clouds based on the QoS requirements of
the application. The platform handles interoper-
ability of multiple clouds by providing a standard
framework for various clouds.

Open Issues

Besides the technologies that drive IoT develop-
ment we discussed in the previous section, a lot
more research is required to make the IoT feasible.
Current issues include standardization, naming
and identification, as well as security and privacy:

Standardization

Several standardizations of IoT have emerged in
the scientific research communities across the
globe. EPC global (Kürschner et al., 2008) enables
sharing related product information by providing
standardization of integrating RFID into the EPC
framework (Hada & Mitsugi, 2011). GRIFS pro-
vides a standard for the transition from localized
RFID to the IoT. 6LoWPAN (Kushalnagar et al.,
2007) aims at making IPv6 protocol compatible
with current low power IEEE 802.15.4 devices.

Figure 3. Illustration for the architecture of cloud-based sensing networks

452

Accessing Big Data in the Cloud Using Mobile Devices

ROLL (Weiser, 1999) gives a definition for a
routing protocol for future generation Internet
networks that are heterogeneous low power. With
the cooperation of the industry that provides
standardizations in different areas, the IoT will
become much more achievable.

Naming and Identification

With a large amount of addressable nodes emerg-
ing in the IoT era, a new effective addressing policy
is required. The new IPv6 protocol is proposed for
such low-power wireless communication nodes
in the aforementioned 6LoWPAN study. The
mechanism to map a reference to a description of
a specific smart object and its associated RFID
tag identifier was introduced to be performed by
Object Name Servers (ONS). Additionally, the
data traffic generated by IoT differs significantly
from the traffic generated by the devices that are
currently on the Internet, necessitating a new
Quality of Service (QoS) support for the IoT.

Security and Privacy

The IoT is easily attacked since 1) its components
are usually unattended, 2) its wireless communi-
cation system is easily eavesdropped and 3) the
IoT components need complex security schemes.
Two major problems are authentication and data
integrity: In the IoT, the current authentication
mechanism to exchange messages among nodes
is not feasible because of limited bandwidth.
Different solutions for authentication have been
introduced for WSN and RFID systems, although,
none of them can handle the man-in-middle at-
tack. Passwords are usually used to ensure data
integrity in the IoT, but the length of password
cannot provide strong protection currently.

With the available techniques today, private
personal information can be easily gathered
without the knowledge of a person through IoT
devices. Even if some of the proposed mechanisms
are valid solutions, IoT’s widespread adoption

will not materialize due to such privacy concerns:
Until the effectiveness of the proposed security
solutions are time-tested and certain confidence
levels have been established, IoT will remain in
its exploratory phase. Finally, digital forgetting is
becoming an emerging research topic in the IoT.
With digital forgetting, all information will be kept
forever so that any information can be retrieved
using data mining techniques.

Since the mid-1990s, the Internet has had
a tremendous impact on our life and society. It
changed the way we interact with one another
and exchange/receive information. However,
the information we can access from the Internet
is mainly obtained from manual-typing, taking
digital pictures, or scanning. The ability to sample
information from things is limited when we face
the real world, because there are so many things.
IoT can change the way information is sampled.
The thing itself can transfer information into the
network by itself, which means things become
our senses (eyes, ears, and noses). IoT adds an-
other dimension to how we access and handle
information. In the past ten years, we have made
a substantial progress in IoT. But the feasibility,
scalability and efficiency are still limited by exist-
ing technologies, which will drive the research and
development of IoT in the next decade.

STORAGE AND PROCESSING

Recently, there has been an explosive growth
in the amount of data that is being generated
by humans through social networks and online
transactions. Alternatively, a similar growth is
observed in the amount of data that is generated
by machines through the sensor networks and
scientific research. While all of this data may be
potentially valuable, extracting the value from
such massive quantities of data presents significant
challenges, and was termed Big Data. Big Data
implies datasets that are large and complex enough
to the point where conventional approaches will

453

Accessing Big Data in the Cloud Using Mobile Devices

fail to store and process them efficiently. Three
dimensions have been proposed to characterize
Big Data: Volume, Variety and Velocity (Laney
& Beyer, 2012). Another dimension is included
is the Value. These aspects of Big Data are de-
fined below

• Volume: The massive quantity and high
growth of data requires high horizontal
scalability which outpaces conventional
storage systems.

• Variety: The data are collected from vari-
ous heterogeneous sources like social me-
dia, airplane sensor logs to DNA research
projects. All these data may be analyzed
altogether to generate valuable results.
Conventional relational database man-
agement and analysis techniques will fail
when faced with such variety.

• Velocity: The data are generated and col-
lected at a high speed and the real-time de-
mand for the analyzed results will require
both high-performance and data-intensive
processing systems.

• Value: Data value measures the usefulness
of the Big Data for accomplishing various
targets, such as, decision making. Many
statistical., data mining and machine learn-
ing methods along with the data storage
and processing techniques will uncover the
hidden value of Big Data.

The development of cloud computing provides
an on-demand cost-efficient computing platform
with great horizontal scalability, which is an ideal
platform for storing and processing large datasets.
However, conventional techniques like relational
database management systems cannot efficiently
utilize the power of cloud computing.

Three major issues brought by Big Data: stor-
age, management and analytics and their current
solutions in the cloud computing configurations
are discussed in the following sections.

Storage

With the increasing data sizes from terabytes to
petabytes to exabytes, the data can no longer be
stored in a few computers. The need for distributed
data storage and access within clusters, across
clusters and even across datacenters brings new
challenges to the existing distributed file systems.
Early in 2003, Google released its own Google
File System (GFS), as a scalable distributed file
system for large distributed data-intensive applica-
tions (Ghemawat et al., 2003). The design of GFS
is driven by three key observations in Google’s
environment:

• Files are very large and are growing very
fast.

• File appending happens more common
than overwriting.

• Component failures are the norm rather
than the exceptions.

In order to provide fault tolerance on a large
number of inexpensive commodity machines and
deliver high aggregate performance to a large
number of clients, a typical design of a GFS cluster
consists of a single master node, and several chunk
servers. The master node maintains all of the file
system metadata including the namespace, access
control information and file-to-chunk mapping,
and several chunk servers contain the data that
is actually stored in the form of 64MB chunks.
Both master node and chunk servers are user-level
processes running on Linux-based machines. As
shown in Figure 4, when accessing the file, a cli-
ent first communicates with the master server to
obtain the metadata and then communicates with
the chunk server for the actual data according to
the metadata. Master node monitors the status of
every chunk server and updates its metadata ac-
cordingly when a fault occurs. Data is replicated
among chunkservers to enhance availability,
bandwidth utilization and overall performance.

454

Accessing Big Data in the Cloud Using Mobile Devices

An open-source implementation of GFS is the
Hadoop Distributed File System (HDFS) which
comes from Yahoo (Shvachko, 2010a) as part of
the Hadoop framework. In 2010, more than 21PB
(Petabytes) of data are stored in a single HDFS
cluster consisting 2000 machines hosted by Face-
book (Borthakur, 2010), showing the success of
this distributed file system scheme.

However, with the relentless growth of data,
scalability issues still exist in both GFS and
HDFS. Furthermore, with the increasing de-
mand for interactive applications which require
low latency access instead of high throughput,
original designs of GFS and HDFS have signifi-
cant difficulties handling I/O requests with an
interactive pattern. The original GFS and HDFS
designs are optimized for large files (several
GBs) while Big Data doesn’t necessarily consist
of large files. Instead, the dataset might consist
of a large number of small files which are far
below the size a block (typically 64MB). Since
every file, directory and the underlying block is
represented as an object in the memory of the
name node, based on a rule of thumb (Shvachko,
2010b), very large number of files easily saturate
the memory of the name node, causing file ac-
cesses to suffer severe overhead and sometimes

make it completely infeasible to access some
files. One possible solution for this issue is to
use a Sequence File. The idea was introduced
to bundle small files into a single sequence file
and process it in a streaming fashion, which
partially solves the performance problem at the
expense of introducing another problem: The
ability to list all files and randomly access one
of them in a single sequence file is lost, leading
to other projects including BigTable and HBase
as an abstraction layer on top of the distributed
file system to provide better performance and
scalability under various situations. Another is-
sue with the original system architecture is that,
both of these systems are built upon the single-
node namespace server architecture, which will
naturally become the limiting point as the system
scales. Distributed namespace server system
was introduced by Google recently (McKusick
& Quinlan, 2009) as a more promising solution
to eliminate the single-name-node scalability
issue. The resulting GFS system can now handle
hundreds of master nodes and each file is split
into much smaller chunks than before. More
features including load balancing and better
monitoring and recovery are also deployed in
this implementation of GFS.

Figure 4. Illustration for the system architecture of Google File System

455

Accessing Big Data in the Cloud Using Mobile Devices

Management

Distributed file systems provide mechanisms
to store massive amounts of data. However, the
way this high volume (and variety) of data is ef-
ficiently organized, managed and retrieved still
remains an issue for distributed database systems.
Conventional relational database systems enforce
integrity of complex relational data structures,
thereby under-utilizing cloud computing resources
and providing poor horizontal scalability. Also,
as previously mentioned, heterogeneous sources
generate data in various formats, ranging from
structured to semi-structured or even un-struc-
tured. Most of these formats require the ability to
rapidly change the underlying database structure
and fit poorly with the conventional relational
database systems.

The non-relational., schema-less, analytic-
oriented, NoSQL databases have been growing
in use, as a solution to deal with the organization
and management issues of Big Data. NoSQL origi-
nally means databases that provide no support for
Structured Query Language (SQL) to manipulate
data while now NoSQL databases are designed to
achieve better horizontal scalabilities and avail-
abilities by compromising the consistencies and
complexities of an underlying database model, as
shown in Figure 5.

Based on the CAP theorem, a distributed
system cannot simultaneously guarantee consis-
tency, availability and partition tolerance. Tradi-
tional Relational Database Management Systems
(RDBMS) focus on availability and consistency,
providing reliable ACID (Atomicity, Consistency,
Isolation and Durability) properties for transac-
tions. However, when the system scales, it is
difficult for a relational database system to be
efficiently partitioned to large number of nodes,
especially when the underlying data model is
sophisticated. For the case of Big Data, due to its
large volume, tables will grow dramatically either
in size or in quantity, slowing down the query
operations dramatically, especially for join op-

erations on multiple tables. Also, an RDBMS uses
fixed database schema, which is perfect for mod-
eling conventional data. However in the case of
Big Data, highly various data requires a flexible
data schema or even an unknown schema that is
only known by analyzing the data. This requires
the proper storage data in the first place, causing
a dilemma, not to mention the data that has no
schema at all. Thus, the need to analyze unstruc-
tured data such as documents and log files, as
well as semi-structured data such as history forms,
cannot be satisfied by RDBMS.

To adapt traditional database systems to the
modern cloud computing architecture, conven-
tional RDBMSs are engineered to eliminate the
rule of prioritization by surrendering the strong
consistency guarantees to gain significant scal-
ability advantages. These re-engineered databases
are able to fully utilize cloud computing resources.
Also, to achieve higher performance and flexibil-
ity, underlying data models are greatly simplified
to be schema-less. Several NoSQL databases
have been developed and optimized for different
data models including column-based, key-value,
and document and graph. They provide much
greater flexibility in representing and organizing

Figure 5. Illustration of RDBMS and NoSQL
within the CAP theorem

456

Accessing Big Data in the Cloud Using Mobile Devices

data. The development of wide-column-based
Google BigTable is aimed addressing these issues
(Chang et al., 2008). BigTable appears as a sparse,
distributed, persistent multidimensional sorted
map (Chang et al., 2008) which provides high
availability and scalability for storing structured
data. Three-dimensional tables (Row, Column,
and Timestamp) are optimized for GFS by being
split into multiple tablets which can be accessed
by special metadata tablets organized in a two-
level hierarchy. Google BigTable now supports a
number of Google applications and continuously
evolving.

Google BigTable’s open-source counter-
part, HBase, released as a part of the Hadoop
framework, has become one of the most popular
NoSQL databases used to process and ana-
lyze Big Data (HBase, n.d.). Another popular
open-source column-based NoSQL database is
Apache Cassandra (Lakshman & Malik, 2010).
First released by Facebook, Cassandra squashes
the master-node-oriented design which makes
HBase operationally inflexible. This makes
Cassandra immune to single-point failures and
enables it to provide higher availability and
higher performance. Tunable consistency is also
supported in Cassandra to provide operational
flexibility.

In addition to column-oriented Google Big-
Table, HBase and Cassandra, there are also vari-
ous NoSQL databases optimized for different data
models. For example, MongoDB (Plugge E., et
al., 2010) is designed for document storage while
DynamoDB (DeCandia, 2007) and Voldemort
(Sumbaly, 2012) are Key-Value oriented. Since
the data that NoSQL databases are operating on
being so divergent, there is no single universal
NoSQL database that meets every requirement
which necessitates the use of multiple databases
in many cases. On the other hand, using multiple
databases increases the cost of database main-
tenance. Therefore, a current trend for NoSQL
database management system development is the
middleware for integration of multiple hybrid

back-end database engines, where various data
can be automatically identified and stored in the
proper database.

Although original NoSQL designers delib-
erately provided no consistent support, the lack
of the ability to perform global ACID transac-
tions has become one of the major drawbacks of
NoSQL databases. Some early NoSQL databases
provide no consistency guarantees, leaving the
job to the programmers, where the conventional
relational databases have significant advantages
to ease program development. Early version
of Google BigTable only provided single-row
transactions. Some modern NoSQL designs
such as DynamoDB enforce somehow stronger
constraints on consistency called Eventual Con-
sistency, which means that, if no new updates
are made on a given item, eventually all accesses
to that item will return the last updated value
however any value can be returned before the
system finally converges. In 2011, Megastore
system with strong consistency guarantees was
released by Google (Yushprakh et al., 2011),
which is a schema-oriented database that sup-
ports ACID property and transactions. In 2012,
Google released its globally-distributed and
synchronously-replicated database system –
Spanner (Corbett et al., 2012). Paxos protocol
(Lamport, 2001), two-phase commit protocol and
hardware-assisted time synchronization using
GPS clocks and atomic clocks is used to enforce
global consistency across multiple data centers.
Although the achievement of global consistency
for Spanner seems to be conflicting with the
CAP theorem, a careful review of CAP theorem
shows that the “2 of 3” formulation is mislead-
ing. Designs that require perfect availability
and consistency in the presence of partitions are
prohibited while we can compromise the perfect
availability to achieve a global consistent system
with high availability and partition tolerances,
which indicates the trend for future development
of NoSQL databases.

457

Accessing Big Data in the Cloud Using Mobile Devices

Analytics

The value of Big Data can only be extracted by data
analytics. Although many different data analytics
algorithms and techniques including statistical
analysis, data mining, and machine learning can be
performed on Big Data, they all rely on extremely
intensive computations. The way to organize the
parallel and distributed computations efficiently
is the key to extract the value of Big Data.

Since a large volume of data is stored in a
distributed environment, traditional distributed
computation paradigms and techniques like MPI,
which typically bring the data to the code, will
saturate the network bandwidth when feeding the
data to the node before the actual computation can
start, rendering the processing of large datasets
infeasible. Additionally, the programmability for
traditional paradigms in a massively distributed
environment is significantly downgraded because
of the complex computation management, coor-
dination, synchronization, failure detection, and
recovery. To address these issues, new paradigms
and techniques like the MapReduce programming
model are necessary. These techniques have rack-
awareness in order to process the data in place and
manage computation and handle faults automati-
cally in order to simplify programming.

MapReduce paradigm was developed by
Google to process large datasets stored in the dis-
tributed GFS systems (Dean & Ghemawat, 2008).
Taking advantage of the distributed architecture,
MapReduce pushes the computation to the node
where the data resides, greatly reducing the amount
of communications caused by data transfers. The
computation is divided into two steps: Map and
Reduce. Programmers only need to define these
two functions and the framework will take care
of all the rest of the entire computation, which
significantly reduces the burden on the program-
mer and improves the robustness of the system.
The open-source implementation of MapReduce
model is the Hadoop framework released by Ya-
hoo. (White, 2009)

MapReduce model and Hadoop framework
are originally designed to be an offline system
to support batch MapReduce applications where
scalability and streaming performance are most
critical. The Hadoop framework needs to be
tuned to meet the real-time processing demands
of OLTP (On-Line Transaction Processing) and
OLAP (On-Line Analytical Processing), which
have low-latency requirements, while the amount
data involved in the processing is enormous. This
is achieved by pipelining the Map and Reduce
phases, where the Reduce phase does not wait until
the Map phase finishes. The data are processed
in a multiple stage pipeline. However, the system
can be effectively optimized if more data is ac-
cumulated which contradicts with the low-latency
requirement. To deal with this tradeoff, an adaptive
flow control mechanism was introduced (Condie
et al., 2010) together with incremental process-
ing for reducers. In 2011, Facebook released its
commercialized real-time Hadoop implementation
to handle Facebook Messages (Borthakur et al.,
2011), where HDFS and HBase are optimized for
real-time transactions.

The use of input files and schema-less features
of the MapReduce model prevent performance
improvements available in common database
systems by sing B-trees and hash partitioning (Ma-
pReduce, n.d.). This fact leads to research projects
like Apache Hive and Pig for addressing some of
these issues. Apache Hive is a data warehousing
system used by Hadoop for querying and analy-
sis of large data sets (Tulsa et al., 2009), where
a SQL-like Hive Querying Language (HiveQL)
is used to express the queries and compiled into
a set of MapReduce jobs to be executed with
Hadoop framework, making data manipulations
much easier by squashing all of the complex and
hard-to-reuse map and reduce functions. Data
in the Hive is organized in a relational fashion
and represented as tables, partitions and buckets
which facilitate efficient data retrieval and vari-
ous optimizations are built into Hive drivers and
HiveQL compilers to provide better performance.

458

Accessing Big Data in the Cloud Using Mobile Devices

Another similar querying project is Apache Pig.
Using a similar idea to Hive, Pig provides a very
simplistic scripting language called Pig Latin for
data querying. The entire software stack is shown
in Figure 6.

ACCESSING BIG DATA THROUGH
MOBILE DEVICES

When accessing Big Data in the cloud through
mobile devices, mobile-cloud computing becomes
the key enabling technology in this process. With
the explosion of mobile applications and the sup-
port of cloud computing for a variety of services
for mobile users, mobile-cloud computing is intro-
duced and intensively investigated as an integration
of cloud computing into the mobile environment
(Soyata, T., et al., 2012a; Satyanarayanan et al.,
2009; Soyata et al., 2012b; Fernando et al., 2013;
Cuervo et al., 2010; Chun et al., 2011; Chen et al.,
2012; Verbelen et al., 2012; Soyata et al., 2013;
Shi et al., 2012; Dinh et al., 2012; Kocabas et
al., 2013; Guo et al., 2010; Fahad et al., 2012).
Mobile-cloud computing facilities for mobile us-
ers to take full advantage of cloud computing and
enables access to Big Data anywhere at any time.

In the past decade, mobile devices became
increasingly more powerful to handle most of
the daily operations but not powerful enough for
data-intensive computations, such as querying and

analyzing the Big Data. However, considering the
enormous amount of mobile devices and rapid
development of wireless networks, a loosely or-
ganized cluster of mobile devices can be powerful
enough to collectively handle heavy computations
together with the cloud, forming an integrated
computing system, while maintaining the energy
efficiency. To achieve such interaction and coop-
eration among a mobile device and multiple cloud
servers, significant research has been conducted
on techniques such as Computation Offloading
and Mobile Cloud Platform. These techniques
will be explained in the following sections.

Computation Offloading

Offloading is a solution to alleviate resource limi-
tations on mobile devices and provide improved
capabilities for these devices by migrating partial
or full computations (code, status and data) to
more resourceful computers (Kumar et al., 2013).
The rapid development of wireless network con-
nectivity and mobile devices in recent years has
enabled the feasibility of computation offloading.
Recent research efforts on computation offloading
focuses on the following aspects.

• What to offload. The entire program can-
not be offloaded for remote execution.
Before offloading, the program needs to be
partitioned a) manually by the program-

Figure 6. Building blocks for storing and processing Big Data in the cloud

459

Accessing Big Data in the Cloud Using Mobile Devices

mer or b) automatically by the compiler,
or c) at runtime. Manual partitioning will
put the burden on the programmer, but
will potentially lower the computational
overhead. On the contrary, the automated
partitioning can perform offloading on an
unmodified program, albeit, at the expense
of higher overhead. Different strategies
like code tagging and dynamical predic-
tion based on profiling can be applied to
increase the performance.

• When to offload. Applications may have
different requirements on performance and
mobile devices may have different capa-
bilities and energy concerns. Offloading
decisions need to be made based on dif-
ferent target goals, such as a) improving
performance and/or b) saving energy, or,
c) reducing the network overhead. These
decisions can be made by statically and/or
dynamically via profiling, which has a non-
negligible impact on execution overhead.

• How to offload. The development of virtu-
alization and the emerging cloud comput-
ing technologies provides a powerful, flex-
ible, manageable and secure platform for
offloading, attracting significant research
interest on VM (Virtual Machine)-based
offloading approaches. The granularity
ranges from a) OS-level to b) application/
thread-level to c) method-level.

Three computation offloading systems with
different design focuses – Kimberley, CloneCloud
and MAUI are briefly introduced below.

OS-Level Offloading

To achieve the goal of both high performance
and manageability, the VM-based Kimberley
architecture was proposed (Satyanarayanan et
al., 2009). A cloudlet, defined as a self-managed
datacenter in a box, was introduced in Kimberley.
The cloudlet is able to support few users at a time

and maintains only soft state: hence the loss of
connection is acceptable.

When a mobile client connects to the cloudlet,
it notifies the Kimberley Control Manager (KCM)
on the cloudlet to download a small VM overlay,
which is generated by comparing the target cus-
tomized VM image to the base VM, from either
the Internet or the mobile client. When the VM
overlay is delivered, a technique called dynamic
VM synthesis creates and launches the target VM.
After the computation is done, the KCM can
simply shutdown the VM and free the resources,
providing self-manageability that only needs
minimal maintenance.

The Kimberly system was implemented on a
Nokia N810 tablet running Maemo 4.0, and the
cloudlet infrastructure was implemented on a
desktop computer running Ubuntu Linux where
VirtualBox was used to provide the VM support.
System performance was evaluated by consider-
ing the size of VM overlays and the speed of the
synthesis operation. The size of generated VM
overlay is around 100-200 MB for a collection of
Linux applications, an order of magnitude smaller
than a full VM image which can be as large as
8 GB. The processing time for VM synthesis
ranged from 60 to 90 seconds and has plenty of
potential room for improvements through further
optimizations like parallelized compression and
decompression and VM overlay prefetching.

The strengths of Kimberley are the self-man-
ageability of the cloudlet and high flexibility for
programmers to configure the code on the cloudlet
since they have full control of the OS on isolated
VMs. The weakness of the Kimberley design
are: a) the programmer needs to decide what to
offload and manually partition the program and
b) the huge initialization overhead.

Thread-Level Offloading

In order to free the programmer from manual
program partitioning for offloading, Chun et al.
proposed the CloneCloud system, allowing the un-

460

Accessing Big Data in the Cloud Using Mobile Devices

modified program to be accelerated by offloading
a portion of the execution at the thread granularity
(Chun et al., 2011). To achieve this, they modified
the Dalvik VM. The modified runtime rewrites
the executable of the user’s program by inserting
migration points via statistical analysis. When the
program is running, individual threads migrate at
these pre-determined migration points, from the
mobile device to a device clone in the cloud, and the
User Interface (UI) or other essential components
continue execution on the mobile but are blocked
if accessing the status of the migrated threads. A
dynamic profiler is used to model the execution,
migration and energy cost of each method on the
mobile device, and an optimization solver is used
to decide the migration points based on given
optimization objectives.

An Android-based CloneCloud system pro-
totype was implemented on an HTC G1 mobile
phone and a server running the Android x86
virtual machine via VMware ESX 4.1, where the
mobile clones are running. Three applications
were tested on the CloneCloud prototype: a) a
virus scanner, b) image search, and c) privacy
preserving targeted advertising. The results show
that for these tested applications, when connecting
to the CloneCloud via Wi-Fi, the execution time is
shortened by 2.1x-20x and the energy consump-
tion is reduced by 1.7x-20x. When connecting
to the CloneCloud via 3G, the execution time is
shortened by 1.2x-16x and the energy consump-
tion is reduced by 0.8x-14x.

The strength of the CloneCloud system is that
it achieves distributed execution without manually
modifying the source code, taking the program
partitioning burden off the programmer. The
weakness of CloneCloud is that, for complex ap-
plications, the overhead to transfer the state (heap
and stack) may counterweigh the performance
gain and energy savings of offloading. Further-
more, the security issues are not considered in the
CloneCloud system.

Method-Level Offloading

Motivated by the fact that the energy consumption
will remain the primary bottleneck for handheld
mobile devices, MAUI (Mobile Assistance Using
Infrastructure) was proposed to address this issue
by minimizing energy consumption through com-
putation offloading (Cuervo et al., 2010). Cuervo
et al. observed that, the completely automated
program partitioning and coarse-grained offload-
ing will increase the overhead, thereby consuming
more energy. To decrease the overhead while
minimizing the burden on the programmer, they
use a more fine-grained method-level offloading
and the target method is identified by program-
mers’ annotations in the source code.

MAUI is built on the Microsoft .NET Common
Language Runtime (CLR) for code portability.
The programmer decides which methods may be
offloaded and annotates them with tags. These
methods, along with the necessary program state,
are extracted using reflection and type-safety. The
MAUI profiler profiles each method and uses
serialization to determine the offloading costs.
Combining measurements of processing and
transferring, a MAUI solver decides whether the
method is worth offloading based on the solution
to an Integer Linear Programming (ILP) formu-
lation. MAUI generates two proxies on both the
mobile device and the server that handle control
and data transfer. The MAUI coordinator on the
server side handles the authentications, resource
allocations and executions.

The mobile part of MAUI was implemented
on an HTC Fuze mobile phone running Windows
Mobile 6.5 with the .NET Compact Framework
v3.5, and the MAUI server was implemented
on a desktop running Windows 7 with the .NET
Framework v3.5. The main results measure the
energy consumption and the execution time for
three applications: a) face recognition, b) 400
frames of a video game, and c) 30 moves in a chess
game. The results show that using remote execu-
tion on MAUI saves 5x-12x energy compared to

461

Accessing Big Data in the Cloud Using Mobile Devices

the mobile-phone-only case. Also, MAUI reduces
the execution time by more than a factor of 6.

Mobile Cloud Platform

A Cloud is usually considered to be a collection
of powerful servers, potentially located at diverse
geographical locations. However, with the in-
creasing processing capability of mobile devices,
a collection of mobile devices connected via a
local ad-hoc network can now provide a power-
ful enough computational environment to serve
as a Mobile Cloud. Recently, this mobile cloud
concept has been investigated as a powerful and
more importantly, an energy-efficient platform to
support massively parallelizable applications. The
potential for integrating a mobile cloud platform
with the existing cloud computing architecture to
form a hybrid system for Big Data has also been
the focus of significant recent research. Examples
of using mobile devices as a cloud of computing
resources are a) Hyrax, b) NativeBOINC and c)
GEMCloud and will be described below.

Hyrax

Apache Hadoop (White, 2009) is an open-source
implementation of the MapReduce programming
model. It is originally designed to run on power-
ful server clusters. To utilize mobile devices as
computation units, Marinelli ported Hadoop to the
Android platform and proposed the Hyrax system
(Marinelli E., 2009). Hyrax enables computation
jobs to be executed on distributed mobile devices
connected by a wireless network.

A distributed multimedia search and sharing
application were implemented on Hyrax. Ex-
periments show that Hyrax can easily scale up
to 10 HTC G1 and 5 HTC Magic mobile phones
running Android 1.5 in terms of execution time
and resource usage. The energy efficiency of
Hyrax was shown to be significantly higher than
traditional server clusters. However, the perfor-
mance of Hyrax was poor compared to Hadoop

on traditional servers. This is due not only to the
computational capabilities and WiFi connection
speed of the devices being low (ARM11 CPU
@ 528MHz and 802.11g wireless router with a
54 Mbps bandwidth), but also because Hadoop
was not originally designed (nor optimized) for
mobile devices, causing unacceptable overhead
within the system.

NativeBOINC

The NativeBOINC is an Android implementation
of the BOINC (Berkeley Open Infrastructure for
Network Computing) (Anderson, 2004) which
is an open-source volunteer computing software
utilizing crowd-sourcing for scientific computing.
NativeBOINC for Android allows mobile device
users to choose projects, start and stop them
on demand, contributing their free computing
power. Experiments show that (Eastlack, 2011)
the ARM-based mobile processors have energy
efficiency advantages over the traditional Intel
desktop processors.

GEMCloud

GEMCloud (Green Energy Mobile Cloud) is
another example of using mobile devices to cre-
ate an ad hoc cloud of computing resources (Ba,
2013). By utilizing distributed mobile devices
to cooperatively accomplish large parallelizable
computational tasks, the author envisions that such
approaches can make use of the massive amount of
idle computing power that is potentially available
to the public. More importantly, the authors show
that a mobile computing system like GEMCloud
has significant advantages in energy efficiency
over traditional desktop cloud servers when the
overall system is considered, rather than each
individual computational device.

462

Accessing Big Data in the Cloud Using Mobile Devices

USING A CLOUDLET AS
AN ACCELERATOR

Although mobile devices have been improved
dramatically over the past few years, they are still
relatively limited in processing speed, memory,
storage, battery life, and network bandwidth. For
latency-sensitive and compute-intensive applica-
tions, it is important to reduce the application
response time to provide the best user experience.
Because of the inconsistent network conditions
over the Internet and the possible unavailability
of cloud servers, a cloudlet can be introduced to
provide local computing power and storage and
the intelligence for task management (Wang, 2013;
Soyata et al., 2012b; Soyata et al., 2012c). Figure
7 shows an example of a mobile-cloud architecture
that utilizes a cloudlet as a local edge server that
can communicate with the mobile over a local
area network (LAN).

A cloudlet is able to accelerate both Big Data
collection and Big Data access. As previously
mentioned, Internet of Things, a major source for
Big Data analytics in the near future, will provide
continuous data streams from wireless sensor
networks and periodical data from RFID readers.
Due to the power and computational limitations
of mobile devices and the large amount of data
they need to transfer, an intermediate node like a
cloudlet, which has a power supply, high compu-
tational capability, ample storage capability, and
a direct Internet connection, is necessary for ef-
ficient data acquisition. The cloudlet collects and
buffers the data from multiple sensors, organizes
and preprocesses the data and sends the prepro-
cessed data to the cloud for further analysis, re-
ducing the energy consumption and design
complexity of the sensors and improving the
overall efficiency, especially under situations like
unstable Internet connections and cloud server
failures. For Big Data access, a cloudlet may serve
as a local gateway for users, buffering, aggregat-
ing and scheduling query requests and processing
and presenting the result from the cloud servers

and therefore providing higher throughput, better
efficiency and user experience. Here in this chap-
ter, we will be focusing on the ways a cloudlet
can help to reduce application response time and
study them in detail.

We define a cloudlet as follows:

• A resourceful device which has a 10x or
more performance advantage over mobile
devices. It has a relatively powerful CPU
and/or GPU and a large internal storage. It
can support requests from tens of mobile
clients and respond them fast enough, so
that the responses are available to the mo-
bile devices when they need it.

• A nearby device that communicates with
mobile devices via single-hop high-speed
connections such as Wi-Fi. Since a large
amount of data needs to be transferred
between mobile devices and the cloudlet,
low-speed multi-hop connections via the
WAN will counterweigh the performance
gains from single-hop fast connections.

• A dedicated device for serving a target ap-
plication which does not share its resourc-
es with other applications. It is equipped
with a power supply, and is always ON.
Therefore, it is capable of serving requests
from mobile devices at any time.

Though similar devices have been proposed in
other papers (Satyanarayanan, 2009), (Verbelen,
2012), the capability of a cloudlet to accelerate
mobile-cloud computing is still unclear. Follow-
ing are the three ways a cloudlet can reduce the
application response time of a target application:

• Preprocessing.
• Caching.
• Scheduling.

These three approaches will be described in
detail in the rest of this chapter.

463

Accessing Big Data in the Cloud Using Mobile Devices

Preprocessing

To offload the computation to the cloud, mobile
devices usually have to transmit a large amount
of raw data over the Internet, which will dramati-
cally degrade the application response time when
real-time responses are desired. The cloudlet can
use its higher computational capability to perform
preprocessing to reduce the size of data that must
be transmitted to the cloud via the Internet, thereby
improving the response time. Preprocessing, from
simple compression to highly sophisticated opera-
tions, can be done on the raw data to reduce its
size. However, due to the limited computational
power and battery life on the mobile devices, pre-
processing is not a suitable candidate to perform
on mobile devices. The additional computation

latency may counterweigh the benefits, or even
make the overall latency worse.

As shown in Figure 8, by adding a cloudlet,
mobile devices now can offload the preprocess-
ing tasks to the cloudlet via the high-speed Wi-Fi
connection. The cloudlet is able to significantly
accelerate the preprocessing with its powerful
processor and send the preprocessed intermediate
result to the cloud servers. This reduces the latency
component due to the Internet data transfer time,
thereby significantly improving the application
response time.

Caching

The cloudlet can utilize its large internal storage to
cache a portion of the big data database from the
cloud so that appropriate data can be delivered over

Figure 8. Illustration of preprocessing on the cloudlet

Figure 7. Acceleration by utilizing the cloudlet as a computation and communication buffer

464

Accessing Big Data in the Cloud Using Mobile Devices

the local network to the mobile device when the
application needs this data as shown in Figure 9.

Most of the target applications are location-
related and the cloudlet is designed to serve
mobile devices through the local area network.
Therefore, it is possible to use a cloudlet to enable
fast data sharing and collaboration within nearby
mobile devices. For example, if multiple mobile
devices at nearby locations are performing face
recognition, it is highly possible that the recog-
nized face on one mobile device will be captured
by another nearby device. Instead of sending re-
dundant recognition requests to the cloud servers,
with the presence of a cloudlet, the recognized
result can be cached in the cloudlet and provided
through the local network when requests from
others match or hit the result. Without routing
requests to the cloud, the high latency over the
Internet can be eliminated and the workload on
the cloud servers can be significantly filtered,
providing the potential for the cloud servers to
serve more mobile devices simultaneously.

Scheduling

The cloudlet has the ability to schedule multiple
cloud servers and serve multiple mobile devices.
The cloudlet can provide profiling of all the avail-
able resources to perform intelligent task distribu-
tion and optimize the overall performance to ensure
a Quality of Service (QoS) goal. Sophisticated
combinatorial optimization algorithms that model

the cloud-to-cloudlet delays as a set of graph edges/
vertices can be used for scheduling (Soyata &
Friedman, 1997; Soyata & Friedman, 1999; Soyata
& Friedman, 1994a; Soyata & Friedman, 1994b;
Soyata et al., 1993; Soyata et al., 1995; Soyata
et al., 2012c). A set of integer linear inequalities
can be solved for optimum scheduling when local
computational resources are available that permit
the solution of computationally-intensive Integer-
Linear Programming (ILP) algorithms.

In the traditional mobile-cloud computing
architecture, when mobile devices offload com-
putation to the cloud, there are usually multiple
available cloud servers with different network
and loading conditions. Instead of choosing a
fixed server or choosing the server randomly, the
mobile device should choose a server that can
offer the lowest possible latency for the offload-
ing task. The cloudlet can provide the status of
each cloud to the mobile devices by continuous
profiling, thereby allowing the mobile devices to
choose the best possible path for computation/
communication. This helps increase the battery
life on mobile devices by eliminating redundant
requests and network congestions when there
are multiple mobile devices. Additionally, since
there is no coordination between mobile devices,
it is possible that several mobile devices all route
their requests to one single server but leave other
servers idle. This underutilization of the cloud
server resources will result in poor performance
and can be eliminated when a cloudlet is utilized.

Figure 9. Illustration of caching data and computation on the cloudlet

465

Accessing Big Data in the Cloud Using Mobile Devices

With the presence of a cloudlet, multiple mobile
devices can share the profiling results provided
by the cloudlet, reducing the profiling requests
to the cloud servers and energy consumption on
the mobile devices. Besides, as a coordinator,
the cloudlet is aware of multiple mobile devices
and cloud servers, based on their individual QoS
requirements, several scheduling strategies can
be applied by the cloudlet to increase the overall
throughout and reduce the latency of a single task.

Fairness-Based Scheduling to
Maximize the Throughput

For a given tolerable latency, the throughput can
be maximized by scheduling tasks fairly to each
cloud server according to their processing speed,
current workload and network latency so that as
many tasks as possible can be performed within
their tolerable latency limits. A Greedy algorithm

is used to decide which server should the task be
scheduled for. Cloud servers with high process-
ing speed, low current workload and high speed
network connectivity should process more. In
addition to this server-side fairness, the cloudlet
can schedule the tasks in such a way that the client-
side fairness can be achieved to avoid starvation
of any one mobile decide. Prioritized scheduling
can also be applied to serve important mobile
clients first. The process is shown in Figure 10.

Parallelization and Redundant
Scheduling to Minimize Latency

Assuming that a given task is parallelizable, the
cloudlet can schedule the task to multiple cloud
servers to reduce the processing and transmission
latency. Considering the instability of the network
and the servers’ workload conditions, the gain
from this parallelization may be reduced by the

Figure 10. Illustration of fairness and greedy scheduling

Figure 11. Illustration of parallelization and redundant scheduling on the cloudlet

466

Accessing Big Data in the Cloud Using Mobile Devices

laggard. To alleviate the effect of such instabilities,
redundant tasks can be scheduled to multiple serv-
ers (Vulimiri et al., 2012). The task is considered
done when the first result comes back and other
redundant tasks will be either ignored or aborted.
The process is shown in Figure 11.

SUMMARY

This chapter presents a complete lifecycle for Big
Data – a) generation, b) storage and processing
and c) access. For the generation phase, we pro-
vided the vision of Internet of Things as a major
data source in the near future. Enabling technolo-
gies including RFID, WSN and middleware are
introduced together with their open issues and
future directions. For the storage and processing
phase, we provided an overview of the challenges
brought by Big Data. State-of-the-art solutions
in Big Data storage, management and analytics
are introduced at a high level. Key issues for
distributed systems: scalability, availability and
consistency are discussed in the context of Big
Data and cloud computing. For the Big Data access
phase, mobile-cloud computing is described with
an emphasis on computation offloading techniques
and mobile cloud platforms. An intermediate node
called cloudlet is proposed to accelerate the ac-
cess to Big Data. Three ways that a cloudlet can
help are discussed.

ACKNOWLEDGMENT

This work was supported in part by the National
Science Foundation grant CNS-1239423 and a
gift from Nvidia Corporation. The authors thank
Prof. Wendi Heinzelman (UR ECE), Prof. Minseok
Kwon (RIT CS), Ph.D. students He Ba and Meng
Zhu (UR ECE), Dr. Jiye Shi (UCB Pharma), and
M.S. student Zuochao Dou (UR ECE) for their help
in developing parts of the content of this chapter.

REFERENCES

Amazon. (n.d). Amazon web services (AWS).
Retrieved from http://aws.amazon.com

Anderson, D. P. (2004, November). Boinc: A sys-
tem for public-resource computing and storage. In
Proceedings of Grid Computing, (pp. 4-10). IEEE.

Ashton, K. (2009). That ‘internet of things’ thing.
Retrieved from http://www.rfidjournal.com/
articles/view?4986

Atzori, L., Iera, A., & Morabito, G. (2010).
The internet of things: A survey. Computer
Networks, 54(15), 2787–2805. doi:10.1016/j.
comnet.2010.05.010

Ba, H., Heinzelman, W., Janssen, C. A., & Shi,
J. (2013). Mobile computing-a green computing
resource. In Proceedings of Wireless Communi-
cations and Networking Conference. Academic
Press.

Baker, J., Bond, C., Corbett, J., Furman, J. J.,
Khorlin, A., Larson, J., & Yushprakh, V. (2011).
Megastore: Providing scalable, highly avail-
able storage for interactive services. CIDR, 11,
223–234.

Big Data. (2013). Big data analysis vs. govern-
ment spending. Retrieved from http://www.
informationweek.com/government/information-
management/big-data-analysis-vs-government-
spending/240160233

Borthakur, D. (2010). Facebook has the world’s
largest Hadoop cluster. Retrieved from http://
hadoopblog.blogspot.com/2010/05/facebook-has-
worlds-largest-hadoop.html

Borthakur, D., Gray, J., Sarma, J. S., Muthuk-
karuppan, K., Spiegelberg, N., Kuang, H., &
Aiyer, A. (2011). Apache Hadoop goes realtime
at Facebook. In Proceedings of the 2011 ACM
SIGMOD International Conference on Manage-
ment of Data (pp. 1071-1080). ACM.

467

Accessing Big Data in the Cloud Using Mobile Devices

Buettner, M., Greenstein, B., Sample, A., Smith, J.
R., & Wetherall, D. (2008). Revisiting smart dust
with RFID sensor networks. In Proceedings of the
7th ACM Workshop on Hot Topics in Networks
(HotNets-VII). ACM.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., & Gruber, R. E.
(2008). Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems, 26(2), 4. doi:10.1145/1365815.1365816

Chen, E., Ogata, S., & Horikawa, K. (2012).
Offloading Android applications to the cloud
without customizing Android. In Proceedings
of Pervasive Computing and Communications
Workshops (PERCOM Workshops), (pp. 788-
793). IEEE.

Chen, L., Tseng, M., & Lian, X. (2010). Develop-
ment of foundation models for internet of things.
Frontiers of Computer Science in China, 4(3),
376–385. doi:10.1007/s11704-010-0385-8

Chun, B. G., Ihm, S., Maniatis, P., Naik, M., &
Patti, A. (2011). Clonecloud: Elastic execution
between mobile device and cloud. In Proceedings
of the Sixth Conference on Computer Systems (pp.
301-314). ACM.

Condie, T., Conway, N., Alvaro, P., Hellerstein,
J. M., Elmeleegy, K., & Sears, R. (2010, April).
MapReduce online. NSDI, 10(4), 20.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,
Frost, C., Furman, J. J., & Woodford, D. (2012,
October). Spanner: Google’s globally-distributed
database. In Proceedings of OSDI (Vol. 1). OSDI.

Cuervo, E., Balasubramanian, A., Cho, D. K.,
Wolman, A., Saroiu, S., Chandra, R., & Bahl, P.
(2010). MAUI: Making smartphones last longer
with code offload. In Proceedings of the 8th
International Conference on Mobile Systems,
Applications, and Services (pp. 49-62). ACM.

Dean, J., & Ghemawat, S. (2008). MapReduce:
Simplified data processing on large clusters.
Communications of the ACM, 51(1), 107–113.
doi:10.1145/1327452.1327492

DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A., &
Vogels, W. (2007). Dynamo: Amazon’s highly
available key-value store. SOSP, 7, 205–220.
doi:10.1145/1294261.1294281

Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2011).
A survey of mobile cloud computing: Architecture,
applications, and approaches. Wireless Commu-
nications and Mobile Computing.

Douglas, L. (2012). The importance of ‘big data’:
A definition. Gartner.

Eastlack, J. R. (2011). Extending volunteer com-
puting to mobile devices. (Doctoral Dissertation).
New Mexico State University, Albuquerque, NM.

Fahad, A., Soyata, T., Wang, T., Sharma, G.,
Heinzelman, W., & Shen, K. (2012). SOLARCAP:
Super capacitor buffering of solar energy for self-
sustainable field systems. In Proceedings of SOC
Conference (SOCC), (pp. 236-241). IEEE.

Fernando, N., Loke, S. W., & Rahayu, W. (2013).
Mobile cloud computing: A survey. Future
Generation Computer Systems, 29(1), 84–106.
doi:10.1016/j.future.2012.05.023

Ghemawat, S., Gobioff, H., & Leung, S. T.
(2003). The Google file system. ACM SIGOPS
Operating Systems Review, 37(5), 29–43.
doi:10.1145/1165389.945450

Google. (n.d.). Google app. engine. Retrieved
from http://code.google.com/appengine

Guinard, D., Trifa, V., Mattern, F., & Wilde, E.
(2011). From the internet of things to the web of
things: Resource-oriented architecture and best
practices. In Architecting the internet of things
(pp. 97–129). Berlin: Springer. doi:10.1007/978-
3-642-19157-2_5

468

Accessing Big Data in the Cloud Using Mobile Devices

Guo, X., Ipek, E., & Soyata, T. (2010). Resistive
computation: Avoiding the power wall with low-
leakage, STT-MRAM based computing. [ACM.].
ACM SIGARCH Computer Architecture News,
38(3), 371–382. doi:10.1145/1816038.1816012

Hada, H., & Mitsugi, J. (2011). EPC based internet
of things architecture. In Proceedings of RFID-
Technologies and Applications (RFID-TA), (pp.
527-532). IEEE.

HBase. (n.d.). Welcome to HBase. Retrieved from
http://hbase.apache.org

Hoang, D. B., & Chen, L. (2010). Mobile cloud
for assistive healthcare (MoCAsH). In Proceed-
ings of Services Computing Conference (APSCC),
(pp. 325-332). IEEE.

Hoang, D. T., Niyato, D., & Wang, P. (2012).
Optimal admission control policy for mobile cloud
computing hotspot with cloudlet. In Proceedings
of Wireless Communications and Networking
Conference (WCNC), (pp. 3145-3149). IEEE.

Josuttis, N. (2007). SOA in practice. Sebastopol,
CA: O’Reilly.

Kocabas, O., Soyata, T., Couderc, J. P., Aktas,
M., Xia, J., & Huang, M. (2013). Assessment
of cloud-based health monitoring using homo-
morphic encryption. In Proceedings of the 31st
IEEE International Conference on Computer
Design. IEEE.

Kopetz, H. (2011). Real-time systems: Design
principles for distributed embedded applications.
Berlin: Springer. doi:10.1007/978-1-4419-8237-7

Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B.
(2013). A survey of computation offloading for
mobile systems. Mobile Networks and Applica-
tions, 18(1), 129–140. doi:10.1007/s11036-012-
0368-0

Kürschner, C., Condea, C., Kasten, O., & Thiesse,
F. (2008). Discovery service design in the epc-
global network. In Proceedings of the Internet of
Things (pp. 19-34). Berlin: Springer.

Kushalnagar, N., Montenegro, G., & Schumacher,
C. (2007). IPv6 over low-power wireless personal
area networks (6LoWPANs), overview, assump-
tions, problem statement, and goals (RFC4919).

Lakshman, A., & Malik, P. (2010). Cassandra:
A decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2), 35–40.
doi:10.1145/1773912.1773922

Lamport, L. (2001). Paxos made simple. ACM
Sigact News, 32(4), 18–25.

Levis, P., Madden, S., Polastre, J., Szewczyk, R.,
Whitehouse, K., Woo, A., & Culler, D. (2005).
TinyOS: An operating system for sensor networks.
In Ambient intelligence (pp. 115–148). Berlin:
Springer. doi:10.1007/3-540-27139-2_7

MapReduce. (n.d.). MapReduce – Wikipedia,
the free encyclopedia. Retrieved from http://
en.wikipedia.org/wiki/MapReduce

Marinelli, E. E. (2009). Hyrax: Cloud computing
on mobile devices using MapReduce (No. CMU-
CS-09-164). Pittsburgh, PA: Carnegie-Mellon
Univ.

McKusick, M. K., & Quinlan, S. (2009).
GFS: Evolution on fast-forward. ACM Queue;
Tomorrow’s Computing Today, 7(7), 10.
doi:10.1145/1594204.1594206

Membrey, P., Plugge, E., & Hawkins, T. (2010).
The definitive guide to MongoDB: The noSQL
database for cloud and desktop computing. Apress.

Microsoft. (n.d.). Windows Azure. Retrieved from
http://www.microsoft.com/windowazure

469

Accessing Big Data in the Cloud Using Mobile Devices

Miorandi, D., Sicari, S., De Pellegrini, F., &
Chlamtac, I. (2012). Internet of things: Vision,
applications and research challenges. Ad Hoc
Networks, 10(7), 1497–1516. doi:10.1016/j.ad-
hoc.2012.02.016

National Intelligence Council (NIC). (2008).
Disruptive civil technologies: Six technologies
with potential impacts on US interests out to 2025.
Washington, DC: NIC.

RFID. (n.d.). Radio-frequency identification –
Wikipedia, the free encyclopedia. Retrieved from
http://en.wikipedia.org/wiki/Radio-frequency_
identification

Satyanarayanan, M., Bahl, P., Caceres, R., & Da-
vies, N. (2009). The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Comput-
ing / IEEE Computer Society [and] IEEE Com-
munications Society, 8(4), 14–23. doi:10.1109/
MPRV.2009.82

Shi, C., Ammar, M. H., Zegura, E. W., & Naik,
M. (2012). Computing in cirrus clouds: The chal-
lenge of intermittent connectivity. In Proceedings
of the First Ed. of the MCC Workshop on Mobile
Cloud Computing (pp. 23-28). ACM.

Shvachko, K., Kuang, H., Radia, S., & Chansler,
R. (2010). The hadoop distributed file system.
In Proceedings of Mass Storage Systems and
Technologies (MSST), (pp. 1-10). IEEE.

Shvachko, K. V. (2010). HDFS scalability: The
limits to growth. Login, 35(2), 6–16.

SOA. (n.d.). Services-oriented architecture –
Wikipedia, the free encyclopedia. Retrieved from
http://en.wikipedia.org/wiki/Services-oriented_
architecture

Sohraby, K., Minoli, D., & Znati, T. (2007). Wire-
less sensor networks: technology, protocols, and
applications. Hoboken, NJ: John Wiley & Sons.
doi:10.1002/047011276X

Soyata, T. (1999). Incorporating circuit level
information into the retiming process. (Doctoral
Dissertation). University of Rochester, Rochester,
NY.

Soyata, T., Ba, H., Heinzelman, W., Kwon, M., &
Shi, J. (n.d.). Accelerating mobile-cloud comput-
ing. Survey (London, England).

Soyata, T., & Friedman, E. G. (1994). Retiming
with non-zero clock skew, variable register,
and interconnect delay. In Proceedings of the
1994 IEEE/ACM International Conference on
Computer-Aided Design (pp. 234-241). IEEE
Computer Society Press.

Soyata, T., & Friedman, E. G. (1994). Synchronous
performance and reliability improvement in pipe-
lined ASICs. In Proceedings of ASIC Conference
and Exhibit, (pp. 383-390). IEEE.

Soyata, T., Friedman, E. G., & Mulligan, J. H.
Jr. (1993). Integration of clock skew and register
delays into a retiming algorithm. In Proceedings
of Circuits and Systems (pp. 1483–1486). IEEE.
doi:10.1109/ISCAS.1993.394015

Soyata, T., Friedman, E. G., & Mulligan, J. H. Jr.
(1995). Monotonicity constraints on path delays
for efficient retiming with localized clock skew
and variable register delay. [). IEEE.]. Proceedings
of Circuits and Systems, 3, 1748–1751.

Soyata, T., Friedman, E. G., & Mulligan, J. H. Jr.
(1997). Incorporating interconnect, register, and
clock distribution delays into the retiming process.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(1), 105–120.
doi:10.1109/43.559335

Soyata, T., & Liobe, J. (2012). pbCAM: Proba-
bilistically-banked content addressable memory.
In Proceedings of SOC Conference (SOCC), (pp.
27-32). IEEE.

470

Accessing Big Data in the Cloud Using Mobile Devices

Soyata, T., Muraleedharan, R., Funai, C., Kwon,
M., & Heinzelman, W. (2012). Cloud-vision: Real-
time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In Proceedings
of Computers and Communications (ISCC), (pp.
000059-000066). IEEE.

Soyata, T., Muraleedharan, R., Langdon, J., Fu-
nai, C., Ames, S., Kwon, M., & Heinzelman, W.
(2012). COMBAT: Mobile-cloud-based compute/
communications infrastructure for battlefield
applications. In Proceedings of SPIE Defense,
Security, and Sensing (pp. 84030K-84030K).
International Society for Optics and Photonics.

Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., So-
man, C., & Shah, S. (2012). Serving large-scale
batch computed data with project voldemort. In
Proceedings of the 10th USENIX Conference
on File and Storage Technologies (pp. 18-18).
USENIX Association.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z.,
Chakka, P., Anthony, S., & Murthy, R. (2009).
Hive: A warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment,
2(2), 1626–1629.

TOP500. (n.d.). TOP500 supercomputer sites.
Retrieved from http://www.top500.org/

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt,
B. (2012). Cloudlets: Bringing the cloud to the
mobile user. In Proceedings of the Third ACM
Workshop on Mobile Cloud Computing and Ser-
vices (pp. 29-36). ACM.

Vulimiri, A., Michel, O., Godfrey, P., & Shenker, S.
(2012). More is less: Reducing latency via redun-
dancy. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks (pp. 13-18). ACM.

Wang, H. (2013). Accelerating mobile-cloud
computing using a cloudlet. (Master Thesis).
University of Rochester, Rochester, NY.

Weiser, M. (1991). The computer for the 21st
century. Scientific American, 265(3), 94–104.
doi:10.1038/scientificamerican0991-94

White, T. (2012). Hadoop: The definitive guide.
Sebastopol, CA: O’Reilly.

WISP. (n.d.). WISP wiki. Retrieved from https://
wisp.wikispaces.com/

KEY TERMS AND DEFINITIONS

Cloudlet: The intermediate device between
mobile devices and cloud to accelerate mobile-
cloud computing.

Hadoop: An open-source Java implementation
of Google’s MapReduce model that supports big
data applications in the cloud.

Internet of Things: The pervasive varieties
of objects that can interact with each other and
cooperate to reach a common goal over the Inter-
net by using globally unique Internet addresses.

MapReduce: A programming model consist-
ing of two logical steps—Map and Reduce—for
processing massively parallelizable problems
across extremely large datasets using a large cluster
of commodity computers.

Mobile Application: A software application
designed to run on mobile devices (e.g., smart-
phone, tablet).

Mobile-Cloud Computing: Executing a
mobile application using the cloud resources to
achieve a higher performance metric than what
can be achieved with mobile computing alone
(e.g., application response time).

Processing Power: Data manipulation speed of
a computational platform (e.g., in TFLOPS—Tera
Floating Point Operations Per Second).

