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Chapter  18

Accessing Big Data in the 
Cloud Using Mobile Devices

ABSTRACT

The amount of data acquired, stored, and processed annually over the Internet has exceeded the processing 
capabilities of modern computer systems, including supercomputers with multiple-Petaflop processing 
power, giving rise to the term Big Data. Continuous research efforts to implement systems to cope with 
this insurmountable amount of data are underway. The authors introduce the ongoing research in three 
different facets: 1) in the Acquisition front, they introduce a concept that has come to the forefront in the 
past few years: Internet-of-Things (IoT), which will be one of the major sources for Big Data generation 
in the following decades. The authors provide a brief survey of IoT to understand the concept and the 
ongoing research in this field. 2) In the Cloud Storage and Processing front, they provide a survey of 
techniques to efficiently store the acquired Big Data in the cloud, index it, and get it ready for process-
ing. While IoT relates primarily to sensor nodes and thin devices, the authors study this storage and 
processing aspect of Big Data within the framework of Cloud Computing. 3) In the Mobile Access front, 
they perform a survey of existing infrastructures to access the Big Data efficiently via mobile devices. 
This survey also includes intermediate devices, such as a Cloudlet, to accelerate the Big Data collection 
from IoT and access to Big Data for applications that require response times that are close to real-time.
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INTRODUCTION

The amount of data generated annually over the 
Internet has exceeded the zetabyte levels. Process-
ing data with such high volume far exceeds the 
computational capabilities of today’s datacenters 
and computers, giving rise to the term Big Data. 
Although the growth rate of supercomputers that 
are capable of processing such explosive amount 
of data is also breathtaking (TOP500, n.d.), the 
rate of data growth far surpasses the capabilities 
of even the fastest supercomputers available today. 
Even though the top supercomputers are able to 
handle Big Data analysis, their highly-specialized 
designs are not affordable for commercial use. In-
stead, large commodity computer clusters are used, 
where faults are common and interconnect speeds 
are limited. Also the storage and management 
of Big Data poses different unique challenges: 
While the storage has to be performed by high-
availability and high-performance distributed file 
systems, it must also be done in a way to allow 
application of efficient data analytics later. Being 
able to perform analytics on this data is crucial: 
It has been reported that, performing analytics on 
Big Data can save the government 14% all across 
their budget (Big Data, 2013). This specific ex-
ample shows the importance of manipulating Big 
Data while keeping both phases of usage in mind 
concurrently: storage and computation.

By today’s standards, considering the utility 
computing (termed Cloud Computing), is unavoid-
able for any organization, regardless of its size. 
While it is possible for different organizations 
to build their own datacenters, it is an expensive 
business proposition to do so, since the econo-
mies of scale for organizations such as Amazon 
(AWS, n.d.), Google (Google, n.d.), and Microsoft 
(Microsoft, n.d.), will allow them to build these 
datacenters for a fraction of the price. Furthermore, 
while an organization that is building its own 
datacenter must size it for the worst case, cloud 
operators offer much more favorable pricing op-
tions, such as, per-hour usage pricing. This allows 

corporations to rent much higher peak amounts of 
computational power with zero upfront investment. 
To make cloud computing even more appealing, 
the responsibility of continuously upgrading the 
underlying computational infrastructure is shifted 
to the cloud operators, thereby permitting access 
to modern high performance resources whenever 
they are available without any investment.

Due to the wide scope of Big Data and cloud 
computing, we restrict our focus to futuristic 
concepts involving Big Data in this chapter. Spe-
cifically, we will investigate one emerging source 
of Big Data, called Internet of Things (IoT). IoT, 
introduced in 1999, conceptualizes a network of 
numerous data-generating devices (things) such 
as home energy meters, wireless sensors, and 
other sensory devices. For IoT to be realized, a 
unique Internet addressing scheme for each de-
vice, called IPv6, is necessary that significantly 
expands what used to be the standard a decade 
ago (IPv4). With the widespread use of IPv6, each 
device (i.e., thing) can be assigned its unique ad-
dress to globally identify it over the Internet. The 
acceptance of IPv6 is accelerating for desktop PCs 
and is expected to expand over to IoT within the 
following decade.

Cloud computing, as a new model for deliv-
ering computing resources on demand, provides 
a powerful, flexible and elastic platform which 
enables collection, analytics, processing and 
visualization of Big Data. Storage of Big Data is 
performed by file systems that are drastically dif-
ferent than traditional file systems such as NT File 
System (NTFS). One such user-level distributed 
file system – Google File System (GFS) allows 
not only the distributed storage of Big Data, but 
also its access with high availability (and fault-
tolerance) due to the built-in redundancy in GFS. 
This file system also dictates how the processing 
should be performed: Standardized methods, such 
as MapReduce, ease the handling of Big Data and 
provide a tool for cloud operators to make their 
platform more accessible. Cloud computing ser-
vice providers have already releases of the public 
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platforms for Big Data analysis (Amazon Elastic 
MapReduce and Google BigQuery).

Access to Big Data in the cloud through mo-
bile devices (termed Mobile-Cloud Computing) 
significantly expands the reach of Big Data due 
to the widespread availability of smartphones and 
tablets. While multiple definitions are available in 
the literature (Dinh et al., 2011; Fernando et al., 
2013), mobile-cloud computing can be defined as 
the “co-execution of a mobile application within 
the expanded mobile/cloud computational plat-
forms to optimize an objective function (Soyata et 
al., 2013).” An objective function can be defined 
for the mobile application such as the application 
response time, and the goal of the mobile appli-
cation is to minimize this objective function. In 
applications requiring real-time response (e.g., 
real-time face recognition), mobile devices cannot 
achieve this objective function alone. Mobile-
cloud computing allows the mobile device to 
utilize cloud resources to achieve this goal.

This chapter is organized as the lifecycle of 
Big Data shown in Figure 1: First, we will be 
providing a survey of IoT as a source for Big Data 
generation, followed by a survey of storage and 
computational methodologies and algorithms for 

Big Data in the cloud computing environment. We 
will conclude our chapter with an introduction 
of mobile-cloud computing which allows access 
to the Big Data in the cloud via mobile devices.

GENERATION AND ACQUISITION

As mentioned in the previous section, a portion 
of future Big Data will be generated by a network 
of numerous data-generating devices called In-
ternet of Things (IoT). The phrase IoT was first 
presented by Kevin Ashton at Procter & Gamble 
(P&G) in 1999 (Ashton, 2009). The basic idea 
of this concept is that, the pervasive presence 
of varieties of things or objects, through unique 
addressing schemes, ubiquitous computation and 
communication infrastructures, are able to interact 
with each other and cooperate to reach a common 
goal. These things or objects have their own means 
of gathering information. Emerging technologies, 
including RFID, sensor, and wireless communica-
tions enable things or objects to observe, identify, 
and understand the world. IoT blurs the lines 
between the real world and the digital world by 
providing awareness about situations and status 

Figure 1 Illustration for the lifecycle of big data (Generation, storage and processing, accessing)
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of things and people in digital format, bridging 
the real world with the digital world.

IoT will have a profound and disruptive impact 
on transportation, environment, living, e-health, 
military and defense. This new paradigm will play 
a leading role in the near future. The increased 
autonomous decision making capabilities can be 
used by service technologies and enterprise sys-
tems of tomorrow: the real world awareness will 
be provided by the IoT. Our social interactions 
will be greatly enhanced with information and 
intelligence enabling feedback and control loops 
which are cumbersome, slow and fault ridden. By 
2025 Internet nodes may reside in everyday things 
– food packages, furniture, paper documents, and 
more (NIC, 2008).

The development of IoT depends on dynamic 
technical innovation in a number of important 
fields. First, for object identification, a ubiquitous 
addressing scheme is crucial., which can be of-
fered by Radio Frequency IDentification (RFID). 
Second, with emerging technologies, data can be 
collected and processed to perceive status changes 
of physical objects. Third, wireless communica-
tion technologies link the real world with the 
digital world, by connecting each object. Finally, 
advances in miniaturization and nanotechnology 
mean things will become more integrated, pro-
viding the strong ability to interact. Eventually 
a full interoperability of interconnected devices 
will enable adaptation and autonomous behavior 
while guaranteeing trust, privacy, and security 
(Atzori, 2010). However, many issues remain to 
be addressed. Both industry and academia need 
to be involved to formulate solutions to fulfill 
major technological requirements before IoT is 
widely applicable.

The rest of this section is organized as follows. 
We introduce vision and applications of IoT first, 
followed by a presentation of key technologies 
which enable IoT. We conclude this section with 
a cloud-centric view of IoT and the issues that 
must be addressed before IoT is widely applicable.

Vision and Applications

In the past 50 years, the Internet has grown from 
a small research network to a worldwide network 
with billions of human users. In the past decade, 
Internet of Things has evolved and became capable 
of connecting physical objects (smart objects). A 
new era of networking, computing and service 
provisioning and management has started (Mio-
randi, et al., 2012).

Conceptually, IoT is based on smart objects 
which are identifiable, Internet-accessible and 
interoperable among each other. A smart object 
is a physical embodiment that senses physical 
phenomena; and it is equipped with limited com-
munication and computing capabilities; each smart 
object is associated with both a human-readable 
name and a unique universally identifiable ma-
chine-readable address. IoT focuses on data and 
information related to physical world rather than 
point to point communication, which distinguishes 
it from traditional network systems.

From a system perspective, the Internet of 
Things can be viewed as a highly distributed and 
dynamic network of many smart objects commu-
nicating with each other. Since smart objects can 
move and create ad hoc connections unexpectedly, 
the IoT network encounters a very high level of 
parallelism. The extremely large scale of the 
system makes scalability a major issue for IoT. 
So, self-management is expected to accelerate the 
development of IoT greatly (Guinard et al., 2011). 
From the service perspective, integration of smart 
objects’ functionalities and resources into services 
(Chen et al., 2010) is a major issue, which requires a 
standardized representation of ‘virtualized’ smart 
objects in the information world.

The IoT has evolved as the next technology to 
transform the Internet to a fully integrated future 
Internet with a variety enabling wireless tech-
nologies like RFID tags, embedded sensor and 
actuator nodes. A wide range of applications can 
be deployed to improve the quality of our lives 
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with IoT. Depicted in Figure 2, these applications 
can be itemized as follows (Atzori et al., 2010):

• Transportation and Logistics
 With RFID and NFC technology, real time 

monitoring of the entire supply chain in 
logistics makes it possible to obtain product-
related information timely and accurately so 
that the customer service time can be greatly 
improved.

 Car drivers can benefit from the informa-
tion obtained from the road system for 
better navigation and safety. More accurate 
information for planning activities can also 
be obtained.

• Health Care
 In the health care domain, real time track-

ing of a person or object (e.g. patient-flow 
monitoring) can be achieved with the IoT 
technology. Also, it can provide identifi-
cation to prevent mismatching so that no 
harmful effects will occur to patients (wrong 
drug or time). IoT enabled data collection 
and sensing can help improve health care to 
patients as well.

• Smart Environment
 With sensors and actuators distributed 

around our living environment, IoT tech-

nology makes our living environment more 
comfortable in that room heating, lighting 
can adaptively change according to our pref-
erence and certain incidents can be avoided 
with appropriate monitoring and alarming.

 Also, with massive deployment of RFID 
tags, quality control can be performed to 
industrial plants to help improve automation 
quality.

• Personal and Social
 IoT helps people interact with each other to 

build social relationship by automatically 
and intelligently sending messages about 
our activities to friends. Also, lost or stolen 
objects can be easily identified and tracked 
with the attached electronic tags.

According to the IoT vision, a smart planet 
where the world economy and support system 
will seamlessly and efficiently cooperate will 
evolve in the future.

Enabling Technologies

Radio-Frequency Identification (RFID)

As the size, weight, energy consumption and cost 
of radio transmitters decrease, the possibility of 

Figure 2. Illustration for application areas of IoT



449

Accessing Big Data in the Cloud Using Mobile Devices

integrating radio transmitters in almost anything 
will be the key enabler for the IoT concept. The 
RFID system usually consists of RFID tags embed-
ded in every smart object and one or more readers 
that collect and transmit the object information 
(e.g. identity, location) to remote computer serv-
ers (Atzori et al., 2010). With no human interac-
tion while monitoring the objects in real time, 
mapping of the real world to the virtual world 
becomes possible.

Physically, an RFID tag contains an IC chip 
for information and signal processing (RFID, 
n.d.) and an antenna for receiving and transmit-
ting signals. RFID tags can be categorized into 
passive tags and active tags. Passive RFID tags 
have no power supply and can harvest energy from 
the electromagnetic energy received from RFID 
readers. Although the gain from an RFID reader 
is very low, tag IDs can still be correctly retrieved 
within a radio range of a few meters. Active RFID 
tags have their own power supply (e.g. a battery) 
on-board. The lifetime of an active tag is thus 
limited by the power supply. However, active tags 
can transmit over a much longer distance, typi-
cally a few hundred meters. RFID reader act as a 
gateway between physical objects with RFID tags 
and the Internet by resolving all the mismatches 
in the architecture, naming convention and com-
munication protocols (Kopetz, 2011).

Wireless Sensor Networks

A Wireless sensor network (WSN) is an infra-
structure composed of sensing, computing, and 
communication elements that can trace the status 
of things and is aware of its environment. It can 
act as a bridge connecting the physical world to 
the digital world, and can instruct administrators 
to react to events and phenomena in a specified 
way (Sohraby et al., 2007).

A WSN typically consists of density diverse 
sensor nodes. Each sensor node has several parts:

• A localized and application-specific sen-
sor operating in the seismic, radio, acous-
tic, optical and chemical or biological 
domains.

• A radio transceiver with an internal or 
external antenna whose communication 
bandwidth and distance are limited.

• A micro computing unit to process signals 
and data.

• A battery or an embedded form of power 
harvest.

The sensor nodes are often aware of their lo-
cations through a local positioning algorithm or 
the Global Positioning System (GPS). Because 
of the limited communication distance, there is 
also another kind of node called the sink node, 
whose responsibility is to forward data from sensor 
nodes to the center node of the information cluster. 
Because of the small number of sink nodes, they 
can cost more than the sensor nodes, and therefore 
have a stronger communication ability.

When a sensor node is deployed in the field, 
it needs to self-organize a network. It first detects 
its neighbors and establishes communication with 
them. It, then, needs to learn the topology in which 
the nodes are connected to each other, and build 
an ad-hoc multi-hop communication path to a sink 
node. When a sensor node or a sink node fails, it 
must reconfigure its network.

To support the operation of nodes, it is im-
portant to have an operating system designed 
specifically for WSNs. Such an operating system 
should have a small code size which can adjust to 
memory constraints of nodes, and utilize modular 
architecture. An example is TinyOS (Levis, 2005), 
which is an open-source operating system designed 
for WSNs and low-power embedded devices. Ti-
nyOS combines flexible, fine-grain components 
with an execution model that supports complex 
yet safe concurrent operations. Its core size is 
about 400 Bytes.
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Most commercial WSNs are based on the 
IEEE 802.15.4 standard. IEEE 802.15.4 speci-
fies the fundamental physical layer and media 
access control for wireless personal area networks 
(WPANs) which focus on low-cost and low speed 
communication amongst devices.

Current WSNs have several limitations:

• Power efficiency. The lifetime of a node 
depends on the battery-power or harvested 
power and its power consumption.

• Environment. WSNs are often deployed 
in harsh environments. Nodes in WSNs 
may need to withstand high/low tempera-
ture, nuclear radiation, sand storm, and so 
on. Such environment conditions give rise 
to challenges in the manufacturing and 
management of the nodes.

• Node cost. There are typical hundreds and 
even thousands of nodes in WSNs. The 
cost of one node is critical to the overall 
cost of WSNs.

Sensing RFID systems will allow building 
small-size and low-power RFID sensor networks 
(Buettner & Wetherall, 2008), which consist of 
small, RFID-based sensing and computing de-
vices, and RFID readers. Nodes in this system 
transmit data generated by sensing RFID tags and 
provide the power for network operations. Their 
lifetime is usually not limited by the battery dura-
tion. This technology has the potential of producing 
long-lasting, low-cost ubiquitous sensor nodes that 
may revolutionize many embedded applications.

The WISP (Wireless Identification and Sensing 
Platform) project from Intel Research is a sensing 
and computing device that is powered and read 
by off the shelf UHF RFID readers (WISP, n.d.). 
WISPs have on board microcontrollers that can 
sample a variety of sensing devices, creating a 
wirelessly-networked, and battery-less sensor 
device. WISPs have the capabilities of RFID tags, 
but also support sensing and computing. Like any 
passive RFID tag, WISP is powered and read by 

a standard off-the-shelf RFID reader, harvesting 
the power from the reader’s emitted radio signals. 
WISPs have been used to sense light, temperature, 
acceleration, strain, liquid level, and to investi-
gate embedded security. Integration of sensing 
technologies and RFID tags allow building RFID 
sensor network (RSN) (Guinard, 2011) which 
consists of RFID-based sensors, and RFID readers.

Middleware

Middleware is a software layer placed between 
underlying technologies and the application layer, 
which hides the underlying technological details 
and provides application interfaces, simplifying 
the development of new applications. Recent 
proposed middleware architecture often follows 
Service-Oriented Architecture (SOA), which is 
based on discrete pieces of software that provides 
application functionality called service. A service 
is a self-contained representation of reusable func-
tions (SOA, n.d.). The purpose of SOA is to provide 
an easy way to cooperate large number of objects 
or things connected over a network. In an SOA 
environment, objects on the network make their 
resources available to others as an independent 
service in a standardized way (Josuttis, 2007).

An SOA solution for IoT composes of, in a 
top-down order, 1) application layer, 2) service 
composition layer, 3) service management layer, 
4) object abstraction layer and 5) object layer (At-
zori, 2010). Application layer provides application 
interfaces. The service composition layer provides 
independent services to build specific applica-
tions. The independent services are provided by 
objects in the network. Service management layer 
manages the objects over the network including 
object discovery, service deployment and status 
monitoring. The object abstraction layer provides 
standard interfaces for object access.

One challenge of SOA is managing metadata. 
In an SOA-based solution, it becomes complex to 
manage the way many services interact. Another 
challenge is that conventional application-man-
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aged security is sufficient, since the application 
exposes itself as a service to the outside world, 
which would be used by other untrusted applica-
tions.

Internet of Things and Cloud Computing

A framework for integrating ubiquitous sensing 
devices and the cloud provides great flexibility 
and scalability for IoT systems. Sensing devices 
can join the network and provide data to the cloud 
and the cloud can analyze the data and offer such 
infrastructure services as shown in Figure 3.

A cloud platform using Manjrasoft Aneka and 
Microsoft Azure (Microsoft, n.d.) utilizes a hybrid 
cloud (combining private and public cloud) to 
provide computing, storage and visualization to 
form a seamless framework for IoT systems 
(Kürschner et al., 2008). It provides a clear frame-
work of cloud APIs for IoT applications to easily 
utilize Cloud services and greatly reduce develop-
ment time and cost. An important feature of 
Aneka is that it provisions both resources on 
public clouds (e.g. Microsoft Azure) and re-
sources on private clouds (e.g. clusters and vir-
tual data centers). When scheduling an application, 

it determines whether to use private clouds or 
public clouds based on the QoS requirements of 
the application. The platform handles interoper-
ability of multiple clouds by providing a standard 
framework for various clouds.

Open Issues

Besides the technologies that drive IoT develop-
ment we discussed in the previous section, a lot 
more research is required to make the IoT feasible. 
Current issues include standardization, naming 
and identification, as well as security and privacy:

Standardization

Several standardizations of IoT have emerged in 
the scientific research communities across the 
globe. EPC global (Kürschner et al., 2008) enables 
sharing related product information by providing 
standardization of integrating RFID into the EPC 
framework (Hada & Mitsugi, 2011). GRIFS pro-
vides a standard for the transition from localized 
RFID to the IoT. 6LoWPAN (Kushalnagar et al., 
2007) aims at making IPv6 protocol compatible 
with current low power IEEE 802.15.4 devices. 

Figure 3. Illustration for the architecture of cloud-based sensing networks
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ROLL (Weiser, 1999) gives a definition for a 
routing protocol for future generation Internet 
networks that are heterogeneous low power. With 
the cooperation of the industry that provides 
standardizations in different areas, the IoT will 
become much more achievable.

Naming and Identification

With a large amount of addressable nodes emerg-
ing in the IoT era, a new effective addressing policy 
is required. The new IPv6 protocol is proposed for 
such low-power wireless communication nodes 
in the aforementioned 6LoWPAN study. The 
mechanism to map a reference to a description of 
a specific smart object and its associated RFID 
tag identifier was introduced to be performed by 
Object Name Servers (ONS). Additionally, the 
data traffic generated by IoT differs significantly 
from the traffic generated by the devices that are 
currently on the Internet, necessitating a new 
Quality of Service (QoS) support for the IoT.

Security and Privacy

The IoT is easily attacked since 1) its components 
are usually unattended, 2) its wireless communi-
cation system is easily eavesdropped and 3) the 
IoT components need complex security schemes. 
Two major problems are authentication and data 
integrity: In the IoT, the current authentication 
mechanism to exchange messages among nodes 
is not feasible because of limited bandwidth. 
Different solutions for authentication have been 
introduced for WSN and RFID systems, although, 
none of them can handle the man-in-middle at-
tack. Passwords are usually used to ensure data 
integrity in the IoT, but the length of password 
cannot provide strong protection currently.

With the available techniques today, private 
personal information can be easily gathered 
without the knowledge of a person through IoT 
devices. Even if some of the proposed mechanisms 
are valid solutions, IoT’s widespread adoption 

will not materialize due to such privacy concerns: 
Until the effectiveness of the proposed security 
solutions are time-tested and certain confidence 
levels have been established, IoT will remain in 
its exploratory phase. Finally, digital forgetting is 
becoming an emerging research topic in the IoT. 
With digital forgetting, all information will be kept 
forever so that any information can be retrieved 
using data mining techniques.

Since the mid-1990s, the Internet has had 
a tremendous impact on our life and society. It 
changed the way we interact with one another 
and exchange/receive information. However, 
the information we can access from the Internet 
is mainly obtained from manual-typing, taking 
digital pictures, or scanning. The ability to sample 
information from things is limited when we face 
the real world, because there are so many things. 
IoT can change the way information is sampled. 
The thing itself can transfer information into the 
network by itself, which means things become 
our senses (eyes, ears, and noses). IoT adds an-
other dimension to how we access and handle 
information. In the past ten years, we have made 
a substantial progress in IoT. But the feasibility, 
scalability and efficiency are still limited by exist-
ing technologies, which will drive the research and 
development of IoT in the next decade.

STORAGE AND PROCESSING

Recently, there has been an explosive growth 
in the amount of data that is being generated 
by humans through social networks and online 
transactions. Alternatively, a similar growth is 
observed in the amount of data that is generated 
by machines through the sensor networks and 
scientific research. While all of this data may be 
potentially valuable, extracting the value from 
such massive quantities of data presents significant 
challenges, and was termed Big Data. Big Data 
implies datasets that are large and complex enough 
to the point where conventional approaches will 
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fail to store and process them efficiently. Three 
dimensions have been proposed to characterize 
Big Data: Volume, Variety and Velocity (Laney 
& Beyer, 2012). Another dimension is included 
is the Value. These aspects of Big Data are de-
fined below

• Volume: The massive quantity and high 
growth of data requires high horizontal 
scalability which outpaces conventional 
storage systems.

• Variety: The data are collected from vari-
ous heterogeneous sources like social me-
dia, airplane sensor logs to DNA research 
projects. All these data may be analyzed 
altogether to generate valuable results. 
Conventional relational database man-
agement and analysis techniques will fail 
when faced with such variety.

• Velocity: The data are generated and col-
lected at a high speed and the real-time de-
mand for the analyzed results will require 
both high-performance and data-intensive 
processing systems.

• Value: Data value measures the usefulness 
of the Big Data for accomplishing various 
targets, such as, decision making. Many 
statistical., data mining and machine learn-
ing methods along with the data storage 
and processing techniques will uncover the 
hidden value of Big Data.

The development of cloud computing provides 
an on-demand cost-efficient computing platform 
with great horizontal scalability, which is an ideal 
platform for storing and processing large datasets. 
However, conventional techniques like relational 
database management systems cannot efficiently 
utilize the power of cloud computing.

Three major issues brought by Big Data: stor-
age, management and analytics and their current 
solutions in the cloud computing configurations 
are discussed in the following sections.

Storage

With the increasing data sizes from terabytes to 
petabytes to exabytes, the data can no longer be 
stored in a few computers. The need for distributed 
data storage and access within clusters, across 
clusters and even across datacenters brings new 
challenges to the existing distributed file systems. 
Early in 2003, Google released its own Google 
File System (GFS), as a scalable distributed file 
system for large distributed data-intensive applica-
tions (Ghemawat et al., 2003). The design of GFS 
is driven by three key observations in Google’s 
environment:

• Files are very large and are growing very 
fast.

• File appending happens more common 
than overwriting.

• Component failures are the norm rather 
than the exceptions.

In order to provide fault tolerance on a large 
number of inexpensive commodity machines and 
deliver high aggregate performance to a large 
number of clients, a typical design of a GFS cluster 
consists of a single master node, and several chunk 
servers. The master node maintains all of the file 
system metadata including the namespace, access 
control information and file-to-chunk mapping, 
and several chunk servers contain the data that 
is actually stored in the form of 64MB chunks. 
Both master node and chunk servers are user-level 
processes running on Linux-based machines. As 
shown in Figure 4, when accessing the file, a cli-
ent first communicates with the master server to 
obtain the metadata and then communicates with 
the chunk server for the actual data according to 
the metadata. Master node monitors the status of 
every chunk server and updates its metadata ac-
cordingly when a fault occurs. Data is replicated 
among chunkservers to enhance availability, 
bandwidth utilization and overall performance.
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An open-source implementation of GFS is the 
Hadoop Distributed File System (HDFS) which 
comes from Yahoo (Shvachko, 2010a) as part of 
the Hadoop framework. In 2010, more than 21PB 
(Petabytes) of data are stored in a single HDFS 
cluster consisting 2000 machines hosted by Face-
book (Borthakur, 2010), showing the success of 
this distributed file system scheme.

However, with the relentless growth of data, 
scalability issues still exist in both GFS and 
HDFS. Furthermore, with the increasing de-
mand for interactive applications which require 
low latency access instead of high throughput, 
original designs of GFS and HDFS have signifi-
cant difficulties handling I/O requests with an 
interactive pattern. The original GFS and HDFS 
designs are optimized for large files (several 
GBs) while Big Data doesn’t necessarily consist 
of large files. Instead, the dataset might consist 
of a large number of small files which are far 
below the size a block (typically 64MB). Since 
every file, directory and the underlying block is 
represented as an object in the memory of the 
name node, based on a rule of thumb (Shvachko, 
2010b), very large number of files easily saturate 
the memory of the name node, causing file ac-
cesses to suffer severe overhead and sometimes 

make it completely infeasible to access some 
files. One possible solution for this issue is to 
use a Sequence File. The idea was introduced 
to bundle small files into a single sequence file 
and process it in a streaming fashion, which 
partially solves the performance problem at the 
expense of introducing another problem: The 
ability to list all files and randomly access one 
of them in a single sequence file is lost, leading 
to other projects including BigTable and HBase 
as an abstraction layer on top of the distributed 
file system to provide better performance and 
scalability under various situations. Another is-
sue with the original system architecture is that, 
both of these systems are built upon the single-
node namespace server architecture, which will 
naturally become the limiting point as the system 
scales. Distributed namespace server system 
was introduced by Google recently (McKusick 
& Quinlan, 2009) as a more promising solution 
to eliminate the single-name-node scalability 
issue. The resulting GFS system can now handle 
hundreds of master nodes and each file is split 
into much smaller chunks than before. More 
features including load balancing and better 
monitoring and recovery are also deployed in 
this implementation of GFS.

Figure 4. Illustration for the system architecture of Google File System
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Management

Distributed file systems provide mechanisms 
to store massive amounts of data. However, the 
way this high volume (and variety) of data is ef-
ficiently organized, managed and retrieved still 
remains an issue for distributed database systems. 
Conventional relational database systems enforce 
integrity of complex relational data structures, 
thereby under-utilizing cloud computing resources 
and providing poor horizontal scalability. Also, 
as previously mentioned, heterogeneous sources 
generate data in various formats, ranging from 
structured to semi-structured or even un-struc-
tured. Most of these formats require the ability to 
rapidly change the underlying database structure 
and fit poorly with the conventional relational 
database systems.

The non-relational., schema-less, analytic-
oriented, NoSQL databases have been growing 
in use, as a solution to deal with the organization 
and management issues of Big Data. NoSQL origi-
nally means databases that provide no support for 
Structured Query Language (SQL) to manipulate 
data while now NoSQL databases are designed to 
achieve better horizontal scalabilities and avail-
abilities by compromising the consistencies and 
complexities of an underlying database model, as 
shown in Figure 5.

Based on the CAP theorem, a distributed 
system cannot simultaneously guarantee consis-
tency, availability and partition tolerance. Tradi-
tional Relational Database Management Systems 
(RDBMS) focus on availability and consistency, 
providing reliable ACID (Atomicity, Consistency, 
Isolation and Durability) properties for transac-
tions. However, when the system scales, it is 
difficult for a relational database system to be 
efficiently partitioned to large number of nodes, 
especially when the underlying data model is 
sophisticated. For the case of Big Data, due to its 
large volume, tables will grow dramatically either 
in size or in quantity, slowing down the query 
operations dramatically, especially for join op-

erations on multiple tables. Also, an RDBMS uses 
fixed database schema, which is perfect for mod-
eling conventional data. However in the case of 
Big Data, highly various data requires a flexible 
data schema or even an unknown schema that is 
only known by analyzing the data. This requires 
the proper storage data in the first place, causing 
a dilemma, not to mention the data that has no 
schema at all. Thus, the need to analyze unstruc-
tured data such as documents and log files, as 
well as semi-structured data such as history forms, 
cannot be satisfied by RDBMS.

To adapt traditional database systems to the 
modern cloud computing architecture, conven-
tional RDBMSs are engineered to eliminate the 
rule of prioritization by surrendering the strong 
consistency guarantees to gain significant scal-
ability advantages. These re-engineered databases 
are able to fully utilize cloud computing resources. 
Also, to achieve higher performance and flexibil-
ity, underlying data models are greatly simplified 
to be schema-less. Several NoSQL databases 
have been developed and optimized for different 
data models including column-based, key-value, 
and document and graph. They provide much 
greater flexibility in representing and organizing 

Figure 5. Illustration of RDBMS and NoSQL 
within the CAP theorem
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data. The development of wide-column-based 
Google BigTable is aimed addressing these issues 
(Chang et al., 2008). BigTable appears as a sparse, 
distributed, persistent multidimensional sorted 
map (Chang et al., 2008) which provides high 
availability and scalability for storing structured 
data. Three-dimensional tables (Row, Column, 
and Timestamp) are optimized for GFS by being 
split into multiple tablets which can be accessed 
by special metadata tablets organized in a two-
level hierarchy. Google BigTable now supports a 
number of Google applications and continuously 
evolving.

Google BigTable’s open-source counter-
part, HBase, released as a part of the Hadoop 
framework, has become one of the most popular 
NoSQL databases used to process and ana-
lyze Big Data (HBase, n.d.). Another popular 
open-source column-based NoSQL database is 
Apache Cassandra (Lakshman & Malik, 2010). 
First released by Facebook, Cassandra squashes 
the master-node-oriented design which makes 
HBase operationally inflexible. This makes 
Cassandra immune to single-point failures and 
enables it to provide higher availability and 
higher performance. Tunable consistency is also 
supported in Cassandra to provide operational 
flexibility.

In addition to column-oriented Google Big-
Table, HBase and Cassandra, there are also vari-
ous NoSQL databases optimized for different data 
models. For example, MongoDB (Plugge E., et 
al., 2010) is designed for document storage while 
DynamoDB (DeCandia, 2007) and Voldemort 
(Sumbaly, 2012) are Key-Value oriented. Since 
the data that NoSQL databases are operating on 
being so divergent, there is no single universal 
NoSQL database that meets every requirement 
which necessitates the use of multiple databases 
in many cases. On the other hand, using multiple 
databases increases the cost of database main-
tenance. Therefore, a current trend for NoSQL 
database management system development is the 
middleware for integration of multiple hybrid 

back-end database engines, where various data 
can be automatically identified and stored in the 
proper database.

Although original NoSQL designers delib-
erately provided no consistent support, the lack 
of the ability to perform global ACID transac-
tions has become one of the major drawbacks of 
NoSQL databases. Some early NoSQL databases 
provide no consistency guarantees, leaving the 
job to the programmers, where the conventional 
relational databases have significant advantages 
to ease program development. Early version 
of Google BigTable only provided single-row 
transactions. Some modern NoSQL designs 
such as DynamoDB enforce somehow stronger 
constraints on consistency called Eventual Con-
sistency, which means that, if no new updates 
are made on a given item, eventually all accesses 
to that item will return the last updated value 
however any value can be returned before the 
system finally converges. In 2011, Megastore 
system with strong consistency guarantees was 
released by Google (Yushprakh et al., 2011), 
which is a schema-oriented database that sup-
ports ACID property and transactions. In 2012, 
Google released its globally-distributed and 
synchronously-replicated database system – 
Spanner (Corbett et al., 2012). Paxos protocol 
(Lamport, 2001), two-phase commit protocol and 
hardware-assisted time synchronization using 
GPS clocks and atomic clocks is used to enforce 
global consistency across multiple data centers. 
Although the achievement of global consistency 
for Spanner seems to be conflicting with the 
CAP theorem, a careful review of CAP theorem 
shows that the “2 of 3” formulation is mislead-
ing. Designs that require perfect availability 
and consistency in the presence of partitions are 
prohibited while we can compromise the perfect 
availability to achieve a global consistent system 
with high availability and partition tolerances, 
which indicates the trend for future development 
of NoSQL databases.
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Analytics

The value of Big Data can only be extracted by data 
analytics. Although many different data analytics 
algorithms and techniques including statistical 
analysis, data mining, and machine learning can be 
performed on Big Data, they all rely on extremely 
intensive computations. The way to organize the 
parallel and distributed computations efficiently 
is the key to extract the value of Big Data.

Since a large volume of data is stored in a 
distributed environment, traditional distributed 
computation paradigms and techniques like MPI, 
which typically bring the data to the code, will 
saturate the network bandwidth when feeding the 
data to the node before the actual computation can 
start, rendering the processing of large datasets 
infeasible. Additionally, the programmability for 
traditional paradigms in a massively distributed 
environment is significantly downgraded because 
of the complex computation management, coor-
dination, synchronization, failure detection, and 
recovery. To address these issues, new paradigms 
and techniques like the MapReduce programming 
model are necessary. These techniques have rack-
awareness in order to process the data in place and 
manage computation and handle faults automati-
cally in order to simplify programming.

MapReduce paradigm was developed by 
Google to process large datasets stored in the dis-
tributed GFS systems (Dean & Ghemawat, 2008). 
Taking advantage of the distributed architecture, 
MapReduce pushes the computation to the node 
where the data resides, greatly reducing the amount 
of communications caused by data transfers. The 
computation is divided into two steps: Map and 
Reduce. Programmers only need to define these 
two functions and the framework will take care 
of all the rest of the entire computation, which 
significantly reduces the burden on the program-
mer and improves the robustness of the system. 
The open-source implementation of MapReduce 
model is the Hadoop framework released by Ya-
hoo. (White, 2009)

MapReduce model and Hadoop framework 
are originally designed to be an offline system 
to support batch MapReduce applications where 
scalability and streaming performance are most 
critical. The Hadoop framework needs to be 
tuned to meet the real-time processing demands 
of OLTP (On-Line Transaction Processing) and 
OLAP (On-Line Analytical Processing), which 
have low-latency requirements, while the amount 
data involved in the processing is enormous. This 
is achieved by pipelining the Map and Reduce 
phases, where the Reduce phase does not wait until 
the Map phase finishes. The data are processed 
in a multiple stage pipeline. However, the system 
can be effectively optimized if more data is ac-
cumulated which contradicts with the low-latency 
requirement. To deal with this tradeoff, an adaptive 
flow control mechanism was introduced (Condie 
et al., 2010) together with incremental process-
ing for reducers. In 2011, Facebook released its 
commercialized real-time Hadoop implementation 
to handle Facebook Messages (Borthakur et al., 
2011), where HDFS and HBase are optimized for 
real-time transactions.

The use of input files and schema-less features 
of the MapReduce model prevent performance 
improvements available in common database 
systems by sing B-trees and hash partitioning (Ma-
pReduce, n.d.). This fact leads to research projects 
like Apache Hive and Pig for addressing some of 
these issues. Apache Hive is a data warehousing 
system used by Hadoop for querying and analy-
sis of large data sets (Tulsa et al., 2009), where 
a SQL-like Hive Querying Language (HiveQL) 
is used to express the queries and compiled into 
a set of MapReduce jobs to be executed with 
Hadoop framework, making data manipulations 
much easier by squashing all of the complex and 
hard-to-reuse map and reduce functions. Data 
in the Hive is organized in a relational fashion 
and represented as tables, partitions and buckets 
which facilitate efficient data retrieval and vari-
ous optimizations are built into Hive drivers and 
HiveQL compilers to provide better performance. 
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Another similar querying project is Apache Pig. 
Using a similar idea to Hive, Pig provides a very 
simplistic scripting language called Pig Latin for 
data querying. The entire software stack is shown 
in Figure 6.

ACCESSING BIG DATA THROUGH 
MOBILE DEVICES

When accessing Big Data in the cloud through 
mobile devices, mobile-cloud computing becomes 
the key enabling technology in this process. With 
the explosion of mobile applications and the sup-
port of cloud computing for a variety of services 
for mobile users, mobile-cloud computing is intro-
duced and intensively investigated as an integration 
of cloud computing into the mobile environment 
(Soyata, T., et al., 2012a; Satyanarayanan et al., 
2009; Soyata et al., 2012b; Fernando et al., 2013; 
Cuervo et al., 2010; Chun et al., 2011; Chen et al., 
2012; Verbelen et al., 2012; Soyata et al., 2013; 
Shi et al., 2012; Dinh et al., 2012; Kocabas et 
al., 2013; Guo et al., 2010; Fahad et al., 2012). 
Mobile-cloud computing facilities for mobile us-
ers to take full advantage of cloud computing and 
enables access to Big Data anywhere at any time.

In the past decade, mobile devices became 
increasingly more powerful to handle most of 
the daily operations but not powerful enough for 
data-intensive computations, such as querying and 

analyzing the Big Data. However, considering the 
enormous amount of mobile devices and rapid 
development of wireless networks, a loosely or-
ganized cluster of mobile devices can be powerful 
enough to collectively handle heavy computations 
together with the cloud, forming an integrated 
computing system, while maintaining the energy 
efficiency. To achieve such interaction and coop-
eration among a mobile device and multiple cloud 
servers, significant research has been conducted 
on techniques such as Computation Offloading 
and Mobile Cloud Platform. These techniques 
will be explained in the following sections.

Computation Offloading

Offloading is a solution to alleviate resource limi-
tations on mobile devices and provide improved 
capabilities for these devices by migrating partial 
or full computations (code, status and data) to 
more resourceful computers (Kumar et al., 2013). 
The rapid development of wireless network con-
nectivity and mobile devices in recent years has 
enabled the feasibility of computation offloading. 
Recent research efforts on computation offloading 
focuses on the following aspects.

• What to offload. The entire program can-
not be offloaded for remote execution. 
Before offloading, the program needs to be 
partitioned a) manually by the program-

Figure 6. Building blocks for storing and processing Big Data in the cloud
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mer or b) automatically by the compiler, 
or c) at runtime. Manual partitioning will 
put the burden on the programmer, but 
will potentially lower the computational 
overhead. On the contrary, the automated 
partitioning can perform offloading on an 
unmodified program, albeit, at the expense 
of higher overhead. Different strategies 
like code tagging and dynamical predic-
tion based on profiling can be applied to 
increase the performance.

• When to offload. Applications may have 
different requirements on performance and 
mobile devices may have different capa-
bilities and energy concerns. Offloading 
decisions need to be made based on dif-
ferent target goals, such as a) improving 
performance and/or b) saving energy, or, 
c) reducing the network overhead. These 
decisions can be made by statically and/or 
dynamically via profiling, which has a non-
negligible impact on execution overhead.

• How to offload. The development of virtu-
alization and the emerging cloud comput-
ing technologies provides a powerful, flex-
ible, manageable and secure platform for 
offloading, attracting significant research 
interest on VM (Virtual Machine)-based 
offloading approaches. The granularity 
ranges from a) OS-level to b) application/
thread-level to c) method-level.

Three computation offloading systems with 
different design focuses – Kimberley, CloneCloud 
and MAUI are briefly introduced below.

OS-Level Offloading

To achieve the goal of both high performance 
and manageability, the VM-based Kimberley 
architecture was proposed (Satyanarayanan et 
al., 2009). A cloudlet, defined as a self-managed 
datacenter in a box, was introduced in Kimberley. 
The cloudlet is able to support few users at a time 

and maintains only soft state: hence the loss of 
connection is acceptable.

When a mobile client connects to the cloudlet, 
it notifies the Kimberley Control Manager (KCM) 
on the cloudlet to download a small VM overlay, 
which is generated by comparing the target cus-
tomized VM image to the base VM, from either 
the Internet or the mobile client. When the VM 
overlay is delivered, a technique called dynamic 
VM synthesis creates and launches the target VM. 
After the computation is done, the KCM can 
simply shutdown the VM and free the resources, 
providing self-manageability that only needs 
minimal maintenance.

The Kimberly system was implemented on a 
Nokia N810 tablet running Maemo 4.0, and the 
cloudlet infrastructure was implemented on a 
desktop computer running Ubuntu Linux where 
VirtualBox was used to provide the VM support. 
System performance was evaluated by consider-
ing the size of VM overlays and the speed of the 
synthesis operation. The size of generated VM 
overlay is around 100-200 MB for a collection of 
Linux applications, an order of magnitude smaller 
than a full VM image which can be as large as 
8 GB. The processing time for VM synthesis 
ranged from 60 to 90 seconds and has plenty of 
potential room for improvements through further 
optimizations like parallelized compression and 
decompression and VM overlay prefetching.

The strengths of Kimberley are the self-man-
ageability of the cloudlet and high flexibility for 
programmers to configure the code on the cloudlet 
since they have full control of the OS on isolated 
VMs. The weakness of the Kimberley design 
are: a) the programmer needs to decide what to 
offload and manually partition the program and 
b) the huge initialization overhead.

Thread-Level Offloading

In order to free the programmer from manual 
program partitioning for offloading, Chun et al. 
proposed the CloneCloud system, allowing the un-
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modified program to be accelerated by offloading 
a portion of the execution at the thread granularity 
(Chun et al., 2011). To achieve this, they modified 
the Dalvik VM. The modified runtime rewrites 
the executable of the user’s program by inserting 
migration points via statistical analysis. When the 
program is running, individual threads migrate at 
these pre-determined migration points, from the 
mobile device to a device clone in the cloud, and the 
User Interface (UI) or other essential components 
continue execution on the mobile but are blocked 
if accessing the status of the migrated threads. A 
dynamic profiler is used to model the execution, 
migration and energy cost of each method on the 
mobile device, and an optimization solver is used 
to decide the migration points based on given 
optimization objectives.

An Android-based CloneCloud system pro-
totype was implemented on an HTC G1 mobile 
phone and a server running the Android x86 
virtual machine via VMware ESX 4.1, where the 
mobile clones are running. Three applications 
were tested on the CloneCloud prototype: a) a 
virus scanner, b) image search, and c) privacy 
preserving targeted advertising. The results show 
that for these tested applications, when connecting 
to the CloneCloud via Wi-Fi, the execution time is 
shortened by 2.1x-20x and the energy consump-
tion is reduced by 1.7x-20x. When connecting 
to the CloneCloud via 3G, the execution time is 
shortened by 1.2x-16x and the energy consump-
tion is reduced by 0.8x-14x.

The strength of the CloneCloud system is that 
it achieves distributed execution without manually 
modifying the source code, taking the program 
partitioning burden off the programmer. The 
weakness of CloneCloud is that, for complex ap-
plications, the overhead to transfer the state (heap 
and stack) may counterweigh the performance 
gain and energy savings of offloading. Further-
more, the security issues are not considered in the 
CloneCloud system.

Method-Level Offloading

Motivated by the fact that the energy consumption 
will remain the primary bottleneck for handheld 
mobile devices, MAUI (Mobile Assistance Using 
Infrastructure) was proposed to address this issue 
by minimizing energy consumption through com-
putation offloading (Cuervo et al., 2010). Cuervo 
et al. observed that, the completely automated 
program partitioning and coarse-grained offload-
ing will increase the overhead, thereby consuming 
more energy. To decrease the overhead while 
minimizing the burden on the programmer, they 
use a more fine-grained method-level offloading 
and the target method is identified by program-
mers’ annotations in the source code.

MAUI is built on the Microsoft .NET Common 
Language Runtime (CLR) for code portability. 
The programmer decides which methods may be 
offloaded and annotates them with tags. These 
methods, along with the necessary program state, 
are extracted using reflection and type-safety. The 
MAUI profiler profiles each method and uses 
serialization to determine the offloading costs. 
Combining measurements of processing and 
transferring, a MAUI solver decides whether the 
method is worth offloading based on the solution 
to an Integer Linear Programming (ILP) formu-
lation. MAUI generates two proxies on both the 
mobile device and the server that handle control 
and data transfer. The MAUI coordinator on the 
server side handles the authentications, resource 
allocations and executions.

The mobile part of MAUI was implemented 
on an HTC Fuze mobile phone running Windows 
Mobile 6.5 with the .NET Compact Framework 
v3.5, and the MAUI server was implemented 
on a desktop running Windows 7 with the .NET 
Framework v3.5. The main results measure the 
energy consumption and the execution time for 
three applications: a) face recognition, b) 400 
frames of a video game, and c) 30 moves in a chess 
game. The results show that using remote execu-
tion on MAUI saves 5x-12x energy compared to 
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the mobile-phone-only case. Also, MAUI reduces 
the execution time by more than a factor of 6.

Mobile Cloud Platform

A Cloud is usually considered to be a collection 
of powerful servers, potentially located at diverse 
geographical locations. However, with the in-
creasing processing capability of mobile devices, 
a collection of mobile devices connected via a 
local ad-hoc network can now provide a power-
ful enough computational environment to serve 
as a Mobile Cloud. Recently, this mobile cloud 
concept has been investigated as a powerful and 
more importantly, an energy-efficient platform to 
support massively parallelizable applications. The 
potential for integrating a mobile cloud platform 
with the existing cloud computing architecture to 
form a hybrid system for Big Data has also been 
the focus of significant recent research. Examples 
of using mobile devices as a cloud of computing 
resources are a) Hyrax, b) NativeBOINC and c)
GEMCloud and will be described below.

Hyrax

Apache Hadoop (White, 2009) is an open-source 
implementation of the MapReduce programming 
model. It is originally designed to run on power-
ful server clusters. To utilize mobile devices as 
computation units, Marinelli ported Hadoop to the 
Android platform and proposed the Hyrax system 
(Marinelli E., 2009). Hyrax enables computation 
jobs to be executed on distributed mobile devices 
connected by a wireless network.

A distributed multimedia search and sharing 
application were implemented on Hyrax. Ex-
periments show that Hyrax can easily scale up 
to 10 HTC G1 and 5 HTC Magic mobile phones 
running Android 1.5 in terms of execution time 
and resource usage. The energy efficiency of 
Hyrax was shown to be significantly higher than 
traditional server clusters. However, the perfor-
mance of Hyrax was poor compared to Hadoop 

on traditional servers. This is due not only to the 
computational capabilities and WiFi connection 
speed of the devices being low (ARM11 CPU 
@ 528MHz and 802.11g wireless router with a 
54 Mbps bandwidth), but also because Hadoop 
was not originally designed (nor optimized) for 
mobile devices, causing unacceptable overhead 
within the system.

NativeBOINC

The NativeBOINC is an Android implementation 
of the BOINC (Berkeley Open Infrastructure for 
Network Computing) (Anderson, 2004) which 
is an open-source volunteer computing software 
utilizing crowd-sourcing for scientific computing. 
NativeBOINC for Android allows mobile device 
users to choose projects, start and stop them 
on demand, contributing their free computing 
power. Experiments show that (Eastlack, 2011) 
the ARM-based mobile processors have energy 
efficiency advantages over the traditional Intel 
desktop processors.

GEMCloud

GEMCloud (Green Energy Mobile Cloud) is 
another example of using mobile devices to cre-
ate an ad hoc cloud of computing resources (Ba, 
2013). By utilizing distributed mobile devices 
to cooperatively accomplish large parallelizable 
computational tasks, the author envisions that such 
approaches can make use of the massive amount of 
idle computing power that is potentially available 
to the public. More importantly, the authors show 
that a mobile computing system like GEMCloud 
has significant advantages in energy efficiency 
over traditional desktop cloud servers when the 
overall system is considered, rather than each 
individual computational device.
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USING A CLOUDLET AS 
AN ACCELERATOR

Although mobile devices have been improved 
dramatically over the past few years, they are still 
relatively limited in processing speed, memory, 
storage, battery life, and network bandwidth. For 
latency-sensitive and compute-intensive applica-
tions, it is important to reduce the application 
response time to provide the best user experience. 
Because of the inconsistent network conditions 
over the Internet and the possible unavailability 
of cloud servers, a cloudlet can be introduced to 
provide local computing power and storage and 
the intelligence for task management (Wang, 2013; 
Soyata et al., 2012b; Soyata et al., 2012c). Figure 
7 shows an example of a mobile-cloud architecture 
that utilizes a cloudlet as a local edge server that 
can communicate with the mobile over a local 
area network (LAN).

A cloudlet is able to accelerate both Big Data 
collection and Big Data access. As previously 
mentioned, Internet of Things, a major source for 
Big Data analytics in the near future, will provide 
continuous data streams from wireless sensor 
networks and periodical data from RFID readers. 
Due to the power and computational limitations 
of mobile devices and the large amount of data 
they need to transfer, an intermediate node like a 
cloudlet, which has a power supply, high compu-
tational capability, ample storage capability, and 
a direct Internet connection, is necessary for ef-
ficient data acquisition. The cloudlet collects and 
buffers the data from multiple sensors, organizes 
and preprocesses the data and sends the prepro-
cessed data to the cloud for further analysis, re-
ducing the energy consumption and design 
complexity of the sensors and improving the 
overall efficiency, especially under situations like 
unstable Internet connections and cloud server 
failures. For Big Data access, a cloudlet may serve 
as a local gateway for users, buffering, aggregat-
ing and scheduling query requests and processing 
and presenting the result from the cloud servers 

and therefore providing higher throughput, better 
efficiency and user experience. Here in this chap-
ter, we will be focusing on the ways a cloudlet 
can help to reduce application response time and 
study them in detail.

We define a cloudlet as follows:

• A resourceful device which has a 10x or 
more performance advantage over mobile 
devices. It has a relatively powerful CPU 
and/or GPU and a large internal storage. It 
can support requests from tens of mobile 
clients and respond them fast enough, so 
that the responses are available to the mo-
bile devices when they need it.

• A nearby device that communicates with 
mobile devices via single-hop high-speed 
connections such as Wi-Fi. Since a large 
amount of data needs to be transferred 
between mobile devices and the cloudlet, 
low-speed multi-hop connections via the 
WAN will counterweigh the performance 
gains from single-hop fast connections.

• A dedicated device for serving a target ap-
plication which does not share its resourc-
es with other applications. It is equipped 
with a power supply, and is always ON. 
Therefore, it is capable of serving requests 
from mobile devices at any time.

Though similar devices have been proposed in 
other papers (Satyanarayanan, 2009), (Verbelen, 
2012), the capability of a cloudlet to accelerate 
mobile-cloud computing is still unclear. Follow-
ing are the three ways a cloudlet can reduce the 
application response time of a target application:

• Preprocessing.
• Caching.
• Scheduling.

These three approaches will be described in 
detail in the rest of this chapter.
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Preprocessing

To offload the computation to the cloud, mobile 
devices usually have to transmit a large amount 
of raw data over the Internet, which will dramati-
cally degrade the application response time when 
real-time responses are desired. The cloudlet can 
use its higher computational capability to perform 
preprocessing to reduce the size of data that must 
be transmitted to the cloud via the Internet, thereby 
improving the response time. Preprocessing, from 
simple compression to highly sophisticated opera-
tions, can be done on the raw data to reduce its 
size. However, due to the limited computational 
power and battery life on the mobile devices, pre-
processing is not a suitable candidate to perform 
on mobile devices. The additional computation 

latency may counterweigh the benefits, or even 
make the overall latency worse.

As shown in Figure 8, by adding a cloudlet, 
mobile devices now can offload the preprocess-
ing tasks to the cloudlet via the high-speed Wi-Fi 
connection. The cloudlet is able to significantly 
accelerate the preprocessing with its powerful 
processor and send the preprocessed intermediate 
result to the cloud servers. This reduces the latency 
component due to the Internet data transfer time, 
thereby significantly improving the application 
response time.

Caching

The cloudlet can utilize its large internal storage to 
cache a portion of the big data database from the 
cloud so that appropriate data can be delivered over 

Figure 8. Illustration of preprocessing on the cloudlet

Figure 7. Acceleration by utilizing the cloudlet as a computation and communication buffer
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the local network to the mobile device when the 
application needs this data as shown in Figure 9.

Most of the target applications are location-
related and the cloudlet is designed to serve 
mobile devices through the local area network. 
Therefore, it is possible to use a cloudlet to enable 
fast data sharing and collaboration within nearby 
mobile devices. For example, if multiple mobile 
devices at nearby locations are performing face 
recognition, it is highly possible that the recog-
nized face on one mobile device will be captured 
by another nearby device. Instead of sending re-
dundant recognition requests to the cloud servers, 
with the presence of a cloudlet, the recognized 
result can be cached in the cloudlet and provided 
through the local network when requests from 
others match or hit the result. Without routing 
requests to the cloud, the high latency over the 
Internet can be eliminated and the workload on 
the cloud servers can be significantly filtered, 
providing the potential for the cloud servers to 
serve more mobile devices simultaneously.

Scheduling

The cloudlet has the ability to schedule multiple 
cloud servers and serve multiple mobile devices. 
The cloudlet can provide profiling of all the avail-
able resources to perform intelligent task distribu-
tion and optimize the overall performance to ensure 
a Quality of Service (QoS) goal. Sophisticated 
combinatorial optimization algorithms that model 

the cloud-to-cloudlet delays as a set of graph edges/
vertices can be used for scheduling (Soyata & 
Friedman, 1997; Soyata & Friedman, 1999; Soyata 
& Friedman, 1994a; Soyata & Friedman, 1994b; 
Soyata et al., 1993; Soyata et al., 1995; Soyata 
et al., 2012c). A set of integer linear inequalities 
can be solved for optimum scheduling when local 
computational resources are available that permit 
the solution of computationally-intensive Integer-
Linear Programming (ILP) algorithms.

In the traditional mobile-cloud computing 
architecture, when mobile devices offload com-
putation to the cloud, there are usually multiple 
available cloud servers with different network 
and loading conditions. Instead of choosing a 
fixed server or choosing the server randomly, the 
mobile device should choose a server that can 
offer the lowest possible latency for the offload-
ing task. The cloudlet can provide the status of 
each cloud to the mobile devices by continuous 
profiling, thereby allowing the mobile devices to 
choose the best possible path for computation/
communication. This helps increase the battery 
life on mobile devices by eliminating redundant 
requests and network congestions when there 
are multiple mobile devices. Additionally, since 
there is no coordination between mobile devices, 
it is possible that several mobile devices all route 
their requests to one single server but leave other 
servers idle. This underutilization of the cloud 
server resources will result in poor performance 
and can be eliminated when a cloudlet is utilized.

Figure 9. Illustration of caching data and computation on the cloudlet
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With the presence of a cloudlet, multiple mobile 
devices can share the profiling results provided 
by the cloudlet, reducing the profiling requests 
to the cloud servers and energy consumption on 
the mobile devices. Besides, as a coordinator, 
the cloudlet is aware of multiple mobile devices 
and cloud servers, based on their individual QoS 
requirements, several scheduling strategies can 
be applied by the cloudlet to increase the overall 
throughout and reduce the latency of a single task.

Fairness-Based Scheduling to 
Maximize the Throughput

For a given tolerable latency, the throughput can 
be maximized by scheduling tasks fairly to each 
cloud server according to their processing speed, 
current workload and network latency so that as 
many tasks as possible can be performed within 
their tolerable latency limits. A Greedy algorithm 

is used to decide which server should the task be 
scheduled for. Cloud servers with high process-
ing speed, low current workload and high speed 
network connectivity should process more. In 
addition to this server-side fairness, the cloudlet 
can schedule the tasks in such a way that the client-
side fairness can be achieved to avoid starvation 
of any one mobile decide. Prioritized scheduling 
can also be applied to serve important mobile 
clients first. The process is shown in Figure 10.

Parallelization and Redundant 
Scheduling to Minimize Latency

Assuming that a given task is parallelizable, the 
cloudlet can schedule the task to multiple cloud 
servers to reduce the processing and transmission 
latency. Considering the instability of the network 
and the servers’ workload conditions, the gain 
from this parallelization may be reduced by the 

Figure 10. Illustration of fairness and greedy scheduling

Figure 11. Illustration of parallelization and redundant scheduling on the cloudlet
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laggard. To alleviate the effect of such instabilities, 
redundant tasks can be scheduled to multiple serv-
ers (Vulimiri et al., 2012). The task is considered 
done when the first result comes back and other 
redundant tasks will be either ignored or aborted. 
The process is shown in Figure 11.

SUMMARY

This chapter presents a complete lifecycle for Big 
Data – a) generation, b) storage and processing 
and c) access. For the generation phase, we pro-
vided the vision of Internet of Things as a major 
data source in the near future. Enabling technolo-
gies including RFID, WSN and middleware are 
introduced together with their open issues and 
future directions. For the storage and processing 
phase, we provided an overview of the challenges 
brought by Big Data. State-of-the-art solutions 
in Big Data storage, management and analytics 
are introduced at a high level. Key issues for 
distributed systems: scalability, availability and 
consistency are discussed in the context of Big 
Data and cloud computing. For the Big Data access 
phase, mobile-cloud computing is described with 
an emphasis on computation offloading techniques 
and mobile cloud platforms. An intermediate node 
called cloudlet is proposed to accelerate the ac-
cess to Big Data. Three ways that a cloudlet can 
help are discussed.
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KEY TERMS AND DEFINITIONS

Cloudlet: The intermediate device between 
mobile devices and cloud to accelerate mobile-
cloud computing.

Hadoop: An open-source Java implementation 
of Google’s MapReduce model that supports big 
data applications in the cloud.

Internet of Things: The pervasive varieties 
of objects that can interact with each other and 
cooperate to reach a common goal over the Inter-
net by using globally unique Internet addresses.

MapReduce: A programming model consist-
ing of two logical steps—Map and Reduce—for 
processing massively parallelizable problems 
across extremely large datasets using a large cluster 
of commodity computers.

Mobile Application: A software application 
designed to run on mobile devices (e.g., smart-
phone, tablet).

Mobile-Cloud Computing: Executing a 
mobile application using the cloud resources to 
achieve a higher performance metric than what 
can be achieved with mobile computing alone 
(e.g., application response time).

Processing Power: Data manipulation speed of 
a computational platform (e.g., in TFLOPS—Tera 
Floating Point Operations Per Second).


