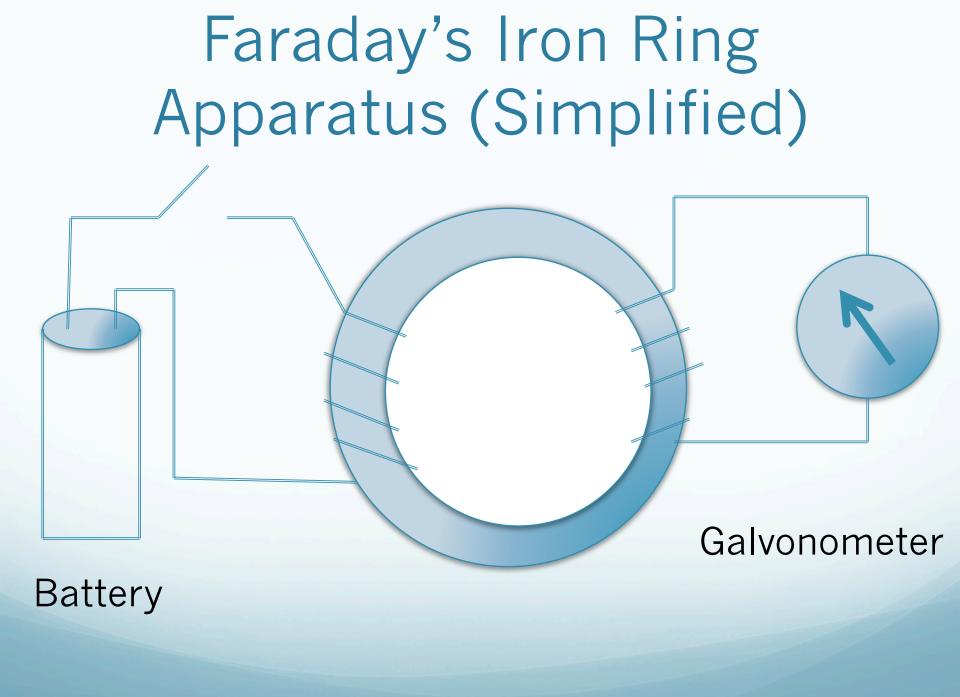
## Faraday's Law: An Application of the Derivative


Scott Starks, PhD, PE Professor of Electrical and Computer Engineering UTEP

### Introduction

- Faraday's law of induction is a basic law of electromagnetism predicting how a magnetic field will interact with an electric current to produce an electromotive force (EMF) – a phenomenon called electromagnetic induction.
- It is a fundamental operating principle of transformers, inductors and many types of electric motors, generators and solenoids.

# Faraday's Experiment

- Electromagnetic induction was discovered independently by <u>Michael Faraday</u> and <u>Joseph Henry</u> in 1831; however, Faraday was the first to publish the results of his experiments.<sup>[4][5]</sup>
- In Faraday's first experimental demonstration of electromagnetic induction (August 29, 1831<sup>[6]</sup>), he wrapped two wires around opposite sides of an iron ring or "torus" (an arrangement similar to a modern toroidal transformer).
- Based on his assessment of recently discovered properties of electromagnets, he expected that when current started to flow in one wire, a sort of wave would travel through the ring and cause some electrical effect on the opposite side.



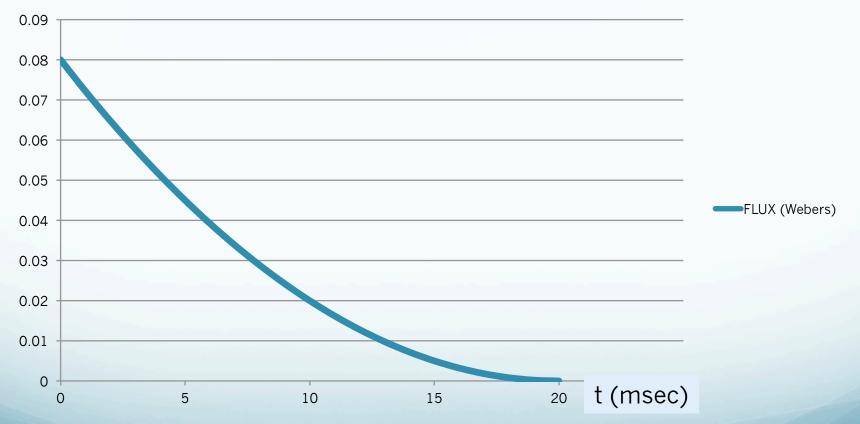
# Faraday's Observation

- He plugged one wire into a <u>galvanometer</u>, and watched it as he connected the other wire to a battery.
- Indeed, he saw a transient current (which he called a "wave of electricity") when he connected the wire to the battery, and another when he disconnected it.<sup>[7]</sup>
- This induction was due to the change in <u>magnetic flux</u> that occurred when the battery was connected and disconnected.<sup>[3]</sup>

# Mathematical Relationship between Flux and EMF

- The Electromagnetic Force (E) is equal to the negative of the rate of change of the magnetic flux (Φ) with respect to time
- $E = -d \Phi/dt$




• Suppose that we take measurements of the Electromotive Force and the Magnetic Flux and store the values in a table.

#### Table of Values

| t (msec) | FLUX (Webers) |  |
|----------|---------------|--|
| 0        | 0.08          |  |
| 1        | 0.0722        |  |
| 2        | 0.0648        |  |
| 3        | 0.0578        |  |
| 4        | 0.0512        |  |
| 5        | 0.045         |  |
| 6        | 0.0392        |  |
| 7        | 0.0338        |  |
| 8        | 0.0288        |  |
| 9        | 0.0242        |  |
| 10       | 0.02          |  |
| 11       | 0.0162        |  |
| 12       | 0.0128        |  |
| 13       | 0.0098        |  |
| 14       | 0.0072        |  |
| 15       | 0.005         |  |
| 16       | 0.0032        |  |
| 17       | 0.0018        |  |
| 18       | 0.0008        |  |
| 19       | 0.0002        |  |
| 20       | 0             |  |

#### Plot of the Data

#### FLUX (Webers)

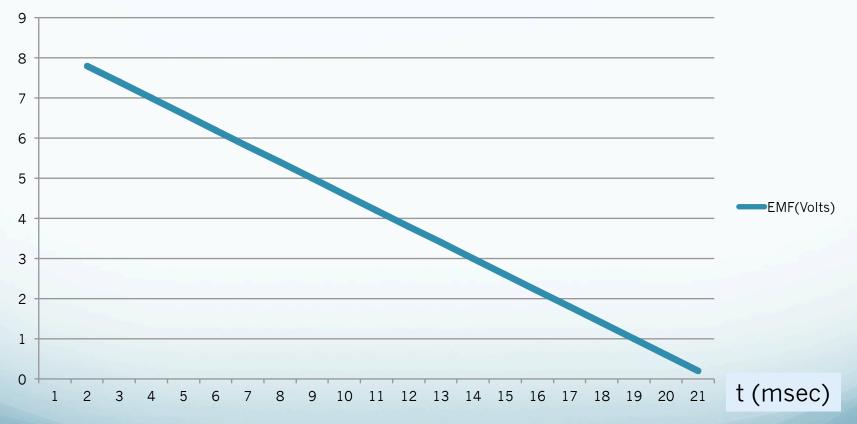


# Calculate the Electromotive Force

- We can use the derivative to calculate the electromotive force.
- A formula relates the Electromotive Force to the derivative of the Magnetic Flux

 $E = -d \Phi/dt$ 

# **Numerical Approximation**


• We can determine an approximation for the Electromotive Force by using an approximation for the derivative.

#### **Calculation Results**

| t (msec) | FLUX (Webers) | EMF(Volts) |
|----------|---------------|------------|
| 0        | 0.08          | -          |
| 1        | 0.0722        | 7.8        |
| 2        | 0.0648        | 7.4        |
| 3        | 0.0578        | 7          |
| 4        | 0.0512        | 6.6        |
| 5        | 0.045         | 6.2        |
| 6        | 0.0392        | 5.8        |
| 7        | 0.0338        | 5.4        |
| 8        | 0.0288        | 5          |
| 9        | 0.0242        | 4.6        |
| 10       | 0.02          | 4.2        |
| 11       | 0.0162        | 3.8        |
| 12       | 0.0128        | 3.4        |
| 13       | 0.0098        | 3          |
| 14       | 0.0072        | 2.6        |
| 15       | 0.005         | 2.2        |
| 16       | 0.0032        | 1.8        |
| 17       | 0.0018        | 1.4        |
| 18       | 0.0008        | 1          |
| 19       | 0.0002        | 0.6        |
| 20       | 0             | 0.2        |

#### Plot of Electromotive Force

EMF(Volts)

