
Trinity University
Digital Commons @ Trinity

Mathematics Faculty Research Mathematics Department

2005

A Tutorial on Radiation Oncology and
Optimization
Allen G. Holder
Trinity University, aholder@trinity.edu

Bill Salter

Follow this and additional works at: http://digitalcommons.trinity.edu/math_faculty

Part of the Mathematics Commons

This Post-Print is brought to you for free and open access by the Mathematics Department at Digital Commons @ Trinity. It has been accepted for
inclusion in Mathematics Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact
jcostanz@trinity.edu.

Repository Citation
Holder, A., & Salter, B. (2005). A tutorial on radiation oncology and optimization. In H. J. Greenberg (Ed.), International Series in
Operations Research & Management Science: Vol. 76. Tutorials on emerging methodologies and applications in operations research (pp.
4-1-4-45). doi: 10.1007/0-387-22827-6_4

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/math_faculty?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/math?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/math_faculty?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


Chapter 4
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Abstract Designing radiotherapy treatments is a complicated and important task that af-
fects patient care, and modern delivery systems enable a physician more flexi-
bility than can be considered. Consequently, treatment design is increasingly au-
tomated by techniques of optimization, and many of the advances in the design
process are accomplished by a collaboration among medical physicists, radia-
tion oncologists, and experts in optimization. This tutorial is meant to aid those
with a background in optimization in learning about treatment design. Besides
discussing several optimization models, we include a clinical perspective so that
readers understand the clinical issues that are often ignored in the optimization
literature. Moreover, we discuss many new challenges so that new researchers
can quickly begin to work on meaningful problems.

Keywords: Optimization, Radiation Oncology, Medical Physics, Operations Research

4.1 Introduction

The interaction between medical physics and operations research (OR) is an
important and burgeoning area of interdisciplinary work. The first optimization
model used to aid the design of radiotherapy treatments was a linear model in
1968 [1], and since this time medical physicists have recognized that optimiza-
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tion techniques can support their goal of improving patient care. However, OR
experts were not widely aware of these problems until the middle 1990s, and
the last decade has witnessed a substantial amount of work focused on medical
physics. In fact, three of the four papers receiving the Pierskalla prize from
2000 to 2003 address OR applications in medical physics [14, 25, 54].

The field of medical physics encompasses the areas of Imaging, Health
Physics, and Radiation Oncology. These overlapping specialties typically com-
bine when a patient is treated. For example, images of cancer patients are used
to design radiotherapy treatments, and these treatments are monitored to guar-
antee safety protocols. While optimization techniques are useful in all of these
areas, the bulk of the research is in the area of Radiation Oncology, and this is
our focus as well.

Specifically, we study the design and delivery of radiotherapy treatments.
Radiotherapy is the treatment of cancerous tissues with external beams of radi-
ation, and the goal of the design process is to find a treatment that destroys the
cancer but at the same time spares surrounding organs. Radiotherapy is based
on the fact that unlike healthy tissue, cancerous cells are incapable of repairing
themselves if they are damaged by radiation. So, the idea of treatment is to
deliver enough radiation to kill cancerous tissues but not enough to hinder the
survival of healthy cells.

Treatment design was, and to a large degree still is, accomplished through
a trial-and-error process that is guided by a physician. However, the current
technological capabilities of a clinic make it possible to deliver complicated
treatments, and to take advantage of modern capabilities, it is necessary to au-
tomate the design process. From a clinical perspective, the hope is to improve
treatments through OR techniques. The difficulty is that there are numerous
ways to improve a treatment, such as delivering more radiation to the tumor,
delivering less radiation to sensitive organs, or shortening treatment time. Each
of these improvements leads to a different optimization problem, and current
models typically address one of these aspects. However, each decision in the
design process affects the others, and the ultimate goal is to optimize the entire
process. This is a monumental task, one that is beyond the scope of current
optimization models and numerical techniques. Part of the problem is that
different treatment goals require different areas of expertise. To approach the
problem in its entirety requires a knowledge of modeling, solving, and ana-
lyzing both deterministic and stochastic linear, nonlinear, integer, and global
optimization problems. The good news for OR experts is that no matter what
niche one studies, there are related, important problems. Indeed, the field of
radiation oncology is a rich source of new OR problems that can parlay new
academic insights into improved patient care.

Our goals for this tutorial are threefold. First, we discuss the clinical aspects
of treatment design, as it is paramount to understand how clinics assess treat-
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ments. It is easy for OR experts to build and solve models that are perceived to
be clinically relevant, but as every OR expert knows, there are typically many
attempts before a useful model is built. The clinical discussions in this tutorial
will help new researchers avoid traditional academic pitfalls. Second, we dis-
cuss the array of optimization models and relate them to clinical techniques.
This will help OR experts identify where their strengths are of greatest value.
Third, the bibliography at the end of this tutorial highlights some of the latest
work in the optimization and medical literature. These citations will quickly
allow new researchers to become acquainted with the area.

4.2 Clinical Practice

As with most OR applications, knowledge about the restrictions of the other
discipline are paramount to success. This means that OR experts need to be-
come familiar with clinical practice, and while treatment facilities share many
characteristics, they vary widely in their treatment capabilities. This is because
there are differences in available technology, with treatment machines, soft-
ware, and imaging capabilities varying from clinic to clinic. A clinic’s staff is
trained on the clinic’s equipment and rarely has the chance to experiment with
alternate technology. There are many reasons for this: treatment machines and
software are extremely expensive (a typical linear accelerator costs more than
$1,000,000), time restrictions hinder exploration, etc.... A dialog with a clinic
is invaluable, and we urge interested readers to contact a local clinic.

We begin by presenting a brief overview of radiation therapy (RT) concepts,
with the hope of familiarizing the reader with some of the terminology used
in the field, and then describe a "typical" treatment scenario, beginning with
patient imaging and culminating with delivery of treatment.

4.2.1 Radiation Therapy Concepts and Terminology

Radiation therapy (RT) is the treatment of cancer and other diseases with
ionizing radiation; ionizing radiation that is sufficiently energetic to dislodge
electrons from their orbits and send them penetrating through tissue depositing
their energy. The energy deposited per unit mass of tissue is referred to as Ab-
sorbed Dose and is the source of the biological response exhibited by irradiated
tissues, be that lethal damage to a cancerous tumor or unwanted side effects of
a healthy tissue or organ. Units of absorbed dose are typically expressed as Gy
(pronounced Gray) or centiGray (cGy). One Gy is equal to one Joule (J) of
energy deposited in one kilogram (kg) of matter.

Cancer is, in simple terms, the conversion of a healthy functioning cell into
one that constantly divides, thus reproducing itself far beyond the normal needs
of the body. Whereas most healthy cells divide and grow until they encounter
another tissue or organ, thus respecting the boundaries of other tissues, cancer-
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ous cells continue to grow into and over other tissue boundaries. The use of
radiation to "treat" cancer can adopt one of two general approaches.

One delivery approach is used when healthy and cancerous cells are believed
to co-mingle, making it impossible to target the cancerous cells without also
treating the healthy cells. The approach adopted in such situations is called
fractionation, which means to deliver a large total dose to a region containing
the cancerous cells in smaller, daily fractions. A total dose of 60 Gy, for exam-
ple, might be delivered in 2 Gy daily fractions over 30 treatment days. Two Gy
represents a daily dose of radiation that is typically tolerated by healthy cells
but not by tumor cells. The difference between the tolerable dose of tumor and
healthy cells is often referred to as a therapeutic advantage, and radiotherapy
exploits the fact that tumor cells are so focused on reproducing that they lack
a well-functioning repair mechanism possessed by healthy cells. By break-
ing the total dose into smaller pieces, damage is done to tumor cells each day
(which they do not repair) and the damage that is done to the healthy cells is
tolerated, and in fact, repaired over the 24 hours before the next daily dose.
The approach can be thought of as bathing the region in a dose that tumor cells
will not likely survive but that healthy cells can tolerate.

The second philosophy that might be adopted for radiation treatment dosage
is that of RadioSurgery. Radiosurgical approaches are used when it is believed
that the cancer is in the form of a solid tumor which can be treated as a distinct
target, without the presence of healthy, co-mingling cells. In such approaches
it is believed that by destroying all cells within a physician-defined target area,
the tumor can be eliminated and the patient will benefit. The treatment ap-
proach utilized is that of delivering one fraction of dose (i.e. a single treatment)
which is extremely large compared to fractionated approaches. Typical radio-
surgical treatment doses might be 15 to 20 Gy in a single fraction. Such doses
are so large that all cells which might be present within the region treated to
this dose will be destroyed. The treatment approach derives its name from the
fact that such methods are considered to be the radiation equivalent to surgery,
in that the targeted region is completely destroyed, or ablated, as if the region
had been surgically removed.

The physical delivery of RT treatment can be broadly sub-categorized into
two general approaches: brachytherapy and external beam radiation therapy
(EBRT), each of which can be effectively used in the treatment of cancer.
Brachytherapy, which could be referred to as internal radiation therapy, in-
volves a minimally invasive surgical procedure wherein tiny radioactive "seeds"
are deposited, or implanted, in the tumor. The optimal arrangement of such
seeds, and the small, roughly spherical distribution of dose which surrounds
them, has been the topic of much optimization related research. External beam
radiation therapy involves the delivery of radiation to the tumor, or target, from
a source of radiation located outside of the patient; thus the external compo-
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Figure 4.1. A Linear Accelerator Figure 4.2. A Linear accelerator rotat-
ing through various angles. Note that the
treatment couch is rotated.

nent of the name. The radiation is typically delivered by a device known as
a linear accelerator, or linac. Such a device is shown in Figures 4.1 and 4.2.
The device is capable of rotating about a single axis of rotation so that beams
may be delivered from essentially 360 degrees about the patient. Additionally,
the treatment couch, on which the patient lies, can also be rotated through,
typically, 180 degrees. The combination of gantry and couch rotation can fa-
cilitate the delivery of radiation beams from almost any feasible angle. The
point defined by the physical intersection of the axis of rotation of the linac
gantry with the central axis of the beam which emerges from the "head" of the
linac is referred to as isocenter. Isocenter is, essentially, a geometric reference
point associated with the beam of radiation, which is strategically placed inside
of the patient to cause the tumor to be intersected by the treatment beam.

External beam radiation therapy can be loosely subdivided into the general
categories of conventional radiation therapy and, more recently, conformal ra-
diation therapy techniques. Generally speaking, conventional RT differs from
conformal RT in two regards; complexity and intent. The goal of conformal
techniques is to achieve a high degree of conformity of the delivered distribu-
tion of dose to the shape of the target. This means that if the target surface is
convex in shape at some location, then the delivered dose distribution will also
be convex at that same location. Such distributions of dose are typically repre-
sented in graphical form by what are referred to as isodose distributions. Much
like the isobar lines on a weather map, such representations depict iso-levels of
absorbed dose, wherein all tissue enclosed by a particular isodose level is un-
derstood to see that dose, or higher. An isodose line is defined as a percentage
of the target dose, and an isodose volume is that amount of anatomy receiv-
ing at least that much radiation dose. Figure 4.3 depicts a conformal isodose
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Figure 4.3. Conformal dose distribution. The target is shaded white and the brain stem dark
grey. Isodose lines shown are 100%, 90%, 70%, 50%, 30% and 20%.

distribution used for treatment of a tumor. The high dose region is represented
by the 60 Gy line( dark line), which can be seen to follow the shape of the
convex shaped tumor nicely. The outer most curve is the 20 percent isodose
curve, and the tissue inside of this curve receives at least 20 percent of the tu-
morcidal dose. By conforming the high dose level to the tumor, nearby healthy
tissues are spared from the high dose levels. The ability to deliver a conformal
distribution of dose to a tumor does not come without a price, and the price
is complexity. Interestingly, the physical ability to deliver such convex-shaped
distributions of dose has only recently been made possible by the advent of
Intensity Modulating Technology, which will be discussed in a later section.

In conventional external beam radiation therapy, radiation dose is delivered
to a target by the aiming of high-energy beams of radiation at the target from
an origin point outside of the patient. In a manner similar to the way one might
shine a diverging flashlight beam at an object to illuminate it, beams of radia-
tion which are capable of penetrating human tissue are shined at the targeted
tumor. Typically, such beams are made large enough to irradiate the entire tar-
get from each particular delivery angle that a beam might be delivered from.
This is in contrast to IMRT approaches, which will be discussed in a later sec-
tion, wherein each beam may treat only a small portion of the target. A fairly
standard conventional delivery scheme is a so-called 2 field parallel-opposed
arrangement (Figure 4.4). The figure depicts the treatment of a lesion of the
liver created by use of an anterior to posterior-AP (i.e. from patient front to pa-
tient back) and posterior to anterior field-PA (i.e. from patient back to patient
front). The isodose lines are depicted on computed tomography (CT) images of
the patient’s internal anatomy. The intersection of two different divergent fields
delivered from two opposing angles results in a roughly rectangular shaped re-
gion of high dose (depicted by the resulting isodose lines for this plane). Note
that the resulting high dose region encompasses almost the entire front to back
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Figure 4.4. Two field, parallel opposed treatment of liver lesion.

Figure 4.5. Three field treatment of liver lesion.

dimension of the patient, and that this region includes the spinal cord critical
structure. The addition of a third field, which is perpendicular to the opposing
fields, results in a box or square shaped distribution of dose, as seen in Fig-
ure 4.5. Note that the high dose region has been significantly reduced in size,
but still includes the spinal cord. For either of these treatments to be viable,
the dose prescribed by the physician to the high dose region would have to be
maintained below the tolerance dose for the spinal cord (typically 44 Gy in 2
Gy fractions, to keep the probability of paralysis acceptably low) or a higher
probability of paralysis would have to be accepted as a risk necessary to the
survival of the patient. Such conventional approaches, which typically use 2-4
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Figure 4.6. CDVH of two field treat-
ment depicted in Figure 4.4

Figure 4.7. CDVH of three field treat-
ment depicted in Figure 4.5

intersecting beams of radiation to treat a tumor, have been the cornerstone of
radiation therapy delivery for years. By using customized beam blocking de-
vices called "blocks" the shape of each beam can be matched to the shape of
the projection of the target from each individual gantry angle, thus causing the
total delivered dose distribution to match the shape of the target more closely.

The quality of a treatment delivery approach is characterized by several
methods. Figures 4.6 and 4.7 show what is usually referred to as a "dose vol-
ume histogram" (DVH). More accurately, it is a cumulative DVH (CDVH).
The curves describes the volume of tissue for a particular structure that is re-
ceiving a certain dose, or higher, and as such represents a plot of percentage
of a particular structure versus Dose. The two CDVH’s shown in Figures 4.6
and 4.7 are for the two conventional treatments shown in Figure 4.4 and 4.5,
respectively. Five structures are represented in the figures from back to front,
the Planning Target Volume (PTV) - a representation of the tumor that has been
enlarged to account for targeting errors, such as patient motion; Clinical Target
Volume (CTV) - The targeted tumor volume as defined by the physician on
the 3-dimensional imaging set; The spinal Cord; the healthy, or non-targeted,
Liver; all non-specific Healthy Tissue not specified as a critical structure. An
ideal tumor CDVH would be a step function, with 100% of the target receiving
exactly the prescribed dose (i.e. the 100% of prescribed level). Both treat-
ments (i.e. Two Field and Three Field) produce near-step-function-like tumor
DVH’s. An ideal healthy tissue or critical structure DVH would be similar to
that shown in Figures 4.6 and 4.7 for the Healthy Tissue, with 100% of the
volume of the structure seeing 0% of the prescribed dose. The three field treat-
ment in Figure 4.7 delivers less dose to the liver (second curve from front) and
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spinal cord (third curve from front) in that the CDVH’s for these structures are
pushed to the left, towards lower delivered doses. With regard to volumetric
sparing of the liver and spinal cord, the three field treatment can be seen to rep-
resent a superior treatment. Dose volume histograms capture the volumetric
information that is difficult to ascertain from the isodose distributions, but they
do not provide information about the location of high or low dose regions. Both
the isodose lines and the DVH information are needed to adequately judge the
quality of a treatment plan.

Thus far, the general concept of cancer and its treatment by delivery of tu-
morcidal doses of radiation have been outlined. The concepts underlying the
various delivery strategies which have historically been employed were sum-
marized, and general terminology has been presented. What has not yet been
discussed is the method by which a treatment "plan" is developed. The treat-
ment plan is the strategy by which beams of radiation will be delivered, with
the intent of killing the tumor and sparing from collateral damage the sur-
rounding healthy tissues. It is, quite literally, a plan of attack on the tumor.
The process by which a particular patient is taken from initial imaging visit,
through the treatment planning phase and, ultimately, to treatment delivery will
now be outlined.

4.2.2 The Clinical Process

A patient is often diagnosed with cancer following the observation of symp-
toms related to the disease. The patient is then typically referred for imaging
studies and/or biopsy of a suspected lesion. The imaging may include CT
scans, magnetic resonance imaging (MRI) or positron emission tomography
(PET). Each imaging modality provides different information about the pa-
tient, from bony anatomy and tissue density information provided by the CT
scan, to excellent soft tissue information from the MRI, to functional informa-
tion on metabolic activity of the tumor from the PET scan. Each of these sets of
three dimensional imaging information may be used by the physician both for
determining what treatment approach is best for the patient, and what tissues
should be identified for treatment and/or sparing. If external beam radiotherapy
is selected as the treatment option of choice, the patient will be directed to a ra-
diation therapy clinic where they will ultimately receive radiation treatment(s)
for a period of time ranging from a single day, to several weeks.

Before treatment planning begins, a 3-dimensional representation of the in-
ternal anatomy of the patient must be obtained. For treatment planning pur-
poses such images are typically created by CT scan of the patient, because
of CT’s accurate rendering of the attenuation coefficients of each voxel of
the patient, as will be discussed in the section on Dose Calculation. The 3-
dimensional CT representation of the patient is built by a series of 2-dimensional
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images (or slices), and the process of acquiring the images is often referred to
as the Simulation phase. Patient alignment and immobilization is critical to
this phase. The treatment that will ultimately be delivered will be based on
these images, and if the patient’s position and orientation at the time of treat-
ment do not agree with this "treatment planning position", then the treatment
will not be delivered as planned. In order to ensure that the patient’s position
can be reproduced at treatment time, an immobilization device may be con-
structed. Such devices may be as invasive as placing screws into the skull of
the patient’s head to ensure precise delivery of a radiosurgical treatment to the
brain, to as simple as placing a rubber band around the feet of the patient to
help them hold still for treatment of a lesion of the prostate. Negative molds of
the patient’s posterior can be made in the form of a cradle to assist in immo-
bilization, and pediatric patient’s may need to be sedated for treatment. In all
cases, alignment marks are placed on the patient to facilitate alignment to the
linac beam via lasers in the treatment vault.

Once the images and re-positioning device(s) are constructed, the treatment
plan must be devised. Treatment plans are designed by a medical physicist, or a
dosimetrist working under the direction of a medical physicist, all according to
the prescription of a radiation oncologist. The planning process depends heav-
ily on the treatment machine and software, and without discussing the nuances
of different facilities, we explain the important distinction between forward and
inverse planning. During treatment, a patient is exposed to the beams of radia-
tion created by a high-energy radioactive source, and these beams deposit their
energy as they travel through the anatomy (see Subsection 4.3). Treatment de-
sign is the process of selecting how these beams will pass through the patient
so that maximum damage accumulates in the target and minimal damage in
healthy tissues. Forward treatment design means that a physicist or dosimetrist
manually selects beam angles and fluences (the amount of radiation delivered
by a beam, controlled by the amount of time that a beam is "turned on"), and
calculates how radiation dose accumulates in the anatomy as a result of these
choices. If the beams and exposure times result in an unacceptable dose distri-
bution, different beams and fluences are selected. The process repeats until a
satisfactory treatment is found.

The success of the trial-and-error technique of forward planning depends on
the difficulty of the treatment and the expertise of the planner. Modern technol-
ogy is capable of delivering complicated treatments, and optimally designing
a treatment that considers the numerous options is beyond the scope of human
ability. As its name suggests, inverse planning reverses the forward paradigm.
Instead of selecting beams and fluences, the idea is to prescribe absorbed dose
in the anatomy, and then algorithmically find a collection of beams and flu-
ences that satisfy the anatomical restrictions. This means that inverse planning
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relies on optimization software, and the models that make this possible are the
primary focus of this work.

Commercial software products blend forward and inverse planning, with
most packages requiring the user to select the beam directions but not the flu-
ences. The anatomical restrictions are defined on the patient images by delin-
eating the target volume and any surrounding sensitive regions. A target dose
is prescribed and bounds on the sensitive tissues are defined as percentages of
this dose. For example, the tumor in Figure 4.4 is embedded in healthy sur-
rounding liver, and located near the spinal cord. After manually identifying
the tumor, the healthy liver, and the spinal cord on each 2-dimensional image,
the dosimetrist enters a physician prescribed target dose, and then bounds how
much radiation is delivered to the remaining structures as a percentage of the
target dose. The dosimetrist continues by selecting a collection of beam angles
and then uses inverse planning software to determine optimal beam fluences.
The optimization problems are nontrivial, and modern computing power can
calculate optimal fluence maps in about 20 minutes. We mention that commer-
cial software varies substantially, with some using linear and quadratic models
and others using complex, global optimization models solved by simulated
annealing. Input parameters to the optimization software are often adjusted
several times before developing a satisfactory treatment plan. Once an accept-
able treatment plan has been devised, treatment of the patient, according to the
radiation oncologist’s dose and fractionation directive can begin.

In the following sections we investigate the underpinnings of the physics
describing how radiation deposits energy in tissue, as well as many of the op-
timization models suggested in the literature. This discussion requires a more
detailed description of a clinic’s technology, and different clinical applications
are explained as needed. We want to again stress that a continued dialog with
a treatment facility is needed for OR techniques to impact clinical practice.
In the author’s experience, medical physicists are very receptive to collabora-
tion. The OR & Oncology web site (http://www.trinity.edu/aholder/
HealthApp/oncology/) lists several interested researchers, and we encour-
age interested readers to contact people on this list.

4.3 Dose Calculations

Treatment design hinges on the fact that we can accurately model how
beams of high-energy radiation interact with the human anatomy. While an en-
tire tutorial could be written on this topic alone, our objective is to provide the
basics of how these models work. An academic dose model does not need to
precisely replicate clinical dose calculations but does need to approximate how
radiation is deposited into the anatomy. We develop a simple, 2-dimensional,
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Gantry Position
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Dose Point p

o

Isocenter

Figure 4.8. The geometry involved in calculating the contribution of sub-beam (θ, r) to the
Dose Point.

continuous dose model and its discrete counterpart. The 3-dimensional model
is a natural extension but is more complicated to describe.

Consider the diagram in Figure 4.8. The isocenter is in the lower part of the
diagram, and the gantry is rotated to angle θ. Patients are often shielded from
parts of the beam by devices such as a multileaf collimator, which are discussed
in detail in Section 4.4. The sub-beam considered in Figure 4.8 is (θ, r), and
we calculate this sub-beam’s contribution to the dose point p. A simple but
effective model uses the depth of the dose point along sub-beam (θ, r), labeled
d, and the distance from the dose point to the sub-beam, denoted o (o is used
because this is often referred to as the ‘off axis’ distance). The radiation being
delivered along sub-beam (θ, r) attenuates and scatters as it travels through
the anatomy. Attenuation means that photons of the beam are removed by
scattering and absorption interactions as depth increases. So, if the dose point
was directly in the path of sub-beam (θ, r), it would receive more radiation
the closer it is to the gantry. While the dose point is not directly in the path
of sub-beam (θ, r), it still receives radiation from this sub-beam because of
scatter. A common model assumes that the percentage of deposited dose falls
exponentially as d and o increase. So, if g(θ, r) is the amount of energy being
delivered along sub-beam (θ, r) (or equivalently, the amount of time this sub-
beam is not blocked), the dose point receives

g(θ, r)eηoeµd

units of radiation from sub-beam (θ, r), where µ and η are parameters decided
by the beam’s energy. If Lθ = {r : (θ, r) is a sub-beam of angle θ}, we have
that the total (or integral) amount of radiation delivered to the dose point from
all gantry positions is

Dp =

∫

L

g(θ, r)eηoeµddθ. (3.1)
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Calculating the amount of radiation deposited into the anatomy is a forward
problem, meaning that the amount of radiation leaving the gantry is known
and the radiation deposited into the patient is calculated. An inverse problem
is one in which we know the radiation levels in the anatomy and then find
a way to control the beams at the gantry to achieve these levels. Treatment
design problems are inverse problems, as our goal is to specify the distribution
of dose being delivered and then calculate a ‘best’ way to satisfy these limits.
As an example, if the dose point p′ is inside a tumor, we may desire that Dp′ be
at least 60Gy. Similarly, if the dose point p′′ was in a nearby, sensitive organ,
we may want Dp′′ to be no greater than 20Gy. So, our goal is to calculate
g(θ, r) for each sub-beam so that

Dp′ =

∫

L

g(θ, r)eηoeµddθ ≥ 60, (3.2)

Dp′′ =

∫

L

g(θ, r)eηoeµddθ ≤ 20, and (3.3)

g(θ, r) ≥ 0 for all (θ, r). (3.4)

From these constraints it is obvious that we need to invert the integral transfor-
mation that calculates dose, and while there are several numerical techniques
to do so, such techniques do not guarantee the non-negativity of g. Moreover,
the system may be inconsistent, which means the physician’s restrictions are
not possible. However, the typical case is that there are many choices of g(θ, r)
that satisfy the physician’s requirements, and in such a situation, the optimiza-
tion question is which collection of g(θ, r)’s is best?

The discrete approximation to (3.1) depends on a finite collection of angles
and sub-beams. Instead of the continuous variables θ and r, we assume that
there are q gantry positions, indexed by a, and that each of the gantry positions
is comprised of τ sub-beams, indexed by s. The amount of radiation to deliver
along sub-beam (a, s), which is equivalent to deciding how long to leave this
sub-beam unblocked, is denoted by x(a,s). For the dose point p, we let a(p,a,s)

be eηoeµd. The discrete counterpart of (3.1) is

∑

(a,s)

a(p,a,s)x(a,s) ≈ Dp =

∫

L

g(θ, r)eηoeµddθ.

We construct the dose matrix, A, from the collection of a(p,a,s)’s by indexing
the rows and columns of A by p and (a, s), respectively.

The dose matrix A adequately models how radiation is deposited into the
anatomy as the gantry rotates around a single isocenter, which can be located
at any position within the patient. Moreover, modern linear accelerators are
capable of producing beams with different energies, and these energies corre-
spond to different values of µ and η. So, for each isocenter i and beam energy
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e, we construct the dose matrix A(i,e). The entire dose matrix is then

[

A(1,1)|A(1,2)| · · · |A(1,E)|A(2,1)| · · · |A(2,E)| · · · |A(I,1)| · · · |A(I,E)

]

,

where there are I different isocenters and E different energies. The index on
x is adjusted accordingly to (i, e, a, s) so that x(i,e,a,s) is the radiation leaving
the gantry along sub-beam (a, s) while the gantry is rotating around isocenter i
and the linear accelerator is producing energy e. Many of the examples in this
chapter use a single isocenter, and all use a single energy, but the reader should
be aware that clinical applications are complicated by the possibility of having
multiple isocenters and energies.

The cumulative dose at point p is the pth component of the vector Ax, de-
noted by (Ax)p. We now see that the discrete approximations to (3.2) - (3.4)
are

Dp′ ≈ (Ax)p′ ≥ 60, Dp′′ ≈ (Ax)p′′ ≤ 20 and x ≥ 0.

As before, there may not be an x that satisfies the system. In this case, we know
that the physician’s bounds are not possible with the discretization described
by A. However, there may be a different collection of angles, sub-beams,
and isocenters, and hence a different dose matrix, that allows the physician’s
bounds to be satisfied. Selecting the initial discretization is an important and
challenging problem that we address in Section 4.4.

The vector x is called a treatment plan (or more succinctly a plan) because
it indicates how radiation leaves the gantry as it rotates around the patient. The
linear transformation x 7→ Ax takes the radiation at the gantry and deposits it
into the anatomy. Both the continuous model and the discrete model are linear
—i.e. the continuous model is linear in g and the discrete model is linear in
x. The linearity is not just an approximation, as experiments have shown that
the dose received in the anatomy scales linearly with the time a sub-beam is
left unblocked. So, linearity is not just a modeling assumption but is instead
natural and appropriate.

The treatment area and geometry are different from patient to patient, and
the clinical dose calculations are patient specific. Also, depending on the re-
gion being treated, we may modify the attenuation to reflect different tissue
densities, with the modified distances being called the effective depth and off-
axis distance. As an example, if the sub-beam (a, s) is passing through bone,
the effective depth is increased so that the attenuation (exponential decay) of
the beam is greater as it travels through the bone. Similarly, if the sub-beam
is passing through air, the effective depth is shortened so that less attenuation
occurs.

We reiterate that there are numerous models of widely varying complexity
that calculate how radiation is deposited into the anatomy. Our goal here was
to introduce the basic concepts of a realistic model. Again, it is important
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Figure 4.9. A tomotherapy multileaf colli-
mator. The leaves are either open or closed.

Figure 4.10. A multileaf collimator for
static gantry IMRT.

to remember that for academic purposes, the dose calculations need only be
reasonably close to those used in a clinic.

4.4 Intensity Modulated Radiotherapy (IMRT)

A recent and important development in the field of RT is that of Intensity
Modulated Radiotherapy (IMRT). Regarded by many in the field as a quantum
leap forward in treatment delivery capability, IMRT allows for the creation of
dose distributions that were previously not possible. As a result, IMRT has
allowed for the treatment of patients that previously had no viable treatment
options.

The distinguishing feature of IMRT is that the normally large, rectangular
beam of radiation produced by a linear accelerator is shaped by a multileaf
collimator into smaller so-called pencil beams of radiation, each of which can
be varied, or modulated, in intensity (or fluence). Figures 4.9 and 4.10 show
images of two multileaf collimators used for delivery of IMRT treatments. The
leaves in Figure 4.9 are pneumatically controlled by individual air valves that
cause the leaves to open or close in about 30 to 40 milliseconds. By varying
the amount of time that a given leaf is opened from a particular gantry angle
the intensity, or fluence, of the corresponding pencil beam is varied, or modu-
lated. This collimator is used in tomotherapy, which treats the 3-dimensional
problem as a series of 2-dimensional sub-problems. In tomotherapy a treat-
ment is delivered as a summation of individually delivered "slices" of dose,
each of which is optimized to the specific patient anatomy that is unique to the
treatment slice. Tomotherapy treatments are delivered by rapidly opening and
closing the leaves as the gantry swings continuously about the patient.

The collimator in Figure 4.10 is used for static gantry IMRT. This is a pro-
cess where the gantry moves to several static locations, and at each position the
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patient is repeatedly exposed to radiation using different leaf configurations.
Adjusting the leaves allows for the modulation of the fluence that is delivered
along each of the many sub-beams. This allows the treatment of different parts
of the tumor with different amounts of radiation from a single angle. Similar
to tomotherapy, the idea is to accumulate damage from many angles so that the
target is suitably irradiated.

4.4.1 Clinically Relevant IMRT Treatments

For an optimized IMRT treatment to be clinical useful, the problem must
be modeled assuming clinically reasonable values for the relevant input vari-
ables.The clinical restrictions of IMRT depend on the type of delivery used.
Tomotherapy has fewer restrictions with regard to gantry angles, in that any
and all of the possible pencil beams may be utilized for treatment delivery. The
linac gantry performs a continuous arc about the patient regardless of whether
or not pencil beams from each gantry angle are utilized by the optimized de-
livery scheme. This is in contrast to the static gantry model where clinical
time limitations make it impractical to deliver treatments comprised of, typi-
cally, more than 7-9 gantry angles. This means that the optimization process
must necessarily select the optimal set of 7 to 9 gantry angles of approach from
which to deliver pencil beams, from the much larger set of possible gantry an-
gles of delivery, which leads to mixed integer problems. For either delivery ap-
proach, the gantry angles considered must, of course, be limited to those angles
that do not lead to collisions of the gantry and treatment couch or patient. Clin-
ical optimization software for static gantry approaches typically requires that
the user pre-select the static gantry angles to be used. Such software provides
visualization tools that help the user intelligently select gantry angles that can
be visually recognized to provide unobstructed angles. This technique serves
to reduce the complexity of the problem to manageable levels but does not, of
course, guarantee a truly optimal solution. The continuous gantry movement
of a tomotherapy treatment is approximated by modeling the variation of leaf
positions every 5o, and the large number of potential angles coupled with a
typical fluence variation of 0 to 100% in steps of 10% causes tomotherapy to
possess an extremely large solution space.

4.4.2 Optimization Models

Before we begin describing the array of optimization models that are used
to design treatments, we point out that several reviews are already in the liter-
ature. Shepard, Ferris, Olivera, and Mackie have a particularly good article in
SIAM Review [57]. Other OR reviews include the exposition by Bartolozzi, et.
al. in the European Journal of Operations Research [2] and the introductory
material by Holder in the Handbook of Operations Research/Management Sci-
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ence Applications in Health Care [24]. In the medical physics literature, Rosen
has a nice review in Medical Physics [55]. We also mention two web resources:
the OR & Oncology Web Site at www.trinity.edu/aholder/HealthApp/
oncology/ and Pub Med at www.ncbi.nlm.nih.gov/. The medical litera-
ture can be overwhelming, with a recent search at Pub Med on "optimization"
and "oncology" returning 652 articles.

We begin our review of optimization models by studying linear programs.
This is appropriate because dose deposition is linear and because linear pro-
gramming is common to all OR experts. Also, many of the models in the
literature are linear [1, 22, 24, 33, 36]. Let A be the dose deposition matrix
described in Section 4.3, and partition the rows of A so that

A =





AT

AC

AN





← Target Volume
← Critical Structures
← Unrestricted, Normal Tissue,

where AT is mT × n, AC is mC × n, and AN is mN × n. The sets T , C , and
N partition the dose points in the anatomy, with T containing the dose points
in the target volume, C containing the dose points in the critical structures,
and N contains the remaining dose points. We point out that A is typically
large. For example, if we have a 512 × 512 patient image with each pixel
having its own dose point, thenA has 262, 144 rows. Moreover, A has 360, 000
columns if we design a treatment using 4 energies, 5 isocenters, 360 angles per
isocenter, and 50 sub-beams per angle. So, for a single image we would need
to apriori make 9.44 × 1010 dose calculations. Since there are usually several
images involved, it is easy to see that generating the data for a model instance
is time consuming. Romeijn, Ahuja, Dempsey and Kumar [54] have developed
a column generation technique to address this computational issue.

The information provided by a physician to build a model is called a pre-
scription. This clinical information varies from clinic to clinic depending on
the design software. A prescription is initially the triple (TG,CUB,NUB),
where TG is amT vector containing the goal dose for the target volume, CUB
is a mC vector listing the upper bounds on the critical structures, and NUB is
a mN vector indicating the highest amount of radiation that is allowed in the
remaining anatomy. In many clinical settings, NUB is not decided before the
treatment is designed. However, clinics do not routinely allow any part of the
anatomy to receive doses above 10% of the target dose, and one can assume
that NUB = 1.1× TG.

The simplest linear models are feasibility problems [5, 48]. In these models
the goal is to satisfy

ATx ≥ TG, ACx ≤ CUB, ANx ≤ NUB, and x ≥ 0.
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The consistency of this system is not guaranteed because physicians are often
overly demanding, and many authors have complained that infeasibility is a
shortcoming of linearly constrained models [22, 33, 44, 55]. In fact, the ar-
gument that feasibility alone correctly addresses treatment design is that the
region defined by these constraints is relatively small, and hence, optimizing
over this region does not provide significant improvements in treatment quality.

If a treatment plan that satisfies the prescription exists, the natural question
is which plan is best. The immediate, but naive, ideas are to maximize the
tumor dose or minimize the critical structure dose. Allowing e to be the vector
of ones, where length is decided by the context of its use, these models are
variants of

max{eTATx : ATx ≥ TG, ACx ≤ CUB, ANx ≤ NUB, x ≥ 0}, (4.1)

min{eTACx : ATx ≥ TG, ACx ≤ CUB, ANx ≤ NUB, x ≥ 0}, (4.2)

max{z : ATx ≥ TG+ ze, ACx ≤ CUB,

ANx ≤ NUB, x ≥ 0, z ≥ 0}, or (4.3)

min{z : ATx ≥ TG, ACx ≤ CUB − ze,

ANx ≤ NUB, x ≥ 0, z ≥ 0}. (4.4)

Models (4.1) and (4.2) maximize and minimize the cumulative dose to the tu-
mor and critical structures, respectively. Model (4.3) maximizes the minimum
dose received by the target volume and (4.4) minimizes the maximum dose
received by a critical structure.

The linear models in (4.1) - (4.4) are inadequate for several reasons. As
already mentioned, if the feasibility region is empty, most solvers terminate
by indicating that infeasibility has been detected. While there is a substantial
literature on analyzing infeasibility (see for example [7–9, 20, 21]), discover-
ing the source of infeasibility is an advanced skill, one that we can not expect
physicians to acquire. Model (4.1) further suffers from the fact that it is often
unbounded. This follows because it is possible to have sub-beams that intersect
the tumor but that do not deliver numerically significant amounts of radiation
to the critical structures. In this situation, it is obvious that we can make the
cumulative dose to the tumor as large as possible. Lastly, these linear mod-
els have the unintended consequence of achieving the physician’s bounds. For
example, as model (4.3) increases the dose to the target volume, it is also in-
creasing the dose to the critical structures. So, an optimal solution is likely to
achieve the upper bounds placed on the critical structures, which is not desired.
We also point out that because simplex based optimizers terminate with an ex-
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treme point solution, we are guaranteed that several of the inequalities hold
with equality when the algorithm terminates [22]. So, the choice of algorithm
plays a role as well, a topic that we address later in this section.

An improved linear objective was suggested by Morrill [45]. This objective
maximizes the difference between the dose delivered to the tumor and the dose
received by the critical structures. For example, consider the following models,

max{eTATx− e
TACx : ATx ≥ TG,

ACx ≤ CUB,ANx ≤ NUB, x ≥ 0} and (4.5)

max{z − q : ATx ≥ TG+ ze,ACx ≤ CUB − qe,

ANx ≤ NUB, x ≥ 0, z ≥ 0, q ≥ 0}. (4.6)

These models attempt to overcome the difficulty of attaining the prescribed
limits on the target volume and the critical structures. However, model (4.5) is
often unbounded for the same reason that model (4.1) is. Also, both of these
models are infeasible if the physician’s goals are overly restrictive.

Many of the limitations of models (4.1) - (4.6) are addressed by parameter-
izing the constraints. This is similar to goal programming, where we think of
the prescription as a goal instead of an absolute bound. Constraints that use
parameters to adjust bounds are called elastic, and Holder [25] used these con-
straints to build a linear model that overcame the previous criticisms. Before
presenting this model, we discuss another pitfall that new researchers often
fall into. The target volume is not exclusively comprised of tumorous cells,
but rather normal and cancerous cells are interspersed throughout the region.
Recall that external beam radiotherapy is successful because cancerous cells
are slightly more susceptible to radiation damage than are normal tissues. The
goal is to deliver enough dose to the target volume so that the cancerous cells
die but not enough to kill the healthy cells. So, one of the goals of treatment
planning is to find a plan that delivers a uniform dose to the tumor. The model
suggested in [25] uses a uniformity index, ρ, and sets the tumor lower bound
to be TLB = TG − ρe and the tumor upper bound to be TUB = TG + ρe
(typical values of ρ in the literature range from 0.02 to 0.15). Of course, there
is no reason why the upper and lower bounds on the target volume need to
be a fixed percentage of TG, and we extended a prescription to be the 4-
tuple (TUB, TLB,CUB,NUB), where TUB and TLB are arbitrary pos-
itive vectors such that TUB ≤ TLB. Consider the model below.

min{ω · lTα+ uT
Cβ + uT

Nγ : TLB − Lα ≤ ATx ≤ TUB,

ACx ≤ CUB + UCβ,ANx ≤ NUB + UNγ,−CUB ≥ UCβ,

0 ≤ UNγ, 0 ≤ x} (4.7)
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In this model, the matrices L, UC , and UN are assumed to be non-negative,
semimonotone matrices with no row sum being zero. The term La measures
the target volume’s under dose, and the properties of L ensure that the target
volume receives the minimum dose if and only if α is zero. Similarly, UCβ and
UNγ measure the amount the non-cancerous tissues are over their prescribed
bounds. The difference between β and γ is that they have different lower
bounds. If UBβ attains its lower bound of −CUB, we have found a treatment
plan that delivers no radiation to the critical structures. The lower bound on
UNγ is 0, which indicates that we are willing to accept any plan where the
dose to the non-critical tissue is below its prescribed limit.

The objective function in (4.7) penalizes adverse deviations and rewards
desirable deviations. The term lTα penalizes under dosing the target volume
and uT

Nγ penalizes overdosing the normal tissue. The role of uT
Cβ is twofold. If

β is positive, it penalizes overdosing the critical structures, and if β is negative,
it rewards under dosing the critical structures. The parameter ω weights the
importance placed on attaining tumor uniformity.

One may ask why model 4.7 is stated in such general terms of measure and
penalty. The reason is that there are two standard ways to measure and penalize
discrepancies. If we want the sum of the discrepancies to be the penalty, then
we let l, uC , and uN be vectors of ones and L, UC , and UN be the identity
matrices. Alternatively, if we want to penalize the largest deviation, we let l,
uc, and uN each be the scalar 1 and L, UC and UN be vectors of ones. So, this
one model allows deviations to be measured and penalized in many ways but
has a single mathematical analysis that applies to all of these situations.

The model in (4.7) has two important theoretical advantages to the previous
models. The first result states that the elastic constraints of the model guarantee
that both the primal and dual problems are feasible.

Theorem 4.1 (Holder [25]) The linear model in 4.7 and its dual are
strictly feasible, meaning that each of the constraints can simultaneously hold
without equality.

The conclusion of Theorem 4.1 is not surprising from the primal perspective,
but the dual statement requires all of the assumptions placed on l, uC , uN ,
L, UC and UN . The feasibility guaranteed by this result is important for two
reasons. First, if the physician’s goals are not possible, this model minimally
adjusts the prescription to attain feasibility. Hence, this model returns a treat-
ment plan that matches the physician’s goals as closely as possible even if
the original desires were not achievable. Second, Theorem 4.1 assures us that
interior-point algorithms can be used, and we later discuss why these tech-
niques are preferred over simplex based approaches.

The second theoretical guarantee about model (4.7) is that it provides an
analysis certificate. Notice that the objective function is a weighted sum of the
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Figure 4.11. A tumor surrounded by
two critical structures. The desired tu-
mor dose is 80Gy±3%, and the critical
structures are to receive less than 40Gy.
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Figure 4.12. The dose-volume his-
togram indicates that 100% of the tu-
mor receives its goal dose and that about
60% of the critical structures is below its
bound of 40Gy.

competing goals of delivering a large amount of radiation to the target volume
and a small amount of radiation to the remaining anatomy. The next result
shows that the penalty assigned to under dosing the target volume is uniformly
bounded by the inverse of ω.

Theorem 4.2 (Holder [25]) Allowing (x∗(ω), α∗(ω), β∗(ω), γ∗(ω)) to
be an optimal solution for a particular ω, we have that lTα∗(ω) = O(1/ω).

A consequence of Theorem 4.2 is that there is a positive scalar κ such that for
any positive ω, we have that lTα∗(ω) ≤ κ/ω. This is significant because we
can apriori calculate an upper bound on κ that depends on the dose matrix A.
If κ′ is this upper bound, we have that lTα∗(ω) ≤ κ/ω ≤ κ′/ω. So, we can
make lTα∗(ω) as small as we want by selecting a sufficiently large ω. If we
use this ω and lTα∗(ω) is larger that κ′/ω, then we know with certainty that
we can not achieve the desired tumor uniformity. Moreover, we know that if
lTα∗(ω) is less than κ′/ω and the remaining terms of the objective function
are positive, then we can attain the tumor uniformity only at the expense of
the critical structures. So, the importance of Theorem 4.2 is that it provides a
guaranteed analysis.

Consider the geometry in Figure 4.11, where a tumor is surrounded by two
critical structures. The goal dose for the tumor is 80Gy±3%, and the upper
bound on the critical structures is 40Gy. Figure 4.12 is a dose-volume his-
togram for the treatment designed by Model (4.7), and from this figure we see
that 100% of the tumor receives it’s goal dose. Moreover, we see that about
60% of the critical structure is below its upper bound of 40Gy.
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Outside of linear models, the most prevalent models are quadratic [36, 43,
61]. A popular quadratic model is

min{‖ATx− TG‖2 : ACx ≤ CUB,ANx ≤ NUB, x ≥ 0}. (4.8)

This model attempts to exactly attain the goal dose over the target volume
while satisfying the non-cancerous constraints. This is an attractive model
because the objective function is convex, and hence, local search methods like
gradient descent and Newton’s method work well. However, the non-elastic,
linear constraints may be inconsistent, and this model suffers from the same
infeasibility complaints of previous linear models. Some medical papers have
suggested that we instead solve

min{‖ATx− TG‖2 + ‖ACx−CUB‖2+

‖ANx−NUB‖2 : x ≥ 0}. (4.9)

While this model is never infeasible, it is inappropriate for several reasons.
Most importantly, this model attempts to attain the bounds placed on the non-
cancerous tissue, something that is clearly not desirable. Second, this model
could easily provide a treatment plan that under doses the target volume and
over doses the critical structures, even when there are plans that sufficiently ir-
radiate the tumor and under irradiate the critical structures. A more appropriate
version of (4.9) is

min{‖ATx− TG‖2 + ‖ACx‖2 + ‖ANx‖2 : x ≥ 0}, (4.10)

but again, without constraints on the non-cancerous tissues, there is no guaran-
tee that the prescription is (optimally) satisfied.

The only real difference between the quadratic and linear models is the man-
ner in which deviations from the prescription are measured. Since there is no
clinically relevant reason to believe that one measure is more appropriate than
another, the choice is a personal preference. In fact, all of the models discussed
so far have a linear and a quadratic counterpart. For example, the quadratic
manifestation of (4.7) is

min{ω · ‖lTα‖2 + ‖uT
Cβ‖2 + ‖uT

Nγ‖2 : TLB − Lα ≤ ATx ≤ TUB,

ACx ≤ CUB + UCβ,ANx ≤ NUB + UNγ,−CUB ≥ UCβ,

0 ≤ UNγ, 0 ≤ x} (4.11)

and the linear counterparts of (4.10) are

min{‖ATx− TG‖1 + ‖ACx‖1 + ‖ANx‖1 : x ≥ 0}, and (4.12)

min{‖ATx− TG‖∞ + ‖ACx‖∞ + ‖ANx‖∞ : x ≥ 0}. (4.13)
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We point out that Theorems 4.1 and 4.2 apply to model (4.11), and in fact,
these results hold for any of the p-norms.

Each of the above linear and quadratic models attempts to ‘optimally’ sat-
isfy the prescription, but the previous prescriptions of (TG,CUB,NUB) and
(TLB, TUB,CUB,NUB) do not adequately address the physician’s goals.
The use of dose-volume histograms to judge treatments enables physicians to
express their goals in terms of tissue percentages that are allowed to receive
specified doses. For example, we could say that we want less than 80% of the
lung to receive more than 60% of the target dose, and further, that less than
20% of the lung receives more than 75% of the target dose.

Constraints that model the physician’s goals in terms of percent tissue re-
ceiving a fixed dose are called dose-volume constraints. These restrictions are
biologically natural because different organs react to radiation differently. For
example, the liver and lung are modular, and these organs are capable of func-
tioning with substantial portions of their tissue destroyed. Other organs, like
the spinal cord and bowel, lose functionality as soon as a relatively small re-
gion is destroyed. Organs are often classified as rope or chain organs [19, 53,
63, 64], with the difference being that rope organs remain functional even with
large amounts of inactive tissue and that chain organs fail if a small region
is rendered useless. Rope organs typically fail if the entire organ receives a
relatively low, uniform dose, and the radiation passing through these organs
should be accumulated over a contiguous portion of the tissue. Alternatively,
chain organs are usually capable of handling larger, uniform doses over the
entire organ, and it is desirable to disperse the radiation over the entire region.
So, there are biological differences between organs that need to be considered.
Dose-volume constraints capture a physician’s goals for these organs.

We need to alter the definition of a prescription to incorporate dose-volume
constraints. First, we partition C into C1, C2, . . . , CK , where Ck contains the
dose points within the kth critical structure. We know have that

AC =











AC1

AC2

...
ACK











← Critical Structure 1
← Critical Structure 2

← Critical Structure K.

(4.14)

The vector of upper bounds, CUB, no longer has the same meaning since
we instead want to calculate the volume of tissue that is above the physician
defined thresholds. For each k, let T k1 , T k2 , . . . , T kΛk be the thresholds for
critical structure k. We let αkλ

p be a binary variable that indicates whether or
not dose point p, which is in critical structure k, is below or above threshold
T kλ . The percentage of critical structure k that is desired to be under threshold
T kλ is 1 − ρkλ , or equivalently, ρkλ is the percent of critical structure k that
is allowed to violate threshold T kλ . Allowing M to be an upper bound on the
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amount of radiation deposited in the anatomy, we have that any x satisfying
the following constraints also satisfies the physician’s dose-volume and tumor
uniformity goals,

TLB ≤ ATx ≤ TUB
ACkx ≤ T kλe+ αkλM, for each kλ

eTαkλ ≤ ρkλ|Ck|, for each kλ

ANx ≤ NUB
x ≥ 0
αkλ

p ∈ {0, 1} p ∈ Ck.































(4.15)

The binary dose-volume constraints on the critical structures have replaced the
previous linear constraints. In a similar fashion, we can add binary variables
βp, for p ∈ T , to measure the amount of target volume that is under dosed. If
γ is the percentage of tumor that is allowed to be under its prescribed lower
bound, we change the first set of inequalities in (4.15) to obtain,

ATx ≤ TUB,
ATx ≥ TLB − diag(TLB)β,
eTβ ≤ γ|T |,
ATx ≤ TUB,
ACkx ≤ T kλe+ αkλM, for each kλ,
eTαkλ ≤ ρkλ|Ck|, for each kλ,
ANx ≤ NUB,

x ≥ 0,
αkλ

p ∈ {0, 1}, p ∈ Ck,
βp ∈ {0, 1}, p ∈ T.































































(4.16)

Of course we could add several threshold levels for the target volume, but
the constraints in (4.16) describe how a physician prescribes dose in common
commercial systems. Notice that a prescription now takes the form

(TLB, TUB,NUB, T 11 , . . . , T 1Λ1 , T 21 , . . . , T 2Λ2 , . . . ,

TK1 , . . . , T 2ΛK , γ, ρ11 , . . . , ρ1Λ1 , ρ21 , . . . , ρ2Λ2 , . . . , ρK1 , . . . , ρKΛK ).

For convenience, we let P be the collection of

u = (x, α11 , . . . , α1Λ1 , α21 , . . . , α2Λ2 , . . . , αK1 , . . . , αKΛK , β)

that satisfy the constraints in (4.16).
From an optimization perspective, the difficulty of the problem has signif-

icantly increased from the earlier linear and quadratic models. Common ob-
jective functions are those that improve the under and over dosing. A linear
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objective is

min







w1 · eTβ +
∑

kλ

wkλ · eTαkλ : u ∈ P







, (4.17)

where the w’s weight the importance of the respective under and over dosing.
For more information on similar models, we point to Lee [42, 29–32].

A different modeling approach is to take a biological perspective [44, 53].
The concept behind these models is to use biological probabilities to find desir-
able treatments. In [53], Raphael presents a stochastic model that maximizes
the probability of a successful treatment. The assumption is that tumorous
cells are uniformly distributed throughout the target volume and that cells are
randomly killed as they are irradiated. Allowing dp to be the dose delivered at
point p, we let S(dp) be the probability that any particular cell survives in the
region represented by p under dose dp. So, if there are C(p) cancerous cells
near dose point p, the expected number of survivors in this region under dose dp

is N̄(p) = C(p)S(dp). If TV is the set of dose points within the target volume,
then the expected number of surviving cancer cells is

∑

p∈TV C(p)S(dp). The
actual number of survivors is the sum of many independent Bernoulli trials,
whose distribution is assumed to be Poisson. This means that the probability
of tumor control —i.e. when the expected number of survivors is zero, is

e−
P

p∈TV C(p)S(dp).

We want to maximize this probability, and the corresponding optimization
problem is

max
{

e−
P

p∈TV C(p)S(d(p)) :

ATx = d, ACx ≤ CUB, ANx ≤ NUB, x ≥ 0} . (4.18)

This model has the favorable quality that it attempts to measure the overriding
goal of treatment, that of killing the cancerous cells. However, this model
simply introduces an exponential measure that increases the dose to the target
volume as much as possible. As such, this model is similar to models (4.1) and
(4.3), and it suffers from the same inadequacies.

Morrill develops another biologically based model in [44], where the goal
is to maximize the probability of a complication free treatment. The idea be-
hind this model is that different organs react to radiation differently, and that
there are probabilistic ways to measure whether or not an organ will remain
complication free [28, 39–41, 46]. To represent this model, we divide the rows
of AC as in (4.14). If f(dk) is the probability of critical structure k remaining
complication free, where dk is a vector of dose values in critical structure k,
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the optimization model is

max

{

K
∏

k=1

f(dk) : TLB ≤ ATx ≤ TUB,

ACk
x = dk, k = 1, 2, . . . ,K, ANx ≤ NUB

}

. (4.19)

As one can see, the scope of designing radiotherapy treatments intersects
many areas of optimization. In addition to the models just discussed, several
others have been suggested, and in particular, we refer to [14, 15, 33, 44, 57]
for further discussions of nonlinear, nonquadratic models. All of the models in
this subsection measure an aspect of treatment design, but they each fall short
of mimicking the design process faced by a physician. Hence, it is crucial
to continue the investigation of new models. While it may be impossible to
include all of the patient specific information, the goal is to consistently im-
prove the models so that they become flexible enough to work in a variety of
situations.

4.4.3 New Directions

The models presented in Subsection 4.4.2 are concerned with the difficult
task of optimally satisfying a physician’s goals. In this section, we address
some related treatment design questions that are beginning to benefit from op-
timization. The models in Subsection 4.4.2 have made significant inroads into
the design of radiotherapy treatments, and the popular commercial systems use
variants of these models in their design process. While this is a success for the
field of OR, this is not the end of the story, and there are many, many clinically
related problems that can benefit from optimization. This subsection focuses
on the design questions that need to be made before a treatment is developed.

Several questions need to be answered before building any of the models
in Subsection 4.4.2. These include deciding: 1) the distribution of the dose-
points, 2) the number and location of the isocenters, and 3) the number and
location of the beams. Each of these decisions is currently made by trial-and-
error, and once these decisions are made, the previous models optimize the
treatment. However, the fact that a model’s representation depends on these
decisions means that a treatment’s quality depends on a physician’s experi-
ence. Replacing the trial-and-error process with an optimization technique that
provides consistently favorable answers to these questions is an important and
relatively untapped area of research.

To formally study how these three questions affect a treatment plan, we let
Opt be a function with the following arguments: B is a collection of isocenters
and beams, D is a vector of dose points, and P is a prescription. Opt(B,D,P)
returns the optimal value of the optimization routine, denoted by optval, and
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an optimal treatment, x. The argument B has the following form,

B =











((x1, y1, z2), (θ(1,1), ψ(1,1), ρ(1,1)), . . . , (θ(1,B1), ψ(1,B1), ρ(1,B1))
((x2, y2, z2), (θ(2,2), ψ(2,2), ρ(2,2)), . . . , (θ(2,B2), ψ(2,B2), ρ(2,B2))

...
((xI , yI , zI), (θ(I,I), ψ(I,I), ρ(I,I)), . . . , (θ(I,BI), ψ(I,BI ), ρ(I,BI ))











,

where (xi, yi, zi) is an isocenter and {(θ(i,j), ψ(i,j), ρ(i,j)) : j = 1, 2, . . . , Bi}
is the collection of spherical coordinates for the beams around isocenter i. As-
suming that there are m dose points in the anatomy (so the dose matrix has m
rows), the vector of dose points looks like

D = ((x1, y1, z1), (x2, y2, z2), . . . , (xm, ym, zm)) .

The form of the prescription P depends on the optimization problem. The func-
tional dependence a treatment has on the isocenters, the beam positions, the
dose points, and the prescription is represented by Opt(B,D,P) = (optval, x).
The form of Opt is defined by the optimization model, and most of the research
has been directed toward having a useful representation of Opt. However, the
optimization models and subsequent treatments depend on B, D, and P, and
this dependence is not clearly understood.

The question of deciding how the dose points are distributed has received
some attention (see for example [45]) and is often discussed as authors de-
scribe their implementation. However, a model that ‘optimally’ positions dose
points within an anatomy has not been considered, and deciding what optimal
means is open for debate. Most researchers use either a simple grid or the more
complicated techniques of skeletization or octree, but none of these processes
are supported by rigorous mathematics.

The question of deciding the number and position of the isocenter(s) is the
least investigated of the three problems. Most treatment systems place the
isocenter at the center-of-mass of a user defined volume, typically the target
volume. This placement is intuitive, but there is no reason to believe that this
is the ‘best’ isocenter. In fact, the clinics with which the authors are familiar
have developed techniques for special geometries that place the isocenter at
different positions. In addition to the location question, there has been no
mathematical work on deciding the number of isocenters. Investigating these
questions promises to be fruitful research.

The question of pre-selecting a candidate set of beams has witnessed some
work [4, 12, 17, 51, 52, 56, 62]. The breadth of the research exhibits that
the problem is complicated enough so that there is no clearly defined manner
to address the problem. Indeed, the first author of this tutorial spent several
years working on this problem to no avail. Much of the current research is
structural, meaning that the set of beams is constructed by adding beams under



4-28 A Tutorial on Radiation Oncology and Optimization

a decision rule. The other work selects a candidate set by solving a large,
mixed-integer problem. For the sake of brevity, we omit a detailed discussion
of these techniques and instead investigate a promising new process.

We suggest that rather than constructing a candidate set of beams, we instead
begin with an unusually large collection of beams and then prune them to the
desired number. The premise of the idea is that a treatment based on many
beams indicates which beams are most useful. Ehrgott [12] uses this idea to
select a candidate set of beams from a larger collection by solving a large,
mixed-integer problem. Our technique is different and is based on the data
compression technique of vector quantization.

A quantizer is a mapping that has a continuous, random variable as its ar-
gument and maps into a discrete set, called the code book. Each quantizer is
the composition of an encoder and a decoder. If u is a random variable with
possible values in V , an encoder takes the form f : V → {1, 2, . . . , n}, and a
decoder looks like g : {1, 2, . . . , n} → V . The quantizer defined by f and g
is Q(u) = g(f(u)). The encoder maps the realizations of u into the index set
{1, 2, . . . , n} and partitions V into n sets. The decoder completes the quan-
tization by assigning the possible realizations of u to a discrete subset of V ,
and the elements in this subset are called codewords. As an example, let u be
uniformly distributed on [0, 1]. The process of rounding is a quantizer, and in
this case we have that

f : [0, 1]→ {1, 2} : u 7→

{

1, 0 ≤ u < 0.5
2, 0.5 ≤ u ≤ 1

g : {1, 2} → [0, 1] : u 7→

{

0, u = 1
1, u = 2.

In this example, the interval [0, 1] is partitioned by {[0, 0.5), [0.5, 1]}, with the
first interval mapping to the codeword 0 and the second interval mapping to
the codeword 1.

In the previous example, the interval [0, 1] is quantized to the discrete set
{0, 1}. The quantization error for any realization of u is d(u,Q(u)), where d
is a metric on V (the most common error is ‖u − Q(u)‖2). The quantizer’s
distortion is the average error,

DQ = E d(u,Q(u)) =

∫

V

P (u) · d(u,Q(u))du,

where E d(u,Q(u)) is the expected value of d and P (u) is the probability
distribution of u. A quantizer is uniform if the partitioning sets have the same
measure and is regular if it satisfies the nearest neighbor condition —i.e.

d(u,Q(u)) = min{d(u, y) : y is a codeword}.
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Figure 4.13. The dose profile of a
treatment with one isocenter and 360
beams.
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Figure 4.14. The cumulative dose dis-
tribution.

The quantizer design problem is to build a quantizer that minimizes the distor-
tion, and the following necessary conditions [18] guide the design process:

For any codebook, the partition must satisfy the nearest neighbor condi-
tion, or equivalently, the quantizer must be regular.

For any Partition, the codevectors must be the centers of mass of the
probability density function.

Since these are only necessary conditions, a quantizer satisfying these condi-
tions may not minimize distortion. However, there are cases where these are
necessary and sufficient, such as when the logarithm of the probability density
function is convex [18].

We address the 2-dimensional beam selection problem by designing a quan-
tizer from [0, 2π) into [0, 2π). The probability density function is patient spe-
cific and is calculated by approximating the continuous planning problem. For
each isocenter, assume that there is a large number of beams, something on
the order of one every degree. Solve Opt(B,D,P) = (optval, x), and from the
treatment x calculate the amount of radiation delivered along each beam —i.e.
aggregate each beam’s sub-beams to attain the total radiation for the beam. As
an example, the dose profile for the problem in Figure 4.11 is in Figure 4.13,
where Opt is defined by model (4.7), there is a single isocenter in the middle
of the 64×64 image, there are 360 beams, and dose points are centered within
each pixel. The normalized dose profile is the probability density function, and
the idea is that this function estimates the likelihood of using an angle. This
assumption is reasonable because beams that deliver large amounts of radia-
tion to the tumor are often the ones that intersect the tumor but not the critical
structures.



4-30 A Tutorial on Radiation Oncology and Optimization

Figure 4.14 is the cumulative dose distribution, and this function is used to
define the encoder. Let h be the function that calculates the cumulative dose
distribution from a treatment plan x, and let the range of h be the interval
[0, γ]. So, h(Opt(B,D,P))(u) is a bijective mapping from [0, 2π) onto [0, γ) that
depends on the isocenters, the beams, the dose points, the prescription, and the
optimization model. If the physician desires an N beam plan, the encoder is
defined by

f : [0, 2π)→ {1, 2, . . . , N} :

h(Opt(B,D,P))(u)→ i, u ∈ [(i− 1)γ/N, iγ/N).

The encoder partitions the interval [0, 2π) into code regions, and because h is
monotonic, we are guaranteed that the quantizer is regular. For the example in
Figure 4.14, the partition of [0, 2π) for a 5 beam treatment is depicted along
the horizontal axis (which is in degrees instead of radians).

The decoder assigns a codeword to each partition, and from the necessary
conditions of optimality we have that the codewords of an optimal quantizer
must be the centers of mass of the normalized dose profile. These codewords
are highlighted on the horizontal axes of Figures 4.13 and 4.14 and are beams
32, 78, 140, 232, and 327. The quantizer for this example has the final form,

[0, 52) 7→ 32, [52, 101) 7→ 78,

[101, 164) 7→ 140, [164, 290) 7→ 232, [290, 360) 7→ 327.

Dose-volume histograms of two pruned plans are in Figures 4.15 and 4.16.
These images indicate that the critical structures fare better as more angles are
used (compare to Figure 4.12).

Our initial investigations into selecting beams with vector quantization are
promising, but there are many questions. The partition depends on the cu-
mulative dose distribution, and this function depends on where accumulation
begins. We currently start accumulating dose at angle 0, but this choice is
arbitrary and not substantiated. A more serious challenge is to define a clini-
cally relevant error measure that allows us to analyze distortion. We point out
that any meaningful error measure relies on Opt and moreover that the dose
matrices are different for the quantized and unquantized beams. Lastly, for
this technique to have clinical meaning, we need to extend it to 3-dimensions.
Any advancement in these areas will lead to immediate improvement in patient
care.

We conclude this section by mentioning that the quality of a treatment not
only depends on the model, which we have discussed in detail, but also on
the algorithm, which we have ignored. As an example, many of the nonlinear
models, including the least squares problems, are often solved by simulated
annealing. Because this is a stochastic algorithm, it is possible to design dif-
ferent treatments with the same model. An interesting numerical paper for the
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Figure 4.15. The dose-volume his-
togram for a treatment pruned from 360
to 5 angles for the problem in Fig-
ure 4.11.
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Figure 4.16. The dose-volume his-
togram for a treatment pruned from 360
to 9 angles for the problem in Fig-
ure 4.11.

nonlinear models would be to solve the same model with several algorithms to
find if some of them naturally design better treatments. The linear models are
likely to have multiple optimal solutions, and in this case, the solutions from a
simplex algorithm and an interior-point algorithm are different. Both solutions
have favorable and unfavorable characteristics. The basic solutions have the
favorable property that the number of sub-beams is restricted by the number
of constraints, and if constraints are aggregated, we can control the number of
sub-beams [36]. However, the simplex solutions have the unfavorable quality
that they guarantee that some of the prescribed bounds are attained [22]. The
interior-point solutions have the reverse qualities, as they favorably ensure the
prescribed bounds are strictly satisfied and they unfavorably use as many sub-
beams as possible [23–25]. The fact that interior-point algorithms inherently
produce treatments with many beams makes them well suited to tomotherapy.

4.5 The Gamma Knife

The Gamma Knife treatment system was specifically designed to treat brain,
or intracranial, lesions. The first Gamma Knife was built in 1968 and is radio-
surgical in its intent (the term radiosurgery was first used in [35]). The differ-
ence between radiosurgical and radiotherapy approaches has been previously
described. The high dose delivered during a radiosurgery makes accuracy in
both treatment planning and delivery crucial to a treatment’s success.

The Gamma Knife uses 201 radioactive cobalt-60 sources to generate its
treatment pencil beams instead of a linear accelerator. These sources are spher-
ically distributed around the patient, and their width is controlled by a series of
collimators. These collimators are different than those used in IMRT, with the
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Figure 4.17. A Gamma Knife treatment machine.

Gamma Knife collimators being located in a helmet that fits the patient’s head.
Each helmet consists of 201 cylindrical holes of either 4, 8, 14, or 18mm. The
201 radiation beams thus produced intersect at a common focal point and form
a spherically shaped high dose region whose diameter is roughly equal to the
collimator size. These spheres are called shots and have the favorable property
that radiation dose outside these regions falls off very quickly (i.e. a high dose
gradient). It is this fact that makes the Gamma Knife well suited to deliver
radiosurgeries, in that very high doses of radiation may be delivered to a target
which is immediately adjacent to a critical structure, with relatively little dose
delivered to the structure.

4.5.1 Clinically Relevant Gamma Knife Treatments

The primary clinical restriction on Gamma Knife treatments is that the num-
ber of shots must be controlled. Between each shot the patient is removed from
the treatment area, re-aligned, possibly re-fitted with a different collimator hel-
met, and returned to the treatment area. This is a time consuming process, and
most treatment facilities attempt to treat a patient in under 10 to 15 shots. We
mention that it is possible to ‘plug’ some of the 201 collimator holes, which
can produce an ellipsoidally shaped distribution of dose. While this is clin-
ically possible, this is rarely undertaken because of time restrictions and the
possibility of errors related to the manual process. In this tutorial we do not
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consider plugged collimators, and we therefore assume that the dose is deliv-
ered in spherical packets.

4.5.2 Optimization Models

From a modeling perspective, the Gamma Knife’s sub-beams are different
than the sub-beams of IMRT. The difference is that in IMRT the amount of
radiation delivered along each sub-beam is controlled by a multileaf collimator,
but in the Gamma Knife each sub-beam delivers the same amount of radiation.
So, Gamma Knife treatments do not depend on the same decision variables as
IMRT, and consequently, the structure of the dose matrix for the Gamma Knife
is different. The basic dose model discussed in Section 4.3 is still appropriate,
but we need to alter the indices of a(p,a,s,i,e), which recall is the rate at which
radiation accumulates at dose point p from sub-beam (a, s) when the gantry is
focused on the ith isocenter and energy e is used. The Gamma Knife delivers
dose in spherical packets called shots, which are defined by their centers and
radii. A shot’s center is the point at which the sources are focused and is the
same as the isocenter. The radius of a shot is controlled by the collimators that
are placed on each source. As mentioned in the previous subsection, the same
collimator size is used for every source per shot, and hence, a shot is defined by
its isocenter i and its collimator c. Moreover, unlike the linear accelerators used
in IMRT, the cobalt sources of the Gamma Knife produce a single energy, and
hence, there is no functional dependence on the energy e. We alter the indices
of a(p,a,s,i,e) by letting a(p,c,i) be the rate at which radiation accumulates at
dose point p from shot (c, i). These values form the dose matrix A, where the
rows are indexed by p and the columns by (c, i).

Since the Gamma Knife delivers dose in spherical shots, the geometry of
treatment design is different than that of IMRT. The basic premise of irradiating
cancerous tissue without harming surrounding structures remains, but instead
of placing beams of radiation so that they avoid critical areas, we rather attempt
to cover (or fill) the target volume with spheres. Since the cumulative dose is
additive, regions where shots overlap are significantly over irradiated. These
hot spots do not necessarily degrade the treatment because of its radiosurgical
intention. However, it is generally believed that the best treatments are those
that sufficiently irradiate the target and at the same time reduce the number and
size of hot spots. This means that favorable Gamma Knife treatments fill the
target with spheres of radiation so that 1) shots intersections are small and 2)
shots do not intersect non-target tissue. Outside the fact that designing Gamma
Knife treatments is clinically important, the problem is mathematically inter-
esting because of its relationship to the sphere packing problem. While there
is a wealth of mathematical literature on sphere packing, this connection has
not been exploited, and this promises to be a fruitful research direction.
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The problem of designing Gamma Knife treatments received significant
exposure when it was one of the modeling problems for the 2003 COMAP
competition in mathematical modeling [10], and there are many optimization
models that aid in the design of treatments [15, 34, 38, 58–60, 65, 66]. We
focus on the recent models by Ferris, Lim, and Shepard [14] (winner of the
2002 Pierskalla award) and Cheek, Holder, Fuss, and Salter [6]. Both of these
models use dose-volume constraints and segment the anatomy into target and
non-target, making AN vacuous. The model proposed in [14] is

min{eTuT : dT = ATx, dC = ACx, θ ≤ uT + dT ,

0 ≤ x ≤ sM, ρ(eTdT + eTdC) ≤ eT dT , e
T s ≤ n,

si ∈ {0, 1}, 0 ≤ uT , 0 ≤ uC}. (5.1)

The dose to the target and non-target tissues is contained in the vectors dT

and dC , and uT measures how much the target volume is under the goal dose
θ. The objective is to minimize the total amount the target volume is under
irradiated. The binary variables si indicate whether or not a shot is used or not,
and the constraint eT s ≤ n limits the treatment to n shots (M is an arbitrarily
large number). The parameter ρ is a measure of desired conformality, and the
constraint ρ(eTdT + eTdC) ≤ eTdT ensures that the target dose is at least ρ of
the total dose. If ρ is 1, then we are attempting to design a treatment in which
the entire dose is within the target.

Model (5.1) is a binary, linear optimization problem. The authors of [14]
recognize that the size of the problem makes it impossible for modern op-
timization routines to solve the problem to optimality (small Gamma Knife
treatments often require more than 500 Gigabytes of data storage). The authors
of [14] replace the binary variables with a tan−1 constraint that transforms the
problem into a continuous, nonlinear program. Specifically, they replace the
constraints

0 ≤ x ≤ sM,
eT s ≤ n,
s ∈ {0, 1}







with







∑

(c,i)

tan−1(αx(c,i)) ≤ n,

where larger α values more accurately resemble the binary constraints. To-
gether with other reductions and assumptions, this permits the authors to use
CONOPT [11] to design clinically acceptable treatments.

Model (5.1) is similar to the IMRT models that use dose-volume constraints
because it’s objective function measures dose and ρ describes the volume of
non-target tissue that we are allowed to irradiate. While this model successfully
designed clinically relevant treatments, physicians often judge Gamma Knife
treatments with a conformality index. These indices are scoring functions that
quantify a treatment’s quality by measuring how closely the irradiated tissue
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resembles the target volume. So, in addition to the dose-volume histograms
and the 2-dimensional isodose lines, Gamma Knife treatments are often judged
by a single number. Collapsing large amounts of information into a single
score is not always appropriate, but the radiosurgical intent of a Gamma Knife
treatment lends itself well to such a measure —i.e. the primary goal is to
destroy the target with an extremely high level of radiation and essentially
deliver no radiation to the remaining anatomy. This means that conforming the
high-dose region to the target is crucial, and hence, judging treatments on their
conformity is appropriate.

Several conformality indices are suggested in the literature (see [37] for a
review). Let D be the suggested target dose (meaning the physician desires
ATx ≥ De) and define

TV = {p : dose point p is in the target volume } and

IVT = {p : the dose at point p is at least T ·D},

where T is between 0 and 1. If we assume that each dose point represents a
volume V , the target volume is V · |TV | and the T th isodose line encloses a
volume of V · |IVT |. The standard indices are expressed in terms of the %100
isodose line and are

PITV = |IV1|/|TV |,

CI = |TV ∩ IV1|/|IV1|, and

IPCI = (|TV ∩ IV1|/|TV |) · (|TV ∩ IV1|/|IV1|).

The last index is called Ian Paddick’s conformality index [47] and is the prod-
uct of the over treatment ratio and the under treatment ratio. These are defined
for any isodose value by

OTRT = |TV ∩ IVT |/|IVT | and UTRT = |TV ∩ IVT |/|TV |.

The over treatment ratio is at most 1 if the target volume contains the T th

isodose volume. Otherwise, OTRT is between 0 and 1, and 1 − OTRT is the
volume of non-target tissue receiving a dose of at least T · D. Similarly, the
under treatment ratio is 1 if the target volume is contained in the T th isodose
line, and 1 − UTRT is the percentage of target volume receiving less than
T · DGy. The over and under treatment ratios are 1 only if the T th isodose
volume matches the target volume, and the conformality objective is to design
plans that have OTRT = UTRT = 1. For any T , the Ian Paddick conformality
index is IPCIT = UTRT ·OTRT .

The authors of [6] suggest a model whose objective function is based on Ian
Paddick’s conformality index. Assume that there are I isodose lines and that
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Θi is the ith column of the matrix Θ. The model in [6] is

min

{

I
∑

i=1

wi(1− e
T
TV Θi/e

T Θi) + ui(1− (V/K)eT
TV Θi) :

Ax = d, diag(d)eeT ≤ eeTHD +MΘ, 0 ≤ x ≤Mβ, eTβ ≤ L,

βi ∈ {0, 1}, Θ(p,i) ∈ {0, 1}}. (5.2)

The parameters V and K are the voxel and target volumes, and eTV is the
binary vector with ones where an index corresponds to a targeted dose point.
The number of shots is measured by the binary vector β and is restricted by
L (M is an arbitrarily large value). The vector d is the delivered dose, and
diag(d) is the diagonal matrix formed by d. The diagonal matrix H contains
the isodose values that we are using, and eeTHD is a matrix with each column
being TiDe. The matrix constraint diag(d)eeT ≤ eeTH+MΘ guarantees that
if the dose at point p is above the isodose value TiD, then Θ(p,i) is 1. From
this we see that OTRTi

= eTTV Θi/e
T Θi and that UTRTi

= (V/K)eT
TV Θi.

The weights wi and ui express the importance of having the T th
i isodose line

conform to the target volume. We point out that the objective function of Model
(5.2) is not IPCI but is rather a weighted sum of the over and under treatment
ratios.

Neither model (5.1) or (5.2) penalizes over irradiating portions of the tar-
get, and controlling hot spots complicates the problem. This follows because
measuring hot spots is often accomplished by adding a variable for each dose
point that increases as the delivered dose grows beyond an acceptable amount.
The problem is not with the fact that there are an increased number of vari-
ables, but rather that physicians are not concerned with high doses over small
regions. A more appropriate technique is to partition the dose points into sub-
sets, say Hr, and then aggregate dose over these regions to control hot spots. If
a hot spot is defined by the average dose of a region exceeding τ , then adding
the constraints,

∑

p∈Hr

dp ≤ |Hr|(τ + q) and q ≥ 0

to model (5.1) or (5.2) enables us to calculate the largest hot spot. Such a tactic
was used in [6] for model (5.2), where each Hr contained 4 dose points in a
contiguous, rectangular pattern. The objective function was altered to

I
∑

i=1

(

wi(1− e
T
TV Θi/e

T Θi) + ui(1− (V/K)eT
TV Θi)

)

+ 0.5q.

Model (5.2) is easily transformed into a binary, quadratic problem, but
again, it’s size makes standard optimization routines impractical. As an al-
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ternative, fast simulated annealing is used in [6], where the research goal was
to explore how treatment quality depends on the number of shots —i.e. how
the standard indices depend on L. Treatments designed with this model are
shown in Figure 4.18, and the CI and IPCI values for different choices of L
are in Table 4.1. Figure 4.19 shows how the dose-volume histograms improve
as more shots are allowed.

Figure 4.18. Isodose curves from treatments designed with Model (5.2). The value of L is
listed across the top of each treatment, and the millimeter value on the left indicates the depth
of the image.

4.6 Treatment Delivery

The previous sections focused on treatment design, and while these prob-
lems are interesting and important, the optimization community is now poised
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5 Shots 10 Shots 25 Shots 50 Shots Unlimited Ideal
PITV 0.934 0.996 0.992 0.990 0.999 1
CI 0.846 0.897 0.925 0.954 0.997 1
IPCI 0.767 0.808 0.863 0.919 0.995 1

Table 4.1. How the PITV , CI and IPCI indices react as the number of possible shots in-
creases.

Figure 4.19. The dose-volume histograms for treatment plans with differing numbers of shots.

to significantly improve patient care with respect to the design process. So,
even though it is important to continue the study of treatment design, there
are related clinical questions where beginning researchers can make substan-
tial contributions. In this section we focus on two treatment delivery questions
that are beginning to receive attention.

As mentioned earlier, the difference between radiotherapy and radiosurgery
is that radiotherapy is delivered in fractional units over several days. Current
practice is to divide the total dose into N equal parts and deliver the overall
treatment in uniform, daily treatments. The value of N is based on studies that
indicate how healthy tissue regenerates after being irradiated, and the overall
treatment is fractionated to make sure that healthy tissue survives. Dividing
the total dose was particularly important when technology was not capable of
conforming the high-dose region to the target, as this meant that surrounding
tissues were being irradiated along with the tumor. However, modern tech-
nology permits us to magnify the difference between the dose delivered to the
target and the dose delivered to surrounding tissues. The support for a uniform
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division does not make sense with our improved technology, and Ferris and
Voelker [16] have investigated different approaches.

Suppose we want to divide a treatment into N smaller treatments. If dk

is the cumulative dose after k treatments, the problem is to decide how much
dose to deliver in subsequent periods. This leads to a discrete-time dynamic
system, and if we let uk be the dose added in period k and wk be the random
error in delivering uk, then the system is

dk+1 = dk + uk(1 + wk).

The random error is real because the planned dose often deviates from the
delivered dose since patient alignment varies from day-to-day. The decision
variables uk must be nonnegative since it is impossible to remove dose after it
is delivered. The optimization model used in [16] is

min{E(‖wT (dN −D)‖1) :

dk+1 = dk + uk(1 + wk), uk ≥ 0, wk ∈W}, (6.1)

where D is the total dose to deliver, W is the range of the random variable
w, and E is the expected value. This model can be approached from many
perspectives, and the authors of [16] consider stochastic linear programming,
dynamic programming, and neuro-dynamic programming. They suggest that a
neuro-dynamic approach is appropriate and experiment with a 1-dimensional
problem. Even at this low dimensionality the problem is challenging. They
conclude that undertaking such calculations to guide clinical practice is not re-
alistic, but they do use their 1-dimensional model to suggest ‘rules-of-thumb.’

Model (6.1) requires a fixed number of divisions, and hence, this problem
only address the uniformity of current delivery practices. An interesting ques-
tion that is not addressed is to decide the number of treatments. If we can solve
this problem independent of deciding how the dose is to be delivered, then we
can calculate N before solving model (6.1). However, we suggest that it is best
to simultaneously make these decisions.

Another delivery question that is currently receiving attention is that of leaf
sequencing [3, 13, 26, 27, 49, 50]. This is an important problem, as com-
plicated treatments are possible if we can more efficiently deliver dose. An
average treatment lasts from 15 to 30 minutes, and if the leaves of the colli-
mator are adjusted so that the desired dose profile is achieved quickly, then
more beams are possible. This translates directly to better patient care because
treatment quality improves as the number of beams increases (the same is true
for the Gamma Knife as demonstrated in Section 4.5.2). We review the model
in [3], which is representative, and encourage interested readers to see the other
works and their bibliographies.

Suppose we have solved (in 3-dimensions) Opt(B,D,P) and that an optimal
treatment shows that a patient should be irradiated with the following exposure
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pattern,

I =

















0 0 2 2 2 0
0 1 1 3 1 0
0 0 2 2 1 0
1 2 2 2 1 0
0 1 2 3 2 1
0 1 2 2 2 2

















. (6.2)

The dose profile I contains our desired exposure times. Each element of I
represents a rectangular region of the Beam’s Eye View —i.e. the view of the
patient as one was looks through the gantry. The collimator for this example
has 12 leaves (modern collimators have many more), one on the right and left
of each row. These leaves can move across the row to shield the patient.

The optimization model in [3] minimizes exposure time by controlling the
leaf positions. The treatment process is assumed to follow the pattern: the
leaves are positioned, the patient is exposed, the leaves are re-positioned, the
patient is exposed, etc..., with the process terminating when the dose profile is
attained. For each row i and time step t we let

lijt =

{

1, if the left leaf in row i is positioned in column j at time t
0, otherwise

rijt =

{

1, if the right leaf in row i is positioned in column j at time t.
0, otherwise.

The nonlinear, binary model studied is

min







∑

t

αt :
∑

j

lijt = 1,∀i, t;
∑

j

rijt = 1,∀i, t,

yijt =

j−1
∑

k=0

likt −

j
∑

k=1

rikt,∀t;
∑

k=0

likt ≥

j
∑

k=1

rikt,∀t,

∑

t

αtyijt = Iij,∀i, j; lijt, rijt, yijt ∈ {0, 1},∀i, j, t;

αt ≥ 0,∀t}. (6.3)

Model (6.3) is interpreted as finding a shape matrix at each time t. A shape
matrix is a binary matrix such that the 1s in every row are contiguous (a row
may be void of 1s). Each 1 indicates an unblocked region of the beam, and
each shape matrix represents a positioning of the leaves. The y variables in
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model (6.3) form an optimal collection of shape matrices. For example,

I =

[

2 3
4 2

]

= 2

[

1 0
0 1

]

+ 4

[

0 0
1 0

]

+ 3

[

0 1
0 0

]

= 2

[

1 1
1 1

]

+ 1

[

0 1
1 0

]

+ 1

[

0 0
1 0

]

.

The first shape matrix in the first decomposition has y111 = y221 = 1 and
y121 = y211 = 0. The total exposure time for the first decomposition is 2+4+
3 = 9 and for the second decomposition the exposure time is 2 + 1 + 1 = 4.
So, the second leaf sequence is preferred.

The authors of [3] show that model (6.3) can be re-stated as a network flow
problem, and they further develop a polynomial time algorithm to solve the
problem. This provides the following theorem (see [13] for related results).

Theorem 4.3 (Boland, Hamacher, and Lenzen [3]) Model (6.3) is
solvable in polynomial time.

We close this section by suggesting a delivery problem that is not addressed
in the literature. As Figure 4.19 shows, Gamma Knife treatments improve as
the number of shots increases. We anticipate that new technology will permit
automated patient movement, which will allow the delivery of treatments with
numerous shots. How to move a patient so that shots are delivered as efficiently
as possible is related to the traveling salesperson problem, and investigations
into this relationship are promising. In the distant future, we anticipate that pa-
tients will movement continuously within the treatment machine. This means
shots will move continuously through the patient, and finding an optimal path
is a control theory problem.

4.7 Conclusion

The goal of this tutorial was to familiarize interested researchers with the ex-
citing work in radiation oncology, and the authors hope that readers have found
inspiration and direction from this tutorial. We welcome inquiry and will be
happy to answer questions. We conclude with a call to the OR community to
vigorously investigate how optimization can aid medical procedures. The man-
agement side of health care has long benefited from optimization techniques,
but the clinical counterpart has enjoyed much less attention. The focus of this
work has been radiation oncology, but there are many procedures where stan-
dard optimization routines and sound modeling can make substantial improve-
ments in patient care. This research is mathematically aesthetic, challenging,
and intrinsically worthwhile because it aids mankind.
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