
Tutorial on Monte Carlo Techniques

Gabriel A. Terejanu

Department of Computer Science and Engineering

University at Buffalo, Buffalo, NY 14260

terejanu@buffalo.edu

1 Introduction

Monte Carlo (MC) technique is a numerical method that makes use of random numbers to solve
mathematical problems for which an analytical solution is not known. The first article, “The Monte
Carlo Method” by Metropolis and Ulam, has appeared for the first time in 1949 [9], even though well
before that certain statistical problems were solved using random numbers. Since the simulation of
random numbers is very time consuming, MC has became practical only with the advent of computers.

A simple MC simulation is the determination of π. Suppose we have a circle with radius r = 1
inscribed within a square. Then the area ratio is:

Acircle

Asquare
=

πr2

4r2
=

π

4
(1)

To determine π we randomly select n points, pi = (xi, yi) for i = 1 . . . n, in the square and approximate
the area ratio by:

Acircle

Asquare
=

m

n
(2)

where m is the number of random points in the circle, they must satisfy x2
i +y2

i ≤ 1. Hence π = 4× m
n

.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Compute π

This method is called hit-or-miss Monte Carlo since the estimate is computed as the actual ratio
of hits to random tries. It is the least efficient MC method.

2 Random Variables

The “Monte Carlo” name is derived from the city, with the same name, in the Principality of Monaco,
well known for its casinos. This was because the roulette wheel was the simplest mechanical device
for generating random numbers [10].

Even though “random variable” implies that one cannot predict its value, the distribution may
well be known. The distribution of a random variable gives the probability of a given value [7].

The probability distribution of a discrete random variable is a list of probabilities associated
with each of its possible values. It is also sometimes called the probability function or the proba-
bility mass function. (Valerie J. Easton and John H. McColl’s Statistics Glossary v1.1).

A continuous random variable, x, takes any values in a certain interval (a, b). It is defined
by probability density function (pdf) p(x) and the given interval. The probability of xi falling in
an arbitrary interval (a′, b′) is given by:

P{a′ ≤ x ≤ b′} =

∫ b′

a′

p(x)dx (3)

The pdf has to satisfy the following two conditions:

1. p(x) ≥ 0 for any x ∈ (a, b)

2.
∫ b

a
p(x)dx = 1

The expected value or mean, the second moment and the variance or central second moment of
the random variable are respectively defined by:

E[x] = µ =

∫ b

a

xp(x)dx (4)

E[x2] =

∫ b

a

x2p(x)dx (5)

V ar[x] = σ2 = E[(x − µ)2] =

∫ b

a

(x − µ)2p(x)dx = E[x2] − µ2 (6)

where σ is the standard deviation.

Consider now two continuous random variables x and y. We say that x and y are statistically inde-
pendent if the distribution of x does not depend on y and vice-versa. Hence the joint probability
density function fxy(x, y) = fx(x)fy(y).

The covariance and the correlation of two random variables:

Cov[x, y] = E [(x − E[x])(y − E[y])] = E[xy] − E[x]E[y] (7)

Corr[x, y] =
Cov[x, y]

√

V ar[x]V ar[y]
(8)

2

Note: If x and y are uncorrelated then their covariance and the correlation coefficient is zero, hence
E[xy] = E[x]E[y]. “Statistically independent random variables are always uncorrelated, but uncorre-
lated random variables can be dependent. Let x be uniformly distributed over [−1, 1] and let y = x2.
The two random variables are uncorrelated but are clearly not independent” [8].

3 Generate Random Variables

The “Monte Carlo” name is derived from the city, with the same name, in the Principality of Monaco,
well known for its casinos. This was because the roulette wheel was the simplest mechanical device
for generating random numbers [10].

“A sequence of truly random numbers is unpredictable and therefore unreproducible. Such a se-
quence can only be generated by a random physical process” [7]. Practically it is very difficult to
construct such a physical generator, which has to be fast enough, and to connect it to a computer. To
overcome this problem one can use pseudo-random numbers, which are computed according to a
mathematical formulation, hence are reproducible and appear random to someone who does not know
the algorithm [12].

John von Neumann has constructed the first pseudorandom generator called mid-square method.
Suppose we have a 4-digit number x1 = 0.9876. We square it, x2

1 = 0.97535376, obtaining this way a
8-digit number. We obtain x2 by taking out the middle four digits, hence x2 = 0.5353. Now square
x2 and so on. Unfortunately, the algorithm tends to produce disproportionate frequency of small
numbers [10].

One popular algorithm is the multiplicative congruential method suggested by D.H. Lehmer
in 1949. Given a modulus m, a multiplier a and a starting point x1, the method generates successive
pseudo-random numbers by the formula [7]:

xi = axi−1Mod(m) (9)

4 MC integration

Let f(x) be an arbitrary continuous function and y = f(x) the new random variable. Then the
expected value and the variance of y:

E[y] = E[f(x)] =

∫ b

a

f(x)p(x)dx (10)

V ar[y] = V ar[f(x)] =

∫ b

a

(f(x) − E[f(x)])2 p(x)dx (11)

Note: E[f(x)] 6= f(E[x]).

Our goal is to calculate the expectation of f(x) without computing the integral. This can be achieved
by using a MC simulation.

3

Crude Monte Carlo: A simple estimate of the integral (10) can be obtained by generating n

samples xi ∼ q(x), for i = 1 . . . n, and computing the estimate I = 1
n

∑n
i=1 f(xi). To determine the

accuracy of method we first have to introduce two theorems.

The law of large numbers implies that the average of a sequence of random variables, of a known
distribution, converge to its expectation as the numbers of samples goes to infinity. Let us select n

numbers xi randomly with probability density p(x). Hence:

I =
1

n

n
∑

i=1

f(xi) → E[f(x)] =

∫ b

a

f(x)p(x)dx (12)

In the statistical context A(n) is a consistent estimator of B if “A(n) is said to converge to B as
n goes to infinity if for any probability P [0 < P < 1], and any positive quantity δ, a k can be found
such that for all n > k the probability that A(n) will be within δ of B is greater that P” [7].

The central limit theorem: the sum of a large number of independent random variables is ap-
proximately normally distributed. A sum of identical and independent distribution (i.i.d) random
variables zi with mean µ an finite variance σ2:

∑n
i=1 zi − nµ

σ
√

n
→ N (0, 1) as n → ∞ (13)

The error of the MC method [2]:

error ≡
∣

∣I − E[f(x)]
∣

∣

=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(xi) − E[f(x)]

∣

∣

∣

∣

∣

=

√

V ar[f(x)]√
n

∣

∣

∣

∣

∣

∑n
i=1 f(xi) − nE[f(x)]
√

V ar[f(x)]
√

n

∣

∣

∣

∣

∣

=

√

V ar[f(x)]√
n

|N (0, 1)| (14)

Mathematical properties [7]

1. If the variance of f(x) is finite, the MC estimate is consistent

2. The MC estimate is asymptotically unbiased

3. The MC estimate is asymptotically normally distributed

4. The standard deviation of the MC estimate is given by σ =

√
V ar[f(x)]√

n

Also note that the MC methods are immune to the curse of dimensionality. The accuracy of the
method can be improved by increasing the number of samples, n, but the convergence is very slow. A
better way to improve the accuracy is to decrease the variance, V ar[f(x)]. This methods are called
variance-reducing techniques.

4

5 Variance Reducing Techniques

5.1 Stratified Sampling

This technique divides the full integration space into subspaces, for which a MC integration is per-
formed. The final result is the sum of all partial results. We divide the integration domain R into k

regions Ri for i = 1 . . . k.

E[f(x)] =

∫

R

f(x)p(x)dx =

k
∑

j=1

∫

Rj

f(x)p(x)dx (15)

The MC estimate of the expectation becomes:

I =

k
∑

j=1

V ol(Rj)

nj

nj
∑

i=1

f(xi) (16)

where nj is the number of points used for MC integration on Rj, and V ol(Rj) is the subdomain volume.

The MC variance:

σ2 =

k
∑

j=1

V ol2(Rj)

nj

V arRj
[f(x)] (17)

where V arRj
[f(x)] =

1

V ol(Rj)

∫

Rj

(

f(x) − 1

V ol(Rj)

∫

Rj

f(x)p(x)dx

)2

p(x)dx (18)

By selecting carefully the number of points this can lead to a lower variance compared with the crude
MC. If not it can perform worse than the crude MC.

5.2 Importance Sampling

The pdf under the integral, p(x), may not be the best pdf for MC integration. In this case we want
to use a different and simpler pdf q(x) from which we can draw the samples. q(x) is called the
importance density or the proposal distribution. Therefore we can write:

E[y] = E[f(x)] =

∫ b

a

f(x)p(x)dx (19)

=

∫ b

a

f(x)p(x)

q(x)
q(x)dx (20)

= E

[

f(x)p(x)

q(x)

]

(21)

By generating n samples xi ∼ q(x), for i = 1 . . . n, the estimate becomes:

I =
1

n

n
∑

i=1

f(xi)p(xi)

q(xi)
=

1

n

n
∑

i=1

W (xi)f(xi) (22)

5

where W (xi) = p(xi)
q(xi)

are the importance weights. Since the normalizing factor p(xi) is not know,

we have to normalize the weights such that
∑n

i=1 W (xi) = 1:

I =
1
n

∑n
i=1 W (xi)f(xi)

1
n

∑n
i=1 W (xi)

=
1

n

n
∑

i=1

Wn(xi)f(xi) (23)

where Wn(xi) = W (xi)
∑n

i=1
W (xi)

are the normalized importance weights. This estimate is biased but

the bias vanishes asymptotically as n → ∞ [4].

The variance of the importance sampler estimate is given by [4]:

V arq[f(x)] =
1

n

∫
[

(f(x)p(x))2

q(x)

]

dx −
E2

p [f(x)]

n
(24)

To reduce the variance q(x) should be chosen to match the shape of p(x) or |f(x)| p(x) [4].

5.3 Control Variates

Suppose that we have a function g(x) for which E[g(x)] is known. Let:

h(x) = f(x) − c
(

g(x) − E[g(x)]
)

(25)

where h(x) can have a smaller variance than f(x). Our estimate is given now by:

I =
1

n

n
∑

i=1

(

f(xi) − cg(xi)
)

+cE[g(x)] (26)

The variance of h(x):

V ar[h(x)] = V ar[f(x)] + c2V ar[g(x)] − 2cCov[f(x), g(x)] (27)

where Cov[f(x), g(x)] = E [(f(x) − E[f(x)])(g(x) − E[g(x)])].

We want to minimize the variance V ar[h(x)] with respect to c:

dV ar[h(x)]

dc
= 2cV ar[g(x)] − 2Cov[f(x), g(x)] (28)

By setting this to zero, the optimal value for c is then given by:

c =
Cov[f(x), g(x)]

V ar[g(x)]
(29)

Then the variance V ar[h(x)] becomes:

V ar[h(x)] = V ar[f(x)] − Cov2[f(x), g(x)]

V ar[g(x)]
= V ar[f(x)]

(

1 − Corr2[f(x), g(x)])
)

(30)

where Corr[f(x), g(x)] = Cov[f(x),g(x)]√
V ar[f(x)]

√
V ar[g(x)]

is the correlation coefficient. Hence the quality of the

estimation depends on the correlation between f(x) and g(x).

6

5.4 Rejection Sampling (or Acceptance Rejection Sampling)

Suppose that we know an upper bound for the underlying pdf p(x) and we use a proposal distribution
q(x) as in importance sampling. So, there is c < ∞ such that p(x) < cq(x) [4].

Algorithm 1 Rejection Sampling

1: Select a uniform random variable u ∼ U(0, 1)
2: Draw a sample x ∼ q(x)

3: if u <
p(x)
cq(x) then

4: accept x

5: else
6: reject it and repeat the process
7: end if

One should carefully select the value for c. If it is too small the rejection rate will be low; if it is too
big the acceptance rate will be low.

5.5 Antithetic Variates

Consider that we have an even number of samples, 2n, drawn from p(x). One approach is to generate
correlated samples to reduce the variance by cancellations in their sum. The estimate:

I =
1

2n

2n
∑

i=1

f(xi) (31)

=
1

n

n
∑

i=1

f(x2i−1) + f(x2i)

2
(32)

=
1

n

n
∑

i=1

g(x2i) (33)

where g(x2i) =
f(x2i−1)+f(x2i)

2 .

The variance V ar[g(x2i)]:

V ar[g(x2i)] = V ar

[

f(x2i−1) + f(x2i)

2

]

(34)

=
1

4

(

V ar[f(x2i−1)] + V ar[f(x2i)] + 2Cov[f(x2i−1), f(x2i)]
)

(35)

Variance analysis:

1. If Cov[f(x2i−1), f(x2i)] = 0 or f(x2i−1), f(x2i) are independent then V ar[g(x2i)] = 1
2V ar[f(x2i−1)],

hence the variance of the estimator remains the same.

2. If Cov[f(x2i−1), f(x2i)] < 0 then the estimate is improved.

3. If Cov[f(x2i−1), f(x2i)] > 0 the actual performance is worse.

7

5.6 Partial averaging (or Rao-Blackwellization)

The method is based on the idea that “one should carry out analytical computation as much as possi-
ble” [3]. So, if we can analytically compute the integral over a subspace, this yields the same expected
value but with a smaller variance.

From the Law of Iterated Expectations we can compute the conditional expectation of f(x) for some
sigma algebra F :

E[f(x)] = E
[

E[f(x)|F]
]

(36)

From the Law of Total Variance:

V ar[f(x)] = V ar
[

E[f(x)|F]
]

+ E
[

V ar[f(x)|F]
]

(37)

Therefore V ar[f(x)] ≥ V ar
[

E[f(x)|F]
]

. In practice we can factor f(x) such that some of the parts
to be computed analytical and the rest can be solved by using Monte Carlo simulation. The method
can be very problem dependent due to this factorization and sometimes may be more computational
expensive than just simulating the entire system [3].

6 Markov Chain Monte Carlo

MCMC deals with generating samples from some complex probability distribution p(x) that is difficult
to directly sample from. The approach is to use a sequence of samples {xk} from a Markov chain,
such that the sequence converges on p(x) as k → ∞.

In the following section only the case of discrete-time, continuous state space Markov pro-
cess is discussed.

6.1 Markov chain

A Markov process is a stochastic process that has the Markov property. A stochastic process has
the Markov property if the conditional probability distribution of the future states given all the past
states depends only on the current state:

p(xk+1|x0, x1 . . . xk) = p(xk+1|xk) (38)

A Markov chain is a sequence of random variables {xk} generated by a Markov processes. The
value of xk is called the state of the process at time k. The one step transition probability
density (transition kernel) p(y|x) is the probability density that the process moves from x to y.
The transition kernel must satisfy:

∫

p(y|x)dy = 1 (39)

Definition: The Markov chain is said to be homogeneous/stationary if the transition kernels do
not depend on the time.

8

Define p(x) the total probability density of x, and p(x0) the initial probability density of x0.
The total probability density of y is given by the Chapman-Kolmogorov equation:

p(y) =

∫

p(y|x)p(x)dx (40)

Theorem: “If a Markov chain is ergodic, then there exists a unique steady state distribution π

independent of the initial state” [4].

π(y) =

∫

p(y|x)π(x)dx (41)

Reversible condition (detailed balance property): Guarantees the invariance of π under the
transition kernel:

p(x|y)π(y) = p(y|x)π(x),∀x, y (42)

“The unconditional probability of moving y to x is equal to the unconditional probability of moving
x to y, where x and y are both generated from π(·)” [4].

“In MCMC sampling framework the samples are generated by a homogeneous, reversible, ergodic
Markov chain with invariant distribution π” [4].

6.2 Metropolis-Hastings Algorithm

Published in 1953 by Nicholas Metropolis and generalized in 1970 by W.K.Hastings, the algorithm
draws samples from the target density π(x), for which the normalizing factor might be unknown.

A Markov chain is generated with a proposal density (candidate target) q(y|x), where
∫

q(y|x)dx =
1. The proposal density generates a value for y when the process is at x [5]. If q(y|x) satisfies the
reversible condition then our search for a transition kernel is over.

Suppose, without loss of generality, that:

q(y|x)π(x) > q(x|y)π(y) (43)

which means that the process moves from x to y much often than from y to x [5]. To reduce the
number of moves from x to y one can introduce the probability of move, α(y|x), such that the
transition kernel from x to y is given by:

pMH(y|x) ≡ q(y|x)α(y|x) (44)

From (43) set α(x|y) = 1, because we need as many moves as we can get from y to x. To determine
α(y|x), one must require pMH(y|x) to have the detailed balance property:

pMH(y|x)π(x) = pMH(x|y)π(y) (45)

q(y|x)α(y|x)π(x) = q(x|y)α(x|y)π(y)

= q(x|y)π(y) (46)

9

Thus the probability of move is given by:

α(y|x) = min

[

q(x|y)π(y)

q(y|x)π(x)
, 1

]

(47)

Algorithm 2 Metropolis-Hasting

1: Draw x0 from p(x0)
2: for i = 0 to N do
3: Generate y ∼ q(y|xi)
4: Generate u ∼ U(0, 1)
5: if u ≤ α(y|xi) then
6: xi+1 = y

7: else
8: xi+1 = xi

9: end if
10: end for
11: return {xNb, xNb+1, . . . xN}

The number of steps, N , determines the algorithm performance. We need a good amount of steps,
denoted Nb, for the chain to approaches stationarity (burn-in period). Another important factor for
the efficiency is to have many samples or a high acceptance rate for the values of y. The draws are
regarded as samples from π(x) only after the burn-in period Nb [5].

6.3 Gibbs Sampling

The method was introduced by German and German in 1984 and named after the physicist J.W.
Gibbs. The algorithm is a special case of Metropolis-Hastings for generating a sequence of samples
from a joint distribution p(x) hard to sample, of two or more random variables.

Let x be a n-dimensional random vector: x = [x1, x2, . . . xn]T . The Gibbs sampler uses only univari-
ate conditional distributions, where all of the random variables but one are assigned fixed values.

Algorithm 3 Gibbs Sampling

1: Draw x0 from p(x0), results : x0 = [x0
1, x

0
2, . . . x

0
n]T

2: for i = 1 to N do
3: Draw xi

1 ∼ p(x1|xi−1
2 , xi−1

3 , . . . xi−1
n)

4: ...
5: Draw xi

n ∼ p(xn|xi−1
1 , xi−1

2 , . . . xi−1
n−1)

6: xi = [xi
1, x

i
2, . . . x

i
n]T

7: end for
8: return {xNb,xNb+1, . . . xN}

where Nb denotes the burn-in period.

10

“The Gibbs sampler is a nice solution to estimation of hierarchical or structured probabilistic model.
Gibbs sampling can be viewed as a Metropolis method in which the proposal distribution is defined in
terms of the conditional distributions of the joint distribution and every proposal is always accepted”
[4].

7 Sequential Monte Carlo

In this section we focus our attention on sequential state estimation using sequential Monte Carlo
(SMC). SMC is known also as bootstrap filtering, particle filtering, the condensation algorithm, inter-
acting particle approximations and survival of the fittest [1].

7.1 Sequential Importance Sampling (SIS)

Consider the following nonlinear system, described by the difference equation and the observation
model:

xk = f(xk−1,wk−1) (48)

zk = h(xk,vk−1) (49)

Denote by Zk = {zi|1 ≤ i ≤ k} the set of all observations up to time k, conditionally independent
given the process with distribution p(zk|xk). Also, assume that the state sequence xk is an unobserved
(hidden) Markov process with initial distribution p(x0) and transition distribution p(xk+1|xk) [6].

Our aim is to estimate recursively the posterior distribution p(xk|Zk) and expectations of the form[6]:

E[f(xk,wk)] =

∫

f(xk,wk)p(xk|Zk)dxk (50)

Suppose that we cannot sample from the posterior distribution and use an importance sampling
approach to sample from a proposal distribution q(xk|Zk). Hence:

E[f(xk,wk)] =

∫

f(xk,wk)
p(xk|Zk)

q(xk|Zk)
q(xk|Zk)dxk (51)

=

∫

f(xk,wk)
p(Zk|xk)p(xk)

p(Zk)q(xk|Zk)
q(xk|Zk)dxk (52)

=

∫

f(xk,wk)
Wk(xk)

p(Zk)
q(xk|Zk)dxk (53)

where Wk(xk) = p(Zk|xk)p(xk)
q(xk|Zk) ∝ p(xk|Zk)

q(xk |Zk) are the unnormalized importance weights. One can get rid of

the unknown normalizing density p(Zk) by deriving the expectation as:

E[f(xk,wk)] =

∫

f(xk,wk)Wk(xk)q(xk|Zk)dxk
∫

p(Zk|xk)p(xk)
q(xk |Zk)
q(xk |Zk)dxk

(54)

=
Eq[Wk(xk)f(xk,wk)]

Eq[Wk(xk)]
(55)

11

By drawing N samples {xi
k} ∼ q(xk|Zk), i = 1 . . . N , one can approximate the expectations:

E[f(xk,wk)] ≈
1
N

∑N
i=1 Wk(x

i
k)f(xi

k,wk)
1
N

∑N
i=1 Wk(x

i
k)

(56)

=

N
∑

i=1

W̄k(x
i
k)f(xi

k,wk) (57)

where W̄k(x
i
k) =

Wk(xi
k
)

∑N
i=1

Wk(xi
k
)

are the normalized weights.

Since it is very hard to find a good proposal distribution in a high dimensional space, one can sequen-
tially construct it. Suppose we can factorize the proposal distribution:

q(xk|Zk) = q(xk|xk−1,Zk)q(xk−1,Zk−1) (58)

The posterior distribution can be factorized as:

p(xk|Zk) = p(xk−1|Zk−1)
p(zk|xk)p(xk|xk−1)

p(zk|Zk−1)
(59)

∝ p(xk−1|Zk−1)p(zk|xk)p(xk|xk−1) (60)

Hence we can recursively update the weights:

Wk(x
i
k) ∝ p(xi

k|Zk)

q(xi
k|Zk)

(61)

=
p(xi

k−1|Zk−1)p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,Zk)q(x
i
k−1,Zk−1)

(62)

∝ Wk−1(x
i
k−1)

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,Zk)
(63)

Algorithm 4 Sequential Importance Sampling

1: Draw xi
k ∼ q(xk|xi

k−1,Zk) for i = 1 . . . N

2: Compute the importance weights W i
k = W i

k−1

p(zk|xi
k
)p(xi

k
|xi

k−1
)

q(xi
k
|xi

k−1
,Zk)

3: Normalize the importance weights W̄ i
k =

W i
k

∑N
i=1

W i
k

Degeneracy problem: After a few iterations all but one particle will have negligible weights. Hence
the algorithms allots time to update a large number of weights with no effect in our sampling.

Proposition (Kong et al. 1994): The unconditional variance (that is, when the observations
are regarded as random) of the importance ratios increases over time, where the importance ratio
is given by:

Wk(x
i
k) ∝ p(xi

k|Zk)

q(xi
k|Zk)

(64)

This problem can be overcome by adding a resampling strategy to SIS algorithm.

12

7.2 Sequential Importance Resampling (SIR)

The resampling step eliminates the samples with low importance weights and multiplies the ones with
high importance weights. “Many of the ideas on resampling have stemmed from the work of Efron
1982, Rubin 1988, and Smith and Gelfand 1992” [11].

To detect the weights degeneracy (or sample impoverishment), one can use the effective sample
size Neff given by [4]:

Neff =
N

1 + V arq[W̄k(xk)]
(65)

=
N

Eq[W̄k(x
2
k)]

(66)

An estimate of the effective sample size:

N̂eff =
N

∑N
i=1(W̄

i
k)

2
(67)

If N̂eff is less than an given threshold then run the resampling step.

One approach is to draw N particles from the current set of particles with probabilities propor-
tional to their weights and set the new weights to 1

N
. This can be done by generating a new set

of indices from a CDF that maps the random measure {xi
k, W̄

i
k} into an equally weighted random

measure {xj
k,

1
N
} [11].

Figure 2: Resampling process [11]

13

Algorithm 5 Resampling Algorithm

1: Initialize CDF : c1 = 0
2: Construct CDF : ci = ci−1 + W̄ i

k, for all i = 1 . . . N

3: for j = 1 to N do
4: Sampling index: u ∼ U(0, 1)
5: Resampling index: i = CDF−1(u)N
6: Assign sample: x̃j

k = xi
k

7: Assign weight: W̄
j
k = 1

N

8: end for
9: return the new set {x̃j

k, W̄
j
k}

where CDF−1(·) is the inverse of the CDF (·) function.

This step reduces the sample impoverishment effect but introduces new practical problems: it limits
the opportunity to have a parallel algorithm, particles with high weights are statistically selected many
times and leads to a loss of diversity among the particles [1].

References

[1] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for
Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Processing, 50, 2002.

[2] Paul J. Atzberger. Strategies for Improving the Efficiency of Monte-Carlo Methods.
http://www.cims.nyu.edu/ paulatz/class finance/improvingMonteCarloMethods.pdf.

[3] K.R. Beevers. Monte Carlo integration. Lecture Notes for CSCI-6971, 2006.

[4] Zhe Chen. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Manuscript.

[5] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American

Statistician, 1995.

[6] A. Doucet, S. Godsill, and C. Andrieu. On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering. Technical report, Signal Processing Group, Department of Engineering, University of
Cambridge, UK.

[7] F. James. Monte Carlo Theory and Practice. Rep. Prog. Phys., 43:1147–1188, 1980.

[8] D. Johnson. Jointly Distributed Random Variables. http://cnx.org/content/m11248/latest/,
2005.

[9] N. C. Metropolis and S. M. Ulam. The Monte-Carlo Method. J. Amer. Stat. Assoc., 44:335–341,
1949.

[10] Ilya M. Sobol’. A Primer for the Monte Carlo Method. CRC Press, 1994.

[11] Rudolph van der Merwe, Nando de Freitas, Arnaud Doucet, and Eric Wan. The unscented particel
filter. In Advances in Neural Information Processing Systems 13, Nov 2001.

14

[12] S. Weinzierl. Introduction to Monte Carlo Methods. Technical report, NIKHEF Theory Group,
2000.

15

	Introduction
	Random Variables
	Generate Random Variables
	MC integration
	Variance Reducing Techniques
	Stratified Sampling
	Importance Sampling
	Control Variates
	Rejection Sampling (or Acceptance Rejection Sampling)
	Antithetic Variates
	Partial averaging (or Rao-Blackwellization)

	Markov Chain Monte Carlo
	Markov chain
	Metropolis-Hastings Algorithm
	Gibbs Sampling

	Sequential Monte Carlo
	Sequential Importance Sampling (SIS)
	Sequential Importance Resampling (SIR)

