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PRINCIPLES OF A CLASSIFICATION OF DEFECTS
IN ORDERED MEDIA

G. TOULOUSE and M. KLÉMAN

Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France
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Résumé. 2014 Une classification des défauts dans les milieux ordonnés est présentée. Fondée sur des
concepts purement topologiques, elle fournit une distinction entre défauts élémentaires (topologi-
quement stables) et défauts composés. Cette classification systématique contient des résultats dérivés
antérieurement de manière empirique et permet de nouvelles prédictions. Elle révèle une liaison entre
la nature des défauts dans une phase ordonnée et les phénomènes critiques à la transition de phase.

Abstract. 2014 A classification of defects in ordered media is presented. Based on purely topological
concepts, it provides a distinction between elementary (topologically stable) and compound defects.
This systematic classification recovers some previous empirically derived results and allows new
predictions. It exhibits a striking connection between the nature of defects in an ordered phase and
the critical phenomena at the phase transition.
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1. Introduction. - An important part of condensed
matter and phase transitions physics is involved with
the study of the defects which occur in the ordered
phases and give rise to the variety of observed textures.
It is a natural inclination of the physicist to try to find
elementary objects, which can serve as building blocks
to construct the others. What is needed, in other

terms, is a classification of elementary defects and the
set of rules governing their aggregation. In other

words, one wants to apply to the defects in a given
ordered medium the program which has been achieved
for chemical objects, with a hierarchy of levels : atoms,
molecules, condensed states.
Most of the past and considerable effort in the

theory of defects has been concerned with energy
calculations, although it has been recognized by
many that topological concepts are important. It is

shown here that it is possible to go far indeed with
considerations based merely on continuity properties,
that is with topology. For a given ordered medium of
arbitrary space dimensionality, it is possible to give a
systematic classification of the elementary defects of
various dimensionalities (points, lines, walls, ...) and
to attribute to them characteristic numbers, which
govern the rules for their associations.

2. The space of internal states. - The nature of the

ordering in an ordered medium can be characterized
by an order parameter. Some examples may help to
fix ideas; for an ordered alloy, the order parameter is a
real scalar; for a superfluid, it is a complex scalar;

for an isotropic ferromagnet, it is a vector; many more
examples could be given. This order parameter is
defined at each point of the ordered medium, and, by
definition, it characterizes the internal state of the
medium at that point. If there were no distortions, the
internal state would be the same in each point of the
sample. The presence of defects is accompanied by a
variation of the internal state from point to point in
the medium.

Now each internal state can be represented by a
point in an abstract space, the space of internal states.
We shall be interested in the subspace formed by all
possible values of equal amplitude of the order

parameter, and we shall call this subspace the manifold
of internal states (we use the term manifold, instead of
space, in order to avoid confusion with the real space
in which the medium lies, and also, because it is a
topological concept, to stress the topological pro-
perties).

Let us take again some examples; for a real scalar
order parameter, the manifold of internal states is two
points ( ± 1) ; for a complex scalar, it is a circle; for a
vector, it is a sphere; etc... This manifold of internal
states has important topological properties. First, its
dimensionality. Second, its connectivity properties.
In the theory of critical phenomena, that occur near a
phase transition point, much emphasis has been put
on the effect of the dimensionality. In this theory of
defects, the emphasis will be put on the connectivity
properties. Actually, the two topics are closely related.
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3. The surrounding of defects. Let us begin with
a known simple example, which will be generalized
afterwards. Consider a line defect (vortex line) in a
three dimensional sample of superfluid. To characte-
rize this line defect, one surrounds it by a closed loop.
The phase change A~/2 7r of the complex order para-
meter as one completes a turn along the loop is a
topological invariant : to one turn in real space, around
the vortex line, is associated a certain closed path in
the manifold of internal states. This closed path (more
precisely, the class of equivalent paths into which this
path can be continuously deformed within the mani-
fold of internal states) then characterizes topologically
our line defect. If the closed path can be continuously
deformed into one point in the manifold, then the line
defect is not topologically stable (it can be conti-
nuously reduced to no defect at all) ; if the closed path
cannot be continuously deformed into one point in
the manifold, then the line defect is topologically
stable.

Let us generalize this construction to arbitrary
space dimensionalities of the medium (d) and of the
defect (d’). We wish to surround the defect by a
subspace of dimensionality r such that :

The term 1 in the left hand side comes from the dis-
tance between the line defect and the subspace which
surrounds it. In the preceding example, d = 3,
d’ = 1, and the surrounding subspace has dimen-
sionality r = 1. Now it is seen that, in three-dimen-
sional space, wall defects will be surrounded by two
points (this is the 0-dimensional sphere So), line defects
by a closed loop (this is the 1-dimensional sphere Sl),
point defects by a sphere (this is the 2-dimensional

sphere S2).
In each point of the surrounding subspace Sr exists

some internal state which is represented by a point in
the manifold of internal states V. This defines a map
of Sr into V. The possible maps of Sr into V can be
classified into classes of equivalent maps (which can
be continuously deformed into one another within V).
The ensemble of these classes is called the rth homo-

topy group of V and is denoted 1tr(V).
Much is known in mathematics concerning the

homotopy groups of many manifolds. In some cases,
one simply recovers empirically known facts. For

instance, in the preceding example of the three-
dimensional superfluid, knowing that the manifold of
internal states is V = Sl and that

where 0 denotes the trivial group with only one ele-
ment and Z the additive group of integers, one

concludes that there are no stable walls, no stable
points, but that there are stable vortex lines which
can be characterized by an integer (positive or nega-
tive), the strength of the vortex. In three-dimensional

isotropic ferromagnets, for which V = S2, one finds
stable points but no stable lines (this corresponds to
the empirical phenomenon of escape in third dimen-
sion). -

4. Application to systems where the order para-
meter is an n-component vector (n-vector model). -
This includes a large category of systems which
contains the examples previously given (real scalar
order parameter : n = 1; complex scalar : n = 2;
ordinary vector : n = d) and has been much studied
in the context of critical phenomena.

For an n-vector order parameter, the manifold of
internal states is V = Sn- 1, since the amplitude is
taken constant. Now it is known [1] that

Topologically stable defects have therefore the dimen-
sionality .

which means that for n &#x3E; d, there are no topolo-
gically stable defects, for 0  n  d (this is the

triangle of defects in the n, d plane) there is one kind
of defect (points for n = d, lines for n = d -- 1, walls
for n = d - 2, ... ; other defects may occur for d &#x3E; 4,
see note [1]), and finally for n  0, there is again no
topologically stable defect.
Note that the boundaries of the triangle of defects

in the n, d plane are the diagonal n = d, which plays an
important role in critical phenomena, and the line
n = 0, which is known to describe disordered sys-
tems ; it is interesting to notice that, as far as defects
are concerned, the case n = 0 corresponds to stable
defects having the dimensionality of real space, the
whole system being in some sense the core of a defect,
with no recognizable ordered domains.

5. Application to some other systems. - Let us
consider uniaxial nematic liquid crystals, where the
order parameter is a line element, that is a vector with
no arrow. For an arbitrary number n of components
of the order parameter, the manifold of internal states
is V = P n - ¡, which means real projective space of
(n - 1) dimensions. For usual nematics in three
dimensional space, V = P2, the projective plane; for
two-dimensional nematics, V = P 1 = S 1.

It is then known that

where Z2 is the two-element group of the integers
modulo 2.

As a consequence, for instance, the usual three-
dimensional nematics will have, besides the point
defects they share with the corresponding vector
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systems, topologically stable line defects which have
the property of being their own antiparticle : two
nematic line defects can disintegrate into points.
As a last example, let us consider the superfluid A

phase of He3 where the orbital order parameter is now
estimated to be a frame of three orthogonal vectors
(we neglect here the nuclear spin degrees of freedom,
which amounts to considering only defects which do
not break the dipolar energy). Then, the manifold of
internal states V is V = SO(3) = P3, so that the A
phase appears as a kind of higher-dimensional nema-
tic. One then predicts for a three-dimensional He3
sample, no walls, no points and lines which are their
own antiparticles (these lines can have a mixed vortex-
disgyration [2] character). It is amusing to notice that
if one tries to construct a point defect for one of the
three orthogonal vectors, there is necessarily a string
of singularities of the other two vectors, attached to
the point; this situation is obviously reminiscent of
the Dirac monopoles [3].
At this stage, it may be noticed that, through such a

classification, the mere observation of the defects in a
given phase may give a clue on the nature of the
ordering; this poses a rather interesting inverse

problem.

Obviously, this short exposition calls for develop-
ment of both abstract and concrete aspects of the
classification scheme; this will be presented in a more
detailed publication [4].

6. Conclusion. - During the course of our study,
we have discovered that topological concepts have
been previously used in field theory by quite a few
people, the emphasis being mainly on point singula-
rities [5] or on global configurations of the whole
space [6]. Actually, this similarity of concepts in the
study of elementary particles and of defects in ordered
media appears as a very promising feature. First, it

brings some unity in physics. Second, it will probably
lead to cross-fertilization. The field theorists (and the
mathematicians) have an experience with rather

complicated manifolds, the condensed matter physi-
cists can exhibit many systems, with a lot of experi-
mental control on them.
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