
08.  Quantum Information Theory, Part I. 

Physical examples: 

•  The state of a mechanical on/off switch. 

•  The state of an electronic device capable of distinguishing a voltage difference. 

Physical example: 

•  The state of an electron in a spin basis (e.g.,|hard〉, |soft〉, or a|hard〉 + b|soft〉). 

I.  Qubits. 
1.  C-bits vs. Qubits 
• Classical Information Theory 

 C-bit = a state of a classical 2-state system:  either "0" or "1". 

• Quantum Information Theory 

 Qubit = a state of a quantum 2-state system:  |0〉, |1〉, or a|0〉 + b|1〉. 



According to the Eigenvalue-eigenvector Rule: 
• |Q〉 has no determinate value (of Hardness, say). 

• It's value only becomes determinate (0 or 1; hard or soft) when we measure it. 

• All we can say about |Q〉 is: 

   (a)  Pr(value of |Q〉 is 0) = |a|2. 

   (b)  Pr(value of |Q〉 is 1) = |b|2. 

General form of a qubit: 
|Q〉 = a|0〉 + b|1〉,   where |a|2 + |b|2 = 1 

• Common Claim:  A qubit |Q〉 = a|0〉 + b|1〉 encodes an arbitrarily large 
amount of information, but at most only one classical bit's worth of 
information in a qubit is accessible. 

Why? 

- a and b encode an arbitrarily large amount of information. 

- But the outcome of a measurement performed on |Q〉 is its collapse 
to either |0〉 or |1〉, which each encode just one classical bit. 



2.  Transformations on Single Qubits 

  
⏐0〉=

1
0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟• Let |0〉 and |1〉 be given the matrix representations: 

  
⏐1〉=

0
1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

• Define the following operators that act on |0〉 and |1〉: 

I|0〉 = |0〉 

I|1〉 = |1〉 

Identity 

   
I =

1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

X|0〉 = |1〉 

X|1〉 = |0〉 

Negation 

   
X =

0 1
1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Y|0〉 = –|1〉 

Y|1〉 = |0〉 

Negation/Phase-change 

   
Y =

0 1
–1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Z|0〉 = |0〉 

Z|1〉 = –|1〉 

Phase-change 

   
Z =

1 0
0 –1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Takes a basis qubit and outputs a superposition Hadamard operator: 

   

H =
1
2

1
2

1
2

1
2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

   
H|0〉 = 1

2
|0〉+  |1〉( )

   
H|1〉 = 1

2
|0〉 –  |1〉( )



3.  Transformations on Two Qubits 
• Let {|0〉1, |1〉1}, {|0〉2, |1〉2} be bases for the single qubit state spaces H1, H2. 

• Then:  A basis for the 2-qubit state space H1 ⊗ H2 is given by 

 {|0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, |1〉1|1〉2} 

  

⏐0〉1⏐0〉2 =

1
0
0
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

• Let these basis vectors be given the following matrix representations: 

  

⏐0〉1⏐1〉2 =

0
1
0
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
  

⏐1〉1⏐0〉2 =

0
0
1
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
  

⏐1〉1⏐1〉2 =

0
0
0
1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

CNOT|0〉1|0〉2 = |0〉1|0〉2  CNOT|1〉1|0〉2 = |1〉1|1〉2 

CNOT|0〉1|1〉2 = |0〉1|1〉2  CNOT|1〉1|1〉2 = |1〉1|0〉2 

Acts on two basis qubits. 
• Changes the second if the first is |1〉. 

• Leaves the second unchanged otherwise. 

• The Controlled-NOT 2-qubit operator is then defined by: 

C
NOT
=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟



4.  The No-Cloning Theorem 

Claim:  Unknown qubits cannot be "cloned". 

• In particular, there is no (unitary, linear) operator U such that 

 U|v〉1|0〉2 = |v〉1|v〉2, where |v〉1 is an arbitrary qubit. 

• Note:  Known qubits (like |1〉1) can be cloned (ex:  CNOT|1〉1|0〉2 = |1〉1|1〉2). 

        U|c〉1|0〉2 = U(α|a〉1|0〉2 + β|b〉1|0〉2) 

     = (αU|a〉1|0〉2 + βU|b〉1|0〉2) 

     = α|a〉1|a〉2 + β|b〉1|b〉2 

•  But:  By definition, U acts on |c〉1 according to: 

        U|c〉1|0〉2 = |c〉1|c〉2 = α2|a〉1|a〉2 + αβ|a〉1|b〉2 + βα|b〉1|a〉2 + β2|b〉1|b〉2. 

Proof:  Suppose there is such a U. 
•  Then:  U|a〉1|0〉2 = |a〉1|a〉2  and U|b〉1|0〉2 = |b〉1|b〉2, for qubits |a〉1, |b〉1. 
•  Now:  Consider a qubit |c〉1 = α|a〉1 + β|b〉1.  Since U is linear, 

•  So:  There cannot be such a U. 



II.  Quantum Cryptography. 
Cryptography Basics 
• plaintext = message to be encoded.  (Private) 

• cryptotext = encoded message.  (Public) 

• encoding/decoding procedure = procedure used to encode plaintext and decode 
cryptotext.  (Public) 

• key = device required to implement encoding/decoding procedure.  (Private) 



Example:  One-time pad   (Vernam 1917) 

• Technical Result (Shannon 1949):  One-time pad is guaranteed secure, as long 
as the key is completely random, has same length as plaintext, is never 
reused, and is not intercepted by a third party. 

A  B  C  D  E  ...  X  Y  Z   ?  ,  . 
00  01  02  03  04  ...  23  24  25  26  27  28  29 

alphanumeric 
convention 

encoding/decoding procedure (public) 
Add plaintext to key and take remainder after division by 30. 

key (private) 

15  04  28  13  14  06  21  11  23  18  09  11  14  01  19  05  22  07 

cryptotext (public) 

03  11  28  23  18  19  17  24  07  07  05  29  03  09  06  22  26  10 

?? 

plaintext (private) 
S  H  A  K  E  N   N  O  T   S  T  I  R  R  E  D 
18  07  00  10  04  13  26  13  14  19  26  18  19  08  17  17  04  03 



Quantum Key Distribution via Non-orthogonal States 

• Goal:  To transmit a private key on possibly insecure channels. 

• Set-up:  Alice and Bob communicate through 2 public (insecure) channels: 

 (i)  A 2-way classical channel through which they exchange classical bits. 

 (ii)  A 1-way quantum channel through which Alice sends Bob qubits. 

Alice 

classical channel 

quantum channel 

Eve 

Bob 



Alice 

classical channel 

quantum channel 

Eve 
Bob 

Protocol: 

 (b) Alice then generates a private list of the value of each electron and the 
correponding bit, and a public list of just the property of each electron. 

Alice's private list 
electron 1:  hard, 0 
electron 2:  black, 0 
etc... 

Alice's public list 
electron 1:  definite H-value 
electron 2:  definite C-value 
etc... 

Public encryption chart 
Hardness  Color 
|hard〉  ⇔ 0  |black〉  ⇔  0 
|soft〉  ⇔  1  |white〉  ⇔  1 

1.  (a)  Alice encodes a random sequence of bits as the Color or Hardness states of 
electrons:  For each electron, she randomly picks a Color or Hardness box to put 
it through, and then selects the bit according to a public encryption chart. 

H 

C 

• 
Random 
choice! 

 (c)  Alice then sends her electrons to Bob via the quantum channel. 



Bob's private list 
electron 1:  white 
electron 2:  black 
etc... 

Bob's public list 
electron 1:  definite C-value 
electron 2:  definite C-value 
etc... 

 (b) Bob then generates a private list of the value of each electron received; and a 
public list of the property of each electron received. 

Alice 

classical channel 

quantum channel 

Eve 
Bob 

2.  (a)  Upon reception of an electron, Bob randomly picks a Color box or a Hardness 
box to send it through. 

Protocol: 

H 

C 

• 
Random 
choice! 

H 

C 

• 
Random 
choice! 



Public encryption chart 
Hardness  Color 
|hard〉  ⇔ 0  |black〉  ⇔  0 
|soft〉  ⇔  1  |white〉  ⇔  1 

Bob's public list 
electron 1:  definite C-value 
electron 2:  definite C-value 
etc... 

Alice 

classical channel 

quantum channel 

Eve 
Bob 

3.  After all electrons have been transmitted, Alice and Bob use the classical channel to 
exchange the Encryption chart and their public lists. 

Protocol: 

Alice's public list 
electron 1:  definite H-value 
electron 2:  definite C-value 
etc... 

4.  (a)  Alice and Bob use their public lists to identify those electrons that did not get 
their properties disrupted by Bob. 

Bob's private list 
electron 1:  white 
electron 2:  black 
etc... 

Alice's private list 
electron 1:  hard, 0 
electron 2:  black, 0 
etc... 

 (b)  They then use the Encrpytion chart, and their private lists, to identify the bits 
associated with these electrons.  These bits are used to construct a key. 

Example: 
•  electron 1:  no matchup! 
•  electron 2:  matchup! 
•  Bob and Alice now privately share a "0" bit! 



• Claim:  Any attempt by Eve to intercept the key will be detectable. 

• So:  Without Eve present, Pr(Bob gets electron1 right) = 1/2. 

Case 1:  No Eve 

black1 

• Suppose:  Electron 1 sent by Alice is black. 
• What's the probability that Bob measures it as black? 

H 

C 

• 

1/2!

1/2! Pr(black1) = 1/2 !

• The probability that Bob measures its Color is 1/2; and when a black electron 
is measured for Color, it will register as black (of course). 

Pr(hard1) = 1/4!

Pr(soft1) = 1/4 !

Pr(hard1) = Pr(black1 measured for Hardness) × Pr(black1 is hard/black1 measured for Hardness) 

 = 1/2 × 1/2 = 1/4 



Case 2:  Eve Present 

black1 

• Claim:  Any attempt by Eve to intercept the key will be detectable. 

H 

C 

• 

Pr(hard1) = 1/4!

Pr(soft1) = 1/4 

Pr(black1) = 1/2 

1/2 

1/2 

• With Eve, Pr(Bob gets electron1 right) = 1/16 + 1/16 + 1/4 = 3/8. 

H 

C 

• 
Pr(black1) = 1/16 

Pr(white1) = 1/16 

Pr(hard1) = 1/8 1/8 

1/8 

H 

C 

• 
Pr(black1) = 1/16 

Pr(white1) = 1/16 

Pr(soft1) = 1/8 1/8 

1/8 

H 

C 

• 

Pr(hard1) = 1/8 

Pr(soft1) = 1/8 

Pr(black1) = 1/4 !

1/4 

1/4 



• And:  With Eve present, on average Bob will get 3/8 × 2n = 3n/4 right. 

• So:  With Eve present, on average Bob gets 1/4 wrong that he would have 
gotten right. 

To detect Eve: 

• Alice and Bob randomly choose half of the electrons Bob got right and now 
compare their values of Color/Hardness (recorded in their private lists). 

• If these values all agree, then the probability that Eve is present is extremely 
low.  They can now use the other electrons Bob got right as the key. 

• If these values do not all agree, then it's probable that Eve is present and is 
disrupting the flow. 

• So:  If Alice sends 2n electrons, without Eve, on average Bob will get 
1/2 × 2n = n right. 



III.  Quantum Dense Coding 
• Goal:  To use one qubit to transmit two classical bits. 

• But:  One qubit (supposedly) only contains one classical bit's worth of 
information! 

• So:  How can we send 2 classical bits using just one qubit? 

• Answer:  Use entangled states! 



Set-Up: 

2 classical 
bits encoded 

Decoder 
Encoder 

I,X,Y,Z 

Q1 to 
Alice 

Q2 to Bob 

• Alice gets Q1, Bob gets Q2. 

2 classical 
bits decoded 1 qubit sent 

• Alice manipulates her Q1 so that it steers Bob's Q2 into a state from which 
he can read off the 2 classical bits Alice desires to send.  All he needs to do 
this is the post-manipulated Q1 that Alice sends to him. 

source 

• Prepare two qubits Q1, Q2 in an entangled state   
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).



Protocol 
1.  Alice has a pair of classical bits:  either 00, 01, 10, or 11.  She first encodes it in Q1 

by acting on Q1 with one of {I, X, Y, Z} according to: 

2.  Alice now sends Q1 to Bob. 

3.  After reception of Q1, Bob first applies a CNOT transformation to both Q1 and Q2: 

•  Note:  According to the EE Rule, Q1 still has no definite value, but Q2 now does! 

• Let Q1 and Q2 be electrons in 
Hardness states. 

• Let |0〉 be |soft〉 and |1〉 be |hard〉.!

pair:  transform:  new  state: 
1
2

|0〉
1
|0〉

2
  + |1〉

1
|1〉

2( )
01  (X1 ⊗ I2)|Ψ+〉 

00  (I1 ⊗ I2)|Ψ+〉 

10  (Y1 ⊗ I2)|Ψ+〉 

11  (Z1 ⊗ I2)|Ψ+〉 

1
2

|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )
1
2

–|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )
1
2

|0〉
1
|0〉

2
  – |1〉

1
|1〉

2( )

pair:  transform:  new  state:  Apply CNOT: 
1
2

|0〉
1
|0〉

2
  + |1〉

1
|1〉

2( )00  (I1 ⊗ I2)|Ψ+〉   
1
2

|0〉1  + |1〉1( )|0〉2

01  (X1 ⊗ I2)|Ψ+〉 1
2

|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )   
1
2

|1〉1  + |0〉1( )|1〉2

10  (Y1 ⊗ I2)|Ψ+〉 1
2

–|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )   
1
2

–|1〉1  + |0〉1( )|1〉2

11  (Z1 ⊗ I2)|Ψ+〉 1
2

|0〉
1
|0〉

2
  – |1〉

1
|1〉

2( )   
1
2

|0〉1 – |1〉1( )|0〉2  



5.  Bob now measures Q1 and Q2 to determine the number Alice sent! 

(a)  (Q1 = 0, Q2 = 0) ⇒ 00  (c)  (Q1 = 1, Q2 = 0) ⇒ 10 

(b)  (Q1 = 0, Q2 = 1) ⇒ 01  (d)  (Q1 = 1, Q2 = 1) ⇒ 11 

Protocol 
4.  Bob now applies a Hadamard transformation to Q1: 

•  Note:  According to the EE Rule, Q1 and Q2 now both have definite values. 

|0〉1|0〉2!

pair:  transform:  new  state:  Apply CNOT:  Now Apply H1: 
1
2

|0〉
1
|0〉

2
  + |1〉

1
|1〉

2( )00  (I1 ⊗ I2)|Ψ+〉   
1
2

|0〉1  + |1〉1( )|0〉2

01  (X1 ⊗ I2)|Ψ+〉 1
2

|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )   
1
2

|1〉1  + |0〉1( )|1〉2

10  (Y1 ⊗ I2)|Ψ+〉 1
2

–|1〉
1
|0〉

2
  + |0〉

1
|1〉

2( )   
1
2

–|1〉1  + |0〉1( )|1〉2

11  (Z1 ⊗ I2)|Ψ+〉 1
2

|0〉
1
|0〉

2
  – |1〉

1
|1〉

2( )   
1
2

|0〉1 – |1〉1( )|0〉2  

|0〉1|1〉2!

|1〉1|1〉2 

|1〉1|0〉2!



• Not transferred via the single qubit. 

• Transferred by the correlations present in the 2-qubit entangled state |Ψ+〉. 

• In order to convey information between Alice and Bob, it need not be 
physically transported from Alice to Bob across the intervening spatial 
distance. 

• The only thing required to convey information is to set up a correlation 
between the sender's data and the receiver's data. 

Question:  How are the 2 classical bits transferred from Alice to Bob? 

Encoder 
Decoder 

source 

2 classical 
bits decoded 

2 classical 
bits encoded 1 qubit sent 

Q1 to 
Alice 

Q2 to Bob 

I,X,Y,Z 

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).



IV.  Quantum Teleportation 
• Goal:  To transmit an unknown quantum state using classical bits and to 

reconstruct the exact quantum state at the receiver. 

• But:  How can this avoid the No-Cloning Theorem? 

• Answer:  Use entangled states! 



• Alice has an unknown Q0, |Q〉0 = a|0〉0 + b|1〉0, and wants to send it to Bob. 

unkown Q0 

Set-Up: 

Decoder Encoder 
I,X,Y,Z 

unknown Q0 
reconstructed 

2 classical bits sent 

• Alice manipulates Q0 and Q1 so that they steer Bob's Q2 into the unknown 
state of Q0.  Bob then reconstructs it using the 2 classical bits sent by Alice. 

source 

Q1 to 
Alice 

Q2 to Bob 

• Q1 and Q2 are prepared in an entangled state!

!Alice gets Q1, Bob gets Q2. 

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).



Protocol 
1.  Alice starts with a 3-qubit system (Q0, Q1, Q2) in the state: 

Alice now applies CNOT on Q0 & Q1, and then a Hadamard transformation on Q0: 

First CNOT on Q0 & Q1: 

Then H on Q0: 

2.  Alice now measures Q0 and Q1: 

If measurement outcome is:  ...Q2 is now in state: 
|0〉0|0〉1     a|0〉2 + b|1〉2 

|0〉0|1〉1     a|1〉2 + b|0〉2 

|1〉0|0〉1     a|0〉2 � b|1〉2 

|1〉0|1〉1     a|1〉2 � b|0〉2 

EE Rule:  Each of the terms 
represents a state in which Q0 
and Q1 have definite values, 
but Q2 does not. 

   
|Q〉0|Ψ

+ 〉 = 1
2

a|0〉0|0〉1|0〉2   + a|0〉0|1〉1|1〉2   + b|1〉0|0〉1|0〉2   + b|1〉0|1〉1|1〉2( )

   
(C

NOT01
⊗  I

2
)|Q〉0|Ψ

+ 〉 = 1
2

a|0〉0|0〉1|0〉2   + a|0〉0|1〉1|1〉2   + b|1〉0|1〉1|0〉2   + b|1〉0|0〉1|1〉2( )

   
(H

0
⊗  I

1
⊗  I

2
)(" ") = 1

2
|0〉0|0〉1 a|0〉2   + b|1〉2( )  + 1

2
|0〉0|1〉1 a|1〉2   + b|0〉2( )  + 

   
1
2
|1〉0|0〉1 a|0〉2   – b|1〉2( )  + 1

2
|1〉0|1〉1 a|1〉2   – b|0〉2( )



Protocol If measurement outcome is:  ...Q2 is now in state: 
|0〉0|0〉1     a|0〉2 + b|1〉2 

|0〉0|1〉1     a|1〉2 + b|0〉2 

|1〉0|0〉1     a|0〉2 � b|1〉2 

|1〉0|1〉1     a|1〉2 � b|0〉2 

3.  Alice sends the result of her measurement to Bob in the form of 2 classical bits:  00, 
01, 10, or 11. 

4.  Depending on what he receives, Bob performs one of {I, X, Y, Z} on Q2.  This allows 
him to turn it into (reconstruct) the unknown Q0. 

00  a|0〉2 + b|1〉2  I2 

01  a|1〉2 + b|0〉2  X2 

10  a|0〉2 � b|1〉2  Z2 

11  a|1〉2 � b|0〉2  Y2 

If bits received are: ...then Q2 is now in state: ...so to reconstruct Q0, use: 



• Question 1:  Does Bob violate the No-Cloning Theorem?  Doesn't he 
construct a copy of the unknown Q0? 

• No violation occurs. 

• Bob does construct a copy:  Q2 has become an exact duplicate of Q0. 

• But:  After Alice is through transforming Q0 and Q1, the original Q0 has now 
collapsed to either |0〉0 or |1〉0!  Alice destroys Q0 in the process of conveying 
the information contained in it to Bob! 

unkown Q0 Decoder Encoder 
I,X,Y,Z 

source 

Q1 to 
Alice 

Q2 to Bob 

unknown Q0 
reconstructed 

2 classical bits sent 

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).



unkown Q0 Decoder Encoder 
I,X,Y,Z 

source 

Q1 to 
Alice 

Q2 to Bob 

unknown Q0 
reconstructed 

2 classical bits sent 

  
|Ψ+ 〉 = 1

2
|0〉1|0〉2  + |1〉1|1〉2( ).

• Question 2:  How does Bob reconstruct the unknown Q0 (that encodes an 
arbitrarily large amount of information) from just 2 classical bits? 

• Information to reconstruct Q0 is transferred by the correlations present in the 
entangled state |Ψ+〉, in addition to the 2 classical bits. 

• The 2 classical bits are used simply to determine the appropriate 
transformation on Q2, after it has been "steered" into the appropriate state by 
Alice. 


