NAMING COMPOUNDS

Nomenclature: Naming Compounds

- There are 2 main types of *binary* compound: *compounds composed of 2 or more elements*.
 - 1. **Ionic compound**: compounds that contain a metal and a non-metal.
 - 2. **Covalent molecule**: compounds that contain two non-metals.

TYPE I BINARY IONIC COMPOUNDS

(Not transitional metals)

Type 1 is what we did in Unit 1!!!

- Forms between 2 ions
- Cation (+) is always named first and the
- anion (-) second
- Cation takes its name from the name of the element
- End of name is "ide"
- The net charge on an ionic compounds is always zero.

• sodium chlor<u>ide</u>

 $Na^+ + Cl^- \longrightarrow NaCl$

(does the charge add to 0?)

(+1) + (-1) = 0

Use crisscross method to determine # of atoms

calcium chlor<u>ide</u>

$$Ca^{2+} + Cl \longrightarrow CaCl_2$$

$$(+2) + 2(-1) = 0$$

(does the charge add to 0?)

strontium nitr<u>ide</u> $Sr^{2+} + N^{3-} \longrightarrow Sr_3N_2$ 3(+2) + 2(-3) = 0

Practice

• Name the following Type I binary compounds: CsF AICI₃ Mgl₂ Rb_2O Srl₂ K_2S

POLYATOMIC (IONIC)

Common Polyatomic Ions

TABLE 4.4

Names of Common Polyatomic Ions

lon	Name	lon	Name
NH ₄ ⁺	ammonium	CO3 ²⁻	carbonate
NO_2^-	nitrite	HCO_3^-	hydrogen carbonate
NO_3^{-1}	nitrate		(bicarbonate is a widely
SO3 ²⁻	sulfite		used common name)
SO4 ²⁻	sulfate	CIO ⁻	hypochlorite
HSO₄ [−]	hydrogen sulfate	CIO_2^-	chlorite
	(bisulfate is a widely	CIO_3^-	chlorate
	used common name)	CIO_4^-	perchlorate
OH^{-1}	hydroxide	$C_2H_3O_2^{-}$	acetate
CN^{-}	cyanide	MnO_4^-	permanganate
PO_4^{3-}	phosphate	$Cr_{2}O_{7}^{2-}$	dichromate
HPO_4^{2-}	hydrogen phosphate	CrO ₄ ²⁻	chromate
$H_2PO_4^-$	dihydrogen phosphate	02 ²⁻	peroxide

- Forms with an ion made of many atoms: Act as a single ion; Mostly anions (exception NH₄⁺)
- Need to use () when there are multiples of a polyatomic ion
- Example: Ca(OH)₂ NOT CaOH₂

 $(1 \text{ Ca}^{2+} \text{ and } 2 \text{ OH}^{-})$

calcium hydroxide

aluminum hydroxide
 Al³⁺+ (OH) ⁻ → Al(OH) (check the charge)
 +3 + -1 = +2 (what should we do)
 CRISSCROSS!!!!! REMEMBER TO PUT () AROUND THE POLYATOMIC

$$Al^{3+} + OH^{-} \longrightarrow Al(OH)_{3}$$

• ammonium sulfate $(NH_4)^+ + (SO_4)^{2-} \longrightarrow (check the charge)$ +1 + -2 = -1 (what should we do) $(NH_4)^+ + (SO_4)^{2-} \longrightarrow (NH_4)_2SO_4$

Practice

• Name the following compounds:

 Na_2CO_3 Na_3PO_4 $(NH_4)_2Cr_2O_7$

TYPF II **BINARY IONIC COMPOUNDS** (TRANSITION METALS) (Know where the transitional metals are located on your periodic table)

		Alkaline earth m														Н	Ialoger	Noble gases ¹ ns 18 8A
	1 H	\downarrow 2 2A	_										13 3A	14 4A	15 5A	16 6A	↓ 17 7A	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tra	7 ansitio	8 on meta	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
Alkali metals	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Alkali	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
*Lanthanides 58 59 60 61 62 63 64 Ce Pr Nd Pm Sm Eu Gd										65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		† _A	Actinid	.es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- Many metals can form more than one type of cations, such as most of the transitions metals.
- The cation name still goes first, and the anion second. Ending is still "ide"
- Identify the charge of the anion to help determine the cation charge.
- Use roman numerals to indicate charge
 - If the roman numeral is I, charge is +1
 - If the roman numeral is II, charge is +2
 - If the roman numeral is III, charge is +3, etc.

- Write the cation name with the charge as Roman numerals in parenthesis.
- Ends in "ide"
- EXCEPTIONS...:
- Zn²⁺, Cd²⁺, Ag¹⁺

We use Roman Numerals to indicate the charge.

- I=1
- II=2
- 111=3
- IV=4
- V=5

Common Type II Cations

TABLE 4.2

Common Type II Cations

lon	Systematic Name	Older Name
Fe ³⁺	iron(III)	ferric
Fe ²⁺	iron(II)	ferrous
Cu ²⁺	copper(II)	cupric
Cu ⁺	copper(I)	cuprous
Co ³⁺	cobalt(III)	cobaltic
Co ²⁺	cobalt(II)	cobaltous
Sn ⁴⁺	tin(IV)	stannic
Sn ²⁺	tin(II)	stannous
Pb^{4+}	lead(IV)	plumbic
Pb ²⁺	lead(II)	plumbous
Hg ²⁺	mercury(II)	mercuric
Hg_{2}^{2+*}	mercury(I)	mercurous

*Mercury(I) ions always occur bound together in pairs to form Hg_2^{2+} .

Practice

Give the names for each of the following compounds:

• CuCl

What is the charge on the Cl?

-1;

copper(I)chloride

HgO

What is the charge on the O?

-2;

mercury (II) oxide

• Fe₂O₃

• Fe₂ O₃

Undo the crisscross.

- Fe³⁺ O²⁻; Iron (III) oxide
- MnO₂
 Mn⁴⁺ O²⁻
 Undo the crisscross.
- Manganese (IV) oxide
- Practice:
 - PbCl₄
 - FeO
 - CuCl₂

- Determine the molecular formula
- lead (II) oxide

 $Pb^{2+} + O^{2-} \longrightarrow PbO$

+2 + -2 = 0

• Iron (III) sulfide

$$Fe_2^{3+} + S^{2-} \longrightarrow Fe_2S_3$$
(crisscross)

• Copper (II) Nitride

$$Cu_{3}^{2+} + N^{3-} \longrightarrow Cu_{3} N_{2}$$

(crisscross)

(do the charges add to 0?)

- 1. K₂O
- 2. Li₂SO₄
- 3. $Sn(NO_3)_4$
- 4. NH₄Br
- 5. CrBr₃
- 6. Nickel (II) chloride
- 7. Copper (I) nitrate
- 8. Ammonium sulfite
- 9. Magnesium nitride
- 10. Iron (III) phosphide
- 11. Ammonium phosphate

TYPE III **BINARY COMPOUNDS** THAT ONLY CONTAIN NONMETALS (MOLECULAR)

		Alkaline earth m														н	Ialoger	Noble gases ¹ ns 18 8A
	1 H	\downarrow 2 2A	_										13 3A	14 4A	15 5A	16 6A	↓ 17 7A	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tra	7 ansitio	8 on meta	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
Alkali metals	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Alkali	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
*Lanthanides 58 59 60 61 62 63 64 Ce Pr Nd Pm Sm Eu Gd										65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		† _A	Actinid	.es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- Forms between 2 or more nonmetals
- Ionic charges are NOT used
- Can be multiple combinations of the same atoms ex. CO & CO₂

Rules for naming

- 1. The first element in the formula is named first
- 2. The second element is named as though it were an anion. (ends in –ide)
- 3. Prefixes are used to denote the numbers of atoms present.
- 4. The prefix mono- is never used for naming the first element. For example, CO is carbon monoxide, never monocarbon monoxide.

Number of atoms	<u>Prefix</u>	
1	mono-	MEMORIZE
2	di-	THESE!!!!!
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	

• Examples:

CO= carbon monoxide $CO_2 =$ carbon dioxide $N_{2}O_{5} =$ dinitrogen pentoxide carbon tetrachloride = CCI_{4} dihydrogen monoxide = H_2O Memorize: NH_3 = ammonia

Remember ammonium? NH₄ +

Practice

- Name these Type III Binary Compounds:
 - BF_3 NO N_2O_3 CCI_4 IF_5

ACIDS

- A substance that produces a hydrogen ion in solution *HINT: look for <u>H</u> in the front of the formula*
- 3 types of names
- #1- comes from binary compound ending in "-ide"

- change to hydro____ic acid

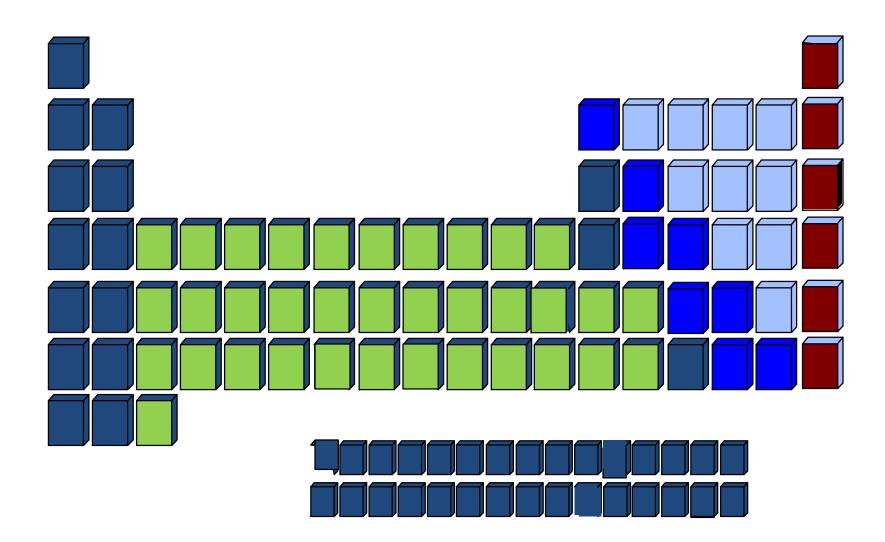
HCl= hydrogen chloride rename as **hydrochloric acid** H₃N= trihydrogen nitride rename as **hydronitric acid** H₂S= dihydrogen sulfide rename as **hydrosulfic acid** #2-comes from polyatomic ion ending in "-ite"— Change to "ous" acid

HNO₂=<u>hydrogen nitrite</u> rename as **nitrous acid**

H₂SO₃= <u>dihydrogen sulfite</u> rename **sulfurous acid**

#3 comes from polyatomic ion ending in "-ate"— Change to –ic acid

HNO₃= <u>hydrogen nitrate</u> rename as **nitric acid**


H₂SO₄= <u>dihydrogen sulfate</u> rename as **sulfuric acid**

Rule # 2 & 3 Examples

Acid	Anion	Name
H ₂ SO ₄	SO ₄ ²⁻ (sulfate)	sulfuric acid
H ₃ PO ₄	PO43- (phosphate)	phosphoric acid
HC ₂ H ₃ O ₂	$C_2H_3O_2^-$ (acetate)	acetic acid
H ₂ SO ₃	SO ₃ ²⁻ (sulfite)	sulfurous acid
HNO ₂	NO ₂ - (nitrite)	nitrous acid

Practice

- Name the following acids
 - HI
 - HBr
 - HCN
 - H_2S
 - ΗF
 - HNO₃

		Alkaline earth m														Н	Ialoger	Noble gases ¹ ns 18 8A
	1 H	\downarrow 2 2A	_										13 3A	14 4A	15 5A	16 6A	↓ 17 7A	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tra	7 ansitio	8 on meta	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
Alkali metals	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Alkali	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
*Lanthanides 58 59 60 61 62 63 64 Ce Pr Nd Pm Sm Eu Gd										65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
		† _A	Actinid	.es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr