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ABSTRACT

There are many sources of systematic variation in
cDNA microarray experiments which affect the meas-
ured gene expression levels (e.g. differences in
labeling efficiency between the two fluorescent
dyes). The term normalization refers to the process
of removing such variation. A constant adjustment is
often used to force the distribution of the intensity
log ratios to have a median of zero for each slide.
However, such global normalization approaches are
not adequate in situations where dye biases can
depend on spot overall intensity and/or spatial location
within the array. This article proposes normalization
methods that are based on robust local regression
and account for intensity and spatial dependence in
dye biases for different types of cDNA microarray
experiments. The selection of appropriate controls
for normalization is discussed and a novel set of
controls (microarray sample pool, MSP) is introduced
to aid in intensity-dependent normalization. Lastly, to
allow for comparisons of expression levels across
slides, a robust method based on maximum likelihood
estimation is proposed to adjust for scale differences
among slides.

INTRODUCTION

DNA microarrays are part of a new class of biotechnologies
that allow the monitoring of expression levels in cells for
thousands of genes simultaneously. In a typical microarray
experiment utilizing ‘spotted arrays’, the two mRNA samples
to be compared are reverse transcribed into cDNA, labeled
using two different fluorophores (usually a red fluorescent dye,
Cy5, and a green fluorescent dye, Cy3) and then hybridized
simultaneously to the glass slide. Intensity values generated

from hybridization to individual DNA spots are indicative of
gene expression levels, and comparisons in gene expression
levels between the two samples are derived from the resulting
intensity ratios (1). Applications of microarrays range from the
study of gene expression in yeast under different environ-
mental stress conditions (2,3) to the comparison of gene
expression profiles for tumors from cancer patients (4–9).

In order to accurately and precisely measure gene expression
changes, it is important to take into account the random (experi-
mental) and systematic variations that occur in every microarray
experiment. For example, a well-known source of systematic
variation arises from biases associated with the different fluores-
cent dyes. This can most easily be seen in an experiment where
two identical mRNA samples are labeled with different dyes
and subsequently hybridized to the same slide (10). In this
instance, it is rare to have the dye intensities equal across all
spots between the two samples. Even though such systematic
biases may be comparatively small, they may be confounding
when searching for subtle biological differences. Dye biases
can stem from a variety of factors, including physical properties of
the dyes (heat and light sensitivity, relative half-life), effi-
ciency of dye incorporation, experimental variability in
hybridization and processing procedures, or scanner settings at
the data collection step. Furthermore, the relative gene expression
levels from replicate experiments may have different sample
variances due to differences in experimental conditions. Many
of these factors, whether internal or external to the target
samples, make distinctions between differentially and
constantly expressed genes difficult [in this article we adopt
the definitions of ‘probe’ and ‘target’ from the January 1999
supplement to Nature Genetics (11), whereby the term target
refers to the samples hybridized to the array and the term probe
refers to the DNA sequences spotted on the array].

The purpose of normalization is to minimize systematic
variations in the measured gene expression levels of two co-
hybridized mRNA samples, so that biological differences can be
more easily distinguished, as well as to allow the comparison of
expression levels across slides. Current methods of normalization
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fail to account for important sources of systematic variation (e.g.
intensity- or spatially-dependent dye biases). In this article we
propose a composite normalization procedure, based on robust
local regression, to accommodate different types of dye biases
and the use of control sequences spotted on the array. The
selection of a suitable set of control spots for use in the normal-
ization procedure is critical for proper normalization. To this end,
we introduce a novel control sample (microarray sample pool,
MSP), with minimal sample-specific bias over a large intensity
range, and show that it is effective in many types of microarray
experiments.

MATERIALS AND METHODS

Biological samples

Preparation of RNA samples and microarray analysis. Tissues
were dissected, solubilized in Trizol (Gibco BRL) and total
RNA was prepared according to the manufacturer’s suggested
protocol. Prior to reverse transcription and labeling, total RNA
samples were treated with DNase using RQ RNase-free DNase
(Promega) for 20 min at 37°C. RNA samples were reverse
transcribed and labeled for microarray analysis using standard
techniques (6,12). Briefly, RNA samples were reverse tran-
scribed with Superscript II reverse transcriptase in the presence
of 2-aminoallyl-dUTP. Samples were purified and coupled to
Cy3 or Cy5 as described (6,12,13). Labeled targets were resus-
pended in hybridization buffer and applied to glass microar-
rays. Hybridizations were performed overnight at 50–55°C.
Washed and dried slides were imaged in an Axon GenePix
4000A scanner.

Experiment A: apolipoprotein AI (apo AI) experiment. The
treatment group consisted of eight mice with the apo AI gene
knocked out and the control group consisted of eight control
C57Bl/6 mice. For each of these 16 mice, target cDNA was
obtained from mRNA by reverse transcription and labeled
using a red fluorescent dye, Cy5. The reference sample used in
all hybridizations was prepared by pooling cDNA from the
eight control mice and was labeled with a green fluorescent
dye, Cy3. Target cDNA was hybridized to microarrays
containing 6384 cDNA probes, which included 257 genes
thought to be related to lipid metabolism. Probes were spotted
onto the glass slides using a 4 × 4 print head and each of the
corresponding 16 print tip groups was laid out in a 19 × 21
array or sub-grid. For further details the reader is referred to
Callow et al. (14).

Experiment B: olfactory bulb experiment. In this experiment,
comparisons were made between different spatial regions of
the mouse olfactory bulb to screen for possible region-specific
differences in gene expression (D.M.Lin, Y.H.Yang, J.Scolnick,
L.Brunet, V.Peng, T.Speed and J.Ngai, submitted for publica-
tion). The target cDNA was hybridized to glass microarrays
containing ∼18 000 isolated expressed sequence tags (ESTs)
from the RIKEN Release 1 mouse cDNA library (15). The
olfactory bulb is an ellipsoidal structure, so in order to make a
3-dimensional representation using binary comparisons, bulbs
were separately sub-dissected into three sections along each of
the three orthogonal axes. RNA was collected from a number
of different mice and samples from the same anatomical

domains were harvested and pooled (D.M.Lin, Y.H.Yang,
J.Scolnick, L.Brunet, V.Peng, T.Speed and J.Ngai, submitted
for publication). Comparisons were made between maximally
separated regions: anterior versus posterior, medial versus
lateral and dorsal versus ventral regions.

MSP titration series. Total EST collections were generated
from amplification of PCR products for microarray fabrica-
tion. Samples corresponding to all 18 816 ESTs from the
RIKEN Release 1 cDNA library were pooled and precipitated.
An MSP was also made from a randomly picked non-normalized
plasmid library generated from mouse cerebellum (A.Finn and
T.Serafini, unpublished results). Precipitated samples were
resuspended and serially diluted in preparation for printing. Six
steps were used in the dilution series and the samples were then
spotted in the middle of the first or last row of each of the print
tip groups. Microarrays were prepared as discussed previously
(6).

Image processing

Each hybridization produced a pair of 16-bit images, which
were processed using the software package Spot (16). The
main quantities of interest produced by the image analysis
methods (segmentation and background correction) are the
(R,G) fluorescence intensity pairs for each gene on each array
(where R = red for Cy5 and G = green for Cy3). Note that we
call the spotted DNA sequences ‘genes’, whether they corre-
spond to actual genes, ESTs or DNA sequences from other
sources.

Statistical methods

An ‘MA-plot’, as described in Dudoit et al. (10), is used to repre-
sent the (R,G) data, where M = log2R/G and A = log2√(R × G). We
have found MA-plots to be helpful in terms of identifying spot
artifacts and detecting intensity-dependent patterns in the log
ratios M. They are also very useful for the purpose of normal-
ization, as illustrated next with several location normalization
procedures. Within-slide normalization for location consists of
subtracting a function c(.) from individual intensity log ratios,
where the function c(.) is computed separately for each slide,
using only data from that hybridization.

Global normalization. Global methods assume that the red and
green intensities are related by a constant factor, i.e. R = kG,
and the center of the distribution of log ratios is shifted to zero

log2R/G → log2R/G – c = log2R/(kG)
A common choice for the location parameter c = log2k is the
median or mean of the intensity log ratios M for a particular
gene set.

Intensity-dependent normalization. We use the robust scatter
plot smoother ‘lowess’, implemented in the statistical software
package R (17), to perform a local A-dependent normalization

log2R/G → log2R/G – c(A) = log2R/[k(A)G]
where c(A) is the lowess fit to the MA-plot. The lowess scatter
plot smoother performs robust locally linear fits. In particular,
it will not be affected by a small percentage of differentially
expressed genes, which will appear as outliers in the MA-plot.
The user-defined parameter f is the fraction of the data used for
smoothing at each point; the larger the f value, the smoother the
fit. We typically use f = 40%.
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Within-print tip group normalization. Within-print tip group
normalization is simply a (print tip + A)-dependent normalization,
i.e.

log2R/G → log2R/G – ci(A) = log2R/[ki(A)G]
where ci(A) is the lowess fit to the MA-plot for the ith grid only
(i.e. for the ith print tip group), i = 1, ..., I, and I denotes the
number of print tips.

Scale normalization. Starting from data which have been location
normalized as just described, we suppose that the log ratios
from the ith print tip group follow a normal distribution with
mean zero and variance ai

2 σ2, where σ2 is the variance of the
true log ratios and ai

2 is the scale factor for the ith print tip
group. In order to perform scale normalization, the scale
factors ai for the different print tip groups are estimated and
then eliminated. Enforcing the natural constraint �I

i = 1logai
2 = 0,

with I denoting the total number of print tip groups on the array
(or the number of slides, for multiple slide normalization
discussed below), the maximum likelihood estimate for ai is

i
2 = (�ni

j = 1 Mij
2 )/[ I

√(Π I
k = 1�

nk
j = 1 Mkj

2 )]
where Mij denotes the jth log ratio in the ith print tip group, j = 1,
..., ni. A robust alternative to this estimate, which we find
preferable, is

i = (MADi )/[
I
√(ΠI

i = 1MADi)
where the median absolute deviation MAD is defined by

MADi = medianj{Mij – medianj(Mij) }

Composite normalization. For a given print tip group the
composite normalization curve is a weighted average of the
MSP lowess curve and the lowess curve based on all genes in
the print tip group. The weights are dependent on the cumulative
number of genes at different intensity levels A. An outline of
this procedure for a spot in the ith print tip group is as follows.
(i) Estimate i (A), the lowess fit to the MA-plot for the ith
print tip group. (ii) Estimate (A), the lowess fit to the MA-
plot using only spots from the MSP titration series. (iii) Calculate
the weighted average, ci(A) = αA (A) + (1 – αA) i (A), where αA
is defined as the proportion of genes less than a given intensity
A.

Comparison between different normalization methods. After
image processing and normalization, the gene expression data
can be summarized by a matrix X of intensity log ratios
M = log2R/G, with p rows corresponding to the genes being
studied and n columns corresponding to the different hybrid-
izations. In the apo AI experiment p = 6384 and there were n1 = 8
control (C57Bl/6 mice) and n2 = 8 treatment (apo AI knockout
mice) hybridizations. Differentially expressed genes were
identified by computing two-sample Welch t-statistics. For
gene j the t-statistic comparing gene expression in the control
and treatment groups is

tj = (x2j – x1j)/√[(s1j
2 /n1) + (s2j

2 /n2)]
where x1j and x2j denote the average background-corrected
and normalized expression level of gene j in the eight control
and eight treatment hybridizations, respectively. Similarly, s1j

2

and s2j
2 denote the variances of gene j expression level in the

control and treatment hybridizations, respectively. Large absolute
t-statistics suggest that the corresponding genes have different
expression levels in the control and treatment groups. The
statistical significance of the results was assessed based on
P-values adjusted for multiple comparisons. These adjusted

P-values were estimated by permutation, using Westfall and
Young’s step-down adjusted P-value procedure in algorithm
4.1 (18). The analysis of the apo AI experiment is described in
detail in Dudoit et al. (10).

In order to compare the different within-slide normalization
procedures, we considered their effect on the location and scale
of the log ratios M using box plots. A Gaussian kernel density
estimator (the ‘density’ function from the statistical software
package R, bandwidth size 0.17) is also used to produce
density plots of the log ratios for each of the normalization
methods. For experiment A we considered the effect of the
normalization procedures on the t-statistics for the knockout
gene.

RESULTS

Within-slide normalization: intensity- and spatially-
dependent systematic error

We first address within-slide normalization, i.e. normalization
issues associated with data obtained from a single slide. A
well-known source of error can be attributed to biases linked to
the different dyes used at the labeling step. Current methods of
global normalization assume a uniform grading of systematic
error across all variables in an experiment. Two major assump-
tions are usually made: (i) all cDNA species within a sample
will incorporate an equivalent amount of dye per mole cDNA;
(ii) there are no other variables (e.g. spatial location, overall
intensity, plate) that contribute to dye biases across the slide.
These assumptions are too simplistic to account for the
multiple sources of systematic error typically encountered in
microarray experiments. The problem is best illustrated in an
experiment where identical mRNA samples are labeled with
Cy3 and Cy5 and subsequently hybridized to the same slide
[self–self comparison; described in Dudoit et al. (10)]. In a
‘perfect’ self–self hybridization the intensity log ratios M in an
MA-plot should be evenly distributed around zero across all
intensity values A. However, this is rarely the case, and
systematic error often manifests itself in terms of non-zero log
ratios M. Furthermore, the imbalance in the red and green
intensities is usually not constant across the spots and can vary
according to overall spot intensity A (indicated by a curvature
in the MA-plot), location on the array, plate origin and possibly
other variables.

Intensity-dependent dye bias can be seen in the apo AI
experiment (14). Apo AI is a gene known to play a pivotal role
in high-density lipoprotein metabolism. The goal of the experi-
ment was to identify genes with altered expression in the livers
of mice with the apo AI gene knocked out compared with
inbred C57Bl/6 control mice. In this instance, it was found that
the vast majority of genes examined on the microarray showed
no difference in expression level. The clear curvature in the
MA-plot in Figure 1A strongly suggests the existence of an
intensity-dependent dye bias.

Some systematic differences may exist between the print
tips, such as slight differences in the length or in the opening of
the tips, and deformation after many hours of printing. We
therefore also performed individual lowess fits within each
print tip group. The arrays in the apo AI experiment were
printed with a 4 × 4 print head, so each lowess fit in Figure 1
corresponds to spots printed with a single print tip. Four
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within-print tip group lowess curves stand out from the
remaining 12 curves, indicating strong print tip or spatial
effects. These four curves correspond to the last row of print
tips in the 4 × 4 print head (print tips 13–16). This pattern was
visible in the raw images, where the bottom four grids tended
to have a higher red signal. We further examined the spatial
effects by considering box plots of the log ratios M for each
print tip group. Figure 2 shows that print tip groups 13–16 have
a larger spread in their log ratios than any of the other 12 print
tip groups. Such a difference in spread may result in misidenti-
fication of genes that are differentially expressed in the
knockout mice compared to the control mice. Thus, normaliza-
tion for scale across print tip groups seems desirable here.

Within-slide normalization using the majority of genes on
the microarray

For the apo AI experiment considered in Figures 1 and 2,
global normalization, in which a constant adjustment is used to
force the distribution of the log ratios to have a median zero
within each slide, would result in a vertical translation of the
MA-plot. It would not correct for intensity- or spatially-
dependent effects, including local differences in the spread of
the log ratios M. As a first pass towards eliminating intensity
and spatial biases, we considered a normalization procedure in
which the majority of genes on the array are used for normalization.

This is a reasonable assumption when there are good reasons to
expect that (i) only a relatively small proportion of the genes
will vary significantly in expression between the two co-
hybridized mRNA samples or (ii) there is symmetry in the
expression levels of the up/down-regulated genes. The data
shown in Figures 1 and 2 are good examples of this situation.

To address both intensity and spatial normalization issues,
we first incorporated an intensity modifier into our normaliza-
tion procedures. We used the scatter plot smoother lowess to
produce robust location estimates of the intensity log ratios M
for various intensity levels A and to adjust each gene with a
different normalization value depending on its overall intensity.
Other variables that may contribute to systematic bias include
differences in print tips and spatial location. Because every
grid in an array is printed using the same print tip, print tip
groups can also be used as proxies for spatial effects on the
slide. Thus, we also incorporated a print tip modifier into the
intensity-dependent normalization. It might be thought that the
layout of genes on the slide could lead to one or more print tip
groups being enriched for differentially expressed genes and,
hence, invalidate the assumption underlying print tip group
normalization. While we cannot rule out chance imbalances in
the spatial distribution of differentially expressed genes, the
mechanics of spotting cDNA onto the slide makes a large
effect of this kind unlikely. Even if one had a collection of

Figure 1. Within-slide normalization. (A) MA-plot demonstrating the need for within-print tip group location normalization. (B) MA-plot after within-print tip
group location normalization. Both panels display the lowess fits (f = 40%) for each of the 16 print tip groups (data from apo AI knockout mouse number 8 in experiment
A).

Figure 2. Within-slide normalization: box plots displaying the intensity log ratio distribution, for each of the 16 print tip groups before and after different normal-
ization procedures. The array was printed using a 4 × 4 print head and the print tip groups are numbered first from left to right, then from top to bottom, starting
from the top left corner (data from apo AI knockout mouse number 8 in experiment A). (A) Before normalization. (B) After within-print tip group location nor-
malization, but before scale adjustment. (C) After within-print tip group location and scale normalization.
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genes known or expected to be differentially expressed in one
or more microtiter plates, they would be spotted evenly across
the slide by the printer.

In principle, after within-print tip group location normalization,
the log ratios from the different print tip groups should be
centered around zero (Fig. 2B). However, it is possible that the
log ratios from the various print tip groups have different
spreads; if this is the case, a scale adjustment may be required.
Figure 2 displays box plots of the intensity log ratios M for a
slide in experiment A, before normalization (Fig. 2A), after
within-print tip group location normalization (Fig. 2B) and
after within-print tip group location and scale normalization
(Fig. 2C). In Figure 2B there is a disproportionately large
number of extreme log ratios in the lower four grids. After
scale normalization, the extreme log ratios are evenly distributed
on the array (Fig. 2C). Again, this procedure assumes that a
relatively small proportion of the genes vary significantly in
expression between the two co-hybridized mRNA samples, as
would be expected when comparing samples from wild-type
mice versus mice harboring a mutation in a single gene. In
addition, it is assumed that the spread of the distribution of the
log ratios should be roughly the same for all print tip groups.
The robust statistic MAD, like the robust lowess smoother, will
not be affected by a small percentage of differentially
expressed genes, which will appear as outliers in the MA-plots.

In another example of within-slide location normalization,
Figure 3 shows an MA-plot from experiment B, for a comparison
of mRNA levels in the anterior and posterior portions of the
mouse olfactory bulb. These mRNA samples are biologically
very similar and very few genes are expected to be differen-
tially expressed. Indeed, the MA-plot shows very little diver-
gence from the lowess fit to all genes and the scatter plot is
roughly symmetrical about the lowess curve. We thus
performed a print tip group normalization using all genes.
Figure 3 displays the intensity data before (Fig. 3, left) and
after normalization (Fig. 3, right). The normalization proce-
dure resulted in a scatter plot centered around an M value of
zero across the A intensity range, thus indicating that the types
of systematic errors we have identified have been minimized.

Within-slide normalization using MSP

Frequently, the expression profiles in biological samples are
more divergent in nature than in the examples investigated
above. Thus, normalization based upon all genes may be
inaccurate. A control sample that spans the intensity range and
exhibits a relatively constant expression level across biological
samples is desirable. Yeast genomic DNA has been used for
normalization in that system. Since all species within an
mRNA sample can hybridize to this control, sample-specific
bias is reduced. The genomic DNA approach does not,
however, directly extend to more complex metazoan systems,
where the high ratio of non-coding to coding DNA effectively
reduces the signal from such a control below the detection
threshold in a microarray experiment.

We therefore constructed a novel control sample ensemble,
MSP, inclusive of all genes present on the microarray. This
sample should be analogous to genomic DNA without the
intervening sequences and, thus, provides a potential probe for
every species within a labeled cDNA target. We titrated this
sample over the intensity range of a typical microarray experi-
ment in order to account for all levels of intensity-dependent
bias. The utility of this control is demonstrated in Figure 3,
which highlights the MSP titration series (cyan dots) and the
corresponding lowess fit to the MSP spots (cyan curve). Notice
that the MSP curve is the same as the lowess fit to the MA-plot
based on all genes (red curve). An intensity-dependent normal-
ization using the MSP control as a reference would thus be
similar, in this case, to that using all genes.

In experiment B we made a more divergent comparison
between mRNA samples from the medial and lateral portions
of the olfactory bulb. Due to the presence of vascular tissue
near the medial bulb, medial samples have a higher representa-
tion of blood tissue. Figure 4A displays the MA-plot for the
medial versus lateral comparison. The genetic divergence
between the samples is evident in the increased spread of the
log ratios, particularly in the high intensity range. The lowess
curve based on all genes (red) and the lowess curve based on
the MSP titration series (cyan) are different at high intensity
values. In such a case, where samples are widely divergent at
high intensities, normalization based on the MSP titration
series appears to be more accurate. However, whereas the MSP

Figure 3. Within-slide normalization: MA-plot for comparison of the anterior versus posterior portion of the olfactory bulb. These samples are very similar and we
do not expect many genes to change. The cyan dots represent the MSP titration series and the cyan curve represents the corresponding lowess fit. The red curve
corresponds to the lowess fit for the entire dataset. Control genes are highlighted in yellow (tubulin and GAPDH), green (mouse genomic DNA) and orange
(an approximate rank-invariant set of genes with P = 0.01 and l = 25). (Left) MA-plot before normalization. (Right) MA-plot after within-print tip group location
normalization.
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spots produce more accurate estimates of expression levels,
these estimates may be less stable in the context of spatial
normalization, due to the small number of MSP spots per print
tip group.

Comparisons of MSP to other control samples

In some instances a small number of known genes, for example
housekeeping genes whose expression is expected to be constant
across samples, are utilized for microarray normalization. Such
genes are often highly expressed, as illustrated in Figure 3 for
tubulin and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (yellow). Typically, housekeeping genes are not
representative of all intensity values A and are therefore
limited in their utility for intensity-dependent normalization. In
addition, there is a sample-specific bias for many genes which
may not be predictable; this is again non-ideal for use as a
control.

Another approach is to select a rank-invariant set of genes. A
set of genes is said to be rank-invariant if their ranks are the
same for the red and green intensities. In practice, a maximal
invariant set tends to be too small and an iterative procedure
for finding an approximately invariant set of genes has been
proposed (19,20). These genes are highlighted in orange in
Figure 3 and were obtained using the method described in
Tseng et al. (20) with P = 0.01 and l = 25. The value P is
chosen such that a conserved set of genes is selected. Notice
that this set of spots overlaps the lowess fit to the MA-plot
based on all genes.

Composite within-slide normalization

We propose a composite normalization method to address the
limitations of using all genes or only the MSP titration series
for normalization. The composite normalization curve is a
weighted average of the MSP curve and the within-print tip
group lowess curve based on all genes. The weights are
dependent on the cumulative number of genes at different
intensity levels. Figure 4B shows the MA-plot after within-
print tip group normalization. In this figure the green
composite normalization curve is a weighted average of the red
and cyan colored curves. Note that the divergence of the red
from the green curve at high intensity values still persists after
normalization. In practice, we find composite normalization
necessary in the case of divergent samples. Biologically

significant outliers in experiment B were more consistently
identified when composite normalization was incorporated in the
analysis (data not shown).

Comparison between different normalization methods

In order to compare the different within-slide normalization
methods, we considered their effect on the location and scale
of the log ratios M. Figure 5A shows density plots of the log
ratios for different normalization methods. Without normalization
(black curve) the log ratios are centered around –1, indicating a
bias towards the green (Cy3) dye. A global median normalization
(red curve) shifts the center of the log ratio distribution to zero,
but does not affect the spread. The dependence of the log ratio
M on the overall intensity A is also still present (see Fig. 1). Both
the intensity-dependent (green curve) and within-print tip
group (blue curve) location normalization methods reduce the
spread of the log ratios compared to a global normalization. A
within-print tip group scale normalization (cyan curve) further
reduces the spread slightly.

The different methods were also evaluated based on their
ability to identify genes which are known to be differentially
expressed. For experiment A the apo AI gene is knocked out in
the eight treatment mice, so one expects the t-statistics to take
on very large negative values for this gene. Figure 5B shows a
truncated plot of the extreme t-statistics for each of the
methods. The global median, intensity-dependent and within-
print tip group location normalization methods seem to
perform best in terms of their ability to detect the three copies
of the knocked out apo AI gene. A good method should enable
a clear distinction between differentially and constantly
expressed genes as reflected by the t-statistic, i.e. one expects a
large jump in the t-statistic between the least extreme of the
differentially expressed genes and the most extreme of the
remaining genes. The largest jump in P-values is observed for
within-print tip group location normalization. Thus, in the situ-
ation presented by experiment A, where log ratios from the
different arrays have fairly similar spreads (see Fig. 2), within-
print tip group location normalization enables the best separation
between differentially expressed genes and noise.

Multiple slide normalization

Having addressed location and scale normalization issues
within a slide, all normalized log ratios should be centered

Figure 4. Within-slide normalization: MA-plot for comparison of the medial versus lateral portion of the olfactory bulb. The cyan dots represent the MSP titration
series and the cyan curve represents the corresponding lowess fit. The red curve corresponds to the lowess fit for the entire dataset. The green curve represents the
composite normalization curve. Control genes are highlighted in yellow (tubulin and GAPDH), green (mouse genomic DNA) and orange (an approximate rank-
invariant set of genes). (A) MA-plot before normalization. (B) MA-plot after composite normalization.
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around zero. However, in many experiments expression levels
must be compared across different slides. It is important to
note that individual slides in a multiple slide comparison may
need to be adjusted for scale when the different slides have
substantially different spreads in their intensity log ratios.
Failing to perform a scale normalization could lead to one or
more slides having undue weight when averaging log ratios
across slides. We can apply the principles used for within-slide
print tip group scale normalization to multiple slide scale
adjustment.

In practice, the need for scale normalization between slides
will be determined empirically. Figure 6 displays box plots of
the log ratios for each of the 16 slides in experiment A, after
within-print tip group location and scale normalization. The
box plots are centered at zero and have fairly similar spreads.
In this instance we chose not to adjust for scale, as the noise
introduced by a scale normalization of the different slides may
be more detrimental than a small difference in scale.

DISCUSSION

Intensity data from microarray experiments are subject to a
variety of random and systematic errors. This paper has intro-
duced location and scale normalization methods for different
types of cDNA microarray experiments and discussed different
sets of control spots utilized in normalization. The location
normalization procedure is based on robust local regression of
the intensity log ratios on overall spot intensity and accounts
for intensity and spatial dependence in the dye biases. A MSP
titration series was constructed and used as a set of controls for
normalization. The advantages of the MSP are the minimal
sample-specific bias and the coverage of a wide intensity
range. In addition, we have proposed a composite normaliza-
tion procedure, whereby the utility of different sets of control
spots and normalization methods are combined. The different
normalization methods were compared using gene expression
data from two experiments: the apo AI experiment (experiment

A), with replicated treatment and control slides, and the mouse
olfactory bulb experiment (experiment B). Normalization can
be performed at three different levels: (i) within a single slide;
(ii) between a pair of slides for dye-swap experiments (21); and
(iii) among multiple slides.

Within-slide normalization methods

For within-slide normalization, global methods have been used
as pre-processing steps in a number of papers on the identification
of differentially expressed genes in single slide cDNA micro-
array experiments (22,23). Such procedures assume that the
red and green intensities can be related by a multiplicative
constant. In one of the first proposed normalization methods,
Chen et al. (22) derived an iterative procedure for estimating
normalization constants. Similar approaches have been imple-
mented in widely used microarray software packages [e.g. GenePix
(24)]. Kerr et al. (25) and R.D.Wolfinger, G.Gibson,
E.D.Wolfinger, L.Bennett, H.Hamadeh, P.Bushel, C.Afshari
and R.S.Paules (SAS Institute, unpublished data) proposed the
use of ANOVA models for normalization purposes. Their
methods essentially perform only a global normalization and
do not correct for intensity or scale differences. We have found
that the standard global median normalization can often be
inadequate due to spatially- and intensity-dependent dye
biases. We propose instead a within-print tip group location
normalization method which is based on robust local regres-
sion of the log ratios M on overall spot intensity A (the lowess
smoother for MA-plots). Compared with other normalization
procedures, this approach provided a clearer distinction
between the differentially and constantly expressed genes in
experiment A.

Other intensity-dependent normalization methods have been
proposed in recent articles. Finkelstein et al. (26) recom-
mended an iterative linear regression procedure, which essen-
tially amounts to robust linear regression. Sapir and Churchill
(27) suggested using the orthogonal residuals from the robust
regression of logR versus logG as the normalized log ratios.

Figure 5. Within-slide normalization. (A) Density plots of the log ratios M before and after different normalization procedures. The solid black curve represents
the density of the log ratios before normalization. The red, green, blue and cyan curves represent the densities after global median normalization, intensity-dependent loca-
tion normalization, within-print tip group location normalization and within-print tip group scale normalization, respectively (data from apo AI knockout mouse
number 8 in experiment A). (B) Plot of t-statistics for different normalization methods. The numbers 1–8 represent the differentially expressed genes identified in Dudoit
et al. (10) and confirmed using RT–PCR: indices 1–3 represent the three apo AI genes spotted on the array. Empty circles represent the remaining 6376 genes where
no effect is expected. Only t values less than –4 are shown.
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Since an MA-plot amounts to a 45° counterclockwise rotation
of the (logG,logR) coordinate system (up to multiplicative
constants), their method is similar to fitting a robust regression
line through the MA-plot, instead of a lowess curve. One can
view these two linear normalizations as a more constrained
version of our intensity-dependent normalization. Kepler et al.
(28) proposed a more general intensity-dependent normalization
approach, which uses a different local regression method
instead of the lowess smoother. Most methods suggested thus
far do not correct for spatial biases in the log ratios. As we have
shown, spatial bias is also a significant source of systematic
error, due to hybridization artifacts or print tip effects during
printing of the microarray. Our proposed normalization procedures
correct for these artifacts.

Within-slide location normalization methods adjust the
intensity log ratios M such that they are approximately zero for
genes that are constantly expressed in the two co-hybridized
samples. The box plots of the location normalized log ratios in
each print tip group in Figure 2 suggest that some scale adjust-
ment may also be required within slide. However, within-print
tip group scale normalization seems to have decreased our
ability to identify the differentially expressed genes in experiment
A. We believe that this is due to an increase in the variability
(the denominator of the t-statistic) of the log ratios for the eight
differentially expressed genes compared to the rest of the
genes.

Multiple slide normalization methods

A similar approach to that described for within-slide scale
normalization may also be extended to perform scale normalization
across slides. In practice, multiple slide normalization aims to
adjust for different sample variances in log ratios across slides.
Such adjustments are required so that the relative expression
levels from one particular slide do not dominate the average
relative expression levels across replicate slides. In general
there is a trade-off between the gains achieved by scale
normalization and the possible increase in variability intro-
duced by this additional step. In cases where the scale differ-
ences are fairly small it may thus be preferable to perform only
a location normalization. Further investigations are underway
to develop an improved procedure for scale adjustment and to
identify better comparison criteria to assess the effectiveness
of various normalization procedures.

Comparisons of MSP to commonly used control samples

In general, the set of control spots most appropriate for
normalization depends on the nature of the experiment. Tradi-
tional methods based upon intensity values of housekeeping
genes often show sample-specific bias and do not address the
issue of intensity-dependent dye biases. Other drawbacks
include the possibility that housekeeping genes may actually
be regulated within an experimental sample. Housekeeping
genes also tend to be highly expressed and, hence, may not be

Figure 6. Multiple slide normalization: box plots displaying the intensity log ratio distribution for different slides/mice for experiment A, after within-print tip
group location and scale normalization. The first eight box plots represent the data for the eight control mice and the last eight represent the data for the eight apo
AI knockout mice.
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representative of other genes of interest. It is clear that a less
localized type of control is required to obtain accurate normal-
ization. The other three types of control examined in this
article were chosen for their representation of as many genes
and intensity values as possible so as to minimize sample bias.

The MSP titration series was constructed with this specific
aim in mind. In the yeast system, normalization is typically
performed using yeast genomic DNA, which contains propor-
tionately small amounts of non-coding DNA. In contrast, the
genomes of higher organisms such as mice contain a much
higher representation of non-coding DNA. The MSP is analogous
to genomic DNA as a control, with the exception that non-
coding regions are removed. Typically, a concentration titration is
done to span as wide an intensity range as possible. However,
due to limitations in the construction of the MSP, very high
expression values cannot be represented. In practice, one could
construct an MSP of lower complexity with a larger represen-
tation of highly expressed genes. Since most rare and low
expression genes do not contribute significantly to an MSP
signal, removing this population is analogous to further
removal of non-coding DNA. Theoretically, all labeled cDNA
sequences could hybridize to this mixed probe sample, so it is
therefore minimally subject to any sample-specific bias.

The use of all genes for normalization offers the most
stability in terms of estimating spatially- and intensity-
dependent trends in the log ratios. However, in biological
samples which show significant divergence, a lowess fit to the
MA-plot based on all genes may not produce accurate normalized
log ratios. In such instances, it would be more appropriate to
normalize using the MSP spots alone. While the MSP and
rank-invariant controls are effective for intensity-dependent
normalization, we have found that normalization based on all
genes is more reliable for spatial normalization . This is due in
part to the low representation of MSP and rank-invariant spots
per print tip group (6–12 spots per 400 spots) and is an example
of bias variance trade-off.

Composite normalization and the MSP titration series

This article has proposed a composite normalization procedure
which combines the utility of normalization methods based on
all genes and those based on only the MSP titration spots. For
low A intensity values, normalization is based on all genes in
the corresponding intensity range. For higher A values, particu-
larly in more divergent biological samples, normalization is
based primarily on the MSP titration series. In other circum-
stances as they warrant, other normalization methods may be
incorporated into the composite technique. For example, in
cases where microarrays are printed without MSP titration
spots, very high intensities may be normalized using house-
keeping genes and median to low intensities may be normalized
using all genes in the corresponding range.

The MSP spots were essential to validate the assumptions
behind our various normalization procedures and are necessary
for normalizing biologically divergent samples. The construction
of the MSP titration series is important, as we observed intensity-
dependent dye biases in many experiments. Efforts are still in
progress to devise variants of this control set for scale normal-
ization procedures. It is evident that no single control sample
or normalization procedure is accurate or adequate for all types
of microarray comparisons. However, it is becoming increasingly
common for investigators to print microarrays with a large
complement of control spots. This flexibility expands the
opportunity to customize normalization procedures, depending
on the experimental conditions.

The strengths and weaknesses of the normalization tech-
niques and control samples discussed in this paper are summa-
rized in Table 1. Finally, the methods described in the article
are implemented in the package R (17), SMA (Statistics for
Microarray Analysis), which may be downloaded from http://
www.R-project.org. Supplementary analyses, figures and data-
sets are available at http://www.stat.berkeley.edu/users/terry/
zarray/Html/index.html.

Table 1. The various normalization methods considered in this article

For within-slide normalization, the log ratios are normalized by log2R/G → [log2R/G – c(.)]/a(.), where c(.) and a(.) correspond to location and scale adjustment,
respectively. The columns refer to different normalization methods and the rows correspond to different sets of control spots. The Yes or No in each cell refers to
the feasibility of performing the normalization in practice. For example, it is possible in practice to perform global normalization based only on housekeeping
genes, but it is not advisable to perform intensity-dependent normalization on housekeeping genes only.

Within-slide Multiple slide

Global, location Intensity-dependent,
location

Print tip-dependent,
location

Print tip, location
and scale

Scale

c(.) constant,
a(.) = 1

c(.) = c(A),
a(.) = 1

c(.) = c(A, print tip),
a(.) = 1

c(.) = c(A, print tip),
a(.) = a(print tip)

All genes Assumes the majority of genes in the
two mRNA samples have similar overall
expression levels

Yes Yes Yes Yes Yes

Housekeeping
genes

Usually highly expressed and do not
capture intensity-dependent structure

Yes No No No No

MSP titration
series

Doesn’t require any prior biological
assumption, however, estimating c(A, print
tip) based on a small number of spots may
not be very stable

Yes Yes No No No

Rank-invariant
set

May not span the whole intensity range Yes Yes No No No
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