Getting Started with MATLAB

CS534 TA: Chunhui Zhu czhu@cs.wisc.edu

Sep 16 ${ }^{\text {th }}, 2011$

Thanks to the help from Tuo Wang and Prof. Dyer in making these slides.

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

What is MATLAB?

- MATLAB = Matrix Laboratory
- "MATLAB is an interactive, matrix-based system for scientific and engineering numeric computation and visualization. You can solve complex numerical problems in a fraction of the time required with a programming Language such as Fortran or C."
---- Matlab Primer

MATLAB vs. JAVA\&C++

- Task: compute the eigenvectors and eigenvalues for matrix A
- JAVA/C++: OK, let me first define a matrix struct or class, then look up the eigenvalue definition in linear algebra book, figure out the solution, write the code and debug...Hopefully, get the right answer...
- MATLAB: One command line.
- MATLAB: quick implementation of your idea JAVA\&C++: for development

Entering Matrices

- By an explicit list of elements - A=[1,2,3; $456 ; 78,9]$;
- By built-in statements and functions:

Evenly distributed vector:
0:0.5:2 generates [0,0.5,1.5,2]
zeros (n, m), ones (n, m), eye (n, m),
rand(), randn(), repmat()

- Load from external data files or applications

Basic Operations on Matrices

- All operators in MATLAB are defined on matrices: +, -, *, /, ^, sqrt, sin, cos, etc.
- Element-wise operators defined with a preceding dot: .*, ./, .^
- Be sure about whether matrix operations or element-wise operators are using!

Logical Operators (cont.)

- Example:
$\gg A=\left[\begin{array}{llllll}7 & 3 & 5 ; & 6 & 1\end{array}\right],[r, C]=$ find $(A<4)$ $A=$

735
621
$r=1 \quad c=2$
2
2
2
3

Logical Operators

-==, <, >, (not equal) ~=, (not) ~

- find('condition') - Returns indexes of A's elements that satisfy the condition

Some Built-in Matrix Funcs

- [eigVec,eigVal]=eig(A), eigenvectors and eigenvalues for matrix A
- inv(A),inverse of matrix A
- det(A), determinant of matrix A
- rank(A), the rank of matrix A
- size (A,1), number of rows of Matrix A; size(A,2), number of columns
- ...

Variable Name in Matlab

- Variable naming rules
- must be unique in the first 63 characters
- must begin with a letter
- may not contain blank spaces or other types of punctuation
- may contain any combination of letters, digits, and underscores
- are case-sensitive
- should not use Matlab keyword
- Pre-defined variable names
- pi

Functions in MATLAB (cont.)

- Example:
- A file called stat.m:
function [mean, stdev]=stat(x)
\%STAT Interesting statistics.
$\mathrm{n}=$ length (x) ;
mean=sum (x)/n;
stdev=sqrt (sum ((x-mean). $\left.\left.{ }^{\wedge} 2\right) / n\right)$;
- Defines a new function called stat that calculates the mean and standard deviation of a vector. Function name and file name should be the SAME!

[^0]
Scripts and Functions

- There are two kinds of M-files(.m):
- Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace. When executed, it equals to orderly type the command lines in the command window.
- Functions, which can accept input arguments and return output arguments. Internal variables are local to the function

Suggested Project Organization

- A script file + Several self-defined function files
- Script file acting like a main.cpp in C++, it calls the self-defined functions or built-in system functions.
- Self-defined function files implement details of algorithms.
- DEMO

Flow Control

- MATLAB has five flow control constructs:
- if statement
- switch statement
- for loop
-while loop
- break statement

if

- IF statement condition
- The general form of the IF statement is

IF expression
statements
ELSEIF expression
statements
ELSE
statements
END
-CODE

switch

- SWITCH - Switch among several cases based on expression
- The general form of SWITCH statement is:

SWITCH switch_expr
CASE case_expr,
statement, ..., statement
CASE \{case_expr1, case_expr2, case_expr3, ...\} statement, ..., statement

OTHERWISE
statement, ..., statement

switch (cont.)

- Note:
- Only the statements between the matching CASE and the next CASE, OTHERWISE, or END are executed
- Unlike C, the SWITCH statement does not fall through (so BREAKs are unnecessary)
- CODE

for

- FOR repeats statements a specific number of times
- The general form of a FOR statement is:

FOR variable=expr
statements
END
-CODE

It seems like I can use these loops as I do in C/C++/Java...

Try to AVOID THIS!

while

- WHILE repeats statements an indefinite number of times
- The general form of a WHILE statement is: while expression
statements
END
- CODE

Time Cost Comparison

- Loop vs. No Loop

A = rand(1000,1000);B = rand(1000,1000);
for $\mathrm{i}=1: \operatorname{size}(\mathrm{A}, 1)$,
for $\mathrm{j}=1$: size $(\mathrm{A}, 2)$,
$C(i, j)=A(i, j)+B(i, j) ;$
end
end
Using loop: Elapsed time is 1.125289 seconds.

Time Cost Comparison(cont.)

- Loop vs. no loop
$C=A+B$

Elapsed time is 0.002346 seconds.

Saving your Work

- save mysession
\% creates mysession.mat with all variables
- save mysession a b
\% save only variables a and b
- clear all
\% clear all variables
- clear a b
\% clear variables a and b
- load mysession
\% load session

Visualization and Graphics

- plot (x, y), plot $(x, \sin (x))$ - plot 1D function
- figure, figure (k) - open a new figure
- hold on, hold off - refreshing
- axis([xmin xmax ymin ymax]) - change axes
- title('figure titile') - add title to figure
- mesh (x_ax,y_ax,z_mat) - view surface
- contour (z_mat) - view z as topo map
- subplot (3,1,2) - locate several plots in figure
- CODE and Debug CODE

Debug Techniques

- Debug is essential.
- Easy and flexible access during debug.
- DEMO

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

What is the Image Processing Toolbox?

- The Image Processing Toolbox is a collection of functions that extend the capabilities of the MATLAB's numeric computing environment. The toolbox supports a wide range of image processing operations, including:
- Geometric operations
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Image analysis and enhancement
- Binary image operations
- Region of interest operations

Images in MATLAB

- Binary images : $\{0,1\}$
- Intensity images : [0,1] or uint8, double etc.
- RGB images : $m \times n \times 3$
- Multidimensional images: $m \times n \times p$ (p is the number of layers)

Image Import and Export

- Read and write images in Matlab
img = imread('apple.jpg');
dim = size(img);
figure;
imshow (img);
imwrite(img, 'output.bmp', 'bmp');
- Alternatives to imshow
imagesc(I)
imtool(I)
image(I)

Images and Matrices

How to build a matrix

(or image)?
Intensity Image:
row = 256;
col $=256$;
img $=$ zeros(row, col); ल
img(100:105, :) = 0.5;
img(:, 100:105) = 1;
figure;
imshow(img);

Image Display

- image - create and display image object
- imagesc - scale and display as image
- imshow - display image
- colorbar - display colorbar
- getimage - get image data from axes
- truesize - adjust display size of image
- zoom - zoom in and zoom out of 2D plot

Image Conversion

- gray2ind - intensity image to index image
- im2bw - image to binary
- im2double - image to double precision
- im2uint 8 - image to 8-bit unsigned integers
- im2uint16-image to 16 -bit unsigned integers
- ind2gray - indexed image to intensity image
- mat2gray - matrix to intensity image
- rgb2gray - RGB image to grayscale
- rgb2ind-RGB image to indexed image

Outline

- Introduction to MATLAB
- Basics \& Examples
- Image Processing with MATLAB
- Basics \& Examples

Image Operations

- RGB image to gray image
- Image resize
- Image crop
- Image rotate
- Image histogram
- Image histogram equalization
- Image DCT/IDCT
- Convolution
- CODE

Examples working with Images

 (1/3)Create AVI movie with a series of images \&
Read specific frame from video file
Related funcs: avifile, addframe, mmreader DEMO

Examples working with Images
(2/3)
Simplified version of image blending:
Each pixel in the apple-orange is:
w(i, j) * Apple(i, j) + (1-w(i, j)) * Orange(i, j)

Examples working with Images (3/3)(cont.)

The use of imfilter function:
A great assistant to avoid loop in Matlab image processing
$\mathbf{G}_{x}=\left[\begin{array}{lll}-1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1\end{array}\right] * \mathbf{A} \quad$ and $\quad \mathbf{G}_{y}=\left[\begin{array}{rrr}-1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1\end{array}\right] * \mathbf{A}$
$\mathbf{G}=\sqrt{\mathbf{G}_{x}{ }^{2}+\mathbf{G}_{y}{ }^{2}}$
$\Theta=\arctan \left(\frac{\mathbf{G}_{y}}{\mathbf{G}_{x}}\right)$

Examples working with Images
(3/3)
Sobel edge detection on image

Performance Issues

- The idea: MATLAB is
- very fast on vector and matrix operations
- Correspondingly slow with loops
- Try to avoid loops
- Try to vectorize your code http://www.mathworks.com/support/technotes/1100/1109.html

THE END

- Thanks for your attention!
- Questions?

[^0]: - CODE

