

Clustering the Wireless Ad Hoc Networks: A Distributed
Learning Automata Approach

J. Akbari Torkestani

Department of Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran,
Iran

j-akbari@iau-arak.ac.ir

M. R. Meybodi
Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran

mmeybodi@aut.ac.ir

Abstract

In ad hoc networks, the performance is significantly degraded as the size of the network grows. The
network clustering is a method by which the nodes are hierarchically organized on the basis of the
proximity and thus the scalability problem is alleviated. Finding the weakly connected dominating set
(WCDS) is a well-known approach, proposed for clustering the wireless ad hoc networks. Finding the
minimum WCDS in the unit disk graph is an NP-Hard problem, and a host of approximation algorithms
have been proposed. In this paper, an approximation algorithm based on distributed learning automata is
first proposed for finding a near optimal solution to the minimum WCDS problem in a unit disk graph.
Then, a distributed learning automata-based algorithm is proposed for clustering the wireless ad hoc
networks. This clustering method is a generalization of the algorithm proposed for solving the WCDS
problem, in which the dominator nodes and their closed neighbors assume the role of the cluster-heads and
cluster members, respectively. The proposed clustering algorithm, in an iterative process tries to find a
policy that determines a cluster-head set with the minimum cardinality for the network. In this paper, the
worst case running time and message complexity of the clustering algorithm to find a)1(1 ε− optimal
cluster-head set are computed. It is shown that by a proper choice of the learning rate of the clustering
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head
set size (clustering optimality) can be made. For both algorithms, the simulation results show that they
outperform the best existing algorithms in terms of the number of hosts (nodes) in the cluster-head set
(dominating set).
Keywords: Wireless ad hoc networks, clustering, weakly connected dominating set, distributed
learning automata

1 Introduction

A wireless ad hoc network is a multi hop wireless communication network supporting a collection of
mobile hosts. There is no fixed infrastructure and no central administration and the mobile hosts can form a
temporary network infrastructure in an ad hoc fashion. Two hosts can directly communicate when they are
within transmission range of each other, and indirectly through relaying by the intermediate hosts. In an ad
hoc network, each host assumes the role of a router and relays the packets toward the final destinations, if a source
can not directly send the packets to a final destination due to the limitation of the radio transmission range.
Since the wireless ad hoc networks exhibit severe resource constraints such as the bandwidth and power
limitations, network topology changes, and the lack of the fixed infrastructures and consequently,
centralized administrations, to achieve good performance in ad hoc networks, the load on the hosts should
be kept as low as possible[3, 22].

The network performance is significantly degraded as the network becomes larger and the theoretical
analysis [2] implies that even under the optimal circumstances, the throughput for each host declines

rapidly towards zero as the number of hosts is increased. Among the solutions proposed for solving the
scalability problem in ah doc networks, the network clustering approach has attracted a lot of attention in
study such large scale networks. The main idea behind the clustering approach is to group together the
network hosts that are in physical proximity, to achieve scalability and efficiency. The clusters provide a
hierarchical structure to abstract the large scale networks which can be simply and locally organized [4, 7].
A clustering algorithm is a method of dividing the network into clusters so that every cluster includes a
cluster-head and the hosts that can directly communicate with the cluster-head. Unpredictable topology
changes due to the mobility of hosts, and resource limitations (e.g., bandwidth and power limitations) are
important features of the wireless ad hoc networks. Due to the limitations of the ad hoc networks, having a
small number of the cluster-heads and also minimizing the modifications of the cluster-heads are desired.
The most basic clustering methods that have been studied in the context of ad hoc networks are based on
the dominating sets. Finding the minimum WCDS of the network graph is one of the most investigated
methods for cluster formation in which a dominator node assumes the role of a cluster-head and its one-hop
neighbors are assumed to be cluster members. The structure of the network graph can be simplified using
WCDS and made more succinct for routing in ad hoc networks [12, 14].

Clustering the ad hoc networks based on the weakly connected dominating sets was first proposed by
Chen and Listman [7, 32]. The distributed approximation clustering algorithm proposed by Chen and
Listman is also inspired by Guha and Khuller’s centralized approximation algorithm [11] for finding small
connected dominating sets (CDS). Guha and Khuller [11] proposed two centralized greedy heuristic
algorithms with bounded performance guarantees for connected dominating set formation. In the first
algorithm, the connected dominating set is grown from one node outward, and in the second algorithm, a
WCDS is constructed, and then the intermediate nodes are selected to create a CDS. Chen and Liestman
also proposed a zonal algorithm [1, 8], in which the graph is divided into regions, a WCDS is constructed
for each region, and adjustments are made along the borders of the regions to produce a WCDS for the
whole graph. Their algorithm for the partitioning phase is partly based on a Minimum Spanning Tree
(MST) algorithm of Gallager et al. [10]. Han [3] also proposed an area-based distributed algorithm for
WCDS construction in ad hoc networks with constant approximation ratio, linear time and message
complexity. While it has a lower message complexity than the zonal algorithm proposed by Chen and
Listman, it outperforms the mentioned algorithm. Alzoubi et al. [9] presented two distributed algorithms for
finding a WCDS in ad hoc networks. The first algorithm was implemented by first electing a leader among
the nodes, which was going to be the root of a spanning tree. The spanning tree is then traversed and the
dominator nodes are selected. But the distributed leader election is extremely expensive in practice, and
exhibits a very low degree of parallelism. The second algorithm first constructs a maximum independent
set (MIS) by an iterative labelling strategy, and then modifies the MIS by selecting one intermediate node
between each pair of dominators separated by exactly three hops.

In this paper, two distributed learning automata-based algorithms are proposed to solve the minimum
WCDS problem and to cluster the wireless ad hoc networks, respectively. The proposed clustering
algorithm is aimed at finding a near optimal solution to the minimum WCDS problem in which the
dominator nodes play the role of the cluster-heads and their one-hop neighbors assume the role of the
cluster members. In both algorithms, a network of the learning automata, isomorphic to the network
topology graph (or unit disk graph) is formed by assigning a learning automaton to each node. At each
iteration, the learning automata randomly choose their actions to form a WCDS, and the selected actions
are evaluated by the random environment. After a number of iterations, the learning automata tend to a
common policy that determines the minimum size cluster-head set (or WCDS) with the highest probability.
Furthermore, in this paper, the worst case running time and message complexity of the proposed clustering
algorithm for finding a)1(1 ε− optimal cluster-head set are computed. It was shown that by a proper
choice of the learning rate of the clustering algorithm, a trade-off between the running time and message
complexity of algorithm with the cluster-head set size (clustering optimality) can be made. For both
algorithms, the simulation results show that they outperform the best existing algorithms in terms of the
number of hosts (nodes) in the cluster-head set (dominating set).

The rest of the paper is organized as follows. In the next section, the WCDS problem formulation,
learning automata and some preliminaries are presented. In section 3, a distributed learning automata-based
approximation algorithm is proposed to solve the minimum WCDS problem in an arbitrary unit disk graph.
In section 4, a clustering algorithm based on distributed learning automata for wireless ad hoc networks is
proposed. The worst case running time and message complexity of the clustering algorithm is computed in

section 5. In section 6, the performance of the proposed algorithms is evaluated through the simulation
experiments, and section 7 concludes the paper.

2 Preliminaries
2.1 Dominating Sets

A wireless ad hoc network can be modeled as a unit disk graph),(EVG = , where the hosts
represent the individual hosts and an edge connects two hosts if the corresponding hosts are within
transmission range of each other. The closed neighborhood][vNG of a host v in graph G consists of the

hosts adjacent to v and host v itself. The closed neighborhood][SNG of the set S is the

unionU Sv G vN
∈

][. The subscript G can be omitted if the meaning is clear from the context. A dominating

set (DS) of a graph),(EVG = is a host subset VS ⊆ , such that every host Vv ⊆ is either in S or
adjacent to a host of S . A host of S is said to dominate itself and all adjacent hosts. A minimum DS
(MDS) is a DS with the minimum cardinality. A dominating set is also an independent dominating set, if no
two hosts in the set are adjacent. A connected dominating set (CDS) S of a given graph G is a dominating
set whose induced sub graph, denoted >< S , is connected, and a minimum CDS (MCDS) is a CDS with
the minimum cardinality. A MCDS forms a virtual backbone in the graph by which the routing overhead
can be significantly reduced, where the number of hosts responsible for routing can be reduced to the
number of hosts in the backbone. The MDS and MCDS problems are known as NP-Hard problems [5, 6],
and even for a unit disk graph, the problem of finding a MCDS is also NP-Hard [6].

A dominating set S is a weakly connected dominating set (WCDS) of a graphG , if the
graph))][(],[(SSNESNS W ×∩=>< is a connected sub graph ofG . In other words, the weakly

induced sub graph WS >< contains the hosts of S , their neighbors, and all edges with at least one endpoint

in S . A sample UDG and one of its WCDS are shown in Figures 1.A and 1.B, respectively. The dominator
nodes assume the role of the cluster-heads and they have been colored black.

Figure 1.B. the weakly connected dominating set Figure 1.A. a sample unit disk graph

It is assumed that, the ad hoc network comprises a group of wireless hosts communicating through a

common broadcast channel using omnidirectional antennas and all hosts have the same transmission range.
That is, the corresponding topology graph is a unit disk graph. Scheduling of transmissions is the
responsibility of the MAC layer, and like many existing approaches, we are not concerned with the issues
of using a shared wireless channel to send the messages avoiding the collisions and contentions. Each host
has a unique ID (e.g., IP address) and also needs to know the ID of all other hosts.

Each node of a WCDS is said to be a dominator node and its corresponding host in an ad hoc network
a cluster-head. Two hosts vu, are connected by a link),(vu and are said to be neighbors, if there exists a
direct bidirectional communication channel connecting u and v , and so the network graph is assumed to be
undirected.

2.2 Learning Automata, Distributed Learning Automata and Variable
Action Set Learning Automata

2.2.1. Learning Automata
A learning automaton [15-21] is an adaptive decision-making unit that improves its performance by

learning how to choose the optimal action from a finite set of allowed actions through repeated interactions
with a random environment. The action is chosen at random based on a probability distribution kept over
the action set and at each instant the given action is served as the input to the random environment. The
environment responds the taken action in turn with a reinforcement signal. The action probability vector is
updated based on the reinforcement feedback from the environment. The objective of a learning automaton
is to find the optimal action from the action set so that the average penalty received from the environment is
minimized [15].

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the

element ic is associated with the given action iα . If the penalty probabilities are constant, the random
environment is said to be a stationary random environment, and if they vary with time, the environment is
called a non stationary environment. The environments depending on the nature of the reinforcement signal
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of
the environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement
signal. Such an environment is referred to as Q -model environment. In S -model environments, the
reinforcement signal lies in the interval],[ba . The relationship between the learning automaton and its
random environment has been shown in figure 2.

Random Environm ent

Learning Automaton

α(n)

β(n)
Figure 2. The relationship between the learning automaton and its random environment

 Learning automata can be classified into two main families [15-20]: fixed structure learning

automata and variable structure learning automata. Variable structure learning automata are represented by
a triple >< T,,αβ , where β is the set of inputs, α is the set of actions, and T is learning algorithm.
The learning algorithm is a recurrence relation which is used to modify the action probability vector. Let

)(kα and)(kp denote the action chosen at instant k and the action probability vector on which the chosen
action is based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by
which the action probability vector p is updated. Let)(kiα be the action chosen by the automaton at

instant k .

⎪⎩

⎪
⎨
⎧

≠∀−

=−+
=+

ijjnpa
ijnpanp

np
j

jj
j)()1(

)](1[)(
)1((1)

when the taken action is rewarded by the environment (i.e. 0)(=nβ) and

⎪⎩

⎪
⎨
⎧

≠∀−+−

=−
=+

ijjnpbrb

ijnpb
np

j

j
j)()1()1(

)()1(
)1((2)

When the taken action is penalized by the environment (i.e. 1)(=nβ). r is the number of actions
can be chosen by the automaton,)(ka and)(kb denote the reward and penalty parameters and determine
the amount of increases and decreases of the action probabilities, respectively. If)()(kbka = , the

recurrence equations (1) and (2) are called linear reward-penalty (PRL −) algorithm, if)()(kbka >> the

given equations are called linear reward-ε penalty (PRL ε−), and finally if 0)(=kb they are called linear

reward-Inaction (IRL −). In the latter case, the action probability vectors remain unchanged when the taken
action is penalized by the environment.

Learning automata is proved to perform well in the dynamic environments of wireless, ad hoc and
sensor networks. Haleem and Chandramouli [23] used learning automata to address a cross-layer design for
joint user scheduling and adaptive rate control for downlink wireless transmission. The proposed method
tends to ensure that user defined rate requests are satisfied by the right combination of transmission
schedules and rate selections. Nicopolitidis et al. [24] proposed a bit rate control mechanism based on
learning automata for broadcasting data items in wireless networks. A learning automaton is used in the
server which learns the demand of wireless clients for each data item. As a result of this learning, the server
is able to transmit more demanded data items by the network more frequently. The same authors [25]
proposed a learning automata based polling protocol for wireless LANs in which the access point uses a
learning automaton to assign to each station a portion of the bandwidth proportional to the station's need. A
decentralized approach of the above method is also given [26, 27]. Ravana and Morthy [28] proposed
Learning-TCP, a novel learning automata based reliable transport protocol for wireless networks, which
efficiently adjusts the congestion window size and thus reduces the packet losses. Learning automata is also
used in cellular radio networks to dynamically adjusting the number of guard channels [29, 30, 31].

2.2.2. Distributed Learning Automata

A Distributed learning automata (DLA) [21] is a network of the learning automata which collectively
cooperate to solve a particular problem. Formally, a DLA can be defined by a quadruple >< 0,,, ATEA ,

where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂ is the set of the edges in which edge

),(jie corresponds to the action ijα of the automaton iA , T is the set of learning schemes with which the

learning automata update their action probability vectors, and 0A is the root automaton of DLA from which
the automaton activation is started . An example of a DLA has been shown in figure 3.

Figure 3. Distributed learning automata

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses
one of its outgoing edges (actions) according to its action probabilities and activates the learning automaton
at the other end of the selected edge. The activated automaton also randomly selects an action which results
in activation of another automaton. The process of choosing the actions and activating the automata is
continued until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen
actions, along the path induced by the activated automata between the root and leaf, are applied to the
random environment. The environment evaluates the applied actions and emits a reinforcement signal to
the DLA. The activated learning automata along the chosen path update their action probability vectors on
the basis of the reinforcement signal by using the learning schemes. The paths from the unique root
automaton to one of the leaf automata are selected until the probability with which one of the paths is
chosen is close enough to unity. Each DLA has exactly one root automaton which is always activated, and
at least one leaf automaton which is activated probabilistically.

2.2.3. Variable Action Set Learning Automata

A variable action set learning automaton is an automaton in which the number of actions available at
each instant changes with time. It has been shown in [17] that a learning automaton with a changing number
of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is IRL − . Such an

automaton has a finite set of n actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA = denotes the set of

action subsets and α⊆)(kA is the subset of all the actions can be chosen by the learning automaton, at
each instant k . The selection of the particular action subsets is randomly made by an external agency
according to the probability distribution)}(),...,(),({)(21 kkkk mψψψψ = defined over the possible

subsets of the actions, where]121,|)([)(−≤≤∈== n
iii iAAAkAprobkψ .

[])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα is the probability of choosing action iα , conditioned on

the event that the action subset)(kA has already been selected and also)(kAi ∈α . The scaled

probability)(ˆ kpi is defined as

)(/)()(ˆ kKkpkp ii = (3)

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset)(kA ,and

[]ii kprobkp αα ==)()(.
The procedure of choosing an action and updating the action probabilities in a variable action set

learning automaton can be described as follows. Let)(kA be the action subset selected at instant k .
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in
equation (3). The automaton then randomly selects one of its possible actions according to the scaled action
probability vector)(ˆ kp . Depending on the response received from the environment, the learning
automaton updates its scaled action probability vector. Note that the probability of the available actions is
only updated. Finally, the probability vector of the actions of the chosen subset is rescaled
as)()1(ˆ)1(kKkpkp ii ⋅+=+ , for all)(kAi ∈α . The absolute expediency and −ε optimality of the
method described above have been proved in [17].

3 DLA-Based WCDS Formation Algorithm

In this section, a distributed learning automata-based approximation algorithm is proposed for finding
a near optimal solution to the minimum WCDS problem described in section 2. In this algorithm, a network
of the learning automata isomorphic to the input UDG is first formed by assigning to each vertex iv of the

graph a learning automaton, iA . The resulting network of the learning automata can be described by a

duple >< α,A , where },...,,{ 21 mAAAA = denotes the set of learning automata corresponding to the

vertex set, and },...,,{ 21 mαααα = denotes the set of actions, in which

},...,,{ ,2,1, riiiii αααα = defines the set of actions can be taken by the learning automata iA and initially

includes the set of all learning automata except automata iA and its neighbors, for each αα ∈i . For
optimizing the behavior of the learning automata, the proposed algorithm deals with the automata with
changing number of actions [17]. Each vertex (automaton) can be in one of two states active and passive,
and it is initially set to the passive state. The proposed algorithm, which we call it DLA-CC, consists of a
number of stages, and at each stage, the selected vertices are activated and added to the WCDS being
formed in that stage. The proposed algorithm iteratively constructs a number of WCDSs and updates the
action probability vectors until it finds a near optimal solution to the minimum WCDS problem with a
probability higher than a pre-specified threshold. Stage k of the proposed algorithm is briefly described in
the following steps:

Step 1. WCDS formation

The first dominator vertex is randomly selected (say activated), denoted as iv and added to

the WCDS which is being constructed at stage k .
While (The cardinality of the constructed dominatee set is less than the number of vertices of
 The input graph) do

- The neighbors of activated vertex iv are added to the set of dominatee vertices.

- Learning automaton iA (assigned to activated vertex iv) changes its number of actions
(or scales its action probability vector) by disabling the actions corresponding to all the
members of the dominatee set.

- Learning automaton iA randomly chooses one of its actions according to its scaled action

probability vector, activates its corresponding vertex, denotes it iv , and adds it to the
WCDS.

Step 2. Comparing the cardinality of the constructed WCDS with a dynamic threshold
- Let dynamic threshold kT denotes the cardinality of the minimum size WCDS

constructed until stage k .
- Dynamic threshold kT is updated to the cardinality of the constructed WCDS, if it is

lager than the cardinality of the WCDS.
Step 3. Updating the action probability vectors

- Depending on the result of the comparison in step 2, all the activated learning automata,
using a IRL − reinforcement scheme, reward their chosen actions if the cardinality of the

constructed WCDS is less than or equal to the dynamic threshold kT , and penalize them
otherwise.

Step 4. Stopping Condition
- The process of constructing the WCDSs and updating the action probabilities are

repeated until the product of the probability of choosing the vertices of the constructed
WCDS is greater than a certain threshold or the number of constructed WCDS exceeds a
pre-specified threshold. The WCDS which is formed last before stopping the algorithm is
the WCDS with the minimum cardinality among all WCDSs of the graph. The proposed
algorithm has been described in more detail in figure 4.

Algorithm DLA-CC
 Input: Unit Disk Graph),(EVG , Threshold PK ,
 Output: The minimum size WCDS
 Assumptions:
 Assign a learning automaton to each vertex iv and initially set it in a passive state
 Let iα denotes the set of actions for each automaton iA , and contains the set of all vertices of

 graphG except vertex iv
 Begin Algorithm
 Let kT be the dynamic threshold, which is the cardinality of the smallest WCDS constructed until stage k ,
 and initially set to n
 Let k denotes the stage number and is initially set to 0
 Let 0A be the initial learning automaton whose action set is the set of all the vertices in graphG
 Repeat
 Let kδ be the set of dominators selected at stage k and initially set to null
 Let kd denotes the set of dominatees, selected at stage k and is initially set to null
 Automaton 0A randomly chooses one of its actions according to its action probability vector, activates
 it, denotes iv and adds to kδ
 While (The cardinality of set kd is less than n) do

 Add the neighbors of dominator iv to kd
 Update the action probability vector of learning automaton iA by disabling the actions corresponded to
 all the vertices in kd
 Dominator iv randomly chooses one of its actions according to its action probability vector, activates
 it, denotes iv and adds to kδ
 End while
 Find the WCDS selected at stage k
 Compute the cardinality of the selected WCDS
 If (The cardinality of the selected WCDS is less than the dynamic threshold kT) Then
 Reward the actions chosen by the activated learning automata
 Set the dynamic threshold kT to the cardinality of the selected WCDS
 Else
 Penalize the actions chosen by the activated learning automata
 End if
 Increment stage number k
 Enable all the actions disabled during the current iteration and update the action probability vector
 Until (The probability of choosing the WCDS is greater than a pre-specified threshold P or the stage
 number k is greater than threshold K)
 End Algorithm

Figure 4. Algorithm DLA-CC for solving the minimum WCDS problem

4 The Proposed Clustering Algorithm
Since in wireless ad hoc networks, there is neither a fixed infrastructure nor a central administration,

the centralized algorithms are not feasible in such environments. Moreover, to gather all the required
information in a certain host, for executing the algorithm, consumes a large number of messages and
considerably more energy which is a very scarce resource in wireless ad hoc networks [3]. Therefore, in
this section, a distributed approximation algorithm based on distributed learning automata, called DLA-DC,
is proposed for clustering the wireless ad hoc networks by finding a near optimal solution to the WCDS
problem. In fact, the proposed clustering algorithm is a generalization of DLA-CC, in which the minimum
size cluster-head set (or minimum WCDS of the UDG induced by the network topology) is determined in a
fully distributed fashion. In this clustering method, the dominator nodes assume the role of the cluster-
heads and their one-hop neighbors (dominatee nodes) the role of the cluster members. At each iteration of
the clustering algorithm, the network graph is clustered by randomly choosing the dominator nodes as the
cluster-heads. The learning automata, in an iterative greedy strategy, find a policy that determines the
minimum size cluster-head set of the network graph.

In this algorithm, like DLA-CC, a network of the learning automata, isomorphic to the UDG induced
by the network topology, is first formed by assigning a learning automaton (e.g., iA) to each host (e.g.,

ih) of the network. Each host has a unique ID and knows its neighbors' ID. In this algorithm, to form the
action-set of each learning automaton, its corresponding host sends a message locally to its one-hop
neighbors. The hosts which are within the transmission range of the sender host, upon receiving the
message, reply it. The sender forms its action-set on the basis of the received replies. Each host by which
the message is replied is associated with an action. Therefore, the action-set size of each learning
automaton is strongly dependent to the network density. Assuming that the hosts are uniformly distributed
in the network (a uniform network density), each learning automaton has ARn /2π actions, each of initial

probability 2/ RnA π . Action ji,α corresponds to the selection of host jh as a cluster-head by learning

automaton iA . Each host requires the following data structures to participate in the cluster formation
process:
• MAX_ITERATION, a stopping condition for the algorithm as a maximum number of iterations.
• PCHS, a threshold required for termination the cluster formation process as the probability of choosing

the cluster-head set.

• CLUSTER_HEAD_SET, a set of the chosen cluster-heads at each iteration.
• CLUSTER_LIST, a set of hosts in which each member is a one-hop neighbor of at least one host in the

CLUSTER_HEAD_SET.
• PROB_VECTOR, a vector of the probability of choosing the members of CLUSTER_HEAD_SET.
• MIN_SIZE, a dynamic threshold contains the cardinality of the smallest CLUSTER_HEAD_SET which

has been selected yet.
• ITERATION_NUM, a counter which keeps the number of constructed CLUSTER_HEAD_SET.

A READY message, which contains MAX_ITERATION and PCHS, is initially flooded within the
network to inform the hosts of the cluster formation (or re-clustering) start. Each host, upon receiving the
READY message, calls the WCDS procedure. During the WCDS procedure, each host may receive from or
send to the other hosts the following messages: INITIALIZATION, ACTIVATION, REWARDING,
PENALIZING and CLUSTERING message. After the READY message is sent, one of the hosts is randomly
selected and denoted as the initial host. An INITIALIZATION message is then sent to the initial host and the
process of the cluster formation is continued by receiving the INITIALIZATION message as described
below.
I. INITIALIZATION MESSAGE

When a given host ih receives an INITIALIZATION message, it initially updates the
CLUSTER_HEAD_SET by adding its ID. The initial host then adds its one-hop neighbors' ID to the
CLUSTER_LIST. Learning automaton iL (corresponding to host ih) disables the actions associated with the
selected cluster-heads in its action set. In this clustering algorithm, the aim of using the variable action set
learning automata is to avoid selecting the cluster-heads by which no more hosts can be added to the
CLUSTER_LIST. For this purpose, learning automaton iL scales its action probability vector by disabling
the actions associated with all the selected cluster-heads as described in section 2.2.3 on the variable action
set learning automata, if it has such actions. Then, it chooses one of its actions according to the scaled
action probability vector. The probability with which learning automaton iL chooses its action is added to
the PROB_VECTOR. Finally, an ACTIVATION message is sent to the host (new cluster-head)
corresponding to the chosen action.
II. ACTIVATION MESSAGE

An ACTIVATION message includes CLUSTER_LIST, CLUSTER_HEAD_SET, MIN_SIZE,
PROB_VECTOR, and ITERATION_NUM. The state of a given host changes to the active state when it
receives an ACTIVATION message. When a given host ih receives an ACTIVATION message, it inserts its
ID as a new cluster-head into the CLUSTER_HEAD_SET, if it has at least a one-hop neighbor not to be in
the CLUSTER_LIST. To update the CLUSTER_LIST it adds its one-hop neighbors' ID to this list. The
action set of learning automaton iL is updated by disabling the actions associated with the selected hosts as
described earlier. In this case, if there is no more actions can be taken by learning automaton iL , the
cardinality of the CLUSTER_HEAD_SET is calculated. If the cardinality is less than the dynamic threshold
MIN_SIZE, the dynamic threshold is set to the cardinality of the selected set (CLUSTER_HEAD_SET) and
all the chosen actions of the activated automata are rewarded by sending back a REWARDING message,
otherwise (cardinality is larger than the dynamic threshold) they are penalized by sending back a
PENALIZING message.

To verify the stopping condition of the cluster formation process the probability of choosing the
CLUSTER_HEAD_SET is calculated as the product of the probability of choosing the selected cluster-
heads based on the information contained in PROB_VECTOR. If this probability is less than the certain
threshold PCHS and ITERATION_NUM does not exceed than a per-specified threshold MAX_ITERATION,
host ih increments the ITERATION_NUM and randomly chooses one of its actions (or hosts), according to
its action probability vector. Then, it sends an INITIALIZATION message to the host corresponding to the
taken action to start a new iteration. Otherwise it generates a CLUSTERING message including the last
selected CLUSTER_HEAD_SET and broadcasts it in the network.

If there exist actions can be taken by learning automaton iL , it chooses one of its actions as a new
cluster-head, updates PROB_VECTOR by adding the probability of choosing the action, and sends an
ACTIVATION message to the chosen cluster-head.
III. CLUSTERING MESSAGE

A CLUSTERING message includes the CLUSTER_HEAD_SET selected during the last iteration.
When host ih receives a CLUSTERING message, it is noticed that the clustering process has been
completed, and so accepts the list of the cluster-heads, contained in the CLUSTERING message, as a new
cluster-head set. It will then terminate the WCDS procedure.
IV. REWARDING MESSAGE

When activated host ih receives a REWARDING message, it updates its action probability vector by
rewarding chosen action ji,α as

)](1[)()1(,,, npanpnp jijiji −+=+ , (4)

where jip , is the probability with which host ih chooses host jh as a cluster-head, and penalizing the
other actions ki,α , for all jk ≠ , as

jkknpanp kiki ≠∀−=+)()1()1(,, . (5)
After rewarding the chosen action, the scaled action probability vector must be updated once again (or

rescaled) by enabling all the disabled actions according to the rescaling method described in section 2.2.3
on the variable action set learning automata.
V. PENALIZING MESSAGE

Since the reinforcement scheme by which the learning automata update their action probability
vectors is IRL − , the action probabilities of the activated learning automata remain unchanged when they
receive a PENALIZING message. In this case, the disabled actions of each activated learning automaton are
enabled again.

5 Complexity Analysis of the Clustering Method

In this section, to analyze the costs of the proposed clustering method, we compute the worst case
running time (Theorem 1) and message complexity (Theorem 2) of algorithm DLA-DC to find a)1(1 ε−
optimal cluster-head set for clustering the network graph.

Theorem 1. Let OPT denotes the size of the smallest cluster-head set for clustering network graph G ,
and)}(,),({)(1 kqkqkq rK= is updated according to the proposed clustering algorithm (DLA-DC). The

time required for finding a |OPT|
1

1
⋅

−ε
 (for 10 << ε) size cluster-head set (e.g., iω) in DLA-DC is not

longer than

r
q

m g
iq

m

g
i

a +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

−−

−
1

11

1log
1

2
ε

ε

where)(kqi denotes the probability of choosing cluster-head set iω at stage k ,)1,0(∈ε is the error
parameter of algorithm denoted as PCHS−1 in DLA-DC, a denotes the learning rate of algorithm, n is
the number of hosts in the network graph, and r is the number of cluster-head sets.

Proof. Let iq be the initial probability of choosing cluster-head set iω , and 2/ RnAp j π= be the initial

probability of choosing host jh as a cluster-head, where A denotes the square area, R denotes the radio
transmission range, and n is the number of hosts. The worst case occurs when all the other cluster-head
sets to be chosen before the smallest cluster-head set iω . In this case, the learning process can be divided
into two distinct phases. In the first phase, called shrinking phase, it is assumed that all the other cluster-
head sets to be chosen, from the largest to the smallest, and so rewarded before iω . Such an ordered

(cluster-head set) selection procedure decreases the probability of choosing iω no more than that given in

inequality (6). The second phase called growing phase is started when the cluster-head set iω is chosen for
the first time. According to the proposed algorithm, during the growing phase, the probability of
penalizing iω , and rewarding the other cluster-head sets is zero. Furthermore, since the reinforcement

scheme by which the proposed algorithm updates the probability vectors is IRL − , the conditional

expectation of)(kqi (i.e., the probability of choosing cluster-head set iω at stage k), remains unchanged

when the other cluster-head sets are penalized, and it increases only when iω is rewarded. In other words,

during the growing phase, the changes in the conditional expectation of)(kqi is always non-negative and
given in equation (7). As described in the proposed algorithm, the growing phase is continued until the
probability of choosing cluster-head set iω is greater than or equal to ε−1 . Let s

iq denotes the probability

of choosing cluster-head set iω at the beginning of the shrinking phase (i.e., the initial value of iq), and
a denotes the learning rate of the proposed algorithm. Therefore, during the shrinking phase, the
probability of choosing cluster-head set iω changes as

() () ()ms
i

s
i arqrq −⋅−≥ 11 (6)

where r is the number of all possible cluster-head sets, and m denotes the average size of the cluster-head
sets. Substituting recurrence function)1(−rqs

i in inequality above, we have

() () () ms
i

s
i arqrq 212 −⋅−≥

By repeatedly applying inequality (6))1(−r times, we obtain

() () mrs
i

s
i aqrq ⋅−−⋅≥−)1(11

where ()1−rqs
i denotes the probability of choosing cluster-head set iω at the end of the shrinking phase.

For the sake of simplicity in notation, ()1−rqs
i is substituted by g

iq , where ∏
∈

−−=
ijh

r
j

g
i apq

ω

)1()1(is

the probability of choosing iω at the beginning of the growing phase, and)1()1(−− r
j ap is substituted

by jρ . As mentioned earlier, in the growing period, g
iq increases, if iω is rewarded, and remains

unchanged otherwise. Thus, during this phase, the probability of choosing cluster-head set iω increases as

() ()

() () ()

() () ()

() () ()∏∏

∏∏

∏∏

∏

∈∈

∈∈

∈∈

∈

+−⋅−=−−⋅+−=

+−⋅−=−−⋅+−=−

+−⋅=−⋅+=

−⋅+=

ijij

ijij

ijij

ij

h
j

h
jj

g
i

h
j

h
jj

g
i

h
j

h
jj

g
i

h
jj

g
i

aakkakkq

aakkakkq

aaaq

aq

ωω

ωω

ωω

ω

ρρρ

ρρρ

ρρρ

ρρ

1)1()1(1)1(

1)2()2(1)2(1

1)1()1(1)1(2

11

M (7)

where jρ denotes the probability of choosing host jh as a cluster-head at the beginning of the growing

phase, and ()kq g
i (i.e., PCHS in DLA-DC) denotes the probability with which cluster-head set iω is

chosen at the end of the growing phase, which according to the theorem, it is assumed to ε−1 . After some
algebraic simplification, we have

() ()

()[]() () ()

()[]() () ()

() ()

() () ()

() () ()∏

∏

∏∏

∏∏

∏

∈

−

∈

−−

∈∈

∈∈

∈

+−⋅++−⋅+−⋅=

+−⋅++−⋅+−⋅=

+−⋅+−⋅+

−⋅−=+−⋅+−+−⋅−=

+−⋅+−⋅−=+−+−⋅−=

+−⋅−=

ij

ij

ijij

ijij

ij

h

kk
j

h

kk
j

h
j

v
j

h
j

h
j

h
j

g
i

aaaaaa

aaaaaa

aaaaa

akaaaaaak

aaaakaaaak

aakkq

ω

ω

ωω

ωω

ω

ρ

ρ

ρρ

ρρ

ρ

111

111)1(

11

1)3(111)3(

11)2(11)2(

1)1(

1

21

2

32

2

L

L

M

Hence, we have
() () () ()∏

∈

− +−⋅++−⋅+−⋅=
ijh

kk
j

g
i aaaaaakq

ω

ρ 111 1
L (8)

Substituting jρ by)1()1(−− r
j ap , we have

() () () ()∏
∈

−−+ +−⋅++−⋅+−⋅≥
ijh

krk
j

g
i aaaaaapkq

ω

111 11
L (9)

where k denotes the number of times cluster-head set iω must be selected until

() ε−= 1kq g
i (10)

From inequality (9), it follows that, the running time (the number of iteration) of the proposed
algorithm is computed, if we find a value of k (for a given learning rate a) under which the condition
given in equation (10) to be satisfied. From equation (8) we have

() () () () ()()∏
∈

−−++−+−+⋅+−⋅=
ijh

kk
j

g
i aaaaakq

ω

ρ 12 11111 L (11)

and so

() () ()∏ ∑
∈

−

=
−⋅+−⋅=

ijh

k

i
ik

j
g
i aaakq

ω

ρ 1

0
11 (12)

The second term on the right hand side of equation (12) is a geometric series that sums up to
() ()()aaa k −−−−⋅ 1111 , where 11 <− a . Therefore, we have

() () ()
()∏

∈
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

⋅+−⋅=
ijh

k
k

j
g
i a

aaakq
ω

ρ
11
111 (13)

From equation (10) and (13) we have

() ()
() ερ

ω

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

⋅+−⋅∏
∈

1
11
111

ijh

k
k

j a
aaa

Since ∏

∈

=
ijh

j
g
iq

ω

ρ and)1()1(−−= r
jj apρ (for all ijh ω∈), after some algebraic simplification,

we have

() () mm g
i

k qa ε−=+−⋅− 1111

Hence, we have

()
m g

i

m
k

q
a

−

−−
=−

1
111 ε

 (14)

Taking a−1log of both sides of equation (14), we derive

() m g
i

m

q
a

ka
a

−

−−

−
−

− = 1

11

1
1

1 loglog
ε

and thus the number of times iω is rewarded in the growing phase, apart from penalizing the other cluster-
head sets, is obtained as

m g
i

m

q
ak −

−−

−= 1

11

1log
ε

(15)

Since during the growing phase, g
iq remains unchanged when the other cluster-head sets are

penalized, k does not include the number of times the other cluster-head sets are chosen and this should be
separately calculated based on k . Let g

iq be the probability of choosing cluster-head set iω at the

beginning of the growing phase, and reaches ε−1 (or PCHS in DLA-DC) after k iterations. On the
other hand, the probability of choosing the other cluster-head sets is initially g

iq−1 , and reachesε after the
same number of iterations. Thus, the number of times the other cluster-head sets are chosen (before
satisfying the condition given in equation (10)) is obtained as

k
q
q

g
i

g
i ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
−+

ε
ε

1
1

After some algebraic manipulations, the total number of iterations required in the growing phase of
the proposed algorithm (i.e., Κ) to satisfy the condition given in equation (10) is obtained as

k
q g

i

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=Κ
ε1
2

By substituting k from equation (15) and we have

m g
iq

m

g
i

aq
−

−−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=Κ 1

11

1log
1

2
ε

ε
 (16)

From equation (16), the running time of the growing phase can be estimated. Since the worst case of
the algorithm occurs when (in the shrinking phase) all the other cluster-head sets to be chosen before iω ,

the running time of the shrinking phase is always less than ()rO . Therefore, we have

r
q

T
m g

iq

m

g
i

a +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

≤Κ
−

−−

−
1

11

1log
1

2)(

ε

ε
 (17)

which completes the proof of this theorem■.

Theorem 2. The message complexity of the proposed clustering algorithm for finding a |OPT|
1

1
⋅

−ε

(for 10 << ε) size cluster-head set is at most

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

⋅
−

−−

− r
q

m
m g

iq

m

g
i

a
1

11

1log
1

2
ε

ε

Where OPT denotes the size of the minimum cluster-head set (optimal solution to the WCDS
problem),)(kqi denotes the probability of choosing cluster-head set iω at stage k ,)1,0(∈ε is the error
parameter of algorithm, a denotes the learning rate of algorithm, n is the number of hosts in the network
graph, and r is the number of cluster-head sets.
Proof. As proved in Theorem 1, the running time (number of iterations) of the proposed clustering

algorithm to find a |OPT|
1

1
⋅

−ε
 size cluster-head set for the network graph is at most

r
q

m g
iq

m

g
i

a +⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

−−

−
1

11

1log
1

2
ε

ε

Furthermore, as described in section 5, at each iteration of the clustering algorithm, the number of
messages needs to be sent to form a cluster-head set is equal to the number of hosts in the selected cluster-
head set. Hence, the message complexity of the clustering algorithm is smaller than

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

⋅
−

−−

− r
q

m
m g

iq

m

g
i

a
1

11

1log
1

2
ε

ε

where m is the average size of the cluster-head set, and hence the proof of the theorem is
completed■.

It can be seen that by a proper choice of the learning rate of the clustering algorithm, a trade-off
between the running time and message complexity of the algorithm with the cluster-head set size
(clustering optimality) can be made. That is, choosing a proper learning rate for the proposed clustering
algorithm results in finding a near optimal cluster-head set in a reasonable running time and message
complexity, regarding the constraints of the ad hoc networks.

6 Experimental Results

To study the performance of the proposed algorithms, we have conducted two groups of simulation
and evaluated the obtained results in terms of the size of the cluster-head set (or the cardinality of the
WCDS) in comparison with that of the best existing algorithms. Since the first proposed algorithm (DLA-
CC) is a centralized algorithm to solve the minimum (size) WCDS problem in a unit disk graph, the first
group of simulation is concerned with investigating the efficiency of the first proposed algorithm in
comparison with the centralized WCDS-based clustering algorithms. Therefore, algorithm DLA-CC is
compared with the centralized algorithms Guha I [11], Guha II [11] and WCDS-CTR [7]. The second
group of simulation compares the results of the proposed distributed clustering algorithm (DLA-DC) with
two distributed zonal algorithms Min ID[3] and Max Degree[3], distributed algorithm WCDS-DST[7] and
the second proposed algorithm in [9](AWF). The first algorithm presented in [9] is extremely message
expensive in practice [13], and we do not consider it in the following performance evaluation. Since
algorithm DLA-DC is proposed to cluster the ad hoc networks with a large number of hosts, we have also
conducted some simulation experiments on large and dense graphs to evaluate the scalability of algorithm.

In our simulation studies, we first randomly distribute the hosts in a mm× square area, where m is
the length of the square edge. All hosts are assumed to have the same radio transmission range R , and each
host can directly communicate with other hosts within the distance R . For simplicity, we assume that all
links are bidirectional and symmetric. After distributing the hosts in the square area, we will check whether
they form a connected graph. We only construct WCDSs on the connected graphs and measure the sizes of
the generated WCDSs. The radio transmission range of a host and the number of hosts in the network are
two correlated parameters by which the size of the constructed WCDS can be affected. Thus, we study how
these parameters impact the size of WCDS constructed by different algorithms.

The radio transmission range for a host is assumed to be 15 and 30, respectively, and a given number
of hosts are randomly and uniformly distributed in a square simulation area of size 100100× units, which
remains unchanged in all experiments. We vary the number of hosts from 60 to 200 and measure the size of
WCDSs constructed by different algorithms. To study the scalability of algorithm DLA-DC, we have
conducted some simulations on the relatively dense network graphs, when the number of hosts ranges from

200 to 1000. The density of a graph can be calculated as ARn 2πµ = , where n is the number of hosts
in the network graph, A is the square area and R is the radio transmission range. All the simulation results
depicted in figures 6 to 11 are obtained by running the studied algorithms on 100 connected graphs and
averaged over the given runs.

It is first assumed that each host has a fixed radio transmission range of 15, and the number of hosts
ranges from 60 to 200 with increment step of 20. Figures 6 and 8 show the simulation results obtained by
DLA-CC and DLA-DC in terms of the average size of cluster-head set, respectively. Figures 7 and 9 show
the obtained results when the radio transmission range is then set to 30 and the number of hosts and the
square area size remain unchanged in experiments. Then, the simulation experiments are repeated for the
proposed clustering algorithm (DLA-DC) on the dense network graphs, when the number of hosts ranges
from 200 to 1000 with increment step of 100. Figures 10 and 11 show the average size of the cluster-head
set, when the radio transmission range is set to 15 and 30, respectively. In all simulations, the learning
parameter is fixed at 0.2, and each algorithm is terminated when the probability of choosing the weakly
connected dominating set (i.e., P in DLA-CC and PCHS in DLA-DC) is 0.90. A connected sparse graph
with 100 hosts and its cluster-head set (or WCDS) constructed by the centralized proposed algorithm DLA-
CC have been depicted in figures 5.A and 5.B, respectively. The radio transmission range is assumed to be
10 and the square area size 100100× . The cluster-heads have been colored red.

Figure 5.B. the cluster-head set constructed by the

centralized proposed algorithm
Figure 5.A. a connected sparse network graph

with 100 hosts

As shown in all figures 6 to 11, the average size of the cluster-head set (WCDS) increases as the

number of hosts (nodes) increases. Comparing the results depicted in figures 7, 9 and 11 with the figures 6,
8 and 10, we observe that the sizes of the cluster-head sets (WCDSs) constructed by all the studied
algorithms become smaller when the radio transmission range for a host increases. The reason for this
reduction is that a cluster-head with a larger radio transmission range can cover more hosts and so the
whole network can be covered by a less number of the cluster-heads.

Comparing the results shown in figure 6 with figure 7 for the studied centralized algorithms, we find
that Guha I always constructs the largest WCDSs, and so gives the worst results. The size of the WCDSs
generated by Guha II are only slightly smaller than Guha I, but considerably larger than WCDS-CTR. The
proposed centralized algorithm DLA-CC considerably outperforms (in terms of the size of the WCDS) the
other well-known centralized algorithms regardless of the size and density of the network graph. As shown
in figures 6 and 7, in general, as the number of nodes increases, the gap between the curves for our
proposed algorithm and the curves for other centralized algorithms becomes significant.

As shown in figures 8 and 9, the proposed clustering algorithm DLA-DC always considerably
outperforms the other distributed clustering algorithms in terms of the size of the cluster-head set. The size
of the cluster-head sets constructed by WCDS-DC is nearly four times larger than that constructed by our
distributed algorithm, and it is ranked lower DLA-DC. Max Degree performs better than Min ID, especially
as the number of hosts increases, and AWF constructs the largest cluster-head sets. For example, the size of
the cluster-head set constructed by DLA-DC is 6.76, when the number of hosts in network is 100 and the

radio transmission range is 15, while that of WCDS-DC is 21.9, which is 3.2 times larger than our
algorithm. Comparing figure 8 with figure 9, we find that increasing the host's radio transmission range can
increase the coverage area of each host, and so increase the density of the network, which leads to a smaller
size of the cluster-head set. When the size of the square area grows, the hosts are distributed in a larger
simulation area, and so it is expected that the number of cluster-heads to be increased.

The same simulation experiments are repeated for the proposed distributed clustering algorithm on
the dense network graphs, where the number of hosts ranges from 200 to 1000 with increment step of 100,
and the results are depicted in figures 10 and 11 as the radio transmission range is set to 15 and 30,
respectively. Comparing the average size of the cluster-head set constructed by DLA-DC with that of the
other distributed algorithms mentioned earlier, we observe that the proposed distributed algorithm
outperforms the other studied algorithms, and the ranking given for the distributed algorithms, with the
sparse network graphs, remains unchanged and DLA-DC is ranked above the other algorithms and AWF
below.

0

10

20

30

40

50

60

60 80 100 120 140 160 180 200
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

10

20

30

40

50

60

70
60 80 100 120 140 160 180 200

Guha I

WCDS-CTR

DLA-CC

Guha II

Figure 6. The average size of the WCDS constructed by the centralized algorithms, when the radio

transmission range is 15 and the square area size is 100×100

0

5

10

15

20

25

30

35

60 80 100 120 140 160 180 200
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

5

10

15

20

25

30

35
60 80 100 120 140 160 180 200

Guha I

WCDS-CTR

DLA-CC

Guha II

Figure 7. The average size of the WCDS constructed by the centralized algorithms, when the radio

transmission range is 30 and the square area size is 100×100

0

10

20

30

40

50

60

70

80

60 80 100 120 140 160 180 200
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

10

20

30

40

50

60

70

80
60 80 100 120 140 160 180 200

Min ID

AWF

WCDS-DST

DLA-DC

Max Degree

Figure 8. The average size of the cluster-head set constructed by the distributed clustering algorithms,

when the radio transmission range is 15 and the square area size is 100×100

0

5

10

15

20

25

30

60 80 100 120 140 160 180 200
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

5

10

15

20

25

30
60 80 100 120 140 160 180 200

Min ID

AWF

WCDS-DST

DLA-DC

Max Degree

Figure 9. The average size of the cluster-head set constructed by the distributed clustering algorithms,

when the radio transmission range is 30 and the square area size is 100×100

0

20

40

60

80

100

120

140

200 300 400 500 600 700 800 900 1000
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

20

40

60

80

100

120

140
200 300 400 500 600 700 800 900 1000

Min ID

AWF

WCDS-DST

DLA-DC

Max Degree

Figure 10. The average size of the cluster-head set constructed by the distributed clustering algorithms

on the dense network graphs, when the radio transmission range is 15 and the square area size is
100×100

0

5

10

15

20

25

30

35

40

200 300 400 500 600 700 800 900 1000
Number of Nodes

N
um

be
r o

f C
lu

st
er

-h
ea

ds

0

5

10

15

20

25

30

35

40
200 300 400 500 600 700 800 900 1000

Min ID

AWF

WCDS-DST

DLA-DC

Max Degree

Figure 11. The average size of the cluster-head set constructed by the distributed clustering algorithms

on the dense network graphs, when the radio transmission range is 30 and the square area size is
100×100

7 Conclusion

The network clustering is a method by which the hosts are hierarchically organized on the basis of the
proximity, and the hierarchical structure thus formed abstracts the large scale networks so that the hosts can
be simply and locally organized. Since finding the weakly connected dominating set is a well-known
approach for clustering the wireless ad hoc networks, in this paper, we first proposed a distributed learning
automata-based algorithm for solving the minimum WCDS problem, and then proposed a clustering
algorithm for wireless ad hoc networks in which a near optimal solution to the minimum WCDS problem is
found. In this method, the dominator nodes play the role of the cluster-heads and their one-hop neighbors
assume the role of the cluster members. We also computed the worst case running time and message
complexity of the proposed clustering algorithm for finding a)1(1 ε− optimal cluster-head set. It was
shown that by a proper choice of the learning rate of the clustering algorithm, a trade-off between the
running time and message complexity of algorithm with the cluster-head set size (clustering optimality) can
be made. The simulation results showed that the proposed algorithms outperformed the best existing
algorithms in terms of the size of the cluster-head set (or WCDS).

References

[1] Y. P. Chen, A. L. Liestman, “Maintaining Weakly-Connected Dominating Sets for Clustering Ad
Hoc Networks,” Ad Hoc Networks, Vol. 3, pp. 629–642, 2005.

[2] P. Gupta, P.R. Kumar, “The Capacity of Wireless Networks,” IEEE Transaction on Information

Theory, Vol. 46, No. 2, pp. 388–404, 2000.

[3] B. Han, W. Jia, “Clustering Wireless Ad Hoc Networks with Weakly Connected Dominating Set,”
Journal of Parallel and Distributed Computing, Vol. 67, pp. 727 – 737, 2007.

[4] R. Rajaraman, “Topology Control and Routing in Ad Hoc Networks: A Survey,” SIGACT News,

Vol. 33, No. 2, pp. 60–73, 2002.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs,” Discrete Mathematics, Vol.
86, pp. 165-177, 1990.

[6] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, D.J. Rosenkrantz, “Simple Heuristics for Unit

Disk Graphs,” Networks Vol. 25, pp. 59–68, 1995.

[7] Y.Z. Chen, A.L. Listman, “Approximating Minimum Size Weakly Connected Dominating Sets for
Clustering Mobile Ad hoc Networks,” Proceedings of the Third ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc’2002), pp. 157–164, 2002.

[8] Y.P. Chen, A.L. Liestman, “A Zonal Algorithm for Clustering Ad Hoc Networks,” International

Journal of Foundations of Computer Science, Vol. 14, No. 2, pp. 305–322, 2003.

[9] K.M. Alzoubi, P. J. Wan, O. Frieder, “Maximal Independent Set, Weakly Connected Dominating

Set, and Induced Spanners for Mobile Ad Hoc Networks“, International Journal of Foundations
of Computer Science, Vol. 14, No. 2, pp. 287-303, 2003.

[10] R.G. Gallager, P.A. Humblet and P.M. Spira, “A Distributed Algorithm for Minimum Weight

Spanning Trees,” ACM Transaction on Programming Languages and Systems, Vol. 5, pp. 66-77,
1983.

[11] S. Guha and S. Khuller, “Approximation algorithms for Connected Dominating Sets,”

Algorithmica, Vol. 20, No. 4, pp. 374-387, 1998.

[12] O. Dousse, F. Baccelli, and P. Thiran, “Impact of Interferences on Connectivity in Ad hoc
Networks,” IEEE/ACM Transactions on Networking, Vol. 13, No. 2, pp. 425-436, 2005.

[13] S. Basagni, M. Mastrogiovanni, C. Petrioli, “A Performance Comparison of Protocols for

Clustering and Backbone Formation in Large Scale Ad Hoc Network,” Proceedings of the First
IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS’2004), pp. 70–79,
2004.

[14] B. Das, and V. Bharghavan, “Routing in ad-hoc networks using minimum connected dominating

sets,” IEEE International Conference on Communications (ICC'97), 1997.

[15] K. S. Narendra and K. S. Thathachar, “Learning Automata: An Introduction“, New York, Printice-
Hall, 1989.

[16] M. A. L. Thathachat, P. S. Sastry, “A Hierarchical System of Learning Automata That Can Learn

the Globally Optimal Path,” Information Science, Vol. 42, pp.743-766, 1997.

[17] M. A. L. Thathachar and B. R. Harita, “Learning Automata with Changing Number of Actions,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMG17, pp. 1095-1100, 1987.

[18] M. A. L. Thathachat, V.V.Phansalkar, “Convergence of Teams and Hierarchies of Learning

Automata in Connectionist Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol.
24, pp. 1459-1469, 1995.

[19] S. Lakshmivarahan and M. A. L. Thathachar, “Bounds on the Convergence Probabilities of

Learning Automata,” IEEE Transactions on Systems, Man, and Cybernetics, 1976, Vol. SMC-6,
pp. 756-763, 1976.

[20] K. S. Narendra, and M. A. L. Thathachar, “On the Behavior of a Learning Automaton in a

Changing Environment with Application to Telephone Traffic Routing,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-l0, No. 5, pp. 262-269, 1980.

[21] H. Beigy, M. R. Meybodi, “Utilizing Distributed Learning Automata to Solve Stochastic Shortest

Path Problems,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
Vol. 14, pp. 591-615, 2006.

[22] R. Ghosh, and S. Basagni, “Mitigating the Impact of Node Mobility on Ad Hoc Clustering,”

Journal of Wireless Communications and Mobile Computing, Vol. 8, pp. 295-308, 2008.

[23] M. Haleem and R. Chandramouli, “Adaptive Downlink Scheduling and Rate Selection: A Cross

Layer Design,” Special issue on Mobile Computing and Networking, IEEE Journal on Selected
Areas in Communications, Vol. 23, No. 6, 2005.

[24] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Exploiting Locality of Demand to

Improve the Performance of Wireless Data Broadcasting,” IEEE Transactions on Vehicular
Technology, Vol. 55, No. 4, pp. 1347-1361, 2006.

[25] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Learning-Automata-Based Polling

Protocols for Wireless LANs,” IEEE Transactions on Communications, Vol. 51, No. 3, pp. 453-
463, March 2003.

[26] P. Nicopolitidis, G. I. Papadimitriou, M. S. Obaidat and A. S. Pomportsis, “Carrier-sense-assisted
Adaptive Learning MAC Protocol for Distributed Wireless LANs,” International Journal of
Communication Systems, Wiley, Vol. 18, No. 7, pp. 657-669, 2005.

[27] P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Distributed Protocols for Ad-Hoc

Wireless LANs: A Learning-Automata-Based Approach,” Ad Hoc Networks, Vol. 2, No. 4, pp.
419-431, 2004.

[28] B. V. Ramana and C. S. R. Murthy, “Learning-TCP: A Novel Learning Automata Based

Congestion Window Updating Mechanism for Ad hoc Wireless Networks,” 12th IEEE
International Conference on High 13 Performance Computing, pp. 454-464, 2005.

[29] H. Beigy, and M. R. Meybodi, “A Learning Automata-based Dynamic Guard Channel Scheme,”

Lecture Notes on Information and Communication Technology, Vol. 2510 Springer Verlag, pp.
643-650, 2002.

[30] H. Beigy and M. R. Meybodi, “An Adaptive Uniform Guard Channel Algorithm: A learning

Automata Approach,” Lecture Notes in Intelligent Data Engineering and Automated Learning,
Springer Verlag, LANCES 2690, Germany, pp. 405-409, 2003.

[31] H. Beigy and M. R. Meybodi, “Learning Automata-based Dynamic Guard Channel Algorithms,”

Journal of High Speed Networks, 2008, to appear.

[32] Y. P. Chen, A. L. Liestman, “Maintaining Weakly Connected Dominating Sets for Clustering Ad
Hoc Networks,” Ad Hoc Networks, Vol. 3, 2005, pp. 629–642.

