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Abstract 

In ad hoc networks, the performance is significantly degraded as the size of the network grows. The 
network clustering is a method by which the nodes are hierarchically organized on the basis of the 
proximity and thus the scalability problem is alleviated. Finding the weakly connected dominating set 
(WCDS) is a well-known approach, proposed for clustering the wireless ad hoc networks. Finding the 
minimum WCDS in the unit disk graph is an NP-Hard problem, and a host of approximation algorithms 
have been proposed. In this paper, an approximation algorithm based on distributed learning automata is 
first proposed for finding a near optimal solution to the minimum WCDS problem in a unit disk graph. 
Then, a distributed learning automata-based algorithm is proposed for clustering the wireless ad hoc 
networks. This clustering method is a generalization of the algorithm proposed for solving the WCDS 
problem, in which the dominator nodes and their closed neighbors assume the role of the cluster-heads and 
cluster members, respectively. The proposed clustering algorithm, in an iterative process tries to find a 
policy that determines a cluster-head set with the minimum cardinality for the network. In this paper, the 
worst case running time and message complexity of the clustering algorithm to find a )1(1 ε−  optimal 
cluster-head set are computed. It is shown that by a proper choice of the learning rate of the clustering 
algorithm, a trade-off between the running time and message complexity of algorithm with the cluster-head 
set size (clustering optimality) can be made. For both algorithms, the simulation results show that they 
outperform the best existing algorithms in terms of the number of hosts (nodes) in the cluster-head set 
(dominating set).  
Keywords: Wireless ad hoc networks, clustering, weakly connected dominating set, distributed 
learning automata 
 
1 Introduction 

A wireless ad hoc network is a multi hop wireless communication network supporting a collection of 
mobile hosts. There is no fixed infrastructure and no central administration and the mobile hosts can form a 
temporary network infrastructure in an ad hoc fashion. Two hosts can directly communicate when they are 
within transmission range of each other, and indirectly through relaying by the intermediate hosts. In an ad 
hoc network, each host assumes the role of a router and relays the packets toward the final destinations, if a source 
can not directly send the packets to a final destination due to the limitation of the radio transmission range. 
Since the wireless ad hoc networks exhibit severe resource constraints such as the bandwidth and power 
limitations, network topology changes, and the lack of the fixed infrastructures and consequently, 
centralized administrations, to achieve good performance in ad hoc networks, the load on the hosts should 
be kept as low as possible[3, 22]. 

The network performance is significantly degraded as the network becomes larger and the theoretical 
analysis [2] implies that even under the optimal circumstances, the throughput for each host declines 



rapidly towards zero as the number of hosts is increased. Among the solutions proposed for solving the 
scalability problem in ah doc networks, the network clustering approach has attracted a lot of attention in 
study such large scale networks. The main idea behind the clustering approach is to group together the 
network hosts that are in physical proximity, to achieve scalability and efficiency. The clusters provide a 
hierarchical structure to abstract the large scale networks which can be simply and locally organized [4, 7]. 
A clustering algorithm is a method of dividing the network into clusters so that every cluster includes a 
cluster-head and the hosts that can directly communicate with the cluster-head. Unpredictable topology 
changes due to the mobility of hosts, and resource limitations (e.g., bandwidth and power limitations) are 
important features of the wireless ad hoc networks. Due to the limitations of the ad hoc networks, having a 
small number of the cluster-heads and also minimizing the modifications of the cluster-heads are desired. 
The most basic clustering methods that have been studied in the context of ad hoc networks are based on 
the dominating sets. Finding the minimum WCDS of the network graph is one of the most investigated 
methods for cluster formation in which a dominator node assumes the role of a cluster-head and its one-hop 
neighbors are assumed to be cluster members. The structure of the network graph can be simplified using 
WCDS and made more succinct for routing in ad hoc networks [12, 14]. 

Clustering the ad hoc networks based on the weakly connected dominating sets was first proposed by 
Chen and Listman [7, 32]. The distributed approximation clustering algorithm proposed by Chen and 
Listman is also inspired by Guha and Khuller’s centralized approximation algorithm [11] for finding small 
connected dominating sets (CDS). Guha and Khuller [11] proposed two centralized greedy heuristic 
algorithms with bounded performance guarantees for connected dominating set formation. In the first 
algorithm, the connected dominating set is grown from one node outward, and in the second algorithm, a 
WCDS is constructed, and then the intermediate nodes are selected to create a CDS. Chen and Liestman 
also proposed a zonal algorithm [1, 8], in which the graph is divided into regions, a WCDS is constructed 
for each region, and adjustments are made along the borders of the regions to produce a WCDS for the 
whole graph. Their algorithm for the partitioning phase is partly based on a Minimum Spanning Tree 
(MST) algorithm of Gallager et al. [10]. Han [3] also proposed an area-based distributed algorithm for 
WCDS construction in ad hoc networks with constant approximation ratio, linear time and message 
complexity. While it has a lower message complexity than the zonal algorithm proposed by Chen and 
Listman, it outperforms the mentioned algorithm. Alzoubi et al. [9] presented two distributed algorithms for 
finding a WCDS in ad hoc networks. The first algorithm was implemented by first electing a leader among 
the nodes, which was going to be the root of a spanning tree. The spanning tree is then traversed and the 
dominator nodes are selected. But the distributed leader election is extremely expensive in practice, and 
exhibits a very low degree of parallelism. The second algorithm first constructs a maximum independent 
set (MIS) by an iterative labelling strategy, and then modifies the MIS by selecting one intermediate node 
between each pair of dominators separated by exactly three hops.  

In this paper, two distributed learning automata-based algorithms are proposed to solve the minimum 
WCDS problem and to cluster the wireless ad hoc networks, respectively. The proposed clustering 
algorithm is aimed at finding a near optimal solution to the minimum WCDS problem in which the 
dominator nodes play the role of the cluster-heads and their one-hop neighbors assume the role of the 
cluster members. In both algorithms, a network of the learning automata, isomorphic to the network 
topology graph (or unit disk graph) is formed by assigning a learning automaton to each node. At each 
iteration, the learning automata randomly choose their actions to form a WCDS, and the selected actions 
are evaluated by the random environment. After a number of iterations, the learning automata tend to a 
common policy that determines the minimum size cluster-head set (or WCDS) with the highest probability. 
Furthermore, in this paper, the worst case running time and message complexity of the proposed clustering 
algorithm for finding a )1(1 ε−  optimal cluster-head set are computed. It was shown that by a proper 
choice of the learning rate of the clustering algorithm, a trade-off between the running time and message 
complexity of algorithm with the cluster-head set size (clustering optimality) can be made. For both 
algorithms, the simulation results show that they outperform the best existing algorithms in terms of the 
number of hosts (nodes) in the cluster-head set (dominating set).  

The rest of the paper is organized as follows. In the next section, the WCDS problem formulation, 
learning automata and some preliminaries are presented. In section 3, a distributed learning automata-based 
approximation algorithm is proposed to solve the minimum WCDS problem in an arbitrary unit disk graph. 
In section 4, a clustering algorithm based on distributed learning automata for wireless ad hoc networks is 
proposed. The worst case running time and message complexity of the clustering algorithm is computed in 



section 5. In section 6, the performance of the proposed algorithms is evaluated through the simulation 
experiments, and section 7 concludes the paper. 

 
 

2 Preliminaries   
2.1 Dominating Sets 

A wireless ad hoc network can be modeled as a unit disk graph ),( EVG = , where the hosts 
represent the individual hosts and an edge connects two hosts if the corresponding hosts are within 
transmission range of each other. The closed neighborhood ][vNG of a host v  in graph G consists of the 

hosts adjacent to v  and host v  itself. The closed neighborhood ][SNG of the set S  is the 

unionU Sv G vN
∈

][ . The subscript G can be omitted if the meaning is clear from the context. A dominating 

set (DS) of a graph ),( EVG = is a host subset VS ⊆ , such that every host Vv ⊆ is either in S  or 
adjacent to a host of S . A host of S is said to dominate itself and all adjacent hosts. A minimum DS 
(MDS) is a DS with the minimum cardinality. A dominating set is also an independent dominating set, if no 
two hosts in the set are adjacent. A connected dominating set (CDS) S  of a given graph G is a dominating 
set whose induced sub graph, denoted >< S , is connected, and a minimum CDS (MCDS) is a CDS with 
the minimum cardinality. A MCDS forms a virtual backbone in the graph by which the routing overhead 
can be significantly reduced, where the number of hosts responsible for routing can be reduced to the 
number of hosts in the backbone. The MDS and MCDS problems are known as NP-Hard problems [5, 6], 
and even for a unit disk graph, the problem of finding a MCDS is also NP-Hard [6]. 

A dominating set S is a weakly connected dominating set (WCDS) of a graphG , if the 
graph ))][(],[( SSNESNS W ×∩=>< is a connected sub graph ofG . In other words, the weakly 

induced sub graph WS >< contains the hosts of S , their neighbors, and all edges with at least one endpoint 

in S . A sample UDG and one of its WCDS are shown in Figures 1.A and 1.B, respectively. The dominator 
nodes assume the role of the cluster-heads and they have been colored black. 

   
Figure 1.B. the weakly connected dominating set Figure 1.A. a sample unit disk graph 

 
It is assumed that, the ad hoc network comprises a group of wireless hosts communicating through a 

common broadcast channel using omnidirectional antennas and all hosts have the same transmission range. 
That is, the corresponding topology graph is a unit disk graph. Scheduling of transmissions is the 
responsibility of the MAC layer, and like many existing approaches, we are not concerned with the issues 
of using a shared wireless channel to send the messages avoiding the collisions and contentions. Each host 
has a unique ID (e.g., IP address) and also needs to know the ID of all other hosts.  

Each node of a WCDS is said to be a dominator node and its corresponding host in an ad hoc network 
a cluster-head. Two hosts vu,  are connected by a link ),( vu and are said to be neighbors, if there exists a 
direct bidirectional communication channel connecting u and v , and so the network graph is assumed to be 
undirected.   

 



2.2 Learning Automata, Distributed Learning Automata and Variable 
Action Set Learning Automata  

2.2.1. Learning Automata 
A learning automaton [15-21] is an adaptive decision-making unit that improves its performance by 

learning how to choose the optimal action from a finite set of allowed actions through repeated interactions 
with a random environment. The action is chosen at random based on a probability distribution kept over 
the action set and at each instant the given action is served as the input to the random environment. The 
environment responds the taken action in turn with a reinforcement signal. The action probability vector is 
updated based on the reinforcement feedback from the environment. The objective of a learning automaton 
is to find the optimal action from the action set so that the average penalty received from the environment is 
minimized [15]. 

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents 
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the 

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the 

element ic is associated with the given action iα . If the penalty probabilities are constant, the random 
environment is said to be a stationary random environment, and if they vary with time, the environment is 
called a non stationary environment. The environments depending on the nature of the reinforcement signal 
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement 

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of 
the environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement 
signal. Such an environment is referred to as Q -model environment. In S -model environments, the 
reinforcement signal lies in the interval ],[ ba . The relationship between the learning automaton and its 
random environment has been shown in figure 2. 

Random Environm ent 

Learning Automaton 

α(n) 

β(n)  
Figure 2. The relationship between the learning automaton and its random environment 

 
  Learning automata can be classified into two main families [15-20]: fixed structure learning 

automata and variable structure learning automata. Variable structure learning automata are represented by 
a triple >< T,,αβ , where β is the set of inputs, α is the set of actions, and T  is learning algorithm. 
The learning algorithm is a recurrence relation which is used to modify the action probability vector. Let 

)(kα and )(kp denote the action chosen at instant k and the action probability vector on which the chosen 
action is based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by 
which the action probability vector p is updated. Let )(kiα  be the action chosen by the automaton at 

instant k . 
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When the taken action is penalized by the environment (i.e. 1)( =nβ ). r is the number of actions 
can be chosen by the automaton, )(ka and )(kb  denote the reward and penalty parameters and determine 
the amount of increases and decreases of the action probabilities, respectively. If )()( kbka = , the 

recurrence equations (1) and (2) are called linear reward-penalty ( PRL − ) algorithm, if )()( kbka >> the 

given equations are called linear reward-ε penalty ( PRL ε− ), and finally if 0)( =kb  they are called linear 

reward-Inaction ( IRL − ). In the latter case, the action probability vectors remain unchanged when the taken 
action is penalized by the environment. 

Learning automata is proved to perform well in the dynamic environments of wireless, ad hoc and 
sensor networks. Haleem and Chandramouli [23] used learning automata to address a cross-layer design for 
joint user scheduling and adaptive rate control for downlink wireless transmission. The proposed method 
tends to ensure that user defined rate requests are satisfied by the right combination of transmission 
schedules and rate selections. Nicopolitidis et al. [24] proposed a bit rate control mechanism based on 
learning automata for broadcasting data items in wireless networks. A learning automaton is used in the 
server which learns the demand of wireless clients for each data item. As a result of this learning, the server 
is able to transmit more demanded data items by the network more frequently. The same authors [25] 
proposed a learning automata based polling protocol for wireless LANs in which the access point uses a 
learning automaton to assign to each station a portion of the bandwidth proportional to the station's need. A 
decentralized approach of the above method is also given [26, 27]. Ravana and Morthy [28] proposed 
Learning-TCP, a novel learning automata based reliable transport protocol for wireless networks, which 
efficiently adjusts the congestion window size and thus reduces the packet losses. Learning automata is also 
used in cellular radio networks to dynamically adjusting the number of guard channels [29, 30, 31].  

 
2.2.2. Distributed Learning Automata 

A Distributed learning automata (DLA) [21] is a network of the learning automata which collectively 
cooperate to solve a particular problem. Formally, a DLA can be defined by a quadruple >< 0,,, ATEA , 

where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂  is the set of the edges in which edge 

),( jie corresponds to the action ijα  of the automaton iA , T is the set of learning schemes with which the 

learning automata update their action probability vectors, and 0A is the root automaton of DLA from which 
the automaton activation is started . An example of a DLA has been shown in figure 3. 

  
Figure 3. Distributed learning automata 

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses 
one of its outgoing edges (actions) according to its action probabilities and activates the learning automaton 
at the other end of the selected edge. The activated automaton also randomly selects an action which results 
in activation of another automaton. The process of choosing the actions and activating the automata is 
continued until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen 
actions, along the path induced by the activated automata between the root and leaf, are applied to the 
random environment. The environment evaluates the applied actions and emits a reinforcement signal to 
the DLA. The activated learning automata along the chosen path update their action probability vectors on 
the basis of the reinforcement signal by using the learning schemes. The paths from the unique root 
automaton to one of the leaf automata are selected until the probability with which one of the paths is 
chosen is close enough to unity. Each DLA has exactly one root automaton which is always activated, and 
at least one leaf automaton which is activated probabilistically. 

 
2.2.3. Variable Action Set Learning Automata 



A variable action set learning automaton is an automaton in which the number of actions available at 
each instant changes with time. It has been shown in [17] that a learning automaton with a changing number 
of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is IRL − . Such an 

automaton has a finite set of n  actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA = denotes the set of 

action subsets and α⊆)(kA  is the subset of all the actions can be chosen by the learning automaton, at 
each instant k . The selection of the particular action subsets is randomly made by an external agency 
according to the probability distribution )}(),...,(),({)( 21 kkkk mψψψψ =  defined over the possible 

subsets of the actions, where ]121,|)([)( −≤≤∈== n
iii iAAAkAprobkψ . 

[ ])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα  is the probability of choosing action iα , conditioned on 

the event that the action subset )(kA  has already been selected and also )(kAi ∈α . The scaled 

probability )(ˆ kpi is defined as 

)(/)()(ˆ kKkpkp ii =  (3)  

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset )(kA ,and 

[ ]ii kprobkp αα == )()( . 
The procedure of choosing an action and updating the action probabilities in a variable action set 

learning automaton can be described as follows. Let )(kA be the action subset selected at instant k . 
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in 
equation (3). The automaton then randomly selects one of its possible actions according to the scaled action 
probability vector )(ˆ kp . Depending on the response received from the environment, the learning 
automaton updates its scaled action probability vector. Note that the probability of the available actions is 
only updated.  Finally, the probability vector of the actions of the chosen subset is rescaled 
as )()1(ˆ)1( kKkpkp ii ⋅+=+ , for all )(kAi ∈α . The absolute expediency and −ε optimality of the 
method described above have been proved in [17]. 

 
3 DLA-Based WCDS Formation Algorithm 

In this section, a distributed learning automata-based approximation algorithm is proposed for finding 
a near optimal solution to the minimum WCDS problem described in section 2. In this algorithm, a network 
of the learning automata isomorphic to the input UDG is first formed by assigning to each vertex iv of the 

graph a learning automaton, iA . The resulting network of the learning automata can be described by a 

duple >< α,A , where },...,,{ 21 mAAAA =  denotes the set of learning automata corresponding to the 

vertex set, and },...,,{ 21 mαααα = denotes the set of actions, in which 

},...,,{  ,2,1, riiiii αααα = defines the set of actions can be taken by the learning automata iA and initially 

includes the set of all learning automata except automata iA and its neighbors, for each αα ∈i . For 
optimizing the behavior of the learning automata, the proposed algorithm deals with the automata with 
changing number of actions [17]. Each vertex (automaton) can be in one of two states active and passive, 
and it is initially set to the passive state. The proposed algorithm, which we call it DLA-CC, consists of a 
number of stages, and at each stage, the selected vertices are activated and added to the WCDS being 
formed in that stage. The proposed algorithm iteratively constructs a number of WCDSs and updates the 
action probability vectors until it finds a near optimal solution to the minimum WCDS problem with a 
probability higher than a pre-specified threshold. Stage k of the proposed algorithm is briefly described in 
the following steps: 

Step 1. WCDS formation 



The first dominator vertex is randomly selected (say activated), denoted as iv  and added to 

the WCDS which is being constructed at stage k . 
While (The cardinality of the constructed dominatee set is less than the number of vertices of 
             The input graph) do 

- The neighbors of activated vertex iv are added to the set of dominatee vertices. 

- Learning automaton iA (assigned to activated vertex iv ) changes its number of actions 
(or scales its action probability vector) by disabling the actions corresponding to all the 
members of the dominatee set. 

- Learning automaton iA randomly chooses one of its actions according to its scaled action 

probability vector, activates its corresponding vertex, denotes it iv , and adds it to the 
WCDS. 

Step 2. Comparing the cardinality of the constructed WCDS with a dynamic threshold  
- Let dynamic threshold kT  denotes the cardinality of the minimum size WCDS 

constructed until stage k . 
- Dynamic threshold kT  is updated to the cardinality of the constructed WCDS, if it is 

lager than the cardinality of the WCDS.   
Step 3. Updating the action probability vectors 

- Depending on the result of the comparison in step 2, all the activated learning automata, 
using a IRL − reinforcement scheme, reward their chosen actions if the cardinality of the 

constructed WCDS is less than or equal to the dynamic threshold kT , and penalize them 
otherwise.  

Step 4. Stopping Condition 
- The process of constructing the WCDSs and updating the action probabilities are 

repeated until the product of the probability of choosing the vertices of the constructed 
WCDS is greater than a certain threshold or the number of constructed WCDS exceeds a 
pre-specified threshold. The WCDS which is formed last before stopping the algorithm is 
the WCDS with the minimum cardinality among all WCDSs of the graph. The proposed 
algorithm has been described in more detail in figure 4.  

 
Algorithm DLA-CC 
  Input: Unit Disk Graph ),( EVG , Threshold PK ,  
  Output: The minimum size WCDS 
  Assumptions: 
    Assign a learning automaton to each vertex iv and initially set it in a passive state 
    Let iα denotes the set of actions for each automaton iA , and contains the set of all vertices of  

    graphG except vertex iv  
  Begin Algorithm 
    Let kT  be the dynamic threshold, which is the cardinality of the smallest WCDS constructed until stage k , 
    and initially set to n      
    Let  k  denotes the stage number and is initially set to 0 
    Let 0A  be the initial learning automaton whose action set is the set of all the vertices in graphG  
    Repeat 
      Let kδ be the set of dominators selected at stage k and initially set to null 
      Let kd denotes the set of dominatees, selected at stage k and is initially set to null 
      Automaton 0A randomly chooses one of its actions according to its action probability vector, activates 
      it, denotes iv and adds to kδ  
      While ( The cardinality of set kd is less than n ) do 



          Add the neighbors of dominator iv to kd  
          Update the action probability vector of learning automaton iA by disabling the actions corresponded to 
          all the vertices in kd  
          Dominator iv  randomly chooses one of its actions according to its action probability vector, activates 
          it, denotes iv and adds to kδ  
      End while 
      Find the WCDS selected at stage k  
      Compute the cardinality of the selected WCDS 
      If  (The cardinality of the selected WCDS is less than the dynamic threshold kT ) Then 
           Reward the actions chosen by the activated learning automata  
           Set the dynamic threshold kT to the cardinality of the selected WCDS  
        Else  
            Penalize the actions chosen by the activated learning automata  
        End if 
        Increment stage number k  
        Enable all the actions disabled during the current iteration and update the action probability vector 
    Until ( The probability of choosing the WCDS is greater than a pre-specified threshold P or  the stage 
                 number k  is greater than threshold K ) 
  End Algorithm 

Figure 4. Algorithm DLA-CC for solving the minimum WCDS problem 
 

4 The Proposed Clustering Algorithm 
Since in wireless ad hoc networks, there is neither a fixed infrastructure nor a central administration, 

the centralized algorithms are not feasible in such environments. Moreover, to gather all the required 
information in a certain host, for executing the algorithm, consumes a large number of messages and 
considerably more energy which is a very scarce resource in wireless ad hoc networks [3]. Therefore, in 
this section, a distributed approximation algorithm based on distributed learning automata, called DLA-DC, 
is proposed for clustering the wireless ad hoc networks by finding a near optimal solution to the WCDS 
problem. In fact, the proposed clustering algorithm is a generalization of DLA-CC, in which the minimum 
size cluster-head set (or minimum WCDS of the UDG induced by the network topology) is determined in a 
fully distributed fashion. In this clustering method, the dominator nodes assume the role of the cluster-
heads and their one-hop neighbors (dominatee nodes) the role of the cluster members. At each iteration of 
the clustering algorithm, the network graph is clustered by randomly choosing the dominator nodes as the 
cluster-heads. The learning automata, in an iterative greedy strategy, find a policy that determines the 
minimum size cluster-head set of the network graph. 

In this algorithm, like DLA-CC, a network of the learning automata, isomorphic to the UDG induced 
by the network topology, is first formed by assigning a learning automaton (e.g., iA ) to each host (e.g., 

ih ) of the network. Each host has a unique ID and knows its neighbors' ID. In this algorithm, to form the 
action-set of each learning automaton, its corresponding host sends a message locally to its one-hop 
neighbors. The hosts which are within the transmission range of the sender host, upon receiving the 
message, reply it. The sender forms its action-set on the basis of the received replies. Each host by which 
the message is replied is associated with an action. Therefore, the action-set size of each learning 
automaton is strongly dependent to the network density. Assuming that the hosts are uniformly distributed 
in the network (a uniform network density), each learning automaton has ARn /2π  actions, each of initial 

probability 2/ RnA π . Action ji,α corresponds to the selection of host jh  as a cluster-head by learning 

automaton iA . Each host requires the following data structures to participate in the cluster formation 
process:  
• MAX_ITERATION, a stopping condition for the algorithm as a maximum number of iterations. 
• PCHS, a threshold required for termination the cluster formation process as the probability of choosing 

the cluster-head set. 



• CLUSTER_HEAD_SET, a set of the chosen cluster-heads at each iteration. 
• CLUSTER_LIST, a set of hosts in which each member is a one-hop neighbor of at least one host in the 

CLUSTER_HEAD_SET. 
• PROB_VECTOR, a vector of the probability of choosing the members of CLUSTER_HEAD_SET. 
• MIN_SIZE, a dynamic threshold contains the cardinality of the smallest CLUSTER_HEAD_SET which 

has been selected yet. 
• ITERATION_NUM, a counter which keeps the number of constructed CLUSTER_HEAD_SET. 

A READY message, which contains MAX_ITERATION and PCHS, is initially flooded within the 
network to inform the hosts of the cluster formation (or re-clustering) start. Each host, upon receiving the 
READY message, calls the WCDS procedure. During the WCDS procedure, each host may receive from or 
send to the other hosts the following messages: INITIALIZATION, ACTIVATION, REWARDING, 
PENALIZING and CLUSTERING message. After the READY message is sent, one of the hosts is randomly 
selected and denoted as the initial host. An INITIALIZATION message is then sent to the initial host and the 
process of the cluster formation is continued by receiving the INITIALIZATION message as described 
below. 
I. INITIALIZATION MESSAGE 

When a given host ih  receives an INITIALIZATION message, it initially updates the 
CLUSTER_HEAD_SET by adding its ID. The initial host then adds its one-hop neighbors' ID to the 
CLUSTER_LIST. Learning automaton iL  (corresponding to host ih ) disables the actions associated with the 
selected cluster-heads in its action set. In this clustering algorithm, the aim of using the variable action set 
learning automata is to avoid selecting the cluster-heads by which no more hosts can be added to the 
CLUSTER_LIST. For this purpose, learning automaton iL  scales its action probability vector by disabling 
the actions associated with all the selected cluster-heads as described in section 2.2.3 on the variable action 
set learning automata, if it has such actions. Then, it chooses one of its actions according to the scaled 
action probability vector. The probability with which learning automaton iL  chooses its action is added to 
the PROB_VECTOR. Finally, an ACTIVATION message is sent to the host (new cluster-head) 
corresponding to the chosen action.  
II. ACTIVATION MESSAGE 

An ACTIVATION message includes CLUSTER_LIST, CLUSTER_HEAD_SET, MIN_SIZE, 
PROB_VECTOR, and ITERATION_NUM. The state of a given host changes to the active state when it 
receives an ACTIVATION message. When a given host ih  receives an ACTIVATION message, it inserts its 
ID as a new cluster-head into the CLUSTER_HEAD_SET, if it has at least a one-hop neighbor not to be in 
the CLUSTER_LIST. To update the CLUSTER_LIST it adds its one-hop neighbors' ID to this list. The 
action set of learning automaton iL is updated by disabling the actions associated with the selected hosts as 
described earlier. In this case, if there is no more actions can be taken by learning automaton iL , the 
cardinality of the CLUSTER_HEAD_SET is calculated. If the cardinality is less than the dynamic threshold 
MIN_SIZE, the dynamic threshold is set to the cardinality of the selected set (CLUSTER_HEAD_SET) and 
all the chosen actions of the activated automata are rewarded by sending back a REWARDING message, 
otherwise (cardinality is larger than the dynamic threshold) they are penalized by sending back a 
PENALIZING message. 

To verify the stopping condition of the cluster formation process the probability of choosing the 
CLUSTER_HEAD_SET is calculated as the product of the probability of choosing the selected cluster-
heads based on the information contained in PROB_VECTOR. If this probability is less than the certain 
threshold PCHS and ITERATION_NUM does not exceed than a per-specified threshold MAX_ITERATION, 
host ih  increments the ITERATION_NUM and randomly chooses one of its actions (or hosts), according to 
its action probability vector. Then, it sends an INITIALIZATION message to the host corresponding to the 
taken action to start a new iteration. Otherwise it generates a CLUSTERING message including the last 
selected CLUSTER_HEAD_SET and broadcasts it in the network.  

If there exist actions can be taken by learning automaton iL , it chooses one of its actions as a new 
cluster-head, updates PROB_VECTOR by adding the probability of choosing the action, and sends an 
ACTIVATION message to the chosen cluster-head. 
III. CLUSTERING MESSAGE 



A CLUSTERING message includes the CLUSTER_HEAD_SET selected during the last iteration. 
When host ih  receives a CLUSTERING message, it is noticed that the clustering process has been 
completed, and so accepts the list of the cluster-heads, contained in the CLUSTERING message, as a new 
cluster-head set. It will then terminate the WCDS procedure. 
IV. REWARDING MESSAGE 

When activated host ih  receives a REWARDING message, it updates its action probability vector by 
rewarding chosen action ji,α  as 

)](1[)()1( ,,, npanpnp jijiji −+=+ , (4)  

where jip , is the probability with which host ih  chooses host jh as a cluster-head, and penalizing the 
other actions ki,α  , for all jk ≠ , as       

jkknpanp kiki ≠∀−=+ )()1()1( ,, . (5)  
After rewarding the chosen action, the scaled action probability vector must be updated once again (or 

rescaled) by enabling all the disabled actions according to the rescaling method described in section 2.2.3 
on the variable action set learning automata. 
V. PENALIZING MESSAGE 

Since the reinforcement scheme by which the learning automata update their action probability 
vectors is IRL − , the action probabilities of the activated learning automata remain unchanged when they 
receive a PENALIZING message. In this case, the disabled actions of each activated learning automaton are 
enabled again. 
 
5 Complexity Analysis of the Clustering Method 

In this section, to analyze the costs of the proposed clustering method, we compute the worst case 
running time (Theorem 1) and message complexity (Theorem 2) of algorithm DLA-DC to find a )1(1 ε−  
optimal cluster-head set for clustering the network graph. 

  
Theorem 1. Let OPT denotes the size of the smallest cluster-head set for clustering network graph G , 
and )}(,),({)( 1 kqkqkq rK= is updated according to the proposed clustering algorithm (DLA-DC). The 

time required for finding a |OPT|
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where )(kqi  denotes the probability of choosing cluster-head set iω at stage k , )1,0(∈ε is the error 
parameter of algorithm denoted as PCHS−1  in DLA-DC, a denotes the learning rate of algorithm, n  is 
the number of hosts in the network graph, and r is the number of  cluster-head sets. 
 
Proof.  Let iq be the initial probability of choosing cluster-head set iω , and 2/ RnAp j π= be the initial 

probability of choosing host jh  as a cluster-head, where A denotes the square area, R denotes the radio 
transmission range, and n is the number of hosts. The worst case occurs when all the other cluster-head 
sets to be chosen before the smallest cluster-head set iω . In this case, the learning process can be divided 
into two distinct phases. In the first phase, called shrinking phase, it is assumed that all the other cluster-
head sets to be chosen, from the largest to the smallest, and so rewarded before iω . Such an ordered 

(cluster-head set) selection procedure decreases the probability of choosing iω  no more than that given in 



inequality (6). The second phase called growing phase is started when the cluster-head set iω is chosen for 
the first time. According to the proposed algorithm, during the growing phase, the probability of 
penalizing iω , and rewarding the other cluster-head sets is zero. Furthermore, since the reinforcement 

scheme by which the proposed algorithm updates the probability vectors is IRL − , the conditional 

expectation of )(kqi (i.e., the probability of choosing cluster-head set iω at stage k ),  remains unchanged 

when the other cluster-head sets are penalized, and it increases only when iω  is rewarded. In other words, 

during the growing phase, the changes in the conditional expectation of )(kqi  is always non-negative and 
given in equation (7). As described in the proposed algorithm, the growing phase is continued until the 
probability of choosing cluster-head set iω is greater than or equal to ε−1 . Let s

iq  denotes the probability 

of choosing cluster-head set iω at the beginning of the shrinking phase (i.e., the initial value of iq ), and 
a denotes the learning rate of the proposed algorithm. Therefore, during the shrinking phase, the 
probability of choosing cluster-head set iω changes as 

( ) ( ) ( )ms
i

s
i arqrq −⋅−≥ 11  (6) 

where r is the number of all possible cluster-head sets, and m  denotes the average size of the cluster-head 
sets. Substituting recurrence function )1( −rqs

i in inequality above, we have 

( ) ( ) ( ) ms
i

s
i arqrq 212 −⋅−≥   

By repeatedly applying inequality (6) )1( −r times, we obtain  

( ) ( ) mrs
i

s
i aqrq ⋅−−⋅≥− )1(11   

where ( )1−rqs
i denotes the probability of choosing cluster-head set iω at the end of the shrinking phase. 

For the sake of simplicity in notation, ( )1−rqs
i  is substituted by g
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the probability of choosing iω  at the beginning of the growing phase, and )1()1( −− r
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by jρ . As mentioned earlier, in the growing period, g
iq  increases, if iω is rewarded, and remains 

unchanged otherwise. Thus, during this phase, the probability of choosing cluster-head set iω increases as 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∏∏

∏∏

∏∏

∏

∈∈

∈∈

∈∈

∈

+−⋅−=−−⋅+−=

+−⋅−=−−⋅+−=−

+−⋅=−⋅+=

−⋅+=

ijij

ijij

ijij

ij

h
j

h
jj

g
i

h
j

h
jj

g
i

h
j

h
jj

g
i

h
jj

g
i

aakkakkq

aakkakkq

aaaq

aq

ωω

ωω

ωω

ω

ρρρ

ρρρ

ρρρ

ρρ

1)1()1(1)1(

1)2()2(1)2(1

1)1()1(1)1(2

11

M  (7) 

where jρ denotes the probability of choosing host jh  as a cluster-head at the beginning of the growing 

phase, and ( )kq g
i  (i.e., PCHS  in DLA-DC) denotes the probability with which cluster-head set iω  is 

chosen at the end of the growing phase, which according to the theorem, it is assumed to ε−1 . After some 
algebraic simplification, we have  
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Hence, we have 
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Substituting jρ  by )1()1( −− r
j ap , we have 
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where k denotes the number of times cluster-head set iω must be selected until 

( ) ε−= 1kq g
i  (10) 

From inequality (9), it follows that, the running time (the number of iteration) of the proposed 
algorithm is computed, if we find a value of k  (for a given learning rate a ) under which the condition 
given in equation (10) to be satisfied. From equation (8) we have 
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The second term on the right hand side of equation (12) is a geometric series that sums up to 
( ) ( )( )aaa k −−−−⋅ 1111 , where 11 <− a . Therefore, we have 
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From equation (10) and (13) we have 
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Since ∏
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jj apρ  (for all ijh ω∈ ), after some algebraic simplification, 

we have 
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Hence, we have 
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Taking a−1log of both sides of equation (14), we derive 
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and thus the number of times iω is rewarded in the growing phase, apart from penalizing the other cluster-
head sets, is obtained as 
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Since during the growing phase, g
iq  remains unchanged when the other cluster-head sets are 

penalized, k does not include the number of times the other cluster-head sets are chosen and this should be 
separately calculated based on k . Let g

iq  be the probability of choosing cluster-head set iω at the 

beginning of the growing phase, and reaches ε−1  (or PCHS  in DLA-DC) after k  iterations. On the 
other hand, the probability of choosing the other cluster-head sets is initially g

iq−1 , and reachesε after the 
same number of iterations. Thus, the number of times the other cluster-head sets are chosen (before 
satisfying the condition given in equation (10)) is obtained as  
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After some algebraic manipulations, the total number of iterations required in the growing phase of 
the proposed algorithm (i.e., Κ ) to satisfy the condition given in equation (10) is obtained as  
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By substituting k  from equation (15) and we have 
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From equation (16), the running time of the growing phase can be estimated. Since the worst case of 
the algorithm occurs when (in the shrinking phase) all the other cluster-head sets to be chosen before iω , 

the running time of the shrinking phase is always less than ( )rO . Therefore, we have   
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which completes the proof of this theorem■. 

Theorem 2. The message complexity of the proposed clustering algorithm for finding a |OPT|
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Where OPT denotes the size of the minimum cluster-head set (optimal solution to the WCDS 
problem), )(kqi  denotes the probability of choosing cluster-head set iω at stage k , )1,0(∈ε is the error 
parameter of algorithm, a denotes the learning rate of algorithm, n  is the number of hosts in the network 
graph, and r is the number of  cluster-head sets. 
Proof. As proved in Theorem 1, the running time (number of iterations) of the proposed clustering 

algorithm to find a |OPT|
1

1
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 size cluster-head set for the network graph is at most  
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Furthermore, as described in section 5, at each iteration of the clustering algorithm, the number of 
messages needs to be sent to form a cluster-head set is equal to the number of hosts in the selected cluster-
head set. Hence, the message complexity of the clustering algorithm is smaller than 
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where m  is the average size of the cluster-head set, and hence the proof of the theorem is 
completed■. 

It can be seen that by a proper choice of the learning rate of the clustering algorithm, a trade-off 
between the running time and message complexity of the algorithm with the cluster-head set size 
(clustering optimality) can be made. That is, choosing a proper learning rate for the proposed clustering 
algorithm results in finding a near optimal cluster-head set in a reasonable running time and message 
complexity, regarding the constraints of the ad hoc networks. 

 
6 Experimental Results 

To study the performance of the proposed algorithms, we have conducted two groups of simulation 
and evaluated the obtained results in terms of the size of the cluster-head set (or the cardinality of the 
WCDS) in comparison with that of the best existing algorithms. Since the first proposed algorithm (DLA-
CC) is a centralized algorithm to solve the minimum (size) WCDS problem in a unit disk graph, the first 
group of simulation is concerned with investigating the efficiency of the first proposed algorithm in 
comparison with the centralized WCDS-based clustering algorithms. Therefore, algorithm DLA-CC is 
compared with the centralized algorithms Guha I [11], Guha II [11] and WCDS-CTR [7]. The second 
group of simulation compares the results of the proposed distributed clustering algorithm (DLA-DC) with 
two distributed zonal algorithms Min ID[3] and Max Degree[3], distributed algorithm WCDS-DST[7] and 
the second proposed algorithm in [9](AWF). The first algorithm presented in [9] is extremely message 
expensive in practice [13], and we do not consider it in the following performance evaluation. Since 
algorithm DLA-DC is proposed to cluster the ad hoc networks with a large number of hosts, we have also 
conducted some simulation experiments on large and dense graphs to evaluate the scalability of  algorithm. 

In our simulation studies, we first randomly distribute the hosts in a mm×  square area, where m  is 
the length of the square edge. All hosts are assumed to have the same radio transmission range R , and each 
host can directly communicate with other hosts within the distance R . For simplicity, we assume that all 
links are bidirectional and symmetric. After distributing the hosts in the square area, we will check whether 
they form a connected graph. We only construct WCDSs on the connected graphs and measure the sizes of 
the generated WCDSs. The radio transmission range of a host and the number of hosts in the network are 
two correlated parameters by which the size of the constructed WCDS can be affected. Thus, we study how 
these parameters impact the size of WCDS constructed by different algorithms. 

The radio transmission range for a host is assumed to be 15 and 30, respectively, and a given number 
of hosts are randomly and uniformly distributed in a square simulation area of size 100100× units, which 
remains unchanged in all experiments. We vary the number of hosts from 60 to 200 and measure the size of 
WCDSs constructed by different algorithms. To study the scalability of algorithm DLA-DC, we have 
conducted some simulations on the relatively dense network graphs, when the number of hosts ranges from 



200 to 1000. The density of a graph can be calculated as ARn 2πµ =  , where n  is the number of hosts 
in the network graph, A is the square area and R is the radio transmission range. All the simulation results 
depicted in figures 6 to 11 are obtained by running the studied algorithms on 100 connected graphs and 
averaged over the given runs. 

It is first assumed that each host has a fixed radio transmission range of 15, and the number of hosts 
ranges from 60 to 200 with increment step of 20. Figures 6 and 8 show the simulation results obtained by 
DLA-CC and DLA-DC in terms of the average size of cluster-head set, respectively. Figures 7 and 9 show 
the obtained results when the radio transmission range is then set to 30 and the number of hosts and the 
square area size remain unchanged in experiments. Then, the simulation experiments are repeated for the 
proposed clustering algorithm (DLA-DC) on the dense network graphs, when the number of hosts ranges 
from 200 to 1000 with increment step of 100. Figures 10 and 11 show the average size of the cluster-head 
set, when the radio transmission range is set to 15 and 30, respectively. In all simulations, the learning 
parameter is fixed at 0.2, and each algorithm is terminated when the probability of choosing the weakly 
connected dominating set (i.e., P in DLA-CC and PCHS in DLA-DC) is 0.90. A connected sparse graph 
with 100 hosts and its cluster-head set (or WCDS) constructed by the centralized proposed algorithm DLA-
CC have been depicted in figures 5.A and 5.B, respectively. The radio transmission range is assumed to be 
10 and the square area size 100100× . The cluster-heads have been colored red. 

 

  
Figure 5.B. the cluster-head set constructed by the 

centralized proposed algorithm 
Figure 5.A. a connected sparse network graph 

with 100 hosts 
  
As shown in all figures 6 to 11, the average size of the cluster-head set (WCDS) increases as the 

number of hosts (nodes) increases. Comparing the results depicted in figures 7, 9 and 11 with the figures 6, 
8 and 10, we observe that the sizes of the cluster-head sets (WCDSs) constructed by all the studied 
algorithms become smaller when the radio transmission range for a host increases. The reason for this 
reduction is that a cluster-head with a larger radio transmission range can cover more hosts and so the 
whole network can be covered by a less number of the cluster-heads. 

Comparing the results shown in figure 6 with figure 7 for the studied centralized algorithms, we find 
that Guha I always constructs the largest WCDSs, and so gives the worst results. The size of the WCDSs 
generated by Guha II are only slightly smaller than Guha I, but considerably larger than WCDS-CTR. The 
proposed centralized algorithm DLA-CC considerably outperforms (in terms of the size of the WCDS) the 
other well-known centralized algorithms regardless of the size and density of the network graph. As shown 
in figures 6 and 7, in general, as the number of nodes increases, the gap between the curves for our 
proposed algorithm and the curves for other centralized algorithms becomes significant.  

As shown in figures 8 and 9, the proposed clustering algorithm DLA-DC always considerably 
outperforms the other distributed clustering algorithms in terms of the size of the cluster-head set. The size 
of the cluster-head sets constructed by WCDS-DC is nearly four times larger than that constructed by our 
distributed algorithm, and it is ranked lower DLA-DC. Max Degree performs better than Min ID, especially 
as the number of hosts increases, and AWF constructs the largest cluster-head sets. For example, the size of 
the cluster-head set constructed by DLA-DC is 6.76, when the number of hosts in network is 100 and the 



radio transmission range is 15, while that of WCDS-DC is 21.9, which is 3.2 times larger than our 
algorithm. Comparing figure 8 with figure 9, we find that increasing the host's radio transmission range can 
increase the coverage area of each host, and so increase the density of the network, which leads to a smaller 
size of the cluster-head set. When the size of the square area grows, the hosts are distributed in a larger 
simulation area, and so it is expected that the number of cluster-heads to be increased. 

The same simulation experiments are repeated for the proposed distributed clustering algorithm on 
the dense network graphs, where the number of hosts ranges from 200 to 1000 with increment step of 100, 
and the results are depicted in figures 10 and 11 as the radio transmission range is set to 15 and 30, 
respectively. Comparing the average size of the cluster-head set constructed by DLA-DC with that of the 
other distributed algorithms mentioned earlier, we observe that the proposed distributed algorithm 
outperforms the other studied algorithms, and the ranking given for the distributed algorithms, with the 
sparse network graphs, remains unchanged and DLA-DC is ranked above the other algorithms and AWF 
below. 
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Figure 6. The average size of the WCDS constructed by the centralized algorithms, when the radio 

transmission range is 15 and the square area size is 100×100  
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Figure 7. The average size of the WCDS constructed by the centralized algorithms, when the radio 

transmission range is 30 and the square area size is 100×100
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Figure 8. The average size of the cluster-head set constructed by the distributed clustering algorithms, 

when the radio transmission range is 15 and the square area size is 100×100  
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Figure 9. The average size of the cluster-head set constructed by the distributed  clustering algorithms, 

when the radio transmission range is 30 and the square area size is 100×100  
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Figure 10. The average size of the cluster-head set constructed by the distributed  clustering algorithms 

on the dense network graphs, when the radio transmission range is 15 and the square area size is 
100×100
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Figure 11. The average size of the cluster-head set constructed by the distributed  clustering algorithms 

on the dense network graphs, when the radio transmission range is 30 and the square area size is 
100×100

 
7 Conclusion 

The network clustering is a method by which the hosts are hierarchically organized on the basis of the 
proximity, and the hierarchical structure thus formed abstracts the large scale networks so that the hosts can 
be simply and locally organized. Since finding the weakly connected dominating set is a well-known 
approach for clustering the wireless ad hoc networks, in this paper, we first proposed a distributed learning 
automata-based algorithm for solving the minimum WCDS problem, and then proposed a clustering 
algorithm for wireless ad hoc networks in which a near optimal solution to the minimum WCDS problem is 
found. In this method, the dominator nodes play the role of the cluster-heads and their one-hop neighbors 
assume the role of the cluster members. We also computed the worst case running time and message 
complexity of the proposed clustering algorithm for finding a )1(1 ε−  optimal cluster-head set. It was 
shown that by a proper choice of the learning rate of the clustering algorithm, a trade-off between the 
running time and message complexity of algorithm with the cluster-head set size (clustering optimality) can 
be made. The simulation results showed that the proposed algorithms outperformed the best existing 
algorithms in terms of the size of the cluster-head set (or WCDS).  
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