ECE429
 Introduction to VLSI Design

Lecture 5: LOGICAL EFFORT

Erdal Oruklu
Illinois Institute of Technology
Spring 2006
ILLINOIS INSTITUTE V
OF TECHNOLOGY

Outline

- Introduction
\square Delay in a Logic Gate
\square Multistage Logic Networks
\square Choosing the Best Number of Stages
\square Example
- Summary

Introduction

\square Chip designers face a bewildering array of choices

- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?
\square Logical effort is a method to make these decisions
- Uses a simple model of delay
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Delay in a Logic Gate

\square Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

$$
\begin{aligned}
\tau & =3 R C \\
& \approx 12 \mathrm{ps} \text { in } 180 \mathrm{~nm} \text { process }
\end{aligned}
$$

40 ps in $0.6 \mu \mathrm{~m}$ process

Delay in a Logic Gate

\square Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

\square Delay has two components

$$
d=f+p
$$

Delay in a Logic Gate

\square Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

- Delay $\stackrel{\tau}{\tau}$ has two components

$$
d=f+p
$$

\square Effort delay $f=g h$ (a.k.a. stage effort)

- Again has two components

Delay in a Logic Gate

\square Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

- Delay has two components

$$
d=f+p
$$

\square Effort delay $f=g h$ (a.k.a. stage effort)

- Again has two components

ㅁ g: logical effort

- Measures relative ability of gate to deliver current
- $\mathrm{g} \equiv 1$ for inverter

Delay in a Logic Gate

\square Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

- Delay has two components

$$
d=f+p
$$

\square Effort delay $f=g h$ (a.k.a. stage effort)

- Again has two components
\square h: electrical effort $=C_{\text {out }} / C_{\text {in }}$
- Ratio of output to input capacitance
- Sometimes called fanout

Delay in a Logic Gate

\square Express delays in process-independent unit $d=\frac{d_{a b s}}{\tau}$

- Delay has two components

$$
d=f+p
$$

\square Parasitic delay p

- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Delay Plots

$$
\begin{aligned}
d & =f+p \\
& =g h+p
\end{aligned}
$$

Delay Plots

$$
\begin{aligned}
d & =f+p \\
& =g h+p
\end{aligned}
$$

\square What about NOR2?

Computing Logical Effort

\square DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
\square Measure from delay vs. fanout plots
\square Or estimate by counting transistor widths

$$
\begin{aligned}
& C_{\text {in }}=3 \\
& g=3 / 3
\end{aligned}
$$

$$
\begin{aligned}
& C_{\text {in }}=4 \\
& g=4 / 3
\end{aligned}
$$

$$
\begin{aligned}
& C_{\text {in }}=5 \\
& \mathrm{~g}=5 / 3
\end{aligned}
$$

Catalog of Gates

- Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1				$(n+2) / 3$	
NAND		$4 / 3$	$5 / 3$	$6 / 3$	$(2 n+1) / 3$	
NOR		$5 / 3$	$7 / 3$	$9 / 3$	2	
Tristate/mux	2	2	2	2		
XOR, XNOR		4,4	$6,12,6$	$8,16,16,8$		

Catalog of Gates

- Parasitic delay of common gates
- In multiples of $p_{\text {inv }}(\approx 1)$

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1				n	
NAND		2	3	4	n	
NOR		2	3	4	$2 n$	
Tristate / mux	2	4	6	8		
XOR, XNOR		4	6	8		

Example: Ring Oscillator

\square Estimate the frequency of an N -stage ring oscillator

Logical Effort:
Electrical Effort:

$$
g=
$$

$\mathrm{h}=$
Parasitic Delay: $p=$
Stage Delay: $\quad d=$
Frequency:
$\mathrm{f}_{\text {osc }}=$

Example: Ring Oscillator

\square Estimate the frequency of an N -stage ring oscillator

31 stage ring oscillator in
Logical Effort:

$$
\text { Parasitic Delay: } \quad p=1
$$

$$
\text { Stage Delay: } \quad d=2
$$

$$
\begin{array}{ll}
g=1 & \text { frequency of } f=20 \\
h=1 & \\
p=1 & \\
d=2 & \\
f_{\text {osc }}=1 /\left(2 * N^{*} d\right)=1 / 4 \mathrm{~N}
\end{array}
$$

Frequency:

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort:
Electrical Effort:
$g=$
$h=$
Parasitic Delay:
$p=$
Stage Delay:
$d=$

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

The FO4 delay is about 200 ps in $0.6 \mu \mathrm{~m}$ process
60 ps in a 180 nm process

Logical Effort:
Electrical Effort:
Parasitic Delay:

$$
g=1
$$

$h=4$

Stage Delay:
$p=1$
$d=5$

Multistage Logic Networks

ㅁ Logical effort generalizes to multistage networks
ㅁ Path Logical Effort

$$
G=\prod g_{i}
$$

- Path Electrical Effort

- Path Effort

$$
F=\prod f_{i}=\prod g_{i} h_{i}
$$

Multistage Logic Networks

ㅁ Logical effort generalizes to multistage networks

- Path Logical Effort

$$
G=\prod g_{i}
$$

ㅁ Path Electrical Effort

ㅁ Path Effort

$$
F=\prod f_{i}=\prod g_{i} h_{i}
$$

ㅁ Can we write $\mathrm{F}=\mathrm{GH}$?

Paths that Branch

\square No! Consider paths that branch:

$$
\begin{aligned}
& \mathrm{G}= \\
& \mathrm{H}= \\
& \mathrm{GH}= \\
& \mathrm{h}_{1}= \\
& \mathrm{h}_{2}= \\
& \mathrm{F}=\mathrm{GH} ?
\end{aligned}
$$

Paths that Branch

\square No! Consider paths that branch:

$$
\begin{aligned}
\mathrm{G} & =1 \\
\mathrm{H} & =90 / 5=18 \\
\mathrm{GH} & =18 \\
\mathrm{~h}_{1} & =(15+15) / 5=6 \\
\mathrm{~h}_{2} & =90 / 15=6 \\
\mathrm{~F} & =g_{1} g_{2} \mathrm{~h}_{1} \mathrm{~h}_{2}=36=2 \mathrm{GH}
\end{aligned}
$$

Branching Effort

- Introduce branching effort
- Accounts for branching between stages in path

$$
b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}}
$$

$$
B=\prod b_{i} \quad \prod_{i}^{\text {Note: }} h_{i}=B H
$$

\square Now we compute the path effort

- $\mathrm{F}=\mathrm{GBH}$

Multistage Delays

\square Path Effort Delay

$$
D_{F}=\sum f_{i}
$$

\square Path Parasitic Delay $\quad P=\sum p_{i}$
\square Path Delay

$$
D=\sum d_{i}=D_{F}+P
$$

Designing Fast Circuits

$$
D=\sum d_{i}=D_{F}+P
$$

\square Delay is smallest when each stage bears same effort

$$
\hat{f}=g_{i} h_{i}=F^{\frac{1}{N}}
$$

\square Thus minimum delay of N stage path is

$$
D=N F^{\frac{1}{N}}+P
$$

- This is a key result of logical effort
- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

- How wide should the gates be for least delay?

$$
\begin{aligned}
& \hat{f}=g h=g \frac{C_{\text {out }}}{C_{i n}} \\
& \Rightarrow C_{i n_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}
\end{aligned}
$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
\square Check work by verifying input cap spec is met.

Example: 3-stage path

\square Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Logical Effort

Electrical Effort
$\mathrm{H}=$
Branching Effort
B =
Path Effort
$\mathrm{F}_{\hat{f}}=$
Parasitic Delay
$\mathrm{P}=$
Delay
D =

Example: 3-stage path

Logical Effort

$$
\mathrm{G}=(4 / 3) *(5 / 3) *(5 / 3)=100 / 27
$$

Electrical Effort
$H=45 / 8$
Branching Effort $\quad B=3 * 2=6$
Path Effort
$F=G B H=125$
Best Stage Effort
$\hat{f}=\sqrt[3]{F}=5$
Parasitic Delay
$P=2+3+2=7$
Delay
$D=3 * 5+7=22=4.4$ FO4

Example: 3-stage path

\square Work backward for sizes
$y=$
$x=$

Example: 3-stage path

\square Work backward for sizes

$$
\begin{aligned}
& y=45 *(5 / 3) / 5=15 \\
& x=(15 * 2) *(5 / 3) / 5=10
\end{aligned}
$$

Best Number of Stages

- How many stages should a path use?
- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter
$D=$

Best Number of Stages

- How many stages should a path use?
- Minimizing number of stages is not always fastest
\square Example: drive 64-bit datapath with unit inverter

Derivation

\square Consider adding inverters to end of path

- How many give least delay?

$\frac{\partial D}{\partial N}=-F^{\frac{1}{N}} \ln F^{\frac{1}{N}}+F^{\frac{1}{N}}+p_{i n v}=0$
\square Define best stage effort

$$
\rho=F^{\frac{1}{N}}
$$

$$
p_{i n v}+\rho(1-\ln \rho)=0
$$

Best Stage Effort

$\square \quad p_{\text {inv }}+\rho(1-\ln \rho)=0$ has no closed-form solution
\square Neglecting parasitics $\left(\mathrm{p}_{\text {inv }}=0\right)$, we find $\rho=$ 2.718 (e)
\square For $p_{\text {inv }}=1$, solve numerically for $\rho=3.59$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

ㅁ $2.4<\rho<6$ gives delay within 15% of optimal

- Use $\rho=4$

Example

- How do we design an address decoder?
\square Decoder specifications:
- 16 word register file
- Each word is 32 bits wide
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors

ㅁ Decisions:

- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Number of Stages

\square Decoder effort is mainly electrical and branching
Electrical Effort: $\quad \mathrm{H}=$
Branching Effort: $\quad \mathrm{B}=$
\square If we neglect logical effort (assume $G=1$) Path Effort:
$F=$

Number of Stages: $\mathrm{N}=$

Number of Stages

\square Decoder effort is mainly electrical and branching
Electrical Effort: $\quad \mathrm{H}=(32 * 3) / 10=9.6$
Branching Effort: $\quad B=8$
\square If we neglect logical effort (assume $G=1$) Path Effort: $\mathrm{F}=\mathrm{GBH}=76.8$

Number of Stages: $\quad N=\log _{4} F=3.1$
\square Try a 3-stage design

Gate Sizes \& Delay

Logical Effort: G =
Path Effort: $\mathrm{F}=$
Stage Effort: $\hat{f}=$
Path Delay: $D=$
Gate sizes: $\quad z=\quad y=$
$A[3] \overline{A[3]} \quad A[2] \overline{A[2]} \quad A[1] \overline{A[1]} \quad A[0] \overline{A[0]}$

Spring 2006
Introduction to CMOS VLSI Design

Gate Sizes \& Delay

Logical Effort: $G=1 * 6 / 3 * 1=2$
Path Effort: $\quad \mathrm{F}=\mathrm{GBH}=154$
Stage Effort: $\quad \hat{f}=F^{1 / 3}=5.36$
Path Delay: $\quad D=3 \hat{f}+1+4+1=22.1$
Gate sizes: $\quad z=96 * 1 / 5.36=18 \quad y=18 * 2 / 5.36=6.7$
$A[3] \bar{A}[3] \quad A[2] \bar{A}[2] \quad A[1] \overline{A[1]} \quad A[0] \overline{A[0]}$

Spring 2006
Introduction to CMOS VLSI Design

Comparison

\square Compare many alternatives with a spreadsheet

Design	N	G	P	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	$20 / 9$	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	$20 / 9$	6	20.5
NAND2-INV-NAND2-INV	4	$16 / 9$	6	19.7
INV-NAND2-INV-NAND2-INV	5	$16 / 9$	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	$16 / 9$	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G=\prod g_{i}$
electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {autranh }}}{C_{\text {inmpat }}}$
branching effort	$b=\frac{C_{\text {orponat }}+C_{\text {Offrath }}}{C_{\text {orporpat }}}$	$B=\prod b_{i}$
effort	$f=g h$	$F=G B H$
effort delay	f	$D_{F}=\sum f_{i}$
parasitic delay	p	$P=\sum p_{i}$
delay	$d=f+p$	$D=\sum d_{i}=D_{F}+P$

Method of Logical Effort

1) Compute path effort

$$
F=G B H
$$

2) Estimate best number of stages $\quad N=\log _{4} F$
3) Sketch path with N stages
4) Estimate least delay

$$
\begin{aligned}
& D=N F^{\frac{1}{N}}+P \\
& \hat{f}=F^{\frac{1}{N}}
\end{aligned}
$$

5) Determine best stage effort
6) Find gate sizes

$$
C_{i i_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}
$$

Limits of Logical Effort

\square Chicken and egg problem

- Need path to compute G
- But don't know number of stages without G
\square Simplistic delay model
- Neglects input rise time effects
\square Interconnect
- Iteration required in designs with wire
\square Maximum speed only
- Not minimum area/power for constrained delay

Summary

L Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4}$ F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
\square Provides language for discussing fast circuits
- But requires practice to master

