
Reference manual

FICO R© Xpress Optimization Xpress MATLAB Interface

Reference Manual

Release 8.4

Last update 26 September, 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©2010–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

FICO R© Xpress MATLAB Interface

Deliverable Version: A

Last Revised: 26 September, 2017

Version 8.4

Contents

1 Xpress Mosel MATLAB Interface 1
1.1 Overview . 1
1.2 Configuring MATLAB for the Xpress Mosel interface . 1

1.2.1 Setting the MATLAB search path . 1
1.2.2 Setting the MATLAB Java class path . 2
1.2.3 Setting the MATLAB Java library path . 2
1.2.4 Verifying if the Xpress Mosel interface works . 3

1.3 Running Mosel models . 3
1.3.1 The moselexec function . 3
1.3.2 The I/O driver . 4

1.3.2.1 Extended file names . 4
1.3.2.2 String handling . 4
1.3.2.3 Initializations from blocks . 5
1.3.2.4 Initializations to blocks . 6
1.3.2.5 Using MATLAB functions in Mosel . 7
1.3.2.6 Supported types . 8

1.4 Using the Java Mosel interface . 8
1.4.1 Overview . 8
1.4.2 Compiling and executing a model . 9
1.4.3 Accessing arrays . 9
1.4.4 Examples . 10

2 Xpress Optimizer MATLAB Interface 14
2.1 Overview . 14
2.2 Using the Xpress for MATLAB Toolbox . 14

2.2.1 Using the MATLAB graphical interface to set the search path 14
2.2.2 Using the MATLAB command line to set the search path 14
2.2.3 Verifying if Xpress works . 14
2.2.4 Interface functions . 15
2.2.5 Problem matrices . 15
2.2.6 Setting and querying controls and attributes . 15
2.2.7 Special options . 16

2.3 Example . 16

3 Xpress MATLAB functions 18
moselexec . 19
xprsbip . 20
xprslp . 22
xprsmip . 24
xprsmiqcqp . 26
xprsmiqp . 28
xprsoptimget . 30
xprsoptimset . 31
xprsqcqp . 33
xprsqp . 35
xprsver . 37

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

Appendix 38

A Contacting FICO 38
Product support . 38
Product education . 38
Product documentation . 38
Sales and maintenance . 39
Related services . 39
About FICO . 39

Index 40

Fair Isaac Corporation Confidential and Proprietary Information ii

CHAPTER 1

Xpress Mosel MATLAB Interface

1.1 Overview

The Xpress MATLAB interface is a tool that makes Xpress optimization algorithms available
directly from within the MATLAB environment, enabling users to easily define mathematical
programming models and solve them with Xpress from within the MATLAB environment.

The interface for Mosel provides functions for running Mosel programs from within MATLAB and
exchanging data between the Mosel models and the MATLAB environment.

1.2 Configuring MATLAB for the Xpress Mosel interface

Please refer to the "Xpress Installation and Licensing User Guide" for instructions on Xpress
installation. The MATLAB interface does not require a separate software license.

The Xpress Mosel MATLAB Interface includes a function (moselexec) to run Mosel programs, a
Mosel I/O Driver to exchange data with the MATLAB environment and support for using the Java
Mosel classes from MATLAB.

In order to make the new functionality available in MATLAB, the Xpress matlab directory must be
added to the MATLAB search path. This can be done either using the graphical ’Set Path’ dialog
box or the command line. Note that this step is the same as described for the Xpress Optimizer
MATLAB interface and needs to be carried only once.

For the Java Mosel classes, there are other two search paths that need to be updated: the
MATLAB Java classpath and the MATLAB Java libpath.

1.2.1 Setting the MATLAB search path

The MATLAB search path can be set using the graphical interface as follows.

From the main MATLAB window, click on File� Set Path..., then on the ’Add Folder’ button and
select the matlab subfolder of your Xpress installation folder (on Windows platforms typically
’c:\xpressmp\matlab’).

You should make this change permanent by clicking on the ’Save’ button.

It is also possible to set the search path using the MATLAB command line, with the following
instructions:

>> addpath(fullfile(getenv(’XPRESSDIR’),’/matlab’))

and make this permanent with the command

Fair Isaac Corporation Confidential and Proprietary Information 1

Xpress Mosel MATLAB Interface

>> savepath

The above command uses the XPRESSDIR environment variable to locate your Xpress installation
directory; alternatively you can also specify the path directly, as in:

>> addpath ’c:\xpressmp\matlab’

(assuming you installed Xpress on ’c:\xpressmp’)

1.2.2 Setting the MATLAB Java class path

In order to use the Java Mosel interface in MATLAB you need to add the Java Mosel library to the
MATLAB Java classpath. The library consists of a Java Archive (JAR) file located under the Xpress
installation directory, in the lib subdirectory. MATLAB supports both a static path and a dynamic
path and you can add the Mosel JAR to either one; please refer to the MATLAB documentation,
section ’Bringing Java Classes into MATLAB Workspace’ for more information.

In the following, we show how to add the JAR to the static path. MATLAB loads the static path
from an ASCII file named javaclasspath.txt in your preferences folder. To view the location of
the preferences folder, type prefdir in MATLAB. Each line in this file is the path of a folder or a
jar file. You can open this file in the MATLAB editor with the following command

>> edit(fullfile(prefdir, ’/javaclasspath.txt’))

then you should add the following line to this file:

C:\xpressmp\lib\xprm.jar

(assuming you installed Xpress on ’c:\xpressmp’)

Then save the file and restart MATLAB for these changes to take effect.

Alternatively, you can run the following small MATLAB script (that you can copy & paste to the
MATLAB console) to automate the above operation:

fjcp = fopen(fullfile(prefdir,’/javaclasspath.txt’), ’at’);
fprintf(fjcp,’\n%s\n’,fullfile(getenv(’XPRESSDIR’),’/lib/xprm.jar’));
fclose(fjcp);

Again, you need to restart MATLAB for these changes to take effect.

1.2.3 Setting the MATLAB Java library path

In order to use the Java Mosel interface in MATLAB you also need to add the Mosel native library
to the MATLAB Java librarypath. The native library consists of some dynamically linked files
located under the Xpress installation directory, in the bin subdirectory on Windows and in the
lib subdirectory on Linux. MATLAB loads the library search path from an ASCII file named
javalibrarypath.txt in your preferences folder. To view the location of the preferences folder,
type prefdir in MATLAB. Each line in this file is the path of a folder. You can open this file in the
MATLAB editor with the following command

>> edit(fullfile(prefdir, ’/javalibrarypath.txt’))

then you should add the following line to this file:

C:\xpressmp\bin

Fair Isaac Corporation Confidential and Proprietary Information 2

Xpress Mosel MATLAB Interface

(assuming you installed Xpress for Windows on ’c:\xpressmp’)

Then save the file and restart MATLAB for these changes to take effect.

Alternatively you can run the following small MATLAB script (that you can copy & paste to the
MATLAB console) to automate the above operation:

fjlp = fopen(fullfile(prefdir,’/javalibrarypath.txt’), ’at’);
if isunix, libdir=’/lib’; else libdir=’/bin’; end
fprintf(fjlp,’\n%s\n’,fullfile(getenv(’XPRESSDIR’),libdir));
fclose(fjlp);

Again, you need to restart MATLAB for these changes to take effect.

1.2.4 Verifying if the Xpress Mosel interface works

You can verify that the Xpress Mosel MATLAB interface is working properly by executing the
command

>> moselexec -v

inside MATLAB. In case everything is fine you should see something like:

XPRESS Mosel Matlab Interface function version x.x.x

Similarly, for the Java interface, the command

>> com.dashoptimization.XPRM().getVersion

should print something like:

ans =
3.5.3

1.3 Running Mosel models

1.3.1 The moselexec function

The simplest way to run a Mosel program from MATLAB is using the moselexec function, as in:

>> moselexec burglar.mos

This compiles and runs the Mosel program burglar.mos located in the current folder (or prints an
error message if the file cannot be found). You can of course specify a full path as in

>> moselexec C:/xpressmp/examples/mosel/Modeling/burglar.mos

or use the XPRESSDIR environment variable to point to the Xpress installation folder:

>> moselexec(fullfile(getenv(’XPRESSDIR’),’/examples/mosel/Modeling/burglar.mos’))

By specifying the optional output arguments retcode and exitcode, the moselexec function can
also return the compilation and execution result code and the program exit status, or both, for
example solving this tiny example example_m1.mos:

Fair Isaac Corporation Confidential and Proprietary Information 3

Xpress Mosel MATLAB Interface

model "example_m1"
exit(10)
end-model

would yield

>> [retcode, exitcode]=moselexec(’example_m1.mos’)
retcode =

0
exitcode =

10

where the value zero for retcode means that the program has run without errors, and exitcode
has the value specified in the model.

Please refer to moselexec in the reference section for further details.

1.3.2 The I/O driver

The Mosel I/O driver for MATLAB makes it possible to exchange data between Mosel programs
and the MATLAB workspace. This driver supports reading a MATLAB value as a Mosel generalized
file stream, and importing and exporting data from and to MATLAB in Mosel initializations
from and initializations to blocks.

Note that this driver is available only when executing Mosel programs from within the MATLAB
environment.

1.3.2.1 Extended file names

Mosel uses an extend file name format to represent ’files’ that can be accessed through
specialized I/O drivers. The format for the MATLAB driver is

matlab.mws:expression

where matlab is the name of the Mosel module, mws is the name of the I/O driver name (MATLAB
WorkSpace) and expression can either be a current variable name of the caller workspace, or any
MATLAB expression returning a single value. In the case of a MATLAB expression, the latter will
be evaluated in the caller workspace at the time of file opening. For example, the following
Mosel program

model "example_m2"
uses "mmsystem";
fcopy("matlab.mws:message", "")
writeln

end-model

would read the MATLAB variable message and print it to the MATLAB console. You can test it
with the following MATLAB commands

>> message=’Hello, World!’;
>> moselexec(’example_m2.mos’)
Hello, World!

1.3.2.2 String handling

When reading a string variable, the I/O driver automatically converts it from MATLAB native
16-bit multibyte Unicode characters to the 8-bit ASCII format used by Mosel (if you prefer to
convert the string using a different encoding, you can explicitly convert it to a raw byte stream

Fair Isaac Corporation Confidential and Proprietary Information 4

Xpress Mosel MATLAB Interface

beforehand with the MATLAB function unicode2native). If the source string is a string array that
contains several rows, then these are copied, one column at a time, into a single string. Finally, if
the source variable is a cell array containing strings, all strings are read successively with newline
characters added at the end of each one.

It is thus possible to use a MATLAB cell array to store a Mosel program, one line per cell, and then
execute it without using external files, as in the following example.

>> mos={
’model "example_m3" ’
’ uses "mmxprs", "mmnl"; ’
’ declarations ’
’ a:mpvar ’
’ end-declarations ’
’ minimize(a*a-5*a+10) ’
’ writeln(getobjval) ’
’end-model ’
};
>> moselexec(’matlab.mws:mos’)
3.75

1.3.2.3 Initializations from blocks

The matlab.mws I/O driver can be used in Mosel initialization blocks to read MATLAB values and
set MATLAB variables. In this case, the filename should just be "matlab.mws:", without any
expression, and the expression can eventually be specified as the label associated to the identifier
being initialized.

Consider the following Mosel program

model "example_m4"
declarations
answer: integer
foo: real
var: real
today: string
i: range
Data: array(i) of real

end-declarations

initializations from "matlab.mws:"
answer as "42"
foo
var as "bar"
today as "date"
Data as "sum(magic(foo*bar))"

end-initializations

writeln("answer to ultimate question: ", answer)
writeln("foo: ", foo)
writeln("bar: ", var)
writeln("today: ", today)
writeln("data: ", Data)

end-model

and its execution from MATLAB

>> foo=pi;
>> bar=exp(1);
>> moselexec(’example_m4.mos’);
answer to ultimate question: 42
foo: 3.14159
bar: 2.71828
today: 01-May-2014

Fair Isaac Corporation Confidential and Proprietary Information 5

Xpress Mosel MATLAB Interface

data: [260,260,260,260,260,260,260,260]

Here, the expression used to initialize the variable answer is "42", that is, a literal value. Variable
foo doesn’t specify an initialization label, so the default is used—the default label is the identifier
itself and thus the MATLAB variable foo is read. The label for variable var explicitly says to read
the MATLAB variable bar. The expression used to initialize today is the MATLAB function date
which returns a string with today’s date. And finally, Data is an array read from a MATLAB
expression that builds a magic square of size 8 and calculates the sums of values in every column
(which should be all equal in magic squares, as shown in the output).

MATLAB sparse matrices can be read into dynamic arrays to set only non-zero elements:

>> mos={
’model "example_m5" ’
’ declarations ’
’ I,J: range ’
’ Sparse: dynamic array(I,J) of real’
’ end-declarations ’
’ initializations from "matlab.mws:" ’
’ Sparse as "sprand(4,4,.5)" ’
’ end-initializations ’
’ writeln("sparse is: ", Sparse) ’
’ writeln("row indices: ", I) ’
’ writeln("col indices: ", J) ’
’end-model ’
};
>> moselexec(’matlab.mws:mos’);
sparse is: [(1,3,0.24285),(2,1,0.917424),(2,2,0.269062),(2,3,0.7655),(4,1,0.188662)...
row indices: 1..4
col indices: 1..3

In the above example, Sparse is a 2-dimensional dynamic array containing only 6 values after
initialization from a MATLAB 4 4 sparse random matrix, and index set J (in this execution)
contains only the values 1, 2, and 3 as the matrix happened to have all zeros in column 4. Note
also that array indices start from 1 which is the MATLAB convention.

1.3.2.4 Initializations to blocks

Mosel data can be exported to MATLAB using initializations to blocks. The filename should just
be "matlab.mws:" in this case too, and labels can be used to specify MATLAB variable names to
export to (if no label is specified, the name of the identifier is used). In MATLAB, these variables
are set in the caller workspace, eventually overwriting their previous value.

The following example shows how to export a scalar value (simplexiter), the optimal objective
and solution values into MATLAB variables. The model, foliomat.mos, is a modified version of the
portfolio optimization example from the "Getting Started with Xpress" guide.

model "Portfolio optimization with LP - MATLAB"
uses "mmxprs"

declarations
SHARES: range
RISK: set of integer
NA: set of integer
RET: array(SHARES) of real
frac: array(SHARES) of mpvar
simplexiter: integer

end-declarations

initializations from "matlab.mws:"
RISK NA RET

end-initializations

Fair Isaac Corporation Confidential and Proprietary Information 6

Xpress Mosel MATLAB Interface

Return:= sum(s in SHARES) RET(s)*frac(s)
sum(s in RISK) frac(s) <= 1/3
sum(s in NA) frac(s) >= 0.5
sum(s in SHARES) frac(s) = 1
forall(s in SHARES) frac(s) <= 0.3
maximize(Return)
simplexiter:=getparam("XPRS_simplexiter")

initializations to "matlab.mws:"
simplexiter
evaluation of getobjval as "objval"
evaluation of array(s in SHARES) frac(s).sol as "frac"

end-initializations
exit(getprobstat)

end-model

This can be executed from MATLAB after defining RISK, NA and RET input data and results will be
available as MATLAB variables as shown below.

>> RET = [5 17 26 12 8 9 7 6 31 21];
>> RISK = [2 3 4 9 10];
>> NA = [1 2 3 4];
>> [r,e]=moselexec(’foliolp_mat.mos’);
>> objval
objval =

14.0667
>> frac’
ans =

0.3000 0 0.2000 0 0.0667 0.3000 ...

1.3.2.5 Using MATLAB functions in Mosel

We have already seen how MATLAB functions can be called in initializations from blocks
(including user-defined functions). Since these blocks can be used at arbitrary positions in Mosel
programs, it is possible to combine this with initializations to blocks to load some data into
MATLAB, evaluate a MATLAB function on this data and retrieve results back into Mosel. The
following example shows a fibonacci function implemented in MATLAB and a Mosel program
that also defines a fibonacci function that just calls the MATLAB one (note however that this is
neither reentrant nor thread-safe).

MATLAB code (fibonacci.m):

function f=fibonacci(n)
if n<2, f=n; return, end
s=[0 1];
for i=2:n, s=[s(2) sum(s)]; end
f=s(2);

end

Mosel model fib-relay.mos:

model "fib_relay"
function fibonacci(i:integer):integer

initializations to "matlab.mws:"
i

end-initializations

initializations from "matlab.mws:"
returned as "fibonacci(i)"

end-initializations
end-function

Fair Isaac Corporation Confidential and Proprietary Information 7

Xpress Mosel MATLAB Interface

forall(i in 1..10)
writeln("fibonacci(", i, ")=", fibonacci(i))

end-model

Example run:

>> moselexec(’fib_relay.mos’);
fibonacci(1)=1
fibonacci(2)=1
fibonacci(3)=2
fibonacci(4)=3
fibonacci(5)=5
...

1.3.2.6 Supported types

The matlab.mws driver supports all basic types of Mosel (boolean, integer, real, string) and the
structures set, range, list and array of basic types. On the MATLAB side, the supported types are
n-dimensional arrays and cell arrays of the basic numeric, logical or char classes (including sparse
matrices). Only the real part of arrays is always used. Since MATLAB uses 1-based integer indices,
Mosel arrays must also use this same convention when imported/exported to MATLAB. If
necessary, data is silently casted to the appropriate type without any warning in case of
truncation or loss of precision (for example when reading a Mosel integer from a fractional
MATLAB double value).

1.4 Using the Java Mosel interface

1.4.1 Overview

The Java Mosel interface offers a more advanced control and interaction with Mosel than what is
possible with the simple moselexec function. In fact, the Java Mosel interface enables the user to:

� compile source model files into binary model (bim) files

� load and unload bim files handling several models at a time

� execute models

� access the Mosel internal database through the Post Processing Interface

� manage the dynamic shared objects used by Mosel

We will show some of these functionalities in the following examples, however please refer to:

� the "Xpress Mosel User Guide", Chapter 14, for a brief introduction to the Java interface;

� the "Xpress Mosel Library Reference Manual" in JavaDoc format, for the full reference
documentation of this interface;

� MATLAB Documentation - Advanced Software Development - Call Java Libraries, for details
on using Java from MATLAB.

Furthermore, the I/O driver described in the previous section can also be used in this context.

Fair Isaac Corporation Confidential and Proprietary Information 8

Xpress Mosel MATLAB Interface

1.4.2 Compiling and executing a model

With Java, Mosel is initialized by creating a new instance of class XPRM. In MATLAB you can
either use the fully qualified class name (including the package name) as in

>> mosel=com.dashoptimization.XPRM;

or import the package and then use class names without the package name:

>> import com.dashoptimization.*;
>> mosel=XPRM;

The standard compile/load/run sequence becomes

>> mosel=com.dashoptimization.XPRM;
>> mosel.compile(’burglar2.mos’);
>> mod=mosel.loadModel(’burglar2.bim’);
>> mod.run;
>> mod.getResult;

If the model execution is embedded in a larger application it may be useful to release the
resources allocated by a model after its execution. This can be done through standard finalization
+ garbage collection functionalities, by calling the finalize method on the model:

>> mod.finalize

The mosel object can be released in the same way (mosel.finalize).

1.4.3 Accessing arrays

In general, Mosel entities such as scalar variables, sets, etc. can be queried through the
findIdentifier method and retrieved in the same way as described in the "Xpress Mosel User
Guide". However, when calling Java from MATLAB, it is not possible to pass an array of a Java
native type to a function and receive back in MATLAB the array as modified by the function. This
would be the case, for instance, when using the nextIndex or nextTEindex methods on a Mosel
array. Consider the following example that defines a (sparse) array VALUE with two indices of type
string:

model example_m6
declarations
CITIES = {"london", "paris", "madrid", "rome", "florence"}
ZONES = {"north", "south", "east", "west"}
VALUE: dynamic array(CITIES,ZONES) of real

end-declarations

VALUE("london", "east") := 1
VALUE("rome", "west") := 2
VALUE("paris", "south") := 3
VALUE("madrid", "east") := 4

end-model

The array VALUE can be retrieved into MATLAB with the following code (example_m6.m):

value = mod.findIdentifier(’VALUE’);
value_iter = value.indices(true);
sets = value.getIndexSets();
while value_iter.hasNext

indices = value_iter.next;
fprintf(1, ’VALUE (’);

Fair Isaac Corporation Confidential and Proprietary Information 9

Xpress Mosel MATLAB Interface

for i=1:size(indices,1)
fprintf(1, ’%s ’, char(sets(i).get(indices(i))));

end
fprintf(1, ’) = %g\n’, value.getAsReal(indices));

end

Executing this script would print the Mosel array as shown below:

>> example_m6
VALUE (london east) = 1
VALUE (madrid east) = 4
VALUE (paris south) = 3
VALUE (rome west) = 2

In the above example we use the iterator value_iter to loop over all valued elements of the
array; at each iteration we retrieve the actual numerical indices (indices) of the current element,
their corresponding values (sets(i).get(...)), and the value of the current element
(value.getAsReal(indices)).

Please note that the following alternative approach that uses XPRMArray.nextTEIndex(), would
not work correctly in MATLAB as the call to value.nextTEIndex(indices) cannot update the
indices array as in pure Java.

indices=value.getFirstTEIndex;
...
while value.nextTEIndex(indices)
...

end

1.4.4 Examples

The first example, ugsol.m is a variation of the program ugsol.java described in the "Xpress
Mosel User Guide". Here the Mosel program has been embedded in a MATLAB script: the model
is the same but problem data is read from MATLAB variables and the solution is exported to
MATLAB. The MATLAB script compiles the Mosel program, runs it, checks the solution status and
prints the solution.

mos={
’model Burglar_m ’
’ uses "mmxprs" ’
’ declarations ’
’ WTMAX = 102 ! Maximum weight allowed ’
’ ITEMS: range ’
’ VALUE: array(ITEMS) of real ! Value of items ’
’ WEIGHT: array(ITEMS) of real ! Weight of items ’
’ take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise ’
’ end-declarations ’
’ ’
’ initializations from "matlab.mws:" ’
’ VALUE ’
’ WEIGHT ’
’ end-initializations ’
’ ’
’ MaxVal:= sum(i in ITEMS) VALUE(i)*take(i) ! Objective: max total value’
’ sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX ! Weight restriction ’
’ forall(i in ITEMS) take(i) is_binary ! All variables are 0/1 ’
’ maximize(MaxVal) ! Solve the MIP-problem ’
’ ’
’ initializations to "matlab.mws:" ’
’ evaluation of array(i in ITEMS) take(i).sol as "TAKE" ’
’ end-initializations ’
’end-model ’
};

Fair Isaac Corporation Confidential and Proprietary Information 10

Xpress Mosel MATLAB Interface

ITEMS ={’camera’ ’necklace’ ’vase’ ’picture’ ’tv’ ’video’ ’chest’ ’brick’};
VALUE =[15 100 90 60 40 15 10 1];
WEIGHT=[2 20 20 30 40 30 60 10];

mosel=com.dashoptimization.XPRM; % Initialize Mosel
mosel.compile(’’, ’matlab.mws:mos’, ’burglar_m.bim’);
mod=mosel.loadModel(’burglar_m.bim’);
mod.run;
if mod.getProblemStatus~=mod.PB_OPTIMAL, return, end
fprintf(1,’Objective value: %g\n’, mod.getObjectiveValue); % show objective
table(ITEMS’,logical(TAKE),VALUE’,’VariableNames’,{’Item’ ’Take’ ’Value’})
fprintf(1,’Calculated objective: %g\n’, VALUE*TAKE); % verify sol
mod.finalize

The second example is a variation of the portfolio optimization from the Getting Started with
Xpress guide. The Mosel program, foliomat2.mos, is almost identical to the foliodat.mos
example, modified only to use integer indices instead of string indices, and to read input from
MATLAB and write results to MATLAB.

model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress Optimizer

parameters
DATAFILE= "matlab.mws:" ! File with problem data
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values

end-parameters

writeln("Solving for MAXRISK: ", MAXRISK)
declarations
SHARES: range ! Set of shares
NAMES: array(SHARES) of string ! Names of the shares
RISK: set of integer ! Set of high-risk values among shares
NA: set of integer ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

end-declarations

initializations from DATAFILE
NAMES RISK RET NA

end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share

end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem
maximize(Return)

! Solution printing to a file
writeln("Total return: ", getobjval)
forall(s in SHARES)

Fair Isaac Corporation Confidential and Proprietary Information 11

Xpress Mosel MATLAB Interface

writeln(strfmt(NAMES(s),-12), ": \t", strfmt(getsol(frac(s))*100,5,2), "%")

initializations to "matlab.mws:"
evaluation of getobjval as "objval"
evaluation of getprobstat=XPRS_OPT as "optsol"
evaluation of array(s in SHARES) frac(s).sol as "frac"

end-initializations

end-model

The following MATLAB script (foliomat2.m) first initializes input data (also deriving integer
indices from strings for variables RISK and NA), it then executes the Mosel program for different
values of MAXRISK, from 0.1 to 0.9 at 0.1 steps, and finally displays a couple of result tables and
charts of share utilization for the different risks.

NAMES ={’treasury’ ’hardware’ ’theater’ ’telecom’ ’brewery’ ’highways’ ’cars’ ’bank’
’software’ ’electronics’};

RET =[5 17 26 12 8 9 7 6 31 21];
DEV =[0.1 19 28 22 4 3.5 5 0.5 25 16];
COUNTRY={’Canada’ ’USA’ ’USA’ ’USA’ ’UK’ ’France’ ’Germany’ ’Luxemburg’ ’India’ ’Japan’};

RISK_N ={’hardware’ ’theater’ ’telecom’ ’software’ ’electronics’};
NA_N ={’treasury’ ’hardware’ ’theater’ ’telecom’};

RISK=cellfun(@(n) strmatch(n,NAMES,’exact’), RISK_N); % find indices of high-risk shares
NA =cellfun(@(n) strmatch(n,NAMES,’exact’), NA_N); % find indices of N.-American shares

for m=1:9
moselexec(’foliomat2.mos’,[’MAXRISK=’ num2str(m/10)]);
obj(m)=objval;
optimal(m)=optsol;
fracm(m,:)=frac;

end

disp(’Results’);
disp(’Estimated returns:’);
disp(table([1:9]’/10,obj’,’VariableNames’,{’MaxRisk’ ’Return’}))

disp(’Average share utilization:’);
disp(table(NAMES’,mean(fracm)’,’VariableNames’,{’Share’ ’AverageUsage’}))

ribbon(fracm)
title(’Share utilization’)
set(gca,’XTick’,[1:size(fracm,2)])
set(gca,’XTickLabel’,NAMES)
set(gca,’YDir’,’reverse’)
set(gca,’YTick’,[1:9])
set(gca,’YTickLabel’,[1:9]/10)
set(gca,’ZLim’,[0,max(reshape(fracm,1,[]))])

Running the script will yield the following results and the graphic in Figure 1.1.

Results
Estimated returns:

MaxRisk Return
_______ ______
0.1 0
0.2 11
0.3 13.3
0.4 15.6
0.5 17.8
0.6 19.9
0.7 21.1
0.8 22.3
0.9 23.5

Share utilization:
Share AverageUsage

Fair Isaac Corporation Confidential and Proprietary Information 12

Xpress Mosel MATLAB Interface

_____________ ____________
’treasury’ 0.16667
’hardware’ 0.055556
’theater’ 0.22222
’telecom’ 0
’brewery’ 0.033333
’highways’ 0.2
’cars’ 0
’bank’ 0
’software’ 0.2
’electronics’ 0.011111

Figure 1.1: Share utilization

Fair Isaac Corporation Confidential and Proprietary Information 13

CHAPTER 2

Xpress Optimizer MATLAB Interface

2.1 Overview

The interface for the Optimizer provides functions for solving linear, quadratic and quadratically
constrained programming problems, and the mixed integer versions of these. All optimization
functions are designed to take a model description as input and produce a solution as output.

2.2 Using the Xpress for MATLAB Toolbox

Please refer to the "Xpress Installation and Licensing User Guide" for instructions on Xpress
installation. The MATLAB interface does not require a separate software license.

In order to make the Xpress functions available in MATLAB, the Xpress MATLAB path must be
added to the MATLAB search path. This can be done either using the graphical ’Set Path’ dialog
box or the command line. Note that this step is the same one described for the Xpress Mosel
MATLAB interface and need to be done only once.

2.2.1 Using the MATLAB graphical interface to set the search path

From the main MATLAB window, click on File� Set Path..., then on the ’Add Folder’ button and
select the matlab subfolder of your Xpress installation folder (on Windows platforms typically
’c:\xpressmp\matlab’).

You can also make this change permanent by clicking on the ’Save’ button.

2.2.2 Using the MATLAB command line to set the search path

The command to add the Xpress interface to MATLAB search path is:

>> addpath ’c:\xpressmp\matlab’

(assuming you installed Xpress on ’c:\xpressmp’), and this can be made permanent with the
command

>> savepath

2.2.3 Verifying if Xpress works

You can verify that the Xpress MATLAB interface is working properly by executing the command

>> xprsver

Fair Isaac Corporation Confidential and Proprietary Information 14

Xpress Optimizer MATLAB Interface

inside MATLAB. In case everything is fine you should get something like:

FICO Xpress Optimizer 64-bit v31.01.02 (Hyper capacity)
(c) Copyright Fair Isaac Corporation 1983-2017

2.2.4 Interface functions

The Xpress MATLAB interface is comprised of the following functions:

� 7 optimization functions (xprslp, xprsqp, xprsqcqp, xprsbip, xprsmip, xprsmiqp, xprsmiqcqp)

� 2 functions to set/get controls (xprsoptimset and xprsoptimget)

� 1 function to show the Xpress version (xprsver)

The next section documents each of these functions. Once the MATLAB search path has been
configured, the same documentation will be also directly available in MATLAB, both from the
drop down menu Help� Product Help, as a new Toolboxes section, and from the command line
using the help command (e.g. with help xprslp).

2.2.5 Problem matrices

Differently from MATLAB Optimization Toolbox minimization functions, that take two distinct
matrices in input: one for inequality constraints and the other for equality constraints, Xpress
interface functions take only one matrix for both types of constraints plus a vector that specifies
the constraint type.

Therefore, if matrices A and Aeq (with RHS, respectively, b and beq) are used to solve a linear
problem with the Optimization Toolbox’s linprog function:

>> x = linprog(f, A, b, Aeq, beq, lb, ub);

the same problem can be solved with Xpress using the commands

>> rtype = [repmat(’L’,[1 size(A,1)]) repmat(’E’,[1 size(Aeq,1)])];
>> x = xprslp(f, [A; Aeq], [b; beq], rtype, lb, ub);

where the rtype vector indicates that rows from matrix A are of type ’L’ (less than or equal) and
rows from matrix Aeq are of type ’E’ (equalities).

2.2.6 Setting and querying controls and attributes

Optimization options can be specified with a mechanism similar to that used by the MATLAB
Optimization Toolbox, that is via an options structure that specifies a list of Xpress controls and
their values. See function xprsoptimset and the ’Control Parameters’ section of the "Xpress
Optimizer Reference Manual" for more details.

The xprsoptimset function also handles the conversion from the Optimization Toolbox options to
the corresponding Xpress options for all cases where this makes sense.

Furthermore, after calling an Xpress optimization function, it is possible to retrieve the final value
of any Xpress control or attribute. The list of control and attribute names to be returned must be
specified in the ’XPRSGET’ field of the option argument, separated by blanks. For example

>> options= xprsoptimset(’XPRSGET’, ’LPOBJVAL LPSTATUS’)
>> [x,fval,ef,output] = xprslp(f, A, b, [], lb, ub, options);
>> fval, output.LPOBJVAL

Fair Isaac Corporation Confidential and Proprietary Information 15

Xpress Optimizer MATLAB Interface

fval =
-78

output =
LPOBJVAL: -78
LPSTATUS: 1

It is also possible to request that the output structure be filled with all Xpress control and
attribute values by setting ’XPRSGET’ to ’ALL’.

In the Xpress MATLAB interface, control and attribute names are always all uppercase and
without the XPRS prefix.

2.2.7 Special options

When calling an interface function, it is possible to pass one or more of the following additional
options before the normal input arguments:

-v Display the version of the called function.

-w[flags] Write the problem to file; see the documentation for XPRSwriteprob in the
Optimizer Reference Manual for more details (supported in all optimization
functions).

-s Save the optimizer data structures immediately before solving the problem; see the
documentation for XPRSsave in the Optimizer Reference Manual for more details
(supported in all optimization functions).

Both the -w and -s options create files in the current MATLAB directory/folder and with the same
name as the name of the function being called.

For example, it is possible to export a MIP problem to a file in LP format by calling xprsmip with
an additional -w option and flag l as follows (the file will be named xprsmip.lp):

>> x = xprsmip(’-wl’, f, A, b, rtype, ctype);

2.3 Example

In this example we solve the sample problem from MATLAB’s documentation page on the
linprog function.

The problem at hand is:

minimize −5 · x1− 4 · x2− 6 · x3

subject to x1− x2 + x3 ≤ 20

3 · x1 + 2 · x2 + 4 · x3 ≤ 42

3 · x1 + 2 · x2 ≤ 30

0 ≤ x1, 0 ≤ x2, 0 ≤ x3

First, enter the coefficients

>> f = [-5; -4; -6];
>> A = [1 -1 1
>> 3 2 4
>> 3 2 0];
>> b = [20; 42; 30];
>> lb = zeros(3,1);

Fair Isaac Corporation Confidential and Proprietary Information 16

Xpress Optimizer MATLAB Interface

Next, call the Xpress linear programming function.

>> [x,fval,exitflag,output,lambda] = xprslp(f,A,b,’L’,lb);

Entering x, lambda.lin, and lambda.lower returns the following results:

x =
0.0000

15.0000
3.0000

lambda.lin =
0
1.5000
0.5000

lambda.lower =
1.0000
0
0

Fair Isaac Corporation Confidential and Proprietary Information 17

CHAPTER 3

Xpress MATLAB functions

moselexec Execute a Mosel program p. 19

xprsbip Solve binary integer programming problems p. 20

xprslp Solve linear programming problems p. 22

xprsmip Solve mixed integer linear programming problems p. 24

xprsmiqcqp Solve MIQCQP problems p. 26

xprsmiqp Solve MIQP problems p. 28

xprsoptimget Get optimization options values p. 30

xprsoptimset Create or edit optimization options p. 31

xprsqcqp Solve QCQP problems p. 33

xprsqp Solve quadratic programming problems p. 35

xprsver Display version number p. 37

Fair Isaac Corporation Confidential and Proprietary Information 18

Xpress MATLAB functions

moselexec

Purpose
Compile and run a Mosel program.

Synopsis
moselexec(srcfile)
moselexec(srcfile,parlist)
moselexec(srcfile,parlist,options)
retcode=moselexec(..)
[retcode, exitcode]=moselexec(..)

Input arguments
srcfile Name of the Mosel source file to run, can be any Mosel generalized file

parlist String composed of model parameter initializations separated by commas

options Mosel compilation options

Output arguments
retcode Compilation and execution result code

<0 compilation failed
0 program executed successfully
>0 an error occured during model execution

exitcode Exit status returned by the Mosel program

Further information

1. Compilation options are documented in the Mosel Language Reference Manual.

2. If the output argument retcode is omitted and execution is not successful (that is, retcode is
non-zero), then its value is printed with a warning message (to disable this message, just add the
output argument in the call).

Fair Isaac Corporation Confidential and Proprietary Information 19

Xpress MATLAB functions

xprsbip

Purpose
Solve binary integer programming problems with Xpress.

Synopsis
x = xprsbip(f,A,b,rtype,x0,options)
[x,fval,exitflag,output] = xprsbip(...)

Input arguments
f Linear objective function vector

A Matrix for linear constraints

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

x0 Optional initial known solution used to speed-up search.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason why the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (MIPSTATUS=MIP_OPTIMAL)
0 number of iterations exceeded iter limit (STOPSTATUS= STOP_ITERLIMIT)
-2 the problem is infeasible (MIPSTATUS=MIP_INFEAS)
-4 number of searched nodes exceeded limit (STOPSTATUS=

STOP_NODELIMIT)
-5 search time exceeded limit (STOPSTATUS= STOP_TIMELIMIT)
-8 other stop reason, see MIPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See bintprog and the Section 2.2.6 for details.

Fair Isaac Corporation Confidential and Proprietary Information 20

Xpress MATLAB functions

Further information

1. This routine finds the minimum of a problem specified by

min f · x
s.t. A · x ≤ | = | ≥ b

x ∈ {0, 1}

where A is an m× n matrix; f , b, rtype, and x0 are vectors.

2. Input arguments rtype, x0 and options can be omitted, with the condition that, if one is omitted,
also all the following ones must be omitted (as in x=xprsbip(f, A, b, rtype)). Omitting an
input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsbip(f, A, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, bintprog

Fair Isaac Corporation Confidential and Proprietary Information 21

Xpress MATLAB functions

xprslp

Purpose
Solve linear programming problems with Xpress.

Synopsis
x = xprslp(f,A,b,rtype,lb,ub,options)
[x,fval,exitflag,output,lambda] = xprslp(...)

Input arguments
f Linear objective function vector

A Matrix for linear constraints

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (LPSTATUS=OPTIMAL)
0 number of iterations exceeded iter limit (LPSTATUS=UNFINISHED and

STOPSTATUS=ITERLIMIT)
-2 no feasible point was found (LPSTATUS=INFEAS)
-3 problem is unbounded (LPSTATUS=UNBOUNDED)
-8 other stop reason, see LPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See linprog and the Section 2.2.6 for details.

lambda Structure containing the Lagrange multipliers at the solution x (separated by
constraint type). The fields of the structure are:
lower lower bounds lb
upper upper bounds ub
lin linear constraints from matrix A

Fair Isaac Corporation Confidential and Proprietary Information 22

Xpress MATLAB functions

Further information

1. This routine finds the minimum of a problem specified by

min f · x
s.t. A · x ≤ | = | ≥ b

lb ≤ x ≤ ub

where A is an m× n matrix; f , b, rtype, lb, and ub are vectors.

2. Input arguments rtype, lb, ub and options can be omitted, with the condition that, if one is
omitted, also all the following ones must be omitted (as in x=xprslp(f, A, b, rtype)). Omitting
an input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprslp(f, A, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, linprog

Fair Isaac Corporation Confidential and Proprietary Information 23

Xpress MATLAB functions

xprsmip

Purpose
Solve mixed integer linear programming problems with Xpress.

Synopsis
x = xprsmip(f,A,b,rtype,ctype, clim,sos,lb,ub,x0,options)
[x,fval,exitflag,output] = xprsmip(...)

Input arguments
f Linear objective function vector

A Matrix for linear constraints

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

ctype Character vector (string) giving the column types:
C (or \0) continuous variables
B binary variables
I integer variables
P partial integer variables
S semi-continuous variables
R semi-continuous integers
If ctype = [], all rows are assumed to be of type ’C’. If ctype is a single character,
all constraints are assigned the corresponding type.

clim Vector containing the integer limits for the partial integer variables and lower
bounds for semi-continuous and semi-continuous integer variables (column types
’P’, ’S’, ’R’). Values in the positions corresponding to all other columns are
ignored. clim is mandatory if there are any ’P’, ’S’, or ’R’ columns. If clim is a
scalar, all columns are assigned to that same limit.

sos Struct vector defining SOS sets. The number of SOS sets is given by the number of
elements in the struct. The struct must contain the following fields:
sos(i).type a character indicating the SOS type, either ’1’ or ’2’
sos(i).ind numeric vector with the indices of columns in the set (column

indices start from 0)
sos(i).wt numeric vector with the reference row weights corresponding to

the columns in the sos(i).ind vector. It must have the same
length as sos(i).ind

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

x0 Optional initial known solution used to speed-up search.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated

Fair Isaac Corporation Confidential and Proprietary Information 24

Xpress MATLAB functions

prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (MIPSTATUS=MIP_OPTIMAL)
0 number of iterations exceeded iter limit (STOPSTATUS= STOP_ITERLIMIT)
-2 the problem is infeasible (MIPSTATUS=MIP_INFEAS)
-4 number of searched nodes exceeded limit (STOPSTATUS=

STOP_NODELIMIT)
-5 search time exceeded limit (STOPSTATUS= STOP_TIMELIMIT)
-8 other stop reason, see MIPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See linprog and the Section 2.2.6 for details.

Further information

1. This routine finds the minimum of a problem specified by

min f · x
s.t. A · x ≤ | = | ≥ b

lb ≤ x ≤ ub

where A is an m× n matrix; f, b, rtype, ctype, clim, lb, ub, and x0 are vectors; sos is a struct
vector.

2. Input arguments rtype and following can be omitted, with the condition that, if one is omitted,
also all the following ones must be omitted (as in x=xprsmip(f, A, b, rtype)). Omitting an
input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsmip(f, A, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, bintprog

Fair Isaac Corporation Confidential and Proprietary Information 25

Xpress MATLAB functions

xprsmiqcqp

Purpose
Solve mixed integer quadratically constrained quadratic programming problems with Xpress.

Synopsis
x = xprsmiqcqp(H,f,A,Q,b,rtype,ctype, clim,sos,lb,ub,x0,options)
[x,fval,exitflag,output] = xprsmiqcqp(...)

Input arguments
H Matrix for quadratic objective terms

f Linear objective function vector

A Matrix for the linear part of the constraints

Q Cell array of length m with the n× n matrices for the quadratic terms of the
constraints. If there is only one constraint (m = 1), then Q can be a simple double
matrix instead of a cell array. For a linear constraint, the corresponding Q{i} matrix
can be set to [].

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

ctype Character vector (string) giving the column types:
C (or \0) continuous variables
B binary variables
I integer variables
P partial integer variables
S semi-continuous variables
R semi-continuous integers
If ctype = [], all rows are assumed to be of type ’C’. If ctype is a single character,
all constraints are assigned the corresponding type.

clim Vector containing the integer limits for the partial integer variables and lower
bounds for semi-continuous and semi-continuous integer variables (column types
’P’, ’S’, ’R’). Values in the positions corresponding to all other columns are
ignored. clim is mandatory if there are any ’P’, ’S’, or ’R’ columns. If clim is a
scalar, all columns are assigned to that same limit.

sos Struct vector defining SOS sets. The number of SOS sets is given by the number of
elements in the struct. The struct must contain the following fields:
sos(i).type a character indicating the SOS type, either ’1’ or ’2’
sos(i).ind numeric vector with the indices of columns in the set (column

indices start from 0)
sos(i).wt numeric vector with the reference row weights corresponding to

the columns in the sos(i).ind vector. It must have the same
length as sos(i).ind

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

x0 Optional initial known solution used to speed-up search.

Fair Isaac Corporation Confidential and Proprietary Information 26

Xpress MATLAB functions

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (MIPSTATUS=MIP_OPTIMAL)
0 number of iterations exceeded iter limit (STOPSTATUS= STOP_ITERLIMIT)
-2 the problem is infeasible (MIPSTATUS=MIP_INFEAS)
-4 number of searched nodes exceeded limit (STOPSTATUS=

STOP_NODELIMIT)
-5 search time exceeded limit (STOPSTATUS= STOP_TIMELIMIT)
-8 other stop reason, see MIPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See quadprog and the Section 2.2.6 for details.

Further information

1. This routine finds the minimum of a problem specified by

min 0. 5 · x′ · H · x + f · x
s.t. A · x + x′ ·Qi · x ≤ | = | ≥ b

lb ≤ x ≤ ub

and x in the domain specified by the ctype, clim and sos arguments, where H is an n× n matrix; A
is an m× n matrix; Q is a cell array of n× n matrices; f, b, rtype, ctype, clim, lb, ub, and x0 are
vectors; sos is a struct vector.

2. Input arguments rtype and following can be omitted, with the condition that, if one is omitted,
also all the following ones must be omitted (as in x=xprsmiqcqp(H, f, A, Q, b, rtype)).
Omitting an input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsmiqcqp(H, f, A, Q, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, bintprog, quadprog

Fair Isaac Corporation Confidential and Proprietary Information 27

Xpress MATLAB functions

xprsmiqp

Purpose
Solve mixed integer quadratic programming problems with Xpress.

Synopsis
x = xprsmiqp(H,f,A,b,rtype,ctype, clim,sos,lb,ub,x0,options)
[x,fval,exitflag,output] = xprsmiqp(...)

Input arguments
H Matrix for quadratic objective terms

f Linear objective function vector

A Matrix for linear constraints

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

ctype Character vector (string) giving the column types:
C (or \0) continuous variables
B binary variables
I integer variables
P partial integer variables
S semi-continuous variables
R semi-continuous integers
If ctype = [], all rows are assumed to be of type ’C’. If ctype is a single character,
all constraints are assigned the corresponding type.

clim Vector containing the integer limits for the partial integer variables and lower
bounds for semi-continuous and semi-continuous integer variables (column types
’P’, ’S’, ’R’). Values in the positions corresponding to all other columns are
ignored. clim is mandatory if there are any ’P’, ’S’, or ’R’ columns. If clim is a
scalar, all columns are assigned to that same limit.

sos Struct vector defining SOS sets. The number of SOS sets is given by the number of
elements in the struct. The struct must contain the following fields:
sos(i).type a character indicating the SOS type, either ’1’ or ’2’
sos(i).ind numeric vector with the indices of columns in the set (column

indices start from 0)
sos(i).wt numeric vector with the reference row weights corresponding to

the columns in the sos(i).ind vector. It must have the same
length as sos(i).ind

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

x0 Optional initial known solution used to speed-up search.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

Fair Isaac Corporation Confidential and Proprietary Information 28

Xpress MATLAB functions

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (MIPSTATUS=MIP_OPTIMAL)
0 number of iterations exceeded iter limit (STOPSTATUS= STOP_ITERLIMIT)
-2 the problem is infeasible (MIPSTATUS=MIP_INFEAS)
-4 number of searched nodes exceeded limit (STOPSTATUS=

STOP_NODELIMIT)
-5 search time exceeded limit (STOPSTATUS= STOP_TIMELIMIT)
-8 other stop reason, see MIPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See quadprog and the Section 2.2.6 for details.

Further information

1. This routine finds the minimum of a problem specified by

min 0. 5 · x′ · H · x + f · x
s.t. A · x ≤ | = | ≥ b

lb ≤ x ≤ ub

and x in the domain specified by the ctype, clim and sos arguments, where H is an n× n matrix; A
is an m× n matrix; f, b, rtype, ctype, clim, lb, ub, and x0 are vectors; sos is a struct vector.

2. Input arguments rtype and following can be omitted, with the condition that, if one is omitted,
also all the following ones must be omitted (as in x=xprsmiqp(H, f, A, b, rtype)). Omitting an
input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsmiqp(H, f, A, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, bintprog, quadprog

Fair Isaac Corporation Confidential and Proprietary Information 29

Xpress MATLAB functions

xprsoptimget

Purpose
Retrieve Xpress optimization options values.

Synopsis
val = xprsoptimget(options,’param’)
val = xprsoptimget(options,’param’,default)

Arguments
options optimization options structure

param optimization control or attribute name

Return value
Value of the optimization control or attribute.

Example
This statement returns the value of the FEASTOL optimization control parameter in the structure
called my_options.

val = xprsoptimget(my_options,’FEASTOL’)

This statement returns the value of the FEASTOL optimization control parameter in the structure
called my_options (as in the previous example) except that if the FEASTOL parameter is not
defined, it returns the value 1e-6.

optnew = xprsoptimget(my_options,’FEASTOL’,1e-6);)

Further information

1. val = xprsoptimget(options,’param’) returns the value of the specified parameter in the
optimization options structure options. The parameter name is case sensitive and must be a valid
Xpress control parameter name.

2. val = xprsoptimget(options,’param’,default) returns default if the specified parameter is not
defined in the optimization options structure options.

Related topics
xprsoptimset

Fair Isaac Corporation Confidential and Proprietary Information 30

Xpress MATLAB functions

xprsoptimset

Purpose
Create or edit Xpress optimization options structures.

Synopsis
options = xprsoptimset(’param1’,value1,’param2’,value2,...)
options = xprsoptimset
options = xprsoptimset(oldopts,’param1’,value1,...)
options = xprsoptimset(oldopts,newopts)

Arguments
param* optimization control or attribute name

value* new value for the optimization option

oldopts optimization options structure to copy

newopts optimization options structure

Return value
A new optimization options structure.

Example
This statement creates an optimization options structure called options in which the FEASTOL
parameter is set to 1e-8 and the MAXMIPSOL parameter is set to 10.

options = xprsoptimset(’FEASTOL’,1e-8,’MAXMIPSOL’,10)

This statement makes a copy of the options structure called options, changing the value of the
PRESOLVE parameter and storing new values in optnew.

optnew = xprsoptimset(options,’PRESOLVE’,0);

This statement creates an Xpress optimization options structure with control values
corresponding to the ’final’ value of the MATLAB Toolbox option Display.

options = xprsoptimset(optimset(’Display’, ’final’));

This statement returns an optimization options structure that contains all the parameter names
and default values.

defaults = xprsoptimset

Further information
The function xprsoptimset creates an options structure that you can pass as an input argument
to the Xpress optimization functions. You can use the options structure to change the default
parameters for these functions.

options = xprsoptimset(’param1’,value1,’param2’,value2,...)
creates an optimization options structure called options, in which the specified
parameters (param*) have the specified values. The parameter names are case
sensitive and must be valid Xpress control parameter names.

xprsoptimset
with no input returns a complete list of parameters with their default values.

options = xprsoptimset(oldopts,’param1’,value1,...)
creates a copy of oldopts, modifying or adding the specified parameters with the
specified values.

Fair Isaac Corporation Confidential and Proprietary Information 31

Xpress MATLAB functions

options = xprsoptimset(oldopts,newopts)
combines an existing options structure oldopts with a new options structure
newopts. Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts

In the last two cases, oldopts can be a MATLAB Toolbox option structure, in which case the
following parameters are converted to the corresponding Xpress controls (others are ignored):

Display→ OUTPUTLOG, MIPLOG, LPLOG
MaxIter→ LPITERLIMIT
TolRLPFun→ OPTIMALITYTOL
MaxTime→MAXTIME
MaxNode→MAXNODE
NodeDisplayInterval→MIPLOG
NodeSearchStrategy→ NODESELECTION
TolXInteger→MIPTOL

Only options that are set to a non-empty value are taken into consideration.

Related topics
xprsoptimget

Fair Isaac Corporation Confidential and Proprietary Information 32

Xpress MATLAB functions

xprsqcqp

Purpose
Solve quadratically constrained quadratic programming problems with Xpress.

Synopsis
x = xprsqcqp(H,f,A,Q,b,rtype,lb,ub,options)
[x,fval,exitflag,output,lambda] = xprsqcqp(...)

Input arguments
H Matrix for quadratic objective terms

f Linear objective function vector

A Matrix for the linear part of the constraints

Q Cell array of length m with the n× n matrices for the quadratic terms of the
constraints. If there is only one constraint (m = 1), then Q can be a simple double
matrix instead of a cell array. For a linear constraint, the corresponding Q{i} matrix
can be set to [].

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (LPSTATUS=OPTIMAL)
0 number of iterations exceeded iter limit (LPSTATUS=UNFINISHED and

STOPSTATUS=ITERLIMIT)
-2 no feasible point was found (LPSTATUS=INFEAS)
-3 problem is unbounded (LPSTATUS=UNBOUNDED)
-8 other stop reason, see LPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See quadprog and the Section 2.2.6 for details.

lambda Structure containing the Lagrange multipliers at the solution x (separated by
constraint type). The fields of the structure are:
lower lower bounds lb
upper upper bounds ub
lin linear constraints from matrix A

Fair Isaac Corporation Confidential and Proprietary Information 33

Xpress MATLAB functions

Further information

1. This routine finds the minimum of a problem specified by

min 0. 5 · x′ · H · x + f · x
s.t. A · x + x′ ·Qi · x ≤ | = | ≥ b

lb ≤ x ≤ ub

where H is an n× n matrix; A is an m× n matrix; Q is a cell array of n× n matrices; f, b, rtype, lb,
and ub are vectors.

2. Input arguments rtype, lb, ub and options can be omitted, with the condition that, if one is
omitted, also all the following ones must be omitted (as in x=xprsqcqp(H, f, A, Q, b, rtype)).
Omitting an input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsqcqp(H, f, A, Q, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, quadprog

Fair Isaac Corporation Confidential and Proprietary Information 34

Xpress MATLAB functions

xprsqp

Purpose
Solve quadratic programming problems with Xpress.

Synopsis
x = xprsqp(H,f,A,b,rtype,lb,ub,options)
[x,fval,exitflag,output,lambda] = xprsqp(...)

Input arguments
H Matrix for quadratic objective terms

f Linear objective function vector

A Matrix for linear constraints

b Vector for constraints RHS

rtype Character vector (string) giving the row types:
L indicates a ≤ row
E indicates a = row
G indicates a ≥ row
N indicates a free row
If rtype = [], all rows are assumed to be of type ’L’. If rtype is a single character,
all constraints are assigned the corresponding type.

lb Lower bounds. If lb = [] it means there are no lower bounds. If lb is a scalar, x is
uniformly bounded by that scalar.

ub Upper bounds. If ub = [] it means there are no upper bounds. If ub is a scalar, x is
uniformly bounded by that scalar.

options Options structure created with optimset or xprsoptimset functions. See
xprsoptimset for more details.

Output arguments
x Solution found by the optimization function. If exitflag >0, then x is a solution;

otherwise, x is the value of the optimization routine when it terminated
prematurely.

fval Value of the objective function at the solution x.

exitflag Integer identifying the reason the optimization algorithm terminated. The
following lists the values of exitflag and the corresponding reasons the algorithm
terminated.
1 function converged to a solution x (LPSTATUS=OPTIMAL)
0 number of iterations exceeded iter limit (LPSTATUS=UNFINISHED and

STOPSTATUS=ITERLIMIT)
-2 no feasible point was found (LPSTATUS=INFEAS)
-3 problem is unbounded (LPSTATUS=UNBOUNDED)
-8 other stop reason, see LPSTATUS and STOPSTATUS for details

output Structure containing information about the optimization and, eventually, values of
Xpress controls and attributes. See linprog and the Section 2.2.6 for details.

lambda Structure containing the Lagrange multipliers at the solution x (separated by
constraint type). The fields of the structure are:
lower lower bounds lb
upper upper bounds ub
lin linear constraints from matrix A

Fair Isaac Corporation Confidential and Proprietary Information 35

Xpress MATLAB functions

Further information

1. This routine finds the minimum of a problem specified by

min 0. 5 · x′ · H · x + f · x
s.t. A · x ≤ | = | ≥ b

lb ≤ x ≤ ub

where H is an n× n matrix; A is an m× n matrix; f, b, rtype, lb, and ub are vectors.

2. Input arguments rtype, lb, ub and options can be omitted, with the condition that, if one is
omitted, also all the following ones must be omitted (as in x=xprsqp(H, f, A, b, rtype)).
Omitting an input argument has the same effect as passing an empty array [].

3. All output arguments can be omitted too, again with the condition that, if one is omitted, also all
the following ones must be omitted (as in [x, fval]= xprsqp(H, f, A, b, rtype)).

4. If the specified input bounds for a problem are inconsistent, the output x and fval are set to [].

Related topics
xprsoptimset, quadprog

Fair Isaac Corporation Confidential and Proprietary Information 36

Xpress MATLAB functions

xprsver

Purpose
Display version number for Xpress.

Synopsis
xprsver

Example
Display the version:

xprsver

MATLAB display:

FICO Xpress Optimizer 64-bit v21.00.02 (Hyper capacity)
(c) Copyright Fair Isaac Corporation 2010

Further information
This routine prints the version and release number for the Xpress software currently running.

Related topics
xprsoptimget, linprog

Fair Isaac Corporation Confidential and Proprietary Information 37

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 38

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 39

Index

A
attribute

get value, 30
set value, 31

B
Binary Integer Programming, 20

C
control

get value, 30
set value, 31

control parameters, 15

L
Linear Programming, 22
linprog, 15
LP, see Linear Programming

M
MATLAB java classpath, 1
MATLAB Java libpath, 1
MATLAB search path, 1, 14
MIP, see Mixed Integer Programming
MIQCQP, see Mixed Integer Quadratically

Constrained Quadratic Programming
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Programming, 24
Mixed Integer Quadratic Programming, 28
Mixed Integer Quadratically Constrained

Quadratic Programming, 26
moselexec, 19

O
optimization functions, 15
optimization options, 15

get value, 30
set value, 31

options, 16
options structure, 31

Q
QCQP, see Quadratically Constrained Quadratic

Programming
QP, see Quadratic Programming
Quadratic Programming, 35
Quadratically Constrained Quadratic

Programming, 33

V
version number, 37

X
Xpress controls, 15
Xpress problem attributes, 15
Xpress version, 37
xprsbip, 20
XPRSGET, 16
xprslp, 22
xprsmip, 24
xprsmiqcqp, 26
xprsmiqp, 28
xprsoptimget, 30
xprsoptimset, 31
xprsqcqp, 33
xprsqp, 35
xprsver, 37

Fair Isaac Corporation Confidential and Proprietary Information 40

	Xpress Mosel MATLAB Interface
	Overview
	Configuring MATLAB for the Xpress Mosel interface
	Setting the MATLAB search path
	Setting the MATLAB Java class path
	Setting the MATLAB Java library path
	Verifying if the Xpress Mosel interface works

	Running Mosel models
	The moselexec function
	The I/O driver
	Extended file names
	String handling
	Initializations from blocks
	Initializations to blocks
	Using MATLAB functions in Mosel
	Supported types

	Using the Java Mosel interface
	Overview
	Compiling and executing a model
	Accessing arrays
	Examples

	Xpress Optimizer MATLAB Interface
	Overview
	Using the Xpress for MATLAB Toolbox
	Using the MATLAB graphical interface to set the search path
	Using the MATLAB command line to set the search path
	Verifying if Xpress works
	Interface functions
	Problem matrices
	Setting and querying controls and attributes
	Special options

	Example

	Xpress MATLAB functions
	moselexec
	xprsbip
	xprslp
	xprsmip
	xprsmiqcqp
	xprsmiqp
	xprsoptimget
	xprsoptimset
	xprsqcqp
	xprsqp
	xprsver

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

