
The Mathematics of Coding:

Information,

Compression,

Error Correction,

and Finite Fields

Paul Garrett

University of Minnesota, Minneapolis

.

Contents

Preface . ix

1 Probability . 1
1.1 Sets and functions . 1
1.2 Counting . 5
1.3 Preliminary ideas of probability 8
1.4 More formal view of probability 13
1.5 Random variables, expected values, variance 20
1.6 Markov’s inequality, Chebysheff’s inequality 27
1.7 Law of Large Numbers 27

2 Information . 33
2.1 Uncertainty, acquisition of information 33
2.2 Definition of entropy 37

3 Noiseless Coding . 44
3.1 Noiseless coding . 44
3.2 Kraft and McMillan inequalities 48
3.3 Noiseless coding theorem 51
3.4 Huffman encoding 54

4 Noisy Coding . 61
4.1 Noisy channels . 61
4.2 Example: parity checks 63
4.3 Decoding from a noisy channel 66
4.4 Channel capacity 67
4.5 Noisy coding theorem 71

5 Cyclic Redundancy Checks 82
5.1 The finite field with 2 elements 82
5.2 Polynomials over GF (2) 83
5.3 Cyclic redundancy checks (CRCs) 86
5.4 What errors does a CRC catch? 88

v

vi Contents

6 The Integers . 93
6.1 The reduction algorithm 93
6.2 Divisibility . 96
6.3 Factorization into primes 99
6.4 A failure of unique factorization 103
6.5 The Euclidean Algorithm 105
6.6 Equivalence relations 108
6.7 The integers modulo m 111
6.8 The finite field Z/p for p prime 115
6.9 Fermat’s Little Theorem 117
6.10 Euler’s theorem . 118
6.11 Facts about primitive roots 120
6.12 Euler’s criterion . 121
6.13 Fast modular exponentiation 122
6.14 Sun-Ze’s theorem . 124
6.15 Euler’s phi-function 128

7 Permutations and Interleavers 134
7.1 Permutations of sets 134
7.2 Shuffles . 139
7.3 Block interleavers 141

8 Groups . 145
8.1 Groups . 145
8.2 Subgroups . 147
8.3 Lagrange’s Theorem 148
8.4 Index of a subgroup 150
8.5 Laws of exponents 151
8.6 Cyclic subgroups, orders, exponents 153
8.7 Euler’s Theorem . 154
8.8 Exponents of groups 155
8.9 Group homomorphisms 156
8.10 Finite cyclic groups 158
8.11 Roots, powers . 161

9 Rings and Fields 167
9.1 Rings . 167
9.2 Ring homomorphisms 171
9.3 Fields . 175

10 Polynomials . 178
10.1 Polynomials . 178
10.2 Divisibility . 181
10.3 Factoring and irreducibility 184
10.4 Euclidean algorithm for polynomials 187
10.5 Unique factorization of polynomials 189

Contents vii

11 Finite Fields . 192
11.1 Making fields . 192
11.2 Examples of field extensions 195
11.3 Addition mod P . 197
11.4 Multiplication mod P 197
11.5 Multiplicative inverses mod P 197

12 Linear Codes . 200
12.1 An ugly example 200
12.2 A better approach 203
12.3 An inequality from the other side 204
12.4 The Hamming binary [7, 4] code 205
12.5 Some linear algebra 208
12.6 Row reduction: a review 211
12.7 Linear codes . 218
12.8 Dual codes, syndrome decoding 222

13 Bounds for Codes 228
13.1 Hamming (sphere-packing) bound 228
13.2 Gilbert-Varshamov bound 230
13.3 Singleton bound . 232

14 More on Linear Codes 234
14.1 Minimum distances in linear codes 234
14.2 Cyclic codes . 235

15 Primitive Roots . 240
15.1 Primitive elements in finite fields 240
15.2 Characteristics of fields 241
15.3 Multiple factors in polynomials 243
15.4 Cyclotomic polynomials 246
15.5 Primitive elements in finite fields: proofs 251
15.6 Primitive roots in Z/p 252
15.7 Primitive roots in Z/pe 253
15.8 Counting primitive roots 256
15.9 Non-existence of primitive roots 257
15.10 An algorithm to find primitive roots 258

16 Primitive Polynomials 260
16.1 Definition of primitive polynomials 260
16.2 Examples mod 2 . 261
16.3 Testing for primitivity 264
16.4 Periods of LFSRs 267
16.5 Two-bit errors in CRCs 272

viii Contents

17 RS and BCH Codes 276
17.1 Vandermonde determinants 277
17.2 Variant check matrices for cyclic codes 280
17.3 Reed-Solomon codes 282
17.4 Hamming codes . 285
17.5 BCH codes . 287

18 Concatenated Codes 297
18.1 Mirage codes . 297
18.2 Concatenated codes 301
18.3 Justesen codes . 303
18.4 Some explicit irreducible polynomials 306

19 More on Rings and Fields 309
19.1 Ideals in commutative rings 309
19.2 Ring homomorphisms 313
19.3 Quotient rings . 317
19.4 Maximal ideals and fields 318
19.5 Field extensions . 318
19.6 The Frobenius automorphism 321
19.7 Counting irreducibles 329
19.8 Counting primitives 331

20 Curves and Codes 335
20.1 Plane curves . 335
20.2 Singularities of curves 339
20.3 Projective plane curves 342
20.4 Curves in higher dimensions 348
20.5 Genus, divisors, linear systems 348
20.6 Geometric Goppa codes 353
20.7 The Tsfasman-Vladut-Zink-Ihara bound 354

Appendix: Stirling’s Formula 356

Appendix: Linear Algebra 360
A.1 Basics . 360
A.2 Dimension . 363
A.3 Homomorphisms and duals 365
A.4 Scalar products . 372
A.5 Vandermonde determinants 374

Appendix: Polynomials 378

Bibliography . 384

Select Answers . 386

Index . 393

Preface

This book is intended to be accessible to undergraduate students with two
years of typical mathematics experience, most likely meaning calculus with a little
linear algebra and differential equations. Thus, specifically, there is no assumption
of a background in abstract algebra or number theory, nor of probability, nor of
linear algebra. All these things are introduced and developed to a degree sufficient
to address the issues at hand.

We will address the fundamental problem of transmitting information ef-
fectively and accurately. The specific mode of transmission does not really play
a role in our discussion. On the other hand, we should mention that the importance
of the issues of efficiency and accuracy has increased largely due to the advent of
the internet and, even more so, due to the rapid development of wireless communi-
cations. For this reason it makes sense to think of networked computers or wireless
devices as archetypical fundamental practical examples.

The underlying concepts of information and information content of data
make sense independently of computers, and are relevant in looking at the operation
of natural languages such as English, and of other modes of operation by which
people acquire and process data.

The issue of efficiency is the obvious one: transmitting information costs time,
money, and bandwidth. It is important to use as little as possible of each of these
resources. Data compression is one way to pursue this efficiency. Some well
known examples of compression schemes are commonly used for graphics: GIFs,
JPEGs, and more recently PNGs. These clever file format schemes are enormously
more efficient in terms of filesize than straightforward bitmap descriptions of graph-
ics files. There are also general-purpose compression schemes, such as gzip, bzip2,
ZIP, etc.

The issue of accuracy is addressed by detection and correction of errors
that occur during transmission or storage of data. The single most important
practical example is the TCP/IP protocol, widely used on the internet: one basic
aspect of this is that if any of the packets composing a message is discovered to be
mangled or lost, the packet is simply retransmitted. The detection of lost packets
is based on numbering the collection making up a given message. The detection
of mangled packets is by use of 16-bit checksums in the headers of IP and TCP
packets. We will not worry about the technical details of TCP/IP here, but only
note that email and many other types of internet traffic depend upon this protocol,
which makes essential use of rudimentary error-detection devices.

And it is a fact of life that dust settles on CD-ROMs, static permeates network
lines, etc. That is, there is noise in all communication systems. Human natural
languages have evolved to include sufficient redundancy so that usually much
less than 100% of a message need be received to be properly understood. Such

ix

x Preface

redundancy must be designed into CD-ROM and other data storage protocols to
achieve similar robustness.

There are other uses for detection of changes in data: if the data in question is
the operating system of your computer, a change not initiated by you is probably
a sign of something bad, either failure in hardware or software, or intrusion by
hostile agents (whether software or wetware). Therefore, an important component
of systems security is implementation of a suitable procedure to detect alterations
in critical files.

In pre-internet times, various schemes were used to reduce the bulk of commu-
nication without losing the content: this influenced the design of the telegraphic
alphabet, traffic lights, shorthand, etc. With the advent of the telephone and ra-
dio, these matters became even more significant. Communication with exploratory
spacecraft having very limited resources available in deep space is a dramatic ex-
ample of how the need for efficient and accurate transmission of information has
increased in our recent history.

In this course we will begin with the model of communication and information
made explicit by Claude Shannon in the 1940’s, after some preliminary forays by
Hartley and others in the preceding decades.

Many things are omitted due to lack of space and time. In spite of their
tremendous importance, we do not mention convolutional codes at all. This is
partly because there is less known about them mathematically. Concatenated codes
are mentioned only briefly. Finally, we also omit any discussion of the so-called
turbo codes. Turbo codes have been recently developed experimentally. Their
remarkably good behavior, seemingly approaching the Shannon bound, has led to
the conjecture that they are explicit solutions to the fifty-year old existence results
of Shannon. However, at this time there is insufficient understanding of the reasons
for their good behavior, and for this reason we will not attempt to study them here.
We do give a very brief introduction to geometric Goppa codes, attached to
algebraic curves, which are a natural generalization of Reed-Solomon codes (which
we discuss), and which exceed the Gilbert-Varshamov lower bound for performance.

The exercises at the ends of the chapters are mostly routine, with a few more
difficult exercises indicated by single or double asterisks. Short answers are given
at the end of the book for a good fraction of the exercises, indicated by ‘(ans.)’
following the exercise.

I offer my sincere thanks to the reviewers of the notes that became this volume.
They found many unfortunate errors, and offered many good ideas about improve-
ments to the text. While I did not choose to take absolutely all the advice given, I
greatly appreciate the thought and energy these people put into their reviews: John
Bowman, University of Alberta; Sergio Lopez, Ohio University; Navin Kashyap,
University of California, San Diego; James Osterburg, University of Cincinnati;
LeRoy Bearnson, Brigham Young University; David Grant, University of Colorado
at Boulder; Jose Voloch, University of Texas.

Paul Garrett
garrett@math.umn.edu

http://www.math.umn.edu/̃ garrett/

1

Probability

1.1 Sets and functions
1.2 Counting
1.3 Preliminary ideas of probability
1.4 More formal view of probability
1.5 Random variables, expected values, variance
1.6 Markov’s inequality, Chebysheff’s inequality
1.7 Law of Large Numbers

1.1 Sets and functions
Here we review some relatively elementary but very important terminology and
concepts about sets, in a slightly abstract setting.

Naively, a set is supposed to be a collection of ‘things’ (?) described by
‘listing’ them or prescribing them by a ‘rule’. Please note that this is not a precise
description, but will be adequate for most of our purposes. We can also say that a
set is an unordered list of different things.

There are standard symbols for some often-used sets:

φ = {} = empty set = set with no elements
Z = the integers
Q = the rational numbers
R = the real numbers
C = the complex numbers

A set described by a list is something like

S = {1, 2, 3, 4, 5, 6, 7, 8}

1

2 Chapter 1 Probability

which is the set of integers greater than 0 and less than 9. This set can also be
described by a rule like

S = {1, 2, 3, 4, 5, 6, 7, 8} = {x : x is an integer and 1 ≤ x ≤ 8}

This follows the general format and notation

{x : x has some property}

If x is in a set S, then write x ∈ S or S 3 x, and say that x is an element of S.
Thus, a set is the collection of all its elements (although this remark only explains
the language). It is worth noting that the ordering of a listing has no effect on a set,
and if in the listing of elements of a set an element is repeated, this has no effect.
For example,

{1, 2, 3} = {1, 1, 2, 3} = {3, 2, 1} = {1, 3, 2, 1}

A subset T of a set S is a set all of whose elements are elements of S. This
is written T ⊂ S or S ⊃ T . So always S ⊂ S and φ ⊂ S. If T ⊂ S and T 6= φ
and T 6= S, then T is a proper subset of S. Note that the empty set is a subset of
every set. For a subset T of a set S, the complement of T (inside S) is

T c = S − T = {s ∈ S : s 6∈ T}

Sets can also be elements of other sets. For example, {Q,Z,R,C} is the set
with 4 elements, each of which is a familiar set of numbers. Or, one can check that

{{1, 2}, {1, 3}, {2, 3}}

is the set of two-element subsets of {1, 2, 3}.
The intersection of two sets A,B is the collection of all elements which lie in

both sets, and is denoted A ∩B. Two sets are disjoint if their intersection is φ. If
the intersection is not empty, then we may say that the two sets meet. The union
of two sets A,B is the collection of all elements which lie in one or the other of the
two sets, and is denoted A ∪B.

Note that, for example, 1 6= {1}, and {{1}} 6= {1}. That is, the set {a} with
sole element a is not the same thing as the item a itself.

An ordered pair (x, y) is just that, a list of two things in which there is a
first thing, here x, and a second thing, here y. Two ordered pairs (x, y) and (x′, y′)
are equal if and only if x = x′ and y = y′.

The (cartesian) product of two sets A,B is the set of ordered pairs (a, b)
where a ∈ A and b ∈ B. It is denoted A×B. Thus, while {a, b} = {b, a} might be
thought of as an unordered pair, for ordered pairs (a, b) 6= (b, a) unless by chance
a = b.

In case A = B, the cartesian power A×B is often denoted A2. More generally,
for a fixed positive integer n, the nth cartesian power An of a set is the set of
ordered n-tuples (a1, a2, . . . , an) of elements ai of A.

Some very important examples of cartesian powers are those of R or Q or C,
which arise in other contexts as well: for example, R2 is the collection of ordered

1.1 Sets and functions 3

pairs of real numbers, which we use to describe points in the plane. And R3 is
the collection of ordered triples of real numbers, which we use to describe points in
three-space.

The power set of a set S is the set of subsets of S. This is sometimes denoted
by PS. Thus,

Pφ = {φ}

P{1, 2} = {φ, {1}, {2}, {1, 2}}

Intuitively, a function f from one set A to another set B is supposed to be
a ‘rule’ which assigns to each element a ∈ A an element b = f(a) ∈ B. This is
written as

f : A→ B

although the latter notation gives no information about the nature of f in any
detail.

More rigorously, but less intuitively, we can define a function by really telling
its graph: the formal definition is that a function f : A → B is a subset of the
product A × B with the property that for every a ∈ A there is a unique b ∈ B so
that (a, b) ∈ f . Then we would write f(a) = b.

This formal definition is worth noting at least because it should make clear that
there is absolutely no requirement that a function be described by any recognizable
or simple ‘formula’.

Map and mapping are common synonyms for function.
As a silly example of the formal definition of function, let f : {1, 3} → {2, 6}

be the function ‘multiply-by-two’, so that f(1) = 2 and f(3) = 6. Then the ‘official’
definition would say that really f is the subset of the product set {1, 3} × {2, 6}
consisting of the ordered pairs (1, 2), (3, 6). That is, formally the function f is the
set

f = {(1, 2), (3, 6)}

Of course, no one usually operates this way, but it is important to have a precise
meaning underlying more intuitive usage.

A function f : A → B is surjective (or onto) if for every b ∈ B there is
a ∈ A so that f(a) = b. A function f : A → B is injective (or one-to-one) if
f(a) = f(a′) implies a = a′. That is, f is injective if for every b ∈ B there is at
most one a ∈ A so that f(a) = b. A map is a bijection if it is both injective and
surjective.

The number of elements in a set is its cardinality. Two sets are said to have
the same cardinality if there is a bijection between them. Thus, this is a trick
so that we don’t have to actually count two sets to see whether they have the same
number of elements. Rather, we can just pair them up by a bijection to achieve
this purpose.

Since we can count the elements in a finite set in a traditional way, it is clear
that a finite set has no bijection to a proper subset of itself. After all, a proper
subset has fewer elements.

4 Chapter 1 Probability

By contrast, for infinite sets it is easily possible that proper subsets have bijec-
tions to the whole set. For example, the set A of all natural numbers and the set
E of even natural numbers have a bijection between them given by

n→ 2n

But certainly E is a proper subset of A! Even more striking examples can be
arranged. In the end, we take as the definition that a set is infinite if it has a
bijection to a proper subset of itself.

Let f : A→ B be a function from a set A to a set B, and let g : B → C be a
function from the set B to a set C. The composite function g ◦ f is defined to
be

(g ◦ f)(a) = g(f(a))

for a ∈ A.
The identity function on a non-empty set S is the function f : S → S so

that f(a) = a for all a ∈ A. Often the identity function on a set S is denoted by
idS .

Let f : A → B be a function from a set A to a set B. An inverse function
g : B → A for f (if such g exists at all) is a function so that (f ◦ g)(b) = b for all
b ∈ B, and also (g ◦ f)(a) = a for all a ∈ A. That is, the inverse function (if it
exists) has the two properties

f ◦ g = idB g ◦ f = idA

An inverse function to f , if it exists at all, is usually denoted f−1. (This is not at
all the same as 1/f !)

Proposition: A function f : A → B from a set A to a set B has an inverse if
and only if f is a bijection. In that case, the inverse is unique (that is, there is only
one inverse function).

Proof: Suppose that f : A → B is a bijection. We define a function g : B → A
as follows. Given b ∈ B, let a ∈ A be an element so that f(a) = b. Then define
g(b) = a. Do this for each b ∈ B to define g. Note that we use the surjectivity to
know that there exists an a for each b and we use the injectivity to be sure of its
uniqueness.

To check that g ◦ f = idA, compute: first, for any a ∈ A, f(a) ∈ B. Then
g(f(a)) is, by definition, an element a′ ∈ A so that f(a′) = f(a). Since f is injective,
it must be that a′ = a. To check that f ◦ g = idB , take b ∈ B and compute: by
definition of g, g(b) is an element of A so that f(g(b)) = b. But that is (after all)
just what we want.

On the other hand, suppose that for f : A → B there is g : B → A such that
g ◦ f = idA and f ◦ g = idB , and show that f is bijective. Indeed, if f(a1) = f(a2),
then apply g to both sides of this equality to obtain

a1 = idA(a1) = g(f(a1)) = g(f(a2)) = a2

1.2 Counting 5

This proves injectivity of f . For surjectivity, given b ∈ B,

f(g(b)) = idB(b) = b

This completes the proof that if f has an inverse then it is a bijection. ///

1.2 Counting
Here we go through various standard elementary-but-important examples of count-
ing as preparation for finite probability computations. Of course, by ‘counting’ we
mean structured counting.
Example: Suppose we have n different things, for example the integers from 1 to
n inclusive. The question is how many different orderings or ordered listings

i1, i2, i3, . . . , in−1, in

of these numbers are there? Rather than just tell the formula, let’s quickly derive
it. The answer is obtained by noting that there are n choices for the first thing i1,
then n− 1 remaining choices for the second thing i2 (since we can’t reuse whatever
i1 was), n−2 remaining choices for i3 (since we can’t reuse i1 nor i2, whatever they
were!), and so on down to 2 remaining choices for in−1 and then just one choice for
in. Thus, there are

n · (n− 1) · (n− 2) · . . . · 2 · 1

possible orderings of n distinct things. This kind of product arises often, and there
is a notation and name for it: n-factorial, denoted n!, is the product

n! = n · (n− 1) · (n− 2) · . . . · 2 · 1

It is an important and useful convention that

0! = 1

The factorial n! is defined only for non-negative integers.
Example: How many ordered k-tuples of elements can be chosen (allowing
repetition) from a set of n things? There are n possibilities for the first choice. For
each choice of the first there are n choices for the second. For each choice of the
first and second there are n for the third, and so on down to n choices for the kth

for each choice of the first through (k − 1)th. That is, altogether there are

n× n× . . .× n︸ ︷︷ ︸
k

= nk

ordered k-tuples that can be chosen from a set with n elements.
Example: How many ordered k-tuples of distinct elements can be chosen from
a set of n things? (In a mathematical context distinct means all different from each
other.) There are n possibilities for the first choice. For each choice of the first

6 Chapter 1 Probability

there are n − 1 remaining choices for the second, since the second element must
be different from the first. For each choice of the first and second there are n − 2
remaining choices for the third, since it must be different from the first and second.
This continues, to n− (k−1) choices for the kth for each choice of the first through
(k − 1)th, since the k − 1 distinct element already chosen can’t be reused. That is,
altogether there are

n× (n− 1)× (n− 2)× . . .× (n− (k − 2))× (n− (k − 1)) = n!/(n− k)!

ordered k-tuples of distinct elements that can be chosen from a set with n elements.
Example: How many (unordered!) subsets of k elements are there in a set of
n things? There are n possibilities for the first choice, n− 1 remaining choices for
the second (since the first item is removed), n− 2 for the third (since the first and
second items are no longer available), and so on down to n− (k− 1) choices for the
kth. This number is n!/(n− k)!, but is not what we want, since it includes a count
of all different orders of choices, but subsets are not ordered. That is,

n!
(n− k)!

= k!× the actual number

since we saw in a previous example that there are k! possible orderings of k distinct
things. Thus, there are

n!
k! (n− k)!

choices of subsets of k elements in a set with n elements.
The number n!/k!(n − k)! also occurs often enough to warrant a name and

notation: it is called a binomial coefficient, is written

n!
k! (n− k)!

=
(

n
k

)
and is pronounced ‘n choose k’ in light of the previous example. The name ‘binomial
coefficient’ is explained below in the context of the Binomial Theorem.
Example: How many disjoint pairs of 3-element and 5-element subsets are there

in a set with 10 elements? We just saw that there are
(

10
3

)
choices for the

first subset with 3 elements. Then the remaining part of the original set has just

10− 3 = 7 elements, so there are
(

7
5

)
choices for the second subset of 5 elements.

Therefore, there are (
10
3

)(
7
5

)
=

10!
7! 3!

7!
5!2!

=
10!

3! 5! 2!

=
10!
5! 5!

· 5!
3! 2!

=
(

10
5

)(
5
3

)

1.2 Counting 7

pairs of disjoint subsets of 3 and 5 elements inside a set with 10 elements. Note
that we obtain the same numerical outcome regardless of whether we first choose
the 3-element subset or the 5-element subset.
Example: How many disjoint pairs of subsets, each with k elements, are there in

a set with n elements, where 2k ≤ n? We saw that there are
(

n
k

)
choices for the

first subset with k elements. Then the remaining part of the original set has just

n− k elements, so there are
(

n− k
k

)
choices for the second subset of k elements.

But our counting so far inadvertently takes into account a first subset and a second
one, which is not what the question is. By now we know that there are 2! = 2
choices of ordering of two things (subsets, for example). Therefore, there are

1
2

(
n
k

)(
n− k

k

)
=

1
2

n!
(n− k)!k!

(n− k)!
k!(n− 2k)!

=
n!

2 k! k!(n− 2k)!

pairs of disjoint subsets of k elements each inside a set with n elements.
Generalizing the previous: For integers n, `, k with n ≥ k`, we could ask how

many families of ` disjoint subsets of k elements each are there inside a set of n
elements? There are (

n
k

)
choices for the first subset, (

n− k
k

)
for the second, (

n− 2k
k

)
for the third, up to (

n− (`− 1)k
k

)
for the `th subset. But since ordering of these subsets is inadvertently counted
here, we have to divide by `! to have the actual number of families. There is some
cancellation among the factorials, so that the actual number is

number of disjoint subsets of k elements =
n!

`! (k!)` (n− `k)!

The Binomial Theorem asserts that

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k

8 Chapter 1 Probability

This identity shows that the binomial coefficients are integers, and is the basis for
other identities as well. This identity is proven by induction, as follows. For n = 1
the assertion is immediately verified. Assume it is true for exponent n, and prove
the corresponding assertion for exponent n + 1. Thus,

(x + y)n+1 = (x + y) · (x + y)n = (x + y) ·
n∑

k=0

(
n

k

)
xkyn−k

=
n∑

k=0

(
n

k

)(
xk+1yn−k + xkyn−k+1

)
= x0yn+1 + xn+1y0 + +

n∑
k=1

((
n

k − 1

)
+
(

n

k

))
xk yn+1−k

Thus, to prove the formula of the Binomial Theorem for exponent n + 1 we must
prove that for 1 ≤ k ≤ n (

n

k − 1

)
+
(

n

k

)
=
(

n + 1
k

)
We do this by expressing the left-hand side in terms of binomial coefficients:(

n

k − 1

)
+
(

n

k

)

=
n!

(k − 1)! (n− k + 1)!
+

n!
k! (n− k)!

=
n! k

k! (n− k + 1)!
+

n! (n− k + 1)
k! (n− k + 1)!

=
(n + 1)!

k! (n− k + 1)!
=
(

n + 1
k

)
as claimed.

1.3 Preliminary ideas of probability
This little section moves from an intuitive version of probability toward a more
formal and mathematically useful version presented in the next section.

First, there is the conversion from the colloquial notion of the ‘chance’ of
something occurring to the notion of its ‘probability’. While usually the ‘chance’ of
something happening is a percentage, a probability is a number between 0 and 1,
inclusive. The conversion rule is the following: if in colloquial English the ‘chance’
of something happening is x%, then its probability is x/100. (This introduces no
new content.) At one extreme, if an event is ‘sure’ to happen, then its probability
is 1 (its chance is 100%), while at the other extreme if something is sure not to
happen then its probability is 0 (its chance is 0%).

One basic postulate about probability is that the probabilities of all the differ-
ent possible outcomes of an event or experiment should add up to 1. An analogous

1.3 Preliminary ideas of probability 9

rule is taken as true for ‘chance’: the sum of the percentages of all possible outcomes
should be 100%.

But what is ‘probability’?
Example: A ‘fair coin’ is presumed to have equal probabilities (‘equal chances’)
of landing heads-up or tails-up. Since the probability of heads is the same as the
probability of tails, and since the two numbers should add up to 1, there is no
choice but to assign the probability 1/2 to both. Further, each toss of the coin is
presumed to have an outcome independent of other tosses before and after. That is,
there is no mechanism by which the outcome of one toss affects another. Now we
come to a property which we would assume to be roughly true: out of (for example)
10 coin tosses we expect about half to be heads and about half to be tails. We
expect that it would very seldom happen that 10 out of 10 tosses would all be
heads. Experience does bear this out. So far, in this vague language, there is no
obvious problem.

But, for example, it would be a mistake to be too aggressive, and say that we
should expect exactly half heads and half tails. Experimentation will show that out
of repeated batches of 10 coin flips, only about 1/4 of the time will there be exactly
5 heads and 5 tails. (Only once in about 210 = 1024 times will one get all heads.)
In fact, about 2/5 of the time there will be either 6 heads and 4 tails, or vice versa.
That is, a 6-4 or 4-6 distribution of outcomes is more likely than the ‘expected’ 5-5.

But this is not a paradox, since upon reflection our intuition might assure us
not that there will be exactly half heads and half tails, but only approximately half
and half. And we can retell the story in a better way as follows. So what does
‘approximately’ mean, exactly?

In a trial of n coin flips, each flip has two possible outcomes, so there are

2× . . .× 2︸ ︷︷ ︸
n

= 2n

possible sequences of n outcomes. The assumptions that the coin is ‘fair’ and
that the separate coin tosses do not ‘influence’ each other is interpreted as saying
that each one of the 2n possible sequences of coin-toss outcomes is equally likely.
Therefore, the probability of any single sequence of n outcomes is 1/2n. Further,
for any subset S of the set A of all 2n possible sequences of outcomes, we assume
that

probability of a sequence of n tosses giving an outcome in S

=
number of elements in S

number of elements in A
=

number of elements in S

2n

Then the probability that exactly k heads will occur out of n tosses (with
0 ≤ k ≤ n) is computed as

probability of k heads out of n tosses

=
number of sequences of n heads/tails with exactly k heads

total number of sequences of n heads/tails

10 Chapter 1 Probability

=
number of sequences of n heads/tails with exactly k heads

2n

To count the number of sequences of n heads-or-tails with exactly k heads, we may
think of this problem as that of counting the number of subsets with k elements
from a set with n elements. That is, the whole set is the set of all n flips, and the
subset is the set of flips that come up heads. This number is the binomial coefficient

n-choose-k =
n!

k! (n− k)!
=
(

n
k

)

Thus, for example, the probability that exactly 5 heads come up in 10 tosses
is (

10
5

)
210

=
(10·9·8·7·6

5·4·3·3·1)
1024

=
252
1024

≈ 1
4

as commented just above. And the probability that 6 heads and 4 tails or 4 heads
and 6 tails occur is

number of sequences of 10 with exactly 6 or exactly 4 heads
210

=

(
10
4

)
+
(
10
6

)
1024

=
2 · 10·9·8·7

4·3·2
1024

=
420
1024

≈ 2
5

Perhaps not entirely surprisingly, the probability of getting exactly half heads
and half tails out of 2n flips goes down as the number of flips goes up, and in fact
goes to 0 as the number of flips goes to infinity. Nevertheless, more consistent
with our intuition, the sense that the number of heads is approximately one half is
correct. Still, in terms of the expression

P (exactly n heads in 2n flips) =

(
2n
n

)
22n

the fact is that

lim
n→∞

(
2n
n

)
22n

= 0

It is not so easy to verify this directly, but consideration of some numerical examples
is suggestive if not actually persuasive. Quantification of the notion that the number
of heads is approximately one half is filled in a little later by the Law of Large
Numbers.

1.3 Preliminary ideas of probability 11

In purely numerical terms some values of the previous expression are(
2
1

)
/22 ≈ 0.5(

4
2

)
/24 ≈ 0.375(

6
3

)
/26 ≈ 0.3125(

8
4

)
/28 ≈ 0.2734(

10
5

)
/210 ≈ 0.2461(

12
6

)
/212 ≈ 0.1813(

14
7

)
/214 ≈ 0.1683(

20
10

)
/220 ≈ 0.176197052002(

30
15

)
/230 ≈ 0.144464448094(

40
20

)
/240 ≈ 0.12537068762(

50
25

)
/250 ≈ 0.112275172659(

60
30

)
/260 ≈ 0.102578173009(

70
35

)
/270 ≈ 0.0950254735405(

80
40

)
/280 ≈ 0.0889278787739(

90
45

)
/290 ≈ 0.0838711229887(

100
50

)
/2100 ≈ 0.0795892373872(

200
100

)
/2200 ≈ 0.0563484790093(

300
150

)
/2300 ≈ 0.046027514419(

400
200

)
/2400 ≈ 0.0398693019638(

500
250

)
/2500 ≈ 0.0356646455533(

600
300

)
/2600 ≈ 0.032559931335(

700
350

)
/2700 ≈ 0.0301464332521(

800
400

)
/2800 ≈ 0.0282006650947(

900
450

)
/2900 ≈ 0.0265887652343(

1000
500

)
/21000 ≈ 0.0252250181784

Remark: We’re not really answering the question ‘what is probability?’, but
instead we’re telling how to compute it.

One attempt to be more quantitative taken in the past, but which has several
flaws, is the limiting frequency definition of probability, described as follows in
the simplest example. Let N(n) be the number of times that a head came up in n
trials. Then as n grows larger and larger we might imagine that the ratio N(n)/n
should get ‘closer and closer’ to the ‘probability’ of heads (1/2 for a fair coin). Or,
in the language of limits, it should be that

probability of heads = lim
n→∞

number of heads in n flips
n

(And probably this limit really is 1/2.) But there are problems with this definition.
It’s not that the assertion itself is false, but rather that this isn’t a good definition
of probability from which to start. For example, either in real life or in theory it’s
not convenient to do infinitely many flips. Second, if we try to do only finitely many

12 Chapter 1 Probability

flips and approximate the probability, how many do we need to do? Third, how
do we know that every infinite sequence of trials will give the same limiting value?
There are many further objections to this as a fundamental definition, but we should
be aware of interpretations in this direction. A more supportable viewpoint would
make such limiting frequency assertions a consequence of other things, called the
Law of Large Numbers. We’ll prove a special case of this a bit later.
Example: The next traditional example involves picking colored balls out of an
urn. Suppose, for example, that there are N balls in the urn, r red ones and
b = N − r blue ones, and that they are indistinguishable by texture, weight, size,
or in any way. Then in choosing a single ball from the urn we are ‘equally likely’
to choose any one of the N . As in the simpler case of coin flips, there are N
possibilities each of which is equally likely, and the probabilities must add up to 1,
so the probability of drawing any particular ball must be 1/N . Further, it may seem
reasonable to postulate that the probability of picking out one ball from among a
fixed subset of k would be k times the probability of picking a single ball. Granting
this, with r red balls and b blue ones, we would plausibly say that the probability
is r/N that a red ball will be chosen and b/N that a blue ball will be chosen. (We
should keep in mind that some subatomic particles do not behave in this seemingly
reasonable manner!) So without assigning meaning to probability, in some cases we
can still reach some conclusions about how to compute it.

We suppose that one draw (with replacement) has no effect on the next one,
so that they are independent. Let r(n) be the number of red balls drawn in a
sequence of n trials. Then, in parallel with the discussion just above, we would
presume that for any infinite sequence of trials

lim
n→∞

number of red balls drawn in n draws
n

=
r

N

But, as noted above, this should not be the definition, but rather should be a
deducible consequence of whatever definition we make.

Running this in the opposite direction: if there are N balls in an urn, some
red and some blue, if r(n) denotes the number of red balls chosen in n trials, and if

lim
n→∞

r(n)
n

= f

then we would suspect that

number of red balls in the urn ≈ f ·N

And we would suspect that the probability of drawing a red ball in a single trial is
f , since the limiting frequency of drawing red balls is f .

But how close would this equality be? The numbers above show that it is not
very likely that a fair coin will give exactly half heads out of any number of flips,
so would we always fail to realize that we had a fair coin? Hmmm.

Again, yes, the limiting frequency intuition for probability is accurate, but isn’t
adequate as a definition. We give a less intuitive definition in the next section, and
later return to limiting frequencies with the Law of Large Numbers.

1.4 More formal view of probability 13

1.4 More formal view of probability
Now we will remove some of the immediacy of the notion of probability, but will
replace it with greater precision.

Suppose that an experiment has possible different outcomes ω1, . . . , ωn. The
collection Ω = {ω1, . . . , ωn} of all possible outcomes is the sample space. Each
possible ωi is an event. We suppose that each possible outcome ωi has a proba-
bility P (ωi) = pi ≥ 0, and

p1 + p2 + . . . + pn = 1

The function P () on Ω is (nearly) a probability measure. The sample space
together with the system of attaching probabilities to each event (the probability
measure) is a probability space.
Remark: Yes, a (finite) probability space is just a set with non-negative numbers
attached to its elements, that add up to 1. There is no explanation of where the
probabilities come from.
Example: Let Ω = {H,T} and assign probabilities by

P (H) =
1
2

P (T) =
1
2

This is the model of a fair coin.
A more general idea of event (sometimes called compound event) is any

subset A of the sample space, that is, of the set Ω = {x1, . . . , xn} of all possible
events. In that context, the events {xi} are sometimes called atomic events. The
probability of A is

P (A) =
∑
xi∈A

P (xi)

where (to repeat) the sum is over the ‘points’ xi that lie in A. The function P ()
extended in this fashion is really what a probability measure is. The event A
occurs if any one of the xi ∈ A occurs. Thus, for A = {xi1 , . . . , xik

},

P (A) = P (xi1 or xi2 or . . . or xik
)

As extreme cases,
P (Ω) = 1

and
P (φ) = 0

Generally, for an event A, the event not-A is the set-theoretic complement Ac =
Ω−A of A inside Ω. Then

P (not A) = P (Ac) = P (Ω−A) = 1− P (A)

14 Chapter 1 Probability

For two events A and B, the event A− or−B is simply A ∪B, and

P (A or B) = P (A ∪B)

For two events A and B, the event A− and−B is A ∩B, and

P (A and B) = P (A ∩B)

Two events A and B (subsets of {x1, . . . , xn}) are mutually disjoint or mutually
exclusive if A ∩B = φ. If two events are disjoint, then we have

P (A or B) = P (A ∪B) = P (A) + P (B)

Example: Let Ω = {r1, r2, r3, b1, b2, b3, b4, b5, b6, b7} (where we imagine that the
ris are red balls and the bjs are blue balls), with

P (ri) =
1
10

P (bj) =
1
10

for all i and j. This is the model of 10 balls in an urn. Then the subsets

A = {r1, r2, r3} = drawing a red ball

B = {b1, b2, b3, b4, b5, b6, b7} = drawing a blue ball

are ‘compound’ events, whose probabilities are computed by

P (A) = P (r1) + P (r2) + P (r3) =
1
10

+
1
10

+
1
10

=
3
10

P (B) = P (b1) + P (b2) + . . . + P (b7) =
7
10

We can assign these probabilities pi by intuition, by using the limiting fre-
quency idea, or by other means. In fact, they might be measured experimentally,
or assigned in some operational manner possibly hard to justify rigorously. Let’s
repeat the limiting frequency story one more time in this situation. We imagine
that the same experiment X is conducted over and over, and that subsequent trials
are unaffected by the earlier ones, that is, they are independent trials. For n
such independent trials let n(ωi) be the number of times that the event ωi occurs.
Suppose that for any infinite sequence of trials the limit

pi = lim
n→∞

n(ωi)
n

exists and is unique. Then this limiting frequency pi should be the probability
of the event ωi.

1.4 More formal view of probability 15

Example: Consider the experiment of drawing a ball from an urn in which there
are 3 red balls, 3 blue balls, and 4 white balls (otherwise indistinguishable). As
above, we would postulate that the probability of drawing any particular individual
ball is 1/10. (These atomic events are indeed mutually exclusive, because we only
draw one ball at a time.) Thus, the ‘smallest’ events x1, x2, . . . , x10 are the possible
drawings of each one of the 10 balls. Since they have equal chances of being drawn,
the probabilities pi = P (xi) are all the same (and add up to 1):

p1 = p2 = p3 = . . . = p10

Then the (‘compound’) event A of ‘drawing a red ball’ is the subset with three
elements consisting of ‘draw red ball one’, ‘draw red ball two’, and ‘draw red ball
three’. Thus,

P (A) =
1
10

+
1
10

+
1
10

=
3
10

Let B be the event ‘draw a white ball’. Then, since A and B are disjoint events,
the probability of drawing either a red ball or a white ball is the sum:

P (drawing red or white) = P (A ∪B) = P (A) + P (B) =
3
10

+
4
10

=
7
10

This is reasonable, and argues in favor of this way of modeling.
As an example of a basic systematic computation:

Proposition: Let Ω be a finite probability space with elements ω1, . . . , ωn. Let
A be a subset of the sample space Ω with probability P (A) = p. Let k ≤ N be
integers with N > 0 and k ≥ 0. Then the probability that A occurs in exactly k of
N trials is (

N

k

)
· pk (1− p)N−k

Proof: When N = 1, the probability that A occurs is p, and the binomial coef-
ficient

(
1
1

)
is 1. The probability that A does not occur is 1 − p, and

(
1
0

)
= 1 also.

The main part of the argument is an induction on N . Since the different trials are
independent, by assumption, we have

P (A occurs in k of N)

= P (A occurs in k of the first N − 1) · P (A does not occur in the N th)

+P (A occurs in k − 1 of the first N − 1) · P (A occurs in the N th)

=
(

N − 1
k

)
pk (1− p)N−1−k × (1− p)

+
(

N − 1
k − 1

)
pk−1 (1− p)N−1−(k−1) × p

16 Chapter 1 Probability

We want to prove that this is equal to(
N

k

)
pk (1− p)N−k

We can see already that the powers of p and of 1−p will match, so it’s just a matter
of proving that (

N − 1
k

)
+
(

N − 1
k − 1

)
=
(

N

k

)
which we already verified in proving the Binomial Theorem earlier. This completes
the induction and the proof. ///

Let Ω be a probability space, and let A be a (‘compound’) event with P (A) > 0.
Let B be another (‘compound’) event. Then the conditional probability

P (B given that A occurs)

is denoted P (B|A) and is computed as

P (B|A) =
P (A ∩B)

P (A)

In effect, the phrase ‘given that A occurs’ means that we replace the ‘universe’ Ω
of possible outcomes by the smaller ‘universe’ A of possibilities, and ‘renormalize’
all the probabilities accordingly.

The formula P (B|A) = P (A ∩B)/P (A) allows us to compute the conditional
probability in terms of the other two probabilities. In ‘real-life’ situations, it may
be that we know P (B|A) directly, for some other reasons. If we also know P (A),
then this gives us the formula for

P (A and B) = P (A ∩B)

namely
P (A ∩B) = P (B|A) · P (A)

Example: What is the probability that 7 heads appear in 10 flips of a fair coin
given that at least 4 heads appear? This is a direct computation of conditional
probability:

P (7 heads | at least 4 heads) =
P (7 heads and at least 4 heads)

P (at least 4 heads)

=
P (7 heads)

P (at least 4 heads)

=

(
10
7

)
· 1

210((
10
4

)
+
(
10
5

)
+
(
10
6

)
+
(
10
7

)
+
(
10
8

)
+
(
10
9

)
+
(
10
10

))
· 1

210

1.4 More formal view of probability 17

=

(
10
7

)(
10
4

)
+
(
10
5

)
+
(
10
6

)
+
(
10
7

)
+
(
10
8

)
+
(
10
9

)
+
(
10
10

)
since the requirement of 7 heads and at least 4 is simply the requirement of 7 heads.

Two subsets A,B of a probability space Ω are independent if

P (A ∩B) = P (A) · P (B)

In simple examples, it usually happens that independence of events is due to some
fairly obvious independence of ‘causality’. Equivalently,

P (B) = P (B|A)

and equivalently
P (A) = P (A|B)

Example: Let Ω = {10, 11, . . . , 99} be the collection of all integers from 10 to 99,
inclusive. Let A be the subset of Ω consisting of integers x ∈ Ω whose ones’-place
digit is 3, and let B be the subset of integers x ∈ Ω whose tens’-place digit is 6.
Then it turns out that

P (A ∩B) = P (A) · P (B)

so, by definition, these two (‘compound’) events are independent. Usually we expect
an explanation for an independence result, rather than just numerical verification
that the probabilities behave as indicated. In the present case, the point is that
there is no ‘causal relation’ between the one’s-place and tens’-place digits in this
example.

To model repeated events in this style, we need to use the set-theoretic idea of
cartesian product: again, the cartesian product of n sets X1, . . . , Xn is simply
the collection of all ordered n tuples (x1, . . . , xn) (the parentheses and commas are
mandatory), where xi ∈ Xi. The notation is

X1 × . . .×Xn = {(x1, . . . , xn) : xi ∈ Xi, 1 ≤ i ≤ n}

(No, we are not in any sense generalizing the notion of ‘multiplication’: it’s just a
notation.) If all the sets Xi are the same set X, then there is a shorter notation,

Xn = X × . . .×X︸ ︷︷ ︸
n

suggested by exponential notation for repeated multiplication of numbers. Likewise,
Xn is the nth cartesian power of the set X. Also, the word ‘cartesian’ is indeed
often written in lowercase rather than uppercase, despite the fact that it comes from
from René Descartes. The adjective is so widely used that it has been ‘promoted’
to lowercase. This is a peculiar distinction common in mathematics.

To repeat the experiment modeled by a probability space Ω = {ω1, . . . , ωt}
some number n times, consider the cartesian power Ωn of Ω, which (by definition)
is the collection of all ordered n-tuples of elements of Ω. We assign probabilities by

P ((ωi1 , ωi2 , . . . , ωin)) = P (ωi1) · P (ωi2) · . . . · P (ωin)

18 Chapter 1 Probability

for any n-tuple (ωi1 , ωi2 , . . . , ωin
). It’s not hard to check that with this probability

measure Ωn is a probability space. Further, even for ‘compound’ events A1, . . ., An

in Ω, it’s straightforward to show that

P (A1 × . . .×An) = P (A1) · . . . · P (An)

where A1 × . . . × An is the cartesian product of the Ais and naturally sits inside
the cartesian product Ω× . . .× Ω = Ωn.

The idea is to imagine that (ωi1 , ωi2 , . . . , ωin
) is the event that ωi1 occurs on the

first trial, ωi2 on the second, and so on until ωin occurs on the nth. Implicit in this
model is the idea that later events are independent of earlier ones. Otherwise that
manner of assigning a probability measure on the cartesian power is not appropriate!
Example: Let Ω = {H,T} with P (H) = 1/2 and P (T) = 1/2, the fair-coin-
flipping model. To model flipping a fair coin 10 times, one approach is to look at Ω10,
which is the set of all 10-tuples of values which are either heads or tails. Each such
10-tuple is assigned the same probability, 1/210. Now consider the (‘compound’)
event

A = exactly 7 heads in 10 flips

This subset of Ω10 consists of all (ordered!) 10-tuples with exactly 7 heads values
among them, and (by definition) the probability of A is the number of such mul-
tiplied by 1/210, since each such ‘atomic’ event has probability 1/210. Thus, to
compute P (A) we need only count the number of elements of A. It is the number
of ways to choose 7 from among 10 things, which is the binomial coefficient

(
10
7

)
.

Thus,

P (7 heads in 10 flips) = P (A) =
(

10
7

)
· 1
210

Example: Let Ω = {r1, b1, b2} with P (r1) = P (b1) = P (b2) = 1/3, modeling a
red ball and two blue balls in an urn. To model drawing with replacement 5 times,
one approach is to look at Ω5, which is the set of all 5-tuples of values either r1, b1,
or b2. Each such 5-tuple is assigned the same probability, 1/35. Now consider the
(‘compound’) event

A = exactly 3 blues in 5 draws (with replacement)

This subset of Ω5 consists of all (ordered!) 5-tuples with exactly 3 b1 or b2 val-
ues among them, and (by definition) the probability of A is the number of such
multiplied by 1/35, since each such ‘atomic’ event has probability 1/35. Thus, to
compute P (A) we could count the number of elements of A. But we can be a bit
more clever. Let Ao be the subset Ao = {b1, b2} of Ω corresponding to drawing a
blue ball in a single draw. Then P (Ao) = 2/3, and A is the set of all 5-tuples in
which exactly 3 elements of Ao appear. As noted above, the probability measure
on the product space Ω assures that (for example)

P (Ao×Ao×Ao×{r1}×{r1}) = P (Ao)·P (Ao)·P (Ao)·P (r1)·P (r1) =
(

2
3

)3

·
(

1
3

)2

1.4 More formal view of probability 19

Note that the numerical value does not depend on the exact location of the Aos and
the r1s, but only on the number of them. Thus, the number of ways to choose the
3 locations of the Ao element from among the 5 places is the binomial coefficient(
5
3

)
. Thus,

P (3 blues in 5 draws) = P (A) =
(

5
3

)
·
(

2
3

)3

·
(

1
3

)2

Remark: All our examples so far are finite probability spaces, meaning the obvi-
ous thing, that there are only finitely many elements of the set, so only finitely-many
‘atomic’ events. This restriction is not really terribly confining, and already gives
ample opportunity to illustrate many fundamental phenomena, but nevertheless we
might want to see how to treat some infinite probability spaces.

Example: Suppose we take Ω to be the interval [0, 1] of real numbers and that
we want every real number in that interval to be equally probable to be selected.
If we try to assign values P (x) to x ∈ [0, 1] since they are all equal, but infinitely
many must add up to 1, we find ourselves in an impossible situation. Instead, we
give up on the idea of assigning a probability to every subset A of Ω = [0, 1], and
give up on the too-naive idea that

P (A) =
∑
x∈A

P (x)

and instead only assign probabilities to a restricted class of subsets. For example,
we might assign

P ([a, b]) = b− a

for any subinterval [a, b] of [0, 1], and then define

P ([a1, b1] ∪ . . . ∪ [an, bn]) = P ([a1, b1]) + . . . + P ([an, bn])

for disjoint collections of intervals [ai, bi]. This is a start, but we need more. In
fact, for a collection of mutually disjoint intervals

[a1, b1], [a2, b2], [a3, b3], . . .

indexed by positive integers, we can compute the probability of the union by the
obvious formula

P ([a1, b1] ∪ [a2, b2] ∪ . . .) = P ([a1, b1]) + P ([a2, b2]) + . . .

(A collection indexed by the positive integers is called countable.) We could also
compute the probability measure of the complement

{ω ∈ Ω : ω 6∈ A}

20 Chapter 1 Probability

of a set A in the reasonable manner, by

P (not A) = 1− P (A)

Further, we can repeat these two types of operations, taking countable unions of
disjoint sets, and taking complements, making ever more complicated sets whose
probability measure is definable in this example. (The totality of sets created has
a name: it is the collection of Borel sets in [0, 1].) To know that these processes
really define a probability measure requires proof!
Example: A more important example for our immediate applications is

Ω = {infinite sequences (s1, s2, s3, . . .)}

where all the symbols si lie in some fixed set Ωo. Analogous to the previous example,
we restrict our attention initially to cylinders (also called cylindrical sets), which
means sets of the form

S(s1, s2, . . . , sn)

= { sequences (s1, s2, . . . , sn, sn+1, . . .) : where st is arbitrary for t > n }

where the length n of the specified initial segment can vary from cylinder set to
cylinder set. As in the previous example, we can then assign probability measures
to countable unions

⋃∞
i=1 Ai of disjoint sets Ai by

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Assign probabilities to the complement Ac = {ω ∈ Ω : ω 6∈ A} by

P (Ac) = 1− P (A)

We can repeat these processes indefinitely, making ever more complicated subsets
to which we can assign a probability measure.

1.5 Random variables, expected values, variance
The idea of expected value of an uncertain ‘experiment’ or ‘test’ or ‘trial’ exists
in colloquial language already, but must be made more precise for mathematical
use. In many cases an intuitive version matches very well with the more formal one,
but one must be cautious. Likewise, the variance of a random variable indicates
roughly how much the actual values differ from the expected value, but we can be
more precise.

A random variable X is a real-valued function X on a probability space Ω
(with implicit probability measure P ()).
Remark: It is possible to consider complex-valued or vector-valued random vari-
ables X, or any kind of values that can be added together and multiplied by real
numbers, but for our purposes real-valued ones will suffice.

1.5 Random variables, expected values, variance 21

Remark: Yes, due to tradition at least, instead of the ‘f ’ otherwise often used
for functions, an ‘X’ is used, perhaps to be more consonant with the usual use of x
for a (non-random?) ‘variable’. Further, there is a tradition that makes the values
of X be labeled ‘xi’ (in conflict with the calculus tradition).

For a possible value x of X, we extend the notation by writing

P (X = x) = P ({ω ∈ Ω : X(ω) = x})

That is, the probability that X = x is defined to be the probability of the subset
of Ω on which X has the value x.

The expected value of such a random variable on a probability space Ω =
{ω1, . . . , ωn} is defined to be

E(X) = P (ω1) ·X(ω1) + P (ω2) ·X(ω2) + . . . + P (ωn) ·X(ωn)

Of course, we may imagine that after a ‘large’ number of independent trials
with outcomes ωi1 , ωi2 , . . ., ωiN

the average value

1
N

(X(ωi1) + X(ωi2) + . . . + X(ωiN
))

will be ‘close to’ E(X). But in fact we can prove such a thing, rather than just
imagine that it’s true: again, it is a Law of Large Numbers.

The simplest models for the intuitive content of this idea have their origins
in gambling. For example, suppose Alice and Bob (‘A’ and ‘B’) have a fair coin
(meaning heads and tails both have probability 0.5) and the wager is that if the
coin shows heads Alice pays Bob a dollar, and if it shows tails Bob pays Alice a
dollar. Our intuition tells us that this is fair, and the expected value computation
corroborates this, as follows. The sample space is Ω = {ω0, ω1} (index ‘0’ for heads
and ‘1’ for tails), with each point having probability 0.5. Let X be the random
variable which measures Alice’s gain (or loss):

X(ω0) = −1 X(ω1) = +1

Then the expected value of X, Alice’s expected gain, is

E(X) = 0.5 · (−1) + 0.5 · (+1) = 0

In general, a fair wager is one such that everyone’s expected gain is 0. (What’s
the point of it then? Probably that perceptions of probabilities can differ, and that
some people like pure gambling.)

It is important to notice that an expected value is more sophisticated than the
most naive idea of ‘average’. For example, suppose we choose an integer at random
in the range 1–10 and square it. With equal probabilities assigned, the expected
value of the square is

1
10

02 +
1
10

12 + . . . +
1
10

102 =
1
10

385 = 38.5

22 Chapter 1 Probability

It is not true that we can take the average of 0–10 first (namely, 5) and square it
(getting 25) to obtain the expected value.

Proposition: Let X and Y be two random variables on a sample space Ω =
{ω1, . . . , ωn}, with probabilities P (ωi) = pi. The sum random variable X + Y is
defined in the natural way as

(X + Y)(ωi) = X(ωi) + Y (ωi)

Then
E(X + Y) = E(X) + E(Y)

Proof: This is a direct computation from the definition:

E(X + Y) =
∑

i

pi (X(ωi) + Y (ωi))

=
∑

i

pi X(ωi) +
∑

i

pi Y (ωi)) = E(X) + E(Y)

///

Proposition: Let X be a random variable on a sample space Ω = {ω1, . . . , ωn},
with probabilities P (ωi) = pi. Let c be a constant. The random variable cX is
defined in the natural way as

cX(ωi) = c ·X(ωi)

Then
E(cX) = c · E(X)

Proof: This is a direct computation from the definition:

E(cX) =
∑

i

pi cX(ωi) = c
∑

i

pi X(ωi) = c · E(X)

///

Let Ω be a sample space. Let X and Y be random variables on Ω. The product
random variable XY is defined on the sample space Ω in the reasonable way:

(XY)(ω) = X(ω) Y (ω)

These two random variables X and Y are independent random variables if for
every pair x, y of possible values of X, Y , we have

P (X = x and Y = y) = P (X = x) · P (Y = y)

1.5 Random variables, expected values, variance 23

(This definition of independence is really just a paraphrase of the earlier definition
of independence of events, applied to several implicitly defined events.)

The following assertion is not generally true without the hypothesis of inde-
pendence. We give an example of this after the proof.

Proposition: For two independent random variables X, Y on a sample space Ω,
the expected value of the product is the product of the expected values:

E(XY) = E(X) · E(Y)

Proof: The definition of the expected value of the product is

E(XY) =
∑
ω∈Ω

P (ω)XY (ω)

By the definition of XY , this is∑
ω∈Ω

P (ω)X(ω) Y (ω)

To prove the proposition gracefully it is wise to use the notation introduced above:
let x range over possible values of X and let y range over possible values of Y .
Then we can rewrite the expected value by grouping according to values of X and
Y : it is ∑

x,y

∑
ω

P (ω)X(ω) Y (ω)

where for fixed (x, y) the inner sum is over ω so that

X(ω) = x and Y (ω) = y

Then use the new notation to rewrite this as

=
∑
x,y

P (X = x and Y = y) x y

The assumption of independence is exactly that

P (X = x and Y = y) = P (X = x) · P (Y = y)

so the expression becomes ∑
x,y

P (X = x) P (Y = y) x y

which we can now separate as a product

=
∑

x

P (X = x) x ·
∑

y

P (Y = y) y = E(X) · E(Y)

24 Chapter 1 Probability

///

Remark: If X and Y are not independent the conclusion of the previous proposi-
tion may be false. For example, let X and Y both be the number of heads obtained
in a single flip of a fair coin. Then XY = X = Y , and we compute that

E(X) = E(Y) = E(XY) = P (head) · 1 + P (tail) · 0 =
1
2
· 1 +

1
2
· 0 =

1
2

Then
E(XY) =

1
2
6= 1

4
=

1
2
· 1
2

= E(X) · E(Y)

An important case of independent random variables arises when several in-
dependent trials are conducted (with the same ‘experiment’). Let Ω be a sample
space. Consider N independent trials. Consider the product

ΩN = Ω× . . .× Ω︸ ︷︷ ︸
N

consisting of ordered N -tuples of elements from Ω. Let Xi be a random variable
on ΩN whose value only depends upon the outcome of the ith trial. Then for i 6= j
the two random variables Xi and Xj are independent.

The variance σ2(X) of a random variable X with expected value µ = E(X)
is the expected value of the random variable (X − µ)2:

σ2(X) = E
(
(X − µ)2

)
The (non-negative) square root σ of the variance σ2 is the standard deviation
of X.

Finally, we compute the expected value and variance for the binomial distri-
bution. That is, fix a positive integer n, fix a real number p in the range 0 ≤ p ≤ 1,
and let Ω be the probability space consisting of all ordered n-tuples of 0’s and 1’s,
with

P (a particular sequence with i 1’s and n− i 0’s) = pi (1− p)n−i

Let X be the random variable on Ω defined by

X(a sequence of n 0’s and 1’s) = number of 1’s in the sequence

Then from earlier examples we know that

P (X = i) =
{(

n
i

)
pi (1− p)n−i (for 0 ≤ i ≤ n)
0 (otherwise)

Proposition: With the random variable X as just above

E(X) = pn

σ2(X) = p(1− p)n

1.5 Random variables, expected values, variance 25

Remark: The expected value assertion is certainly intuitively plausible, and there
are also easier arguments than what we give below, but it seems reasonable to warm
up to the variance computation by a similar but easier computation of the expected
value.

Proof: This computation will illustrate the use of generating functions to evaluate
naturally occurring but complicated looking expressions. Let q = 1− p.

First, let’s get an expression for the expected value of X: from the definition,

E X =
n∑

i=0

i · P (X = i) =
n∑

i=0

i ·
(

n

i

)
pi qn−i

An astute person who remembered the binomial theorem might remember that it
asserts exactly that the analogous summation without the factor i in front of each
term is simply the expanded form of (p + q)n:

n∑
i=0

(
n

i

)
pi qn−i = (p + q)n

This is encouraging! The other key point is to notice that if we differentiate the
latter expression with respect to p, without continuing to require q = 1− p, we get

n∑
i=0

(
n

i

)
i pi−1 qn−i = n (p + q)n−1

The left-hand side is nearly the desired expression, but we’re missing a power of p
throughout. To remedy this, multiply both sides of the equality by p, to obtain

n∑
i=0

(
n

i

)
i pi qn−i = n p(p + q)n−1

Once again requiring that p + q = 1, this simplifies to give the expected value

E X =
n∑

i=0

(
n

i

)
i pi qn−i = n p

To compute the variance, we first do some formal computations: let µ be E(X).
Then

σ2(X) = E((X − µ)2) = E
(
X2 − 2µX + µ2

)
= E(X2)− 2µE(X) + µ2

= E(X2)− 2µ · µ + µ2 = E(X2)− µ2

So to compute the variance of X the thing we need to compute is E(X2)

E(X2) =
n∑

k=0

P (X = k) · k2

26 Chapter 1 Probability

As usual, there are
(
n
k

)
ways to have exactly k 1’s, and each way occurs with

probability pkqn−k. Thus,

E(X2) =
n∑

k=0

k2 ·
(

n

k

)
pk qn−k

This is very similar to the expression that occurred above in computing the
expected value, but now we have the extra factor i2 in front of each term instead
of i. But of course we might repeat the trick we used above and see what happens:
since

p
∂

∂p
pi = ipi

then by repeating it we have

p
∂

∂p
· p ∂

∂p
pk = k2pk

Thus, in the expression for E(X2), compute

n∑
i=0

(
n

i

)
i2 piqn−i =

n∑
i=0

(
n

i

)
p

∂

∂p
· p ∂

∂p
piqn−i

= p
∂

∂p
· p ∂

∂p

n∑
i=0

(
n

i

)
piqn−i = p

∂

∂p
· p ∂

∂p
(p + q)n

since after getting the i2 out from inside the sum we can recognize the binomial
expansion. Taking derivatives gives

p
∂

∂p
·p ∂

∂p
(p+q)n = p

∂

∂p

(
p · n(p + q)n−1

)
= p(1·n(p+q)n−1+p·n(n−1)(p+q)n−2)

Using p + q = 1 gives
E(X2) = p(n + p · n(n− 1))

So then

σ2 = E(X2)− µ2 = p(n + p · n(n− 1))− (pn)2 = pn + p2n2 − p2n− p2n2

= p(1− p)n

This finishes the computation of the variance of a binomial distribution. ///

Remark: The critical or skeptical reader might notice that there’s something
suspicious about differentiating with respect to p in the above arguments, as if p and
q were independent variables, when in fact p+q = 1. Indeed, if a person had decided
that p was a constant, then they might feel inhibited about differentiating with
respect to it at all. But, in fact, there is no imperative to invoke the relationship
p + q = 1 until after the differentiation, so the computation is legitimate.

1.7 Law of Large Numbers 27

1.6 Markov’s inequality, Chebysheff’s inequality
Among other things, this section is the technical preparation to prove a special
case of the Law of Large Numbers, which roughly asserts that in the long run the
outcomes of a random event don’t stray too far from the expected value (mean), in
a sense relative to the variance. To reduce visual clutter, we may suppress some
parentheses, writing EX for E(X) and σ2X for σ2(X), and so on.
Theorem: (Markov’s Inequality) Let X be a real-valued random variable, and let
f be a non-negative-valued function on R. Fix a > 0. Then

P (f(X) ≥ a) ≤ Ef(X)
a

Proof: Let χ be the function

χ(t) =
{

1 (if f(t) ≥ a)
0 (if f(t) < a)

Then
f(X) ≥ a · χ(X)

Note that the expected value of the random variable χ(X) is simply the probability
that f(X) ≥ a:

E χ(X) =
∑

x

P (χ(X) = x) ·x = P (χ(X) = 0) ·0+P (χ(X) = 1) ·1 = P (f(X) ≥ a)

by the definition of χ. Taking the expected value of both sides of this and using
f(X) ≥ a · χ(X) gives

E f(X) ≥ a · E χ(X) = a · P (f(X) ≥ a)

by the previous observation. ///

Corollary: (Chebysheff’s Inequality) Let X be a real-valued random variable. Fix
ε > 0. Then

P (|X − E(X)| ≥ ε) ≤ σ2X

ε2

Proof: This follows directly from the Markov inequality, with f(X) = (X−E(X))2

and a = ε2. ///

1.7 Law of Large Numbers
A Law of Large Numbers was first proven for the special case of binomial distribu-
tions (coin-tossing with a not-necessarily fair coin) by Borel in 1909. The general
case was treated by Kolmogorov in 1933. Although 1909 and 1933 may seem dis-
tant now, many mathematicians had been interested in these questions since about
1600 because of applications to gambling, so it is in fact a bit strange that the Law
of Large Numbers was put on firm ground so late. We’ll just treat the binomial
distribution case here.

28 Chapter 1 Probability

Fix a real number p in the range 0 ≤ p ≤ 1, and put q = 1 − p. These will
be unchanged throughout this section. Let n be a positive integer, which will be
thought of as increasing. Let Ωn be the probability space consisting of all ordered
n-tuples of 0’s and 1’s, with

P (a sequence with i 1s and n− i 0s) = pi (1− p)i

Let Xn be the random variable on Ωn defined by

Xn(sequence of n 0s and 1s) = number of 1s in the sequence

Then from earlier examples we know that

P (Xn = i) =
(

n

i

)
pi qn−i

(for 0 ≤ i ≤ n, 0 otherwise). We earlier computed the expected value EXn = pn.
We also computed the variance

σ2(Xn) = p(1− p)n

The following assertion is a very simple example of what can be said:
Theorem: (Weak Law of Large Numbers) Let Xn be the random variable just
above. Let ε > 0 be an arbitrarily small positive real number. Then

lim
n→∞

P (|Xn − E(Xn)| ≥ ε · n) = 0

Proof: We will obtain this by making a good choice of the parameter in Cheby-
cheff’s inequality. We know from computations above that E(Xn) = p · n and
σ2(Xn) = p(1− p)n. Chebycheff’s inequality asserts in general that

P (|X − E(X)| > tσ(X)) <
1
t2

where σ(X) is the variance of X, which here gives

P
(
|Xn − p · n| > t ·

√
p(1− p) ·

√
n
)

<
1
t2

Now take
t =

ε√
p(1− p)

·
√

n

to obtain

P (|Xn − p · n| > ε · n) <
p(1− p)
n · ε2

The right-hand side certainly goes to 0 as n goes to infinity, so we’re done. ///

Exercises 29

Exercises

1.01 How many elements are in the set {1, 2, 2, 3, 3, 4, 5}? How many are in the
set {1, 2, {2}, 3, {3}, 4, 5}? In {1, 2, {2, 3}, 3, 4, 5}? (ans.)

1.02 Let A = {1, 2, 3, 4, 5} and B = {3, 4, 5, 6, 7}. List (without repetition) the
elements of the sets A ∪B, A ∩B, and of {x ∈ A : x 6∈ B}. (ans.)

1.03 List all the elements of the power set (set of subsets) of {1, 2, 3}. (ans.)

1.04 Let A = {1, 2, 3} and B = {2, 3}. List (without repetition) all the elements
of the cartesian product set A×B. (ans.)

1.05 How many different ways are there to order the set {1, 2, 3, 4}? (ans.)

1.06 How many choices of 3 things from the list 1, 2, 3, . . . , 9, 10 are there? (ans.)

1.07 How many subsets of {1, 2, 3, 4, 5, 6, 7} are there with exactly 4 elements?
(ans.)

1.08 How many different choices are there of an unordered pair of distinct numbers
from the set {1, 2, . . . , 9, 10}? How many choices of ordered pair are there?
(ans.)

1.09 How many functions are there from the set {1, 2, 3} to the set {2, 3, 4, 5}?
(ans.)

1.10 How many injective functions are there from {1, 2, 3} to {1, 2, 3, 4}? (ans.)

1.11 How many injective functions are there from {1, 2, 3} to {1, 2, 3, 4, 5}?
1.12 How many surjective functions are there from {1, 2, 3, 4} to {1, 2, 3}? (ans.)

1.13 How many surjective functions are there from {1, 2, 3, 4, 5} to {1, 2, 3, 4}?
1.14 How many surjective functions are there from {1, 2, 3, 4, 5} to {1, 2, 3}?
1.15 Prove a formula for the number injective functions from an m-element set

to an n-element set.

1.16 (*) Let S(m,n) be the number of surjective functions from an m-element
set to an n-element set (with m ≥ n). Prove the recursive formula

S(m,n) = nm −
n−1∑
i=1

(
n

i

)
· S(m, i)

1.17 Show that if f : A → B and g : B → C are functions with inverses, then
g ◦ f has an inverse, and this inverse is f−1 ◦ g−1.

1.18 Show that for a surjective function f : A → B there is a right inverse g,
meaning a function g : B → A so that f ◦ g = idB (but not necessarily
g ◦ f = idA.)

1.19 Show that for an injective function f : A → B there is a left inverse g,
meaning a function g : B → A so that g ◦ f = idA (but not necessarily
f ◦ g = idB .)

30 Chapter 1 Probability

1.20 Verify that the sum of all binomial coefficients
(
n
k

)
with 0 ≤ k ≤ n is 2n.

(ans.)

1.21 Verify that the sum of expressions (−1)k
(
n
k

)
with 0 ≤ k ≤ n is 0.

1.22 How many subsets of all sizes are there of a set S with n elements? (ans.)

1.23 How many pairs are there of disjoint subsets A,B each with 3 elements
inside the set {1, 2, 3, 4, 5, 6, 7, 8}? (ans.)

1.24 Give a bijection from the collection 2Z of even integers to the collection Z
of all integers. (ans.)

1.25 Give a bijection from the collection of all integers to the collection of non-
negative integers. (ans.)

1.26 (*) Give a bijection from the collection of all positive integers to the collection
of all rational numbers.

1.27 (**) This illustrates a hazard in a too naive notion of a rule for forming a
set. Let S be the set of all sets which are not an element of themselves.
That is, let

S = { sets x : x 6∈ x}

Is S ∈ S or is S 6∈ S? (Hint: Assuming either that S is or isn’t an element
of itself leads to a contradiction. What’s going on?)

1.28 What is the probability of exactly 3 heads out of 10 flips of a fair coin?
(ans.)

1.29 What is the probability that there will be strictly more heads than tails out
of 10 flips of a fair coin? Out of 20 flips? (ans.)

1.30 If there are 3 red balls and 7 blue balls in an urn, what is the probability
that in two trials two red balls will be drawn? (ans.)

1.31 If there are 3 red balls and 7 blue balls in an urn, what is the probability
that in 10 trials at least 4 red balls will be drawn?

1.32 Prove that

1 + 2 + 3 + 4 + . . . + (n− 1) + n =
1
2
n(n + 1)

1.33 A die is a small cube with numbers 1-6 on its six sides. A roll of two dice
has an outcome which is the sum of the upward-facing sides of the two, so
is an integer in the range 2-12. A die is fair if any one of its six sides is as
likely to come up as any other. What is the probability that a roll of two
fair dice will give either a ‘7’ or an ‘8’? What is the probability of a ‘2’?

1.34 What is the probability that there will be fewer than (or exactly) N heads
out of 3N flips of a fair coin?

1.35 (*) You know that in a certain house there are two children, but you do
not know their genders. You know that each child has a 50-50 chance of

Exercises 31

being either gender. When you go to the door and knock, a girl answers the
door. What is the probability of the other child being a boy? (False hint:
out of the 4 possibilities girl-girl, girl-boy, boy-girl, boy-boy, only the first
3 occur since you know there is at least one girl in the house. Of those 3
possibilities, in 2/3 of the cases in addition to a girl there is a boy. So (?) if
a girl answers the door then the probability is 2/3 that the other child is a
boy.) (Comment: In the submicroscopic world of elementary particles, the
behavior of the family of particles known as bosons is contrary to the correct
macroscopic principle illustrated by this exercise, while fermions behave in
the manner indicated by this exercise.)

1.36 The Birthday Paradox: Show that the probability is greater than 1/2 that,
out of a given group of 24 people, at least two will have the same birthday.

1.37 (*) The Monty Hall paradox You are in a game show in which contestants
choose one of three doors, knowing that behind one of the three is a good
prize, and behind the others nothing of any consequence. After you’ve chosen
one door, the gameshow host (Monty Hall) always shows you that behind
one of the other doors there is nothing and offers you the chance to change
your selection. Should you change? (What is the probability that the prize
is behind the door you did not initially choose? What is the probability that
the prize is behind the other closed door?)

1.38 (**) Suppose that two real numbers are chosen ‘at random’ between 0 and
1. What is the probability that their sum is greater than 1? What is the
probability that their product is greater than 1/2?

1.39 If there are 3 red balls in an urn and 7 black balls, what is the expected
number of red balls to be drawn in 20 trials (replacing whatever ball is
drawn in each trial)? (ans.)

1.40 What is the expected number of consecutive heads as a result of tossing a
fair coin? (ans.)

1.41 What is the expected number of coin flips before a head comes up (with a
fair coin)?

1.42 What is the expected number of coin flips before two consecutive heads come
up?

1.43 What is the expected distance between two ‘e’s in a random character stream
where ‘e’s occur 11% of the time?

1.44 What is the expected distance between two ‘ee’s in a random character
stream where ‘e’s occur 11% of the time?

1.45 Let X be the random variable defined as ‘the number of heads in 10 flips
of a fair coin.’ The sample space is all 210 different possible sequences of
outcomes of 10 flips. The expected value of X itself is 5. What is the
expected value of the random variable (X − 5)2?

1.46 (*) What is the expected number of coin flips before n consecutive heads
come up?

32 Chapter 1 Probability

1.47 (*) Choose two real numbers ‘at random’ from the interval [0, 1]. What is
the expected value of their sum? product?

1.48 Compute the variance of the random variable which tells the result of the
roll of one fair die.

1.49 Compute the variance of the random variable which tells the sum of the
result of the roll of two fair dice.

1.50 Compute the variance of the random variable which tells the sum of the
result of the roll of three fair dice.

1.51 (*) Compute the variance of the random variable which tells the sum of the
result of the roll of n fair dice.

1.52 (*) Consider a coin which has probability p of heads. Let X be the random
variable which tells how long before 2 heads in a row come up. What is the
variance of X?

1.53 Gracefully estimate the probability that in 100 flips of a fair coin the number
of heads will be at least 40 and no more than 60. (ans.)

1.54 Gracefully estimate the probability that in 1000 flips of a fair coin the num-
ber of heads will be at least 400 and no more than 600. (ans.)

1.55 Gracefully estimate the probability that in 10,000 flips of a fair coin the
number of heads will be at least 4000 and no more than 6000. (ans.)

1.56 With a coin that has probability only 1/10 of coming up heads, show that
the probability is less than 1/9 that in 100 flips the number of heads will be
more than 20. (ans.)

1.57 With a coin that has probability only 1/10 of coming up heads, show that
the probability is less than 1/900 that in 10,000 flips the number of heads
will be less than 2000.

2

Information

2.1 Uncertainty, acquisition of information
2.2 Definition of entropy

The words uncertainty, information, and redundancy all have some in-
tuitive content. The term entropy from thermodynamics may suggest a related
notion, namely a degree of disorder. We can make this more precise, and in our
context we will decide that the three things, uncertainty, information, and entropy,
all refer to roughly the same thing, while redundancy refers to lack of uncertainty.

Noiseless coding addresses the issue of organizing information well for trans-
mission, by adroitly removing redundancy. It does not address issues about noise or
any other sort of errors. The most visible example of noiseless coding is compres-
sion of data, although abbreviations, shorthand, and symbols are equally important
examples.

The other fundamental problem is noisy coding, more often called error-
correcting coding, meaning to adroitly add redundancy to make information
robust against noise and other errors.

The first big result in noiseless coding is that the entropy of a memoryless
source gives a lower bound on the length of a code which encodes the source.
And the average word length of such a code is bounded in terms of the entropy.
This should be interpreted as a not-too-surprising assertion that the entropy of a
source correctly embodies the notion of how much information the source emits.

2.1 Uncertainty, acquisition of information
It turns out that a very reasonable list of requirements for a notion of entropy
uniquely characterizes it. This is a theorem!

First, let’s try to clarify a bit what we mean by uncertainty and information.
For example, the outcome of a fair coin flip is more uncertain than the outcome

of a biased coin which gives heads 3/4 of the time and tails 1/4.

33

34 Chapter 2 Information

The outcome of the roll of a single fair die (with faces 1–6) is more uncertain
than the toss of a coin: there are more things that can happen, each of which has
rather small probability.

On the other hand, we can talk in a similar manner about acquisition of infor-
mation. For example, in a message consisting of ordinary English, the completion
of the fragment

Because the weather forecast called for rain, she took her...

to
Because the weather forecast called for rain, she took her umbrella.

imparts very little further information. While it’s true that the sentence might
have ended boots instead, we have a clear picture of where the sentence is going.
By contrast, completion of the fragment

The weather forecast called for...

to
The weather forecast called for rain.

imparts a relatively large amount of information, since the first part of the sentence
gives no clues to its ending. Even more uncertainty remains in trying to complete
a sentence like

Then he surprised everyone by...

and commensurately more information is acquired when we know the completion.
In a related direction: the reason we are able to skim newspapers and other

‘lightweight’ text so quickly is that most of the words are not at all vital to the con-
tent, so if we ignore many of them the message still comes through: the information
content is low, and information is repeated. By contrast, technical writing is harder
to read, because it is more concise, thereby not allowing us to skip over things. It is
usually not as repetitive as more ordinary text. What ‘concise’ means here is that
it lacks redundancy (meaning that it does not repeat itself). Equivalently, there
is a high information rate.

Looking at the somewhat lower-level structure of language: most isolated ty-
pographical errors in ordinary text are not hard to correct. This is because of the
redundancy of natural languages such as English. For example,

The sun was shining brghtly.

is easy to correct to
The sun was shining brightly.

In fact, in this particular example, the modifier ‘brightly’ is hardly necessary at all:
the content would be almost identical if the word were omitted entirely. By contrast,
typographical errors are somewhat harder to detect and correct in technical writing
than in ordinary prose, because there is less redundancy, especially without a larger
context.

2.1 Uncertainty, acquisition of information 35

Note that correction of typos is a lower-level task than replacing missing words,
since it relies more upon recognition of what might or might not be an English word
rather than upon understanding the content. Corrections based upon meaning
would be called semantics-based correction, while corrections based upon mis-
spelling or grammatical errors would be syntax-based correction. Syntax-based
correction is clearly easier to automate than semantics-based correction, since the
‘rules’ for semantics are much more complicated than the ‘rules’ for spelling and
grammar (which many people find complicated enough already).

Still, not every typo is easy to fix, because sometimes they occur at critical
points in a sentence:

I cano go with you.

In this example, the ‘cano’ could be either ‘can’ with a random ‘o’ stuck on its
end, or else either ‘cannot’ with two omissions or maybe ‘can’t’ with two errors. By
contrast, errors in a different part of the message, as in

I can go wih you.

are easier to fix. In the first of these two examples, there would be a lot of infor-
mation imparted by fixing the typo, but in the second case very little. In other
words, in the first case there was high uncertainty, but in the second not.

Let’s look at several examples of the loss of intelligibility of a one-line sentence
subjected to a 12% rate of random errors. That is, for purposes of this example,
we’ll randomly change about 12% of the letters to something else. We’ll do this
several times to see the various effects. Starting with

Experiment and pattern recognition are important in number theory.

we get

Dxpbviment and pattecn recognition arx iqporxant in kumder theofy.
Expurkmest and pattetn rncognition zrp impoxtant in number theocv.
Expecimeno and pattern recognition ake imboltanj in number thporq.
Experimect utk pattern regognitoon ame important in nkmber theoxy.
Experiment and pattern rncognltion xre important in yumbwr qheory.
Expkriment and pattern recognition bre importajt ip number tceory.
Ewperiment and gattern ieungnition are impjrtdlt in numwer theory.
Experiment awk gattern recognition are important jr qumbea tkeosj.
Euperiment anm paltern recognition are importanr in numbew tpvory.
Exmeriment and piztkrn recognition are importgnt in number theory.

Several things should be observed here. First, the impact on clarity and correctabil-
ity depends greatly on which letters get altered. For example, the word ‘number’ is
sensitive in this regard. Second, although the average rate of errors is 12%, some-
times more errors than this occur, and sometimes fewer. And the distribution of
errors is not regular. That is, a 12% error rate does not simply mean that every
8th letter is changed, but only expresses an average. Among the above 10 samples,

36 Chapter 2 Information

in at least 2 the meaning seems quite obscure. Third, using more than one of the
mangled sentences makes it very easy to infer the correct original.

With an error rate of 20%, there are frequent serious problems in intelligibility:
perhaps none of the ten samples retains its meaning if presented in isolation. From
the same phrase as above

Dxpbviment and pattecn recognition arx dmpottant in kumder theofy.
Expurkmest and pathgrn abcognitiom lre imvortanl vn numser teeory.
Pxpefiment cnd patrern recogibtiyz ure yvmortnnt iy nmmber thodry.
Edwhriment anh putzern mecovnition arl mmportanq im number theory.
Experimewt ang patjern recognition ace iepootant in uumber thkory.
Experiment and patuerj rgcocnitkon gre ihportans in numbej tyeoul.
Vxhdpiment and patoejc rvcognioion are important in ndtbvr theory.
Experiment and pattern rfgojsitreq asp ijportant in wvhber theory.
Exaegiment and paryern rectgrikion aoj imuovtant en thmbyr theory.
Expedimctt anc katcern recagnition rre impertant in numbzr theory.

In these 10 examples few of the words are recognizable. That is, looking for
an English word whose spelling is close to the given, presumably misspelled, word
does not succeed on a majority of the words in these garbled fragments. This is
because so many letters have been changed that there are too many equally plausible
possibilities for correction. Even using semantic information, these sentences are
mostly too garbled to allow recovery of the message.

Notice, though, that when we have, in effect, 9 retransmissions of the original
(each garbled in its own way) it is possible to make inferences about the original
message. For example, the 10 messages can have a majority vote on the correct
letter at each spot in the true message. Ironically, the fact that there are so many
different error possibilities but only one correct possibility makes it easy for the
correct message to win such votes. But a large number of repetitions is an inefficient
method for compensating for noise in a communications channel.

Another version of noise might result in erasures of some characters. Thus,
we might be assured that any letter that ‘comes through’ is correct, but some are
simply omitted.

One point of this discussion is that while English (or any other natural lan-
guage) has quite a bit of redundancy in it, this redundancy is unevenly distributed.
In other words, the information in English is not uniformly distributed but is con-
centrated at some spots and thin at others.

Another way to illustrate the redundancy is to recall an advertisement from
the New York subways of years ago:

F u cn rd ths, u cn gt a gd jb.

An adroit selection of about 40% of the letters was removed, but this is still intel-
ligible.

2.2 Definition of entropy 37

2.2 Definition of entropy
Some very reasonable and intuitive conditions for entropy of a random variable
turn out to uniquely determine what this notion of entropy must be. The list of
axioms characterizing entropy is essentially due to Claude Shannon, from about
1948. We give the definition and an important basic inequality here.

We will only talk about a low-level syntactical version of information and
entropy, since this can be formalized. More interesting but subtler questions
about semantic information are too sophisticated for this context.

The intuitive idea of uncertainty in some experiment (such as coin flipping
or dice rolling) measures how much information we will have acquired after the
experiment is over. Entropy is a synonym for uncertainty in this sense. We will
use the word ‘entropy’ from now on to make clear that we refer to these particular
issues.

Let Ω = {ω1, . . . , ωn} be a finite sample space, with probabilities P (ωi), with

P (ω1) + P (ω2) + . . . + P (ωn−1) + P (ωn) = 1

and
P (ωi) ≥ 0 (for all indices i)

as usual. The (self-) information of the event ωi is defined to be

self-information of event ωi = I(ωi) = − log2 P (ωi)

Thus, a relatively unlikely event has greater (self-) information than a relatively
likely event.

For example, for flipping a fair coin, the sample space is {H,T}. Since the coin
is fair,

P (H) = P (T) =
1
2

The self-information of either head or tail is

I(H) = − log2

1
2

= 1

I(T) = − log2

1
2

= 1

This simplest example motivates the name for the unit of information, the bit.
The entropy of a sample space is the expected value of the self-information of

(atomic) events in Ω. That is, with the notation as just above,

entropy of sample space = H(Ω) =
∑

1≤i≤n

P (ωi) I(ωi)

=
∑

1≤i≤n

−P (ωi) log2 P (ωi)

38 Chapter 2 Information

Remark: If pi = 0, then ‘interpret’ pi log2 pi = 0. This is reasonable, because
recall from calculus that

lim
x→0+

x logb x = 0

for any base b > 1.
Thinking of sample spaces as representing some sort of experiments or tests,

the entropy should be a measure of the information acquired by performing the
experiment, or, equivalently, how much uncertainty is eliminated. Since we don’t
care what the values of the random variable are, but only care about the probabil-
ities p1, . . . , pn, we may also suppress the reference to the sample space itself and
just refer to the probabilities: write

H(p1, . . . , pn) = entropy of sample space {x1, . . . , xn} with P (ωi) = pi

We also can define the entropy of a random variable X in a similar way. Let
X be a random variable on a sample space Ω = {ω1, . . . , ωn}. The entropy of X
can be viewed as a sort of expected value:

H(X) =
∑

values x of X

−P (X = x) log2 P (X = x)

Now we state the axioms for entropy. The point is not to give an axiomatic
system, but rather to discuss the desirable features that we’re trying to embody. It
is worth being conscious and explicit about these requirements.
• H(p1, . . . , pn) is maximum when p1 = . . . = pn = 1

n . That is, the most
pre-existing uncertainty is when all possibilities are equally likely.

• For any permutation i→ s(i) of the indices,

H(p1, . . . , pn) = H
(
ps(1), . . . , ps(n)

)
That is, only the probabilities matter, not their ordering or labeling.

• H(p1, . . . , pn) ≥ 0, and is 0 only if one of the pis is 1. That is, uncertainty
disappears entirely only if there is no randomness present.

• H(p1, . . . , pn) = H(p1, . . . , pn, 0). That is, ‘impossible’ outcomes do not con-
tribute to uncertainty.

•
H(

1
n

, . . . ,
1
n︸ ︷︷ ︸

n

) ≤ H(
1

n + 1
, . . . ,

1
n + 1︸ ︷︷ ︸

n+1

)

That is, a larger ensemble of equally likely possibilities is more uncertain
than a smaller ensemble.

• H should be a continuous function of the probabilities: ‘small’ changes in the
probabilities should not cause ‘large’ changes in uncertainty.

• For positive integers m,n,

H

(
1

mn
, . . . ,

1
mn

)
= H

(
1
m

, . . . ,
1
m

)
+ H

(
1
n

, . . . ,
1
n

)

2.2 Definition of entropy 39

That is, the uncertainty in performing two independent experiments should
be the sum of the two uncertainties.

• Let p = p1 + . . . + pm and q = q1 + . . . + qn with all pi and qj positive, and
p + q = 1. Then

H(p1, . . . , pm, q1, . . . , qn) = H(p, q) + pH(p1, . . . , pm) + qH(q1, . . . , qn)

This is about conditional probabilities and a sensible requirement about un-
certainty in such a situation. That is, we group the outcomes of an experiment
into two subsets and then say that the uncertainty is the uncertainty of which
batch the outcome falls into, plus the weighted sum of the uncertainties about
exactly where the outcome falls in the subsets.

Theorem: Any entropy function H(p1, . . . , pn) meeting the above conditions is a
positive scalar multiple of

H(p1, . . . , pn) =
∑

i

−pi log2 pi

(For a proof, see [Roman 1992], page 13.)
Remark: Again, if pi = 0, ‘interpret’ pi log2 pi as 0, since

lim
x→0+

x logb x = 0

Remark: The logarithm is taken base 2 for historical reasons. Changing the base
of the logarithm to any other number b > 1 merely uniformly divides the values
of the entropy function by log2 b. Thus, for comparison of the relative uncertainty
of different sets of probabilities, it doesn’t really matter what base is used for the
logarithm. But base 2 is traditional and also does make some answers come out
nicely. Some early work by Hartley used logarithms base 10 instead, and in that
case the unit of information or entropy is the Hartley, which possibly sounds more
exotic.
Remark: The units for entropy are also bits, since we view entropy as an ex-
pected value (thus, a kind of average) of information, whose unit is the bit. This is
compatible with the other use of bit (for binary digit), as the coin-flipping example
illustrates.
Example: The entropy in a single toss of a fair coin is

H (coin) = H

(
1
2
,
1
2

)
=

1
2

(
− log2

1
2

)
+

1
2

(
− log2

1
2

)

=
1
2

(
−(−1)) +

1
2
(−(−1)

)
= 1 bit

Indeed, one might imagine that such a coin toss is a basic unit of information.
Further, if we label the coin ‘0’ and ‘1’ instead of ‘heads’ and ‘tails’, then such a
coin toss exactly determines the value of a bit.

40 Chapter 2 Information

Example: The entropy in a single roll of a standard six-sided die is

H (die) = H

(
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6

)
= −

6∑
i=1

1
6

log2

1
6

= log2 6 ≈ 2.58496250072 bits

Example: To compute the entropy of the sum-of-two-dice random variable (two
dice rolled together, and their sum taken), notice first that there are 6 · 6 = 36
possible rolls altogether, and among these just 1 way to get 2, 2 ways to get 3,
3 ways to get 4, 4 ways to get 5, 5 ways to get 6, 6 ways to get 7, and then the
counting starts to decline: just 5 ways to get 8, 4 ways to get 9, 3 ways to get 10,
2 ways to get 11, and 1 way to get 12. Thus, the entropy is computed as

H (sum two dice) = H

(
1
36

,
2
36

,
3
36

,
4
36

,
5
36

,
6
36

,
5
36

,
4
36

,
3
36

,
2
36

,
1
36

)

= − 1
36

log2

1
36
− 2

36
log2

2
36
− ...− 1

36
log2

1
36
≈ 3.27440191929 bits

Example: The entropy in a single letter of English (assuming that the various
letters will occur with probability equal to their frequencies in typical English) is
approximately

H(letter of English) ≈ 4.19

(This is based on empirical information, that ‘e’ occurs about 11% of the time, ‘t’
occurs about ‘9’% of the time, etc.) By contrast, if all letters were equally likely,
then the entropy would be somewhat larger, about

H

(
1
26

, . . . ,
1
26

)
= log2 (26) ≈ 4.7

Remark: The proof that the axioms uniquely characterize entropy is hard, and
not necessary for us, so we’ll skip it. But an interested reader can certainly use
basic properties of logarithms (and a bit of algebra and basic probability) to verify
that

H(p1, . . . , pn) = −
∑

i

pi log2 pi

meets the conditions, even if it’s not so easy to prove that nothing else does.
Joint entropy of a collection X1, . . ., XN of random variables is defined in

the reasonably obvious manner

H(X1, . . . , Xn)

= −
∑

x1,...,xn

P (X1 = x1, . . . , Xn = xn) log2 P (X1 = x1, . . . , Xn = xn)

To prove a few basic things about entropy, we need:

2.2 Definition of entropy 41

Lemma: Fix p1, . . . , pn with each pi ≥ 0 and
∑

i pi = 1. Let q1, . . . , qn vary,
subject only to the restriction that qi ≥ 0 for all indices, and

∑
i qi = 1. Then

min
q1,...,qn

−
∑

i

pi log2 qi

occurs only when qi = pi for all indices.

Proof: First, from looking at the graph of lnx we see that the tangent line at
x = 1 lies above the graph of lnx and touches it only at x = 1. That is,

lnx ≤ x− 1

with equality only for x = 1. And since

log2 x = log2 e · lnx

we have
log2 x ≤ (log2 e)(x− 1)

with equality only for x = 1. Then replace x by q/p to obtain

log2 (q/p) ≤ (log2 e)(q/p− 1)

Multiply through by p to get

p log2 (q/p) ≤ (log2 e)(q − p)

and then
p log2 q ≤ p log2 p + (log2 e)(q − p)

with equality occurring only for q = p. Replacing p, q by pi and qi and adding the
resulting inequalities, we have∑

i

pi log2 qi ≤
∑

i

pi log2 pi + (log2 e)
∑

i

(qi − pi)

Since
∑

i pi = 1 and
∑

i qi = 1, this simplifies to∑
i

pi log2 qi ≤
∑

i

pi log2 pi

Multiplying through by −1 reverses the order of inequality and gives the assertion.
///

Corollary: H(p1, . . . , pn) ≤ log2 n with equality occurring only when pi = 1
n for

all indices.

Proof: This corollary follows from the previous inequality by letting qi = 1
n . ///

42 Chapter 2 Information

Corollary: For two random variables X, Y ,

H(X, Y) ≤ H(X) + H(Y)

with equality if and only if X and Y are independent random variables.

Proof: For brevity, let

pi = P (X = xi)
qj = P (Y = yj)
rij = P (X = xi, Y = yj)

We will use the fact that for fixed i we have
∑

j rij = pi and for fixed j we have∑
i rij = qj . Then compute directly:

H(X) + H(Y) = −
∑

i

pi log2 pi −
∑

j

qj log2 qj

= −
∑

i

∑
j

rij

 log2 pi −
∑

j

(∑
i

rij

)
log2 qj

Then reassemble the sum as

−
∑
ij

rij(log2 pi + log2 qj) = −
∑
ij

rij log2 piqj ≥ −
∑
ij

rij log2 rij = H(X, Y)

by the Fundamental Inequality. And, further,

P (X = xi, Y = yj) = rij = piqj = P (X = xi) P (Y = yj)

if and only if X and Y are independent. ///

For an event (that is, subset) ω in a probability space Ω, and for a random
variable X on that probability space, define a conditional entropy by

H(X|ω) = −
∑

i

P (X = xi|ω) log2 P (X = xi|ω)

And then for another random variable Y on Ω, define a conditional entropy by

H(X|Y) =
∑

j

P (Y = yj) H(X|Y = yj)

where we use the previous notion of conditional entropy with respect to the subset
ω where Y = yj . The idea here is that H(X|Y) is the amount of uncertainty or
entropy remaining in X after Y is known.

It is pretty easy to check that

H(X|X) = 0

Exercises 43

(so knowing the outcome of X removes all uncertainty about the outcome of X,
which seems fair) and that

H(X|Y) = H(X) if X and Y are independent

since the independence should presumably mean that no information about X is
imparted by knowing about Y .
proto-Theorem: We have H(X|Y) = 0 if and only if X is a function of Y .

The previous proto-theorem, which is not a real theorem because the phrase
is a function of needs clarification, is really a special case of the following genuine
theorem.
Theorem: For two random variables X, Y on a probability space Ω, joint entropy
is expressed in terms of conditional entropy by

H(X, Y) = H(Y) + H(X|Y)

Proof: Exercise in unraveling definitions! Try it! ///

Exercises

2.01 Compute the entropy of a source with probabilities 1
2 , 1

4 , 1
8 , 1

16 , 1
16 , 1

16 .
(ans.)

2.02 Determine the entropy of a source with probabilities 1
3 , 1

4 , 1
6 , 1

8 , 1
12 , 1

24 .

2.03 Determine the entropy of a source with probabilities 2
3 , 2

9 , 2
27 , 2

81 , 2
243 , 1

243 .

2.04 Determine the entropy of the random variable which counts the number of
heads in flipping three fair coins.

2.05 Determine the entropy of the random variable which counts the sum of
three dice.

3

Noiseless Coding

3.1 Noiseless coding
3.2 Kraft and McMillan inequalities
3.3 Noiseless coding theorem
3.4 Huffman encoding

Noiseless coding addresses the issue of organizing information well for trans-
mission, by adroitly removing redundancy. It does not address issues about noise or
any other sort of errors. The most visible example of noiseless coding is compres-
sion of data, although abbreviations, shorthand, and symbols are equally important
examples.

The other fundamental problem is noisy coding, more often called error-
correcting coding, meaning to adroitly add redundancy to make information
robust against noise and other errors.

The first big result in noiseless coding is that the entropy of a memoryless
source gives a lower bound on the length of a code which encodes the source.
And the average word length of such a code is bounded in terms of the entropy.
This should be interpreted as a not-too-surprising assertion that the entropy of a
source correctly embodies the notion of how much information the source emits.

3.1 Noiseless coding
Noiseless coding is about expressing information in a good form for economical
transmission. These days the idea of compression is familiar to everyone, even
if the details are not quite so familiar, and compression algorithms are exactly
noiseless encodings. In this little section we set up general formalism about noiseless
coding.

Intuitively, a memoryless source using a set W of source words is anything
which emits those words with prescribed probabilities, so that the probability that
a given word w ∈W is emitted does not depend upon what came before it.

More formally, a memoryless source is a sequence X1, X2, . . . of independent
and identically distributed random variables on a probability space, taking values

44

3.1 Noiseless coding 45

in a set W of source words. A common abbreviation for the phrase independent
and identically distributed is i.i.d.

Example: The simplest sort of source is a gadget which emits a stream of 0’s and
1’s with equal probabilities. In this case, each of the random variables X1, X2, . . .
has distribution

P (Xi = 0) =
1
2

P (Xi = 1) =
1
2

Example: A very simple model of English is a memoryless source X1, X2, . . .
where the possible values of the random variables Xi are characters a–z, where
each character occurs with its average frequency:

P (X = ‘e’) = 0.11
P (X = ‘t’) = 0.09

. . .

That is, the random variables Xi are identical and identically distributed. Of
course, this is a rather silly model of English, but it has the virtue of simplicity.

Remark: The most general type of source, with no assumptions about interdepen-
dence, would be called a stochastic source. Such sources are probably too general
to say much about. A more restricted model is a Markov source, meaning that
there is a fixed T so that the nth word emitted (that is, the value of the random
variable Xn) depends only the T previous values, Xn−1, . . . , Xn−T . A yet more
restricted model is a stationary Markov source, which is a Markov source in which
the form of the dependence of Xn on Xn−1, . . . , Xn−T does not depend upon the
‘time’ index n. But for our present purposes things are complicated enough already
for the simpler i.i.d. model.

An alphabet Σ is simply a finite set. The elements of the set Σ are the
characters of the alphabet. For any alphabet Σ, denote by Σ∗ the set of all finite
strings composed of characters from Σ. That is, Σ∗ is the collection of finite
ordered lists of elements of Σ.

For example, the alphabet might simply be Σ = {0, 1}, or it might be
Σ = {a, b, . . . , y, z}. Or more characters might be included. It is clear that the
precise nature of the characters does not matter, but perhaps at most the number
of characters in the alphabet.

A code or encoding f of a (memoryless) source S = X1, X2, . . . (emitting
sourcewords in a set W) into codeword strings over an alphabet Σ is simply a map
(that is, function)

f : W → Σ∗

We extend the definition of the code f by making it behave reasonably with respect
to concatenation of strings: define

f(concatenation w1w2 . . . wn) = concatenation f(w1)f(w2) . . . f(wn)

46 Chapter 3 Noiseless Coding

Example: For encoding the English alphabet into dots and dashes for telegraph
transmission, the alphabet Σ is {dot,dash}, and the collection W of ‘words’ can be
simply the usual English alphabet. An important design feature of this encoding is
that more commonly used letters such as ‘e’ and ‘t’ have shorter expressions in the
Morse alphabet, for example. (Notice that in this case the ‘words’ are not words
in the colloquial sense, but instead are letters in the English alphabet.)
Example: Another example is the encoding of the English alphabet (along with
numerals, punctuation, and some control characters) into ASCII code, that is, into
numbers in the range 0–255. Here the source words are again single characters
rather than ‘words’ in the ordinary sense of being a string of letters. For the
code alphabet Σ we have 4 different choices, all of which are actually used: if the
numbers 0–255 are written in binary, then we just need alphabet Σ = {0, 1}, and
the encoding of each ‘word’ takes up to 8 characters. If the numbers 0–255 are
written in octal, then we need alphabet Σ = {0, 1, 2, . . . , 7}, and the encoding of a
single source word takes 3 characters. If the numbers 0–255 are written in decimal,
then we need alphabet Σ = {0, 1, . . . , 8, 9}, and the encoding of each source word
may take 3 characters. If the numbers 0–255 are written in hexadecimal, then
we need alphabet Σ = {0, 1, . . . , 8, 9, A, B,C,D,E, F} and the encoding of a source
character takes only 2 characters.
Example: The Braille alphabet system is an encoding of the 26-letter alphabet
(along with numerals and some punctuation, as well as a few short common words)
into a 3-by-2 pattern of raised-or-not dots. The 3-by-2 grid gives 6 different choices
of whether to raise the dot or not, so there are 26 available code words. A practical
problem with this code is that it has so little redundancy: if through use the dots
are worn away or damaged, it is impossible to deduce the character. But since
the patterns of dots need to be fairly large to be discernible to fingertips, it seems
infeasible to add redundancy. By contrast, printed letters have enough redundancy
so that even if slightly blurred they are often legible.
Example: Systems of abbreviations used in otherwise ordinary English are ex-
amples of coding. For example, we may take as the set of ‘words’ W the set of
genuine words in English, and take Σ to be the usual alphabet with numerals and
punctuation. Then we can define various encoding maps f : W → Σ∗. For example,
we might define

f(word) =

‘St.’ if word = ‘Street’

‘Ave.’ if word = ‘Avenue’
‘Blvd.’ if word = ‘Boulevard’
‘Rd.’ if word = ‘Road’
word otherwise

This code doesn’t do much. Larger systems of abbreviations were often used in
telegraphy, both for efficiency and for secrecy.

Note that depending upon the context ‘St.’ may be an abbreviation for either
‘Street’ or for ‘Saint’. And ‘IP’ may be either ‘intellectual property’ or ‘internet
protocol’. Without sufficient information from the context, this abbreviation is not
uniquely decipherable.

3.1 Noiseless coding 47

We will only consider uniquely decipherable codes, that is, codes in which
two different messages will never be encoded the same way. That is, no information
is lost in the encoding! This condition requires that the function f : W → Σ∗ is
injective, meaning (by definition) that

f(w1) = f(w2) implies w1 = w2

(An injective function is sometimes called one-to-one, although the latter phrase is
a little ambiguous because of its colloquialness.) This hypothesis of unique deci-
pherability simplifies things a bit, and is often a reasonable hypothesis to take. In
fact, it might seem that no one would ever want anything but uniquely decipher-
able codes, but this is not the case. In coding of graphics, for example in use of
the JPEG file format, it is tolerable to lose a certain amount of certain kinds of
information that are apparently not detectable to the human eye. Further, it turns
out that in such scenarios giving up the demand for unique decipherability allows
much greater economy.

Given two strings
s = s1s2 . . . sm

t = t1t2 . . . tn

in Σ∗, say that s is a prefix of t if s is an initial piece of t, that is, if m ≤ n and

t1 = s1, t2 = s2, . . . , tm = sm

This terminology is compatible with colloquial usage.
A code f : W → Σ∗ is an instantaneous or prefix code if for all words w, w′

in the set W of source words,

f(w) is not a prefix of f(w′) for w 6= w′

If a code is instantaneous, then it can be decoded without lookahead. That is,
the correct decoding of codewords can be determined without waiting to see what
comes after. This is a obviously a desirable property. Note that natural languages
do not have this property, since it happens quite often that a legitimate word occurs
as an initial fragment of a longer word. For example, ‘red’ is a prefix of ‘reduction’,
and the two words have little to do with each other.
Example: The code with words 00, 01, 110, and 001 is not a prefix code, because
the first codeword 00 is the first part of the fourth codeword 001.
Example: If all codewords are of the same (known) length, then we know when
a codeword is completed.
Example: A pattern of symbols such as three 0s in a row may be used to signal
the end of a codeword, and thus to guarantee the prefix property, but this device
has a cost, namely that extra symbols must be used.

As suggested by the example of abbreviations as an encoding, one of the goals
of (noiseless) coding is to be as efficient as possible in communication. Various file

48 Chapter 3 Noiseless Coding

compression programs are an example of progress toward this goal. The notion of
entropy will allow us to understand some theoretical limitations of such techniques.

3.2 Kraft and McMillan inequalities
Kraft’s and McMillan’s inequalities give some basic theoretical limits on how tersely
information can be communicated. Further, they demonstrate the surprising fact
that in principle there is no reason to use any but instantaneous codes. At the very
least this simplifies both theoretical and practical considerations quite a bit, since
lookahead is tricky to discuss theoretically and tricky to program.

The length of a string of characters s = s1s2 . . . st from an alphabet Σ is (as
one would suspect) the number of characters in it:

length(s1s2 . . . st) = t

Given a set W of source words and an encoding f : W → Σ∗ of W into strings
composed of characters from an alphabet Σ, the set of word lengths of f is the
set

{length(f(w)) : w ∈W}

of lengths of encodings of words from W .
Theorem: (Kraft’s inequality.) Let the set W of source words have m elements,
and let the encoding alphabet Σ have n characters. A necessary and sufficient
condition that there exist an instantaneous uniquely decipherable code f :
W → Σ∗ with lengths `1, . . . , `m is that

m∑
i=1

1
n`i
≤ 1

Theorem: (McMillan’s inequality.) Let the set W of source words have m el-
ements, and let the encoding alphabet Σ have n characters. A necessary and
sufficient condition that there exist a uniquely decipherable code f : W → Σ∗

with lengths `1, . . . , `m is that
m∑

i=1

1
n`i
≤ 1

Corollary: If there is a uniquely decipherable code with prescribed word lengths,
then there is an instantaneous (uniquely decipherable) code with those word lengths.
Remark: The corollary follows from the fact that the conditions for the two
theorems are the same. We will prove the two theorems simultaneously, in effect
proving the hard half of each, by proving first that if the indicated inequality holds
then there is an instantaneous code with indicated word lengths, and proving second
that the word lengths of any uniquely decipherable code satisfy the inequality.
Remark: These inequalities give absolute limits on the size of encoding words
necessary to encode a ‘vocabulary’ W of source words of a certain size. These
limitations are independent of any probabilistic considerations.

3.2 Kraft and McMillan inequalities 49

Remark: Note that the quantities `i that occur in Kraft’s and McMillan’s inequal-
ities are integers. Thus, there is no justification in trying to apply these results with
non-integer quantities, and in fact some heuristically plausible conclusions reached
in such manner are simply false.

Proof: (of Kraft’s inequality) Suppose that the set of encoded word lengths satis-
fies

m∑
i=1

1
n`i
≤ 1

Let ` be the maximum word length, and let tj be the number of (encoded) words
of length j. Then the supposed inequality can be rewritten as

∑̀
i=1

ti
1
ni
≤ 1

Multiply through by n` and rearrange to obtain

t` ≤ n` − t1n
`−1 − t2n

`−2 − . . .− t`−1n

Since t` ≥ 0, we get

0 ≤ n` − t1n
`−1 − t2n

`−2 − . . .− t`−1n

which again can be rearranged to

t`−1 ≤ n`−1 − t1n
`−2 − t2n

`−3 − . . .− t`−2n

Continuing in the same way, using ti ≥ 0, we obtain

t`−2 ≤ n`−2 − t1n
`−3 − t2n

`−4 − . . .− t`−3n

. . .

t2 ≤ n2 − t1n

t1 ≤ n

The last inequality is obviously necessarily true, but the others are not obvious.
We build up the encoding function f : W → Σ∗ beginning with shortest

lengths. First choose t1 words of length 1, and define f to assign these values to
some t1 of the words from the source word set W . (For the present discussion,
we don’t care about how astutely this choice is made.) This leaves n − t1 single-
character encoded words unused, so we could form (n − t1)n two-character words
in Σ∗ whose first characters are different from the one-character encodings. This
ensures the instantaneous property. But we only need to form t2 two-character
words, and define f to assign some words of W to these. The inequalities above
include one which says that this is possible:

t2 ≤ n2 − t1n

50 Chapter 3 Noiseless Coding

This leaves
(n− t1)n− t2

two-character strings whose first characters are not the encoding of a word, and
which themselves are not the encoding of a word. Then there are

((n− t1)n− t2)n

three-character words whose first character is not the encoding of a source word,
and whose two-character prefix is not the encoding of a source word. We arbitrarily
choose t3 among these. From the inequality above

t3 ≤ n3 − t1n
2 − t2n

this is possible. Continuing in the obvious way gives the code f . This proves the
sufficiency half of the assertion of the Kraft inequality theorem.

Now we prove half of McMillan’s inequality, namely that given a uniquely
decipherable code f : W → Σ∗ the word lengths satisfy the inequality. Let the
set of word lengths be `1, . . . , `m. Let ` be the maximum length. For any positive
integer t, we can re-express(

n−`1 + n−`2 + . . . + n−`m
)t

by multiplying out and regrouping by powers of n, as

(
n−`1 + . . . + n−`m

)t
=

t∑̀
s=0

Cs n−s

for some coefficients Cs (depending on the number of terms in the sum and also
upon t). By the nature of multiplication, Cs is the number of ways a string of length
s can be created by concatenating t strings with lengths from among `1, `2, . . . , `m.
(This style of argument is very similar to use of generating functions in counting
problems.)

The assumption of unique decipherability implies that any string obtained by
sticking together codewords comes from just one sequence of codewords. That is, a
given string of s characters occurs as a concatenation of encoded words in at most
one way. Since there are ns choices of strings of length s made from the alphabet
Σ, the unique decipherability implies that Cs ≤ ns, since each such string can occur
in at most a single way as a concatenation of encoded words.

Using Cs ≤ ns in the expression above, we have

(
n−`1 + . . . + n−`m

)t
=

t∑̀
s=0

Cs n−s ≤
t∑̀

s=0

ns n−s =
t∑̀

s=0

1 = t`

Taking tth root of both sides, we have

n−`1 + . . . + n−`m ≤ `1/t t1/t

3.3 Noiseless coding theorem 51

Letting t→ +∞, the right-hand side goes to 1, and we obtain the necessity half of
McMillan’s theorem.

Now we combine the two halves to easily complete the proof of both theorems.
Since any uniquely decipherable code must satisfy the inequality (by the half of
McMillan’s theorem we proved) certainly an instantaneous one must. This proves
the second half of Kraft’s theorem. And, similarly, to prove that a uniquely de-
cipherable code exists for any set of word lengths satisfying the inequality above,
it certainly suffices to prove this with the additional condition of instantaneity.
Kraft’s theorem proved this, so we obtain the second half of the proof of McMil-
lan’s theorem. ///

3.3 Noiseless coding theorem
This theorem is one of Shannon’s basic theoretical results from [Shannon 1948]
showing that the entropy of a source gives a fundamental limitation on how effi-
ciently the information from that source can be transmitted. The immediate issue
is minimizing the average encoded word length. That is, minimizing the
expected value of the length of encoded words, depending upon the probability
distribution of the words emitted by the source.

Let f : W → Σ∗ be a code with m source words w1, . . . , wm in W , with encoded
words f(w1), . . . , f(wm) of lengths `1, . . . , `m. Let p1, . . . , pm be the probabilities
that the respective words w1, . . . , wm are emitted by the source. Then the average
length of an encoded word is

average length f =
m∑

i=1

pi `i

Note that this is the expected value of the random variable which returns the length
of the codewords.
Example: Let the source words be cat with probability 1/4, dog with probability
1/8, elephant with probability 1/8, and zebra with probability 1/2. Let the code
alphabet be Σ = {0, 1}, and let the encoding f be

f(‘cat’) = ‘011’
f(‘dog’) = ‘01’
f(‘elephant’) = ‘0’
f(‘zebra’) = ‘111’

Then the average length of an encoded word is, by definition,

average length = P (‘cat’) · length(f(‘cat’)) + P (‘dog’) · length(f(‘dog’))

+P (‘elephant’) · length(f(‘elephant’)) + P (‘zebra’) · length(f(‘zebra’))

= P (‘cat’) · length(‘011’) + P (‘dog’) · length(‘11’)

+P (‘elephant’) · length(‘0’) + P (‘zebra’) · length(‘111’)

52 Chapter 3 Noiseless Coding

= P (‘cat’) · 3 + P (‘dog’) · 2 + P (‘elephant’) · 1 + P (‘zebra’) · 3

=
1
4
· 3 +

1
8
· 2 +

1
8
· 1 +

1
2
· 3 =

21
8

= 2.625

That is, the average codeword length with this encoding is 2.625. Note that the
lengths of the source words play no role in this computation.

Let |Σ| denote the number of elements in a finite set Σ (such as an alphabet
of symbols).

Theorem: For a memoryless source X with entropy H(X), a uniquely decipher-
able code f : W → Σ∗ into strings made from an alphabet Σ (with |Σ| > 1) must
have average length satisfying

average length f ≥ H(X)
log2 |Σ|

Further, there exists a code f with

average length f < 1 +
H(X)

log2 |Σ|

Remark: This theorem describes the best achievable performance, measured in
terms of average word length, of any encoding of a given ‘vocabulary’ W of source
words. The adjective noiseless refers to the fact that we are still ignoring errors.

Proof: Let f : W → Σ∗ be a uniquely decipherable code with m source words
w1, . . . , wm in W , with encoded words f(w1), . . . , f(wm) of lengths `1, . . . , `m. Let
p1, . . . , pm be the probabilities that the respective words w1, . . . , wm are emitted by
the source. By the Kraft-McMillan inequality, letting n be the cardinality of the
alphabet Σ ∑

i

n−`i ≤ 1

Define
qi = n−`i/

∑
i

n−`i

Since (by construction) the sum of the qis is 1, and since they are non-negative, the
collection of numbers q1, . . . , qm fits the hypotheses of the Fundamental Inequality
above, and we conclude that

−
∑

i

pi log2 pi ≤ −
∑

i

pi log2 qi

By its definition

log2 qi = log2 n−`i − log2

(∑
i

n−`i

)
= −`i log2 n− log2

(∑
i

n−`i

)

3.3 Noiseless coding theorem 53

Therefore, substituting the right hand side for log2 qi gives

−
∑

i

pi log2 pi ≤ log2 n
∑

i

pi`i +

(
log2

∑
i

n−`i

)(∑
i

pi

)

By the Kraft-McMillan inequality,
∑

i n−`i ≤ 1, so log2

∑
i n−`i ≤ 0, and thus

−
∑

i

pi log2 pi ≤ log2 n
∑

i

pi`i

That is, the entropy of the source is less than or equal to the average length of the
encoded words times log2 of the size of the alphabet. This proves the lower bound
for the average word length.

For the other half of the theorem, we will try to cleverly choose the word
lengths according to the rule that `i is the smallest integer such that

p−1
i ≤ n`i

Of course, it is not immediately clear that this is possible, but the fact that the
probabilities pi add up to 1 gives ∑

i

n−`i ≤ 1

so by the Kraft-McMillan theorems there exists a uniquely decipherable code with
these encoded word lengths.

Taking logarithms base 2, and using the fact that the logarithm function is
increasing, the condition

p−1
i ≤ n`i

gives
`i log2 n ≥ − log2 pi

Since `i is by definition minimal among all integers fitting into this inequality, for
n > 1

(`i − 1) log2 n < − log2 pi

or
`i < 1− log2 pi

log2 n

Multiplying by pi and adding up, we get

average length f =
∑

i

pi`i <
∑

i

pi · 1−
1

log2 n

∑
pi log2 pi = 1 +

H(X)
log2 n

since
∑

i pi = 1. This finishes the proof of the noiseless coding theorem. ///

54 Chapter 3 Noiseless Coding

3.4 Huffman encoding
The 1953 Huffman encoding scheme achieves optimality for noiseless coding. Fur-
ther, the underlying idea is used directly or indirectly in many practical coding
schemes.

Given a memoryless source X emitting words in a set W with probabilities

P (X = wi) = pi

an encoding
f : W → Σ∗

which has the smallest possible length is called efficient or compact or optimal.
(Other similar modifiers are also used.) From the noiseless coding theorem above,

H(X)
log2 |Σ|

≤ average length f ≤ 1 +
H(X)

log2 |Σ|

In the important special case that Σ = {0, 1}, this is simply

H(X) ≤ average length f ≤ 1 + H(X)

Codes using the alphabet consisting of just 0 and 1 are binary codes.
Now we describe binary Huffman encoding. Let W = {w1, . . . , wn} be the

set of source words. Let the source X emit the words with probabilities

P (x = wi) = pi

and suppose (without loss of generality) that the words are ordered by decreasing
probability. That is, suppose that

p1 ≥ p2 ≥ p3 ≥ . . . ≥ pn−1 ≥ pn

We create the encoding f : W → {0, 1}∗ recursively: let

W ′ = {w′1, w′2, . . . , w′n−1}

be a slightly smaller set of source words, with

w′1 = w1, w
′
2 = w2, . . . , w

′
n−2 = wn−2

but at the very end w′n−1 is a word representing the case that one or the other of
wn−1, wn is emitted. And make a source X ′ with corresponding probabilities

P (X ′ = w′1) = p1, P (X ′ = w′2) = p2, . . . , P (X ′ = w′n−2) = pn−2

and at the very end
P (X ′ = w′n−1) = pn−1 + pn

3.4 Huffman encoding 55

corresponding to the idea that emission of the original source words wn−1 and wn

by X are combined into a single emission of w′n−1 by the new source X ′. Let

f ′ : W ′ → {0, 1}∗

be a binary Huffman encoding for X ′, which we can assume by induction to exist.
Then define the encoding for source X by

f(wi) = f ′(wi) for i = 1, 2, . . . , n− 2

and
f(wn−1) = f ′(w′n−1) + ‘0’
f(wn) = f ′(w′n−1) + ‘1’

where the ‘+’ denotes concatenation of strings. That is, f(wn−1) is obtained by
appending a ‘0’ to the encoding f ′(w′n−1), while f(wn) is obtained by appending a
‘1’ to the encoding f ′(w′n−1).
Remark: Note that the source X ′ has one fewer word in its ‘vocabulary’ than did
the original source X. Thus, if we continue in this manner, the issue of defining the
encoding will eventually become the question of defining an encoding on a set of
source words with just two items. It is easy to see that an optimal binary encoding
of a two-word vocabulary should encode one of the words as ‘0’ and the other as
‘1’.
Remark: It can happen that there is more than one choice of pair of least likely
words. In that case, it doesn’t matter which pair is combined in the Huffman
process. Of course, the resulting codes will be different, but the average word
lengths will be the same.
Example: Let X be a source emitting 3 words w1, w2, w3 with probabilities
2
5 , 3

10 , 3
10 , respectively. Then the source X ′ should combine w2 and w3 as a sin-

gle emission of a word w′2 with probability

3
5

=
3
10

+
3
10

Thus, X ′ emits just two words, w′1 = w1 with probability 2
5 and w′2 with probability

3
5 . We make an encoding of X ′ by

f ′(w′1) = ‘0’
f ′(w′2) = ‘1’

Then an encoding f of X is defined in terms of the encoding f ′ of X ′ by

f(w1) = f ′(w1) = ‘0’
f(w2) = f ′(w′2) + ‘0’ = ‘10’
f(w3) = f ′(w′2) + ‘1’ = ‘11’

The (average) length of the latter encoding is

2
5
· 1 +

3
10
· 2 +

3
10
· 2 = 1.6

56 Chapter 3 Noiseless Coding

The entropy of the source is

H(X) = −2
5

log2

2
5
− 3

10
log2

3
10
− 3

10
log2

3
10
≈ 1.57095

We can see that the inequality of the Noiseless Coding Theorem is met:

H(X) = 1.57095 ≤ length = 1.6 ≤ 2.57095 = H(X) + 1

Example: Let X be a source emitting 4 words w1, w2, w3, w4 with probabilities
1
3 , 1

4 , 1
4 , 1

6 . The least likely word w4 should be combined with one of the next least
likely words, say w3, into a single case w′3 for a new source X ′. The probability
P (X ′ = w′3) should be the sum 1

4 + 1
6 = 5

12 . The words w′1 = w1 and w′2 = w2 are
emitted by X ′ with the same probabilities as for X. In this example we need to go
one step further, creating a new source X ′′ by combining the two least likely words
emitted by X ′, w′1 with probability 1

3 and w′2 with probability 1
4 into a single case,

w′′2 emitted by X ′′ with probability

1
3

+
1
4

=
7
12

Let w′′1 = w′3, emitted by X ′′ with probability 5
12 . Since X ′′ emits just two words,

to make its good encoding f ′′ we actually don’t care about the probabilities any
more:

f ′′(w′′1) = ‘0’
f ′′(w′′2) = ‘1’

Working backward, the encoding f ′ for X ′ should be

f ′(w′1) = f ′′(w′′2) + ‘0’ = ‘10’
f ′(w′2) = f ′′(w′′2) + ‘1’ = ‘11’
f ′(w′3) = f ′′(w′′1) = ‘0’

and then, one step further back, the encoding f for X is

f(w1) = f ′(w′1) = ‘10’
f(w2) = f ′(w′2) = ‘11’
f(w3) = f ′(w′3) + ‘0’ = ‘00’
f(w4) = f ′(w′3) + ‘1’ = ‘01’

With hindsight, it is not so surprising that the 4 different two-bit strings were used,
but this may not be so if the probability distribution is different, as in the next
example.

The (average) length of the latter encoding is

1
3
· 2 +

1
4
· 2 +

1
4
· 2 +

1
6
· 2 = 2

3.4 Huffman encoding 57

(Of course this is so, since all the encoding words are of length 2.) The entropy of
the source is

H(X) = −1
3

log2

1
3
− 1

4
log2

1
4
− 1

4
log2

1
4
− 1

6
log2

1
6
≈ 1.9591

We can see that the inequality of the Noiseless Coding Theorem is met:

H(X) = 1.9591 ≤ length = 2.0 ≤ 2.9591 = H(X) + 1

Example: Let X be a source emitting 4 words w1, w2, w3, w4 with probabilities
1
2 , 1

6 , 1
6 , 1

6 . Two of the least likely words, say w3 and w4, should be combined into
a single case w′3 for a new source X ′. The probability P (X ′ = w′3) should be the
sum 1

6 + 1
6 = 1

3 . The words w′1 = w1 and w′2 = w2 are emitted by X ′ with the same
probabilities as for X. We need to go one step further, creating a new source X ′′

by combining the two least likely words emitted by X ′, w′2 with probability 1
6 and

w′3 with probability 1
3 into a single case, w′′2 emitted by X ′′ with probability

1
6

+
1
3

=
1
2

Let w′′1 = w′1, emitted by X ′′ with probability 1
2 . Since X ′′ emits just two words,

to make its good encoding f ′′ we actually don’t care about the probabilities any
more:

f ′′(w′′1) = ‘0’
f ′′(w′′2) = ‘1’

Working backwards, the encoding f ′ for X ′ should be

f ′(w′1) = f ′′(w′′1) = ‘0’
f ′(w′2) = f ′′(w′′2) + ‘0’ = ‘10’
f ′(w′3) = f ′′(w′′2) + ‘1’ = ‘11’

and then, one step further back, the encoding f for X is

f(w1) = f ′(w′1) = ‘0’
f(w2) = f ′(w′2) = ‘10’
f(w3) = f ′(w′3) + ‘0’ = ‘110’
f(w4) = f ′(w′3) + ‘1’ = ‘111’

In this example, by contrast to the previous one, the word w1 occurs with such high
probability that it is optimal to allocate a very short encoding to it, consisting of
a single bit. Evidently the added cost of having to encode two of the other (least
likely) words by 3 bits is worthwhile.

The (average) length of the latter encoding is

1
2
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 3 = 1.83333

58 Chapter 3 Noiseless Coding

The entropy of the source is

H(X) = −1
2

log2

1
2
− 1

6
log2

1
6
− 1

6
log2

1
6
− 1

6
log2

1
6
≈ 1.79248

We can see that the inequality of the Noiseless Coding Theorem is met:

H(X) = 1.79248 ≤ length = 1.83333 ≤ 2.79248 = H(X) + 1

Proof of optimality/compactness of Huffman encoding: First we make some
observations.
• By the Kraft-McMillan inequality, in principle we may as well look for an

instantaneous optimal code.
• Note that in the simplest case, for a source emitting just two words W =
{w1, w2}, the binary encoding

f(w1) = 0 f(w2) = 1

is optimal, regardless of the probabilities with which the two words are emit-
ted. This is clear from the fact that the encodings can’t be any shorter than
a single character.

• For a compact instantaneous code f : W → {0, 1} if

P (X = w1) > P (X = w2)

for two words w1, w2, then necessarily

length(f(w1)) ≤ length(f(w2))

Indeed, if instead
length(f(w1)) > length(f(w2))

then make a new code g by having g be the same as f except interchanging
the encoding of w1 and w2:

g(w1) = f(w2) g(w2) = f(w1)

We can check that the new code g has strictly shorter average length than f
(and it is certainly still instantaneous): in the expression for average length,
the only thing that will change is the subsum for the two words w1, w2.
Letting p1 = P (X = w1), p2 = P (X = w2), and `1 = length(f(w1)),
`2 = length(f(w2)),

P (X = w1) · length(g(w1)) + P (X = w2) · length(g(w2)) = p1 · `2 + p2 · `1

= p2`2 + (p1 − p2)`2 + p1`1 + (p2 − p1)`1

= (p1`1 + p2`2) + (p1 − p2)(`2 − `1) < p1`1 + p2`2

3.4 Huffman encoding 59

since both p1 − p2 > 0 and `2 − `1 < 0, by assumption. This verifies that
the code g has strictly smaller average length than f , thereby proving that
f was not optimal.

• For compact instantaneous code f , among longest encodings there must
be two which differ only in their last character. To see this, suppose the
assertion were false and obtain a contradiction. That is, suppose that any
two encodings of maximal length differed in more than their last character.
Then we could simply drop the last character of each one and still distinguish
them. By the instantaneousness, this truncation does not cause any of these
encoded words to become the (shorter) encoding of a different source word.
This shortening of the longest encodings certainly decreases the average word
length (except in the case that the probabilities of these words are 0, which
we should exclude as irrelevant!).

Now we prove optimality of the Huffman encoding. By induction, suppose
that the Huffman encoding f ′ for source X ′ is optimal. Suppose that the encoding
Huffman f for X is not optimal (and get a contradiction). Let g : W → {0, 1}∗ be
an encoding of X with a smaller average word length than f . We may assume that
g is optimal. Then as noted just above two of the longest encodings in g differ only
in the last character: there are two source words wn−1, wn and a prefix s so that

g(wn−1) = s + ‘0’
g(wn) = s + ‘1’

Now we will use g (assumed shorter than f) to construct an encoding of X ′ strictly
shorter than f ′, contradicting the inductive hypothesis that f ′ was optimal.

Let w1, w2, . . . , wn be all the words emitted by source X, emitted with proba-
bilities p1 ≥ p2 ≥ . . . ≥ pn. As prescribed by the Huffman encoding, the two words
wn−1, wn of least probability are merged to a single word w′n−1 for the source X ′,
with probability pn−1 + pn, and all other words and probabilities are the same for
X ′ as for X. From the encoding g of X we make an encoding g′ of X ′ by having
g′ be the same as g except that

g′(w′n−1) = s

where the string s is the common prefix shared by g(wn−1) and g(wn). (Since g is
instantaneous, so is g′.) For brevity let

`i = length (g(wi))

Note that
`n−1 = `n = length(s) + 1

since g(wn−1) and g(wn) have the common prefix s and differ only in the last bit.
That is,

length(s) = `n − 1 = `n−1 − 1

Then, writing simply ‘length’ for ‘average length’, we have

length g′ = p1`1 + . . . + pn−2`n−2 + (pn−1 + pn)(`n − 1)

60 Chapter 3 Noiseless Coding

= p1`1 + . . . + pn−2`n−2 + pn−1`n−1 + pn`n − pn−1 − pn

= length g − pn−1 − pn

using the fact that `n−1 = `n. An essentially identical computation gives

lengthf ′ = lengthf − pn−1 − pn

Thus, if g were really shorter than f , then we’d have

length(f ′) = length(f)− pn−1 − pn > length(g)− pn−1 − pn = length(g′)

which shows that g′ is shorter than f ′. But by induction f ′ was assumed an optimal
encoding of X ′, so we reach a contradiction.

This proves that the Huffman encoding is optimal. ///

Exercises

3.01 What is the maximum number of words in an instantaneous binary code
with maximum word length 5? (ans.)

3.02 What is the maximum number of words in an instantaneous binary code
with maximum word length 6?

3.03 How many source words must there be to require that any (binary) encoding
of the source have average word length at least 4? (ans.)

3.04 Determine the Huffman encoding of a source with probabilities 1
2 , 1

4 , 1
8 ,

1
16 , 1

16 , 1
16 . Compare the average word length to the entropy of the source.

(ans.)

3.05 Determine the Huffman encoding of a source with probabilities 1
3 , 1

4 , 1
6 , 1

8 ,
1
12 , 1

24 . Compare the average word length to the entropy of the source.

3.06 Determine the Huffman encoding of a source with probabilities 2
3 , 2

9 , 2
27 , 2

81 ,
2

243 , 1
243 . Compare the average word length to the entropy of the source.

3.07 In what circumstances will an optimal encoding include a code word of
length 1? 2 of length 2? 4 of length 3? (ans.)

4

Noisy Coding

4.1 Noisy channels
4.2 Example: parity checks
4.3 Decoding from a noisy channel
4.4 Channel capacity
4.5 Noisy coding theorem

This chapter describes a simple version of another of Shannon’s basic results
from [Shannon 1948].

4.1 Noisy channels
Now we consider the case that there is noise that interferes with communication.
This presents new problems.

For simplicity, we will only consider discrete memoryless channels C, de-
scribed as follows. There is a finite input alphabet Σin = {x1, . . . , xm} and a
finite output alphabet Σout = {y1, . . . , yn}. When input character xi is sent into
the channel, character yj is received at the other end with probability pij . We
might write this as

pij = PC(received = yj |sent = xi)

Since these are conditional probabilities, necessarily for each fixed index i for input
character xi, ∑

j

pij = 1

That is, the sum of the probabilities of all the possible output characters that might
be received (for given input xi) is 1.

Further, we suppose that the channel operates in a manner so that the trans-
mission and receipt of each character are independent of the transmission and
receipt of other characters: the probabilities are independent of what has come
before or what comes after.

61

62 Chapter 4 Noisy Coding

The collection of probabilities

M = {pij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is the channel matrix. The probability pij is the entry in the ith row and jth

column. A matrix with the property that rows and columns are non-negative and
sum to 1 is a stochastic matrix.
Remark: These stochastic matrices also occur in the study of Markov processes,
and in that context the pij are called transition probabilities.
Example: The binary symmetric channel model is the simplest meaningful
example, and for that reason is very important: the input alphabet is Σin = {0, 1}
and the output alphabet is Σout = {0, 1} as well. The probability that the channel
transmits ‘0’ as ‘1’ or ‘1’ as ‘0’ (that is, makes a mistake) is p, while the probability
that a character is transmitted correctly is 1−p. Often q is a convenient shorthand
for 1− p. The quantity p is the (bit) error probability of the channel.
Example: Erasure channel: The case that a channel occasionally loses some
characters entirely is included in this model since the number of possible output
characters need not be the same as the number of input characters. For example,
let the input alphabet Σin be just Σin = {0, 1}, and the output alphabet Σout =
{0, 1, ∗} where ∗ is considered to be an erasure of a character. Let ε be a small
positive real number, and let the transition probabilities be given by

in\out 0 1 ∗
0 1− ε 0 ε
1 0 1− ε ε

That is, the two characters ‘0’ and ‘1’ never transmute into each other, but either
one may be erased with probability ε. This is the binary erasure channel.

The N th extension C(N) of a channel C is a channel whose input alphabet is
all N -tuples of characters from the input alphabet of C, whose output alphabet is
the collection of N -tuples of characters from the output alphabet of C, and so that
the transition probabilities are what would occur if we had N copies of the original
channel working independently in parallel:

PC(N)(out = b1 . . . bN |in = a1 . . . aN)

= PC(out = b1|in = a1) . . . PC(out = bN |in = aN)
The situation we’ll consider is that a source X emits words w1, . . . , wm with

probabilities pi = P (X = xi), which are encoded (perhaps by Huffman encoding)
into binary, then sent across a binary symmetric channel C, and decoded on the
other side. The encoding to binary is noiseless and is known to the decoder. In a
picture, this is

source X emits words wi with probabilities pi

↓
noiseless binary encoding of source X

↓
binary symmetric channel with bit error probability p

↓
decoder

4.2 Example: parity checks 63

With our independence assumptions, the probability that a string a1 . . . aN of
N bits in binary will be transmitted correctly is the product of the probabilities
that a1 is transmitted correctly, that a2 is transmitted correctly, . . ., and that aN

is transmitted correctly, which is

(1− p)N

The fundamental question is can we do better than this?
(Of course, the answer is ‘yes’ or we wouldn’t be here talking about it.)
And there are two parts to the question of improvement: detection of errors,

and correction of errors. Obviously detection is generally easier than correction.
Sometimes detection is good enough: maybe we can ask for a retransmission. In
other cases correction of errors is necessary.

4.2 Example: parity checks
The simplest method to detect single bit errors is that of a parity check. And,
in fact, this approach is so simple that it gets used a lot in practice. But it is not
an error-correction device by itself, so sometimes it’s just useless. And even as a
detection device it is too simple to be very effective.

Given a binary (noiseless) encoding f : X → {0, 1}∗ of a source X into strings
of 0s and 1s, we can add just a little bit of redundancy and thereby detect certain
simple sorts of errors. That is, replace the encoding f by an encoding f̃ where for
any binary source word w

f̃(w) = f(w) + ‘0’ if the string f(w) has even number of 1s
f̃(w) = f(w) + ‘1’ if the string f(w) has odd number of 1s

where (as is common) the ‘+’ denotes concatenation of strings. The decoding
involves rejection of any word so that the last bit does not correctly reflect the
odd/even-ness of the rest of the word. (If the code is instantaneous then adding
this parity-check bit does not create any conflicts.) Note now that if any single bit
(including the last one) of the new codewords is changed, then this can be detected
because the last bit will not correctly reflect the odd/even-ness of the first part of
the word. That is, all single-bit errors are detected by a parity-check bit.
Example: Suppose that a source emits 2-bit binary codewords 00, 01, 10, 11. Let
C be a symmetric binary channel with bit error probability 1/8. Then the prob-
ability that at least one bit error occurs (and will necessarily be undetected!) in
transmission of one of these 2-bit words is

1
8
· 7
8

+
7
8
· 1
8

+
1
8
· 1
8

=
15
64

= 0.234375

Add a single parity-check bit to this code by replacing these words with
000, 011, 101, 110, respectively. What kind of errors will be detected? If just one bit
of the 3 bits is changed, then the last bit will not correctly reflect the even/odd-ness
of the first 2 bits, so this error will be detected. However, if 2 of the 3 bits are

64 Chapter 4 Noisy Coding

changed, this will not be detected. If all 3 bits change, this will be detected. So
the probability of an undetected bit error is the probability of exactly 2 bit errors,
which is

1
8

1
8

7
8

+
1
8

1
8

7
8

+
1
8

1
8

7
8

=
(

3
2

)(
1
8

)2(7
8

)
=

21
512

= 0.041016

This is a huge improvement over the previous 0.234375 probability of undetected
error. Of course, there remains the responsibility of correcting an error once it’s
detected.
Example: Let’s look at what happens if there’s even more noise on the channel.
Suppose that a source emits 2-bit binary codewords 00, 01, 10, 11. Let C be a
symmetric binary channel with bit error probability 1/3. Then the probability that
at least one bit error occurs in transmission of one of these 2-bit words is

1
3
· 2
3

+
2
3
· 1
3

+
1
3
· 1
3

=
5
9
≈ 0.5555

So we’d have scant chance of succesful transmission! Add a single parity-check bit
to this code by replacing these words with 000, 011, 101, 110, respectively. Again,
if just one bit of the 3 bits is changed, then the last bit will not correctly reflect
the even/odd-ness of the first 2 bits, so this error will be detected. However, if 2 of
the 3 bits are changed, this will not be detected. If all 3 bits change, this will be
detected. So the probability of at least one undetected bit error is

1
3

1
3

2
3

+
1
3

2
3

1
3

+
2
3

1
3

1
3

=
(

3
2

)(
1
3

)2(2
3

)
=

6
27
≈ 0.22222

Thus, by use of parity-check bits added to the code, in this example we can reduce
the probability of undetected bit error within a word to well below 1/2, though it’s
still quite high.
Example: Finally, let’s look at what happens if the channel is as noisy as possible:
suppose that the bit error probability is 1/2. Suppose that a source emits 2-bit
binary codewords 00, 01, 10, 11. Then the probability that at least one bit error
occurs in transmission of one of these 2-bit words is

1
2
· 1
2

+
1
2
· 1
2

+
1
2
· 1
2

=
3
4

= 0.75 > 0.5

Add a single parity-check bit to this code by replacing these words with
000, 011, 101, 110, respectively. Again, if just one bit of the 3 bits is changed,
then the last bit will not correctly reflect the even/odd-ness of the first 2 bits, so
this error will be detected. However, if 2 of the 3 bits are changed, this will not be
detected. If all 3 bits change, this will be detected. So the probability of at least
one undetected bit error is

1
2

1
2

1
2

+
1
2

1
2

1
2

+
1
2

1
2

1
2

=
(

3
2

)(
1
2

)2(1
2

)
=

3
8

= 0.375 < 0.5

4.2 Example: parity checks 65

Thus, by use of parity-check bits added to the code, even with a maximally noisy
channel, we can still reduce the probability of undetected bit error within a word to
3/8, significantly below 1/2.
Example: In the case of 3-bit binary words, adding a parity-check bit creates
4-bit words so that an odd number of bit errors will be detected. Suppose that a
binary symmetric channel has bit error probability 1/8. Then the probability that
at least one bit error will occur in transmission of a 3-bit word is(

3
1

)(
1
8

)(
7
8

)2

+
(

3
2

)(
1
8

)2(7
8

)
+
(

3
3

)(
1
8

)3

≈ 0.33

Of course, any such error is undetected. When a parity-check bit is added, the
probability of an undetected error is the probability of a positive even number of
bit errors, which is (

4
2

)(
1
8

)2(7
8

)2

+
(

4
4

)(
1
8

)4

≈ 0.072

which is less than 1/4 of the undetected errors that would occur without the parity-
check bit.
Example: A symmetric binary channel has bit error probability 1/5. A source
emits words w1, w2, w3, w4 with probabilities 1/2, 1/4, 1/8, 1/8. These words are
Huffman-encoded as 0, 10, 110, 111, respectively. The probability that a word is
transmitted with some error is

P (X = w1) ·
(

1
1

)
1
5

+ P (X = w2) ·
((

2
1

)
1
5

4
5

+
(

2
2

)
1
5

1
5

)

+P (X = w3) ·

((
3
1

)(
1
5

)(
4
5

)2

+
(

3
2

)(
1
5

)2(4
5

)
+
(

3
3

)(
1
5

)3
)

+P (X = w4) ·

((
3
1

)(
1
5

)(
4
5

)2

+
(

3
2

)(
1
5

)2(4
5

)
+
(

3
3

)(
1
5

)3
)

=
1
2
· 1
5

+
1
4
· 9
25

+
1
8
· 61
125

+
1
8
· 61
125
≈ 0.312

Now add a parity-check bit, giving codewords 00, 101, 1100, 1111. The proba-
bility that there is an undetected error in transmission of a word now becomes

P (X = w1) ·
(

2
2

)(
1
5

)2

+ P (X = w2) ·
(

3
2

)(
1
5

)2(4
5

)

+P (X = w3) ·
(

4
2

)(
1
5

)2(4
5

)2

+ P (X = w3) ·
(

4
4

)(
4
5

)4

+P (X = w4) ·
(

4
2

)(
1
5

)2(4
5

)2

+ P (X = w4) ·
(

4
4

)(
4
5

)4

≈ 0.084

66 Chapter 4 Noisy Coding

It is important to realize that mere detection of errors is silly or worthless if
it is impossible or too expensive to retransmit, such as in the case of satellite or
deep space transmissions, or also in the case of video, especially live video. More
generally, a high volume of highly structured or synchronized information will make
retransmission complicated, impossible, or pointless. Therefore, in the sequel we’ll
worry mostly about not just detection but correction of errors.

4.3 Decoding from a noisy channel
To understand how error-correction mechanisms might be implemented, it is nec-
essary to consider the possible rules for decoding.

A first attempt at deciding how to decode messages sent across a noisy channel
might be the following reasonable-sounding one. Let x1, . . . , xm be the possible
words sent into the channel, and suppose y is received at the other end. We might
try to choose to decode y as xi0 where the index i0 is so that for all indices i

P (xi0 sent|y received) ≥ P (xi sent|y received)

That is, in words, given the fact that y was received, the probability that xi0 was
sent is the greatest among the probabilities that any of the xis was sent. This
rule is the ideal observer or minimum-error rule. This rule certainly seems
reasonable, but it has a flaw which is fatal for many applications: the receiver must
know quite a bit about the probabilities that the various xi might be sent.

A better rule, which is used very often in practice, is the maximum-
likelihood (‘ML’) decoding rule. Using the notation of the last paragraph, this
rule decodes a received word y into xi to maximize

P (y received|xi sent)

(This is similar to a maximum-likelihood estimator in statistics.) The point is that
we do not need to know the probabilities that the various source words xi may be
sent.
Remark: If the probabilities of the code words xi are all the same, then the
maximum-likelihood rule will certainly give the same answer as the minimum-error
rule, but not in general.

For a binary symmetric channel, we can describe the maximum-likelihood de-
coding in convenient quantitative terms, using the Hamming distance between
strings of 0s and 1s. Let V n be the collection of vectors (ordered n-tuples) of 0s
and 1s, of length n. Define the Hamming distance d(x, y) between two vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) in V n by

d(x, y) = number of indices i so that xi 6= yi

The Hamming weight of a vector of 0s and 1s is the number of non-zero entries,
that is, the number of entries that are 1.

Minimum-distance decoding says to decode a received vector as the code-
word xi closest (in terms of the Hamming distance) to y. (If there is more than
one closest, choose arbitrarily.)

4.4 Channel capacity 67

Proposition: For a binary symmetric channel with error probability p ≤ 1
2 ,

minimum-distance decoding is equivalent to maximum-likelihood decoding.

Proof: Let y be a received vector in V n, and let x ∈ V n be a possible decoding.
The probability that the channel converted x to y is pd(x,y)qn−d(x,y) since exactly
d(x, y) specified bits have to be changed. Since p ≤ 1

2 , p ≤ q, so that

pd(x,y)qn−d(x,y) ≤ pd(z,y)qn−d(z,y)

when d(x, y) ≤ d(z, y). That is, the probability is greatest exactly when the code-
word x is closest to the received word y (When p = 1

2 it doesn’t matter since the
situation is symmetrical.) ///

4.4 Channel capacity
To state Shannon’s theorem about error-correcting codes for noisy channels, it is
necessary to make precise what we mean by the capacity of a channel to carry
information. We’ll only look seriously at the case of memoryless discrete binary
channels and memoryless sources.

Let C be a memoryless discrete channel with input alphabet Σin and output
alphabet Σout and (for xi ∈ Σin and yj ∈ Σout) transition probabilities

pij = P (yj received |xi sent)

Consider a memoryless source X emitting elements of Σin. Let

pi = P (X emits xi)

Then the output of the channel C with X connected to its input end can be viewed
as another memoryless source Y emitting elements of Σout with probabilities

p′j =
m∑

i=1

P (yj received |xi sent)P (X sent xi) =
m∑

i=1

pijpi

where m is the number of elements in the input alphabet.
The information about X given Y is defined in a reasonable way as the

decrease in entropy:

I(X|Y) = H(X)−H(X|Y) = H(X) + H(Y)−H(X, Y)

Since entropy depends only upon the probability distributions, this measure of
information depends only upon the probability distribution of X, and the transition
probabilities of the channel (and not on the alphabets, etc.) Define the capacity
of the channel C as

capacity (C) = max
X

I(X|Y)

68 Chapter 4 Noisy Coding

where the maximum is taken over all probability distributions for sources emitting
the alphabet accepted as inputs by the channel, and where for each X the source
Y is constructed from X and from the channel as just above.
Remark: Note that the expression

I(X|Y) = H(X)−H(X|Y) = H(X) + H(Y)−H(X, Y)

is actually symmetrical in the two random variables, so

I(X|Y) = I(Y |X)

In words, more intuitively, but less precisely, the amount of information about X
imparted by Y is equal to the amount of information about Y imparted by X.
Remark: Since the definition of capacity depends continuously upon the prob-
abilities p1, . . . , pm for the source’s emissions and since the collection of all such
m-tuples of probabilities is a closed and bounded set in Rm, the maximum really
occurs. This is a special case of the fact that the maximum of a continuous function
on a closed and bounded set in Rm is achieved, that is, is bounded above and there
is some point where the bounding value actually occurs.
Remark: The units for channel capacity are bits per symbol.
Theorem: Let C be a binary symmetric channel with bit error probability p.
Then the channel capacity of C is

1 + p log2 p + (1− p) log2(1− p)

bits per symbol.

Proof: Let q = 1 − p, and suppose that we consider a source X which emits ‘0’
with probability r and ‘1’ with probability s = 1 − r. Let Y be the new source
obtained by connecting the channel to the source X. Then

P (Y = ‘0’) = P (X = ‘0’) · P (‘0’ received |‘0’ sent)

+P (X = ‘1’) · P (‘0’ received |‘1’ sent)

= r · q + s · p

P (Y = ‘1’) = P (X = ‘0’) · P (‘1’ received |‘0’ sent)

+P (X = ‘1’) · P (‘1’ received |‘1’ sent)

= r · p + s · q

The joint entropy H(X, Y) is just the entropy of the joint probability distribution
(pr, ps, qr, qs), so

I(X|Y) = H(X) + H(Y)−H(X, Y)

= −r log2 r − s log2 s− (rq + sp) log2(rq + sp)− (rp + sq) log2(rp + sq)

+ (pr) log2(pr) + (ps) log2(ps) + (qr) log2(qr) + (qs) log2(qs)

4.4 Channel capacity 69

Expand each expression log2(xy) as

log2(xy) = log2 x + log2 y

and then use p + q = 1 and r + s = 1 to simplify the expression for I(X|Y) to

p log2 p + q log2 q − (rq + sp) log2(rq + sp)− (rp + sq) log2(rp + sq)

To maximize this with respect to choice of r, differentiate with respect to r,
set the derivative equal to zero, and solve for r (keeping in mind that s = 1 − r).
This will show that r = 1/2 gives the maximum, which is then

p log2 p + q log2 q −
(

q + p

2

)
log2

(
q + p

2

)
−
(

q + p

2

)
log2

(
q + p

2

)

= p log2 p + q log2 q −
(

1
2

)
log2

(
1
2

)
−
(

1
2

)
log2

(
1
2

)
= 1 + p log2 p + q log2 q

This proves the assertion of the theorem. ///

Remark: When p = 1
2 the channel capacity is 0. This makes sense, since if we

lack any other recourse, then what we get over the channel is worthless. While we
can detect errors (for example, by adding parity-check bits) we cannot correct them.
Proposition: Let C be a memoryless channel with capacity c. Then for any
positive integer n the nth extension C(n) of C has capacity nc.
Remark: This assertion is reasonable sounding, and the proof contains no sur-
prises, but it is a good exercise in the use of definitions.

Proof: Let c(n) be the capacity of the nth extension. Let X = (X1, . . . , Xn) be a
source for C(n), in which each Xi is a source for C. Let Y = (Y1, . . . , Yn) be the
corresponding outputs from the channel C. By definition

c(n) = max
X

I(X|Y) = max
X

H(X)−H(X|Y)

Since almost by definition

H(X)−H(X|Y) = H(X) + H(Y)−H(X, Y)

we have the symmetry
I(X|Y) = I(Y |X)

so also
c(n) = max

X
H(Y)−H(Y |X)

Computing,
H(Y |X) =

∑
x

P (X = x) H(Y |X = x)

70 Chapter 4 Noisy Coding

Since the channel is memoryless, the results of the various Yj are independent of
each other. More precisely,

H(Y |X = x) =
∑

i

H(Yi|X = x)

Further, since Yj only depends upon Xj , we have

H(Y |X = x) =
∑

i

H(Yi|X = x) =
∑

i

H(Yi|Xi = xi)

where x = (. . . , xi, . . .). Putting this back into the expression for H(Y |X), we
obtain

H(Y |X) =
∑

x1,...,xn

P (X1 = x1, . . . , Xn = xn)
∑

i

H(Yi|Xi = xi)

=
∑

i

∑
ξ

P (Xi = ξ)H(Yi|Xi = ξ)

Regardless of the independence of the Xis,∑
x2,x3,...,xn

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P (X1 = x1)

and so on. Thus,
H(Y |X) =

∑
i

H(Yi|Xi)

whether or not the Xi are independent, due to the memorylessness of the channel.
In the general inequality

H(Y1, . . . , Yn) ≤ H(Y1) + . . . + H(Yn)

we have equality if and only if the Yi are independent. Therefore,

c(n) = max
X

I(X|Y) = max
X

H(Y)−H(Y |X)

≤ max
X

(∑
i

H(Yi)−
∑

i

H(Yi|Xi)

)
with equality if and only if the Yis are independent. This proves

capacity c(n) of C(n) ≤ n · (capacity c of C)

The equality can be achieved by taking the Yis to be independent, and taking the
Xis to be independent and having the probability distribution that achieved the
capacity of the channel C. ///

4.5 Noisy coding theorem 71

4.5 Noisy coding theorem
Here is Shannon’s 1948 theorem proving that by suitable choice of error-
correcting encoding, information can be sent through a noisy channel at a rate
arbitrarily close to the capacity of the channel.

For a choice of decoding mechanism for a code f , the word error probability
of f is the ‘average’ probability of error in decoding, assuming (due to lack of
information) that all words w1, . . . , wN in the code f are sent with equal probability.
This expression is

word error probability of f =
1
N

N∑
i=1

P (error |wi sent)

Apart from the obvious objection that this might allow unacceptably large errors in
decoding rare words, it seems that in practice a slightly different measure is used:

The maximum word error probability is

maximum word error probability = max
i

P (error|wi sent)

Certainly

maximum word error probability of f ≥ average word error probability of f

so if we make the maximum error probability small then certainly the ‘plain’ error
probability will be small. And there is the virtue that we have made no unwarranted
assumptions about the probabilities that various codewords were sent. On the other
hand, minimizing maximum word error probability requires that we perhaps overly
concern ourselves with rare source words.

Now we return to the simple situation that all codes are binary, meaning that
everything is expressed in 0s and 1s. That means that we think of a binary sym-
metric channel and its extensions. We use maximum-likelihood (equivalently,
minimum-distance) decoding. From our earlier computation, a symmetric bi-
nary channel C with bit error probability p has capacity

c = 1 + p log2 p + (1− p) log2(1− p)

The rate of a binary code with maximum word length n and with t codewords
is defined to be

rate =
log2 t

n
=

log2(number of codewords)
maximum word length

Remark: The maximum possible rate is 1, which can occur only for a binary code
with maximum word length n where all the 2n binary codewords of length n are
used in the code. This represents the fullest possible transmission of information
through a channel.

72 Chapter 4 Noisy Coding

Remark: In a noisy channel, that is, in a channel whose bit error probability is
greater than 0, it is not reasonable to try to use a code with rate too close to 1,
because such a code will not have enough redundancy in it to allow either detection
or correction of errors.

Theorem: (Noisy Coding Theorem) Let C be a symmetric binary channel with
bit error probability p < 1

2 . Let q = 1− p. Recall that the channel capacity of C is
defined to be 1 + p log2 p + q log2 q. Let R be a rate satisfying

0 < R < 1 + p log2 p + q log2 q

Then there is a sequence C1, C2, . . . of codes of lengths ni with respective rates Ri

approaching R (from below) such that

lim
i

word length (Ci) =∞

and the maximum word error probabilities of the Cis go to zero:

lim
i

max word error probability (Ci) = 0

A little more specifically: given ε > 0, for sufficiently large n there is a code C of
length n with rate R0 ≤ R such that

|R0 −R| ≤ 1
n

and
max word error probability (C) < ε

Remark: Due to the nature of the proof, the theorem gives no explanation of
how to find or create the codes, nor is there a concrete indication of how rapidly
the maximum word error probability decreases to 0.

Proof: To set the context, we review some basic probabilistic aspects of the situ-
ation. Let p be the bit error probability, and let q = 1 − p for brevity. Then the
expected number of bit errors in a binary word of length n is pn. The variance
of the random variable that counts the bit errors in a binary word of length n is
npq. The probability of any specific pattern of t bit errors in a word of length n is
ptqn−t, as usual independent of the exact pattern, but rather depending only upon
the number of bit errors, not their location.

Fix ε > 0, and let

b =
√

npq

ε/2

Then, by Chebyshev’s inequality,

P (number of expected bit errors > np + b) ≤ ε

2

4.5 Noisy coding theorem 73

Since p < 1
2 , for fixed ε and sufficiently large n the integer r = floor(np + b) is

surely strictly less than n
2 . Recall that the floor function floor(x) is the greatest

integer less than or equal x.
For fixed word length n, let

Br(x) = {words y : d(x, y) ≤ r}

(where d(,) is Hamming distance) denote the ball of radius r centered at the word
x. The ‘volume’ volBr(x) of the ball Br(x) is the number of words in it, which is
the sum of the numbers of words with 0 bit errors (just x itself!), with 1 bit error,
with 2 bit errors, . . ., with t errors:

volBr(x) =
∑

0≤t≤r

(
n

t

)

Next, we recall the big-oh notation: let f(n), g(n), and h(n) be three func-
tions of positive integers n and K a constant with the property that for all suffi-
ciently large positive integers n

|f(n)− g(n)| ≤ K · h(n)

If we don’t care much about the specific value of K, then we can write instead

f(n)− g(n) = O(h(n))

or
f(n) = g(n) + O(h(n))

For example,
1

n + 1
=

1
n

+ O

(
1
n2

)
This sort of notation is useful when we’re trying to simplify things and don’t care
too much about relatively small details.

Now we start the proof in earnest, keeping the notation above. Define a func-
tion of two length n words w,w′ by

f(w,w′) =
{

1 (for d(w,w′) ≤ r)
0 (for d(w,w′) > r)

where r = floor(np + b). Certainly r depends on n, and is approximately p · n. For
x in the collection C of codewords, define

Fx(w) = 1− f(w, x) +
∑

y∈C, y 6=x

f(w, y)

This quantity Fx(y) indicates roughly how many decoding errors we might make in
decoding y as x. In particular, if there is no codeword within distance r of y other

74 Chapter 4 Noisy Coding

than x, then Fx(y) = 0. Otherwise, if there are other codewords within distance r
of y, then Fx(y) ≥ 1.

Let C = {x1, . . . , xt} be the codewords. We use the following decoding rule: for
a received word y if there is a unique codeword xi within distance r of y, then decode
y as xi, otherwise declare an error (or decode as some fixed default codeword x1).
It is clear from its description that this is a sloppier rule than minimum-distance
decoding, so if we can arrange to have this decoding rule achieve a good error
rate then minimum-distance (equivalently, maximum-likelihood) decoding will do
at least as well.

Keep in mind that p is the channel’s bit error probability. Let Pi be the
probability of an incorrect decoding given that xi ∈ C is transmitted. We assume
that codewords are transmitted with equal probabilities, each of which would have
to be 1/t since there are t codewords in C. Thus, the expected probability of error
in decoding the code C is

expected decoding error probability of code C

= PC =
1
t
·
∑

1≤i≤t

Pi

Let
Pbest = minimum PC for length n codes C with t codewords

Now we compute some things. Let Vn denote the collection of all binary words
of length n. For brevity, for codeword xi ∈ C and received word y ∈ Vn, write

P (y|xi) = P (y received |xi sent)

For a codeword xi, the probability of incorrectly decoding the received word given
that xi was sent is

Pi ≤
∑

y∈Vn

P (y|xi) Fxi(y) =
∑

y∈Vn

P (y|xi) (1− f(xi, y)) +
∑

y∈Vn

∑
j 6=i

P (y|xi) f(xj , y)

The expression ∑
y∈Vn

P (y|xi) (1− f(xi, y))

is the probability that the received word is not inside the ball Br(xi) of radius r
around xi. By the choice of b and r above (for given ε and n), we have arranged
that Chebysheff’s inequality gives∑

y∈Vn

P (y|xi) (1− f(xi, y)) < ε/2

Thus, summing over xi ∈ C,

expected decoding error probability of C

4.5 Noisy coding theorem 75

= PC ≤
ε

2
+

1
t

∑
1≤i≤t

∑
y∈Vn

∑
j 6=i

P (y|xi) f(xj , y)

Shannon’s insight was that whatever the average value Pavg of PC is (averaged
over all length n codes C with t codewords), there must be at least one code C0

which has
PC0 ≤ Pavg

This is a relatively elementary assertion about numbers: let a1, . . . , aN be real
numbers, and let

A =
a1 + . . . + aN

N

be the average. We are claiming that there is at least one ai (though we can’t
really predict which one) with ai ≤ A. To understand why this is so, suppose to
the contrary that ai > A for all ai. Then (by elementary properties of inequalities)

a1 + . . . + aN > A + . . . + A = N ·A

and
a1 + . . . + aN

N
> A

contradicting the fact that equality holds (since A is the average).
So we want to compute the average of PC over all codes C of length n with t

codewords. In fact, it turns out to be good to enlarge the class of codes to include
some degenerate codes where some of the t codewords are the same. Yes, this
means that information is lost at the very outset, and received words nearest such
identical codewords can never be reliably decoded. Yes, this will make the average
probability of word error greater. Yet making this ‘sacrifice’ of information makes
the computation feasible, and we reach the desired conclusion despite having been
profligate! So for the rest of the proof a ‘code’ with t words allows the possibility
that various bunches of the codewords may be the same, as silly as this may seem.

Then

Pbest ≤ average (PC) ≤ average

ε

2
+

1
t

∑
1≤i≤t

∑
y∈Vn

∑
j 6=i

P (y|xi) f(xj , y)

=
ε

2
+

1
t

average

 ∑
1≤i≤t

∑
j 6=i

∑
y∈Vn

P (y|xi) f(xj , y)

Since the various codewords xk are chosen independently of each other (be-

cause we’ve given up the requirement that they be distinct from each other!), the
averaging processes with respect to x1, x2, . . . can be done independently of each
other, allowing smaller and easier computations. In particular, for each j

average over xj of f(xj , y) =

∑
xj∈Vn

f(xj , y)

2n
=

volBr(y)
2n

76 Chapter 4 Noisy Coding

Thus, doing the inner averaging first, we have

ε

2
+

1
t

∑
1≤i≤t

avg over xi

∑
y∈Vn

P (y|xi)
∑
j 6=i

volBr(y)
2n

Since the volume of that ball of radius r doesn’t depend upon the center, but only
upon the radius, we can write

volBr = volume of any ball of radius r

Then this constant can be brought outside. Thus, so far,

Pbest ≤
ε

2
+

volBr

t · 2n

∑
1≤i≤t

avg over xi

∑
y∈Vn

P (y|xi) · (t− 1)

since there are t− 1 codewords other than xi. Since t−1
t ≤ 1, we can simplify this

a bit and say

Pbest ≤
ε

2
+

volBr

2n

∑
1≤i≤t

avg over xi

∑
y∈Vn

P (y|xi)

Next, of course ∑
y∈Vn

P (y|xi) = 1

for any codeword xi, since some word is received when xi is sent! This simplifies
things further to

Pbest ≤
ε

2
+

volBr

2n

∑
1≤i≤t

avg over xi (1) =
ε

2
+

volBr

2n
· t

The factor of t comes from the ‘outer’ sum over the t codewords xi in each code.
Next, we use the estimate (from the lemma below) on the volume vol Br:

volBr ≤
n

2
· nn

rr (n− r)n−r

and rearrange to obtain

Pbest −
ε

2
≤ t

2n
· n

2
· nn

rr (n− r)n−r
=

t

2n
· n

2
· 1
(r/n)r ((n− r)/n)n−r

If Pbest − ε
2 ≤ 0 we’re already done, so we can assume without loss of generality

that Pbest − ε
2 > 0, which allows us to take logarithms base 2 to obtain

log2

(
Pbest −

ε

2

)
≤ log2 t− n + log2 n− 1− r log2

r

n
− (n− r) log2

(n− r)
n

4.5 Noisy coding theorem 77

Divide through by n:

1
n

log2

(
Pbest −

ε

2

)
≤ 1

n
log2 t− 1 +

log2 n

n
− 1

n
− r

n
log2

r

n
− (n− r)

n
log2

(n− r)
n

Now r/n is roughly p, and (n − r)/n is roughly q. The other lemma below makes
this precise, and gives us

1
n

log2

(
Pbest −

ε

2

)
≤ log2 t + log2 n− 1

n
− (1 + p log2 p + q log2 q) + O

(
n−1/2

)
The summand (log2 n− 1)/n is also O(n−1/2), so we have

1
n

log2

(
Pbest −

ε

2

)
≤ log2 t

n
− (1 + p log2 p + q log2 q) + O

(
n−1/2

)
For a choice of rate R in the allowed range 0 < R < 1 + p log2 p + q log2 q, and for
corresponding number of words t = 2floor(R·n),

log2 t

n
=

floor(R · n)
n

= R + O
(
n−1

)
= R + O

(
n−1/2

)
Note that this says that the rate floor(R ·n)/n is within 1/n of the limiting rate R.
Thus, we have

1
n

log2

(
Pbest −

ε

2

)
≤ R− (1 + p log2 p + q log2 q) + O

(
n−1/2

)
Define

δ =
1
2
· (1 + p log2 p + q log2 q −R)

From the inequality 0 < R < 1 + p log2 p + q log2 q, we have δ > 0. Likewise, by
that inequality, for sufficiently large n

R− (1 + p log2 p + q log2 q) + O
(
n−1/2

)
< −δ

For such large n we multiply the equation

log2 t

n
=

floor(R · n)
n

= R + O
(
n−1

)
= R + O

(
n−1/2

)
through by n, exponentiate base 2, and move the ε/2 to the other side to obtain

Pbest ≤
ε

2
+ 2−δ n

Take n large enough so that 2−δ n < ε/2 (since δ > 0). For such n we have Pbest ≤ ε,
finishing the proof of Shannon’s theorem. ///

78 Chapter 4 Noisy Coding

Here is the simple estimate on volumes used above in the proof of Shannon’s
theorem:
Lemma: For 0 ≤ r ≤ n/2

volBr(x) ≤ n

2
· nn

rr (n− r)n−r

Proof: First note that since r ≤ n/2(
n

0

)
≤
(

n

1

)
≤
(

n

2

)
≤ . . . ≤

(
n

r

)
from which

volBr(x) =
∑

0≤t≤r

(
n

t

)
≤
∑

0≤t≤r

(
n

r

)
= r ·

(
n

r

)
≤ n

2

(
n

r

)

Then, from the Binomial Theorem,

nn = (r + (n− r))n =
∑

0≤i≤n

(
n

i

)
ri (n− r)n−i ≥

(
n

r

)
rr (n− r)n−r

By rearranging, this shows that(
n

r

)
≤ nn

rr (n− r)n−r

Putting these together, we get

volBr(x) ≤ n

2

(
n

r

)
≤ n

2
nn

rr (n− r)n−r

as claimed. ///

Here is another estimate used in the proof of Shannon’s theorem. It is a typical
result coming from calculus, using the Mean Value Theorem.
Lemma: Fix ε > 0 and fix p with 0 ≤ p ≤ 1

2 . Let b =
√

2npq/ε and r =
floor(np + b). Using the big-oh notation,

r

n
log2

r

n
= p log2 p + O(n−1/2)

That is, for some constant K (which we don’t care about),∣∣∣ r
n

log2

r

n
− p log2 p

∣∣∣ ≤ K√
n

4.5 Noisy coding theorem 79

Proof: First, because of the way r is defined via the floor function,

|r − (np + b)| ≤ 1

from which, dividing through by n, we have∣∣∣∣ rn − (p +
b

n
)
∣∣∣∣ ≤ 1

n
= O

(
1
n

)
For fixed ε > 0 and for fixed p (and q), by the definition of b we have

b = O(
√

n)

and then, dividing by n,
b

n
= O

(
1√
n

)
Since

√
n ≤ n we have

O

(
1
n

)
+ O

(
1√
n

)
= O

(
1√
n

)
and therefore∣∣∣ r

n
− p
∣∣∣ ≤ ∣∣∣∣ rn − (p +

b

n
)
∣∣∣∣+ ∣∣∣∣ bn

∣∣∣∣ ≤ 1
n

+ O

(
1√
n

)
= O

(
1√
n

)
Abstracting the situation slightly, fix y = p in the range 0 < y < 1, and let

xn = r/n with xn − y = O(n−1/2). We claim that

xn log2 xn − y log2 y = O(n−1/2)

To prove this, we need the Mean Value Theorem from calculus: for any differentiable
function f , given a < b, for some ξ between a and b we have

f(b)− f(a) = f ′(ξ) · (b− a)

for differentiable f and for some ξ between a and b. Also recall that

d

dx
(x lnx) = 1 + lnx

and that
log2 A =

lnA

ln 2
so

d

dx
(x log2 x) =

1
ln 2

(1 + lnx)

80 Chapter 4 Noisy Coding

Then we have

xn log2 xn − y log2 y =
1

ln 2
(ln ξ + 1) · (xn − y)

=
(

1
ln 2

+ log2 ξ

)
· (xn − y)

for some ξ between xn and y.. For n large enough, xn ≤ 2y, so y ≤ ξ ≤ 2y. Thus,
by the monotonicity of log2,

log2 y ≤ log2 ξ ≤ log2 2y

This gives a bound on log2 ξ which does not depend on n at all, so, in terms of the
parameter n, this says

xn log2 xn − y log2 y = O(xn − y) = O

(
1√
n

)
as desired. ///

Exercises

4.01 A symmetric binary channel has error probability 1/4. What is the proba-
bility that the binary word ‘01’ is transmitted correctly? (ans.)

4.02 A symmetric binary channel has error probability 1/6. What is the probabil-
ity that at least one error occurs in transmission of the binary word ‘0011’?
(ans.)

4.03 A message of N binary digits is transmitted through a binary symmetric
channel with error probability p. Verify that the expected number of errors
is Np. (ans.)

4.04 A symmetric binary channel has error probability 1/4. A source is encoded
to the set of codewords {000, 001, 010, 011, 100, 101, 110, 111}. A single-digit
parity check is added, turning the codewords into

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}

What is the probability that one of these new 4-bit codewords is transmitted
with an error that goes undetected? By contrast, what is the probability that
at least one error occurs in transmission of a 4-bit word by this channel?

4.05 A symmetric binary channel has error probability 1/4. A source emits
words w1, w2, w3, w4, w5 with probabilities 1/2, 1/4, 1/8, 1/16, 1/16. These
words are Huffman-encoded as 0, 10, 110, 1110, 1111, respectively. What
is the probability that there will be at least one (undetected!) error
transmission of a word? Now add a parity-check bit, giving codewords
00, 100, 1100, 11101, 11110. What is the probability that there is an un-
detected error in transmission of a word?

Exercises 81

4.06 Why is there no point in considering a binary symmetric channel with error
probability p > 1

2?

4.07 What is the channel capacity of the binary erasure channel with erasure
probability ε?

4.08 What is the (information) rate of a code consisting of all binary codewords
of length 4 with a parity check bit added (making them of length 5)? (ans.)

4.09 A code consisting of all binary source words of length 4 makes codewords
by sending every source word twice in a row in order to detect allow the
decoder to detect errors. (An 8-bit codeword is rejected if the first 4 bits
and the last 4 bits don’t agree.) What is its rate? (ans.)

4.10 A code with binary source words of length 4 makes codewords by sending
every source word twice in a row in order to detect allow the decoder to
detect errors. (An 8-bit codeword is rejected if the first 4 bits and the last
4 bits don’t agree.) In a binary symmetric channel with error probability
1/10, what is the probability that an error will go undetected? (ans.)

4.11 What is the rate of a code with binary source words of length 4 in which
codewords are made by sending a source word 3 times in a row (thereby
making them of length 12)? (The correct decoding is decided by a 2/3 vote,
or the word is rejected if no 2 of the 3 4-bit pieces agree.)

4.12 A code with binary source words of length 4 makes codewords by sending
a source word 3 times in a row (thereby making them of length 12). (The
correct decoding is decided by a 2/3 vote, or the word is rejected if no 2 of the
3 4-bit pieces agree.) In a binary symmetric channel with error probability
1/10, what is the probability that an error will go undetected? What is the
probability that an error will be detected but not be correctable?

5

Cyclic Redundancy Checks

5.1 The finite field with 2 elements
5.2 Polynomials over GF (2)
5.3 Cyclic redundancy checks (CRCs)
5.4 What errors does a CRC catch?

The idea of parity check bit can be extended in various ways to detect more
errors. (Recall that a single parity check bit only detects an odd number of bit-
errors, and certainly cannot correct any errors at all.)

5.1 The finite field with 2 elements
The set GF (2) = F2 = {0, 1} with suitable operations of addition and multiplica-
tion is the simplest example of what is called a finite field. Fortunately, we can
do many things with F2 without worrying about the general case right away.

The finite field with 2 elements can be taken to be the set {0, 1} with the
addition and multiplication operations + and × defined by

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0
0× 0 = 0 0× 1 = 0 1× 0 = 0 1× 1 = 1

Various notations are used for this set with these operations: F2 and GF (2) are
the most common. Also Z/2. The notation Z2 is sometimes used, but this is not
so good since in other contexts Z2 is an entirely different thing, the 2-adic integers.
Also, sometimes this finite field is called a Galois field, in honor of Evariste Galois,
who first systematically studied finite fields such as F2.
Remark: Since 1 + 1 = 0, it is reasonable to say that

−1 = 1

if by ‘−1’ we mean something which when added to 1 gives 0. Similarly,

−0 = 0

82

5.2 Polynomials over GF (2) 83

since, after all, 0 + 0 = 0.
Remark: It is not possible to tell, except from context, whether symbols 1 and
0 refer to elements of F2 or, instead, refer to the 1 and 0 in the real or complex
numbers. At the same time, it is probably misguided to add notational baggage in
an attempt to systematically overcome this ambiguity. In fact, context will almost
always sufficiently clarify this point.
Remark: If these 0s and 1s are viewed as bits, then the possibly suspicious-
looking addition in F2 can instead be understood as being exclusive or. This is
worth noting, but in fact there are two more general abstractions both of which
will subsume this addition operation in a way that is more sensible in the long run,
making it seem more like an extension of arithmetic and algebra. The first is the
construction of Z/p, the integers modulo p. The case here is just the case of
p = 2. The other abstraction is to finite fields, which we will also look at a little
later.

5.2 Polynomials over GF (2)
We can do basic algebra with polynomials having coefficients in the finite field F2

in almost exactly the same fashion as with polynomials having real or complex
coefficients. The algebra of such polynomials is used extensively in the sequel. The
immediate application will be to cyclic redundancy checks just below.

A polynomial P (x) in the indeterminate x with coefficients which are real
numbers is a sum of powers of x with real numbers in front of them, like

P (x) = 3 · x5 − 2.017 · x2 + 17 · x− 7.123

The numbers in front of the powers of x are the coefficients. The degree of a
polynomial is the highest power of x that appears with a non-zero coefficient. We
assign the 0-polynomial degree −∞. This choice makes various results hold without
making exceptions for the 0-polynomial. For example, the degree of the product of
two polynomials is the sum of their degrees.

As usual, if the coefficient of some power of x is 0, we don’t write that term at
all. A polynomial like this certainly gives rise to an associated polynomial func-
tion, usually denoted by the same symbol, into which we can plug real numbers.
With the example just given, to evaluate at x = 1.234 means to replace x by 1.234
throughout:

P (1.234) = 3 · (1.234)5 − 2.017 · (1.234)2 + 17 · (1.234)− 7.123 ≈ 19.3677

Analogously, a polynomial in the indeterminate x with coefficients in the
finite field F2 will look exactly like a polynomial with ‘ordinary’ coefficients, except
that the only coefficients we’ll use will be 0 or 1. It is important to realize that the
exponents of x are still ordinary integers. For example,

P (x) = 1 · x3 + 0 · x2 + 0 · x + 1 · x0 = x3 + 1

is such a polynomial. Notice that since the only possible coefficients are 0 and 1,
we don’t really have to write coefficients at all: if the coefficient of some power of

84 Chapter 5 Cyclic Redundancy Checks

x is 0, we don’t write it at all, and if the coefficient is 1 we just write the power of
x. As usual, such a polynomial gives rise to a polynomial function from F2 to
F2, by evaluation inside the finite field F2:

P (0) = 03 + 1 = 1
P (1) = 13 + 1 = 0

Unlike the case of real numbers, however, different polynomials can give rise to the
same function: for example the two polynomials P (x) = x2 + x + 1 and Q(x) = 1
have the same values for any input in F2.

Addition of polynomials with coefficients in F2 is as usual: add the coefficients
of corresponding powers of x, but now inside the finite field F2. For example,

(x3 + 1) + (x3 + x2 + x + 1) = (1 + 1) · x3 + (0 + 1) · x2 + (0 + 1)x + (1 + 1) = x2 + x

Multiplication of polynomials is as usual, satisfying the distributive law. To
multiply polynomials is akin to multiplying decimal integers, but keeping track of
powers of x instead of tens’ place, hundreds’ place, etc. And the multiplication of
polynomials is somewhat simpler in that there is no carry, unlike integer multipli-
cation. First, the integer multiplication case is something like

2 0 3
× 1 2 3

6 0 9
4 0 6

2 0 3
2 4 9 6 9

(This example did not have any carries in it.) The polynomial multiplication is
very similar. For example, with coefficients in the real numbers:

2x3 3x2 +x −3
2x2 −3x +2

+4x3 +6x2 +2x −6
−6x4 −9x3 −3x2 +9x

4x5 +6x4 +2x3 −6x2

4x5 −3x3 −3x2 +11x −6

That is, each term in the first polynomial multiplies each term in the
second polynomial. Entirely analogously we can multiply polynomials with co-
efficients in the finite field F2: again, each term in the first polynomial multiplies
each term in the second one, and then we add them all up. Now it’s actually easier
than for real or complex coefficients, because the arithmetic of the ‘numbers’ is so
easy to do. For example, keeping in mind that 1 + 1 = 0 in F2:

x3 +x +1
x2 +x +1

+x3 +x +1
+x4 +x2 +x

x5 +x3 +x2

x5 +x4 +1

5.2 Polynomials over GF (2) 85

Note that in all cases we preserved the vertical alignment of like powers of x as a
precaution against miscopying errors. This is much like keeping the tens’ places,
hundreds’ places, etc., lined up when doing integer arithmetic by hand, except that
there is no carrying.

Division of one polynomial by another is also analogous to long division (with
remainder) of integers, except again there is no ‘borrowing’ or ‘carrying’. First we
do an example with coefficients viewed as being ordinary integers or real numbers:

x3 +x2 −x1 −1 R x4+0 +0 +3x +2
x5 +0 +x3 +0 +x1 +x0 x8 +x7 +0 +0 +x4 +x3 +0 +x1 +x0

x8 +0 +x6 +0 +x4 +x3 +0 +0 +0

x7 −x6 +0 +0 +0 +0 +x1 +x0

x7 +0 +x5 +0 +x3 +x2 +0 +0

−x6−x5 +0 −x3 −x2 +x1 +x0

−x6 +0 −x4 +0 −x2 −x1 +0

−x5 +x4 −x3 +0 +2x1+x0

−x5 +0 −x3 +0 −x1 −x0

x4 +0 +0 +3x1+2
Thus, in effect, at first we ask how many x5s go into x8 (exactly x3), multiply the
divisor by x3 and subtract from the dividend, getting a temporary remainder, in
this case x7−x6+x+1. Next, how many x5s go into x7? Certainly x2. Multiply the
divisor by x2 and subtract from the temporary remainder, giving a newer temporary
remainder −x6−x5−x3−x2 + x + 1. Continue until the degree of the remainder
is strictly less than the degree of the divisor.

Now we use the same dividend and divisor, but viewed as having coefficients
in F2, so that −1 = 1, 1 + 1 = 0, etc:

x3 +x2 +x1 +1 R x4+0 +0 +x1 +0
x5 +0 +x3 +0 +x1 +x0 x8 +x7 +0 +0 +x4 +x3 +0 +x1 +x0

x8 +0 +x6 +0 +x4 +x3 +0 +0 +0

x7 +x6 +0 +0 +0 +0 +x1 +x0

x7 +0 +x5 +0 +x3 +x2 +0 +0

x6 +x5 +0 +x3 +x2 +x1 +x0

x6 +0 +x4 +0 +x2 +x1 +0

x5 +x4 +x3 +0 +0 +x0

x5 +0 +x3 +0 +x1 +x0

x4 +0 +0 +x1 +0
Because in F2 we have−1 = +1, addition and subtraction are conveniently the same
thing. Thus, at each line we have the liberty of adding rather than subtracting,
which is a little bit easier since it is a symmetric function of its inputs (rather than
being unsymmetric as subtraction is in general).

Remark: No, it is not possible to tell what kind of numbers the coefficients of a
polynomial are intended to be without knowing the context. This is especially true
of the simplest expressions such as 1 or 0, and all the more so when we suppress
the coefficients, like in x3 + x.

86 Chapter 5 Cyclic Redundancy Checks

Remark: In any case, regardless of what kind of coefficients we’re using, the
exponents of the indeterminate x are still just ordinary non-negative integers.

5.3 Cyclic redundancy checks (CRCs)
If we don’t care about correcting errors, but only about detecting them, there are
very effective standard methods available, called cyclic redundancy checks, ab-
breviated as CRCs. These are natural generalizations of parity check bits, and
in effect are able to keep track of more information.

The CRC’s can be chosen to fit the circumstance: if arranged optimally, an
n-bit CRC will fail to detect only 1 error out of 2n. Common values of the bit-size
n are 12, 16, and 32.

Given data expressed as a stream of bits such as 11100010100, create a data
polynomial with coefficients in the finite field F2 from it by using the 0s and 1s
as coefficients:

11100010100→ x10 + x9 + x8 + x4 + x2

A CRC-computing algorithm is specified by its generating polynomial,
which is also a polynomial with coefficients in the finite field F2. For example,
we might take as generating polynomial

x3 + x + 1

Then the CRC of the data is computed by finding the remainder when the data
polynomial is divided by the generating polynomial: With data polynomial
and generating polynomial as above, we’d get

x7 +x6 +0 +0 +x3 +0 +0 +1 R x2+x1 +x0

x3 +0 +x1 +x0 x10 +x9 +x8 +0 +0 +0 +x4 +0 +x2 +0 +0
x10 +0 +x8 +x7 +0 +0 +0 +0 +0 +0 +0

x9 +0 +x7 +0 +0 +x4 +0 +x2 +0 +0
x9 +0 +x7 +x6 +0 +0 +0 +0 +0 +0

x6 +0 +x4 +0 +x2 +0 +0
x6 +0 +x4 +x3 +0 +0 +0

x3 +x2 +0 +0
x3 +0 +x1 +x0

x2 +x1 +x0

Thus, the remainder is x2 + x + 1, which we translate back to bits as 111. That is

CRC with generating polynomial x3 + x + 1 computed for 11100010100 = 111

Remark: In real life, the long-division process can be implemented cleverly so
that the CRC of quite large chunks of data can be computed quickly.
Remark: In some cases the long-division algorithm is run in the opposite direction
bit-wise, meaning that the bit string is interpreted as coefficients in ascending rather

5.3 Cyclic redundancy checks (CRCs) 87

than descending order as we have done. This doesn’t change the idea of the thing,
but certainly changes the interpretation in terms of polynomials.
• Computation of a single parity bit is computation of a CRC with generating

polynomial x + 1.

Remark: For generating polynomials of degree n there are 2n different possible
values of the CRC of data streams, since the remainder after division can (in princi-
ple) be any polynomial of degree n−1 or less with coefficients in the finite field F2.
For each of the coefficients from n− 1 down to 0 there are 2 choices, so altogether
there are

2× 2× . . .× 2︸ ︷︷ ︸ = 2n

possible remainders. Therefore, if we are confident (!?) that these remainders are
uniformly distributed among all 2n possibilities we can claim that the CRC misses
only 1 out of 2n bit errors.

Remark: A common too-simple type of redundant information computed
to detect errors or changes in data is an XOR checksum. Here XOR means
exclusive-or. This is very easy in terms of typical computer operations: XOR
all the bytes together. This produces a single-byte checksum value. This is an
appealing kind of redundancy to compute because it is very easy and very fast.
Since there are 28 different possible checksum values (because of the common 8-bit
ASCII bytes), superficially it would seem that these checksums should be good at
detecting errors. However, due to the fact that some 8-bit bytes are much more
common than others, these checksum values are not uniformly distributed among
the 28 possibilities, which means that the effectiveness is sharply reduced. This will
be discussed further later.

Remark: Another type of checksum, sometimes called an arithmetic checksum,
is obtained by viewing each byte (8-bit chunk) of the data as an 8-bit number (in
binary), and add them all together, discarding any carries that go above the 27s
place. That is, only the ‘bottom’ 8 digits/bits of the sum are kept. (One could
also express this as reduction modulo 28.) Again, there are 28 different possible
checksum values, so superficially it would seem that these checksums should be good
at detecting errors. However, again due to the fact that some 8-bit bytes are much
more common than others, these checksum values are not uniformly distributed
among the 28 possibilities, which means that the effectiveness is sharply reduced
for the same reason as inthe previous example.

The XOR checksum computation can be understood in a more structured
fashion in the larger context of CRC’s. View each byte (ordered 8-tuple of bits) as
a vector with components in F2. Then the CRC is computed by adding up all the
resulting vectors from the whole chunk of data. For example, for data (grouped
into 3 bytes)

111000110010101101111001

we’d create vectors

(1, 1, 1, 0, 0, 0, 1, 1) (0, 0, 1, 0, 1, 0, 1, 1) (0, 1, 1, 1, 1, 0, 0, 1)

88 Chapter 5 Cyclic Redundancy Checks

and add them using the addition operation from F2:

(1, 1, 1, 0, 0, 0, 1, 1) + (0, 0, 1, 0, 1, 0, 1, 1) + (0, 1, 1, 1, 1, 0, 0, 1)

= (1 + 0 + 0, 1 + 0 + 1, 1 + 1 + 1, 0 + 0 + 1, 0 + 1 + 1, 0 + 0 + 0, 1 + 1 + 0, 1 + 1 + 1)

= (1, 0, 1, 1, 0, 0, 0, 1)

To view this as a CRC, instead of vectors we make polynomials from 8-bit bunches.
Then computing the XOR checksum is the same as computing a CRC
with generating polynomial

x8 − 1

But now we realize that if we are unhappy with the statistical (error-detecting)
properties of a CRC with a given generating polynomial then we can try a different
generating polynomial. There are choices.

Better CRC’s in real life are the ones computed with standard choices for
generating polynomials:

x12 + x11 + x3 + x + 1

x16 + x12 + x5 + 1

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Why these? Because they catch all two-bit errors in very long strings. Specifically,
the above degree 12 CRC catches all two-bit errors up to distance 212 − 1 apart,
the degree 16 CRC catches all two-bit errors up to distance 216 − 1 apart, and the
degree 32 CRC catches all two-bit errors up to distance 232−1 apart, because these
polynomials are all primitive, in a sense discussed subsequently.

5.4 What errors does a CRC catch?
A little algebra can explain what errors will be detected by a CRC and how different
choices of the generating polynomial affect this. Generally, the higher the degree
of the generating polynomial the better the CRC will function, but there are other
significant issues as well.

For a CRC with generating polynomial g = g(x), and for data (stream of 0s
and 1s) turned into a polynomial d = d(x) (both with coefficients in F2), suppose
that d = d(x) is transmitted or played back with some errors, and becomes d̃ = d̃(x)
instead. (We may suppress the reference to the indeterminate x in the polynomials
here, to reduce the clutter in the notation.)

The error vector or error polynomial is obtained by subtracting:

e = e(x) = d(x)− d̃(x) = d− d̃

(Since the coefficients are in F2 it doesn’t really matter whether we subtract or
add.) The number of non-zero coefficients in e(x) is its Hamming weight. The
number of non-zero coefficients in e(x) is the number of bit errors.

5.4 What errors does a CRC catch? 89

Let r = r(x) be the CRC of d(x). It is the remainder when d(x) is divided by
g(x), so we can write

d(x) = q(x) · g(x) + r(x) = q · g + r

where q(x) is the quotient obtained by dividing d(x) by g(x). Let r̃(x) be the CRC
of d̃(x), and let

d̃(x) = q̃(x) · g(x) + r̃(x) = q̃ · g + r̃

where q̃(x) is the quotient obtained by dividing d̃(x) by g(x). Then the error is
expressible as

e(x) = d(x)− d̃(x) = (q · g + r)− (q̃ · g + r̃)

= (q − q̃) · g + r − r̃

This means that the remainder upon dividing e(x) by g(x) is r − r̃.
• For the CRC to fail to detect an error e = d− d̃, that remainder r − r̃ must

be 0, which is to say that g(x) divides e(x) (with remainder 0).

Remark: Divisibility properties of polynomials with coefficients in F2 are entirely
reasonable and are abstractly consistent with divisibility properties of polynomials
with real or complex coefficients. Later we will look at such issues more carefully,
but for the moment we will take some things for granted.
• If there is just one bit error, at the ith position, then the error polynomial

is
e(x) = xi

This will fail to be detected by the CRC if and only if g(x) divides e(x) = xi.
Since xi is just the product of i copies of the factor x, g(x) cannot divide xi

unless g(x) is xj for some j ≤ i. So already g(x) = x + 1 will detect single
bit errors. Single bit errors are easy to detect.

• If there are just two bit errors, at the mth and nth positions (with m < n),
then the error polynomial is

e(x) = xm + xn

This will fail to be detected by the CRC if and only if g(x) divides e(x) =
xm + xn. This error polynomial can be factored as

e(x) = xm + xn = xm(1 + xn−m)

If g(x) has no factor of x, which is easy to arrange by having the constant
term be non-zero, then for such an error to go undetected it must be that
g(x) divides 1 + xn−m (with remainder 0). Already this is mysterious if we
don’t know anything else.

Example: We consider an example to assess detectability of two-bit errors: let’s
look at the case of the XOR checksum, with g(x) = x8 − 1. Recall the high-school

90 Chapter 5 Cyclic Redundancy Checks

algebra identities

x2 − 1 = (x− 1)(x + 1)
x3 − 1 = (x− 1)(x2 + x + 1)
x4 − 1 = (x− 1)(x3 + x2 + x + 1)
x5 − 1 = (x− 1)(x4 + x3 + x2 + x + 1)

. . .
xN − 1 = (x− 1)(xN−1 + xN−2 + . . . + x + 1)

(The fact that we are working with coefficients in F2, and that −1 = +1, does not
harm these identities.) Replacing x by x8, we find

x16 − 1 = (x8 − 1)(x8 + 1)
x24 − 1 = (x8 − 1)(x16 + x8 + 1)
x32 − 1 = (x8 − 1)(x24 + x16 + x8 + 1)
x40 − 1 = (x8 − 1)(x32 + x24 + x16 + x8 + 1)

. . .
x8N − 1 = (x8 − 1)(x8(N−1) + . . . + x8 + 1)

That is, x8 − 1 divides (with remainder 0) any polynomial x8N − 1. For error
detection, that means that if two bit errors occur a distance apart which is a
multiple of 8, the XOR checksum CRC will not detect it.

Example: But that level of performance can already be achieved by a smaller
CRC: using the CRC with generating polynomial x3 + x + 1, even though it’s only
of degree 3 rather than degree 8, we only fail to detect two-bit errors when they’re
a multiple of 7 apart. That is, x3 + x + 1 divides xN − 1 (with remainder 0) only
when N is a multiple of 7. You can certainly check by trying to divide that no
smaller N works. Again, this property is referred to by saying the polynomial is
primitive. This will be discussed further subsequently.

Example: Still thinking about 2-bit errors: using the CRC with generating poly-
nomial x4 + x + 1, even though it’s only of degree 4, fails to detect two-bit errors
only when they’re a multiple of 15 apart. That is, x4 + x + 1 divides xN − 1 (with
remainder 0) only when N is a multiple of 15. You can certainly check by trying
to divide that no smaller N works. This is some sort of proof that the XOR
checksum is inefficient.

Example: Still thinking about 2-bit errors: using the CRC with generating poly-
nomial x5 + x2 + 1, even though it’s only of degree 5, fails to detect two-bit errors
only when they’re a multiple of 31 apart. That is, x5 + x2 + 1 divides xN − 1 (with
remainder 0) only when N is a multiple of 32. You can certainly check by trying
to divide that no smaller N works, but this is not the intelligent way to verify the
property.

Example: Still thinking about 2-bit errors: let’s change the generating polynomial
from the previous example slightly, from x5 +x2 +1 to x5 +x+1. Mysteriously, the
performance deteriorates from the previous example, so that two-bit errors which
are a multiple of 21 apart will pass undetected.

5.4 What errors does a CRC catch? 91

Example: Further, changing again to generating polynomial x5 + x4 + x + 1
mysteriously causes a further degradation of performance: two-bit errors which are
a multiple of 8 apart will pass undetected. This is as bad as the XOR checksum CRC
with generator x8 − 1, but at least it is achieved with only a 5-bit CRC. A rough
explanation for this is that while the degree of the polynomial is higher, so that
the CRC’s report contains more bits, the choice of how these bits are computed
is suboptimal. The polynomial is far from being primitive (in a sense discussed
precisely later).
Example: By contrast, the CRC with generator

x16 + x15 + x2 + 1 = (x + 1)(x15 + x + 1)

will fail to detect two-bit errors only if they are a multiple of 32767 = 215−1 apart!
(Obviously this fact is not discovered by direct computation!)
Remark: As in the last example, the most effective CRC’s are obtained by taking
generating polynomials which have a factor like x15 + x + 1 which is irreducible,
meaning that it can’t be factored further into smaller-degree polynomials with co-
efficients in F2. This is the polynomial analogue of being a prime number. Further,
not only is this polynomial irreducible, it is primitive, meaning that the small-
est integer N such that the polynomial divides xN − 1 is N = 2d − 1 where d is
the degree of the polynomial. Of course this definition by itself is pointless: it is
completely unclear whether there are many such things, how to find them, how to
verify the property, etc.
Remark: Further, the 16-bit CRC just above also can detect all 3-bit errors
in data of 32767 bits or less because it is obtained as the product of x + 1 with
a primitive degree 15 polynomial. That is, the primitive degree 15 polynomial
detects two-bit errors within distance of 32767 of each other, while the factor of
x + 1 detects all errors consisting of an odd number of bit errors.

Burst errors are bit errors that occur close together. A CRC of degree n with
non-zero constant term can always detect a burst error of length < n. To see this,
let the generating polynomial be g(x), and the error polynomial be e(x). Since it
is a burst error of length < n, the error can be written as

e(x) = xn · p(x)

where p(x) is a polynomial of degree < n. For the CRC to fail to detect this,
it must be that g(x) divides e(x) (with remainder 0). Since g(x) has non-zero
constant term it has no factors of x, so for g(x) to divide xn · p(x) it must be that
g(x) actually divides p(x). But if the degree of p(x) is less than the degree of g(x)
this is impossible. Thus, the error will be detected.
Remark: In this little discussion of burst errors, we implicity used the unique
factorization of polynomials with coefficients in F2. This is not too surprising,
but deserves proof, and will be proven later.
Remark: It is useful to note that polynomials f(x) with coefficients in F2 have
the possibly unexpected property that

f(x2) = f(x)2

92 Chapter 5 Cyclic Redundancy Checks

Indeed, let f(x) = xn + g(x) with g(x) being the lower-degree terms in f(x). Then

f(x)2 = (xn)2 + 2xng(x) + g(x)2 = (xn)2 + 0 + g(x)2

since 2 = 0 in F2. By induction on the number of terms in the polynomial, we can
assume that g(x)2 = g(x2), so this gives

f(x)2 = (xn)2 + g(x2) = (x2)n + g(x2) = f(x2)

as asserted.

Exercises

5.01 Compute 1 + 1 + 1 + 1 + 1 in the finite field F2.

5.02 Compute
1 + 1 + 1 + . . . + 1︸ ︷︷ ︸

107

in the finite field F2.

5.03 Compute (1 + x + x2)4 as a polynomial with coefficients in F2.

5.04 Compute the product (x4 + x3 + x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1) in the
collection of polynomials with coefficients in F2.

5.05 Let g(x) = x3 + x + 1 be a generating polynomial for a CRC. Compute the
CRC for the byte 11100011. (ans.)

5.06 Let g(x) = x3 + x + 1 be a generating polynomial for a CRC. Figure out
how to be a little clever in computing the CRC for the bytes

111000110101000110011110

so that you don’t fill up a whole sheet of paper with an enormous long
division.

5.07 Verify that the CRC with generating polynomial 1 + x + x2 + x3 fails to
detect two-bit errors that are a multiple of 4 bits apart. (ans.)

5.08 Verify that the CRC with generating polynomial 1 + x2 + x3 + x4 fails to
detect two-bit errors that are a multiple of 7 bits apart.

6

The Integers

6.1 The reduction algorithm
6.2 Divisibility
6.3 Factorization into primes
6.4 A failure of unique factorization
6.5 The Euclidean Algorithm
6.6 Equivalence relations
6.7 The integers modulo m
6.8 The finite field Z/p for p prime
6.9 Fermat’s Little Theorem
6.10 Euler’s theorem
6.11 Facts about primitive roots
6.12 Euler’s criterion
6.13 Fast modular exponentiation
6.14 Sun-Ze’s theorem
6.15 Euler’s phi-function

6.1 The reduction algorithm
This reduction algorithm, also called division with remainder, is of funda-
mental importance.

For a non-zero integer m, there is the process of reduction modulo m, which
can be applied to arbitrary integers N . At least if m and N are positive, this
is exactly the division-with-remainder process of elementary arithmetic, with the
quotient discarded: the reduction modulo m of N is the remainder when N is
divided by m. This procedure is also called the Division Algorithm, for that
reason. More precisely, the reduction modulo m of N is the unique integer r so
that N can be written as

N = q ·m + r

with an integer q and with
0 ≤ r < |m|

93

94 Chapter 6 The Integers

(Very often the word ‘modulo’ is abbreviated as ‘mod’.) The non-negative integer
m is the modulus. For example,

10 reduced modulo 7 = 3

10 reduced modulo 5 = 0

12 reduced modulo 2 = 0

15 reduced modulo 7 = 1

100 reduced modulo 7 = 2

1000 reduced modulo 2 = 0

1001 reduced modulo 2 = 1

Remark: In some sources, and sometimes for brevity, this terminology is abused
by replacing the phrase ‘N reduced mod m’ by ‘N mod m’. This is not so terrible,
but there is also a related but significantly different meaning that ‘N mod m’
has. Usually the context will make clear what the phrase ‘N mod m’ means, but
watch out. We will use a notation which is fairly compatible with many computer
languages: write

x%m = reduced modulo m

The little theorem which describes existence and uniqueness, enabling us to
prove things but not necessarily do numerical computations, is:
Theorem: Given a non-zero integer m and an arbitrary integer x, there are unique
integers q (for ‘quotient’) and r (for ‘remainder’) with 0 ≤ r < |m| such that

x = q ·m + r

Proof: Let’s do the proof just for positive x and m. Let S be the set of all non-
negative integers expressible in the form x − sm for some integer s. The set S is
non-empty since x = x− 0 ·m lies in it. Let r = x− qm be the least non-negative
element of the set S. (This exists by the well-orderedness of the non-negative
integers.) We claim that r < m. (Keep in mind that we’re treating only m > 0, so
m = |m|.) If not, that is, if r ≥ m, then still r −m ≥ 0, and also

r −m = (x− qm)−m = x− (q + 1)m

is still in the set S. But this would contradict the fact that r is the smallest non-
negative element in S. Thus, r < m. For uniqueness, suppose that both x = qm+r
and x = q′m + r′. Then subtract to find

r − r′ = m · (q′ − q)

Thus, r − r′ is a multiple of m. For such quantities r − r′ in the obvious range
−m < r− r′ < m, the only one divisible by m is 0, so r = r′. Then it follows easily
that q = q′ also. ///

6.1 The reduction algorithm 95

Reductions mod m can be computed by hand by the familiar long-division
algorithm. For m and N both positive, even a simple hand calculator can be used
to easily compute reductions. For example: divide N by m, obtaining a decimal.
Remove (by subtracting) the integer part of the decimal, and multiply back by m
to obtain the reduction mod m of N . Of course round-off error is a hazard.

The process of reduction mod m can also be applied to negative integers. For
example,

−10%7 = 4 since − 10 = (−2) · 7 + 4

−10%5 = 0 since − 10 = (−2) · 5 + 0

−15%7 = 6 since − 15 = (−3) · 7 + 6

But neither the hand algorithm nor the calculator algorithm mentioned above give
the correct output directly: for one thing, it is not true that the reduction mod m
of −N is the negative of the reduction mod m of N . And all our reductions mod
m are supposed to be non-negative, besides. For example,

10 = 1 · 7 + 3

shows that the reduction of 10 mod 7 is 3, but if we simply negate both sides of
this equation we get

−10 = (−1) · 7 + (−3)

That ‘−3’ does not fit our requirements. The trick is to add another multiple of 7
to that ‘−3’, while subtracting it from the (−1) · 7, getting

−10 = (−1− 1) · 7 + (−3 + 7)

or finally
−10 = (−2) · 7 + 4

And there is one last ‘gotcha’: in case the remainder is 0, as in

14 = 2 · 7 + 0

when we negate to get
−14 = (−2) · 7 + 0

nothing further needs to be done, since that 0 is already in the right range. (If we
did add another 7 to it, we’d be in the wrong range.) Thus, in summary, let r be
the reduction of N mod m. Then the reduction of −N mod m is m − r if r 6= 0,
and is 0 if r = 0.

The modulus can be negative, as well: however, it happens that always the
reduction of N modulo m is just the reduction of N mod |m|, so this introduces
nothing new.

Note that by our definition the reduction mod m of any integer is always non-
negative. This is at variance with several computer languages, where the reduction

96 Chapter 6 The Integers

of a negative integer −N is the negative of the reduction of N . This difference has
to be remembered when writing code.

A multiplicative inverse mod m of an integer N is another integer t so that
(N · t)%m = 1. It is important to realize that this new notion of ‘inverse’ has no
simple relation to more elementary notions of ‘inverse’.

For example, since 2 · 3 = 6 which reduces mod 5 to 1, we can say that 3 is a
multiplicative inverse mod 5 to 2. This is not to say that ‘3 = 1

2 ’ or ‘3 = 0.5’ or
any such thing. As another example, 143 is a multiplicative inverse to 7 modulo
100, since 7× 143 = 1001, which reduces mod 100 to 1. On the other hand, we can
anticipate that, for example, 2 has no multiplicative inverse modulo 10, because
any multiple 2 · t is an even number, but all expressions q · 10 + 1 are odd.

At this point we might acknowledge that it is not clear which integers might or
might not have multiplicative inverses, and that it is even less clear how we might
efficiently find such inverses. We will leave this as a small mystery for the moment,
but resolve it decisively shortly.

6.2 Divisibility
The ordinary integers Z with operations of addition, subtraction, multiplication,
and division (when possible, since not every quotient x/y of integers is an integer
itself), are intuitive and familiar. In this section we establish some terminology and
basic facts. In particular, at the end we resolve the question of when an integer x
has a multiplicative inverse modulo m.

For two integers d, n, the integer d divides n (or is a divisor of n) if n/d is
an integer. This is equivalent to there being another integer k so that n = kd. We
may also (equivalently) say that n is a multiple of d if d divides n. We write

a|b

if a divides b. As a good sample of how to prove things about divisibility, we have:

Proposition:
• If a|b and b|c then a|c.
• If d|x and d|y, then for any integers a, b we have d|(ax + by).

Proof: If a|b then there is an integer k so that ak = b. If b|c then there is an
integer ` so that b` = c. Then, replacing b by ak in the latter equation, we have

c = b` = (ak) · ` = a · (k`)

so a|c.
If d|x then there is an integer m so that dm = x. If d|y then there is an integer

n so that dn = y. Then

ax + by = a(md) + b(nd) = (am + bn) · d

Thus, ax + by is a multiple of d. ///

6.2 Divisibility 97

A divisor d of n is proper if it is neither ±n nor ±1. A multiple N of n is
proper if it is neither ±n nor 0. Any integer d divides 0, since d · 0 = 0. On
the other hand, the only integer 0 divides is itself. A positive integer p is prime
if it has no proper divisors and if p > 1. That is, p has no divisors but itself, its
negative, and ±1, and p > 1.
Remark: It is very convenient to declare 1 not to be a prime, despite its having
features in common with primes.

The following is the simplest but far from most efficient test for primality.
It does have the virtue that if a number is not prime then this process finds the
smallest divisor d > 1 of the number.
Proposition: A positive integer n is prime if and only if it is not divisible by any
of the integers d with 1 < d ≤

√
n.

Proof: First, if d|n and 2 ≤ d ≤
√

n, then the integer n/d satisfies
√

n ≤ n

d
≤ n

2

(where we are looking at inequalities among real numbers!). Therefore, neither of
the two factors d nor n/d is ±1 nor ±n. So n is not prime.

On the other hand, suppose that n has a proper factorization n = d · e, where
e is the larger of the two factors. Then

d =
n

e
≤ n

d

gives d2 ≤ n, so d ≤
√

n. ///

Two integers are relatively prime or coprime or mutually prime if for
every integer d if d|m and d|n then d = ±1. Also we may say that m is prime
to n if they are relatively prime. For a positive integer n, the number of positive
integers less than n and relatively prime to n is denoted by ϕ(n). This is called the
Euler phi-function or Euler totient function. (The trial-and-error approach
to computing ϕ(n) is suboptimal, but works.)

An integer d is a common divisor of a family of integers n1, . . . , nm if d
divides each of the integers ni. An integer N is a common multiple of a family
of integers n1, . . . , nm if N is a multiple of each of the integers ni. The following
theorem gives an unexpected and strange-looking characterization of the greatest
common divisor of two integers.
Theorem: Let m,n be integers, not both zero. Among all common divisors of
m,n there is a unique one, call it d, so that for every other common divisor e of
m,n we have e|d, and also d > 0. This divisor d is the greatest common divisor or
gcd of m,n, denoted gcd(m,n). The greatest common divisor of two integers m,
n (not both zero) is the least positive integer of the form xm + yn with x, y ∈ Z.

Proof: Let D = xom + yon be the least positive integer expressible in the form
xm + yn. First, we show that any divisor d of both m and n surely divides D.
Write m = m′d and n = n′d with m′, n′ ∈ Z. Then by the proposition just above

D = xom + yon = xo(m′d) + yo(n′d) = (xom
′ + yon

′) · d

98 Chapter 6 The Integers

which certainly presents D as a multiple of d.
On the other hand, apply the reduction algorithm to write m = qD + r with

0 ≤ r < D. Then

0 ≤ r = m− qD = m− q(xom + yon) = (1− qxo) ·m + (−yo) · n

That is, this r is also expressible as x′m + y′n for integers x′, y′. Since r < D,
and since D is the smallest positive integer so expressible, it must be that r = 0.
Therefore, D|m. Similarly, D|n. ///

A companion or ‘dual’ notion concerning multiples instead of divisors is:
Corollary: Let m,n be integers, not both zero. Among all common multiples of
m,n there is a unique one, call it N , so that for every other common multiple M of
m,n we have N |M , and also N > 0. This multiple N is the least common multiple
or lcm of m,n, denoted lcm(m,n). In particular,

lcm(m,n) =
mn

gcd(m,n)

Proof: This is a corollary of the previous result because we use the existence and
form of the gcd to prove that of the lcm. Indeed, we will grant the existence of the
gcd and show that the quantity

L =
mn

gcd(m,n)

is the least common multiple of m and n. First we show that this L is a multiple
of both. Indeed, gcd(m,n) divides n, so n/gcd(m,n) is an integer, so

L = m · n

gcd(m,n)

is an expression of L as an integer multiple of m. Similarly, L is an integer multiple
of n. On the other hand, let M be a multiple of both m and n, and prove that it
is a multiple of L. Let g = am + bn be an expression of the gcd g of m and n in
the form mentioned in the proposition. Then

1 = a · m
g

+ b · n
g

and m/g and n/g are integers. Let N = rm and N = sn be expressions of N as
integer multiples of m and n. Then

N = 1 ·N =
(

a · m
g

+ b · n
g

)
·N = a · m · sn

g
+ b · n · rm

g

= (as + br) ·
(

m

g
+

rm

g

)
= (as + br) · L

6.3 Factorization into primes 99

as claimed. ///

Remark: If we already have the prime factorizations of two numbers m,n, then we
can easily find the greatest common divisor and least common multiple. Specifically,
for each prime number p, the power of p dividing the gcd is the minimum of the
powers of p dividing m and dividing n. Since this is true for each prime, we know
the prime factorization of the greatest common divisor. For example,

gcd(23 35 52 11, 32 53 72 112) = 32 52 11

since 20 is the smaller of the two powers of 2 occurring, 32 is the smaller of the two
powers of 3 occurring, 52 is the smaller of the two powers of 5 occurring, 70 is the
smaller of the two powers of 7 occurring, and 111 is the smaller of the two powers
of 11 occurring. Similarly, the least common multiple is obtained by taking the
larger of the two powers of each prime occurring in the factorizations of m,n. But
this approach to computing greatest common divisors or least common multiples
(by way of prime factorizations) is very inefficient.
Corollary: Fix a non-zero integer m. Let x be an integer. Then x has a multiplica-
tive inverse modulo m if and only if gcd(x,m) = 1. In particular, if gcd(x,m) = 1,
then invoke the theorem above to write ax + bm = 1. Then a is a multiplicative
inverse of x mod m (and b is a multiplicative inverse of m mod x).

Proof: First, suppose that d = gcd(x,m) > 1. Suppose that y is a multiplicative
inverse of x modulo m. That is, yx = qm + 1 for some ‘quotient’ q. We can
rearrange that as 1 = qm − yx. Write x = d · x′ and m = d ·m′ for some integers
x′ and m′, and then we have

1 = qm− yx = q(dm′)− y(dx′) = d · (qm′ − yx′)

This says that 1 is an integer multiple of d, but d > 1, so this is not possible. This
proves that gcd(x,m) > 1 prevents there from being a multiplicative inverse to x
modulo m.

On the other hand, suppose that gcd(x,m) = 1. Then from above there are
integers a, b so that ax + bm = 1. That is, ax = (−b)m + 1. The latter equation
shows that ax%m = 1, so a is a multiplicative inverse to x modulo m. ///

6.3 Factorization into primes
We now can prove the unique factorization of integers into primes. This may
already seem ‘obvious’, since our experience with small integers bears witness to
the truth of the assertion. But it is worth paying attention to how such a thing can
be proven, especially since we will later want to try to prove unique factorization
for fancier entities, for which our intuition is not adequate. Since it is not true in
general that ‘all kinds’ of numbers can be factored uniquely into primes, we must
be alert. An example of failure of unique factorization is given in the next section.

We also give a formula for Euler’s phi-function ϕ(n), defined inititally as

ϕ(n) = number of integers i in the range 1 ≤ i ≤ n relatively prime to n

100 Chapter 6 The Integers

We also look at the most naive algorithm to obtain the factorization of an
integer into primes.
Theorem: Unique Factorization Every integer n can be written in an essentially
unique way as ± a product of primes:

n = ± pe1
1 pe2

2 . . . pem
m

with positive integer exponents and distinct primes p1, . . . , pm.
Remark: The ‘essentially unique’ means that of course writing the product in a
different order does not count as truly ‘different’.
Corollary: Let N be a positive integer factored into primes as

n = pe1
1 pe2

2 . . . pen
n

where p1, . . . pn are distinct primes, and the exponents ei are all positive integers.
Then the Euler phi-function of N has the value

ϕ(N) = (p1 − 1)pe1−1
1 (p2 − 1)pe2−1

2 . . . (pn − 1)pen−1
n

The proof of the theorem starts from the following key lemma, which may
feel obvious, but is not. It makes essential use of the peculiar characterization of
greatest common divisors given in the previous section.
Lemma: Let p be a prime number, and suppose that a and b are integers, with
p|(ab). Then either p|a or p|b, or both.

Proof: (of Lemma) If p|a we are done. So suppose that p does not divide a. Then
the greatest common divisor gcd(p, a) cannot be p. But this greatest common
divisor is also a divisor of p, and is positive. Since p is prime, the only positive
divisor of p other than p itself is just 1. Therefore, gcd(p, a) = 1. We saw that
there exist integers x, y so that xp + ya = 1.

Since p|(ab), we can write ab = hp for some integer h.

b = b · 1 = b · (xp + ya) = bxp + yba = (bx + yh) · p

This shows that b is a multiple of p. ///

Corollary: (of Lemma) If a prime p divides a product a1a2 . . . an then necessarily
p divides at least one of the factors ai.

Proof: (of Corollary) This is by induction on n. The Lemma is the assertion for
n = 2. Suppose p|(a1 . . . an). Then write the latter product as

a1 . . . an = (a1 . . . an−1) · an

By the lemma, either p divides an or p divides a1a2 . . . an−1. If p|an we are done.
If not, then p|(a1 . . . an−1). By induction, this implies that p divides one of the
factors a1, a2, . . . , an−1. Altogether, we conclude that in any case p divides one of
the factors a1, . . . , an. ///

6.3 Factorization into primes 101

Proof: (of Theorem) First we prove that for every integer there exists a factoriza-
tion, and then that it is unique. It certainly suffices to treat only factorizations of
positive integers, since factorizations for −n and n are obviously related.

For existence, suppose that some integer n > 1 did not have a factorization
into primes. Then n cannot be prime itself, or just ‘n = n’ is a factorization into
primes. Therefore n has a proper factorization n = xy with x, y > 0. Since the
factorization is proper, both x and y are strictly smaller than n. Thus, x and y
both can be factored into primes. Putting together the two factorizations gives the
factorization of n. This contradicts the assumption that there exist integers lacking
prime factorizations.

Now we prove uniqueness. Suppose we have

qe1
1 . . . qem

m = N = pf1
1 . . . pfn

n

where (without loss of generality)

q1 < q2 < . . . < qm

are primes, and also
p1 < p2 < . . . < pn

are all primes. And the exponents ei and fi are positive integers. We must show
that m = n, qi = pi for all i, and ei = fi for all i.

Since q1 divides the left-hand side of the equality, it must divide the right-hand
side. Therefore, by the corollary to the lemma just above, q1 must divide one of
the factors on the right-hand side. So q1 must divide some pi. Since pi is prime, it
must be that q1 = pi.

We claim that i = 1. Indeed, if i > 1 then p1 < pi. And p1 divides the
left-hand side, so divides one of the qj , so is equal to some qj . But then we string
these inequalities together:

p1 = qj ≥ q1 = pi > p1

which is impossible. Therefore, q1 = p1.
Without loss of generality, e1 ≤ f1. Thus, by dividing through by e1 factors

q1 = p1, we see that the corresponding exponents e1 and f1 must also be equal.
The rest of the argument about uniqueness is by induction on N . First, 1 has

a unique factorization (of sorts), namely the empty product. In any case, since 2 is
prime it has the factorization 2 = 2. This begins the induction. Suppose that all
integers N ′ < N have unique factorizations into primes (and prove that N likewise
has a unique factorization):

From
qe1
1 . . . qem

m = N = pf1
1 . . . pfn

n

by dividing by qe1
1 = pf1

1 we obtain

qe2
2 . . . qem

m =
N

qe1
1

= pf2
2 . . . pfn

n

102 Chapter 6 The Integers

We had assumed that all the exponents ei were positive, so N/qe1
1 < N . Thus, by

induction, N/qe1
1 has unique factorization, and we conclude that all the remaining

factors must match up. This finishes the proof of the unique factorization theorem.
///

Now we prove the corollary, giving the formula for Euler’s phi-function:

ϕ(N) = (p1 − 1)pe1−1
1 (p2 − 1)pe2−1

2 . . . (pn − 1)pen−1
n

where n = pe1
1 . . . pen

n is the factorization into distinct prime factors pi, and all
exponents are positive integers. The argument is by counting: we’ll count the
number of numbers x in the range from 0 through N − 1 which do have a common
factor with N , and subtract. And, by unique factorization, if x has a common
factor with N then it has a common prime factor with N . There are exactly N/pi

numbers divisible by pi between 0 and N − 1, so we would be tempted to say that
the number of numbers in that range with no common factor with N would be

N − N

p1
− N

p2
− . . .

N

pn

However, this is not correct in general: we have accounted for numbers divisible by
two different pis twice, so we should add back in all the expressions N/pipj with
i 6= j. But then we’ve added back in too many things, and have to subtract all the
expressions M/pipjpk with i, j, k distinct. And so on:

ϕ(N) = N −
∑

i

N

pi
+
∑
i 6=j

N

pipj
−

∑
i,j,k distinct

N

pipjpk
+ . . .

= N ·
(

1− 1
p1

)(
1− 1

p2

)
. . .

(
1− 1

pn

)
= pe1

1

(
1− 1

p1

)
· pe2

2

(
1− 1

p2

)
. . . pen

n

(
1− 1

pn

)
= (p1 − 1)pe1−1

1 (p2 − 1)pe2−1
2 . . . (pn − 1)pen−1

n

This is the desired formula. ///

We’ll give another proof later, using Sun-Ze’s theorem.
The most obvious (but not most efficient) means to obtain the prime factor-

ization and simultaneously to test primality of a positive integer N is what
is called trial division, which runs as follows. Attempt division by integers
d = 2, 3, 4, 5, 6, 7, . . . ≤

√
N until either the smallest divisor d1 > 1 of N is found,

or it is determined that N has no proper divisors ≤
√

N . In the latter case, N is
prime, by the proposition above on primality testing. In the former case, attempt
division by integers d = d1, d1 + 1, d1 + 2, . . . ≤

√
N/d1 until either the smallest

divisor d2 > 1 of N/d1 is found, or it is determined that N/d1 has no proper divisors
≤
√

N/d1. In the latter case, N/d1 is prime. In the former case, attempt division
by integers d = d2, d2 + 1, d2 + 2, . . . ≤

√
N/d1d2 until either the smallest divisor

6.4 A failure of unique factorization 103

d3 > 1 of N/d1d2 is found, or it is determined that N/d1d2 has no proper divisors
≤
√

N/d1d2. In the latter case N/d1d2 is prime. In the former case...
This recursive procedure ends when some N/(d1d2 . . . dm) is prime. At the

same time, if N has no divisor d in the range 1 < d ≤
√

N then N is prime.

6.4 A failure of unique factorization
We will give the simplest meaningful example of the failure of unique factorization
among numbers just a little more complicated than the ordinary integers Z.

First, note that the fact that 12 can be factored in two different-looking manners

12 = 4 · 3 = 6 · 2

is not at all an indication of problems with unique factorization in the ordinary
integers Z, since in the latter two different-looking factorizations of 12 we hadn’t
actually completed the factorization into primes. The complete factorization of 12
is, of course,

12 = 22 · 3

The simplest meaningful example of the failure of unique factorization into
primes is in the collection of numbers

R = {a + b
√
−5 : a, b ∈ Z}

where we have adjoined
√
−5 to Z. The relation

6 = 2 · 3 = (1 +
√
−5)(1−

√
5)

gives two different-looking factorizations of 6 in R. But to genuinely verify that
we’ve factored 6 in two different ways into primes we should verify that 2, 3, 1 +√
−5, and 1 −

√
−5 are primes in R, in the sense that they cannot be further

factored.
To prove this, we use complex conjugation, usually denoted by putting a bar

over the quantity to be conjugated: for real numbers a and b,

a + b
√
−5 = a− b

√
−5

For α, β in R, we have the property

α · β = α · β

proven by direct computation as follows. Let α = a + b
√
−5 and β = c + d

√
−5.

Then
α · β =

(
a + b

√
−5
)
·
(
c + d

√
−5
)

= (ab− 5cd) + (ad + bc)
√
−5

= (ab− 5cd)− (ad + bc)
√
−5 =

(
a− b

√
−5
)
·
(
c− d

√
−5
)

= α · β

This computation is a special case of more general ones, as is already visible from
the fact that the 5 played no serious role.

104 Chapter 6 The Integers

Next, introduce a norm
N(α) = α · α

The property
N(α · β) = N(α) ·N(β)

follows from the corresponding property of the conjugation:

N(α) ·N(β) = ααββ = (αβ) · (α β)

= (αβ) · (αβ) = N(αβ)

Note that 0 ≤ N(α) ∈ Z for α in R.
The last preparation we need is to check that for α ∈ R if N(α) < 4 then

α = ±1. Indeed, for integers a, b, if

4 > N
(
a + b

√
−5
)

= a2 + 5b2

then b must be 0 (since otherwise 5b2 ≥ 5 > 1). And then a2 < 4 which for integer
a implies a = ±1.

Now suppose that 2 = αβ with α, β in R. Then apply N to obtain

4 = N(2) = N(αβ) = N(α) ·N(β)

By unique factorization in the ordinary integers Z, and since these norms are non-
negative integers, the integers N(α) and N(β) must either be 1, 4, 2, 2, or 4, 1. The
middle case is impossible, by our observation on small values of the norm. In the
other two cases, one of α or β is ±1, and the factorization is not proper. That is, 2
cannot be factored further in R.

Similarly, 3 cannot be factored further in R.
If 1 +

√
−5 = αβ with α, β in R, then again

6 = N
(
1 +
√
−5
)

= N(αβ) = N(α) ·N(β)

By unique factorization in the ordinary integers Z, and since these norms are non-
negative integers, the integers N(α) and N(β) must either be 1, 6, 2, 3, 3, 2, or
6, 1. By our observation on the possible small values of the norm, the middle two
cases are impossible. In the remaining two cases, one of α or β is ±1, and the
factorization is not proper. That is, 1 +

√
−5 cannot be factored further in R. An

essentially identical discussion applies to 1−
√
−5. Thus,

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√

5
)

is a factorization of 6 in two different ways into primes in R. Therefore, R does not
have unique factorization.

6.5 The Euclidean Algorithm 105

6.5 The Euclidean Algorithm
The Euclidean Algorithm is a very important, efficient, and non-obvious sys-
tematic procedure to find the greatest common divisor d of two integers x,m, and
also to find integers a, b so that

ax + bm = d

from which we also obtain multiplicative inverses modulo m. (Recall that this
odd sort of expression comes up in the proof that greatest common divisors exist).
Each step in the Euclidean Algorithm is an instance of the Division/Reduction
Algorithm. One important aspect of the Euclidean Algorithm is that it avoids
factorization of integers into primes.

We’ll describe the Euclidean Algorithm by examples. To perform the Euclidean
Algorithm for the two integers 513, 614:

614− 1 · 513 = 101 (reduction of 614 mod 513)
513− 5 · 101 = 8 (reduction of 513 mod 101)
101− 12 · 8 = 5 (reduction of 101 mod 8)

8− 1 · 5 = 3 (reduction of 8 mod 5)
5− 1 · 3 = 2 (reduction of 5 mod 3)
3− 1 · 2 = 1 (reduction of 3 mod 2)

Notice that the first step is reduction of the larger of the given numbers modulo
the smaller of the two. The second step is reduction of the smaller of the two modulo
the remainder from the first step. At each step, the ‘modulus’ of the previous step
becomes the ‘dividend’ for the next step, and the ‘remainder’ from the previous
step becomes the ‘modulus’ for the next step.

In this example, since we obtained a 1 as the last non-zero remainder, we know
that the greatest common divisor of 614 and 513 is just 1, that is, that 614 and 513
are relatively prime. By the time we got close to the end, it could have been clear
that we were going to get 1 as the gcd, but we carried out the procedure through
the final step.

Notice that we did not need to find prime factorizations in order to use the
Euclidean Algorithm to find the greatest common divisor. Since it turns out to be
a time-consuming task to factor numbers into primes, this fact is worth something.

As another example, let’s find the gcd of 1024 and 888:

1024− 1 · 888 = 136 (reduction of 1024 mod 888)
888− 6 · 136 = 72 (reduction of 888 mod 136)
136− 1 · 72 = 64 (reduction of 136 mod 72)
72− 1 · 64 = 8 (reduction of 72 mod 64)
64− 8 · 8 = 0 (reduction of 64 mod 8)

In this case, since we got a remainder 0, we must look at the remainder on the
previous line: 8. The conclusion is that 8 is the greatest common divisor of 1024
and 888.

106 Chapter 6 The Integers

At this point it is worthwhile to give a simple estimate of the number of steps
the Euclidean Algorithm might take in the worst case scenario. In particular,
the estimate we give shows that this method for finding gcd’s is much faster than
factoring the numbers into primes and then comparing the factors explicitly. The
advantage increases as the sizes of the numbers increase.

Proposition: The number of steps required to use the Euclidean Algorithm to
compute the gcd of two integers x > y is less than or equal to

1 + 2 · log2 |y|

Proof: We look at several consecutive steps in the execution of the algorithm.
This would look something like

x1 − q1y1 = r1

y1 − q2r1 = r2

r1 − q3r2 = r3

where 0 ≤ r1 < |y1|, 0 ≤ r2 < r1, and 0 ≤ r3 < r2. We claim that r3 < r1/2.
That is, we claim that in each two steps of the algorithm the remainder decreases
at least by a factor of 1/2. (Keep in mind that all the remainders are non-negative
integers).

If already r2 ≤ r1/2, then since r3 < r2 we certainly have what we want. On
the other hand, if r2 > r1/2 (but still r2 < r1), then evidently q3 = 1, and

r3 = r1 − q3r2 = r1 − r2 < r1 −
1
2
r1 =

1
2
r1

as desired.
Since in the first step the remainder is (strictly) smaller than |y|, after 1 + 2n

steps the remainder is (strictly) smaller than |y|/2n. The algorithm stops when this
remainder is 0 or 1. The remainder is an integer, so we can say that the algorithm
stops when the remainder is strictly less than 2. Thus, the algorithms stops when

2−n · |y| < 2

which is equivalent to
log2 |y| < 1 + n

or
2 log2 |y| − 1 < 1 + 2n = number of steps

The way we have arranged it here, the number of steps is an odd integer, and the
latter inequality is satisfied for an odd integer at most 2 log2 |y| + 1. This proves
the proposition. ///

So far we’ve only seen how to find gcd(x, y). For small numbers we might feel
that it’s not terribly hard to do this just by factoring x, y into primes and comparing

6.5 The Euclidean Algorithm 107

factorizations, as mentioned above. However, the problem of finding integers a, b
so that

gcd(x, y) = ax + by

is much more difficult even for moderately large integers x, y.
The Euclidean Algorithm provides means to find these a, b with just a bit

more trouble, requiring that we have kept track of all the numbers occurring in the
Euclidean Algorithm, and that we run it backward, as follows.

In the case of 614 and 513:

1 = 3− 1 · 2
(from the last line of the ‘forward’ algorithm)

= 3− 1 · (5− 1 · 3)
(replacing 2 by its expression from the previous line)

= −1 · 5 + 2 · 3
(rearranging as sum of 5s and 3s)

= −1 · 5 + 2 · (8− 1 · 5)
(replacing 3 by its expression from the previous line)

= 2 · 8− 3 · 5
(rearranging as sum of 8s and 5s)

= 2 · 8− 3 · (101− 12 · 8)
(replacing 5 by its expression from the previous line)

= −3 · 101 + 38 · 8
(rearranging as sum of 101s and 8s)

= −3 · 101 + 38 · (513− 5 · 101)
(replacing 8 by its expression from the previous line)

= 38 · 513− 193 · 101
(rearranging as sum of 513s and 101s)

= 38 · 513− 193 · (614− 513)
(replacing 101 by its expression from the previous line)

= 231 · 513− 193 · 614
(rearranging as sum of 614s and 513s)

That is, we have achieved our goal: we now know that

1 = 231 · 513− 193 · 614

In order to successfully execute this algorithm, it is important to keep track of
which numbers are mere coefficients and which are the numbers to be replaced by
more complicated expressions coming from the earlier part of the algorithm. Thus,
there is considerable reason to write it out as done just here, with the coefficients
first, with the numbers to be substituted-for second.

Now we apply the Euclidean Algorithm to find multiplicative inverses mod
m. First, recall what we proved above:
Proposition: Let m be an integer not 0,±1, and let x be an integer relatively
prime to m. Then x has a multiplicative inverse modulo m. In particular, in any
expression ax + bm = 1, the integer a is a multiplicative inverse for x modulo m.

108 Chapter 6 The Integers

Corollary: Let m be an integer other than 0,±1. Let x be an integer. Then
the Euclidean Algorithm finds the gcd of x and m. If this gcd is 1, then the
expression ax + bm = 1 obtained by ‘reversing’ the Euclidean Algorithm yields the
multiplicative inverse a of x modulo m.
Remark: We still didn’t prove that the Euclidean Algorithm really works! Let’s
do that now.

Proof: (that the Euclidean Algorithm computes greatest common divisors): The
crucial claim is that if

x− qy = r

with 0 ≤ r < |q| then gcd(x, y) = gcd(y, r). If we can prove this claim, then we
know that the gcd of the two numbers at each step of the algorithm is the same
as the gcd of the two initial inputs to the algorithm. And, at the end, when the
remainder is 0, the last two equations will be of the form

x′ − q′y′ = d

y′ − q′′d = 0

This shows that d divides y′, so gcd(y′, d) = d. At the same time, if we grant
the crucial claim just above, gcd(y′, d) is the same as the gcd gcd(x, y) of the
original inputs. Thus, the gcd of the two original inputs is indeed the last non-zero
remainder.

Now we prove that crucial claim, that if

x− qy = r

with 0 ≤ r < |q| then gcd(x, y) = gcd(y, r). On one hand, if d divides both x and
y, say x = Ad and y = Bd, then

r = x− qy = Ad− qBd = (A− qB) · d

so d divides r. On the other hand, if d divides both y and r, say y = Bd and
r = Cd, then

x = qy + r = qBd + Cd = (qB + C) · d

so d divides x. This proves that the two gcd’s are the same. ///

.

6.6 Equivalence relations
The idea of thinking of integers modulo m as necessarily having something to do
with reduction modulo m is dangerously seductive, but is a trap. A richer vocabulary
of concepts is necessary.

The idea of equivalence relation (defined below) is an important extension
and generalization of the traditional idea of equality, and occurs throughout math-
ematics. The associated idea of equivalence class (also defined just below) is
equally important.

6.6 Equivalence relations 109

The goal here is to make precise both the idea and the notation in writing
something like ‘x ∼ y’ to mean that x and y have some specified common feature.
We can set up a general framework for this without worrying about the specifics of
what the features might be.

Recall the ‘formal’ definition of a function f from a set S to a set T : while
we think of f as being some sort of rule which to an input s ∈ S ‘computes’ or
‘associates’ an output f(s) ∈ T , this way of talking is inadequate, for many reasons.

Rather, the formal (possibly non-intuitive) definition of function f from a set
S to a set T is that it is a subset G of the cartesian product S×T with the property
• For each s ∈ S there is exactly one t ∈ T so that (s, t) ∈ G.

Then connect this to the usual notation by

f(s) = t if (s, t) ∈ G

(Again, this G would be the graph of f if S and T were simply the real line, for
example).

In this somewhat formal context, first there is the primitive general notion of
relation R on a set S: a relation R on a set S is simply a subset of the cartesian
product S × S. Write

x R y

if the ordered pair (x, y) lies in the subset R of S × S.
This definition of ‘relation’ compared to the formal definition of ‘function’

makes it clear that every function is a relation. But most relations do not meet the
condition to be functions. This definition of ‘relation’ is not very interesting except
as set-up for further development.

An equivalence relation R on a set S is a special kind of relation, satisfying
• Reflexivity: x R x for all x ∈ S
• Symmetry: If x R y then y R x
• Transitivity: If x R y and y R z then x R z

The fundamental example of an equivalence relation is ordinary equality of
numbers. Or equality of sets. Or any other version of ‘equality’ to which we are
accustomed. It should also be noted that a very popular notation for an equivalence
relation is

x ∼ y

(that is, with a tilde rather than an ‘R’). Sometimes this is simply read as x tilde
y, but also sometimes as x is equivalent to y with only implicit reference to the
equivalence relation.

A simple example of an equivalence relation on the set R2 can be defined by

(x, y) ∼ (x′, y′) if and only if x = x′

That is, in terms of analytic geometry, two points are equivalent if and only if they
lie on the same vertical line. Verification of the three required properties in this
case is easy, and should be carried out by the reader.

110 Chapter 6 The Integers

Let ∼ be an equivalence relation on a set S. For x ∈ S, the ∼ - equivalence
class x̄ containing x is the subset

x̄ = {x′ ∈ S : x′ ∼ x}

The set of equivalence classes of ∼ on S is denoted by

S/ ∼

(as if we were taking a quotient of some sort). Every element z ∈ S is certainly
contained in an equivalence class, namely the equivalence class of all s ∈ S so that
s ∼ z.

Note that in general an equality x̄ = ȳ of equivalence classes x̄, ȳ is no indication
whatsoever that x = y. While it is always true that x = y implies x̄ = ȳ, in general
there are many other elements in x̄ than just x itself.
Proposition: Let ∼ be an equivalence relation on a set S. If two equivalence
classes x̄, ȳ have any common element z, then x̄ = ȳ.

Proof: If z ∈ x̄ ∩ ȳ, then z ∼ x and z ∼ y. Then for any x′ ∈ x̄, we have

x′ ∼ x ∼ z ∼ y

so x′ ∼ y by transitivity of ∼. Thus, every element x′ ∈ x̄ actually lies in ȳ. That
is, x̄ ⊂ ȳ. A symmetrical argument, reversing the roles of x and y, shows that
ȳ ⊂ x̄. Therefore, x̄ = ȳ. ///

It is important to realize that while we tend to refer to an equivalence class
in the notational style x̄ for some x in the class, there is no requirement to do so.
Thus, it is legitimate to say ‘an equivalence class A for the equivalence relation ∼
on the set S’.

But of course, given an equivalence class A inside S, it may be convenient to
find x in the set S so that x̄ = A. Such an x is a representative for the equivalence
class. Any element of the subset A is a representative, so in general we certainly
should not imagine that there is a unique representative for an equivalence class.
Proposition: Let ∼ be an equivalence relation on a set S. Then the equivalence
classes of ∼ on S are mutually disjoint sets, and their union is all of S.

Proof: The fact that the union of the equivalence classes is the whole thing is not
so amazing: given x ∈ S, x certainly lies inside the equivalence class

{y ∈ S : y ∼ x}

Now let A and B be two equivalence classes. Suppose that A ∩ B 6= φ, and
show that then A = B (as sets). Since the intersection is non-empty, there is some
element y ∈ A ∩ B. Then, by the definition of ‘equivalence class’, for all a ∈ A we
have a ∼ y, and likewise for all b ∈ B we have b ∼ y. By transitivity, a ∼ b. This
is true for all a ∈ A and b ∈ B, so (since A and B are equivalence classes) we have
A = B. ///

6.7 The integers modulo m 111

A set S of non-empty subsets of a set S whose union is the whole set S, and
which are mutually disjoint, is called a partition of S. The previous proposition
can be run the other direction as well:

Proposition: Let S be a set, and let X be a set of subsets of S, so that X is a
partition of S. Define a relation ∼ on S by x ∼ y if and only if there is X ∈ X
so that x ∈ X and y ∈ X. That is, x ∼ y if and only if they both lie in the same
element of X. Then ∼ is an equivalence relation, and its equivalence classes are the
elements of X.

Proof: Since the union of the sets in X is the whole set S, each element x ∈ S is
contained in some X ∈ X. Thus, we have the reflexivity property x ∼ x. If x ∼ y
then there is X ∈ X containing both x and y, and certainly y ∼ x, so we have
symmetry.

Finally, the mutual disjointness of the sets in X assures that each y ∈ S lies
in just one of the sets from X. For y ∈ S, let X be the unique set from X which
contains y. If x ∼ y and y ∼ z, then it must be that x ∈ X and z ∈ X, since y
lies in no other subset from X. Then x and z both lie in X, so x ∼ z, and we have
transitivity.

Verification that the equivalence classes are the elements of X is left as an
exercise. ///

6.7 The integers modulo m
Now it will be possible (among other things) to prove that we can reduce mod m (or
not) whenever we wish in the course of an arithmetic computation involving only
addition, subtraction, and multiplication, whose answer will be reduced modulo m
at the end. This plausible-sounding (and true) fact is very clumsy to prove in ‘raw’
form. At the same time, before we become overly optimistic, it is important to note
that exponentiation does not behave as simply. The complications in exponentiation
modulo primes will be resolved by Fermat’s Little Theorem a bit later.

If two integers x, y differ by a multiple of a non-zero integer m, we say that x
is congruent to y modulo m, written

x ≡ y mod m

Any relation such as the latter is called a congruence modulo m, and m is the
modulus. That is, x ≡ y mod m if and only if m|(x− y).

For example, 3 ≡ 18 mod 5 because 5|(18 − 3). Yes, indeed, this is ‘just’ a
different way of writing a divisibility assertion. But this notation (due to Gauss,
almost 200 years ago) is meant to cause us to think of congruence as a variant of
equality, with comparable features. That congruences do have properties similar to
equality requires some proof, even though the proofs are not hard. In giving the
statements of these properties the corresponding terminology is also introduced.

112 Chapter 6 The Integers

Proposition: For a fixed integer m, congruence modulo m is an equivalence
relation. That is, as defined above
• Reflexivity: Always x ≡ x mod m for any x.
• Symmetry: If x ≡ y mod m then y ≡ x mod m.
• Transitivity: If x ≡ y mod m and y ≡ z mod m then x ≡ z mod m.

Proof: Since x − x = 0 and always m|0, we have reflexivity. If m|(x − y) then
m|(y−x) since y−x = −(x−y). Thus, we have symmetry. Suppose that m|(x−y)
and m|(y − z). Then there are integers k, ` so that mk = x − y and m` = y − z.
Then

x− z = (x− y) + (y − z) = mk + m` = m · (k + `)

This proves the transitivity. ///

The congruence class (or residue class or equivalence class) of an integer
x modulo m, denoted x̄ (with only implicit reference to m!) is defined to be the set
of all integers congruent to x mod m:

x̄ = {y ∈ Z : y = x mod m}

The integers mod m, denoted Z/m, is the collection of congruence classes of
integers modulo m. For some X ∈ Z/m, a choice of ordinary integer x so that
x̄ = X is called a representative for the congruence class X.

Thus, for example,
Z/2 = {0̄, 1̄}

Z/3 = {0̄, 1̄, 2̄}

But there is no imperative to use representatives which are reduced modulo the
modulus. Thus, also,

Z/2 = {5̄, 8̄}

Z/3 = {6̄, 1̄0, ¯101}

Remark: On many occasions, the bar is dropped, so that x-mod-m may be written
simply as ‘x’ with only the context to make clear that this means x-mod-m and not
the integer x. Also, of course, we can use symbols without bars for elements of the
set Z/m.

Thus, for example, modulo 12 we have

0 = 12 = −12 = 2400

7 = 7 = −5 = 2407

1 = 13 = −11 = 2401

or, equivalently,

0-mod-12 = 12-mod-12 = −12-mod-12 = 2400-mod-12

7-mod-12 = 7-mod-12 = −5-mod-12 = 2407-mod-12

6.7 The integers modulo m 113

1-mod-12 = 13-mod-12 = −11-mod-12 = 2401-mod-12

Remark: There is one traditionally popular collection of representatives for the
equivalence classes modulo m, namely

{0̄, 1̄, 2̄, . . . m− 2,m− 1}

In fact, some sources define integers-mod-m as being this set of things, but this is too
naive an understanding of what kind of thing integers-mod-m really is. We should
distinguish the set of integers reduced mod m (which really is {0, 1, 2, . . . ,m− 1} !)
from the set of integers modulo m, which is the set of equivalence classes of integers
modulo m. The latter is a more abstract object. So while it is certainly true that
(for example)

Z/3 = {0̄, 1̄, 2̄}

it is also true that
Z/3 = {9, 31,−1}

and that there are many other ways of describing it as well.
Again: Z/m is not the set of integers {0, 1, 2, 3, . . . ,m − 1}. Rather, Z/m is

the set of equivalence classes modulo m. The set {0, 1, 2, 3, . . . ,m− 1} is the set of
integers reduced modulo m (for which there is no special symbol). Still, it is true
that

Proposition: Fix two integers x, x′. Let x = qm + r and x′ = q′m + r′ with
integers q, q′, r, r′ and 0 ≤ r < |m| and 0 ≤ r′ < |m′|. Then x ≡ x′ mod m if and
only if r ≡ r′ mod m.

Proof: If x ≡ x′ mod m then there is an integer k so that x′ = x + km. Then

r′ = x′ − q′m = (x + km)− q′m = x + m · (k − q′) = qm + r + m · (k − q′)

= r + m · (q + k − q′)

This proves that r ≡ r′ mod m. The opposite direction of argument is similar. ///

And congruences behave very nicely with respect to the basic operations of
addition, subtraction, and multiplication:

Proposition: Fix the modulus m. If x ≡ x′ then for all y

x + y ≡ x′ + y mod m

xy ≡ x′y mod m

In fact, if y ≡ y′, then
x + y ≡ x′ + y′ mod m

x · y ≡ x′ · y′ mod m

114 Chapter 6 The Integers

Proof: It suffices to prove only the more general assertions. Since x′ ≡ x mod m,
m|(x′−x), so there is an integer k so that mk = x′−x. That is, we have x′ = x+mk.
Similarly, we have y′ = y + `m for integer `. Then

x′ + y′ = (x + mk) + (y + m`) = x + y + m · (k + `)

Thus, x′ + y′ ≡ x + y mod m. And

x′ ·y′ = (x+mk) · (y +m`) = x ·y +xm`+mky +mk ·m` = x ·y +m · (k + `+mk`)

Thus, x′y′ ≡ xy mod m. ///

Remark: Don’t become over-confident, though. For example, it is not true that

210 = 210%5 mod 5

as we can check by noting that

210%5 = 1024%5 = 4

while
210%5%5 = 20%5 = 1%5 = 1

and 1 6= 4. That is, exponents can’t be simply reduced modulo the modulus.
As a corollary of this last proposition, congruences immediately inherit some

properties from ordinary arithmetic, simply because x = y implies x = y mod m:
• Distributivity: x(y + z) = xy + xz mod m
• Associativity of addition: (x + y) + z = x + (y + z) mod m
• Associativity of multiplication: (xy)z = x(yz) mod m
• Property of 1: 1 · x = x · 1 = x mod m
• Property of 0: 0 + x = x + 0 = x mod m

Recall that we proved that a has a multiplicative inverse if and only if
gcd(a,m) = 1, in which case the Euclidean Algorithm is an effective means to
actually find the inverse. There is a separate notation for the integers-mod-m
which are relatively prime to m and hence have inverses:

(Z/m)× = {x̄ ∈ Z/m : gcd(x,m) = 1}

The superscript is not an ‘x’ but is a ‘times’, making a reference to multiplication
and multiplicative inverses mod m. Note also that gcd(x,m) is independent of the
representative x of the equivalence class, so this is well-defined!

Proposition: The product xy of two integers x and y both prime to m is again
prime to m.

Proof: One way to think about this would be in terms of prime factorizations,
but let’s do without that. Rather, let’s use the fact that the gcd of two integers a, b
can be expressed as

gcd(a, b) = sa + tb

6.8 The finite field Z/p for p prime 115

for some integers s, t. Thus, there are integers a, b, c, d so that

1 = ax + bm 1 = cy + dm

Then

1 = 1 · 1 = (ax + bm)(cy + dm) = (ac)(xy) + (bcy + axd + bdm)m

Thus, 1 is expressible in the form A(xy) + Bm, so (by the sharp form of this
principle!) necessarily xy and m are relatively prime. ///

So in the batch of things denoted (Z/m)× we can multiply and take inverses
(so, effectively, divide).

6.8 The finite field Z/p for p prime
The notion of ‘field’ is intended to abstract the properties of familiar collections of
‘numbers’, such as the rational numbers Q, the real numbers R, and the complex
numbers C. But more than 300 years ago it was noticed that other collections of
number-like entities had analogous properties, and that what we know about more
familiar numbers was still provably true about the less-familiar ones. After the
example F2 = {0, 1}, the simplest examples of finite fields are the entities Z/p for
p prime.

A field is a set F with two operations + (‘addition’) and × (‘multiplication’),
with two special elements 1 (‘one’) and 0 (‘zero’), with some obviously desirable
properties
• Associativity of addition: x + (y + z) = (x + y) + z for all x, y, z ∈ F .
• Associativity of multiplication: x× (y × z) = (x× y)× z for all x, y, z ∈ F .
• Commutativity of addition: x + y = y + x for all x, y ∈ F .
• Commutativity of multiplication: x× y = y × x for all x, y ∈ F .
• Distributivity: x× (y + z) = x× y + x× z for all x, y ∈ F .
• Property of 1: x× 1 = 1× x = x for all x ∈ F .
• Property of 0: x + 0 = 0 + x = x for all x ∈ F .
• Existence of additive inverses: for all x in F , there is y ∈ F (usually denoted

‘−x’) so that y + x = 0.
• Existence of multiplicative inverses: for x 6= 0 in F , there is y ∈ F (usually

denoted x−1) so that yx = 1.
• 0 6= 1

(That last condition may seem completely unnecessary, but it would not follow
from the other requirements, so we must impose it.)
Theorem: Let p be a prime. Then Z/p is a field.

Proof: We’ve already done most of the work to prove this. First, prior to proving
any of these properties, there was the funny business verifying that addition and
multiplication were ‘well-defined’ modulo p, meaning that the operations really
made sense ‘mod p’.

After the well-definedness is proven, the associativity and distributivity and
commutativity are simply inherited by Z/p from the corresponding properties of

116 Chapter 6 The Integers

the ordinary integers. The properties of 1̄ = 1-mod-p and 0̄ = 0-mod-p are likewise
simply inherited.

The presence of an additive inverse is straightforward, unless we forget that
Z/p is not simply {0, 1, 2, . . . , p− 1}. Indeed,

−x̄ = (−x)

But, for example, if we try to find −2 among {0, 1, 2, 3, 4} then we might mistakenly
think that 2 has no additive inverse modulo 5. In reality, modulo 5,

−2̄ = (−2) = 3̄

since −2 = 3 mod 5.
The only real issue is verifying that non-zero things x modulo p have multi-

plicative inverses. Note that ‘non-zero modulo p’ means that p does not divide x.
Thus, gcd(x, p) is not p, but some proper divisor of p. But since p is prime there
are few choices left: we must have gcd(x, p) = 1. By the funny characterization
of gcd’s, there are integers a, b so that ax + bp = 1, and then (as we’ve discussed
already on another occasion) a is a multiplicative inverse mod p. That is, x̄−1 = ā.

///

Corollary: For every prime integer p, there exists a finite field with p elements,
denoted Fp.

Proof: We can take Fp = Z/p. ///

Remark: What is not clear is that there are no other finite fields with a prime
number p of elements than Z/p. In fact, it is true that a field F with a prime
number p of elements is ‘the same’ as Z/p, but this requires proof.

Collections of ‘numbers’ such as the ordinary integers Z don’t quite have all
the properties of a field, however. The particular missing property is that not every
non-zero element of Z has a multiplicative inverse (in Z). Such a collection which
meets all the conditions above except possibly the requirement that every non-zero
element has a multiplicative inverse is a commutative ring. If the commutativity
of multiplication is also dropped, then we have a ring.
Remark: The entity Z/m is not a field for m not prime, although it is a commu-
tative ring. Indeed, let m = a · b be a proper factorization of m. Then it’s pretty
easy to see that neither a nor b is actually 0 modulo m, but also that neither has
a multiplicative inverse.
Remark: We will see later that for any prime power pn there exists a finite field
Fpn with pn elements. It is important to realize that for n > 1 it is never the
case that Z/pn gives a field, despite the fact that it has pn elements. As in the
previous remark, if n > 1 there are many non-zero elements in Z/pn which have no
multiplicative inverses, failing that important property of a field.
Remark: We could also spend time proving that in a field there is only one
element that behaves like 0, only one element that behaves like 1, that additive or
multiplicative inverses are unique, and such things, but since our viewpoint will be
mostly computational, proof of these very unsurprising facts is not urgent.

6.9 Fermat’s Little Theorem 117

6.9 Fermat’s Little Theorem
When thinking about how ordinary operations of arithmetic behave modulo m,
especially modulo primes p, it is important to be cautious. The result of this
section may be counter-intuitive, but it is a basic fact about Z/p.

More than 350 years ago Pierre de Fermat made many astute observations
regarding prime numbers, factorization into primes, and related aspects of number
theory (not to mention other parts of mathematics and science as well). About
300 years ago, Leonhard Euler systematically continued Fermat’s work. Most of
these things were prototypes for ‘modern’ mathematical ideas, and at the same time
remain very much relevant to contemporary number theory and its applications.
Theorem: Let p be a prime number. Then for any integer x

xp = x mod p

Corollary: Let p be a prime number. Then for any integer x prime to p,

xp−1 = 1 mod p

Remark: The corollary follows easily from the theorem by remembering that if
gcd(x, p) = 1 then x has a multiplicative inverse x−1 modulo p. Then multiply both
sides of the equation xp = x mod p by x−1 to obtain the assertion of the corollary.

Proof: We will first prove that prime p divides the binomial coefficients(
p

i

)
with 1 ≤ i ≤ p − 1, keeping in mind that the extreme cases i = 0 and i = p can’t
possibly also have this property, since(

p

0

)
= 1

(
p

p

)
= 1

Indeed, from its definition, (
p

i

)
=

p!
i! (p− i)!

Certainly p divides the numerator. Since 0 < i < p, the prime p divides none of the
factors in the factorials in the denominator. By unique factorization into primes,
this means that p does not divide the denominator at all. Indeed,(

p

i

)
· i! · (p− i)! = p!

The prime p divides the right-hand side, so it divides the left-hand side. But p
cannot divide i! nor (p− i)! (for 0 < i < p) since these two numbers are products of

118 Chapter 6 The Integers

integers smaller than p and hence not divisible by p. (And, even more important,
we have seen that if a prime p does not divide a, b then p does not divide ab.)

The Binomial Theorem asserts that

(x + y)p =
∑

0≤i≤p

(
p

i

)
xi yp−i

In particular, since the coefficients of the left-hand side are integers the same must
be true of the coefficients on the right-hand side. Thus, all the binomial coefficients
are integers. We did not use the fact that p is prime to reach this conclusion.

Thus, the binomial coefficients with 0 < i < p are integers expressed as frac-
tions whose numerators are divisible by p and whose denominators are not divisible
by p. Thus, when all cancellation is done in the fraction, there must remain a fac-
tor of p in the numerator. This proves the desired fact about binomial coefficients.
(One might notice that unique factorization is used here!)

Now we prove Fermat’s Little Theorem for positive integers x by induction on
x. First, certainly 1p = 1 mod p. For the induction step, suppose that we already
know for some particular x that

xp = x mod p

Then

(x + 1)p =
∑

0≤i≤p

(
p

i

)
xi 1p−i = xp +

∑
0<i<p

(
p

i

)
xi + 1

All the coefficients in the sum in the middle of the last expression are divisible by
p. Therefore,

(x + 1)p = xp + 0 + 1 = x + 1 mod p

since our induction hypothesis is that xp = x mod p. This proves the theorem for
positive x. ///

6.10 Euler’s theorem
Euler’s theorem is an important extension of Fermat’s Little Theorem. Here we
give a proof of Euler’s theorem which is in a different spirit than the proof above
of Fermat’s theorem. A little later we’ll give an abstracted version of this in the
context of Lagrange’s theorem in group theory.

Again, for a positive integer n, the Euler phi-function ϕ(n) is the number
of integers b so that 1 ≤ b ≤ n and gcd(b, n) = 1.
Theorem: (Euler) For x relatively prime to a positive integer n,

xϕ(n) = 1 mod n

Remark: The special case that n is prime is just Fermat’s Little Theorem, since
for prime p we easily see that ϕ(p) = p− 1.

6.10 Euler’s theorem 119

Proof: Let G be the collection of integers-mod-n which have multiplicative inverses
(mod n, of course). We have already seen that these are exactly the integers modulo
n which have multiplicative inverses modulo n. That is, ϕ(n) counts the elements
in G. In symbols,

|G| = ϕ(n)

We first note that the product

P =
∏
g∈G

g = product of all elements of G

is again in G. Indeed, let g1, . . . , gt be a listing of all elements in G, so P = g1 . . . gt.
Then it should not be surprising that the inverse of P = g1 . . . gt is obtained by
inverting the factors (and reversing the order!?):

(g1g2 . . . gt) · (g−1
t . . . g−1

2 g−1
1) = 1 mod n

That is, P has a multiplicative inverse mod n, although we aren’t trying to identify
it.

Let x be an element of G. Then we claim that the map f : G→ G defined by

f(g) = xg

is a bijection of G to itself. First, we should check that f really maps G to itself:
indeed, for x and g both invertible mod n,

(xg)(g−1x−1) = 1 mod n

so f(g) = xg is again in G. Next, check injectivity: if f(g) = f(h), then by
definition of f we have xg = xh mod n. Multiply this equality by x−1 mod n to
obtain g = h mod n, proving injectivity. Last, check surjectivity: given g ∈ G, let’s
find h ∈ G so that f(h) = g. That is, find h ∈ G so that xh = g. Well, taking
h = x−1g works. This proves that f is a bijection as claimed.

Finally we get to the computational part of the argument. Again let P be the
product of all elements of G. Then

P =
∏
g∈G

g =
∏
g∈G

f(g)

since the map f merely mixes around the elements of G. Then

P =
∏
g∈G

f(g) =
∏
g∈G

xg = xϕ(n)
∏
g∈G

g = xϕ(n) · P

where ϕ(n) is the Euler phi-function of n. Since, as shown above, P is invertible
mod n, we multiply through by P−1 mod n to get

1 = xϕ(n) mod n

120 Chapter 6 The Integers

This proves Euler’s Theorem. ///

Remark: On one hand, this argument might hint that it is a mere shadow of
some more systematic general approach. This is indeed the case. On the other
hand, there are other equally important techniques toward which this little proof
gives no hint.

6.11 Facts about primitive roots
In this section we simply explain what a primitive root is supposed to be, and
state what is true. The proofs of existence (and non-existence) of primitive roots
require more preparation, and are in fact a major part of the work we have to do.

Let n be a positive integer. An integer g relatively prime to n is a primitive
root modulo n if for every x with gcd(x, n) = 1 there is an integer ` so that
g` = x mod n. For fixed n, g, and x, the smallest non-negative integer ` with this
property is the discrete logarithm or index of x base g modulo m.
Proposition: If g is a primitive root modulo n, then the smallest positive integer
` so that g` = 1 mod n is the value ϕ(n) of Euler’s phi-function at n.

Proof: Basically by the definition of ϕ(n), the number of distinct residue classes
x̄ modulo n with x relatively prime to n is ϕ(n). We claim that if ` is the smallest
positive integer ` so that g` = 1 mod n, then we can only get ` different values of
gL mod n no matter what integer exponent L we use. Indeed, write L = q` + r
with 0 ≤ r < `. Then

gL = gq`+r = (g`)q · gr = 1q · gr = gr mod n

That is, in fact, all possible values of gL mod n lie in the list

g0, g1, g2, . . . , g`−1

This proves the proposition. ///

For ‘most’ integers n there is no primitive root modulo n. The precise state-
ment is
Theorem: The only integers n for which there is a primitive root modulo n are
those of the forms
• n = pe with an odd prime p, and e ≥ 1
• n = 2pe with an odd prime p, and e ≥ 1
• n = 2, 4

This will be proven later. In particular, the most important case is that there
do exist primitive roots modulo primes. It is useful to make clear one important
property of primitive roots:
Proposition: Let g be a primitive root modulo a prime p. Let ` be an integer so
that

g` = 1 mod p

Then p− 1 divides `.

6.12 Euler’s criterion 121

Proof: Using the division/reduction algorithm, we may write ` = q · (p − 1) + r
with 0 ≤ r < p− 1. Then

1 = g` = gq·(p−1)+r = (gp−1)q · gr = 1q · gr = gr mod p

Since g is a primitive root, p − 1 is the least positive exponent so that g raised to
that power is 1 mod p. Thus, since 1 = gr mod p, it must be that r = 0. That is,
p− 1|`. ///

6.12 Euler’s criterion
One important type of corollary of the existence of primitive roots modulo primes
is that we have a computational criterion (due to Euler) for whether integers are
nth powers modulo primes. Note that we’ve not yet proven that primitive roots
exist modulo primes.

Fix a prime p. As usual, we say that an integer x is an nth power modulo p
(or nth power residue) if there is an integer y so that

yn = x mod p

And then y is said to be an nth root of x modulo p. For example, since 27 =
11 mod 13, 11 is a 7th power modulo 13 and 2 is a 7th root of 11 modulo 13.
Remark: It is safe to say that the intuition we have for powers and roots in real
or complex numbers is not helpful in understanding roots and powers modulo p.
Example: Since 22 = 4 = −1 mod 5, 2 is a square root of −1 modulo 5. Note that
the fact that there is no real number which is a square root of −1 is no argument
against the existence of a square root of −1 modulo 5.
Example: Since 42 = 16 = 5 mod 11, 4 is a square root of 5 modulo 11.
Example: There is no

√
2 modulo 5: to be sure of this, we compute 5 cases:

02 = 0 6= 2 mod 5

12 = 1 6= 2 mod 5

22 = 4 6= 2 mod 5

32 = 9 = 4 6= 2 mod 5

42 = 16 = 1 6= 2 mod 5

Since Z/5 consists of just the 5 congruence classes 0̄, 1̄, 2̄, 3̄, 4̄, we don’t need to
check any further to know that there is no square root of 2 modulo 5.

From a naive viewpoint, it would appear that the only way to check whether
an nth root of x modulo p exists is by brute force, taking the nth power of each
element of Z/p in turn to see if by chance the value x appears among the squares.
From this viewpoint, it would be especially laborious to be sure that something had
no square root, since all of Z/p would have to be searched. The following criterion
is better:

122 Chapter 6 The Integers

Theorem: Let p be a prime and n an integer so that p = 1 mod n. For an integer
x so that gcd(x, p) = 1, x is an nth power modulo p if and only if

x(p−1)/n = 1 mod p

Proof: (Easy half) Suppose that x = yn mod p. Then, invoking Fermat’s Little
Theorem,

x(p−1)/n = (yn)(p−1)/n = yp−1 = 1 mod p

as claimed.
(Hard half) Now suppose that x(p−1)/n = 1 mod p, and show that x is an nth

power. Let g be a primitive root modulo p, and let ` be a positive integer so that
g` = x. We have

(g`)(p−1)/n = 1 mod p

From the discussion of primitive roots above, this implies that

(p− 1) | ` · (p− 1)/n

Let k be an integer such that

k · (p− 1) = ` · (p− 1)/n

Then kn = `. Then
x = g` = gkn = (gk)n mod p

That is, x is the nth power of gk. ///

6.13 Fast modular exponentiation
Euler’s criterion (and many other number-theoretic algorithms) would not be of
much value if there were no underlying algorithm to exponentiate integers modulo
m. In fact, this algorithm works in a great variety of contexts: integers modulo m,
polynomials modulo P , and others. The idea of it is about 2500 years old.

The most naive version of exponentiation, in which to compute xn%m one
computes x2, then x3 = x · x2, then x4 = x · x3, . . ., xn = x · xn−1 (all mod m), is
very inefficient. Instead, to compute xe we express e as a binary integer

e = eo + e1 · 21 + e2 · 22 + ... + en · en

with each ei equal to 0 or 1, and compute power-of-two powers of x by squaring:

x2 = x · x
x4 = (x2)2

x8 = (x4)2

x24
= (x8)2

x25
= (x24

)2

. . .

6.13 Fast modular exponentiation 123

Then

xe = xeo (x2)e1 (x4)e2 (x8)e3(x24
)e4 . . . (x2n

)en

Again, the eis are just 0 or 1, so in fact this notation is clumsy: we omit the factor
x2k

if ek = 0 and include the factor x2k

if ek = 1.
A fairly good way of implementing this is the following, which we call the Fast

Modular Exponentiation algorithm. To compute xe%m, we will keep track
of a triple (X, E, Y) which initially is (X, E, Y) = (x, e, 1). At each step of the
algorithm:
• If E is odd then replace Y by (X × Y)%m and replace E by E − 1
• If E is even then replace X by (X × X)%m and replace E by E/2. When

E = 0 the value of Y at that time is xe%m.
This algorithm takes at most 2 log2 E steps. Note that in the fast exponen-

tiation modulo m, no number larger than m2 will arise. Thus, for example, to
compute something like

21000%1000001

would require no more than 2 log2 1000 ≈ 2 · 10 = 20 multiplications of 6-digit
numbers.

For example, let’s directly evaluate 21000 mod 89. Setting this up as indicated
just above, we have

X E Y
2 1000 1 initial state
4 500 1 E was even: square X mod 89
16 250 1 E was even: square X mod 89
78 125 1 E was even: square X mod 89
78 124 78 E was odd: multiply Y by X mod 89
32 62 78 E was even: square X mod 89
45 31 78 E was even: square X mod 89
45 30 39 E was odd: multiply Y by X mod 89
67 15 39 E was even: square X mod 89
67 14 32 E was odd: multiply Y by X mod 89
39 7 32 E was even: square X mod 89
39 6 2 E was odd: multiply Y by X mod 89
8 3 2 E was even: square X mod 89
8 2 16 E was odd: multiply Y by X mod 89
64 1 16 E was even: square X mod 89
64 0 45 E was odd: multiply Y by X mod 89

We conclude that

21000%89 = 45

124 Chapter 6 The Integers

6.14 Sun-Ze’s theorem
The result of this section is sometimes known as the Chinese Remainder The-
orem, mainly because the earliest results (including and following Sun Ze’s) were
obtained in China. Sun Ze’s result was obtained before 450, and the statement
below was obtained by Chin Chiu Shao about 1250. Such results, with virtually
the same proofs, apply to much more general ‘numbers’ than the integers Z.

First, an important special case.
Theorem: (Sun-Ze) Let m and n be relatively prime positive integers. Let r and
s be integers such that

rm + sn = 1

Then the function
f : Z/m× Z/n→ Z/mn

defined by
f(x, y) = y · rm + x · sn

is a bijection. The inverse map

f−1 : Z/mn→ Z/m× Z/n

is simply
f−1(z) = (x-mod-m, y-mod-n)

Proof: First, the peculiar characterization of the gcd(m,n) as the smallest positive
integer expressible in the form am + bn for integers a and b assures (since here
gcd(m,n) = 1) that integers r and s exist such that rm + sn = 1. Second, we
should check that the function f is well-defined, that is, that if x′ = x + am and
y′ = y + bn for some integers a and b, then still

f(x′, y′) = f(x, y)

Indeed,
f(x′, y′) = y′rm + x′sn = (y + an)rm + (x + am)sn

= yrm + xsn + mn(ar + bs) = f(x, y) mod mn

This proves the well-definedness.
To prove surjectivity of f , for any integer z, let x = z and y = z. Then

f(x, y) = zrm + zsn = z(rm + sn) = z · 1 mod mn

To prove injectivity, we could use the fact that Z/m × Z/n and Z/mn are finite
sets of the same size, so a surjective function is necessarily injective. But we can
learn a little more by a more direct proof. Suppose that

f(x′, y′) = f(x, y)

6.14 Sun-Ze’s theorem 125

Then modulo m the terms yrm and y′rm are 0, so this asserts that

xsn = x′sn mod m

From rm + sn = 1 mod mn we obtain sn = 1 mod m, so

x = x′ mod m

Symmetrically,
y = y′ mod n

This proves injectivity.
Finally, observe that (by the same reasoning)

f(x, y) = yrm + xsn = y · 0 + x · 1 mod m = x mod m

and similarly

f(x, y) = yrm + xsn = y · 1 + x · 0 mod n = y mod n

These facts, together with the identity f(z, z) = z mod mn already proven, show
that f−1 is as claimed. ///

The more general version is
Theorem: (Sun-Ze) For m1, . . . ,mn mutually relatively prime, the map

g : Z/(m1 . . .mn)→ Z/m1 × Z/m2 × . . .× Z/mn

defined by
g(x) = (x mod m1, x mod m2, . . . , x mod mn)

is a bijection.

Proof: We’ll do induction on the number n of moduli involved. The case n = 2
was just treated, and if n = 1 there is nothing to prove. So take n > 2. By
induction on n, the map

go : Z/m2 . . .mn → Z/m2 × Z/m3 × . . .× Z/mn

defined by
go(x-mod-m2 . . .mn)

= (x-mod-m2, x-mod-m3, . . . , x-mod-mn)

is a bijection. Thus, the map

g1 : Z/m1 × Z/m2 . . .mn → Z/m1 × Z/m2 × Z/m3 × . . .× Z/mn

defined by
g1(x-mod-m1, x-mod-m2 . . .mn)

126 Chapter 6 The Integers

= (x-mod-m1, x-mod-m2, x-mod-m3, . . . , x-mod-mn)

is a bijection.
At the same time, invoking unique factorization (!), m1 and the product

m2m3 . . .mn are relatively prime, so the case n = 2 gives the bijectivity of the
map

g2 : Z/m1(m2 . . .mn)→ Z/m1 × Z/m2 . . .mn

defined by

g2(x-mod-m1(m2 . . .mn)) = (x-mod-m1, x-mod-m2 . . .mn)

Therefore, the composite map
g = g2 ◦ g1

is also a bijection. ///

Now we paraphrase Sun-Ze’s theorem in terms of solving several numerical
congruences simultaneously. There are some similarities to the more elementary
discussion of systems of linear equations, but there are critical differences as well.

To start with, let’s take the smallest non-trivial systems, of the form{
x = a mod m

x = b mod n

where m,n are relatively prime, a, b are arbitrary integers, and we are to find all
integers x which satisfy this system.

Notice that there are two congruences but just one unknown, which in the
case of equations would probably lead to non-solvability immediately. But systems
of congruences behave slightly differently. Our only concession is: We’ll only
consider the case that the moduli m and n are relatively prime, that is,
that gcd(m,n) = 1.

Using the Euclidean algorithm again, there are integers s, t so that

sm + tn = 1

since we supposed that gcd(m,n) = 1. And this can be rearranged to

tn = 1− sm

for example. Here comes the trick: the claim is that the single congruence

xo = a(tn) + b(sm) mod mn

is equivalent to (has the same set of solutions) as the system of congruences
above.

Let’s check: modulo m, we have

xo = (a(tn) + b(sm)) mod m = a(tn) + 0 mod m

= a(tn) mod m = a(1− sm) mod m

= a(1) mod m = a mod m

6.14 Sun-Ze’s theorem 127

The discussion of the congruence modulo n is nearly identical, with roles reversed.
Let’s do it:

xo = (a(tn) + b(sm)) mod n = 0 + b(sm) mod m

= b(sm) mod n = b(1− tn) mod n

= b(1) mod n = b mod n

Thus, anything congruent to this xo modulo mn is a solution to the system.
On the other hand, suppose x is a solution to the system, and let’s prove that

it is congruent to xo modulo mn. Since x = a mod m and x = b mod n, we have

x− xo = a− a = 0 mod m

and
x− xo = b− b = 0 mod n

That is, both m and n divide x − xo. Since m and n are relatively prime, we can
conclude that mn divides x− xo, as desired.

Note the process of sticking the solutions together via the formula above uses
the Euclidean Algorithm in order to be computationally effective (rather than just
theoretically possible).

For example, let’s solve the system{
x = 2 mod 11
x = 7 mod 13

To glue these congruences together, we execute the Euclidean Algorithm on 11 and
13, to find

6 · 11− 5 · 13 = 1

Thus, using the formula above, the single congruence

x = 2(−5 · 13) + 7(6 · 11) mod 11 · 13

is equivalent to the given system. In particular, this gives the solution

x = −2 · 5 · 13 + 7 · 6 · 11 = 332 mod 11 · 13

Quite generally, consider a system

x = b1 mod m1

x = b2 mod m2

x = b3 mod m3

. . .

x = bn mod mn

128 Chapter 6 The Integers

We’ll only consider the scenario that mi and mj are relatively prime (for
i 6= j). We solve it in steps: first, just look at the subsystem{

x = b1 mod m1

x = b2 mod m2

and use the method above to turn this into a single (equivalent!) congruence of the
form

x = c2 mod m1m2

Then look at the system {
x = c2 mod m1m2

x = b2 mod m3

and use the method above to combine these two congruences into a single equivalent
one, say

x = c3 mod m1m2m3

and so on.

6.15 Euler’s phi-function
Euler’s phi-function ϕ(n) is defined to be the number of integers ` in the range
1 ≤ ` ≤ n which are relatively prime to n. Thus, among other things, ϕ(n) tells
the number of integers x modulo n such that x has a multiplicative inverse modulo
n. That is, ϕ(n) is the cardinality of (Z/n)×.

The definition of ϕ(n) is very inefficient as a means to compute ϕ(n). A
significantly better approach is given by the formula of the following theorem,
although this requires that n be factored into primes, which will become difficult
or impossible for very large n.
Theorem: For m and n relatively prime

ϕ(mn) = ϕ(m) · ϕ(n)

Let n = pe1
1 . . . pet

t be a factorization of n into primes, with the pis distinct and
with positive integers ei. Then

ϕ(n) = (p1 − 1)pe1−1
1 . . . (pt − 1)pet−1

t

Corollary: (of proof) Sun-Ze’s bijection

Z/mn→ Z/m× Z/n

gives a bijection
(Z/mn)× → (Z/m)× × (Z/n)×

Proof: Note that we already proved several things relevant to this in our earlier
discussion of Euler’s theorem, such as the fact that ϕ(n) is the cardinality of (Z/n)×.

Exercises 129

If we can prove the first formula, then by unique factorization it suffices to prove
the second formula for prime powers n = pe. Recall that Sun-Ze’s theorem gives a
bijection Z/m × Z/n → Z/mn. In general, the cardinality of a cartesian product
A × B of sets (meaning the set of ordered pairs (a, b) with a ∈ A and b ∈ B) is
the product of the cardinalities of A and B. By now we know that (Z/t)× exactly
consists of x modulo t with gcd(x, t) = 1. Combining these facts proves the first
formula of the theorem.

Next, we prove the second formula for prime powers n = pe with e a positive
integer. In this special case, gcd(`, pe) > 1 if and only if p divides `. There are pe/p
multiples of p between (inclusive) 1 and pe, so

ϕ(pe) = pe − pe−1 = (p− 1)pe−1

as claimed. ///

Exercises

6.01 Factor the integers 1028 and 2057 into primes.

6.02 Find the reduction mod 99 of 1000. (ans.)

6.03 Find the reduction mod 88 of −1000. (ans.)

6.04 Prove that the reduction mod 10 of a positive integer N is simply the ones’-
place digit of N in decimal expansion. (ans.)

6.05 Prove that the reduction mod 100 of a positive integer N is the two-digit
number made up of the tens’-place and ones’-place digits of N .

6.06 Let m be any non-zero integer. Prove that the reduction mod −m of N is
the same as the reduction mod m of N .

6.07 Prove in general that if r is the reduction of N mod m, and if r 6= 0, then
m− r is the reduction of −N mod m.

6.08 By brute force, find a multiplicative inverse to 13 mod 100. (ans.)

6.09 By brute force, check that among 1,2,...,25 the integers with multiplicative
inverses modulo 26 are the odd integers in that range, excluding 13. Is
there any shortcut here, by cleverness alone, without invoking any fancier
mathematics?

6.10 (*) (This is a little hard to do without using anything further than what we
have already!) Let m be a positive integer. Prove that for all integers x, y

((x%m) + (y%m))%m = (x + y)%m

and
((x%m)× (y%m))%m = (x× y)%m

6.11 Find all the divisors of 60. Why are you sure that you have them all? (ans.)

130 Chapter 6 The Integers

6.12 For all the numbers under 100, note either that they are prime, or factor
them into primes.

6.13 Show directly from the definition of divisibility that if d|m then d|(−m).
(ans.)

6.14 Prove directly, from the very definition of divisibility, that if d|x and d|y
then d|(x− y) and d|(x + y).

6.15 Observe that 1331 and 14641 cannot be prime, without computation. (ans.)

6.16 Find the smallest divisor d > 1 of 10001. (ans.)

6.17 Find the smallest divisor d > 1 of 12344321. (ans.)

6.18 Find the least common multiple of 2, 4, 8, 16, 32, 64, and 128. (ans.)

6.19 Show that for any integer n if d|n and d|(n + 2) then d|2. (ans.)

6.20 Show that for any integer n the two integers n and n + 1 are relatively
prime.

6.21 Show that for any integer n exactly one of n, n + 2, n + 4 is divisible by 3.
In particular, except for 3, 5, 7, there are no triples of primes occurring in
the pattern n, n + 2, n + 4. (ans.)

6.22 Show that for any integer n, the integers n and n2 +1 are relatively prime.

6.23 (*) Show that for any integer n the greatest common divisor of 16n2 +8n+1
and 16n2 − 8n + 1 is 1.

6.24 Prove that for any two integers m,n, the least common multiple lcm(m,n)
exists, and is given by the formula lcm(m,n) = m · ngcd(m,n). (Caution:
do not accidentally assume that the lcm exists to prove the formula.)

6.25 (**) How likely is it that two randomly chosen positive integers will be
relatively prime? (Hint: Part of the issue is to make suitable sense of the
question. First look in the range 1, . . . , N with N = p1 . . . pt with distinct
primes p1, . . . , pt, and take a limit. Second, estimate the inaccuracy in this
approach. There remains the question of evaluating

∏
p prime

(
1− p−2

)
=

∞∑
n=1

1
n2

6.26 Find a proper factor of 111, 111, 111, 111, 111 without using a calculator.
(ans.)

6.27 Find a proper factor of 101, 010, 101, 010, 101 without using a calculator.
(ans.)

6.28 Prove/observe that the ones’-place digit of a decimal number is not sufficient
information (by itself) to determine whether the number is divisible by 3,
or by 7.

6.29 Explain why n2 − 1 cannot be prime for any n > 2. (ans.)

Exercises 131

6.30 Explain why 3n − 1 cannot possibly be a prime number if n > 1.

6.31 Explain why 2m +1 cannot possibly be a prime number unless m is a power
of 2.

6.32 While we mostly know that x2 − y2 has a factorization, that x3 − y3 has
a factorization, that x3 + y3 has, and so on, there is a factorization that
seldom appears in high school algebra: x4 +4y4 has a factorization into two
quadratic pieces, each with 3 terms! Find this factorization. Hint:

x4 + 4y4 = (x4 + 4x2y2 + 4y4)− 4x2y2

6.33 Can n4 + 4 be a prime if the integer n is bigger than 1?

6.34 Factor x6 − y6 in two different ways.

6.35 (*) (Lagrange’s identity): prove that(∑
i

xiyi

)2

=

(∑
i

x2
i

)(∑
i

y2
i

)
−
∑
i<j

(xiyj − xjyi)2

6.36 (*) (Euclid’s proof that there are infinitely-many primes) Suppose there
were only finitely many primes p1, p2, . . . , pn. Consider the number N =
p1 . . . pn + 1. Show that none of the pi can divide N . Conclude that there
must be some other prime than those on this list, from which one would
obtain a contradiction.

6.37 Find gcd(1112, 1544) and express it in the form 1112x + 1544y for some
integers x and y by hand computation. (ans.)

6.38 Find gcd(10201, 32561), and express it in the form 10201x+32561y, by hand
computation.

6.39 For an integer n, show that the greatest common divisor of the two integers
n3 + n2 + n + 1 and n2 + n + 1 is unavoidably just 1.

6.40 For an integer n, show that the greatest common divisor of the two integers
n3 + n2 + n + 1 and n8 + n7 + n6 + n5 + n4 + n3 + n2 + n + 1 is unavoidably
just 1.

6.41 Show that the subset {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} of {1, 2, 3} × {1, 2, 3}
is an equivalence relation on the set {1, 2, 3}.

6.42 Show that the relation xR y on real numbers, defined by xR y if and only
if x ≤ y, is not an equivalence relation.

6.43 Let X be a set of non-empty subsets of a set S, whose union is all of S
and which are mutually disjoint. (So X is a partition). Let ∼ be the
equivalence relation defined by this partition. Prove that the equivalence
classes are the elements of X.

6.44 How many equivalence relations are there on the set {1, 2, 3, 4}? (ans.)

132 Chapter 6 The Integers

6.45 Take two positive integers n and N with n not dividing N . Find an integer
x so that

(x%N)%n 6= x%n

6.46 How many elements does the set Z/n have? (ans.)

6.47 How many elements does the set Z/30× have? (ans.)

6.48 Reduce 100, 000, 000, 001 modulo 10.

6.49 Compute and reduce modulo the indicated modulus: 110×124 modulo 3 and
also 12 + 1234567890 mod 10.

6.50 Compute 21000 %11. (Hint: In the first place, do manipulations in Z/11,
rather than thinking always of reduction mod 11. At the same time, to
compute mod 11 there is never any reason to use numbers much larger than
11: for example, in computing powers of 2, we may as well reduce modulo
11 whenever it’s convenient, although we are not obliged to reduce until the
very end. Thus, compute

2, 22 = 4, 23 = 8, 24 = 16 = 5, 25 = 2 · 24 = 2 · 5 = 10

26 = 2 · 25 = 2 · 10 = 20 = 9, . . .

Then use the ‘law of exponents’ 2ab = (2a)b.)

6.51 Compute the ones’-place digit in the decimal expansion of 3999. (ans.)

6.52 Find the multiplicative inverse of 3 modulo 100. (ans.)

6.53 Find the multiplicative inverse of 1001 modulo 1234. (ans.)

6.54 Find four distinct residue classes x modulo 15 so that x2 = 1 mod 15. (ans.)

6.55 Find three distinct residue classes x modulo 105 so that x2 = 1 mod 105.
(ans.)

6.56 From the definition, find ϕ(30), ϕ(15), and ϕ(24). (ans.)

6.57 From the definition, find ϕ(36), ϕ(18), and ϕ(28).

6.58 Factor 5n − 1 into primes for 1 ≤ n ≤ 11.

6.59 Find a square root of 2 modulo 17.

6.60 Find a square root of 2 modulo 23. (ans.)

6.61 Find a square root of 3 modulo 1019. (ans.)

6.62 Find 11th roots of 2 and 3 modulo 127. (ans.)

6.63 Find 11th roots of 2 and 3 modulo 101.

6.64 Find 11th roots of 141 and 162 modulo 199.

6.65 Find 11th roots of 141 and 162 modulo 199.

6.66 Show that 2 is not an 11th power mod 199.

Exercises 133

6.67 By direct computation, check that 2 is not a primitive root modulo 17, but
that 3 is.

6.68 Is 2 a square modulo 101? (ans.)

6.69 Is 2 a square modulo 103? (ans.)

6.70 Is 3 a square modulo 101?

6.71 Is 2 a cube modulo 103? (ans.)

6.72 Is 5 a cube modulo 103?

6.73 Is 2 a cube modulo 109?

6.74 Is 105 a 144th power modulo 1009?

6.75 Let p be a prime with p = 3 mod 4. Show that if b is a square modulo p
then b(p+1)/4 is a square root of b modulo p. (ans.)

6.76 Let p be a prime with p = 3 mod 4. If b is a not a square modulo p then is
b(p+1)/4 a square root of b modulo p? What is it?

6.77 Let r be a prime, and let p be a prime with r 6 |(p−1). Let s be a multiplicative
inverse of r modulo p−1. Show that bs is an rth root of b modulo p. (ans.)

6.78 Let r be a prime, and let p be a prime with r 6 |(p − 1). Show that every
element of Z/p has a unique rth root.

6.79 Let r be a prime, and let p be a prime with r|(p− 1) but r2 6 |(p− 1). Let s
be a multiplicative inverse of r modulo (p − 1)/r. Show that if b is an rth

power modulo p then bs is an rth root of b modulo p. (ans.)

6.80 Show that x2 − y2 = 102 has no solution in integers. (Hint: Look at this
equation modulo 4.)

6.81 Show that x3 + y3 = 3 has no solution in integers. (Hint: Look at this
equation modulo 7.)

6.82 Show that x3 + y3 + z3 = 4 has no solution in integers.

6.83 Show that x2 + 3y2 + 6z3 − 9w5 = 2 has no solution in integers.

7

Permutations and Interleavers

7.1 Permutations of sets
7.2 Shuffles
7.3 Block interleavers

7.1 Permutations of sets
Intuitively, to apply a permutation to a bunch of things means just to move them
around. More precisely, a permutation f of a set X is defined to be a bijective
function f from X to itself.

The crudest question we can ask about permutations of X is how many are
there? If X has n (distinct) elements x1, x2, . . . , xn and f : X → X is a permutation
of X, then there are n choices for what f(x1) can be, n − 1 remaining choices for
what f(xn−1) can be (since it can’t be whatever f(xn) was), and so on. Thus, there
are n! permutations of a set with n elements.

Another significant question is how many times can a given permutation be
applied before everything returns to its original position? This is not only relevant
in card shuffling, but also in thinking about random number generation and other
things.

To study permutations themselves it doesn’t matter much exactly what the
elements of the set are so long as we can tell them apart, so let’s just look at the
set

{1, 2, 3, . . . , n− 1, n}

as a good prototype of a set with n (distinct) elements. The standard notation is
to write Sn for the set of permutations of n things. This Sn is also called the
symmetric group on n things.

A standard way to write permutations f of {1, 2, . . . , n} in order to describe
in detail what f does is to effectively graph f but in the form of a list: write

f =
(

1 2 3 . . . n
f(1) f(2) f(3) . . . f(n)

)
134

7.1 Permutations of sets 135

Thus, altering the notation just slightly, the permutation

g =
(

1 2 3 . . . n
i1 i2 i3 . . . in

)
is the one so that g(`) = i`.

Always we have the trivial permutation

e =
(

1 2 3 . . . n
1 2 3 . . . n

)
which does not ‘move’ any element of the set. That is, for all i, e(i) = i.

Of course, one permutation may be applied after another. If g, h are two
permutations, write

g ◦ h

for the permutation that we get by first applying h and then applying g. This is the
composition or product of the two permutations. It is important to appreciate
that, in general

g ◦ h 6= h ◦ g

We’ll see examples of this below. But in any case this notation is indeed compatible
with the notation for (and the idea of) composition of functions. Thus, for 1 ≤ i ≤
n, by definition

(g ◦ h)(i) = g(h(i))

It is a consequence of the definition of permutations as (bijective) functions
from a set to itself that composition of permutations is associative: for all permu-
tations g, h, k of a set,

(g ◦ h) ◦ k = g ◦ (h ◦ k)

Indeed, for any element i of the set, the definition of composition of permutations
gives

((g ◦ h) ◦ k)(x) = (g ◦ h)(k(x)) definition of (g ◦ h) ◦ k, applied to x

= g(h(k(x))) definition of g ◦ h, applied to k(x)

= g((h ◦ k)(x)) definition of h ◦ k, applied to x

= (g ◦ (h ◦ k))(x) definition of g ◦ (h ◦ k), applied to x

(This even works for infinite sets.)
And for any permutation g there is the inverse permutation g−1 which has

the effect of reversing the permutation performed by g. That is,

g ◦ g−1 = g−1 ◦ g = e

Often the little circle indicating composition is suppressed, and we just write

g ◦ h = gh

136 Chapter 7 Permutations and Interleavers

as if it were ordinary multiplication. The hazard is that we cannot presume that
gh = hg, so a little care is required.

The graph-list notation for permutations is reasonably effective in computing
the product of two permutations: to compute, for example,(

1 2 3
2 3 1

)
◦
(

1 2 3
3 2 1

)
we see what this composite does to each of 1, 2, 3. The permutation on the right is
applied first. It sends 1 to 3, which is sent to 1 by the second permutation (the one
on the left). Similarly, 2 is sent to 2 (by the permutation on the right) which is sent
to 3 (by the permutation on the left). Similarly, 3 is sent to 1 (by the permutation
on the right) which is sent to 2 (by the permutation on the left). Graph-listing this
information, we have(

1 2 3
2 3 1

)
◦
(

1 2 3
3 2 1

)
=
(

1 2 3
1 3 2

)
If we multiply (compose) in the opposite order, we get something different:(

1 2 3
3 2 1

)
◦
(

1 2 3
2 3 1

)
=
(

1 2 3
2 1 3

)
This is the simplest example of the non-commutativity of the ‘multiplication’ of
permutations, that is, that gh 6= hg in general.

It is certainly true that permutations, especially of big sets, can be very com-
plicated things which are hard to visualize. Still, they can be broken up into simple
pieces, as we’ll see just below.

First, the simplest permutations are the cycles of various lengths. A k-cycle
is a permutation f so that (for some numbers i1, . . . , ik)

f(i1) = i2, f(i2) = i3, f(i3) = i4, . . . , f(ik−1) = ik, f(ik) = i1

and so that f(j) = j for any number j not in the list i1, . . . , ik. Note that ik is sent
back to i1. Thus, as the name suggests, f cycles the i1, . . . , ik among themselves.
A more abbreviated notation is used for this: write

(i1 i2 . . . ik−1 ik)

for this k-cycle.
For example, comparing with the more general notation,(

1 2 3
2 1 3

)
= (1 2)

(
1 2 3
3 2 1

)
= (1 3)

7.1 Permutations of sets 137(
1 2 3
2 3 1

)
= (1 2 3)

These are, in order, two 2-cycles and a 3-cycle.
Unlike the more general notation, there is some duplication in the cycle nota-

tion: for example,
(1 2 3) = (2 3 1) = (3 1 2)

Generally, there are k different ways to write a k-cycle in this cycle notation. In a
similar vein, it is pretty clear that

• If g is a k-cycle, then
gk = e

meaning that applying g to the set k times has the net effect of moving nothing. How
do cycles interact with each other? Well, generally not very well, but if g = (i1 . . . ik)
and h = (j1 . . . j`) are a k-cycle and an `-cycle with disjoint lists {i1, . . . , ik} and
{j1, . . . , j`} interact nicely: they commute with each other, meaning that

gh = hg

in this special scenario. Such cycles are called (reasonably enough) disjoint cycles.
Pursuing this idea, we have

• Any permutation can be written as a product of disjoint cycles, and in
essentially just one way. The ‘essentially’ means that writing the same cycles in a
different order is not to be considered different since after all they commute. This
is called a decomposition into disjoint cycles.

Knowing the decomposition into disjoint cycles of a permutation g is the clos-
est we can come to understanding the nature of g. Happily, this decomposition
can be determined in a systematic way (effectively giving an explicit proof of this
assertion). For example, consider

g =
(

1 2 3 4 5 6 7
4 3 2 5 7 6 1

)
We just trace the ‘path’ of elements under repeated applications of g. To start,
let’s see what happens to 1 under repeated application of g: first 1 goes to 4, which
then goes to 5, which then goes to 7, which then goes to 1. Since we have returned
to 1, we have completed the cycle: we see that one cycle occurring inside g is

(1 4 5 7)

Next, look at any number which didn’t already occur in this cycle, for example 2.
First 2 goes to 3, which then goes to 2, which already completes another cycle.
Thus, there is also the 2-cycle

(2 3)

inside g. The only number which hasn’t yet appeared in either of these cycles is 6,
which is not moved by g. Thus, we have obtained the decomposition into disjoint
cycles: (

1 2 3 4 5 6 7
4 3 2 5 7 6 1

)
= (1 4 5 7)(2 3) = (2 3)(1 4 5 7)

138 Chapter 7 Permutations and Interleavers

The decomposition into disjoint cycles tells how many times a permutation
must be repeated in order to have no net effect: the least common multiple of the
lengths of the disjoint cycles appearing in its decomposition.

The order of a permutation is the number of times it must be applied in order
to have no net effect. (Yes, there is possibility of confusion with other uses of the
word ‘order’). Thus,
• The order of a k-cycle is k. The order of a product of disjoint cycles is the

least common multiple of the lengths.
We might imagine that permutations with larger orders ‘mix better’ than per-

mutations with smaller orders since more repetitions are necessary before the mix-
ing effect is ‘cancelled’. In this context, it may be amusing to realize that if a card
shuffle is done perfectly, then after some number of repetitions the cards will be
returned to their original order! But the number is pretty large with a 52-card
deck, and it’s not easy to do perfect shuffles anyway.

As an example, let’s examine all the elements of S7, determining their structure
as products of disjoint cycles, counting the number of each kind, and noting their
order.

First, let’s count the 7-cycles (i1 . . . i7): there are 7 choices for i1, 6 for i2, and
so on, but there are 7 different ways to write each 7-cycle, so there are 7!/7 distinct
7-cycles altogether.

Next, 6-cycles (i1 . . . i6): there are 7 choices for i1, 6 for i2, and so on down to
2 choices for i6, but there are 6 different ways to write each 6-cycle, so there are
7!/6 distinct 6-cycles altogether.

Next, 5-cycles (i1 . . . i5): there are 7 choices for i1, 6 for i2, and so on down to
3 choices for i5, but there are 5 different ways to write each 5-cycle, so there are
7!/(2! 5) distinct 5-cycles altogether.

For variety, let’s count the number of permutations writeable as a product of
a disjoint 5-cycle and a 2-cycle. We just counted that there are 7!/(2! 5) distinct
5-cycles. But each choice of 5-cycle leaves just one choice for 2-cycle disjoint from
it, so there are again 7!/(2! 5) distinct products of disjoint 5-cycle and 2-cycle. And
we note that the order of a product of disjoint 5 and 2-cycle is lcm(2, 5) = 10.

There are 7!/3! 4 distinct 4-cycles, by reasoning similar to previous examples.
There are 7!/(3! 4) · 3!/2 choices of disjoint 4-cycle and 2-cycle. The order of

the product of such is lcm(2, 4) = 4.
There are 7!/(3! 4) · 3!/3 choices of disjoint 4-cycle and 3-cycle. The order of

the product of such is lcm(3, 4) = 12.
There are 7!/(4! 3) distinct 3-cycles, by reasoning similar to previous examples.
There are 7!/(4! 3) · 4!/(2! 2) choices of disjoint 3-cycle and 2-cycle. The order

of the product of such is lcm(2, 3) = 6.
The number of disjoint 3-cycle, 2-cycle, and 2-cycle is slightly subtler, since

the two 2-cycles are indistinguishable. Thus, there are
7!

4! 3
4!

2! 2
2!

0! 2
· 1
2!

where the last division by 2! is to take into account the 2! different orderings of
the two 2-cycles, which make only a notational difference, not a difference in the
permutation itself. The order of such a permutation is lcm(2, 2, 3) = 6.

7.2 Shuffles 139

The number of disjoint pairs of 3-cycle and 3-cycle is similar: the two 3-cycles
are not actually ordered although our ‘choosing’ of them gives the appearance that
they are ordered. There are

7!
4! 3

4!
1! 3
· 1
2!

such pairs, where the last division by 2! is to take into account the 2! different or-
derings of the two 3-cycles, which make only a notational difference, not a difference
in the permutation itself. The order of such a permutation is lcm(3, 3, 1) = 3.

There are 7!/(5! 2) distinct 2-cycles, each of order 2.
There are 7!/(5! 2) · 5!/(3! 2) · 1/2! pairs of disjoint 2-cycles, where the last

division by 2! is to take into account the possible orderings of the two 2-cycles,
which affect the notation but not the permutation itself.

Finally, there are
7!

5! 2
5!

3! 2
3!

1! 2
· 1
3!

triples of disjoint 2-cycles, where the last division by 3! is to account for the possible
orderings of the 3 2-cycles, which affects the notation but not the permutation itself.
The order of such a permutation is just lcm(2, 2, 2) = 2.

As a by-product of this discussion, we see that the largest order of any permu-
tation of 7 things is 12, which is obtained by taking the product of disjoint 3 and
4-cycles.

As a more extreme example of the counting issues involved, let’s count the
disjoint products of three 2-cycles and three 5-cycles in S24. As above, this is

24!
22! 2

22!
20! 2

20!
18! 2

1
3!
· 18!
13! 5

13!
8! 5

8!
3! 5

1
3!

where both of the divisions by 3! come from discounting the possible orderings of
the 2-cycles, and the possible orderings of the 5-cycles. Note that since 2-cycles
are distinguishable from 5-cycles, there is no further accounting necessary for the
ordering of the 2-cycles relative to the 5-cycles, etc.

7.2 Shuffles
Overhand shuffles and riffle shuffles of decks of cards, viewed as permutations of
the set of cards in the deck, are amenable to analysis. Some of the conclusions may
be surprising. A mixing procedure identical to a riffle shuffle is used in interleaving
convolutional codes.

The simplest type of overhand shuffle applied to a deck of n cards consists of
choosing a random spot to break the deck in two, and then interchanging the two
parts. For example, with a deck of just 6 cards labeled 0, 1, 2, 3, 4, 5, the deck might
be broken into pieces 0, 1 and 2, 3, 4, 5. Then the two pieces are put back together
as 2, 3, 4, 5, 0, 1. With a deck of n cards, the ith overhand shuffle fi is defined as
being the permutation that has the effect

0, 1, 2, 3, . . . , n− 2, n− 1 → i, 1 + i, . . . , n− 2, n− 1, 0, 1, 2, 3, . . . , i− 1

140 Chapter 7 Permutations and Interleavers

(respectively), meaning that the 0 is sent to the ith position, and so on. In the
graph-listing notation above, starting the indexing with 0 rather than 1, this is(

0 1 2 . . . n− 1
i i + 1 i + 2 . . . (n− 1 + i)%n

)
That is, in terms of reduction of integers modulo n, as a function

fi : Z/n→ Z/n

this shuffle is
fi(x) = (x + i)%n

where y%n denotes the reduction of y modulo n. That is, an overhand shuffle on a
deck of n cards simply amounts to adding modulo n. In particular,

fj(fi(x)) = fi+j(x)

That is, the effect of two overhand shuffles is identical to that of a single overhand
shuffle. In particular, in that regard overhand shuffles are not very thorough mixers,
since you can overhand shuffle a deck all day long and have no more effect than
just doing a single overhand shuffle.

It turns out that riffle shuffles are best described labeling the cards starting
from 1, rather than starting from 0 as in the case of the simplest overhand shuffle.
A good riffle shuffle of a deck of 2n cards consists of breaking the deck into two
equal pieces

1, 2, 3, . . . , n n + 1, n + 2, . . . , 2n− 1, 2n

and then interleaving the cards from one half with the cards from the other as

n + 1, 1, n + 2, 2, n + 3, 3, . . . , 2n− 1, n− 1, 2n, n (good riffle)

Note that the top and bottom cards do not stay in their original positions. There
is a bad riffle shuffle, which may be useful in various card tricks, in which the top
and bottom cards stay in the same position: the interleaving in the bad case is

1, n + 1, 2, n + 2, 3, n + 3, 3, . . . , n− 1, 2n− 1, n, 2n (bad riffle)

This bad riffle shuffle is the same thing as a good riffle shuffle on the deck of cards
obtained by removing the top and bottom cards from the deck. Also, note that
there is really just one riffle shuffle, unlike the overhand shuffles where there is a
parameter.
Proposition: The good riffle shuffle on a deck of 2n cards 1, 2, . . . , 2n− 1 is the
function

f(x) = (2 · x)%(2n + 1)

That is, a good riffle shuffle is multiplication by 2 followed by reduction modulo
2n + 1.

7.3 Block interleavers 141

Proof: On one hand, if 1 ≤ x ≤ n, then by its definition the riffle shuffle sends
x to the 2xth spot in the deck, because of the interleaving. On the other hand, if
n < x ≤ 2n, write x = n + i. Then by definition of the shuffle x is sent to the
(2i− 1)th spot in the deck. We can re-express this as

f(n + i) = 2i− 1 = 2(n + i)− (2n + 1) = 2(n + i)%(2n + 1)

since 2n + 1 < 2(n + i) < 2(2n + 1). This proves that the riffle shuffle is just
multiplication by 2 modulo 2n + 1, as claimed. ///

Corollary: Let e be the order of 2 modulo 2n + 1. That is, e is the smallest
positive integer such that 2e = 1 mod 2n+1. Then the good riffle shuffle on a deck
of 2n cards returns all cards to their original position after e shuffles, and no earlier.

Proof: The xth card is put into position 2tx mod 2n + 1 by t applications of the
riffle shuffle. The equations

2tx = x mod 2n + 1

for x = 1, 2, 3, . . . , 2n include as a special case x = 1, which is

2t = 1 mod 2n + 1

The smallest positive solution is t = e, and then indeed 2ex = x mod 2n + 1 for
all x. ///

7.3 Block interleavers
These permutations are used in concatenated error-correcting codes and in classical
transposition ciphers. Rather like the riffle shuffles, there is an attractive analysis
of these permutations.

Fix positive integers m,n. We will define a permutation, called the m-by-n
classic block interleaver, on N = m · n things. (In fact, this is a left-to-right,
top-to-bottom interleaver, for reasons that will become apparent.)

The physical description of the m-by-n block interleaver is quite straightfor-
ward: write the numbers 0, 1, 2, . . . , N − 1 by row, from left to right, top to bottom
into an m-by-n rectangular array:

0 1 2 . . . n− 1
n n + 1 n + 2 . . . 2n− 1

. . .
mn− n mn− n + 1 mn− n + 2 . . . mn− 1

Then read the numbers out by by columns, from left to right, top to bottom:

0, n, 2n, . . . ,mn− n, 1, n + 1, 2n + 1, . . . ,mn− n + 1, . . . ,mn− 1

This has the bad feature that 0 and mn − 1 are left in the same positions. This
disadvantage is offset by some other positive features and simplicity. Variations on
this idea can certainly avoid these fixed points.

142 Chapter 7 Permutations and Interleavers

From the physical description of the interleaver, we can get a formula for the
effect of the m-by-n block interleaver: given x, let x = qm + r with 0 ≤ r < m.
Then the interleaver sends

qm + r = x→ q + rn

Indeed, notice that the row from which x is read out is the integer part of x/n and
the column is x%n. Writing into the array reverses the roles of column and row,
and interchanges the roles of n and m.

For example, the 3-by-4 block interleaver is computed by creating the array

0 1 2 3
4 5 6 7
8 9 10 11

which is read out by columns to

0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11

That is, we have the permutation(
0 1 2 3 4 5 6 7 8 9 10 11
0 4 8 1 5 9 2 6 10 3 7 11

)
We can compute the cycle decomposition of this:

(1 4 5 9 3) (2 8 10 7 6) (0) (11)

By contrast, the 3-by-6 block interleaver is a 16-cycle (ignoring the fixed points
0 and 15, which give 1-cycles)

(1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3)

Proposition: Ignoring the obvious fixed point mn − 1, the m-by-n block inter-
leaver acts on the set

{0, 1, 2, 3, . . . ,mn− 2}

by multiplication by n followed by reduction modulo mn− 1. That is

x→ (nx)%(mn− 1)

Proof: Let x = qm + r, with 0 ≤ r < m. Then

n · x = n(qm + r) = mn · q + nr = (mn− 1)q + q + nr = q + nr mod (mn− 1)

This is the asserted formula. ///

Exercises 143

Exercises

7.01 Express the following permutation as a product of disjoint cycles and deter-
mine its order (

1 2 3 4 5
2 5 4 3 1

)
(ans.)

7.02 Express the following permutation as a product of disjoint cycles and deter-
mine its order (

1 2 3 4 5 6 7
2 5 4 7 1 3 6

)

7.03 Express the following permutation as a product of disjoint cycles and deter-
mine its order (

1 2 3 4 5 6 7
2 3 4 7 1 5 6

)
(ans.)

7.04 Express the following permutation as a product of disjoint cycles and deter-
mine its order (

1 2 3 4 5 6 7 8 9
2 3 4 8 9 7 1 5 6

)

7.05 Compute the product(
1 2 3 4 5 6 7
2 5 4 7 1 3 6

)
◦
(

1 2 3 4 5 6 7
2 3 4 7 1 5 6

)
(ans.)

7.06 Compute the product(
1 2 3 4 5 6 7
2 5 4 1 7 3 6

)
◦
(

1 2 3 4 5 6 7
2 4 3 7 5 1 6

)

7.07 How many distinct 3-cycles are there in the symmetric group S5 of permu-
tations of 5 things? (ans.)

7.08 How many distinct 3-cycles are there in the symmetric group S6 of permu-
tations of 5 things?

7.09 Count the number of elements of S4 of each possible order, by identifying
them as products of disjoint cycles of various orders.

7.10 Count the number of elements of S5 of all possible orders, by identifying
them as products of disjoint cycles of various orders.

7.11 What is the largest order of any element of S5? (ans.)

144 Chapter 7 Permutations and Interleavers

7.12 What is the largest order of any element of S7? (ans.)

7.13 What is the largest order of any element of S9? (ans.)

7.14 What is the largest order of any element of S14?

7.15 A good riffle shuffle of a deck of 2n cards consists of breaking the deck
into two equal pieces

1, 2, 3, . . . , n n + 1, n + 2, . . . , 2n− 1, 2n

and then interleaving the cards from one half with the cards from the other
as

n + 1, 1, n + 2, 2, n + 3, 3, . . . , 2n− 1, n− 1, 2n, n

(The top and bottom cards do not stay in their original positions.) Show
that if a good riffle shuffle on a deck of 50 cards is executed just 8 times in a
row, then all cards return to their original positions. Show that if a perfect
riffle shuffle on a deck of 52 cards is executed repeatedly, no card returns to
its original position until the riffle shuffle has been executed 52 times.

7.16 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 10 cards. (ans.)

7.17 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 12 cards.

7.18 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 14 cards. (ans.)

7.19 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 48 cards.

7.20 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 50 cards.

7.21 Determine the disjoint cycle decomposition of a good riffle shuffle on a deck
of 52 cards.

7.22 On a deck of 12 cards, alternate a good riffle shuffle with an overhand shuffle
that breaks the deck into two equal parts. How many times must this be
repeated before the cards return to their original positions?

7.23 What is the disjoint cycle decomposition of the riffle shuffle followed by
overhand shuffle in the previous exercise?

7.24 Find the cycle decomposition of the 2-by-6 (left-to-right, top-to-bottom)
block interleaver.

7.25 Find the cycle decomposition of the 3-by-5 (left-to-right, top-to-bottom)
block interleaver.

7.26 Find the cycle decomposition of the 3-by-7 (left-to-right, top-to-bottom)
block interleaver.

7.27 Show that a 2-by-n left-to-right, bottom-to-top block interleaver has the
same effect as a good riffle shuffle. Show that a 2-by-n left-to-right, top-to-
bottom block interleaver has the same effect as a bad riffle shuffle.

8

Groups

8.1 Groups
8.2 Subgroups
8.3 Lagrange’s Theorem
8.4 Index of a subgroup
8.5 Laws of exponents
8.6 Cyclic subgroups, orders, exponents
8.7 Euler’s Theorem
8.8 Exponents of groups
8.9 Group homomorphisms
8.10 Finite cyclic groups
8.11 Roots, powers

Here we encounter the first instance of abstract algebra rather than the tangible
algebra studied in high school. One way to think of the point of this is that it is
an attempt to study the structure of things directly, without reference to irrelevant
particular details.

This also achieves amazing efficiency (in the long run, anyway), since it turns
out that the same underlying structures occur over and over again in mathemat-
ics. Thus, a careful study of these basic structures is amply repaid by allowing
a much simpler and more unified mental picture of otherwise seemingly different
phenomena.

8.1 Groups
The simplest (but maybe not most immediately intuitive) object in abstract alge-
bra is a group. This idea is pervasive in modern mathematics. Many seemingly
complicated or elusive issues seem to be merely secret manifestations of facts about
groups. This is especially true in number theory, where it is possible to give ‘el-
ementary’ proofs of many results, but only at the cost of having everything be
complicated and so messy that it can’t be remembered.

145

146 Chapter 8 Groups

A group G is a set with an operation g ∗ h, with a special element e called
the identity, and with the properties:
• The property of the identity: for all g ∈ G, e ∗ g = g ∗ e = g.
• Existence of inverses: for all g ∈ G there is h ∈ G (the inverse of g) such

that h ∗ g = g ∗ h = e.
• Associativity: for all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

If the operation g ∗ h is commutative, that is, if

g ∗ h = h ∗ g

then the group is said to be abelian (named after N.H. Abel, born on my birthday
but 150 years earlier). In that case, often, but not always, the operation is written
as addition. And if the operation is written as addition, then the identity is often
written as 0 instead of e.

And in many cases the group operation is written as multiplication

g ∗ h = g · h = gh

This does not preclude the operation being abelian, but rather suggests only that
there is no presumption that the operation is abelian. If the group operation is
written as multiplication, then often the identity is written as 1 rather than e.
Especially when the operation is written simply as multiplication, the inverse of
an element g in the group is written as

inverse of g = g−1

If the group operation is written as addition, then the inverse is written as

inverse of g = −g

In each of the following examples, it is easy to verify the properties necessary
for the things to qualify as groups: we need an identity and we need inverses, as
well as associativity.
• The integers Z with the operation being the usual addition +. The identity

is 0 and the inverse of x is −x. This group is abelian.
• The even integers 2Z with the usual addition +. The identity is 0 and the

inverse of x is −x. This group is abelian.
• The set 7Z of multiples of 7 among integers, with the usual addition +. The

identity is 0 and the inverse of x is −x. This group is abelian.
• The set Z/m of integers-mod-m, with addition-mod-m as the operation. The

identity is 0-mod-m and the inverse of x-mod-m is (−x)-mod-m. This group
is abelian.

• The set Z/m× of integers mod m relatively prime to m, with multiplication-
mod-m as the operation. The identity is 1-mod-m. In this example, a person
unacquainted with arithmetic mod m would not realize that there are mul-
tiplicative inverses. We can compute them via the Euclidean algorithm. So
this is the first ‘non-trivial’ example. This group is abelian.

8.2 Subgroups 147

• The collection of vectors in real n-space Rn, with operation vector addition.
The identity is just the 0 vector. Inverses are just negatives. (Note that we
are literally forgetting the fact that there is a scalar multiplication).

• The set GL(2,R) of invertible 2-by-2 real matrices, with group law matrix
multiplication. Here the identity is the matrix(

1 0
0 1

)
The existence of inverses is just part of the definition. The fact that matrix
multiplication is associative is not obvious from the definition, but this can
either be checked by hand or inferred from ‘higher principles’, namely that
the composition of functions is associative. The fact that the product of two
invertible matrices is invertible is interesting: suppose that g, h both have
inverses, g−1 and h−1, respectively. Then you can check that h−1g−1 is an
inverse of gh. This group is certainly not abelian.

Remark: Indeed, in general the best proof of associativity is by finding an inter-
pretation as functions among sets, and invoking the associativity of functions.
• Permutations of a set, that is, bijective functions from the set to itself, form a

group, with operation being composition (as functions) of permutations. The
do-nothing permutation (the function which sends every element to itself) is
the identity. The associativity follows because permutations are functions.
If there are more than two things in the set, these permutations groups are
certainly non-abelian.

8.2 Subgroups
Subgroups are subsets of groups which are groups ‘in their own right’.

A subset H of a group G is said to be a subgroup if, with the same operation
as that used in G, it is a group.

That is, if H contains the identity element e ∈ G, if H contains inverses of all
elements in it, and if H contains products of any two elements in it, then H is a
subgroup. (The associativity of the operation is assured since the operation was
assumed associative for G itself to be a group.)

Another paraphrase: if e ∈ H, and if for all h ∈ H the inverse h−1 is also in
H, and if for all h1, h2 ∈ H the product h1h2 is again in H, then H is a subgroup
of G.

Another cute paraphrase is: if e ∈ H, and if for all h1, h2 ∈ H the product
h1h

−1
2 is again in H, then H is a subgroup of G. (If we take h1 = e, then the latter

condition assures the existence of inverses! And so on.)
In any case, one usually says that H is closed under inverses and closed

under the group operation. (These two conditions are independent of each
other.)

For example, the collection of all even integers is a subgroup of the additive
group of integers. More generally, for fixed integer m, the collection H of all
multiples of m is a subgroup of the additive group of integers. To check this: first,

148 Chapter 8 Groups

the identity 0 is a multiple of m, so 0 ∈ H. And for any two integers x, y divisible
by m, write x = ma and y = mb for some integers a, b. Then using the ‘cute’
paraphrase, we see that

x− y = ma−mb = m(a− b) ∈ H

so H is closed under inverses and under the group operation. Thus, it is a subgroup
of Z.

8.3 Lagrange’s Theorem
The theorem of this section is the simplest example of the use of group theory as
structured counting. Although the discussion of this section is completely abstract,
it gives the easiest route to (the very tangible) Euler’s theorem proven as a corollary
below.

A finite group is simply a group which is also finite. The order of a finite
group is the number of elements in it. Sometimes the order of a group G is written
as |G|. Throughout this section we will write the group operation simply as though
it were ordinary multiplication.

Theorem: (Lagrange) Let G be a finite group. Let H be a subgroup of G. Then
the order of H divides the order of G.

For the proof we need some other ideas which themselves will be reused later.
For subgroup H of a group G, and for g ∈ G, the left coset of H by g or left
translate of H by g is

gH = {gh : h ∈ H}

The notation gH is simply shorthand for the right-hand side. Likewise, the right
coset of H by g or right translate of H by g is

Hg = {hg : h ∈ H}

Proof: First, we will prove that the collection of all left cosets of H is a partition
of G, meaning that every element of G lies in some left coset of H, and if two left
cosets xH and yH have non-empty intersection then actually xH = yH. (Note
that this need not imply x = y.)

Certainly x = x · e ∈ xH, so every element of G lies in a left coset of H.
Now suppose that xH ∩ yH 6= φ for x, y ∈ G. Then for some h1, h2 ∈ H we

have xh1 = yh2. Multiply both sides of this equality on the right by h−1
2 to obtain

(xh1)h−1
2 = (yh2)h−1

2

The right-hand side of this is

(yh2)h−1
2 = y(h2h

−1
2) (by associativity)

= y · e (by property of inverse)
= y (by property of e)

8.3 Lagrange’s Theorem 149

Let z = h1h
−1
2 for brevity. By associativity in G,

y = (xh1)h−1
2 = x(h1h

−1
2) = xz

Since H is a subgroup, z ∈ H.
Then

yH = {yh : h ∈ H} = {(xz)h : h ∈ H} = {x(zh) : h ∈ H}

On one hand, since H is closed under multiplication, for each h ∈ H the product
zh is in H. Therefore,

yH = {x(zh) : h ∈ H} ⊂ {xh′ : h′ ∈ H} = xH

Thus, yH ⊂ xH. But the relationship between x and y is completely symmetrical,
so also xH ⊂ yH. Therefore xH = yH. (In other words, we have shown that the
left cosets of H in G really do partition G.)

Next, we will show that the cardinalities of the left cosets of H are all the
same. To do this, we show that there is a bijection from H to xH for any x ∈ G.
In particular, define

f(g) = xg

(It is clear that this really does map H to yH.) Second, we prove injectivity: if
f(g) = f(g′), then

xg = xg′

Left multiplying by x−1 gives

x−1(xg) = x−1(xg′)

Using associativity gives
(x−1x)g = (x−1x)g′

Using the property x−1x = e of the inverse x−1 gives

eg = eg′

Since eg = g and eg′ = g′, by the defining property of the identity e, this is

g = g′

which is the desired injectivity. For surjectivity, we simply note that by its very
definition the function f was arranged so that

f(h) = xh

Thus, any element in xH is of the form f(h) for an element h of H. Thus, we have
that f is bijective, and all left cosets of H have the same number of elements as
does H itself.

150 Chapter 8 Groups

So G is the union of all the different left cosets of H (no two of which overlap).
Let i be the number of different cosets of H. We just showed that every left coset
of H has |H| elements. Then we can count the number of elements in G as

|G| = sum of cardinalities of cosets = i× |H|

Both sides of this equation are integers, so |H| divides |G|, as claimed. ///

8.4 Index of a subgroup
Having introduced the idea of a coset in the proof of Lagrange’s theorem, we can
now define the index of a subgroup.

Let G be a group, and H a subgroup of G. The index of H in G, denoted

[G : H]

is the number of (left) cosets of H in G.

Corollary: (of Lagrange’s theorem) For a finite group G and subgroup H,

|G| = [G : H] · |H|

Proof: This is just a recapitulation of the counting done in proving Lagrange’s
theorem: we show that G is the disjoint union of the left cosets of H, and that each
such coset has |H| elements. Thus, the statement of this corollary is an assertion
that counting the elements in G in two ways gives the same result. ///

A closely related counting or divisibility principle is the following multiplica-
tive property of indices of subgroups:

Corollary: Let G be a finite group, let H, I be subgroups of G, and suppose that
H ⊃ I. Then

[G : I] = [G : H] · [H : I]

Proof: We repeatedly use the previous corollary of Lagrange’s theorem, and the
fact that I is a subgroup of H as well as a subgroup of G. Thus, on one hand

|G| = [G : H] · |H| = [G : H] · ([H : I] · |I|)

On the other hand
|G| = [G : I] · |I|

Thus, equating these two expressions for |G| gives

[G : I] · |I| = [G : H] · ([H : I] · |I|)

Canceling the order of I gives the asserted result. ///

8.5 Laws of exponents 151

8.5 Laws of exponents
It should be emphasized that the so-called Laws of Exponents are not ‘laws’ at
all, but are provable properties of the exponential notation. And the exponential
notation itself is basically nothing more than an abbreviation for repeated multi-
plication.

First, we prove something that one might have taken for granted all along,
namely that there is just one inverse of a given element in a group. The following
proposition actually proves slightly more.
Proposition: Let G be a group with identity e. Let g ∈ G. If x, y are elements
of G such that

xg = e = gy

then x = y.

Proof: This is yet another direct if peculiar calculation.

x = xe = x(gy) = (xg)y = ey = y

as desired. ///

Of course, we must be sure to be explicit about the exponential notation gn

for integer n, where g is an element of a group G. This is, after all, merely an
abbreviation: first,

g0 = e

and
gn = g · g · . . . · g︸ ︷︷ ︸

n

(for n ≥ 0)

gn = g−1 · g−1 · . . . · g−1︸ ︷︷ ︸
|n|

(for n ≤ 0)

A more precise though perhaps less intuitive way of defining gn is by recursive
definitions:

gn =

{
e for n = 0
g · gn−1 for n > 0
g−1 · gn+1 for n < 0

These are the definitions that lend themselves both to computation and to proving
things.

While we’re here, maybe we should check that the so-called Laws of Exponents
really do hold:

Proposition: (Laws of Exponents) For g in a group G, for integers m,n
• gm+n = gm · gn

• gmn = (gm)n

Proof: The least obvious thing to prove is that(
g−1

)−1
= g

152 Chapter 8 Groups

Note that we absolutely cannot simply pretend to invoke ‘laws of exponents’ to
prove this! Instead, to prove this, we must realize that the way that one checks
that y is an inverse of x is to compute xy and yx and see that they are both just
e. So to prove that x is the inverse of x−1, we must compute both x−1x and xx−1.
By the property of x−1 these both are e, so by the definition of (x−1)−1 we have
(x−1)−1 = x.

The rest of the proof is an exercise in induction and is a bit tedious. And
nothing really exciting happens.

Let’s prove that
gm+n = gm · gn

for m and n non-negative integers. We prove this by induction on n. For n = 0 the
assertion is true, since

gm+0 = gm = gm · e = gm · g0

Then for n > 0,
gm+n = g(m+n−1)+1 = gm+n−1 · g

by the recursive definition of gm+n. By induction,

gm+n−1 = gm · gn−1

Therefore,
gm+n−1 · g = (gm · gn−1) · g = gm · ((gn−1) · g)

by associativity. Now from the recursive definition of gn we obtain

gm · ((gn−1) · g) = gm · gn

This proves the ‘Law’ for m,n ≥ 0. ///

Remark: If we are more tolerant of (potentially dangerously ambiguous) notation,
we can give more intuitive near-proofs of these facts. For example,

gm · gn = g . . . g︸ ︷︷ ︸
m

· g . . . g︸ ︷︷ ︸
n

= g . . . g︸ ︷︷ ︸
m+n

= gm+n

and
(gm)n = gm . . . gm︸ ︷︷ ︸

n

= g . . . g︸ ︷︷ ︸
m

. . . g . . . g︸ ︷︷ ︸
m︸ ︷︷ ︸

n

= g . . . g︸ ︷︷ ︸
mn

= gmn

apparently by simply regrouping. These symbolic manipulations certainly capture
our intent and what we anticipate being true. The reason to have an objection to
this admittedly appealing argument is that the use of the ellipses ‘. . .’ in this fashion
can lend itself to misuse by accidental misinterpretation or multiple interpretations
of the ellipses. One way to legitimize the idea of this argument is by rewriting it

8.6 Cyclic subgroups, orders, exponents 153

as an induction, clunky though this may seem. Indeed, on occasion, insistence on
a bit of extra care avoids pitfalls.
Remark: Note that in general it is not true that (ab)n = anbn, unless the group
is abelian.

8.6 Cyclic subgroups, orders, exponents
For an element g of a group G, let

〈g〉 = {gn : n ∈ Z}

This is called the cyclic subgroup of G generated by g.
The smallest positive integer n (if it exists!) so that

gn = e

is the order or exponent of g. The order of a group element g is often denoted
by |g|. Yes, we are reusing the terminology ‘order’, but it will turn out that these
uses are compatible (just below).
Corollary: (of Laws of Exponents) For g in a group G, the subset 〈g〉 of G really
is a subgroup of G.

Proof: The associativity is inherited from G. The closure under the group opera-
tion and the closure under taking inverses both follow immediately from the Laws
of Exponents, as follows. First, the inverse of gn is just g−n, since

gn · g−n = gn+(−n) = g0 = e

And closure under multiplication is

gm · gn = gm+n

///

Theorem: Let g be an element of a finite group G. Let n be the order of g.
Then the order of g (as group element) is equal to the order of 〈g〉 (as subgroup).
Specifically,

〈g〉 = {g0, g1, g2, . . . , gn−1}

Generally, for arbitrary integers i, j,

gi = gj if and only if i ≡ j mod n

Proof: The last assertion easily implies the first two, so we’ll just prove the last
assertion. On one hand, if i ≡ j mod n, then write i = j + `n and compute (using
Laws of Exponents):

gi = gj+`n = gj · (gn)` = gj · e` = gj · e = gj

154 Chapter 8 Groups

On the other hand, suppose that gi = gj . Without loss of generality, exchanging
the roles of i and j if necessary, we may suppose that i ≤ j. Then gi = gj implies
e = gj−i. Using the Reduction/Division algorithm, write

j − i = q · n + r

where 0 ≤ r < n. Then

e = gj−i = gqn+r = (gn)q · gr = eq · gr = e · gr = gr

Therefore, since n is the least positive integer so that gn = e, it must be that r = 0.
That is, n|j − i, which is to say that i ≡ j mod n as claimed. ///

Corollary: (of Lagrange’s theorem) The order |g| of an element g of a finite
group G divides the order of G.

Proof: We just proved that |g| = |〈g〉|. By Lagrange’s theorem, |〈g〉| divides |G|,
which yields this corollary. ///

8.7 Euler’s Theorem
Now we return to number theory, and give a clean and conceptual proof of Eu-
ler’s identity, as a corollary of Lagrange’s theorem and the discussion of Laws of
Exponents and cyclic subgroups. Further, we can give a slightly refined form of it.

Let ϕ(n) be Euler’s phi-function, counting the number of integers ` in the range
0 < ` ≤ n that are relatively prime to n. The proof we give of this is simply the
abstracted version of Euler’s original argument.

Theorem: Let n be a positive integer. For x ∈ Z relatively prime to n,

xϕ(n) ≡ 1 mod n

Proof: The set Z/n× of integers-mod-n which are relatively prime to n has ϕ(n)
elements. By Lagrange’s theorem and its corollaries just above, this implies that
the order k of g ∈ Z/n× divides ϕ(n). Therefore, ϕ(n)/k is an integer, and

gϕ(n) = (gk)ϕ(n)/k = eϕ(n)/k = e

Applied to x-mod-n this is the desired result. ///

Remark: This approach also gives another proof of Fermat’s theorem, dealing
with the case where n is prime, without mention of binomial coefficients.

Further, keeping track of what went into the proof of Euler’s theorem in the
first place, we have

Theorem: Let n be a positive integer. For x ∈ Z relatively prime to n, the
smallest exponent ` so that

x` ≡ 1 mod n

8.8 Exponents of groups 155

is a divisor of ϕ(n). That is, the order of x in the multiplicative group Z/n× is a
divisor of ϕ(n).

Proof: The proof is really the same: the order x is equal to the order of the
subgroup 〈x〉, which by Lagrange’s theorem is a divisor of the order of the whole
group Z/n×. ///

8.8 Exponents of groups
The idea of Euler’s theorem can be made more precise and abstracted.

For a group G, the smallest positive integer ` so that for every g ∈ G

g` = e

is the exponent of the group G. It is not clear from the definition that there really
is such a positive integer `. Indeed, for infinite groups G there may not be. But for
finite groups the mere finiteness allows us to characterize the exponent:
Proposition: Let G be a finite group. Then the exponent of G exists, and in
particular

exponent of G = least common multiple of |g| for g ∈ G

Proof: If gk = e, then we know from discussion of cyclic subgroups above that |g|
divides k. And, on the other hand, if k = m · |g| then

gk = gm·|g| = (g|g|)m = em = e

Since G is finite, every element g of it is of finite order. Indeed, the list g1, g2, . . .,
can contain at most |G| distinct elements, so for some i < j it must be that gi = gj .
Then gj−i = e, and we conclude that the order of g is at most j − i. And, since
there are only finitely-many elements in G, the least common multiple M of their
orders exists. From what we’ve just seen, surely gM = e for any g. Thus, G does
have an exponent. And if gk = e for all g ∈ G then k is divisible by the orders of all
elements of G, so is divisible by their least common multiple. Thus, the exponent
of G really is the least common multiple of the orders of its elements. ///

Remark: The principle that a choice of N things from among n (with replace-
ment) must result in duplication when n < N is the Pigeon-Hole Principle.

And Lagrange’s theorem gives a limitation on what we can expect the exponent
to be:
Corollary: (of Lagrange’s theorem) Let G be a finite group. Then the exponent
of G divides the order |G| of G.

Proof: From the proposition, the exponent is the least common multiple of the
orders of the elements of G. From Lagrange’s theorem, each such order is a divisor
of |G|. The least common multiple of any collection of divisors of a fixed number
is certainly a divisor of that number. ///

156 Chapter 8 Groups

8.9 Group homomorphisms
Group homomorphisms are the important maps between groups. They preserve
the relevant structures of the group operations.

A function (or map)
f : G→ H

from one group G to another one H is a group homomorphism if

f(g1g2) = f(g1) f(g2)

for all g1, g2 ∈ G. Let eG be the identity in G and eH the identity in H. The
kernel of such a group homomorphism f is

kernel of f = ker f = {g ∈ G : f(g) = eH}

The image of f is just like the image of any function:

image of f = imf = {h ∈ H : there is g ∈ G so that f(g) = h}

Let f : G → H be a group homomorphism. Let eG be the identity in G and
let eH be the identity in H.
• Necessarily f carries the identity of G to the identity of H: f(eG) = eH .
• For g ∈ G, f(g−1) = f(g)−1.
• The kernel of f is a subgroup of G.
• The image of f is a subgroup of H.
• A group homomorphism f : G → H is injective if and only if the kernel is

trivial (that is, is the trivial subgroup {eG}).

Proof: The image f(eG) under f of the identity eG in G has the property

f(eG) = f(eG · eG) = f(eG) · f(eG)

using the property of the identity in G and the group homomorphism property.
Left multiplying by f(eG)−1 (whatever this may be!), we get

f(eG)−1 · f(eG) = f(eG)−1 · (f(eG) · f(eG))

Simplifying and rearranging a bit, this is

eH = (f(eG)−1 · f(eG)) · f(eG) = eH · f(eG) = f(eG)

This proves that the identity in G is mapped to the identity in H.
To check that the image of an inverse is the image of an inverse, we simply

compute
f(g−1) · f(g) = f(g−1 · g)

8.9 Group homomorphisms 157

by the homomorphism property, and this is

= f(eG) = eH

by the inverse property and by the fact (just proven) that the identity in G is
mapped to the identity in H by a group homomorphism. Likewise, we also compute
that

f(g) · f(g−1) = eH

so the image of an inverse is the inverse of the image, as claimed.
To prove that the kernel of a group homomorphism f : G → H is a subgroup

of G, we must prove three things. First, we must check that the identity lies in the
kernel: this follows immediately from the fact just proven that f(eG) = eH . Next,
we must show that if g is in the kernel, then g−1 is also. Happily (by luck?) we
just showed that f(g−1) = f(g)−1, so indeed if f(g) = eH then

f(g−1) = f(g)−1 = e−1
H = eH

Finally, suppose both x, y are in the kernel of f . Then

f(xy) = f(x) · f(y) = eH · eH = eH

so the ‘product’ is also in the kernel.
Now let X be a subgroup of G. Let

f(X) = {f(x) : x ∈ X}

To show that f(X) is a subgroup of H, we must check the usual three things:
presence of the identity, closure under taking inverses, and closure under products.
Again, we just showed that f(eG) = eH , so the image of a subgroup contains the
identity. Also, we showed that f(g)−1) = f(g−1), so the image of a subgroup is
closed under inverses. And f(xy) = f(x)f(y) by the defining property of a group
homomorphism, so the image is closed under multiplication.

Finally, let’s prove that a homomorphism f : G → H is injective if and only
if its kernel is trivial. First, if f is injective, then at most one element can be
mapped to eH ∈ H. Since we know that at least eG is mapped to eH by such
a homomorphism, it must be that only eG is mapped to eH . Thus, the kernel is
trivial.

On the other hand, suppose that the kernel is trivial. We will suppose that
f(x) = f(y), and show that x = y. Left multiply the equality f(x) = f(y) by
f(x)−1 to obtain

eH = f(x)−1 · f(x) = f(x)−1 · f(y)

By the homomorphism property, this gives

eH = f(x)−1 · f(y) = f(x−1y)

Thus, x−1y is in the kernel of f , so (by assumption) x−1y = eG. Left multiplying
this equality by x and simplifying, we get y = x. This proves the injectivity. ///

158 Chapter 8 Groups

If a group homomorphism f : G → H is surjective, then H is said to be a
homomorphic image of G. If a group homomorphism f : G → H is a bijection,
then f is said to be an isomorphism, and G and H are said to be isomorphic.
Remark: At least from a theoretical viewpoint, two groups that are isomorphic
are considered to be ‘the same’, in the sense that any intrinsic group-theoretic
assertion about one is also true of the other. In practical terms, however, the
transfer of structure via the isomorphism may be difficult to compute. That is,
knowing that two groups are isomorphic is one thing, and knowing the isomorphism
explicitly may be two quite different things.

8.10 Finite cyclic groups
A finite group G is cyclic if there is g ∈ G so that 〈g〉 = G. And such a g is a
generator of G, and G is said to be generated by g. (The case of infinite cyclic
groups will be considered in the next section.)

Finite cyclic groups are the simplest of all groups. First, note that a finite
cyclic group is necessarily abelian, since by properties of exponents for any two
integers a, b

ga · gb = ga+b = gb+a = gb · ga

Somewhat more refined features of finite cyclic groups can be readily understood
as follows.

Let N = |G|. Since G = 〈g〉, also N = |g|. It is important to remember that
(as proven a bit earlier)
• The elements e = g0, g1, g2, . . . , gN−2, gN−1 form a complete list of the dis-

tinct elements of G = 〈g〉.
• With arbitrary integers i, j, we have gi = gj if and only if i ≡ j mod N .
• Given an integer j, let i be the reduction of j mod N . Then gj = gi.

Then the collections of all subgroups and of all generators can be completely
understood in terms of elementary arithmetic:
• The distinct subgroups of G are exactly the subgroups 〈gd〉 for all divisors d

of N .
• For d|N the order of the subgroup 〈gd〉 is the order of gd, which is just N/d.
• The order of gk with arbitrary integer k 6= 0 is N/gcd(k, N).
• For any integer n we have

〈gn〉 = 〈ggcd(n,N)〉

• The distinct generators of G are the elements gr where 1 ≤ r < N and
gcd(r, N) = 1. Thus, there are ϕ(N) of them, where ϕ is Euler’s phi function.

• The number of elements of order n in a finite cyclic group of order N is 0
unless n|N , in which case it is N/n.

Remark: Some aspects of this can be paraphrased nicely in words: for example,
Every subgroup of a finite cyclic group is again a finite cyclic group, with order
dividing the order of the group. Conversely, for every divisor of the order of the
group, there is a unique subgroup of that order.

8.10 Finite cyclic groups 159

Proof: Let’s prove that that the order of gk is N/gcd(k, N). First, if (gk)` = e =
g0, then k` ≡ 0 mod N , from the simpler facts recalled above. That is, N |k`. That
is, there is an integer m so that k` = mN . Then divide both sides of this equality
by gcd(k, N), obtaining

k

gcd(k, N)
· ` = m · N

gcd(k, N)

Since now N/gcd(k, N) and k/gcd(k, N) are relatively prime, by unique factoriza-
tion we conclude that

N

gcd(k, N)
| `

Therefore, the actual order of gk is a multiple of N/gcd(k, N). On the other hand,

(gk)N/gcd(k,N) = (gN)k/gcd(k,N) = ek/gcd(k,N) = e

Note that we use the fact that N/gcd(k, N) and k/gcd(k, N) are both integers, so
that all the expressions here have genuine content and sense. This finishes the proof
that the order of gk is N/gcd(k, N).

As a special case of the preceding, if k|N then the order of gk is N/gcd(k, N) =
N/k, as claimed above.

Since we know by now that |〈h〉| = |h| for any h, certainly

|〈gk〉| = |gk| = N/gcd(k, N)

Given integer k, let’s show that

〈gk〉 = 〈ggcd(k,N)〉

Let d = gcd(k, N), and let s, t be integers so that

d = sk + tN

Then
gd = gsk+tN = (gk)s · (gN)t = (gk)s · (e)t = (gk)s · e = (gk)s

so gd ∈ 〈gk〉. On the other hand,

gk = (gd)k/d

since d|k. Thus, gk ∈ 〈gd〉. Therefore, since the subgroups 〈gk〉 and 〈gd〉 are closed
under multiplication and under inverses, for any integer `

(gk)` ∈ 〈gd〉

and
(gd)` ∈ 〈gk〉

160 Chapter 8 Groups

But 〈gd〉 is just the set of all integer powers of gd (and similarly for gk), so we have
shown that

〈gd〉 ⊂ 〈gk〉

and vice versa, so we find at last that

〈gd〉 = 〈gk〉

Therefore, all the cyclic subgroups of 〈g〉 = G are of the form 〈gd〉 for some
positive d dividing N = |G| = |g|. And different divisors d give different subgroups.
This proves the uniqueness.

Let H be an arbitrary subgroup of G. We must show that H is generated by
some gk (so is in fact cyclic). Let k be the smallest positive integer so that gk ∈ H.
We claim that 〈gk〉 = H. For any other gm ∈ H, we can write

m = q · k + r

with 0 ≤ r < k. Then
gr = gm−q·k = gm · (gk)q ∈ H

since H is a subgroup. Since k was the smallest positive integer so that gk ∈ H,
and 0 ≤ r < k, it must be that r = 0. Therefore, m is a multiple of k, and gk

generates H.
As another particular case, notice that 〈gk〉 = 〈g〉 if and only if gcd(k, N) = 1.

And we may as well only consider 0 < k < N , since otherwise we start repeating
elements. That is, the distinct generators of 〈g〉 are the elements gk with 0 < k < N
and gcd(k, N) = 1. So there certainly are ϕ(N) of them.

Likewise, since

|gk| = |〈gk〉| = |〈ggcd(k,N)〉| = |ggcd(k,N)|

it is not hard to count the number of elements of a given order in 〈g〉. ///

• A homomorphic image of a finite cyclic group is finite cyclic.

Proof: This follows by checking that the image of a generator is a generator for
the image. ///

• A finite cyclic group of order N is isomorphic to Z/N with addition. Specif-
ically, for any choice of generator g of the cyclic group G, the map

f : n→ gn

describes an isomorphism f : Z/N → G.

Proof: This is just a paraphrase of some of the other properties above.
A possibly disturbing issue here is that of proving that the map f as described

above is well-defined. That is, we have some sort of formula which appears to
describe a map, but there are hidden pitfalls. What we must show is that if m =
n mod N then f(m) = f(n). (This has nothing to do with injectivity!) Well, it

8.11 Roots, powers 161

turns out that everything is ok, because we’ve already shown (in discussion of cyclic
subgroups) that gm = gn if and only if m = n mod N .

For emphasis, we’ll write the group operation in the cyclic group G as ∗ rather
than as multiplication or addition. The crucial property which must be demon-
strated is the homomorphism property

f(m + n) = f(m) ∗ f(n)

Indeed,
f(m + n) = f((m + n)%N) = gm+n%N = gm+n

since we proved (in the discussion of cyclic subgroups) that gi = gj whenever
i = j mod N . And then this is

= f(gm) ∗ f(gn)

as desired.
To see that f is injective, suppose that f(m) = f(n) for integers m,n. Then

gm = gn. Again, this implies that m = n mod N , which says that m(mod N) =
n(mod N), as desired. So f is injective.

The surjectivity is easy: given gn ∈ 〈g〉, f(n) = gn.
Therefore, the map f is a bijective homomorphism, so by definition is an

isomorphism. ///

8.11 Roots, powers
In a cyclic group G = 〈g〉 of order n it is possible to reach very clear conclusions
about the solvability of the equation xr = y.

Let G be a cyclic group of order n with generator g. Fix an integer r, and
define

f : G→ G

by
f(x) = xr

Theorem: This map f is a group homomorphism of G to itself. If gcd(r, n) = 1,
then f is an isomorphism. That is, if gcd(r, n) = 1, then every y ∈ G has an rth

root and has exactly one such root. Generally,

order of kernel of f = gcd(r, n)

order of image of f = n/gcd(r, n)

If an element y has an rth root, then it has exactly gcd(r, n) of them. There are
exactly n/gcd(r, n) rth powers in G.

Proof: Certainly

f(x · y) = (xy)r = xr yr (since G is abelian)

162 Chapter 8 Groups

= f(x) · f(y)

which shows that f is a homomorphism.
We may as well use the fact that G is isomorphic to Z/n with addition (proven

just above.) This allows us to directly use things we know about Z/n and the
relatively simple behavior of addition mod n to prove things about arbitrary finite
cyclic groups. Thus, converting to the additive notation appropriate for Z/n-with-
addition, the map f is

f(x) = r · x

We already know that if gcd(r, n) = 1 then there is a multiplicative inverse r−1 to
r mod n. Thus, the function

g(x) = r−1 · x

gives an inverse function to f . This proves that f is both surjective and injective,
so is a bijection, and thus an isomorphism.

For arbitrary r, let’s look at the solvability of

r · x = y mod n

for given y. Rewritten in more elementary terms, this is

n|(rx− y)

or, for some integer m,
mn = rx− y

Let d = gcd(r, n). Then certainly it is necessary that d|y or this equation is impos-
sible. On the other hand, suppose that d|y. Write y = dy′ with some integer y′.
Then we want to solve

r · x = dy′ mod n

Dividing through by the common divisor d, this congruence is equivalent to

r

d
· x = y′ mod

n

d

The removal of the common divisor has made r/d relatively prime to n/d, so there
is a multiplicative inverse (r/d)−1 to r/d mod n/d, and

x = (r/d)−1 · y′ mod (n/d)

That is, any integer x meeting this condition is a solution to the original congruence.
Letting x0 be one such solution, the integers

x0, x0 +
n

d
, x0 + 2 · n

d
, x0 + 3 · n

d
, . . . x0 + (d− 1) · n

d

are also solutions, and are distinct mod n. That is, we have d distinct solutions
mod n.

Exercises 163

The necessary and sufficient condition gcd(r, n)|y for the equation rx =
y mod n to have a solution shows that there are exactly n/gcd(r, n) integers y mod
n which fulfill this condition. That is, there are exactly n/gcd(r, n) ‘rth powers’.

The kernel of f is the collection of x so that rx = 0 mod n. Taking out the
common denominator d = gcd(r, n), this is (r/d)x = 0 mod n/d, which means
(n/d)|(r/d)x. Since now r/d and n/d have no common factor, by unique factoriza-
tion this implies that n/d divides x. Thus, mod n, there are d different solutions
x. That is, the kernel of f has d elements. ///

Exercises

8.01 Prove that in any group G for any elements h, x, y ∈ G we have h(xy)h−1 =
(hxh−1)(hyh−1). (ans.)

8.02 Prove (by induction) that in any group G for any elements g, h ∈ G and for
any integer n

hgnh−1 = (hgh−1)n

8.03 Make an addition table for Z/4 and a multiplication table for Z/5×.

8.04 Why isn’t {1, 2, 3, 4, 5} with operation multiplication modulo 6 a group?
(ans.)

8.05 Prove by induction that in an abelian group G we have

(gh)n = gn hn

for all g, h ∈ G, and for all positive integers n.

8.06 Show that
(gh)2 = g2 h2

in a group if and only if gh = hg.

8.07 Prove that (gh)−1 = h−1 g−1.

8.08 Prove that (gh)−1 = g−1 h−1 if and only if gh = hg.

8.09 Prove that the intersection H ∩K of two subgroups H,K of a group G is
again a subgroup of G.

8.10 Show that in an abelian group G, for a fixed positive integer n the set Xn

of elements g of G so that gn = e is a subgroup of G.

8.11 Find all 5 of the distinct subgroups of the group Z/16 (with addition). (List
each subgroup only once.) (ans.)

8.12 Find all 6 of the distinct subgroups of the group Z/12 (with addition). (List
each subgroup only once.)

8.13 There are 8 subgroups of the group Z/30×. Find them all. (ans.)

8.14 Find all subgroups of the group Z/105×. Find them all.

164 Chapter 8 Groups

8.15 Check that the collection of matrices g in GL(2,Q) of the form g =
(

a 0
0 d

)
(that is, with lower left and upper right entries 0) is a subgroup of GL(2,Q).

8.16 Check that the collection of matrices g in GL(2,Q) of the form g =
(

a b
0 d

)
(that is, with lower left entry 0) is a subgroup of GL(2,Q).

8.17 (Casting out nines) Show that

123456789123456789 + 234567891234567891

6= 358025680358025680

(Hint: Look at things modulo 9: if two things are not equal mod 9 then they
certainly aren’t equal. And notice the funny general fact that, for example,

1345823416 ≡ 1 + 3 + 4 + 5 + 8 + 2 + 3 + 4 + 1 + 6 mod 9

since 10 ≡ 1 mod 9, and 100 ≡ 1 mod 9, and so on. The assertion is that
a decimal number is congruent to the sum of its digits modulo 9! This is
casting out nines, which allows detection of some errors in arithmetic).

8.18 By casting out nines, show that

123456789123456789× 234567891234567891

6= 28958998683279996179682996625361999

Certainly in this case it’s not easy to check directly by hand, and probably
most calculators would overflow.

8.19 Prove that a group element and its inverse have the same order.

8.20 Without computing, show that in the group Z/100 (with addition) the ele-
ments 1, 99 have the same order, as do 11 and 89. (ans.)

8.21 Find the orders of the following elements g, h of GL(2,R):

g =
(

0 −1
1 0

)
h =

(
0 1
−1 −1

)
Compute the product gh, compute (gh)n for integers n, and then show that
gh is necessarily of infinite order in the group. (ans.)

8.22 Let G be a finite group. Let N be the least common multiple of the orders
of the elements of G. Show that for all g ∈ G we have gn = e.

8.23 (*) Let G be an abelian group. Let m,n be relatively prime positive integers.
Let g be an element of order m and let h be an element of order n. Show
that |gh| = mn. More generally, show that without any relative primeness
hypothesis on the orders of g, h show that |gh| is the least common multiple
of |g|, |h|.

Exercises 165

8.24 Let x be an element of a group G and suppose that x3·5 = e and x3 6= e.
Show that the order of x is either 5 or 15.

8.25 Show that any integer i so that 1 ≤ i < 11 is a generator for the additive
group Z/11 of integers modulo 11.

8.26 Check that Z/8× cannot be generated by a single element. (ans.)

8.27 Prove that if an element g of a group G has order n and if d is a divisor of
n then gn/d has order d. (Equivalently, gd has order n/d.)

8.28 What is the kernel of the homomorphism

x→ x mod N

from Z (with addition) to Z/N (with addition modulo N)? (Hint: This may
be easier than you think!)

8.29 Let M,N be positive integers, and suppose that N |M . What is the kernel
of the map

x mod M → x mod N

from Z/M (with addition modulo M) to Z/N (with addition modulo N)?

8.30 Let
det : GL(2,Q)→ Q×

be the usual determinant map

det
(

a b
c d

)
= ad− bc

Show by direct computation that det is a group homomorphism.

8.31 Show that for any integer n and positive integer N the map

f : Z/N → Z/N

defined by
f(x) = n · x

is a group homomorphism (with addition mod N).

8.32 Show that for any integer n and positive integer N the map

f : Z/N× → Z/N×

defined by
f(x) = xn

is a group homomorphism.

8.33 Fix a positive integer N . Show that for any group homomorphism

f : Z/N → Z/N

166 Chapter 8 Groups

(with addition mod N) there is an integer n so that
f(x) = n · x

Hint: Try n = f(1), and use the fact that
f(x) = f(1 + . . . + 1︸ ︷︷ ︸

x

) = f(1) + . . . + f(1)︸ ︷︷ ︸
x

8.34 Show that the map

t→
(

1 t
0 1

)
is an isomorphism from Q (with addition) to a subgroup of GL(2,Q).

8.35 Show that the map (
a b
0 d

)
→ a

is a homomorphism from the group of all matrices
(

a b
0 d

)
in which a, d are

non-zero rational numbers and b is any rational number, to the multiplicative
group Q× of non-zero rational numbers. What is its kernel?

8.36 Show that (
a b
0 d

)
→ b

is not a homomorphism.

8.37 Define a map E : Q→ GL(2,Q) by

x→
(

1 x
0 1

)
Show that E is a group homomorphism from Q with addition to a subgroup
of GL(2,Q).

8.38 Define a map E : Q→ GL(3,Q) by

x→

 1 x x2

2
0 1 x
0 0 1

Show that E is a group homomorphism from Q with addition to a subgroup
of GL(3,Q).

8.39 Define a map r : R→ GL(2,R) by

x→
(

cos x sin x
− sin x cos x

)
Show that r is a group homomorphism from R with addition to a subgroup
of GL(2,R). What is its kernel?

8.40 Let n be an integer. Show that f : Z → Z defined by f(x) = nx is a
homomorphism.

8.41 Show that a homomorphism f : G → H always has the property that
f(g−1) = f(g)−1 for g ∈ G.

9

Rings and Fields

9.1 Rings
9.2 Ring homomorphisms
9.3 Fields

This chapter introduces standard terminology necessary to talk more generally
about finite fields a little later, and about polynomials. Much more can be said
about rings and fields!

9.1 Rings
The idea of ring generalizes the idea of ‘numbers’, among other things, so maybe
it is a little more intuitive than the idea of group. A ring R is a set with two
operations, + and ·, and with a special element 0 (additive identity) with most
of the usual properties we expect or demand of ‘addition’ and ‘multiplication’.
• The addition is associative: a + (b + c) = (a + b) + c for all a, b, c ∈ R.
• The addition is commutative: a + b = b + a for all a, b ∈ R.
• For every a ∈ R there is an additive inverse denoted −a, with the property

that a + (−a) = 0.
• The zero has the property that 0 + a = a + 0 = a for all a ∈ R.
• The multiplication is associative: a(bc) = (ab)c for all a, b, c ∈ R.
• The multiplication and addition have left and right distributive properties:

a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈ R.
When we write this multiplication, just as in high school algebra, very often

we omit the dot and just write
ab = a · b

Very often, a particular ring has some additional special features or properties:
• If there is an element 1 in a ring with the property that 1 · a = a · 1 for all

a ∈ R, then 1 is said to be the (multiplicative) identity or unit in the
ring, and the ring is said to have an identity or have a unit or be a ring
with unit. And 1 is the unit in the ring. We also demand that 1 6= 0 in a
ring.

167

168 Chapter 9 Rings and Fields

Remark: Sometimes the word ‘unity’ is used in place of ‘unit’ for the special
element 1, but this cannot be relied upon.
• If ab = ba for all a, b in a ring R, then the ring is said to be a commutative

ring. That is, a ring is called commutative if and only if the multiplication
is commutative.

Most often, but not always, our rings of interest will have units ‘1’. The
condition of commutativity of multiplication is often met, but, for example, matrix
multiplication is not commutative.
• In a ring R with 1, for a given element a ∈ R, if there is a−1 ∈ R so that

a · a−1 = 1 and a−1 · a = 1, then a−1 is said to be a multiplicative inverse
for a. If a ∈ R has a multiplicative inverse, then a is called a unit in R. The
collection of all units in a ring R is denoted R× and is called the group of
units in R.

• A commutative ring in which every nonzero element is a unit is called a field.
• A not-necessarily commutative ring in which every nonzero element is a unit

is called a division ring.
• In a ring R an element r so that r · s = 0 or s · r = 0 for some nonzero s ∈ R

is called a zero divisor. A commutative ring without nonzero zero-divisors
is an integral domain.

• A commutative ring R has the cancellation property if, for any r 6= 0 in
R, if rx = ry for x, y ∈ R, then x = y. Most rings with which we’re familiar
have this property.

Remark: There is indeed an inconsistency in the use of the word unit. But that’s
the way the word is used. So the unit is 1, while a unit is merely something which
has a multiplicative inverse. Of course, there are no multiplicative inverses unless
there is a unit (meaning that there is a 1). It is almost always possible to tell from
context what is meant.

It is very important to realize that the notations −a for an additive inverse and
a−1 for multiplicative inverse are meant to suggest ‘minus a’ and ‘divide-by-a’, but
that at the moment we are not justified in believing any of the ‘usual’ high school
algebra properties. We have to prove that all the ‘usual’ things really do still work
in this abstract situation.

If we take a ring R with 0 and with its addition, then we get an abelian group,
called the additive group of R.

The group of units R× in a ring with unit certainly is a group. Its identity is
the unit 1. This group is abelian if R is commutative.

In somewhat more practical terms: as our examples above show, very often
a group really is just the additive group of a ring, or is the group of units in a
ring. There are many examples where this is not really so, but many fundamental
examples are of this nature.

The integers Z with usual addition and multiplication form a ring. This ring
is certainly commutative and has a multiplicative identity ‘1’. The group of units
Z× is just {±1}. This ring is an integral domain.

The even integers 2Z with the usual addition and multiplication form a com-
mutative ring without unit. Just as this example suggests, very often the lack of

9.1 Rings 169

a unit in a ring is somewhat artificial, because there is a ‘larger’ ring it sits inside
which does have a unit. There are no units in this ring.

The integers mod m, denoted Z/m, form a commutative ring with identity. As
the notation suggests, the group of units really is Z/m×: notice that we used the
group-of-units notation in this case before we even introduced the terminology.

Take p to be a prime. The ring of integers mod p, denoted Z/p, is a field if p
is prime, since all positive integers less than p have a multiplicative inverse modulo
p for p prime (computable by the Euclidean algorithm!). The group of units really
is Z/p×.

The collection of n-by-n real matrices (for fixed n) is a ring, with the usual
matrix addition and multiplication. Except for the silly case n = 1, this ring is
non-commutative. The group of units is the group GL(n,R).

The rational numbers Q, the real numbers R, and the complex numbers C
are all examples of fields, because all their nonzero elements have multiplicative
inverses.

Just as in the beginning of our discussion of groups, there are some things which
we might accidentally take for granted about how rings behave. In general these
presumptions are reasonable, based on all our previous experience with numbers,
etc. But it is certainly better to give the ‘easy’ little proofs of these things and to
be conscious of what we believe, rather than to be unconscious.

Let R be a ring. We will prove the following fundamental properties:
• Uniqueness of additive identity: If there is an element z ∈ R and another

r ∈ R so that r + z = r, then z = 0. (Note that we need this condition only
for one other r ∈ R, not for all r ∈ R.)

• Uniqueness of additive inverses: Fix r ∈ R. If there is r′ ∈ R so that
r + r′ = 0, then actually r′ = −r, the additive inverse of r.

• Uniqueness of multiplicative identity: Suppose that R has a unit 1. If there
is u ∈ R so that for all r ∈ R we have u · r = r, then u = 1. Or, if for all
r ∈ R we have r · u = r, then u = 1. Actually, all we need is that either
1 · u = 1 or u · 1 = 1 to assure that u = 1.

• Uniqueness of multiplicative inverses: If r ∈ R has a multiplicative inverse
r−1, and if r′ ∈ R is such that r · r′ = 1, then r′ = r−1. Or, assuming instead
that r′ · r = 1, we still conclude that r′ = r−1.

• For r ∈ R, we have −(−r) = r. That is, the additive inverse of the additive
inverse of r is just r.

Proof: (of uniqueness of additive identity) If there is an element z ∈ R and r ∈ R
so that r + z = r, add −r to both sides of this equation to obtain

(r + z)− r = r − r = 0

by definition of additive inverse. Using the commutativity and associativity of
addition, the left-hand side of this is

(r + z)− r = (z + r)− r = z + (r − r) = z + 0 = z

also using the property of the 0. That is, putting this together, z = 0, proving what
we wanted. ///

170 Chapter 9 Rings and Fields

Proof: (of uniqueness of additive inverses). Fix r ∈ R. If there is r′ ∈ R so that
r + r′ = 0, then add −r to both sides to obtain

(r + r′)− r = 0 + (−r)

Using the commutativity and associativity of addition, the left-hand side of this is

(r + r′)− r = (r′ + r)− r = r′ + (r − r) = r′ + 0 = r′

Since the right-hand side is 0 + (−r) = −r, we have r′ = −r, as claimed. ///

Proof: (of uniqueness of multiplicative identity) Suppose that either u is a left
identity or u is a right identity. Let’s just do one case, since the other is identical
apart from writing things in the opposite order. Suppose that u is a left identity.
Thus, in particular, u · 1 = 1. Then, since u · 1 = u by the property of the
multiplicative identity 1, we have u = u · 1 = 1, the desired uniqueness. ///

Proof: (of uniqueness of multiplicative inverses) Assume that r ∈ R has a multi-
plicative inverse r−1, and that r′ ∈ R is such that r · r′ = 1. Then multiply that
latter equation by r−1 on the left to obtain

r−1 · (r · r′) = r−1 · 1 = r−1

by the property of 1. Using the associativity of multiplication, the left-hand side is

r−1 · (r · r′) = (r−1 · r) · r′ = 1 · r′ = r′

by property of multiplicative inverses and of the identity. Putting this together, we
have r′ = r−1 as desired. ///

The proof that −(−r) = r (that is, that the additive inverse of the additive
inverse of r is just r) is identical to the argument given for groups that the inverse
of the inverse is the original thing.

There are several ‘slogans’ that we all learned in high school or earlier, such as
‘minus times minus is plus,’ and ‘zero times anything is zero’. It may be interesting
to see that from the axioms for a ring we can prove those things. (We worried over
the so-called ‘laws of exponents’ already a little earlier.)

These things are a little subtler than the ‘obvious’ things above, insofar as they
involve the interaction of the multiplication and addition. These little proofs are
good models for how to prove simple general results about rings.

Let R be a ring.
• For any r ∈ R, 0 · r = r · 0 = 0.
• Suppose that there is a 1 in R. Let −1 be the additive inverse of 1. Then for

any r ∈ R we have (−1) · r = r · (−1) = −r, where as usual −r denotes the
additive inverse of r.

• Let −x,−y be the additive inverses of x, y ∈ R. Then (−x) · (−y) = xy.

Proof: Throughout this discussion, keep in mind that to prove that b = −a means
to prove just that a + b = 0.

9.2 Ring homomorphisms 171

Let’s prove that ‘zero times anything is zero’: Let r ∈ R. Then

0 · r = (0 + 0) · r (since 0 + 0 = 0)
= 0 · r + 0 · r (distributivity)

Then, adding −(0 · r) to both sides, we have

0 = 0 · r − 0 · r = 0 · r + 0 · r − 0 · r = 0 · r + 0 = 0 · r

That is, 0 · r. The proof that r · 0 = 0 is nearly identical.
Let’s show that (−1) · r = −r. That is, we are asserting that (−1)r is the

additive inverse of r, which by now we know is unique. So all we have to do is
check that

r + (−1)r = 0

We have
r + (−1)r = 1 · r + (−1) · r = (1− 1) · r = 0 · r = 0

by using the property of 1, using distributivity, and using the result we just proved,
that 0 · r = 0. We’re done.

Last, to show that (−x)(−y) = xy, we prove that (−x)(−y) = −(−(xy)), since
we know generally that −(−r) = r. We can get halfway to the desired conclusion
right now: we claim that −(xy) = (−x)y: this follows from the computation

(−x)y + xy = (−x + x)y = 0 · y = 0

Combining these two things, what we want to show is that

(−x)(−y) + (−x)y = 0

Well,
(−x)(−y) + (−x)y = (−x)(−y + y) = (−x) · 0 = 0

using distributivity and the property r · 0 = 0 verified above. This proves that
(−x)(−y) = xy. ///

9.2 Ring homomorphisms
Quite analogous to group homomorphisms, ring homomorphisms are maps from one
ring to another which preserve the ring structures. Precisely, a ring homomor-
phism f : R→ S from one ring R to another ring S is a map such that for all r, r′

in R we have
f(r + r′) = f(r) + f(r′)
f(rr′) = f(r) f(r′)

That is, we would say that f preserves or respects both addition and multiplication.
A ring homomorphism which is a bijection is an isomorphism. Two rings which
are isomorphic are construed as ‘the same’ for all ring-theoretic purposes.

172 Chapter 9 Rings and Fields

As in the case of groups and group homomorphisms, we do not make an attempt
to use different notations for the addition and multiplication in the two different
rings R and S in this definition. Thus, more properly put, f converts addition in
R into addition in S, and likewise multiplication.

Very much like the case of groups, the kernel of a ring homomorphism f :
R→ S is

ker f = {r ∈ R : f(r) = 0}

where (implicitly) the latter 0 is the additive identity in S.
Example: The most basic example of a ring homomorphism is

f : Z→ Z/n

given by
f(x) = x-mod-n

The assertion that this f is a ring homomorphism is the combination of the two
assertions

(x-mod-n) + (y-mod-n) = (x + y)-mod-n

and
(x-mod-n) · (y-mod-n) = (x · y)-mod-n

Even though it is slightly misleading, this homomorphism is called the reduction
mod m homomorphism.
Definition: A subset S of a commutative ring R is a subring if it contains 0, is
closed under addition and additive inverses, and is closed under multiplication.
Remark: That is, as with groups and subgroups, a subset of a ring is called a
subring if it is a ring in its own right, with the operations inherited from the ring
inside which it sits. Thus, there is no need to reprove or reverify associativity or
distributivity, since these are inherited.

Much as the kernels of group homormorphisms are not arbitrary subgroups
but only normal subgroups, the kernels of ring homomorphisms are not arbitrary
subrings.
Definition: A subring I of a commutative ring R is an ideal if

r · i ∈ I

for all r ∈ R and i ∈ I.
Now we prove

Proposition: the kernel of any ring homomorphism f : R→ S is an ideal in R.

Proof: Let x be in the kernel, and r ∈ R. Then

f(rx) = f(r)f(x) = f(r) · 0 = 0

since by now we’ve proven that in any ring the product of anything with 0 is 0.
Thus, rx is in the kernel of f . And, for x, y both in the kernel,

f(x + y) = f(x) + f(y) = 0 + 0 = 0

9.2 Ring homomorphisms 173

That is, x + y is again in the kernel. And f(0) = 0, so 0 is in the kernel. And for
x in the kernel f(−x) = −f(x) = −0 = 0, so −x is in the kernel. ///

Example: Some homomorphisms which are very important in applications are
evaluation homomorphisms or substitution homomorphisms, described as
follows. Let R be a commutative ring, and R[x] the polynomial ring in one variable
with coefficients in R. Fix r0 ∈ R. We want to talk about evaluating polynomials
at r0, or, equivalently, substituting r0 for x in a polynomial. What is meant by this
is that a polynomial

P (x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

should be mapped to

P (r0) = anrn
0 + an−1r

n−1
0 + . . . + a2r

2
0 + a1r0 + a0

Let er0 denote this map, which is the evaluation map.
• The evaluation map er0 : R[x] → R is a ring homomorphism from the poly-

nomial ring R[x] to the ring R.

Remark: Before proving this, note that our experience makes us anticipate the
fact that such maps really are ring homomorphisms: indeed, we know that to
evaluate the product or sum of two polynomials we can evaluate them individually
and then multiply/add, or multiply/add first and then evaluate. This is exactly
the assertion that evaluation is a ring homomorphism.

Proof: This is mostly just finding an effective notation. Let

P (x) =
∑

0≤i≤m aix
i

Q(x) =
∑

0≤i≤n bix
i

be two polynomials with coefficients in a commutative ring R. First we show that
evaluation er0 at r0 ∈ R respects the addition:

er0(P + Q) = er0

∑
j

(aj + bj)xj

 =
∑

j

(aj + bj)r
j
0

=
∑

j

ajr
j
0 +

∑
j

bjr
j
0 = er0(P) + er0(Q)

where without harming anything we put aj = 0 and bj = 0 for any index outside the
range for which the coefficients are defined. This proves that evaluation respects
sums. For products:

er0(P ·Q) = er0

∑
i,j

(ai · bj)xi+j

 =
∑
i,j

(ai · bj)r
i+j
0 = er0(P) · er0(Q)

174 Chapter 9 Rings and Fields

This proves that multiplication is respected also by evaluation, so these evaluations
really are ring homomorphisms. ///

Proposition: Let f : R→ S be a ring homomorphism. Let 0R, 0S be the additive
identities in R,S, respectively. Then f(0R) = 0S . That is, always the image of an
additive identity under a ring homomorphism is the additive identity in the ‘target’
ring.

Proof: First,
f(0R) + f(0R) = f(0R + 0R)

by the defining property of ‘group homomorphism’. Then

0R + 0R = 0R

(by the property of the additive identity in R), so

f(0R + 0R) = f(0R)

Thus, together, we have

f(0R) + f(0R) = f(0R + 0R) = f(0R)

Add the additive inverse −f(0R) to both sides:

(f(0R) + f(0R))− f(0R) = f(0R)− f(0R) = 0S

where the last equality uses the definition of additive inverse. Using associativity
of addition,

(f(0R) + f(0R))− f(0R) = f(0R) + (f(0R)− f(0R)) = f(0R) + 0S = f(0R)

where we also use the defining property of 0S . Putting these together (repeating a
little):

f(0R) = f(0R) + f(0R)− f(0R) = f(0R + 0R)− f(0R) = f(0R)− f(0R) = 0S

as claimed. ///

• Let f : R → S be a surjective ring homomorphism. Suppose that R has a
multiplicative identity 1R. Then S has a multiplicative identity 1S and

f(1R) = 1S

Remark: Notice that unlike the discussion about the additive identity here we
need the further hypothesis of surjectivity. Otherwise the assertion is false: see the
remark after the proof.

Proof: Given s ∈ S, let r ∈ R be such that f(r) = s. Then

f(1R) · s = f(1R) · f(r) = f(1R · r) = f(r) = s

9.3 Fields 175

Thus, f(1R) behaves like the unit in S. By the already proven uniqueness of units,
it must be that f(1R) = 1S . ///

Remark: It is important to note that the image of the multiplicative identity 1R

under a ring homomorphism f : R→ S is not necessarily the multiplicative identity
1S of S. For example, define a ring homomorphism

f : Q→ S

from the rational numbers Q to the ring S of 2-by-2 rational matrices by

f(x) =
(

x 0
0 0

)
Then the image of 1 is simply (

1 0
0 0

)
which is certainly not the same as the multiplicative identity(

1 0
0 1

)
in the ring S.

There are also examples in commutative rings where the unit is mapped to
something other than the unit. For example, let R = Z/3 and S = Z/6, and define
f : R→ S by

f(r mod 3) = 4r mod 6

Check that this is well-defined: if r = r′ mod 3, then 3|(4r−4r′) and 2|(4r−4r′) so
surely 6|4(r − r′), so indeed 4r = 4r′ mod 6. This proves well-definedness. Check
that this is a homomorphism:

f(x + y) = 4(x + y) = 4x + 4y = f(x) + f(y)

This would have worked with any number, not just 4. To see that f preserves
multiplication, the crucial feature of the situation is that

4 · 4 = 4 mod 6

Then
f(x · y) = 4(x · y) = (4 · 4)(x · y) = (4x) · (4y) = f(x) · f(y)

Thus, f is a homomorphism. But f(1) = 4 6= 1 mod 6.

9.3 Fields
An important subclass of commutative rings are called fields. Many of the familiar
types of numbers such as complex numbers, real numbers, rational numbers, and
Z modulo primes are all fields. But other familiar sets of numbers, such as the
integers themselves, are not fields.

176 Chapter 9 Rings and Fields

• A commutative ring R with unit 1 and such that any non-zero element of R
has a multiplicative inverse (in R) is called a field.

The commutative ring of ordinary integers Z is not a field, because non-zero
integers other than ±1 do not have multiplicative inverses in the integers (though
they have inverses in the larger ring Q).

The commutative ring of rational numbers Q is a field, because every non-zero
rational number a/b (with a and b non-zero integers) has the multiplicative inverse
b/a.

The commutative ring of real numbers R is a field. The commutative ring of
complex numbers C is a field.

The commutative ring Z/p with p prime is a field. To be sure of this let
x 6= 0 mod p. Then p does not divide x. Always gcd(x, p) is a divisor of p (and of
x), and since p is prime and does not divide x we have gcd(x, p) = 1. Therefore,
there are integers r and s such that rx + sy = 1. Then rx = 1 mod p, so r is a
multiplicative inverse of x in Z/p.

If n is a composite integer then Z/n is not a field. In particular, let d be a
proper divisor of n. Then d 6= 0 mod n but d has no multiplicative inverse modulo
n.

Exercises

9.01 Check that the congruence class 1̄ of 1 modulo m really is the multiplicative
identity ‘1’ in the ring Z/m.

9.02 Check that the subset {0̄, 3̄} of Z/6 is a ring, and that 3̄ is the multiplicative
identity ‘1’. (ans.)

9.03 Check that {0̄, 2̄, 4̄, 6̄, 8̄} ⊂ Z/10 is a ring, and that 6̄ is the multiplicative
identity ‘1’ in this ring.

9.04 Check that {0̄, 3̄, 6̄, 9̄, 1̄2} ⊂ Z/15 is a ring, and that 6̄ is the multiplicative
identity ‘1’ in this ring.

9.05 Find the group of units in the rings Z/4, Z/5, Z/6. (ans.)

9.06 Find the group of units in the ring Z/12

9.07 Check that the collection 2Z of all even integers is a ring, without unit.

9.08 Check that Z/n has nonzero zero divisors if n is composite.

9.09 Check that if p is prime then Z/p is an integral domain.

9.10 Show that a multiplicatively invertible element in a ring can never be a
zero-divisor. (Recall that 1 6= 0.)

9.11 Let R be the collection of numbers of the form a+ bi where a, b ∈ Q and i =√
−1. Just to keep in practice, check that R is ‘closed’ under multiplication

and addition. Then, granting that R is a ring (meaning not to worry about
associativity, etc.) show that R is a field. (Hint: Remember ‘rationalizing
denominators’?)

9.12 Let R be the collection of numbers of the form a + b
√

2 where a, b ∈ Q.
Check that R is ‘closed’ under multiplication and addition. Then, granting

Exercises 177

that R is a ring (meaning not to worry about associativity, etc.) show that
R is a field. (Hint: ‘Rationalizing denominators.’)

9.13 Let R be the collection of numbers a+ bi with a, b ∈ Z and i =
√
−1. Check

that R is ‘closed’ under multiplication and addition. Granting that it is a
ring, then, find the group of units.

9.14 Let R be the collection of numbers a+ b
√
−5 with a, b ∈ Z. Check that R is

‘closed’ under multiplication and addition. Granting that it is a ring, then,
find the group of units.

9.15 Show that in a ring the equation r + r = r can hold only for r = 0. (ans.)

9.16 Find several examples of nonzero elements x, y in the ring Z/15 whose prod-
uct is nevertheless 0. (ans.)

9.17 Find several examples of nonzero elements x, y in the ring Z/21 whose prod-
uct is nevertheless 0.

9.18 Find several examples of nonzero elements x, y in the ring Z/16 whose prod-
uct is nevertheless 0.

9.19 Show that in the ring Z/n with n a composite (that is, not prime) num-
ber, the so-called cancellation law fails: that is, for such n, find (non-zero)
elements a, b, c ∈ Z/n so that ca = cb but a 6= b.

9.20 Fix an integer N > 1. Prove carefully that the map f : Z → Z/NZ given
by f(x) = x + NZ is a ring homomorphism. (We’d really known this all
along.)

9.21 Let f : R→ S be a surjective ring homomorphism (with R,S commutative,
for simplicity). Let I be an ideal in R. Show that J = {f(i) : i ∈ I} is an
ideal in S.

9.22 Let f : R → S be a ring homomorphism (with R,S commutative, for sim-
plicity). Let J be an ideal in I. Show that I = {i ∈ I : f(i) ∈ J} is an ideal
in S.

9.23 (*) Show that the only two two-sided ideals in the ring R of 2-by-2 rational
matrices are {0} and the whole ring R itself.

10

Polynomials

10.1 Polynomials
10.2 Divisibility
10.3 Factoring and irreducibility
10.4 Euclidean algorithm for polynomials
10.5 Unique factorization of polynomials

10.1 Polynomials
We need to understand polynomials algebraically, as being analogous in many re-
gards to the ordinary integers. Thus, the intuition we have for the integers can be
reused to a great extent in reasoning about polynomials with coefficients in a field.

Let k be a field, which we can think of as being a finite field GF (q) = Fq with
q elements, especially Fp = Z/p for prime p, or also possibly the rational numbers
Q, or real numbers R, or complex numbers C. For ‘indeterminate’ x, define the
polynomial ring over k in one variable to be

k[x] = {polynomials with coefficients in k}

The ring k[x] is a commutative ring, since it is a ring and polynomial multiplication
is commutative.

We write a polynomial as a sum of ‘constants’ (from k) times non-negative
integer powers of x:

f(x) = a0 + a1x + a2x
2 + . . . + amxm

The ais are the coefficients of the polynomial. The constant coefficient is a0.
If an 6= 0, then anxn is called the highest-order term and an is the highest-
order coefficient. We refer to the summand aix

i as the degree i term. Also
sometimes i is called the order of the summand aix

i. The largest index i such that
the coefficient ai is non-zero is the degree of the polynomial. Equivalently, the
degree of such a polynomial is the largest exponent i of x so that the ith coefficient

178

10.1 Polynomials 179

ai is not 0. Note that just writing the term anxn does not imply that an 6= 0. A
polynomial is said to be monic if its (highest-order) coefficient is 1.

Two polynomials in indeterminate x are equal if and only if the coefficients
of respective powers of x are all equal.
Remark: At this point we must distinguish between polynomials and the functions
given by them. In particular, we do not say that two polynomials are equal if they
merely assume the same values for all inputs. While the latter principle is provably
correct in the case that the possible inputs lie in an infinite field, it is definitely
false when the inputs must be in a finite field. The simplest case is the polynomial

f(x) = xp − x

with coefficients in Z/p, with p a prime. Fermat’s Little Theorem tells us that for
all inputs x in Z/p this polynomial has value 0. Yet it is not the 0 polynomial.

We have the usual addition and multiplication of polynomials. Addition is easy
to describe: the ith coefficient of the sum of two polynomials f(x) and g(x) is the
sum of the ith coefficient of f(x) and the ith coefficient of g(x). (This is completely
parallel to vector addition.) Multiplication is somewhat messier, but is reasonable:
the coefficient of xk in the product of

f(x) = a0 + a1x + a2x
2 + . . . + amxm

and
g(x) = b0 + b1x + b2x

2 + . . . + bnxn

is the sum of the products aibj over all pairs of indices i, j that satisfy i + j = k.
That is,

coefficient of xk in f · g =
∑

i+j=k

ai bj

Proposition: For polynomials P,Q with coefficients in a field k, the degree of
the product is the sum of the degrees:

deg(P ·Q) = deg P + deg Q

Remark: To make this true even when one of the two polynomials is the 0 poly-
nomial, the 0 polynomial is by convention given degree −∞.

Proof: The result is clear if either polynomial is the zero polynomial, so suppose
that both are non-zero. Let

P (x) = amxm + am−1x
m−1 + . . . + a2x

2 + a1x + a0

Q(x) = bnxn + bn−1x
n−1 + . . . + b2x

2 + b1x + b0

where the apparent highest-degree coefficients am and bn really are non-zero. Then
in the product P ·Q the highest-degree term is ambnxm+n, which occurs only in one
way, as the product of the highest-degree terms from P and Q, so it has coefficient

180 Chapter 10 Polynomials

am · bn. Since neither of these is 0, and since the product of non-zero elements of a
field is non-zero, the coefficient of xm+n is non-zero. ///

Remark: From the latter proof we see that the crucial property is that a 6= 0 and
b 6= 0 should imply a · b 6= 0. We know that this is true in Q, R, and C, and we
have verified earlier that this is true for k = Z/p for p prime. The latter fact comes
from the key lemma that if a prime p divides a product ab, then either p|a or p|b,
which in turn is proven from the peculiar characterization of the gcd of a, p as the
smallest positive integer of the form sa + tp.
Proposition: (Cancellation property) Let A · P = B · P for some non-zero poly-
nomial P , where all these polynomials have coefficients in a field k. Then A = B.

Proof: The equation AP = BP gives (A − B)P = 0. Because the degree of the
product is the sum of the degrees of the factors,

deg(A−B) + deg P = deg 0 = −∞

Since P is non-zero, deg P ≥ 0. The only possibility then is that deg(A−B) = −∞,
so A−B = 0, and A = B, as desired. ///

Remark: Sometimes polynomials are thought of as simply being a kind of func-
tion, but that is too naive. Polynomials give rise to functions, but they are more
than just that. It is true that a polynomial

f(x) = cnxn + cn−1x
n−1 + . . . + c1x + c0

with coefficients in a field k gives rise to k-valued functions on the field k, writing
as usual

f(a) = cnan + cn−1a
n−1 + . . . + c1a + c0

for a ∈ k. That is, as usual, we imagine that the ‘indeterminate’ x is replaced by
a everywhere (or ‘a is substituted for x’). This procedure gives functions from k
to k.

But polynomials themselves have features which may become invisible if we
mistakenly think of them as just being functions. For example, suppose that we
look at the polynomial f(x) = x3 + x2 + x + 1̄ in the polynomial ring F2[x], that
is, with coefficients in GF (2) = F2 = Z/2. Then

f(0) = 03 + 02 + 1 + 1 = 0 ∈ F2

f(1) = 13 + 12 + 1 + 1 = 0 ∈ F2

That is, the function attached to the polynomial is the 0-function, but the polyno-
mial is visibly not the zero polynomial.

As another example, consider f(x) = x3 − x as a polynomial with coefficients
in Z/3. Once again, f(0̄), f(1̄), f(2̄) are all 0̄, but the polynomial is certainly not
the zero polynomial.
Remark: We did not verify the associativity of addition, associativity of multi-
plication, distributivity, etc., to really prove that k[x] is a commutative ring. It’s
not hard to do so just using the definitions above, but it’s not very interesting.

10.2 Divisibility 181

10.2 Divisibility
In a polynomial ring k[x] with k a field, there is a division algorithm and (there-
fore) there will be a Euclidean algorithm nearly identical in form to the analogous
algorithms for the ordinary integers Z.

The division algorithm is just the usual division of one polynomial by another,
with remainder, as we all learned in high school or earlier. It takes just a moment’s
reflection to see that the procedure we all learned does not depend upon the nature
of the field that the coefficients are in, and that the degree of the remainder is
indeed less than the degree of the divisor!
Proposition: Let k be a field and M a non-zero polynomial in k[x]. Let H be
any other polynomial in k[x]. Then there are unique polynomials Q (‘quotient’)
and R (‘remainder’) in k[x] so that deg R < deg M and

H = Q ·M + R

In this situation use the notation

R = H%M = reduction of H modulo M

in parallel to the usage for integers.

Proof: Let X be the set of polynomials expressible in the form H−S ·M for some
polynomial S. Let R = H−Q ·M be an element of X of minimal degree. We claim
that deg R < deg M . If not, let a be the highest-degree coefficient of R, let b be
the highest-degree coefficient of M , and define a polynomial

G = (ab−1) · xdeg R−deg M

Then the subtraction
R−G ·M

exactly removes the highest-order term of R, so

deg(R−G ·M) < deg R

But this modified version of R would still be in X, since

R−G ·M = (H −Q ·M)−G ·M = H − (Q + G) ·M

By choice of R this is impossible. Therefore, deg R < deg M . This proves existence.
To prove uniqueness, suppose we had

H = Q ·M + R = Q′ ·M + R′

Then subtract to obtain
R−R′ = (Q′ −Q) ·M

182 Chapter 10 Polynomials

Since the degree of a product is the sum of the degrees, and since the degrees of
R,R′ are less than the degree of M , this is impossible unless Q′ −Q = 0, in which
case also R−R′ = 0. ///

A polynomial D divides another polynomial P if there is a polynomial Q so
that P = Q ·D. Equivalently, P is a multiple of D. We may also say that D is
a divisor of P . We use notation D|P when D divides P . A divisor D of P is a
proper divisor of P if

0 < deg D < deg P

A non-zero polynomial is irreducible (‘prime’) if it has no proper divisors.
Proposition: A polynomial M divides another polynomial H if and only if
H%M = 0.

Proof: Certainly if H = Q ·M +R with R = 0, we have expressed H as a multiple
of M . On the other hand, suppose H = T ·M for some T . Then, by the uniqueness
part of the reduction/division process, looking at this equality as H = T ·M + 0,
it must be that T is the ‘quotient’ and 0 is the ‘remainder’. ///

For example: let’s reduce x3 +1 modulo x2 +1, where we view the coefficients
as being in F2, for example.

(x3 + 1)− x · (x2 + 1) = x− 1

We’re done with the reduction because the degree of x−1 is (strictly) less than the
degree of x2 + 1.

Reduce x5 + 1 modulo x2 + 1, in stages:

(x5 + 1)− x3 · (x2 + 1) = −x3 + 1

(−x3 + 1) + x · (x2 + 1) = x + 1

which, summarized, gives the reduction

(x5 + 1)− (x3 − x) · (x2 + 1) = x + 1

Remark: Since the division algorithm works for polynomials with coefficients in a
field, it is merely a corollary that we have a ‘Euclidean algorithm’! If we think about
it, the crucial thing in having the Euclidean algorithm work was that the division
algorithm gave us progressively smaller numbers at each step. (And, indeed, each
step of the Euclidean algorithm is just a division algorithm!)

The greatest common divisor of two polynomials A,B is the monic poly-
nomial g of highest degree dividing both A and B.
Proposition: For polynomials f, g in k[x], the monic polynomial of the form
sf + tg (for s, t ∈ k[x]) of smallest degree is the gcd of f, g. (In particular, greatest
common divisors exist.)

Proof: Among the non-negative integer values deg(sf + tg) there is at least one
which is minimal. (We reject any choice of s, t which gives sf + tg = 0, which has

10.2 Divisibility 183

degree −∞.) Let h = sf + tg be such, and multiply through by the inverse of the
highest-degree coefficient in order to make h monic. First, we must show that h|f
and h|g. Using the division/reduction algorithm, we have

f = q(sf + tg) + r

with deg r < deg(sf + tg). Rearranging the equation, we obtain

r = (1− qs)f + (−qt)g

So r itself is of the form s′f + t′g with s′, t′ ∈ k[x]. Since sf + tg had the smallest
non-negative degree of any such expression, and deg r < deg(sf + tg), it must be
that r = 0. So sf + tg divides f . Similarly, sf + tg must divide g. This proves
that sf + tg is a divisor of both f and g. On the other hand if d|f and d|g then
certainly d|sf + tg. ///

Divide
x7 + x6 + x5 + x4 + x3 + x2 + 1

by
x3 + x + 1

viewed as having coefficients in GF (2) = F2 = Z/2. Written out in full:
x4 +x3 +0 +x1 +0 R x1+x0

x3 +0 +x1 +x0 x7 +x6 +x5 +x4 +x3 +x2 +0 +x0

x7 +0 +x5 +x4 +0 +0 +0 +0

x6 +0 +0 +x3 +x2 +0 +x0

x6 +0 +x4 +x3 +0 +0 +0

x4 +0 +x2 +0 +x0

x4 +0 +x2 +x1 +0

x1 +x0

So as a single step this would be

(x7 + x6 + x5 + x4 + x3 + x2 + 1)− (x4 + x3 + x)(x3 + x + 1) = x + 1

If the field is not simply Z/2, it can easily happen that a divisor D is not
monic, that is, has highest-degree (non-zero) coefficient cn not 1. In that case,
the polynomial c−1

n D is monic, and we divide by c−1
n D instead. Then from an

expression
F = Q · (c−1

n D) + R

for the reduction algorithm with divisor c−1
n D we immediately get

F = (Qc−1
n) ·D + R

which is the reduction algorithm mod D, as desired.
The number of operations performed to divide by a non-monic polynomial is

the same as the approach just indicated, but especially when executed by a human
the approach of the previous paragraph seems to help avoid errors.

184 Chapter 10 Polynomials

The naive way to compute the greatest commond divisor of two polynomials is
to factor both of them (as in the following section) and determine all the common
factors. However, this is suboptimal. It is better to use the Euclidean algorithm,
discussed a little further below.

10.3 Factoring and irreducibility
Just as we factor ordinary (not too large) integers by trial division, we can factor
polynomials (with coefficients in a field) into irreducible polynomials.

As in the naive primality/factoring approach for ordinary integers, for
small-degree polynomials over a small finite field we can use a naive primal-
ity/factorization algorithm, trial division. Analogous to the fact that for ordinary
integers

|xy| = |x| · |y|

we need the fact (proven above) that

deg(P ·Q) = deg P + deg Q

Again, a proper divisor D of a polynomial F is a polynomial divisor D of F
so that

0 < deg D < deg F

(Note that the polynomials of degree 0 are the non-zero ‘constants’ k, viewed as
polynomials with only an x0 term.)
Proposition: If F has a proper divisor, then it has a proper divisor D with

0 < deg D ≤ 1
2

deg F

Proof: If a proper divisor D of F has degree ≥ 1
2 deg F , then F/D has degree

≤ 1
2 deg F . ///

Low-degree cases: Let k be a field.
• Every linear polynomial in k[x] is irreducible, since there is no value of ‘degree’

between 1 and 0.
• If a quadratic polynomial factors properly, then it must be the product of

two linear factors.
• If a cubic polynomial factors properly, then it must have at least one linear

factor.
• If a quartic or higher-degree polynomial factors properly, it may nevertheless

fail to have a linear factor.
Proposition: (Testing for linear factors) A polynomial F (x) with coefficients in
a field k has a linear factor x− a (with a ∈ k) if and only if F (a) = 0.

Proof: If x− a is a factor, then F (x) = (x− a)G(x) for some polynomial G, and
certainly

F (a) = (a− a)G(a) = 0 ·G(a)

10.3 Factoring and irreducibility 185

On the other hand, suppose that F (a) = 0. Use the division algorithm to write

F (x) = Q(x) · (x− a) + R

Since deg R < deg(x− a) = 1, R must be a constant. Evaluate both sides at a:

0 = F (a) = Q(a) · (a− a) + R = Q(a) · 0 + R = R

Therefore, R = 0 and so x− a divides F (x). ///

This gives a slightly more economical way to test for linear factors.
There is only one degree 0 polynomial in F2[x], namely the constant 1. The 0

polynomial has degree −∞.
There are just two linear polynomials in F2[x], namely x and x + 1. Since

every linear polynomial is irreducible, they are irreducible.
For quadratic polynomials, there are 2 choices for the linear coefficient and

2 choices for the constant coefficient, so 2 · 2 = 4 quadratic polynomials in F2[x].
Testing for irreducibility, here the algebra is easy:
• Obviously x2 = x · x
• Obviously x2 + x = x · (x + 1)
• Less obviously x2 + 1 = (x + 1)2. Here use the fact that 2 = 0, so (x + 1)2 =

x2 + 2x + 1 = x2 + 0 + 1 = x2 + 1.
• x2 +x+1: Now it’s a little easier to see whether or not this is 0 when values

0,1 are plugged in:
02 + 0 + 1 = 1 6= 0

12 + 1 + 1 = 1 6= 0

So x2 + x + 1 is irreducible in F2[x]. It’s the only irreducible quadratic
polynomial in F2[x].

For cubic polynomials with coefficients in F2, there are 2 choices for quadratic
coefficient, 2 for linear coefficient, and 2 for constant, so 8 altogether. If we are
looking only for irreducible ones, we should exclude those with constant coefficient
0, because they’ll have value 0 for input 0 (equivalently, they’ll have linear factor
x). Also, those with an even number of non-zero coefficients will have value 0 for
input 1, so will have a linear factor x + 1. Keep in mind that if a cubic is not
irreducible then it has at least one linear factor.

We conclude that a cubic polynomial in F2 with constant coefficient 1 and
with an odd total number of non-zero coefficients is necessarily irreducible. Thus,
the only two irreducible cubics in F2[x] are

x3 + x2 + 1

x3 + x + 1

Irreducible quartic polynomials in F2[x]: there are 24 = 16 choices for cubic,
quadratic, linear, and constant coefficients. If the constant term is 0, or if the total

186 Chapter 10 Polynomials

number of non-zero coefficients is even, then there is a linear factor x or x+1. This
leaves 4 possibilities for irreducible quartics:

x4 + x3 + x2 + x + 1
x4 + x3 + 1
x4 + x2 + 1
x4 + x + 1

None of these has a linear factor in F2[x]. But we must look for (irreducible!)
quadratic factors. From above, the only irreducible quadratic in F2[x] is x2+x+1,
so the only reducible quartic without linear factors must be

x4 + x2 + 1 = (x2 + x + 1)2

This leaves 3 irreducible quartics: x4 + x3 + x2 + x + 1, x4 + x3 + 1, x4 + x + 1.
Irreducible quintic polynomials in F2[x]: There are 25 = 32 quintics in F2[x].

Excluding those with 0 constant coefficient (and therefore divisible by x) leaves 24 =
16. Excluding those with an even total number of non-zero coefficients (divisible
by x + 1) leaves (

4
3

)
+
(

4
1

)
= 4 + 4 = 8

This 8 is the number of quintics with no linear factors. The only way a quintic with
no linear factors can be obtained as a product of lower-degree polynomials is

irred quadratic · irred cubic

For example, if there were 2 irreducible quadratic factors, then that would leave
room only for a linear factor, which we’ve assumed away. We’ve already found out
that there is only one irreducible quadratic in F2[x], and just 2 irreducible cubics,
so there are exactly 2 reducible quintics without linear factors. They are

(x2 + x + 1) · (x3 + x2 + 1) = x5 + x + 1
(x2 + x + 1) · (x3 + x + 1) = x5 + x4 + 1

That leaves 6 irreducible quintics in F2[x], which we obtain by listing anything
not noted above to be reducible: they must have constant coefficient 1, an odd
number of non-zero coefficients, and not be x5 +x+1 or x5 +x4 +1. With exactly
5 non-zero coefficients, these are all irreducible

x5 + 0 + x3 + x2 + x + 1
x5 + x4 + 0 + x2 + x + 1
x5 + x4 + x3 + 0 + x + 1
x5 + x4 + x3 + x2 + 0 + 1

With exactly 3 non-zero coefficients, avoiding the two reducible ones noted above,
we have

x5 + 0 + x3 + 0 + 0 + 1
x5 + 0 + 0 + x2 + 0 + 1

10.4 Euclidean algorithm for polynomials 187

10.4 Euclidean algorithm for polynomials
The form of the Euclidean algorithm for polynomials with coefficients in a field
k is identical to that for the ordinary integers Z. That is, each line is a divi-
sion/reduction step: the divisor for the next step is the remainder from the previ-
ous step, and the dividend for the next step is the divisor from the previous. The
algorithm terminates when the remainder is 0, and at that point the greatest com-
mon divisor is the remainder from the next-to-last step divided by its highest-degree
coefficient to make it monic, since we require the gcd of two polynomials to be
monic.

The Euclidean algorithm applied to two polynomials f(x) and g(x) runs as
follows.
Initialize (F (X), G(X), R(X)) = (f(x), g(x), f(x)%g(x)).
If R(x) = 0 we’re done, and gcd(f(x), g(x)) = g(x).

while R(x) 6= 0:
Replace (F (x), G(x), R(x)) by (G(x), R(x), G(x)%R(x)).

When R(x) = 0, the current value of G(x) is the gcd.
The Euclidean algorithm is best explained by examples.
For example, to compute the gcd of x5 + x + 1 and x3 + x + 1 considered as

polynomials in F2[x]:

(x5 + x + 1)− (x2 + 1)(x3 + x + 1) = x2

(x3 + x + 1)− (x)(x2) = x + 1
(x2)− (x + 1)(x + 1) = 1
(x + 1)− (x + 1)(1) = 0

Since we have a 0 on the right-hand side, the algorithm terminates. The right-
hand side of the next-to-last line is 1, so the greatest common divisor of these two
polynomials is 1. That is, they are relatively prime.

To compute the gcd of x5 + x + 1 and x3 + x + 1 considered as polynomials in
F5[x]:

(x5 + x + 1)− (x2 + 4)(x3 + x + 1) = 4x2 + 2x + 2
(x3 + x + 1)− (4x + 3)(4x2 + 2x + 2) = 2x

(4x2 + 2x + 2)− (2x + 1)(2x) = 2
(2x)− (x)(2) = 0

Since we have a 0 on the right-hand side, the algorithm terminates. The right-
hand side of the next-to-last line is 2, a non-zero constant, so the greatest common
divisor of these two polynomials is 1 because we take monic gcd’s. That is, the two
polynomials are relatively prime.

Remark: Yes, we need to know the context in order to determine what field the
coefficients lie in. There is no way to simply look at the coefficients and know
directly.

To compute the gcd of x7 +x6 +x4 +x3 +x+1 and x5 +x4 +x+1 considered

188 Chapter 10 Polynomials

as polynomials in F2[x]:

(x7 + x6 + x4 + x3 + x + 1)− (x2)(x5 + x4 + x + 1) = x4 + x2 + x + 1

(x5 + x4 + x + 1)− (x + 1)(x4 + x2 + x + 1) = x3 + x

(x4 + x2 + x + 1)− (x)(x3 + x) = x + 1

(x3 + x)− (x2 + x)(x + 1) = 0

Since we have a 0 on the right-hand side, the algorithm terminates. The right-hand
side of the next-to-last line is x + 1, a non-zero constant, so the greatest common
divisor of these two polynomials is x + 1.

To compute the gcd of x7 +x6 +x4 +x3 +x+1 and x6 +x4 +x2 +1 considered
as polynomials in F3[x]:

(x7 + x6 + x4 + x3 + x + 1)− (x + 1)(x6 + x4 + x2 + 1) = 2x5 + 2x2

(x6 + x4 + x2 + 1)− (2x)(2x5 + 2x2) = x4 + 2x3 + x2 + 1

(2x5 + 2x2)− (2x + 2)(x4 + 2x3 + x2 + 1) = x + 1

(x4 + 2x3 + x2 + 1)− (x3 + x2)(x + 1) = 1
(x + 1)− (x + 1)(1) = 0

Since we have a 0 on the right-hand side, the algorithm terminates. The right-hand
side of the next-to-last line is 1, a non-zero constant, so the greatest common divisor
of these two polynomials is 1.
Remark: Notice that in the last two examples the differing interpretation of
‘where’ the coefficients are has a big impact on what the greatest common divisor
is!

Compute the greatest common divisor of the two polynomials x7+x5+x4+x3+
x+1 and x6 +x3 +x2 +x+1 (with coefficients in the finite field GF (2) = F2 = Z/2
with just two elements) by the Euclidean algorithm.

(x7 + x5 + x4 + x3 + x + 1)− (x) · (x6 + x3 + x2 + x + 1) = x5 + x2 + 1
(x6 + x3 + x2 + x + 1)− (x) · (x5 + x2 + 1) = x2 + 1

(x5 + x2 + 1)− (x3 + x + 1) · (x2 + 1) = x
(x2 + 1)− (x) · (x) = 1

(x)− (x) · (1) = 0

Thus, since the last non-zero entry on the right-hand side is 1, the gcd of x7 +x5 +
x4 + x3 + x + 1 and x6 + x3 + x2 + x + 1 is 1.

With coefficients in GF (2) = F2, compute the gcd of x6 +x5 +x4 +x3 +x2 +1
and x5 + x4 + x3 + 1.

(x6 + x5 + x4 + x3 + x2 + 1)− (x) · (x5 + x4 + x3 + 1) = x3 + x2 + x + 1
(x5 + x4 + x3 + 1)− (x2) · (x3 + x2 + x + 1) = x2 + 1

(x3 + x2 + x + 1)− (x + 1) · (x2 + 1) = 0

10.5 Unique factorization of polynomials 189

Thus, the gcd of x6 + x5 + x4 + x3 + x2 + 1 and x5 + x4 + x3 + 1 is x2 + 1, since
the latter is the last non-zero right-hand side occurring.

10.5 Unique factorization of polynomials
In a manner entirely parallel to the proof of unique factorization in the ordinary
integers Z, we can prove that the polynomial ring k[x] (coefficients in a field k) has
unique factorization into irreducible (‘prime’) polynomials.

Theorem: Given a non-zero polynomial P in k[x], with a field k, P can be
expressed as a product

P = c · P e1
1 . . . P en

n

where c is a non-zero element of the field k, the Pi are irreducible monic polynomials,
and the ei are positive integers. This factorization is essentially unique, in the sense
that any other factorization differs from this only in the ordering of the irreducible
monic factors.

Proof: As in the case of Z, we need a peculiar characterization of the greatest
common divisor of two polynomials: we showed earlier that for polynomials f, g in
k[x], an element of the form sf + tg (for s, t ∈ k[x]) with smallest degree is the gcd
of f, g. And now the key lemma:

Lemma: Let P be an irreducible polynomial. For two other polynomials A,B, if
P |AB then P |A or P |B. Generally, if an irreducible P divides a product A1 . . . An

of polynomials then P must divide one of the factors Ai.

Proof: It suffices to prove that if P |AB and P 6 |A then P |B. Since P 6 |A, and
since P is irreducible, the gcd of P and A is just 1. Therefore, there are s, t ∈ k[x]
so that

1 = sA + tP

Then
B = B · 1 = B · (sA + tP) = s(AB) + (Bt)P

Since P |AB, surely P divides the right-hand side. Therefore, P |B, as claimed.
Generally, if P divides A1 . . . An, rewrite this as (A1)(A2 . . . An). By the first

part, either P |A1 or P |A2 . . . An. In the former case we’re done. In the latter case,
we continue: rewrite A2 . . . An = (A2)(A3 . . . An). So either P |A2 or P |A3 . . . An.
Continuing (induction!), we find that P divides at least one of the factors Ai. ///

Now we prove the existence of factorizations into irreducibles. Suppose that
some polynomial in k[x] did not have a factorization. Then there is a f ∈ k[x]
without a factorization and with deg f smallest among all elements lacking a fac-
torization. This f cannot be irreducible, or it has a factorization into irreducibles.
If f is reducible, then of course it has a proper factorization f = gh. This means
that 0 < deg A < deg f and 0 < deg B < deg f . By the minimality of f among
polynomials not having factorizations it must be that both A and B have prime
factorizations. Then a prime factorization of f is obtained by multiplying together
the prime factorizations for A and B.

190 Chapter 10 Polynomials

Now we prove uniqueness of the factorization. Suppose that

h = c · pe1
1 . . . pem

m

and also
h = c′ · qf1

1 . . . qfn
n

with monic irreducibles pi and qi and constants c, c′.
First, since all the irreducibles are monic, the highest-degree coefficient of either

of the products is simply the leading constant, c or c′ in the two cases. But since
both products are equal to h, c must equal c′.

By induction, we could assume that
∑m

i=1 ei is the smallest integer quantity for
which there is a different factorization. Since p1 divides qf1

1 . . . qfn
n and p is prime,

by the key lemma above p1 must divide one of the qi. By relabeling the qis, we
may suppose that p1|q1. Since these are both monic irreducible, they are equal.
Replacing q1 by p1, we get

pe1
1 . . . pem

m = pf1
1 qf2

2 qf3
3 . . . qfn

n

Since e1 ≥ 1 and f1 ≥ 1, we can cancel at least one factor of p1 from both sides.
But by induction, since we assumed that

∑m
i=1 ei was the smallest expression

occurring in a factorization of some h ∈ k[x] in two different ways, after removing
the common factor of p1 the remaining factorizations must be essentially the same.

///

Exercises

10.01 Factor x3 − x into linear factors in F3[x].

10.02 Factor x5 − x into linear factors in F5[x]. (ans.)

10.03 Factor x5 + x + 1 into irreducibles in F2[x], by trial division. (ans.)

10.04 Factor x5 + x4 + 1 into irreducibles in F2[x] by trial division.

10.05 Factor x6 + x3 + x + 1 into irreducibles in F2[x] by trial division. (ans.)

10.06 Let k[x] be the polynomial ring in one variable x over the field k. What is
the group of units k[x]× (meaning the collection of polynomials that have
multiplicative inverses which are also polynomials)?

10.07 Find the greatest common divisor of x5 + x4 + x3 + x2 + x + 1 and
x4 + x2 + 1 in the ring Q[x] of polynomials over Q. (ans.)

10.08 Find the greatest common divisor of x6 + x3 + 1 and x2 + x + 1 in the ring
k[x] of polynomials over the finite field k = Z/3 with 3 elements.

10.09 Find the greatest common divisor of the two polynomials x6 + x4 + x2 + 1
and x8 +x6 +x4 +x2 +1 in the ring k[x] of polynomials over the finite field
k = Z/2 with 2 elements.

10.10 Find the greatest common divisor of the two polynomials x5+x+1 and
x5 + x4 + 1 in the polynomial ring F2[x]. (ans.)

Exercises 191

10.11 Find the greatest common divisor of the two polynomials x5+x4+x3+1
and x5 + x2 + x + 1 in F2[x].

10.12 Find the greatest common divisor of x7 + x6 + x5 + x4 + 1 and
x6 + x5 + x4 + x3 + x2 + x + 1 in F2[x]. (ans.)

10.13 Find the greatest common divisor of x5 +x3 +x2 +1 and x6 +x5 +x+1
in F2[x].

11

Finite Fields

11.1 Making fields
11.2 Examples of field extensions
11.3 Addition mod P
11.4 Multiplication mod P
11.5 Multiplicative inverses mod P

Again, while we are certainly accustomed to (and entitled to) think of the
fields rationals, reals, and complex numbers as ‘natural’ batches of numbers, it is
important to realize that there are many other important and useful fields. Perhaps
unexpectedly, there are many finite fields: For example, for a prime number p, the
quotient Z/p is a field (with p elements).

On the other hand, for example, there is no finite field with 6 or with 10
elements. (Why?)

While it turns out that there are finite fields with, for example, 9 elements,
128 elements, or any prime power number of elements, it requires more preparation
to ‘find’ them.

The simplest finite fields are the rings Z/p with p prime. For many different
reasons, we want more finite fields than just these. One immediate reason is that for
machine implementation (and for other computational simplifications) it is optimal
to use fields of characteristic 2, that is, in which 1 + 1 = 2 = 0. Among the fields
Z/p only Z/2 satisfies this condition. At the same time, for various reasons we
might want the field to be large. If we restrict our attention to the fields Z/p we
can’t meet both these conditions simultaneously.

11.1 Making fields
Construction of finite fields, and computations in finite fields, are based upon poly-
nomial computations.

192

11.1 Making fields 193

For brevity, write Fq for the finite field with q elements (if it exists!) For a
prime p at least we have one such finite field, namely Z/p = Fp. Again, another
notation often seen is

GF (q) = Fq

Here ‘GF’ stands for Galois field.
Remark: There is the issue of uniqueness of a finite field with a given number of
elements. It is true that there is essentially at most one such, but this is not easy
to prove. Also, in practice the various possible computational models of the same
underlying abstract object have a great impact, so we will often be more concerned
with the many different models themselves.
Remark: The present discussion continues to be entirely analogous to our discus-
sion of Z/m.

For a polynomial P (not necessarily irreducible), and for two other polynomials
f, g, all with coefficients in Fp, write

f = g mod P

if P divides f − g. This is completely analogous to congruences for ordinary
integers. And, continuing with that analogy, define

Fp[x]/P = {congruence classes mod P}

where the congruence class f̄ mod P of a polynomial f is

f̄ = {g ∈ Fp[x] : g = f mod P}

Usually one just writes ‘f ’ rather than ‘f̄ ’.
A polynomial f is reduced mod P if

deg f < deg P

Via the division/reduction algorithm in the polynomial ring Fp[x], every polynomial
in Fp[x] is equal-mod-P to a reduced polynomial mod P : indeed, given f , by
division-with-remainder we obtain polynomials Q and R with deg R < deg P and
so that

f = Q · P + R

That is,
f −R = Q · P

which is to say that f = R mod P .
Proposition: Two polynomials f, g which are reduced mod P are equal modulo
P if and only if they are equal (in Fp[x]).

Proof: Certainly if f and g are equal then they are equal modulo P , whether or
not they are reduced. On the other hand, suppose that f and g are reduced modulo
P and equal modulo P . Then

f − g = Q · P

194 Chapter 11 Finite Fields

for some (quotient) polynomial Q. Looking at degrees,

deg P > max(deg f,deg g) ≥ deg(f − g) = deg Q + deg P

If all the degrees are integers, this is impossible. The only manner in which this can
work out is that Q = 0, so (by convention) deg Q = −∞. Thus, actually f − g = 0.

///

Theorem: For irreducible polynomial P of degree n, the ring

Fp[x]-mod-P = Fp[x]/P

of polynomials mod P is a field, with pn elements. The element x-mod-P is a root
in Fp[x]/P of the equation

P (x) = 0 mod P

Proof: From the previous proposition, the set of polynomials f(x) of degree
strictly less than the degree of P is an irredundant set of representatives for Fp[x]/P ,
whether or not P (x) is irreducible. There are p choices (from Fp) for each of the
n coefficients of a polynomial of degree strictly less than n, so there are pn choices
altogether, and thus pn elements in the quotient Fp[x]/P .

Next, we prove existence of multiplicative inverses for non-zero elements f in
Fp[x]/P . Given f 6= 0 in Fp[x]/P , we may suppose that 0 ≤ deg f < deg P . Since
P does not divide f ,

deg gcd(f, P) < deg P

Since P is irreducible, gcd(f, P) cannot have positive degree, or it would be a proper
factor of P . Thus,

deg gcd(f, P) = 0

That is, the gcd is a non-zero constant. Since we can adjust gcd’s to be monic
polynomials by multiplying through by non-zero constants, we have

gcd(f, P) = 1

Therefore, from above, there are polynomials a, b such that

af + bP = 1

Then
a · f = 1 mod P

giving a multiplicative inverse of f as desired. The other requirements of a field,
namely the associativity, distributivity, and commutativity of addition and multipli-
cation, and so on, follow from the analogous properties for polynomials themselves.

Last, we verify that α = x-mod-P satisfies

P (α) = 0 mod P

11.2 Examples of field extensions 195

(This is easier than one might anticipate.) We will verify that for any polynomial
M there is a polynomial N such that

P (x + M · P) = N · P

Actually, we will prove more, namely that for any polynomial h,

h(x + MP) = h(x) mod P

Indeed, by the Binomial Theorem for any exponent k

(x + MP)k = xk +
∑

1≤i≤k

(
k

i

)
xi (MP)k−i

That is,
(x + MP)k = xk mod P

Adding together suitable constant multiples of powers gives

h(x + MP) = h(x) mod P

In particular,
P (x + MP) = P (x) = 0 mod P

That is, any polynomial differing from x by a multiple of P , when used as the input
to P , gives 0 modulo P . That is, x-mod-P is a root of the equation P (y) = 0 in
Fp[x]/P , as claimed. ///

Usually it is desirable in such a field Fp[x]/P to express anything in reduced
form, since then it is easy to test two things for equality: just compare their
coefficients.

Let k be a field. Another field K containing k is called an extension field of
k, and k is a subfield of K. The degree of the extension K of k is the degree of
the polynomial P used in the construction of K as k[x] modulo P .
Remark: In this situation, thinking of

α = x-mod-P

as ‘existing in its own right’ now, and being a root of the equation P (x) = 0 mod P ,
we say that we have adjoined a root of P (x) = 0 to k, and write

k[α] = k[x] mod P

11.2 Examples of field extensions
Now we’ll do some specific numerical examples of field extensions, using the set-up
of the previous section.

196 Chapter 11 Finite Fields

Example: Let’s see how to ‘make’ the complex numbers C as a field extension
of the real number R, not by presuming that there is a mysterious

√
−1 already

existing ‘out there somewhere’.
First, let’s prove that x2 +1 ∈ R[x] is irreducible. Since the square of any real

number is non-negative, the equation

x2 + 1 = 0

has no roots in R. Since the polynomial x2 + 1 ∈ R[x] is quadratic, if it were to
factor in R[x] it would have to factor into two linear factors (since the degree of
the product is the sum of the degrees of the factors). But if x2 + 1 had a linear
factor then x2 + 1 = 0 would have a root in R, which it does not. Thus, in the
polynomial ring R[x] the polynomial x2 + 1 is irreducible, as claimed.

Then, from above we know that R[x] mod x2 + 1 is a field, inside which we
can view R as sitting, by viewing a real number r as being the constant polynomial
r-mod-x2 + 1. Also,

x2 = −1 mod x2 + 1

so x-mod-(x2 + 1) is a
√
−1.

We also showed (by showing that every element has a unique reduced repre-
sentative) that any element β of the extension is expressible uniquely in the form
β = a + bα for a, b ∈ R. Of course we usually would write ‘i’ for the image of x in
that extension field rather than ‘α’.
Example: Let’s adjoin a square root of 2 to the field Z/5. First, note that there
is no a in Z/5 so that a2 = 5. Thus, the quadratic polynomial x2 − 2 does not
factor in Z/5[x] (since if it did it would have a root in Z/5, which it doesn’t). Then
Z/5[x] mod x2 − 2 is a field, inside which we can view Z/5 as sitting. And

x2 = 2 mod x2 − 2

so x-mod-(x2 − 2) is a square root of 2. Of course, we usually would write ‘
√

2’ for
x-mod-(x2 − 2), rather than ‘α’.
Remark: Yes, these constructions might be viewed as anti-climactic, since the
construction ‘makes’ roots of polynomials in a manner that seemingly is not as
tangible as one would like. But in fact it’s good that the construction is fairly
straightforward, since that partly means that it works well, and computations can
be efficiently done.
Example: Let’s adjoing a cube root of 2 to Z/7. First, note that there is no
cube root of 2 in Z/7. (Check by brute force. Or, by noting that Z/7× is cyclic of
order 6, from earlier basic facts about cyclic groups Z/7× will have only two third
powers, which we can directly observe are ±1, so (by exclusion) 2 can’t be a cube.)

Thus, the cubic polynomial x3 − 2 is irreducible in Z/7[x], since if it were
reducible then it would necessarily have a linear factor, and then x3 − 2 = 0 would
necessarily have a root in Z/7, which it doesn’t, as we check by brute force.

From this discussion, Z/7[x] mod (x3 − 2) is a field, and x-mod-(x3 − 2) is a
cube root of 2. And every element β of this field extension of Z/7 can be uniquely
expressed in the form

β = a0 + a1α + a2α
2

11.5 Multiplicative inverses mod P 197

where we use α as an abbreviation for x-mod-(x3 − 2).

11.3 Addition mod P
Addition in Fp[x]/P is easy: just add the corresponding coefficients of polynomials.
Since the degree of a sum of polynomials is less than or equal the max of their
degrees, the sum of two reduced polynomials is still reduced.

For example, in F2[x]/(x4 + x + 1), adding x3 + x + 1 and x2 + x + 1 gives

(x3 + x + 1) + (x2 + x + 1) = x3 + x2 + 2x + 2 = x3 + x2 mod x4 + x + 1

since 2 = 0.

11.4 Multiplication mod P
Multiplication in Fp[x]/P is ordinary multiplication of polynomials followed by
reduction modulo P .

For example, in F2[x]/(x4 +x+1), multiplying x3 +x+1 and x2 +x+1 gives

(x3 + x + 1) · (x2 + x + 1) = x5 + x4 + 2x3 + 2x2 + 2x + 1

= x5 + x4 + 1 = x2 + 1 mod x4 + x + 1

since 2 = 0 and
(x5 + x + 1)− (x)(x4 + x + 1) = x2 + 1

is the way that the reduction mod x4 + x + 1 of x5 + x4 + 1 is computed.
Again: to multiply modulo P , multiply polynomials in the ordinary way and

then reduce modulo P .

11.5 Multiplicative inverses mod P
This is the most complicated operation, requiring use of the Euclidean algorithm.

Now it is important that the modulus P be irreducible. To find the multi-
plicative inverse of f modulo P , that is, in Fp[x]/P , with f 6= 0 mod P , use the
extended Euclidean algorithm to find polynomials S, T so that

S · f + T · P = 1

Then
S · f − 1 = T · P

so by definition of equality-mod-P

S · f = 1 mod P

That is,
f−1 = S mod P

198 Chapter 11 Finite Fields

Because f is not 0 mod P , and because P is irreducible, the gcd of the two is 1, so
such S, T do exist.

For example, to find the multiplicative inverse of x in F2[x]/(x2 + x + 1), first
do the Euclid Algorithm (which is very quick here)

(x2 + x + 1)− (x + 1)(x) = 1

Thus, already we have the desired expression

(x + 1)(x) + (1)(x2 + x + 1) = 1

from which
(x + 1)(x) = 1 mod x2 + x + 1

In other words,
x−1 = x + 1 mod x2 + x + 1

To find the multiplicative inverse of x2 + x + 1 in F2[x]/(x4 + x + 1), first do
the Euclidean Algorithm

(x4 + x + 1)− (x2 + x)(x2 + x + 1) = 1

Thus, already we have the desired expression

(x2 + x)(x2 + x + 1) + (1)(x4 + x + 1) = 1

from which
(x2 + x)(x2 + x + 1) = 1 mod x4 + x + 1

In other words,
(x2 + x + 1)−1 = x2 + x mod x2 + x + 1

Exercises

11.01 In the field K = (Z/2)[x]/(x2 +x+1) let α be the image of x, and compute
in reduced form α5. (ans.)

11.02 In the field K = (Z/2)[x]/(x2 +x+1) let α be the image of x, and compute
in reduced form α7.

11.03 In the field K = (Z/2)[x]/(x3 +x+1) let α be the image of x, and compute
in reduced form α5. (ans.)

11.04 In the field K = (Z/2)[x]/(x3 +x2 +1) let α be the image of x, and compute
in reduced form α5.

11.05 In the field K = (Z/2)[x]/(x2 +x+1) let α be the image of x, and compute
in reduced form α−1. (ans.)

11.06 In the field K = (Z/2)[x]/(x3 + x + 1) let α be the image of x and compute
in reduced form (1 + α + α2)−1. (ans.)

Exercises 199

11.07 In the field K = (Z/2)[x]/(x5 +x2 +1) let α be the image of x and compute
in reduced form (1 + α + α2 + α3)−1.

11.08 Show that there is no element x ∈ F13 so that x5 = 1 except x = 1.

11.09 Factor x4 − x into irreducibles over F2. (ans.)

11.10 Factor x8 − x into irreducibles over F2. (ans.)

11.11 Factor x16 − x into irreducibles over F2.

12

Linear Codes

12.1 An ugly example
12.2 A better approach
12.3 An inequality from the other side
12.4 The Hamming binary [7, 4] code
12.5 Some linear algebra
12.6 Row reduction: a review
12.7 Linear codes
12.8 Dual codes, syndrome decoding

It turns out to be hard to actually make good codes, meaning that they ap-
proach the bound indicated by Shannon’s Noisy Coding Theorem. (They should
also be relatively easy to encode and decode, in addition to their error-correcting
facility.)

The class of codes easiest to study is that of linear codes, which does include
some fairly good codes, and has enough structure so that encoding and decoding
are not ridiculously complicated.

There are many standard introductory texts and references for coding the-
ory, and we mention only a few: [MacWilliams Sloane 1977], [McEliece 1977],
[Pless 1998], [Pretzel 1999], [Roman 1992], [Wells 1999], [Welsh 1988]. All the
error-correcting coding material in the sequel is treated in most of these. There are
many sorts of codes we have not treated, and these are treated in various of these
sources.

12.1 An ugly example
Before systematically introducing linear codes, we first give a very explicit and
awkward example to illustrate several points. One point is the senselessness of exact
computation rather than robust approximations. Another is the computational
awkwardness of non-linear codes.

Let the codewords be 0001, 0110, and 1100, emitted with equal probabilities.
The Hamming distance between two binary words (of the same length) is defined

200

12.1 An ugly example 201

to be the number of positions at which they differ. Here, the first word is Hamming
distance 3 from the other two, which are Hamming distance 2 from each other.

Suppose that a binary symmetric channel has bit error probability p = 1/10.
Using this code over that channel (or really its fourth extension, so that we send
4 bits at a time) what is the probability of an uncorrectible error? We are
using minimum distance decoding, so the question means what is the probabil-
ity that a codeword will get mangled into a 4-bit word that is closer (in
Hamming distance) to some other codeword than to the original code-
word?

We’ll first compute this in the most obvious but labor-intensive approach.
The naive aspect will be that we’ll try to get an exact answer, but this exactness
will not really be relevant to anything, so is a bit silly. And the more trouble
it takes to preserve this needless exactness the sillier it becomes. So we’ll do a
second computation in which we only get an estimate rather than striving for an
expensive and pointless precision.

Let’s make a table of all possible 4-bit words and their Hamming distances
from the 3 codewords. Each 4-bit word would be decoded/corrected as the closest
codeword to it. The minimum distances are in boldface.

0001 0110 1100
0000 1 2 2
0001 0 3 3
0010 2 1 3
0011 1 2 4
0100 2 1 1 ambiguous decoding
0101 1 2 2
0110 3 0 2
0111 2 1 3
1000 2 3 1
1001 1 4 2
1010 3 2 2 ambiguous decoding
1011 2 3 3
1100 3 2 0
1101 2 3 1
1110 4 1 1 ambiguous decoding
1111 3 2 2 ambiguous decoding

There are exactly 4 cases where there would be ambiguous decoding, that is,
where the minimum distance of the received word to a codeword is achieved for two
different codewords. These received words cannot be corrected (with certainty) in
any case.

A possibly multi-bit error in a 4-bit word is not correctible if either the received
word is one of those whose smallest distance to a codeword occurs for two different
codewords, or if the received word is closer (or equal) to another codeword than to
the original codeword.

The probability that a codeword gets mangled into a given 4-bit word is com-
pletely computable just from knowledge of the number of bit errors that would turn

202 Chapter 12 Linear Codes

the codeword into the received word, that is, from the Hamming distance between
the codeword and the received word. With error probability p, the probability of
a specific 0-bit error in a 4-bit word is (1 − p)4, the probability of a specific 1-bit
error is (1− p)3p, the probability of a specific 2-bit error is (1− p)2p2, of a specific
3-bit error is (1 − p)p3, and of a specific 4-bit error is p4. With p = 1/10, these
numbers are approximately

P (no error) = 0.6561
P (specific 1-bit error) = 0.0729
P (specific 2-bit error) = 0.0081
P (specific 3-bit error) = 0.0009
P (specific 4-bit error) = 0.0001

And note that there are no binomial coefficients appearing here since after all it’s
not just any error that turns a given codeword into a given received word. For
example, to turn codeword 0001 into 0111, there must be bit errors at the two
middle bit positions, and no other errors.

Now rewrite the table above, writing the probabilities that the 4-bit words will
arise as mangled versions of codewords other than the codewords closest to them.
We also include the cases that the received word is closest to two or more codewords.
That is, we are tabulating the probabilities of various mistakes in decoding:

0001 0110 1100
0000 - .0081 .0081
0001 - .0009 .0009
0010 .0081 - .0009
0011 - .0081 .0001
0100 .0081 .0729 .0729 ambiguous decoding
0101 - .0081 .0081
0110 .0009 - .0081
0111 .0081 - .0009
1000 .0081 .0009 -
1001 - .0001 .0081
1010 .0009 .0081 .0081 ambiguous decoding
1011 - .0009 .0009
1100 .0009 .0081 -
1101 .0081 .0009 -
1110 .0001 .0729 .0729 ambiguous decoding
1111 .0009 .0081 .0081 ambiguous decoding

Thus, under each codeword, the probabilities listed are that the codeword will
get mangled into the 4-bit word on the left. The omitted cases are where the
codeword gets slightly mangled, but only into a word that is still closer to the
original codeword than to any other codeword.

Since the codewords are sent with equal probabilities, the probability of an
uncorrectible (or falsely correctible) received word is

1
3
(sum of first column) +

1
3
(sum of second column) +

1
3
(sum of third column)

12.2 A better approach 203

=
1
3
(5 ·0.0081+4 ·0.0009+1 ·0.0001)+

1
3
(2 ·0.0729+6 ·0.0081+4 ·0.0009+1 ·0.0001)

+
1
3
(2 · 0.0729 + 6 · 0.0081 + 4 · 0.0009 + 1 · 0.0001)

(We know that the last two subsums are the same, by symmetry.) This is

1
3
(4 · 0.0729 + 17 · 0.0081 + 12 · 0.0009 + 3 · 0.0001) ≈ 0.1468

That is, the probability of an uncorrectible error is 0.8532.

12.2 A better approach
Now let’s recompute an approximate version of this in a style which avoids keeping
track of so many details. The idea is that with a small bit error probability we
should only pay attention to scenarios in which there are relatively few bit errors.
This is certainly believable, considering that in our previous computation the 0.0009
and 0.0001 certainly didn’t contribute much.

The idea that we don’t need absolute precision can be clarified by thinking of
the context. Note that the rate of this code is

rate =
log2(number codewords)

length codewords
=

log2(3)
4

≈ 0.39624

The only reason to use a code with rate much below 1 would be to try to correct
errors by adding redundancy. To judge the success of an attempt at error correction,
we should make a comparison (for example) to the situation that we’d use all 4-bit
words and see what the probability of uncorrectible error is in that case. In that
case, any error is uncorrectible, so using all 4-bit words as codewords

P (correctible error) = P (no error) = (1− 1
10

)4 ≈ 0.6561

To make a conservative estimate (in a positive sense of the word) of correctible
errors with our code, we can simply compute that sum of the probabilities that
• a codeword is not changed at all (0 bit errors)
• the codeword 0001 is changed by a 1-bit error
• codewords 0110 or 1100 are changed by a 1-bit error other than errors which

give a received word the same distance from 0110 and 1100
These are simple-to-describe situations where the received word is correctible.

It is important to remember the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

for the Hamming distance d(,), which assures that any 4-bit word that differs by a
single bit from 0001 must be at least distance 2 from 0110 and 1100 since

d(0001, 0110) = d(0001, 1100) = 3

204 Chapter 12 Linear Codes

And note that 0110 can be mangled to 0111 or 0010 by 1-bit errors, and that these
are still closer to 0110 than to 1100. Likewise, 1100 can get mangled to 1101 or
1000 which are still closer to 1100 than to 0110. For simplicity, we just ignore
any other possibilities of correctible errors. Thus, we’ll know that the probability
of a correctible error is at least the sum of these probabilities.

Computing:

P (correctible error) ≥ P (no error) + P (0001 sent with any 1-bit error)

+P (0110 sent, 0111 or 0010 received) + P (1100 sent, 1101 or 1000 received)

=
(

9
10

)4

+
1
3

(
4
1

)
1
10

(
9
10

)3

+
1
3
· 2 · 1

10

(
9
10

)3

+
1
3
· 2 · 1

10

(
9
10

)3

=
(

9
10

)4

+
1
3

(4 + 2 + 2)
1
10

(
9
10

)3

≈ 0.6561 + 0.1944 = 0.8505

That is, the probability that an error will be correctible is at least 0.8505.
First, notice that 0.8505 is much higher than the 0.6561 probability of cor-

rectible error (no error) using all 4-bit words. So we’ve already proven that this
code is significantly better in terms of error correction, even though we don’t know
exactly the probability of errors being correctible.

Second, we had earlier computed that the ‘exact’ probability that an error is
correctible is 0.8532. The difference is less than 1% of the actual number. In this
context, such an error of 1% in computing a probability is completely irrelevant!

So we conclude that we could have done the easier second computation and
skipped all the work of constructing complete tables of Hamming distances, etc.,
and all the arithmetic.

12.3 An inequality from the other side
Let’s continue with the idea that with relatively small probability of single-bit error
we can get a very good approximation of probability of uncorrectible error without
looking at the details of errors involving more than one bit.

That is, so far we have computed rather simply that

P (uncorrectible error) ≤ 0.15

This is the right sort of inequality to have for quality assurance. That is, if we
want to convince people that the code is good, we want to be able to guarantee a
limit to the probability of errors.

On the other hand, at the same time, we don’t want to undersell our code: if
we really have probability of error less than 1% we don’t want to only say that the
probability of error is less than 10%. That assertion would be true, of course, but
it would be needlessly weak.

12.4 The Hamming binary [7, 4] code 205

So in the present example let’s see whether we can give a simple computational
approach to show that our approximation

P (uncorrectible error) ≤ 0.15

is not needlessly weak. That is, we’ll find a relatively simple approach to obtain an
inequality of the form

P (uncorrectible error) ≥ number

and hope that the number on the right-hand side is close to 0.15.
We’ll only pay attention to uncorrectible single-bit errors. As a complement

to the earlier discussion of correctible single-bit errors, we know 4 uncorrectible
single-bit errors:
0110 sent 1110 received
0110 sent 0100 received
1100 sent 1110 received
1100 sent 0100 received

These are uncorrectible because they are Hamming distance 1 from both 0110
and 1100. These are disjoint events, so the probability that at least one of them
occurs is the sum of the separate probabilities: this probability is

1
3
· 1
10

(
9
10

)3

+
1
3
· 1
10

(
9
10

)3

+
1
3
· 1
10

(
9
10

)3

+
1
3
· 1
10

(
9
10

)3

≈ 0.0972

Then we can say

P (uncorrectible error) ≥ P (those 4 specific uncorrectible errors) ≈ 0.0972

Combining this inequality with the earlier one, we have

0.0972 ≤ P (uncorrectible error) ≤ 0.15

The right-hand inequality gives a quality assurance, while the left-hand inequality
tells us that we are not wastefully underselling the quality of the code. And, again,
we get this estimate on the probability of an uncorrectible error without looking
at anything beyond single-bit errors.

12.4 The Hamming binary [7, 4] code
Shannon’s theorem on noisy coding gives no indication of how to make good codes
in any systematic manner. Further, there is the additional issue of efficient decoding,
which is not directly addressed by Shannon’s theorem: a code might be very good
at correcting errors, but very expensive in terms of the trouble it takes to do the
decoding. The first constructions of codes that were not only pretty good but also
easily decodable occurred about 1952 and were due to Hamming. By the way, the
notation [7, 4] refers to the fact that the codewords are length 7, while the dimension
(defined precisely later) of the code is 4. The latter roughly means that each 7-bit
codeword carries 4 bits of information.

206 Chapter 12 Linear Codes

Hamming’s binary [7, 4] code starts with an alphabet or vocabulary of the
16 = 24 binary words of length 4: 0001, 0010, 0011, 0100, 0101, 0110, etc. To each
such word abcd (with each of a, b, c, d being 0 or 1) Hamming’s [7, 4] code adds some
redundancy bits in a clever pattern:

abcd becomes abcdefg

where
e = b + c + d

f = a + c + d

g = a + b + d

viewing a, b, c, d as being in the finite field F2. The notation [7, 4] refers to the
fact that the initial source words were all the binary words of length 4, and the
codewords are of length 7.

For example, the Hamming [7, 4] code would encode

1000 → 1000011
0100 → 0100101
0010 → 0010110
0001 → 0001111

The Hamming decoding procedure is one of the good features of this code.
First, we’ll write all the codewords as vectors, like

1000011 = (1, 0, 0, 0, 0, 1, 1)

0100101 = (0, 1, 0, 0, 1, 0, 1)

(Keep in mind that the components of these vectors are in F2.) Define auxiliary
vectors by

r = (0, 0, 0, 1, 1, 1, 1)
s = (0, 1, 1, 0, 0, 1, 1)
t = (1, 0, 1, 0, 1, 0, 1)

(No, it’s not at all clear why these are the right things...) We’ll use the inner
product (also called dot or scalar product) on vectors, defined as usual by the
expression

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + . . . + xnyn

although in the present context all the indicated arithmetic is done inside the finite
field F2 rather than the real or complex numbers. Then for a source word such as
0100 the Hamming [7, 4] code encodes it as x = 0100101, or, equivalently, as the
vector x = (0, 1, 0, 0, 1, 0, 1). Suppose that a binary symmetric channel transmits
the word as y = (1, 1, 0, 0, 1, 0, 1), that is, with a single bit error (in this example it’s

12.4 The Hamming binary [7, 4] code 207

in the first position). To do Hamming decoding, compute the 3 inner products
(in F2!)

y · r = (1, 1, 0, 0, 1, 0, 1) · (0, 0, 0, 1, 1, 1, 1) = 0
y · s = (1, 1, 0, 0, 1, 0, 1) · (0, 1, 1, 0, 0, 1, 1) = 0
y · t = (1, 1, 0, 0, 1, 0, 1) · (1, 0, 1, 0, 1, 0, 1) = 1

Then interpret the triple of inner products as a binary integer:

001 = 0 · 22 + 0 · 21 + 1 · 20 = 1 (in decimal)

The Hamming decoding procedure says that this should be interpreted as indicating
that the received word had a bit error in the first position.

Similarly, suppose that the same word x = (0, 1, 0, 0, 1, 0, 1) was sent, but that
y = (0, 1, 1, 0, 1, 0, 1) was received (that is, with a bit error in the third position).
Then the same computation gives

y · r = (0, 1, 1, 0, 1, 0, 1) · (0, 0, 0, 1, 1, 1, 1) = 0
y · s = (0, 1, 1, 0, 1, 0, 1) · (0, 1, 1, 0, 0, 1, 1) = 1
y · t = (0, 1, 1, 0, 1, 0, 1) · (1, 0, 1, 0, 1, 0, 1) = 1

As a binary integer, the 011 is

011 = 0 · 22 + 1 · 21 + 1 · 20 = 3 (in decimal)

which tells us that the third bit is wrong.
Further, even if two bits change, the Hamming [7, 4] code can detect this,

although a 2-bit error is beyond the power of this code to correct.
Now let’s compare the effectiveness of the Hamming [7, 4] code to the cases of

doing nothing, and also to merely adding a parity-check bit.
On a binary symmetric channel with bit error probability 1/8, with source

words consisting of the 16 binary words of length 4, the word error probability is
simply

word error = 1− probability that no bit is flipped

= 1− (7/8)4 ≈ 1− 0.5862 ≈ 0.4138

That is, there is a quite high chance that a 4-bit word won’t be transmitted intact,
and we’d have no way of knowing.

If we add a parity-check bit, then the probability of an uncorrectable error goes
up, since the parity-check bit itself may get flipped, too. But now we can detect
the presence of a single bit error, but won’t know which bit was changed.

When the Hamming code is used, the probability of a correctable error is the
sum of the probabilities of the cases of no errors and the case of a single bit error:

word error probability = 1−
(

7
8

)7

−
(

7
1

)(
7
8

)6(1
8

)
≈ 1− 0.3436− 0.3436 ≈ 0.2146

208 Chapter 12 Linear Codes

If the bit error probability goes down to 1/12, then the word error probability
with the do-nothing encoding is

1− (11/12)4 ≈ 0.2939

while for the Hamming [7, 4] code it is

1−

((
11
12

)7

+
(

7
1

)(
11
12

)6 1
12

)
≈ 0.1101

With word error further reduced to 1/20, the word error for do-nothing encoding
is

1− (19/20)4 ≈ 0.18549

while for the Hamming [7, 4] code it iss

1−

((
19
20

)7

+
(

7
1

)(
19
20

)6 1
20

)
≈ 0.0444

Remark: The Hamming [7, 4] code can correct single bit errors, by converting
4-bit words into 7-bit words in a clever manner. This is much better than simply
repeating messages, but what about 2-bit errors, etc?

12.5 Some linear algebra
We will need some basic terminology regarding vector and matrix operations. This
will be applied mostly when the entries of the vectors and matrices in question are
in a finite field Fq with q elements. There are subtler underlying issues of well-
definedness which have been relegated to the appendix on linear algebra, in which
linear algebra is treated more abstractly rather than just in terms of matrices and
row and column vectors. But all we need for our immediate purposes is the matrix
version, if one is willing to accept certain foundational results.

Let F denote the ‘scalars’. Thus, F could be the real numbers R, the complex
numbers C, the rational numbers Q, the finite field F2, the finite field Z/p = Fp

for p prime, and other things as well.
Remark: In fact, all this works for a quite broad abstract class of ‘scalars’: F
could be any field. Recall that, as defined earlier in general, a field is a commutative
ring in which every non-zero element has a multiplicative inverse.

A vector of dimension n is an ordered n-tuple of scalars, separated by
commas and with parentheses on the ends. For example, (1, 2, 3, 4, 5, 6, 7) is a
7-dimensional vector, and (0, 0, 1, 0) is a 4-dimensional vector. The set of n-
dimensional vectors with entries in F is denoted

Fn = {n-dimensional vectors over F}

The context should provide adequate clues about what kind of scalars the entries
in a vector are. The scalars in the vector are called the entries or components.

12.5 Some linear algebra 209

Sometimes the ith component of a vector v is denoted by means of a subscript, such
as vi, but this is absolutely not a reliable indicator. It is necessary to pay attention
to the context.

The zero vector (of whatever dimension) is the ordered tuple consisting of all
0s. It is denoted 0. Yes, in real life we are not required to put an arrow on top of
it. We will have to depend upon the context to tell whether ‘0’ refers to a 0-vector
or simply a scalar 0.

The (vector) sum of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is
obtained by adding component-wise:

x + y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

The scalar multiple cx of a vector x = (x1, . . . , xn) by a scalar c is obtained by
multiplying each component by the scalar:

cx = (cx1, . . . , cxn)

A linear combination of a collection of vectors v1, . . . , vt (all of the same
length) is any other vector w expressible as

w = c1v1 + c2v2 + . . . + ctvt

with scalars c1, . . . , ct. A collection v1, . . . , vt of vectors (all of the same length) is
linearly dependent if there is some linear combination (not with all coefficients
cis being 0) which is the zero vector:

0 = c1v1 + c2v2 + . . . + ctvt

Likewise, a collection v1, . . . , vt of vectors (all of the same length) is linearly in-
dependent if there is no linear combination (except that with all coefficients 0)
which is the zero vector.
Example: In F 3 the 2 vectors u = (1, 0, 0) and v = (0, 1, 0) are linearly indepen-
dent. We can verify this by solving for scalars x, y in the equation

(0, 0, 0) = xu + yv = x(1, 0, 0) + y(0, 1, 0)

That is, by carrying out the indicated operations, we must solve

(0, 0, 0) = (x, y, 0)

Since two vectors are equal if and only if all their components are equal,
this equality can hold if and only if both x = 0 and y = 0. This proves that the
two given vectors are linearly independent.
Remark: In general, it requires some work to check linear independence, or to
express a given vector as a linear combination of some given ones, or even to
ascertain whether there exists such an expression without necessarily finding it. The

210 Chapter 12 Linear Codes

row reduction (Gaussian elimination) of the next section will provide one systematic
approach.

The dot product or scalar product or inner product of two vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) is

x · y = x1y1 + x2y2 + . . . + xnyn

Say that two vectors are orthogonal if their dot product is 0.
Remark: When the scalars are real numbers or complex numbers, the dot product
has geometric significance, but when the scalars are F2 or other things, the geomet-
ric interpretation is less elementary. Likewise, while 2-dimensional or 3-dimensional
vectors over the real numbers have popular and important physical interpretations
as arrows or points in the plane or space, we have no such interpretation here. But
the mathematical operations are the same.

For positive integers m and n, an m-by-n matrix with entries in F is simply
a block of numbers with m rows and n columns, with big parentheses enclosing it.
The ijth entry or component is the entry in the ith row and jth column. For
matrix M , very often the ijth component is denoted by Mij . For example,

M =
(

11 12 13
21 22 23

)
is a 2-by-3 matrix. Here M11 = 11, M12 = 12, etc.

The diagonal of a matrix M is the upper-left to lower-right diagonal, consist-
ing of the entries M11, M22, M33, etc.

The transpose M t of an m-by-n matrix M is an n-by-m matrix obtained by
flipping M across the diagonal, whose ijth entry is the jith entry of the original.
For example, (

11 12 13
21 22 23

)t

=

 11 21
12 22
13 23

The size-n identity matrix In is the n-by-n matrix with 1s on the diagonal

and 0s off the diagonal. For example,

I1 = (1)

I2 =
(

1 0
0 1

)
I3 =

 1 0 0
0 1 0
0 0 1

I4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Notice that this makes sense regardless of what kind of scalars we are using. At
the same time, looking at an identity matrix doesn’t give any clue as to what the
scalars are. The n-by-n zero matrix consists entirely of zeros.

12.6 Row reduction: a review 211

A row vector of dimension n is a 1-by-n matrix. A column vector of
dimension n is an n-by-1 matrix. Sometimes for typographical or other reasons
the entries in a row vector are separated by commas: for example,

(1 2 3 4 5) = (1, 2, 3, 4, 5)

Remark: In any case, the idea of a vector as ordered n-tuple is slightly more
abstract than the tangible notational manifestations as ‘row’ or ‘column’ vectors.
For most purposes, there is little reason to try to worry about whether a vector is
‘naturally’ a row vector versus column vector. We will consider these as just being
different notational devices for the same underlying thing.

12.6 Row reduction: a review
Row reduction is one of the fundamental algorithms in linear algebra, arising in

many contexts.
Elementary row operations are simple transformations of matrices which

are best described by treating the rows of the matrix as vectors. The elementary
row operations are:
• Adding a scalar multiple of one row to another row
• Multiplying a row by a non-zero scalar
• Interchanging two rows

Elementary column operations are analogous simple transformations of
matrices which are best described by treating the columns of the matrix as vectors.
The elementary column operations are:
• Adding a scalar multiple of one column to another column
• Multiplying a column by a non-zero scalar
• Interchanging two columns

It is sometimes very useful to realize that row operations on a matrix M
correspond to matrix multiplication of M on the left by certain special matrices.
For example, interchanging the second and third rows of the 3-by-2 matrix

M =

 a b
c d
e f

is the same as left-multiplying M by 1 0 0

0 0 1
0 1 0

As another example, adding t times the third row of M to the first row of M is
achieved by left-multiplying M by 1 0 t

0 1 0
0 0 1

212 Chapter 12 Linear Codes

(To prove that this is so in general is an exercise in notation and the definition of
matrix multiplication.)

The row space of an m-by-n matrix M is the subset of Fn consisting of all
linear combinations of rows of M (viewed as n-dimensional vectors). Similarly, the
column space of an m-by-n matrix M is the subset of Fm consisting of all linear
combinations of columns of M (viewed as m-dimensional vectors).

An m-by-n matrix matrix M is (strongly) row reduced if the following
slightly complicated but important condition is met. Look at the ith row of M ,
which has entries Mi1, Mi2, . . ., Mi n. If all these entries are 0, then there is
no condition. If not all these entries are 0, let ji be the smallest integer so that
Miji 6= 0. Call this the leading entry of the ith row, or pivot in the ith row. For
M to be (strongly) row reduced we require that for every row index i

Mi ji = 1

and
Mi′ ji

= 0 for i′ 6= i

Further, we require that
ji < ji′ for i < i′

In words, the pivot in each row is 1, and the entries above and below each pivot are
0s. Further, as we go down the rows, the leading entries occur further and further
to the right.

There is also a more relaxed definition of row reduced which needs less labor
to obtain, and is sometimes good enough for applications. Using the terminology
above, for M to be (weakly) row reduced we require that for every row index i

Mi ji
= 1

and
Mi′ ji

= 0 for i′ > i

Further, we require that
ji < ji′ for i < i′

In words, the pivot in each row is 1, and the entries below each pivot are 0s. Further,
as we go down the rows, the leading entries occur farther and farther to the right.

The only difference between the two notions of ‘row reduced’ is that in the
latter, weaker sense the entries above a pivot are not required to be 0. For example,
the matrix 1 0 0 0 1 1

0 1 0 0 1 0
0 0 0 1 1 1

is row reduced (in the strong sense): the leading entry in the top row occurs in the
first column, and all the other entries in the first column are 0. The leading entry in
the second row occurs in the second column, and all the other entries in the second
column are 0. The leading entry of the third row occurs in the fourth column,

12.6 Row reduction: a review 213

and all other entries in that column are 0. The fact that the third column is all
0s is irrelevant. Also, the contents of the fifth and sixth columns are irrelevant to
the question of whether or not the matrix is row-reduced. And the leading entries
occur farther and farther to the right as we go down the rows. On the other hand,
the matrix 1 0 0 0 1 1

0 1 0 0 1 0
1 0 0 1 1 1

is not row reduced (in either sense): in the first column there are two 1s. That is,
the leading entry in both the first and third row occurs in the first column. Also,
the matrix 0 0 1 0 1 1

0 1 0 0 1 0
1 0 0 1 1 1

is not row reduced, since the leading entries do not occur farther to the right as we
move down the rows. That is, the leading entry in the second row is in the second
column, which is farther to the left than the leading entry of the first row, which is
in the third column. Likewise, the leading entry of the third row occurs still farther
to the left of the leading entry in the second column.
• Elementary row operations can be used to put a matrix into row-

reduced form (in either the stronger or the weaker sense). Reasonably
enough, the process of doing elementary row operations to put a matrix into
row-reduced form is called row reduction.

(Strong) row reduction is easy to illustrate in an example. Let’s start with the
matrix 0 1 1 0 1 1

1 1 1 0 1 0
1 0 0 1 1 1

with entries in the field with two elements F2. First look in the first column: there
is a non-zero entry, but it’s not in the first row, so we interchange the first and
second rows, to get 1 1 1 0 1 0

0 1 1 0 1 1
1 0 0 1 1 1

to make a non-zero entry occur in the first row. (We could also have interchanged
the first and third rows.) Then, since there is still a non-zero entry in the third
row, we subtract the first row from the third, obtaining 1 1 1 0 1 0

0 1 1 0 1 1
0 1 1 1 0 1

So the first column looks the way it should.

Next, look in the second column, but only below the first row. There are two
1s, and in particular there is a 1 in the second row, so we don’t need to interchange

214 Chapter 12 Linear Codes

any rows. Thus, the leading term in the second row occurs in the second column.
But there are two other non-zero entries in the second column (in both first and
third rows), so we subtract the second row from both first and third rows, obtaining 1 0 0 0 0 1

0 1 1 0 1 1
0 0 0 1 1 0

So the second column is arranged the way it should be. The third row has its
leading entry not in the third column, but in the fourth. (So we just don’t worry
about what’s going on in the third column.) And, in fact, the other entries of the
fourth column are already 0s, so we don’t have to do any further work. That is,
the matrix is now in row-reduced form.

Remark: The weaker version of row reduction merely omits some work by not
bothering to do the row operations to make the entires above a pivot 0. This ap-
proximately cuts in half the total number of operations necessary, and is sometimes
a good-enough version of row reduction.

Remark: The term row reduced in the literature is ambiguous, and one must look
at the context to discern whether it is strongly or weakly row reduced. For many
purposes it does not matter much which sense is taken.

We can describe the row-reduction process for an m-by-n matrix M a little
more abstractly. Start with two auxiliary indices s, t both set equal to 1. While
s ≤ m and t ≤ n repeat the following:
• If the s, s + 1, s + 2, . . . ,m entries in the tth column are all 0, replace t by

t + 1 and restart this block.
• Else if the (s, t)th entry is non-zero, divide the sth row by the (s, t)th entry

and then go to the next block.
• Else if the (s, t)th entry is 0, but the (s′, t)th entry is non-zero (with s′ > s),

then divide the s′th row by the (s′, t)th entry, interchange the sth and s′th

rows, and go to the next block of operations.
• For every s′ 6= s, if the (s′, t)th entry is not 0, then subtract (s′, t)th-entry

times the sth row from the s′th row. (This applies also to the indices s′ < s.)
• After all these subtractions, replace s by s + 1.
• Go back to the previous block (as long as s ≤ m).

When finally s = m + 1 or t = n + 1, the matrix will be in row-reduced form.

Remark: In the special case that the field is F2, the above process is simpler,
since any non-zero element is already 1, so no division is ever necessary.

Remark: Again, if the weaker version of row reduction will suffice in a given
application, then simply don’t bother to subtract a lower row from a higher row.
That is, don’t bother to do the row operations to make entries above a pivot 1.

Remark: Most often these algorithms are studied in contexts in which floating-
point real numbers are used. In that setting, the issue of loss of precision is critical.
But in the present scenario, as well as when computing with ‘numbers’ from ar-
bitrary finite fields, we effectively have infinite precision, so we need not worry

12.6 Row reduction: a review 215

about round-off error, etc. This avoids many of the technical worries which require
lengthy consideration in the floating-point case.

One problem we need to solve is the following: let

v1 = (v11, v12, . . . , v1,n)
v2 = (v21, v22, . . . , v2,n)
v3 = (v31, v32, . . . , v3,n)

. . .
vm = (vm1, vm2, . . . , vm,n)

be n-tuples of elements of a field k. The field k may be the rational numbers Q,
the real numbers R, finite fields Fp = Z/p (with p prime), or any other field. We
will operate as though we know the numbers exactly, or as some would say with
infinite precision. This hypothesis is usually not fulfilled if the numbers are real
numbers which arise from measurements, but for our applications this hypothesis
will hold.

The question is to find a linear dependence relation (if any exists) among
the vectors vi. That is, we want to find elements c1, . . . , cm in k, not all 0, so that

c1v1 + . . . + cmvm = 0 (zero vector)

where the indicated multiplications are scalar multiplication

c · (x1, x2, . . . , xn) = (cx1, cx2, . . . , cxm)

and the 0 on the right-hand side is the zero vector

0 = (0, . . . , 0)︸ ︷︷ ︸
n

of size n. The dimension of vectors represented as n-tuples is (as expected) n.
Remark: In a systematic development of basic linear algebra, one of the first
results proven would be that if the number of vectors is greater than the dimension,
then there is a linear dependency relation. We will not directly use this fact, except
to assure ourselves that the algorithm we present does what it claims to do. This
fact is proven in the appendix on linear algebra.

First, we form an m-by-n matrix from the components of the vectors: let

M =

v11 v12 . . . v1,n

v21 v22 . . . v2,n

v31 v32 . . . v3,n

. . .
vm1 vm2 . . . vm,n

Recall that an m-by-m identity matrix Im is an m-by-m matrix with 1s on the
(upper-left to lower-right) diagonal and 0s off this diagonal:

Im =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1

216 Chapter 12 Linear Codes

Then form a larger matrix from M by sticking an m-by-m identity matrix onto
its right end: from now on we look at the matrix

M̃ =

v11 v12 . . . v1,n 1 0 0 . . . 0
v21 v22 . . . v2,n 0 1 0 . . . 0
v31 v32 . . . v3,n 0 0 1 . . . 0

. . .
vm1 vm2 . . . vm,n 0 0 0 . . . 1

That identity matrix (or, really, what it turns into subsequently) will keep track of
the operations we perform. This type of larger matrix created from M is sometimes
called an augmented matrix, but this terminology is nonspecific so you shouldn’t
rely upon it.

The goal is to do elementary row operations until the matrix M (as a part
of the larger matrix M̃) has one or more rows which are all 0s, if possible. (The
identity matrix stuck onto M on the right can never have this property...) That is,
the leftmost m entries of one or more rows of M̃ should be 0, if possible.

Doing the weak version of row reduction will accomplish this. We go through
it again: Starting in the leftmost column, if the top entry is 0, but if there is some
entry in the first column that is non-zero, interchange rows to put the non-zero
entry at the top. Divide through by the leftmost entry in the (new) first row so
that the leftmost entry is now 1. Let ai1 be the leftmost entry in the ith row. Then
for i > 1 subtract ai1 times the top row from all other rows. This has the effect of
making all entries in the first column 0 except for the top entry. (If the leftmost or
any other column is all 0s, just ignore it.)

Next look at the second column. If necessary, interchange the second row with
another row below it in order to arrange that the second entry of the second row is
not 0. (The first entries of all rows below the top one have already been made 0.)
Divide through the second row by the second entry, so that the second row starts
0, 1. Let ai2 be the ith entry from the top in the second column. Then subtract ai2

times the second row from all lower rows.
Continue this with the third, fourth, up to mth columns, or until any remaining

among the first m columns are all 0s. Suppose that the row-reduced version of M̃
is

M̃red = (Mred A)

where the Mred is the reduced version of M , and the m-by-m matrix A is what Im

turns into by this process.
Let wi be the left n entries of the ith row of the new matrix Mred. (So these

are length-n row vectors.) Then what we have is

A

v1

v2

. . .
vm

 =

w1

w2

. . .
wm

If m > n, then at least the last m−n of the wis will be the zero vector. For example
wm will certainly be the length-n zero vector. That is, we have

am1v1 + am2v2 + am3v3 + . . . + ammvm = (0, . . . , 0)

12.6 Row reduction: a review 217

It is important that (due to the way we obtained the matrix A) for each index i at
least one aij is nonzero.

In other words, we have found a linear combination of the vectors vi

which is zero. (And not all the coefficients in the linear combination are zero.)
Further, it may happen that there is more than one row of the reduced matrix

Mred which is all 0s. So, quite generally, if the ith row of Mred is all 0s, then

ai1v1 + ai2v2 + ai3v3 + . . . + aimvm = (0, . . . , 0)

A numerical example: Find a (non-trivial) linear dependence relation among
the five 4-dimensional binary vectors

1101, 1011, 1100, 1111, 0110

First, stack these up as the rows of a matrix
1 1 0 1
1 0 1 1
1 1 0 0
1 1 1 1
0 1 1 0

and then form the augmented matrix by sticking a 5-by-5 identity matrix onto the
right of the previous:

1 1 0 1 1 0 0 0 0
1 0 1 1 0 1 0 0 0
1 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 1 0
0 1 1 0 0 0 0 0 1

Now do (weak) row reduction. We already have the proper pivot in the first row,
so subtract the first row from the second, third, and fourth (but not fifth) to make
the other entries in the first column 0:

1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 1 0 0
0 0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 0 1

The pivot in the second row is already prepared as well. Then we want to make
all the lower entries in the second column 0. (We don’t care about the higher ones
because we’re doing the weaker form of row reduction.) Thus, just subtract the
second from the last row:

1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 1 0 0
0 0 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0 1

218 Chapter 12 Linear Codes

In the third column to get a pivot into the right spot we must interchange the third
and fourth rows:

1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 0 1 0 0 1 0
0 0 0 1 1 0 1 0 0
0 0 0 0 1 1 0 0 1

In this case all the entries below that 1 in the (3, 3) position are already 0s, so no
subtractions are necessary. In the fourth column the pivot is already in the right
spot, and there is only a 0 below it, so no subtractions are necessary. Likewise, in
the fifth column we already have a pivot, and no subtractions are necessary.

By this point, looking at the left 4 columns only of this big reduced matrix
(since the original vectors were length/dimension 4):

1 1 0 1
0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

we see that we succeeded in getting a row of 0s along the bottom. Thus, taking the
bottom row 11001 of the right part of the large reduced matrix as coefficients for a
linear combination of the original vectors, we have (as predicted)

1× 1101 + 1× 1011 + 0× 1100 + 0× 1111 + 1× 0110 = 0000

This is the desired linear dependency relation.

12.7 Linear codes
Linear codes form the simplest class of codes, both because they are analyzable,
and because they are reasonable to implement. The alphabet used is a fixed choice
of a finite field GF (q) = Fq with q elements. The special case of GF (2) = F2 is
the case of binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n ma-
trix with entries in the finite field Fq, whose rows are linearly independent. Two
generating matrices G1 and G2 are equivalent if one can be transformed into the
other by elementary row operations and by permuting columns. A k-by-n generat-
ing matrix is in standard form or systematic form or (strong) row-reduced
form or reduced echelon form if it is of the form

G = (IkA)

where Ik is the k-by-k identity matrix, and A is a k-by-(n− k) matrix. The code
generated by G is, by definition, the row space of G.

12.7 Linear codes 219

Example: The generating matrix for the Hamming binary [7, 4] code has standard
form

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

Proposition: Any k-by-n generating matrix G can be put in standard form by
elementary row operations and by permuting columns. The resulting standard form
is called a standard form of G.

Proof: We will take for granted that row reduction can put any matrix into a
(strongly) row-reduced form. (One could prove this by induction.) That is, each
non-zero row begins with a 1, that 1 has only 0s above and below it, and, last,
these leading 1s are farther and farther to the right as one goes down the rows. By
permuting the columns we may move the columns in which these leading 1s occur
as far left as possible, putting the matrix into a form like

1 0 0 . . . 0 ∗ . . . ∗
0 1 0 . . . 0 ∗ . . . ∗
0 0 1 . . . 0 ∗ . . . ∗
...

...
...

. . .
...

...
...

0 0 0 0 1 ∗ . . . ∗
0 0 0 0 0 0 . . . 0
...

...
... 0

...
...

...
0 0 0 0 0 0 . . . 0

That is, the upper left corner is an identity matrix, to the right of this there is an
unpredictable rectangular matrix, and below these everything is 0. If not for the
possibility of rows of 0s at the bottom, this would be the desired form.

The hypothesis that the k rows of the original matrix are linearly independent
will assure that there can be no rows of 0s. Elementary row operations do not
change the row space, and permutations of columns do not change the dimension
of the row space. Thus, the dimension of the row space of the matrix above must
still be k, the number of its rows. Thus, since dimension of a vector (sub-) space
is well-defined, it cannot be that a k-dimensional space is spanned by fewer than k
non-zero vectors. That is, there can be no rows of 0s in the reduced form. Thus,
with suitable permutations of columns, we have the standard form as claimed. ///

For a generating matrix G of size k-by-n, the associated linear [n, k]-code C
consists of all linear combinations of rows of G other than the zero vector. That
is, the codewords of the code C are exactly the vectors in kn which are linear
combinations of the rows of G. Such codes are linear codes. The set of all linear
combinations of rows of a matrix is the row space of the matrix.

Remark: A not-necessarily linear code over alphabet Fq is any subset of Fn
q , as

opposed to being describable as a row space, as in the case of linear codes.

220 Chapter 12 Linear Codes

If G is in standard form, then the first k entries of a codeword are called the
information positions or information symbols, and the remaining n−k entries
are called the parity check positions or parity-check symbols.

Associated to a k-by-n generating matrix G is an encoding (map)

f : Fk
q → row space of G

defined by
f(v1, v2, . . . , vk) = (v1 v2 v3 . . . vk) G

Thus, the source words are taken to be all k-length words over Fq (other than all
0s), and the encoding is by n-length words over Fq.
Remark: In the special case that the code is binary, instead of saying ‘k-length’
and ‘n-length’, we can say ‘k-bit’ and ‘n-bit’.
Remark: Note that if G is in standard form then the first k positions of the
encoded word are the same as the word itself:

f(v1, v2, . . . , vk) = (v1, v2, . . . , vk, . . .)

Therefore, for G in standard form, the information positions of a vector in the
associated code completely determine the parity-check symbols. In particular, if

G = (Ik A)

and v = (v1, . . . , vk) is a k-tuple of scalars, then (viewing v as a row vector)

f(v) = vG = v(Ik A) = (vIk vA) = (v vA)

That is, the parity-check positions are obtained from the information positions by
matrix multiplication.
Remark: In general, for a k-by-n generating matrix G not necessarily in standard
form, a bunch of k indices i in the range 1 ≤ i ≤ n is called a set of information
positions if values of a codeword at these entries completely determines the other
symbols in the codeword. A code is called systematic on a set of positions if that
set of positions is a set of information positions for the code.

As defined earlier, the (Hamming) distance between two vectors v =
(v1, . . . , vn) and w = (w1, . . . , wn) in Fn

q is the number of indices i so that

vi 6= wi

This is not the usual notion of distance, but it is appropriate for linear codes.
And, again, the Hamming weight of a binary vector is the number of non-zero
components (that is, the number of components which are 1). The minimum
distance of a linear [n, k] code C is the minimum of d(v, w) for two vectors v, w in
C. (Recall that a linear [n, k] code is a particular kind of subset of Fn

q , being the
row space of a generating matrix.)

12.7 Linear codes 221

Proposition: The Hamming distance on Fn
q has the formal properties of a dis-

tance function: for u, v, w ∈ Fn
q ,

• Positivity: d(v, w) ≥ 0.
• Symmetry: d(v, w) = d(w, v).
• Positivity: d(v, w) = 0 if and only if v = w.
• Triangle inequality: d(u, w) ≤ d(u, v) + d(v, w) if and only if v = w.

Proof: The first three assertions are immediate. The reason the fourth is true is
that if u and w differ at the ith position, then any vector v must differ from at least
one of the two at the ith position. ///

Minimum distance decoding of a code C is done by choosing the closest
vector x in C to a received word y, using the Hamming distance, and declaring
y as the decoding of x. (If there are two closest codewords, then either pick one
arbitrarily, or ‘refuse’ to decode.)
Remark: There still remains the issue of how to do the decoding efficiently. We’ll
address this shortly in discussing so-called syndrome decoding.

As earlier, let floor(t) denote the floor function of t, which is the largest
integer less-than-or-equal t, for real numbers t.
Theorem: Using minimum distance decoding, a linear code C with minimum
distance d can correct floor(d−1

2) errors, and detect floor(d
2) errors.

Proof: Suppose a transmitted vector x is received as y, with e symbol errors, with
e ≤ floord−1

2 . That is, since e is an integer, e ≤ d−1
2 , or 2e ≤ d− 1, so 2e < d. The

first claim is that there is no other codeword x′ as close to y as y is to x. That is,
we claim that

d(x, y) < d(x′, y)

for every codeword x′ other than x. Suppose, to the contrary, that d(x′, y) ≤ e as
well. We use the triangle inequality (proven just above) in a slightly clever (but
completely standard!) way:

d(x, x′) ≤ d(x, y) + d(y, x′) ≤ e + e = 2e

But this contradicts
2e < d ≤ d(x, x′)

Thus, it could not have been that y was as close to x′ as to x. Thus, with 2e < d,
e symbol errors can be corrected by minimum-distance decoding.

Similarly, if e ≤ floor(d
2), then 2e ≤ d. To be sure to detect this error, it must

be that y is still at least as close to x (in Hamming distance) as y is to any other
codeword. That is, it must be that

d(x, y) ≤ d(x′, y)

for every other codeword x′. Suppose, to the contrary, that d(x′, y) < e. Then we
use the triangle equality as we did just above:

d(x, x′) ≤ d(x, y) + d(y, x′) < e + e = 2e

222 Chapter 12 Linear Codes

But this contradicts
2e ≤ d ≤ d(x, x′)

Thus, it could not have been that y was closer to x′ than to x. Thus, with 2e < d,
e symbol errors can be corrected by minimum-distance decoding. ///

Proposition: For linear codes C, the minimum distance of C is also equal to

min
v∈C

Hamming weight(v)

Proof: Let x = (x1, . . . , xn) and y = (y1, . . . , yn). The Hamming distance d(x, y)
is defined to be the number of indices i so that xi 6= yi. This is the same as the
number of indices so that xi − yi 6= 0. Since the code is linear, x − y is another
codeword. ///

Remark: It remains to see a practical approach to decoding. The syndrome
decoding below is not so bad. The more serious issue is finding good codes.

12.8 Dual codes, syndrome decoding
For linear codes there is a not-so-bad decoding method, called syndrome decod-
ing. (In colloquial English, a syndrome is a group of related or coincident things.)
This is just the beginning of a study of vastly better and vastly subtler decoding
algorithms.

The proofs of several of the results here are not trivial, being roughly equivalent
to some standard results from linear algebra, proven in the appendix on linear
algebra. Thus, the proofs here relate the problems at hand to more standard linear
algebra issues rather than proving things from scratch.

Let G be a generating matrix for a linear [n, k] code C over alphabet Fq. The
dual code C⊥ is defined to be

C⊥ = {w ∈ Fn
q : v · w = 0 for all v ∈ C}

Proposition: The dual of a linear [n, k] code over Fq is a linear [n, n − k] code
over Fq.

Proof: In the terminology of the appendix on linear algebra, for fixed vector w of
length n, the map v → v · w is a linear functional on the vector space of length-n
vectors. That is, we are identifying the dual space V ∗ of the space V of all length-
n vectors with V itself via the dot product. Thus, with this identification, the
dual code is the orthogonal complement of the original code, in the sense of that
appendix. And, from that appendix, we have the relation

dim C + dim C⊥ = n

Thus, for dim C = k, we have dim C⊥ = n− k. ///

12.8 Dual codes, syndrome decoding 223

Theorem: For a linear code C, the dual code of the dual code is again C itself.
In symbols:

(C⊥)⊥ = C

Proof: The fact that the second dual of a subspace W is W itself again is proven
in the appendix on linear algebra. ///

Proposition: If G is in standard form G = (Ik A), then a generating matrix G⊥

for the dual code C⊥ to the code C associated to G is

G⊥ = (−At In−k)

Proof: Multiplying matrices in blocks, we have

G (G⊥)t = (Ik A) (−At Ik)t = (Ik A)
(
−A
Ik

)
= −A + A = 0k

Thus, the rowspace of (−At Ik) is a subspace of the orthogonal complement to
the rowspace of G. On the other hand, from the appendix on linear algebra, if the
rowspace of (−At Ik) is strictly smaller than the orthogonal complement to the
rowspace of G, then (reversing order of inclusion)

(rowspace (−At Ik))⊥ ⊂ ((rowspace G)⊥)⊥

but
(rowspace (−At Ik))⊥ 6= ((rowspace G)⊥)⊥

Recall also from the appendix that

G⊥⊥ = G

Thus, if the rowspace of (−At Ik) is strictly smaller than the orthogonal comple-
ment to the rowspace of G, then

(rowspace (−At Ik))⊥ ⊂ rowspace G

but
(rowspace (−At Ik))⊥ 6= rowspace G

But the same reason as in the beginning of this proof shows that

(rowspace (−At Ik))⊥ ⊃ rowspace G

Thus, in fact
(rowspace (−At Ik))⊥ = rowspace G

which proves the result. ///

224 Chapter 12 Linear Codes

Let y1, . . . , yn−k be the rows of a generating matrix for the dual code C⊥ of a
linear [n, k] code C over Fq. Then the last result implies that a vector x in Fn

q is
in the code C if and only if

v · yi = 0 for all yi

Each such condition is a parity-check condition for v to lie in C. An entire
generating matrix H for the dual code is called a (parity) check matrix for the
original code. Note that a parity-check matrix for an [n, k] code is (n − k)-by-n.
And the simultaneous conditions imposed by all the separate parity-check equations
is equivalent to the matrix equation

v Ht = 0

where the last 0 is a zero vector.
For a code C with parity-check matrix H, for v ∈ Fn

q the vector

v Ht (matrix multiplication)

is the syndrome of v. By the theorem above that asserts that the dual of the dual
is the original code, the syndrome xHt of a codeword x is the zero-vector. Thus, if
a vector y is received which is a codeword x with an error vector e added,

y = x + e

then the syndrome of y and e are the same, as is easily verified by a little algebra:

yHt = (x + e)Ht = xHt + eHt = 0 + eHt = eHt

since xHt = 0 (because x is a codeword).
A coset or syndrome of C in Fn

q is a subset of Fn
q of the form (with fixed

vo ∈ Fn
q)

{vo + v : v ∈ C}

The standard notation for this coset (equivalently, syndrome) is

vo + C = {vo + v : v ∈ C}

This is also called the vo
th coset or syndrome of C.

Proposition: Let C be a binary linear [n, k] code. For vectors v, w in Fn
2 ,

• A vector v is in C if and only if v + C = C.
• If (v + C) ∩ (w + C) 6= φ, then v + C = w + C.
• There are exactly 2n−k distinct cosets (syndromes) of C.

Proposition: Fix an n-bit binary linear code C in Fn
q . For a sent codeword x

received as vector y with error e = y − x, we have an equality of cosets

e + C = y + C

12.8 Dual codes, syndrome decoding 225

To prepare in advance for syndrome decoding, in each coset e+C choose a
vector emin of smallest Hamming weight. This vector is called a coset leader
in e + C. It may happen that there is more than one coset leader (that is, vector
of minimal weight). In that case choose from among the coset leaders (minimal
weight vectors in that coset) at random.
Remark: The coset leaders for a given code C only need to be computed once
for a given code, rather than being recomputed each time the code C is used.

Then the syndrome decoding procedure is as follows. Given a received
vector y ∈ Fn

q , let emin be a coset leader in the coset y + C, and decode y as
y − emin.
Proposition: The coset y + C is uniquely determined by the syndrome yH>,
where H is a check matrix for the linear code C.

Proof: On one hand, if y + C = z + C then y + 0 = z + w for some w ∈ C, then
y − z = w is a codeword, and (y − z)H> = 0. That is, by matrix algebra, yH> =
zH>. On the other hand, this argument is reversible. That is, if yH> = zH>,
then (y− z)H> = 0. Since wH> = 0 if and only if w is a codeword, y− z = w is a
codeword. Thus, y = z + w and

y + C = {y + v : v ∈ C} = {z + w + v : v ∈ C} = {z + v : v ∈ C} = z + C

since C is closed under addition. ///

Thus, in our one-time initial computation, we compute eH> for each of the
coset leaders e, and when we receive a word y we compute yH> and compare to
the list of values eH> for coset leaders e. By the previous proposition the value
yH> will match exactly one of the values eH>, and we decode y as y − e.
Remark: An obvious approach to implementing the decoding of any code is simply
to make a look-up table which tells how to decode every possible received vector.
But for an n-bit code this gives 2n look-up entries. By contrast, syndrome decoding
achieves a significant improvement, needing ‘only’ 2n−k look-up entries associated
to each of the possible values yH>.
Theorem: Syndrome decoding is equivalent to minimum-distance decoding
(which is equivalent to maximum-likelihood decoding), assuming that the bit error
probability is less than 1/2.

Proof: Note that of course the hypothesis that the bit error probability is less
than 1/2 would hold in any interesting or realistic situation.

The first assertion is straightforward, as follows. Given a received word y, let
e be a coset leader for the coset y + C. That is, e ∈ y + C and e has minimum
Hamming weight for all words in that coset y + C. Write e in the form y + x for
x ∈ C. Then syndrome decoding says to decode y as y − e, which is

y − e = y − (y + x) = −x ∈ C

The Hamming distance from y to −x is the Hamming weight of

y − (−x) = y − (y − e) = e

226 Chapter 12 Linear Codes

Thus, minimizing the Hamming weight of e is equivalent to minimizing the Ham-
ming distance from y to an element x ∈ C. This makes the equivalence of syndrome
decoding and minimum distance decoding clear. (And we had earlier verified the
equivalence of minimum distance decoding and maximum likelihood decoding.) ///

Remark: Of course a coset y+C with more than one coset leader is bad, because
the presence of more than one coset leader means that maximum likelihood decoding
is ambiguous, so has a good chance of failure, in the sense that such an error is
detected but cannot be corrected. But this is inescapable for the worst cosets in
most codes.

Exercises

12.01 Encode the 4-bit word 1101 using the Hamming [7, 4] code.

12.02 Decode the 7-bit word 1101111 using the Hamming [7, 4] code.

12.03 What is the rate of the Hamming [7, 4] code? (ans.)

12.04 What is the word error probability using the Hamming [7, 4] code and a
binary symmetric channel with bit error probability 1/6?

12.05 Express (1, 2) as a linear combination of (3, 4) and (5, 7) (with real scalars).
(ans.)

12.06 Express (2, 1) as a linear combination of (3, 4) and (5, 7) (with
rational scalars).

12.07 Express (1, 2, 3) as a linear combination of (8, 3, 2), (4, 2, 1), (3, 1, 1) (with
rational scalars).

12.08 Express (1, 0, 1) as a linear combination of (8, 3, 2), (4, 2, 1), (3, 1, 1) (with
rational scalars). (ans.)

12.09 Express (1, 1, 1) as a linear combination of (1, 0, 1), (0, 0, 1), (0, 1, 1) (with
scalars F2). (ans.)

12.10 Express (1, 0, 1) as a linear combination of (1, 1, 1), (0, 1, 1), (1, 1, 0) (with
scalars F2).

12.11 Express (1, 0, 1, 1) as a linear combination of (1, 1, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 1) (with scalars F2). (ans.)

12.12 Express (1, 1, 0, 1) as a linear combination of (1, 0, 0, 1), (0, 1, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 1) (with scalars F2).

12.13 What is the rate of a binary linear [n, k] code?

12.14 Let

G =
(

1 0 0 1
0 1 1 1

)
be a generator matrix for a binary linear code C. What is the minimum
distance of the code C? How many errors can it detect? How many errors
can it correct? (ans.)

Exercises 227

12.15 Let

G =

 1 0 0 0 1 1
0 1 1 1 0 1
0 0 1 1 1 0

be a generator matrix for a code C. What is the minimum distance of the
associated binary linear code? How many errors can it detect? How many
errors can it correct?

12.16 Let C be the binary linear code with parity-check matrix

H =
(

1 1 1 0
0 1 0 1

)
Compute the syndrome of the received vector y = (1 1 0 1). (ans.)

12.17 Let C be the binary linear code with parity-check matrix

H =
(

1 1 1 0
0 1 0 1

)
Compute the syndrome of the received vector y = (1 0 0 1).

12.18 Let C be the binary linear code with parity-check matrix

H =
(

1 0 1 1
0 1 0 1

)
Find a generator matrix G for the code C. (ans.)

12.19 Let C be the binary linear code with parity-check matrix

H =
(

1 0 1 1 0
0 1 0 1 1

)
Find a generator matrix G for the code C.

12.20 Let C be the binary linear code with parity-check matrix

H =
(

1 1 0
1 0 1

)
Find the coset leaders.

13

Bounds for Codes

13.1 Hamming (sphere-packing) bound
13.2 Gilbert-Varshamov bound
13.3 Singleton bound

There are some general facts that can be proven about codes without actual
construction of any codes themselves, giving us guidance in advance about what
may be possible and what is impossible.

13.1 Hamming (sphere-packing) bound
The inequality proven here applies to all codes, not just linear ones. Roughly, it
gives a limit on how good a code can be. In fact, even this bound is rarely reachable,
but it is much harder to give more accurate estimates of how good we might hope a
code to be. In that context, the Hamming bound is nice because we can understand
it in physical terms, despite its not being the most precise thing that could be said.

Let’s use an alphabet Fq which is a finite field with q elements. Let Fn
q denote

the set of all length-n vectors made from the alphabet. As usual, the Hamming
weight wt(v) of such a vector

v = (v1, . . . , vn)

is the number of entries vi which are not 0. The Hamming distance d(v, w)
between two such vectors is the number of positions at which they’re different.
That is, the Hamming distance between v and w is the Hamming weight of the
difference

d(v, w) = wt(v − w)

So with w = (w1, . . . , wn) and v = (v1, . . . , vn)

d(v, w) = wt(v1 − w1, v2 − w2, . . . , vn − wn)

228

13.1 Hamming (sphere-packing) bound 229

The ball of radius r in Fn
q centered at a vector v is the collection of all vectors

w so that d(v, w) ≤ r. The volume of this ball is the number of vectors in it.
Lemma: The volume of a ball of radius r in Fn

q is

volume of ball of radius r centered at v

= 1 + (q − 1)
(

n

1

)
+ (q − 1)2

(
n

2

)
+ . . . + (q − 1)r

(
n

r

)
where

(
n
k

)
is the binomial coefficient(

n

k

)
=

n!
k! (n− k)!

Proof: The ‘1’ counts the vector v itself. Next we count vectors which differ at
one position from v: there are

(
n
1

)
= n positions at which they might be different

and q− 1 choices for the other character to appear at the chosen position. Next we
count vectors which differ at two positions from v: there are

(
n
2

)
positions at which

they might be different, and q − 1 choices for each of the other two characters at
the chosen positions:

number of vectors at distance 2 from v = (q − 1)2
(

n

2

)
Continue: finally we count vectors which differ at r positions from v: there are

(
n
r

)
positions at which they might be different, and q − 1 choices for each of the other
r characters at the chosen positions:

number of vectors at distance r from v = (q − 1)r

(
n

r

)
Adding these all up gives the indicated formula. ///

Lemma: Let x and y be two vectors in Fn
q with d(x, y) > 2e for some integer e.

Then for another vector z with d(x, z) ≤ e, it must be that d(y, z) > e.

Proof: This is a standard use of the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

for all vectors x, y, z. In this case

d(x, y) ≤ d(x, z) + d(z, y)

Using d(z, x) ≤ e and d(x, y) > 2e gives

2e < e + d(z, y)

230 Chapter 13 Bounds for Codes

which gives e < d(z, y). ///

Corollary: Given vectors x, y with d(x, y) > 2e, the balls of radius e centered at
x and at y are disjoint.

Proof: If x′ is in the ball of radius e centered at x, then apply the previous lemma
to see that its distance from y must be > e, so x′ cannot lie in the ball of radius e
centered at y. ///

Theorem: (Hamming (sphere-packing) bound) Consider a code which is a subset
of Fn

q , has minimum distance 2e + 1, and has ` codewords. Then

` ·
(

1 + (q − 1)
(

n

1

)
+ (q − 1)2

(
n

2

)
+ . . . + (q − 1)e

(
n

e

))
≤ qn

Proof: Since the minimum distance is 2e + 1, by the triangle inequality corollary
above any two spheres of radius e centered at codewords will be disjoint. Thus, the
sum of the volumes of these ` disjoint spheres will be less than or equal to the total
‘volume’ of the whole set, namely qn. ///

A code which achieves equality in this bound is called perfect. There are few
perfect linear codes, although this isn’t so easy to prove (see [Tietavainen 1973]).
The Hamming single-error-correcting codes are perfect, as are the two Golay codes.
[Vasilyev 1962] found some non-linear perfect codes. See [MacWilliams Sloane 1977]
for discussion and many further references.

13.2 Gilbert-Varshamov bound
This bound goes in the opposite direction to the Hamming bound: it asserts exis-
tence of a linear code with certain parameters, assuming that an inequality is met
which in effect says that we’re not being too greedy. This bound applies only to
linear codes.

Consider a linear code with alphabet Fq, block size n, dimension k, and mini-
mum distance d. That is, a generating matrix would be k-by-n: we are looking
at [n, k, d] codes.
Theorem: If

qn−k − 1 > (q − 1)
(

n− 1
1

)
+ . . . + (q − 1)d−3

(
n− 1
d− 3

)
+ (q − 1)d−2

(
n− 1
d− 2

)
then an [n, k, d] code over alphabet Fq exists. That is, the block size is n, the
dimension is k, and the minimum distance is d.

Specializing to the case q = 2 gives a simpler-looking assertion:
Corollary: If

2n−k − 1 >

(
n− 1

1

)
+
(

n− 1
2

)
+ . . . +

(
n− 1
d− 3

)
+
(

n− 1
d− 2

)
then a binary [n, k, d]-code exists. ///

13.2 Gilbert-Varshamov bound 231

Remark: Although this theorem is a concrete assurance that good codes exist, it
does not give any efficient procedure to find them (nor to decode them).
Remark: There is no assertion that this is the best that a code can do, only that
we can expect at least this level of performance.

Proof: The starting point for the proof is the fundamental fact, proven in the
next chapter, that for a linear code the minimum distance is d if and only if any
d− 1 columns of a check matrix are linearly independent. Granting that, consider
the process of choosing n columns in a check matrix so that any d− 1 of them are
linearly independent. The code is the row space of a k-by-n generating matrix. Its
check matrix is an (n − k)-by-n matrix of full rank, that is, of rank n − k. (That
means that if you do row reduction there will not be any row of all 0’s when you’re
done.)

We just do the binary case for simplicity.
Let’s suppose that in the construction of a check matrix we have successfully

chosen ` columns so far, with ` ≥ d − 2, so that no d − 1 of them are linearly
dependent. Now we want to choose an (` + 1)th column. The choice must be made
from among column vectors of size n− k. There are 2n−k such elements. We must
exclude the all-0-column, exclude any previous column, exclude the sum of any
previous two columns, exclude the sum of any previous three columns, and so on
up to excluding the sum of any previous d− 2 columns. In the worst case, all these
things that we must exclude are different. This is the case we consider. That is, at
worst there might be only

2n−k −
(

1 +
(

`

1

)
+
(

`

2

)
+ . . . +

(
`

d− 2

))
available vectors. Thus, to be sure that a choice is available, this number must be
positive.

For i < d, the inequality that must be satisfied in order to be able to choose
the ith column is

2n−k ≥ 1 +
(

i− 1
1

)
+
(

i− 1
2

)
+ . . . +

(
i− 1
i− 1

)
By the binomial theorem, the right-hand side is just 2i. Since

i ≤ d− 1 ≤ n− k

(the columns have to have length at least d− 1), this inequality certainly holds.
The binomial coefficients

(
`
i

)
are increasing as ` increases. Thus, if

2n−k > 1 +
(

`

1

)
+
(

`

2

)
+ . . . +

(
`

d− 2

)
for ` = n − 1 (to try to choose the nth column) then the inequality is certainly
satisfied for smaller `. Thus, we obtain the condition of the theorem. ///

232 Chapter 13 Bounds for Codes

Remark: That is, if the Gilbert-Varshamov inequality holds then in principle we
could make a code with the given [n, k, d]. However, so far as seems to be known
currently, the construction would be no better than an extremely labor-intensive
brute force search. That is, there does not seem to be any algorithmic approach
here.
Remark: The converse assertion is false. That is, there may exist linear codes
exceeding what the theorem guarantees, although such codes would be very good
indeed. In fact, certain of the geometric Goppa codes were proven by Tsfasman,
Vladut, and Zink to exceed the Gilbert-Varshamov bound.

13.3 Singleton bound
The Singleton bound below applies to arbitrary codes, not only linear ones, but our
interest is primarily in linear codes. This bound can only prove non-existence, not
existence of a code with given parameters.
Theorem: Let C be a code with codewords of length n using alphabet Fq with
minimum distance d and ` codewords. Then

qn−(d−1) ≥ `

Remark: If the code is linear, for example is an [n, k] code, then the number of
codewords is ` = qk, and by taking logarithms base q the Singleton bound becomes

n− (d− 1) ≥ k

or, alternatively,
n + 1 ≥ k + d

Thus, on the other hand, if k + d ≤ n then no such code can exist.

Proof: Since every pair of codewords differs in at least d positions, even if we ignore
the last d− 1 positions no two codewords will be the same in the first n− (d− 1)
codewords. So if we just chop off the last d−1 positions all the ` codewords are still
different. So we’ll get a code with ` codewords and block length n− (d− 1). Since
there are qn−(d−1) words of length n − (d − 1) altogether, certainly ` ≤ qn−(d−1).
This is the desired inequality. ///

If a code meets the Singleton bound, then it is called a minimum distance
separating code, or MDS code.

Exercises

13.01 Is there a binary code with 17 codewords, with minimum distance 3, and
with length 7? (ans.)

13.02 Is there a binary code with 29 codewords, with minimum distance 3, and
with length 8?

Exercises 233

13.03 Is there a binary code with 7 codewords, with minimum distance 5, and with
length 8? (ans.)

13.04 Is there a binary linear code of dimension 2, with minimum distance 3, and
with block length 5? (ans.)

13.05 Is there a binary linear code of dimension 3, with minimum distance 3, and
with block length 6?

13.06 Is there a binary linear code of dimension 3, with minimum distance 3, and
with block length 5? (ans.)

13.07 Is there a binary linear code of dimension 3, with minimum distance 4, and
with block length 8?

13.08 Is there a binary linear code of dimension 2, with minimum distance 4, and
with block length 7? (ans.)

13.09 Is there a binary code with 9 codewords, with minimum distance 3, and with
length 5?

13.10 Is there a binary code with 17 codewords, with minimum distance 5, and
with length 8?

14

More on Linear Codes

14.1 Minimum distances in linear codes
14.2 Cyclic codes

14.1 Minimum distances in linear codes
We know that a code (linear or not) with minimum distance 2d+1 can correct any
d symbol errors. In the case of linear codes we can give a linear algebra criterion
that makes determining minimum distance much easier.
Theorem: Let C be a linear code with generating matrix G and check matrix
H. Let d be the largest integer such that any d of the columns of H are linearly
independent. Then C has minimum distance d+1. (Conversely, if C has minimum
distance d + 1 then any d columns of H are linearly independent.)

Proof: Since the code is linear, the minimum distance between two codewords is
also the minimum distance from the 0 codeword to any other codeword. Let the
columns of the check matrix H be

H = (r1 r2 . . . rn)

and let v = (c1, . . . , cn) be a codeword. Then

0 = v ·H> =
∑

i

cir
>
i

If any d of the ris are linearly independent, then for any codeword v there must
be at least d + 1 non-zero cis. On the other hand, if some d of the ris are linearly
dependent, then for some codeword v there must be at most d non-zero cis. ///

Remark: This theorem finally gives an idea of how to look for linear codes that
can correct many errors. The issue is converted to looking for (check) matrices
H so that any e columns are linearly independent. This is what motivates the

234

14.2 Cyclic codes 235

construction of Hamming codes, BCH (Bose-Chaudhuri-Hocquengham) codes, RS
(Reed-Solomon) codes, and Goppa codes.
Corollary: If any 2e columns of the check matrix are linearly independent, then
the code can correct any e errors, and vice versa.

Proof: By the theorem, the minimum distance is 2e + 1 if any 2e columns of the
check matrix are linearly independent. We already know that this implies that the
code can correct e errors. The converse is equally clear. ///

Corollary: For a binary linear code, if no 2 columns of a check matrix are the
same, and if no column of the check matrix is 0, then the code can correct any
single error.

Proof: The case of two binary vectors being linearly independent is especially
simple: this means that neither is a multiple of the other. And because the scalars
are just the field with two elements, if the columns are not all 0’s then the only
possible scalar multiple would be by the scalar 1, so to be scalar multiples and
non-zero two columns would actually have to be the same. ///

Corollary:
• A linear code can correct any 2 errors if and only if no 4 columns (or fewer)

of a check matrix are linearly dependent.
• A linear code can correct any 3 errors if and only if no 6 columns (or fewer)

of a check matrix are linearly dependent.

14.2 Cyclic codes
In fact, many of the linear codes whose check matrix we can analyze are of an
especially simple and highly structured form.

Let v = (v1, . . . , vn) be a vector of length n over a finite field Fq. Let G be a
matrix whose rows are (in order)

(v1, v2, v3, . . . , vn)
(vn, v1, v2, . . . , vn−1)

(vn−1, vn, v1, . . . , vn−2)
. . .

That is, the rows are obtained from v by cycling to the right and wrapping around.
That is, the row space of G consists of all linear combinations of these cycled
versions of v.
Remark: In general, it can happen that some of those cycled rows are linearly
dependent. Then how do we systematically determine the dimension of a cyclic
code C manufactured in such manner? That is, what is the k so that C will be an
[n, k]-code?

To answer this question about the dimension of a cyclic code, we identify vec-
tors (b0, . . . , bn−1) with polynomials with coefficients in Fq, this time in ascending
degree:

(b0, . . . , bn−1)→ b0 + b1x + b2x
2 + b3x

3 + . . . + bn−1x
n−1

236 Chapter 14 More on Linear Codes

(Notice how we altered the indexing of the vector to match the exponents in the
polynomial.) With this convention, the vector v′ obtained from a given vector v by
cycling the symbols of v to the right (and wrapping around) is simply described as

v′(x) = (x · v(x))%(xn − 1) (polynomial multiplication)

where A%B denotes the reduction of A modulo B. Thus, the set of all such cycled-
and-wrapped versions of v is the set of all polynomials

(xi · v(x))%(xn − 1)

And since the code is linear, we can add any number of these cycled vectors together.
Thus, the code C is exactly the collection of all vectors expressible (in polynomial
terms) in the form

(P (x) · v)%(xn − 1)

where P (x) is any polynomial. Further, if a linear combination∑
i

ci xi v

of the rows of G is 0, this is the same as saying((∑
i

ci xi

)
v

)
%(xn − 1) = 0

• Therefore, the dimension k of the cyclic linear code C generated by a vector
v is n− deg h, where h is the lowest-degree polynomial such that

(h(x) · v)%(xn − 1) = 0

• Further, let
h(x) = c0 + c1x + c2x

2 + . . . + c`x
`

be such a polynomial (with k + ` = n). We claim that a checksum matrix
H for C is given by

H =

c` c`−1 c`−2 c`−3 . . . c1 c0 0 . . . 0
0 c` c`−1 c`−2 . . . c2 c1 c0 . . . 0
0 0 c` c`−1 . . .
0 0 0 c` c`−1 . . .

. . .
0 0 . . . c` c`−1 . . . c2 c1 c0 0
0 0 . . . 0 c` c`−1 . . . c2 c1 c0

That is, the top row is made from the coefficients of h in descending order,
and they are cycled to the right (with wrap-around).

14.2 Cyclic codes 237

Proof: Since we’ll see just below that there is no loss of generality in taking g(x) =
bkxk + . . . + b1x + b0 to be a divisor of xn − 1, we assume so now. Then we
have g(x)h(x) = xn − 1. By the very definition of polynomial multiplication, the
coefficient of xm in the product g(x)h(x) = xn − 1 is

∑
i+j=m

bi cj =

 1 (if m = n)
−1 (if m = 0)

0 (0 < m < n)

Note that the set of the n − 1 of these expressions with 0 < m < n is the same
as the set of expressions for entries of GH>, that is, scalar products of rows of H
and G, though the set of scalar products of the rows has many repeats of the same
thing. Thus, g(x)h(x) = xn − 1 implies that GH> = 0. However, this does not
quite assure that H is a check matrix, since without any further information it is
conceivable that there would be a vector v of length n not in the code (the rowspace
of G) but with vH> = 0. We will show that this does not happen, invoking some
standard linear algebra. In particular, for a vector subspace C of the length n
vectors Fn

q , define the orthogonal complement

C⊥ = {w ∈ Fn
q : w · v = 0 for all v ∈ C}

From the appendix on linear algebra, we have

dim C + dim C⊥ = n

Since the rowspace of H is contained in the orthogonal complement C⊥ of the
rowspace C of G, and since visibly

dim rowspace G + dim rowspace H = n

we find that
dim rowspace H = dim C⊥

Again, H ⊂ C⊥, so necessarily H = C⊥. That is, vH> = 0 implies v ∈ C. That
is, H is a check matrix for the code with generator matrix G. ///

To find the smallest-degree polynomial h so that h · v%(xn − 1) = 0 we take

h(x) = (xn − 1)/gcd(v, xn − 1)

where gcd is greatest common divisor. The greatest common divisor of two
polynomials is easily found via the Euclidean algorithm for polynomials.
• In fact, continuing this line of thought, every cyclic code of block length n is

obtainable by taking g(x) to be a divisor of xn − 1. With

k = n− deg g

we obtain an [n, k]-code. The check polynomial h(x) is

h(x) =
xn − 1
g(x)

238 Chapter 14 More on Linear Codes

Proof: Given arbitrary g(x) as a generator polynomial, from above we see that a
check polynomial is

h(x) =
xn − 1

gcd(g(x), xn − 1)

That is, the dual code is generated by the collection of all shifts (with wrap-around)
of the coefficients of h(x) (padded by 0s). (If the coefficients of g(x) are arranged
by ascending degree, then those of h(x) are arranged by descending degree, and vice
versa.) Similarly, the dual code to the dual has generator polynomial

f(x) =
xn − 1

gcd(h(x), xn − 1)
=

xn − 1
h(x)

since h(x) divides xn − 1. We have shown earlier that the dual of the dual is the
original code. Thus, the cyclic code with generator polynomial f(x) is identical to
the original code with generator g(x). That is, we could as well have taken f(x) in
the first place. Since f(x) = (xn − 1)/h(x) we have f(x) · h(x) = xn − 1 and thus
it is clear that the generator polynomial could have been chosen to be a divisor of
xn − 1. ///

In this situation, the smaller the degree of h(x), the bigger the code (so the
higher the rate).

Exercises

14.01 Find the dimension of the row space of

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

 (ans.)

14.02 Find the dimension of the row space of the matrix

1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1

14.03 Let C be the binary cyclic code of length 9 with generator polynomial
100111011 (coefficients ordered by ascending degree). Find a check matrix
for C. (ans.)

Exercises 239

14.04 Let C be the binary cyclic code of length 9 with generator polynomial
010001011 (coefficients ordered by ascending degree). Find a check matrix
for C.

14.05 Let C be the binary cyclic code of length 9 with generator polynomial
011010001 (coefficients ordered by ascending degree). Find a check matrix
for C.

15

Primitive Roots

15.1 Primitive elements in finite fields
15.2 Characteristics of fields
15.3 Multiple factors in polynomials
15.4 Cyclotomic polynomials
15.5 Primitive elements in finite fields: proofs
15.6 Primitive roots in Z/p
15.7 Primitive roots in Z/pe

15.8 Counting primitive roots
15.9 Non-existence of primitive roots
15.10 An algorithm to find primitive roots

15.1 Primitive elements in finite fields
As preparation for construction of more sophisticated codes, we need to be aware
of a bit of abstract algebra.

Suppose that P is an irreducible polynomial of degree n with coefficients in Fq.
An element A of Fq[x]/P is a primitive element if

Aqn−1 = 1 mod P

but for every prime r dividing qn − 1

A(qn−1)/r 6= 1 mod P

Remark: Note that a primitive element mod P can be identified as an ordinary
polynomial of degree strictly less than the degree of P , satisfying the equations just
above. This description is not completely satisfactory for later purposes, but is a
reasonable first approximation.

240

15.2 Characteristics of fields 241

Theorem:
• For P irreducible of degree n with coefficients in Fq, there exists a primitive

element in Fq[x]/P .
• For a primitive element g mod P , the powers

g0, g1, g2, g3, g4, . . . , gqn−1

run through all the non-zero elements of Fq[x]/P .
This theorem is not easy to prove. The subsequent discussion of primitive

roots and cyclotomic polynomials gives the proof. The following lemma is an easy
component of the argument we will give.
Lemma: For P irreducible of degree n with coefficients in Fq, for any polynomial
A not divisible by P ,

Aqn−1 = 1 mod P

Proof: The best proof is as a special case of a corollary to Lagrange’s theorem
from group theory! This invocation of Lagrange’s theorem in a context that did
not mention group theory is very typical of the ubiquitous if hidden applicability
of the result. ///

How to find primitive elements? Well, it turns out that usually at least 1/4 or
more of the elements in Fq[x]/P are primitive, so naive searching won’t take very
long. Note, however, that it is important to use the fast exponentiation algorithm or
the search would take much longer. First just guess that x-mod-P is primitive, and
check the conditions. The lemma just above says that the first condition defining
a primitive element is always satisfied if we know that the polynomial modulus is
irreducible.

15.2 Characteristics of fields
Let k be a field. The characteristic char k of k is the smallest positive integer n
(if there is one) so that

1k + 1k + . . . + 1k︸ ︷︷ ︸
n

= 0k

where 1k is the unit in k and 0k is the zero. As usual, we abbreviate

` · 1k = 1k + 1k + . . . + 1k︸ ︷︷ ︸
`

for positive integers `.
If there is no such positive integer n, then the characteristic is said to be 0.

Thus,
charQ = 0

By contrast,
charZ/p = p

242 Chapter 15 Primitive Roots

Proposition: The characteristic of a field is a prime number, if it is non-zero.
For a field of characteristic p with p prime, if for some positive integer n

1k + 1k + . . . + 1k︸ ︷︷ ︸
n

= 0k

then p divides n.

Proof: Suppose that
1k + 1k + . . . + 1k︸ ︷︷ ︸

n

= 0k

with n minimal to achieve this effect, and that n had a factorization

n = a · b

with positive integers a and b. Then

(1k + 1k + . . . + 1k︸ ︷︷ ︸
a

) · (1k + 1k + . . . + 1k︸ ︷︷ ︸
b

) = 1k + 1k + . . . + 1k︸ ︷︷ ︸
n

= 0k

Since a field has no proper zero-divisors, it must be that either a·1k = 0 or b·1k = 0.
By the hypothesis that n was minimal, if a · 1k = 0 then a = n, and similarly for b.
Thus, the factorizaton n = a ·b was not proper. Since n has no proper factorization,
it is prime.

Suppose that n · 1k = 0k. By the division algorithm, we have n = qp + r with
0 ≤ r < p. Then

0k = n · 1k = q(p · 1k) + r · 1k = 0k + r · 1k

From this, r · 1k = 0k. Since r < p and p was the least positive integer with
p · 1k = 0k, it follows that r = 0 and p divides n. ///

Fields with positive characteristic p have a peculiarity which is at first counter-
intuitive, but which plays an important role in both theory and applications:

Proposition: Let k be a field of positive characteristic p. Then for any polynomial

f(x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

in k[x] we have

f(x)p = ap
nxpn + ap

n−1x
p(n−1) + . . . + ap

2x
2p + ap

1x
p + ap

0

Proof: Recall that p divides binomial coefficients
(
p
i

)
with 0 < i < p. Therefore,

for 0 < i < p, (
p

i

)
· 1k = 0k

15.3 Multiple factors in polynomials 243

Thus, for an ∈ k and any polynomial g(x) with coefficients in k,

(anxn + g(x))p = (anxn)p +
∑

0<i<p

(
p

i

)
(anxn)p−ig(x)i + g(x)p

All the middle terms have a coefficient(
p

i

)
· 1k = 0k

so they disappear. Thus,

(anxn + g(x))p = ap
nxpn + g(x)p

The same assertion applies to g(x) itself. Take

g(x) = an−1x
n−1 + h(x)

Then
g(x)p = ap

n−1x
p(n−1) + h(x)p

Continuing (that is, doing an induction), we obtain the result for f . ///

For example, with coefficients in k = Z/p with p prime, we have

(x + 1)p = xp +
∑

0<i<p

(
p

i

)
xi + 1 = xp + 1

Also
(x2 + 1)p = x2p + 1

(x2 + x + 1)p = x2p + xp + 1

and such things.

15.3 Multiple factors in polynomials
There is a very simple device to detect repeated occurrence of a factor in a poly-
nomial (with coefficients in a field). This is very useful both theoretically and in
computational situations.

Let k be a field. For a polynomial

f(x) = cnxn + . . . + c1x + c0

with coefficients ci in k, we define the algebraic derivative f ′(x) of f(x) by

f ′(x) = ncnxn−1 + (n− 1)cn−1x
n−2 + . . . + 3c3x

2 + 2c2x + c1

Remark: Note that we simply define a ‘derivative’ this way, purely algebraically,
without taking any limits. Of course (!) this formula is still supposed to yield a

244 Chapter 15 Primitive Roots

thing with familiar properties, such as the product rule. So we’ve simply used our
calculus experience to make a ‘good guess’.

Lemma: For two polynomials f, g in the collection k[x] of polynomials in x with
coefficients in k, and for r ∈ k,
• (r · f)′ = r · f ′
• (f + g)′ = f ′ + g′

• (fg)′ = f ′g + fg′

Proof: The first assertion is easy: let f(x) = amxm + . . . + a0, and compute

(r · (amxm + . . . + a0))
′ = (ramxm + ram−1x

m−1 + . . . + ra0)′

= m · (ram)xm−1 + (m− 1) · (ram−1)xm−2 + . . . + ra1 + 0

= r
(
m · (am)xm−1 + (m− 1) · (am−1)xm−2 + . . . + a1 + 0

)
= r · f ′(x)

The second assertion is also not hard: let f(x) = amxm + . . . + a0 and g(x) =
bnxn + . . . + b0. Padding the one of smaller degree with terms of the form 0 · x`,
we can suppose without loss of generality that m = n. (This simplifies notation
considerably!) Then

(f(x) + g(x))′ = ((an + bn)xn + . . . + . . . + (a1 + b1)x + (a0 + b0)x0)′

= n(an + bn)xn−1 + (n− 1)(an−1 + bn−1)xn−2 + . . . + 1(a1 + b1)x0 + 0 · x0

=
(
nanxn−1 + (n− 1)an−1x

n−2 + . . . + 1 · a1x
0
)

+
(
nbnxn−1 + . . . + (n− 1)bn−1x

n−2 + . . . + 1 · b1x
0
)

= f ′(x) + g′(x)

For the third property, let’s first see what happens when f and g are monomials,
that is, are simply f(x) = axm, g(x) = bxn. On one hand, we have

(fg)′ = (axm · bxn)′ = (abxm+n)′ = ab(m + n)xm+n−1

On the other hand,

f ′g + fg′ = amxm−1 · bxn + axm · bnxn−1 = ab(m + n)xm+n−1

after simplifying. This proves the product rule for monomials.
To approach the general product rule, let

f(x) = amxm + . . . + a0

g(x) = bnxn + . . . + b0

The coefficient of x` in the product f(x)g(x) is∑
i+j=`

ai · bj

15.3 Multiple factors in polynomials 245

Then the coefficient of x`−1 in the derivative of the product is

`
∑

i+j=`

ai · bj

On the other hand, the coefficient of x`−1 in f ′g is∑
i+j=`

(iai) · bj

and the coefficient of x`−1 in fg′ is ∑
i+j=`

ai · jbj

Adding these two together, we find that the coefficient of x`−1 in f ′g + fg′ is∑
i+j=`

ai · bj · (i + j) = `
∑

i+j=`

ai · bj

which matches the coefficient in (fg)′. This proves the product rule. ///

A field k is called perfect if either the characteristic of k is 0, as is the case
for Q, R, and C, or if for characteristic p > 0 there is a pth root a1/p in k for every
a ∈ k.
Remark: By Fermat’s little theorem, the finite field Z/p (for p prime) is perfect.
Similarly, any finite field is perfect.

Proposition: Let f be a polynomial with coefficients in a field k, and P an irre-
ducible polynomial with coefficients in k. If P 2 divides f then P divides gcd(f, f ′).
On the other hand, if k is perfect, then P 2 divides f if P divides gcd(f, f ′).

Proof: On one hand, suppose f = P 2 · g. Then, using the product rule,

f ′ = 2PP ′ · g + P 2 · g′ = P · (2P ′g + Pg′)

which is certainly a multiple of P . This half of the argument did not use the
irreducibility of P .

On the other hand, suppose that P divides both f and f ′ (and show that
actually P 2 divides f). Dividing the polynomial f/P by P , we obtain

f/P = Q · P + R

with the degree of R less than that of P . Then f = QP 2 + RP . Taking the
derivative, we have

f ′ = Q′P 2 + 2QPP ′ + R′P + RP ′

By hypothesis P divides f ′. All the terms on the right-hand side except possibly
RP ′ are divisible by P , so P divides RP ′. Since P is irreducible and it divides the

246 Chapter 15 Primitive Roots

product RP ′, it must divide either R or P ′. If it divides R, then we’ve shown that
P 2 divides f , so we’re done.

If P fails to divide R then P must divide P ′. Since P ′ is of lower degree
than P , if P divides it then P ′ must be the zero polynomial. Let’s see that this is
impossible for P irreducible. Let

P (x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

Then
P ′(x) = nanxn−1 + (n− 1)an−1x

n−2 + . . . + 2a2x
1 + a1 + 0

For this to be the zero polynomial it must be that for all indices `

` · a` = 0

That is, for any index ` with a` 6= 0, ` ·1k = 0k. Since at least one coefficient of P is
non-zero, this implies that the characteristic of k is not 0, so the characteristic is a
prime p. From above, ` ·1k = 0k implies that p divides `. That is, the characteristic
p divides ` if the coefficient a` is non-zero. So we can write

P (x) = apmxpm + ap(m−1)x
p(m−1) + ap(m−2)x

p(m−2) + . . . + a2px
2p + apx

p + a0

Using the general property that (because the characteristic is p)

(A + B)p = Ap + Bp

we recognize the expression for P (x) as being the pth power of

bpmxn + bp(m−1)x
(m−1) + bp(m−2)x

(m−2) + . . . + b2px
2 + bpx + b0

where bi is a pth root of ai. But if P is a pth power it is certainly not irreducible.
Therefore, for P irreducible it cannot be that P ′ is the zero polynomial. Therefore,
R = 0, which is to say that P 2 divides f , as claimed. ///

15.4 Cyclotomic polynomials
For b in a field k, the exponent of b is the smallest positive integer n (if it exists
at all) so that bn = 1. That is, bn = 1 but bd 6= 1 for 0 < d < n. In other words,
b is a root of the polynomial xn − 1 but not of xd − 1 for any smaller d. Our goal
here is to show that there is a polynomial ϕn(x) such that b is of exponent n if and
only if

ϕn(b) = 0

This polynomial will be the nth cyclotomic polynomial.
Fix a field k.

Lemma: For m, n two integers (divisible by the characteristic or not)

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1

15.4 Cyclotomic polynomials 247

Proof: We do induction on the maximum of m and n. First, if by chance m = n,
then xm − 1 = xn − 1 and we are certainly done. Second, if either m = 1 or n = 1
then the one polynomial divides the other and again we’re done.

Now we come to the more substantial part of the argument. For m > n, doing
a fragment of a division we have

xm − 1− xm−n · (xn − 1) = xm−n − 1

So if D is a polynomial dividing both xm− 1 and xn− 1, then D divides xm−n− 1
as well. By induction,

gcd(xm−n − 1, xn − 1) = xgcd(m−n,n) − 1

But
gcd(m,n) = gcd(m− n, n)

and
xm − 1 = xm−n · (xn − 1) + xm−n − 1

so
gcd(xm − 1, xn − 1) = gcd(xm−n − 1, xn − 1)

If m < n we reverse the roles of m and n: let’s repeat the argument. Doing a
fragment of a division:

xn − 1− xn−m · (xm − 1) = xn−m − 1

So if D is a polynomial dividing both xm − 1 and xn − 1 then D divides xn−m − 1
as well. By induction,

gcd(xn−m − 1, xn − 1) = xgcd(n−m,n) − 1

But
gcd(m,n) = gcd(n−m,n)

and
xn − 1 = xn−m · (xm − 1) + xn−m − 1

so
gcd(xm − 1, xn − 1) = gcd(xn−m − 1, xm − 1)

This completes the induction step. ///

Remark: Note that the analogous formula for least common multiples would be
false in general. For example,

lcm(x4 − 1, x6 − 1) =
(x4 − 1)(x6 − 1)

gcd(x4 − 1, x6 − 1)

248 Chapter 15 Primitive Roots

because of the general fact that

lcm(A,B) =
A ·B

gcd(A,B)

By the result just above,

lcm(x4 − 1, x6 − 1) =
(x4 − 1)(x6 − 1)

gcd(x4 − 1, x6 − 1)
=

(x4 − 1)(x6 − 1)
x2 − 1

= (x2 + 1)(x6 − 1) = x12 + x6 − x2 − 1 6= x12 − 1 = xlcm(4,6) − 1

Lemma: Let n be a positive integer not divisible by the characteristic of the field
k. (This is no condition if the characteristic is 0.) Then the polynomial xn − 1 has
no repeated factors.

Proof: From above, it suffices to check that the gcd of xn − 1 and its derivative
nxn−1 is 1. Since the characteristic of the field does not divide n, n · 1k has a
multiplicative inverse t in k. Then, doing a division with remainder,

(xn − 1)− (tx) · (nxn−1) = −1

Thus, the gcd is 1. ///

Now suppose that n is not divisible by the characteristic of the field k, and
define the nth cyclotomic polynomial ϕn(x) (with coefficients in k) by

ϕ1(x) = x− 1

and for n > 1, inductively,

ϕn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

where the least common multiple is taken to be monic.

Theorem:
• ϕn is monic (and truly is a polynomial).
• For α in a field, ϕn(α) = 0 if and only if αn = 1 and αt 6= 1 for all 0 < t < n.
• gcd(ϕm, ϕn) = 1 for m < n with neither m nor n divisible by the character-

istic of the field k.
• The degree of ϕn is ϕ(n) (Euler’s phi-function)
• There is a more efficient description of ϕn(x):

ϕn(x) =
xn − 1∏

1≤d<n,d|n ϕd(x)

• The polynomial xn − 1 factors as

xn − 1 =
∏

1≤d≤n,d|n

ϕd(x)

15.4 Cyclotomic polynomials 249

Proof: First, we really should check that the least common multiple of the xd− 1
with d < n and d|n divides xn − 1, so that ϕn is a polynomial. We know that d|n
(and d > 0) implies that xd − 1 divides xn − 1 (either by high school algebra or
from the lemma above). Therefore, using the unique factorization of polynomials
with coefficients in a field, it follows that the least common multiple of a collection
of things each dividing xn − 1 will also divide xn − 1.

Next, the assertion that ϕn is monic follows from its definition, since it is the
quotient of the monic polynomial xn − 1 by the monic lcm of polynomials.

For α in a field, x− α divides ϕn(x) if and only if α is a root of the equation
ϕn(x) = 0, from unique factorization of polynomials in one variable with coefficients
in a field. Similarly, αt = 1 if and only if x−α divides xt − 1. Thus, having shown
that ϕn(x) truly is a polynomial, the definition

ϕn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

shows that ϕn(α) = 0 implies that αn = 1 and αt 6= 1 for all 0 < t < n, as claimed
in the theorem.

To determine the gcd of ϕm and ϕn, let d = gcd(m,n). Observe that ϕm

divides xm − 1 and ϕn divides xn − 1, so

gcd(ϕm, ϕn) divides gcd(xm − 1, xn − 1)

In the lemma above we computed that

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1 = xd − 1

Since
d ≤ m < n

d is a proper divisor of n. Thus, from

ϕn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

we see that ϕn(x) divides (xn−1)/(xd−1). Since xn−1 has no repeated irreducible
factors, ϕn(x) has no factors in common with xd− 1. Thus, in summary, the gcd of
ϕm(x) and ϕn(x) divides xd − 1, but ϕn(x) has no factor in common with xd − 1,
so gcd(ϕm, ϕn) = 1.

Next, we use induction to prove that

xn − 1 =
∏

1≤d≤n, d|n

ϕd(x)

For n = 1 the assertion is true. From the definition of ϕn, we have

xn − 1 = ϕn(x) · lcm{xd − 1 : d|n, 0 < d < n}

250 Chapter 15 Primitive Roots

By induction, for d < n

xd − 1 =
∏

0<e≤d,e|d

ϕe(x)

Since we have already shown that for m < n the gcd of ϕm and ϕn is 1, we have

lcm{xd − 1 : d|n, 0 < d < n} =
∏

d|n,d<n

ϕd(x)

Thus,
xn − 1 = ϕn(x) ·

∏
d|n,d<n

ϕd(x)

as claimed.
The assertion about the degree of ϕn follows from the identity proven below

for Euler’s phi-function: ∑
d|n,d>0

ϕ(d) = n

This completes the proof of the theorem. ///

Proposition: Let ϕ(x) be Euler’s phi-function

ϕ(x) =
∑

1≤`≤x;gcd(`,x)=1

1

Then for m and n relatively prime

ϕ(mn) = ϕ(m) · ϕ(n) (weak multiplicativity)

For p prime and ` a positive integer

ϕ(p`) = (p− 1) · p`−1

And ∑
d|n,d>0

ϕ(d) = n

Proof: For the first statement, note that by unique factorization

gcd(t, mn) = gcd(t, m) · gcd(t, n)

In particular, t is relatively prime to mn if and only if t is relatively prime to both
m and n. Recall that the gcd of m and n is the smallest positive integer expressible
as rm + sn. By Sun-Ze’s theorem, the map

f : {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1} → Z/mn

15.5 Primitive elements in finite fields: proofs 251

by
f : (x, y)→ rmy + snx

is a bijection. From rm + yn = 1, rm = 1 mod n so rm is relatively prime to n,
and sn = 1 mod m so sn is relatively prime to m. Thus, rmy + snx has a common
factor with m if and only if x does, and rmy + snx has a common factor with n if
and only if y does. Thus, f also gives a bijection

{x : 1 ≤ x < m, gcd(x,m) = 1)} × {y : 1 ≤ y < n, gcd(y, n) = 1)}

→ {z : 1 ≤ z < mn, gcd(z,mn) = 1)}

is a bijection. This proves that for gcd(m,n) = 1

ϕ(mn) = ϕ(m) · ϕ(n)

Using unique factorization, this reduces the calculation of ϕ() to its evaluation on
prime powers pe (p prime). This is easy, as an integer x in the range 1 ≤ x < pe is
relatively prime to pe if and only if it is not divisible by p, so there are

ϕ(pe) = pe − pe−1 = (p− 1)pe−1

such x, as claimed.
To obtain the formula ∑

d|n,d>0

ϕ(d) = n

start with the case that n is a prime power pe, in which case∑
d|pe

ϕ(d) =
∑

0≤k≤e

ϕ(pk) = 1 +
∑

1≤k≤e

(p− 1)pk−1 = 1 + (p− 1)(pe − 1)/(p− 1) = pe

Then use the weak multiplicativity and unique factorization of divisors into their
prime power factors. Let n = pe1

1 . . . pet
t be the prime factorization of n into powers

of distinct primes pi. We have

∑
d|n

ϕ(d) =
∏

i=1,...,t

∑
d|pei

i

ϕ(d)

 =
∏

i=1,...,t

ϕ(pei
i) = ϕ(

∏
i

pei
i) = ϕ(n)

This proves the desired identity for ϕ. ///

15.5 Primitive elements in finite fields: proofs
Now we can prove that the multiplicative group k× of a finite field k is a cyclic
group. A generator of k× is sometimes called a primitive root for k. This property
of k× is essential. (Note that the superscript is a cross ×, not an x.)

Theorem: Let k be a finite field. Then k× is a cyclic group.

252 Chapter 15 Primitive Roots

Proof: Let q be the number of elements in k. The group of units k× is a group.
Since k is a field, any b 6= 0 has a multiplicative inverse in k. So the order of k× is
q − 1. Thus, by corollaries to Lagrange’s theorem, for b 6= 0,

bq−1 = 1

That is, any non-zero element of k is a root of the polynomial f(x) = xq−1 − 1.
On the other hand, by a fundamental theorem from algebra, a polynomial with
coefficients in a field k has at most as many roots (in k) as its degree, so this
polynomial has at most q − 1 roots in k. Therefore, it has exactly q − 1 (distinct)
roots in k.

Let p be the characteristic of k. Certainly p cannot divide q − 1, since if it
did then the derivative of f(x) = xq−1 − 1 would be zero, so gcd(f, f ′) = f and f
would have multiple roots. We have just noted that f has q − 1 distinct roots, so
this doesn’t happen.

Since the characteristic of k does not divide q − 1, we can apply the results
from just above concerning cyclotomic polynomials. Thus,

xq−1 − 1 =
∏

d|q−1

ϕd(x)

Since xq−1 − 1 has q − 1 roots in k, and since the ϕd’s here are relatively prime to
each other, each ϕd with d|q − 1 must have a number of roots (in k) equal to its
degree. Thus, ϕd for d|q − 1 has ϕ(d) > 0 roots in k (Euler’s phi-function).

Finally, the roots of ϕq−1(x) are those field elements b so that bq−1 = 1 and
no smaller positive power than q − 1 has this property. The primitive roots are
exactly the roots of ϕq−1(x). The cyclotomic polynomial ϕq−1 has ϕ(q − 1) roots.
Therefore, there are ϕ(q − 1) > 0 primitive roots. Thus, the group k× has a
generator. That is, the group k× is cyclic. ///

15.6 Primitive roots in Z/p
We emphasize that the multiplicative group Z/p× of the finite field Z/p with p
elements is a cyclic group. Any generator of it is called a primitive root for Z/p.
This property of Z/p (and other finite fields) is essential in primality tests and
factorization algorithms.

Theorem: Let k be the finite field Z/p with p prime. Then Z/p× is a cyclic
group.

Proof: As a corollary of our study of cyclotomic polynomials, we’ve already proven
that the multiplicative group k× of any finite field k is cyclic. Therefore, all we
need do is check that Z/p is a field. That is, we must check that any non-zero
element b ∈ Z/p has a multiplicative inverse.

Let’s repeat the important explanation of why there is a multiplicative inverse,
even though we’ve given it before in other contexts. Indeed, since p is prime, if
b 6= 0 mod p, then gcd(p, b) = 1. Thus, there are integers s, t so that sp + tb = 1.

15.7 Primitive roots in Z/pe 253

Then, looking at the latter equation modulo p, we see that t is a multiplicative
inverse to b modulo p. ///

15.7 Primitive roots in Z/pe

To prove that there is a primitive root in Z/pe for p an odd prime is not difficult
once we know that there is a primitive root for Z/p. A minor adaption of this
applies as well to Z/2pe.
Theorem: For an odd prime p, Z/pe and Z/2pe have primitive roots. That is,
the multiplicative groups Z/pe× and Z/2pe× are cyclic.

The following proposition is of interest in its own right, and is necessary to
prove the theorem on primitive roots. Its point is that understanding the order of
certain types of elements in Z/pe× is much more elementary than the trouble we
went through to show that Z/p has a primitive root. We’ll prove this proposition
before proving the theorem.
Proposition: Let p be an odd prime. For integers 1 ≤ k ≤ e and for an integer
x with p 6 |x, the order of an element 1 + pkx in Z/pe× is pe−k. Moreover, for p 6 |x
and k ≥ 1,

(1 + pkx)p`

= 1 + pk+`y

with y = x mod p.

Proof: (of proposition) The main trick here is that a prime p divides the binomial
coefficients (

p

1

)
,

(
p

2

)
, . . . ,

(
p

p− 2

)
,

(
p

p− 1

)
Also, the hypothesis that p > 2 is essential.

Let’s first compute

(1 + pkx)p = 1 +
(

p

1

)
pkx +

(
p

2

)
p2kx2 + . . . +

(
p

p− 1

)
p(p−1)kxp−1 + ppkxp

= 1 + pk+1 ·
(

x +
(

p

2

)
p2k−(k+1)x2 + . . . + ppk−(k+1)xp

)
︸ ︷︷ ︸

y

Since p divides those binomial coefficients, the expression y differs from x by a
multiple of p. Looking at the very last term, ppk−(k+1)xp, we see that it is necessary
that pk− (k +1) ≥ 1 for this to work. This inequality fails if k = 1 and p = 2. This
explains why the argument fails for the prime 2. So we have proven that

(1 + pkx)p = 1 + pk+1y

with y = x mod p. Repeating this argument (that is, doing an induction), we get

(1 + pkx)p`

= 1 + pk+`y

254 Chapter 15 Primitive Roots

with y = x mod p. This is the formula in the proposition.
Now let’s see that this formula gives the assertion about orders. First we must

see what the order in Z/pe× of elements of the form 1 + px can be. To do this we
will invoke Lagrange’s theorem. So we have to count the number of elements of
Z/pe× expressible as 1 + px. In the first place, for any integer x the integer 1 + px
is relatively prime to p, so gives an element of Z/pe×. On the other hand, if

1 + px = 1 + px′ mod pe

then pe|(1 + px− 1− px′). That is, pe−1|x− x′. So the integers 1 + px and 1 + px′

give the same element of Z/pe× only if x = x′ mod pe−1. Thus, the pe−1 integers
x = 0, 1, 2, . . . pe−1 − 1 give all the elements of Z/pe× expressible as 1 + px.

By Lagrange’s theorem, the order of any element 1 + px in Z/pe× must divide
pe−1.

This limitation allows our computation of (1+pkx)p`

to give a definitive answer
to the question of order: for p 6 |x,

(1 + pkx)p`

= 1 + pk+`y

with y = x mod p, so this is not 1 mod pe unless k + ` ≥ e. (And if k + ` ≥ e it is
1 mod pe.) Thus,

(multiplicative) order of 1 + pkx mod pe is pe−k

This proves the proposition. ///

Proof: (of theorem) The assertion of the corollary is stronger than the theorem,
so it certainly suffices to prove the more specific assertion of the corollary in order
to prove the theorem.

Before the most serious part of the proof, let’s see why an integer g which is a
primitive root for Z/pe will also be a primitive root for Z/2pe×. The main point is
that for an odd prime p

ϕ(2pe) = (2− 1)(p− 1)pe−1 = (p− 1)pe−1 = ϕ(pe)

Let g be a primitive root modulo pe. Then ` = ϕ(pe) is the smallest exponent so that
g` = 1 mod pe. Thus, surely there is no smaller exponent ` so that g` = 1 mod 2pe,
since pe|2pe. Therefore, a primitive root mod pe also serves as a primitive root
modulo 2pe.

Now the central case, that of primitive roots for Z/pe. That is, we want to
show that the multiplicative group Z/pe× is of the form 〈g〉 for some g. Let g1 be a
primitive root mod p, which we already know exists for other reasons. The plan is
to adjust g1 suitably to obtain a primitive root mod pe. It turns out that at most
a single adjustment is necessary altogether.

If (by good luck?)
gp−1
1 = 1 + px

15.7 Primitive roots in Z/pe 255

with p 6 |x, then let’s show that g1 is already a primitive root mod pe for any e ≥ 1.
By Lagrange’s theorem, the order of g1 in Z/pe× is a divisor of ϕ(pe) = (p−1)pe−1.
Since p− 1 is the smallest positive exponent ` so that g`

1 = 1 mod p, p− 1 divides
the order of g1 in Z/pe× (from our discussion of cyclic subgroups). Thus, the order
of g1 is in the list

p− 1, (p− 1)p, (p− 1)p2, . . . , (p− 1)pe−1

Thus, the question is to find the smallest positive ` so that

g
(p−1)p`

1 = 1 mod pe

We are assuming that
gp−1
1 = 1 + px

with p 6 |x, so the question is to find the smallest positive ` so that

(1 + px)p`

= 1 mod pe

From the proposition, the smallest positive ` with this property is ` = e− 1. That
is, we have proven that g1 is a primitive root mod pe for every e ≥ 1.

Now suppose that
gp−1
1 = 1 + px

with p|x. Then consider
g = (1 + p)g1

Certainly g is still a primitive root mod p, because g = g1 mod p. And we compute

(1 + p)p−1 = 1 +
(

p− 1
1

)
p +

(
p− 1

2

)
p2 + . . . +

(
p− 1
p− 2

)
pp−2 + pp−1

1 + p ·
((

p− 1
1

)
+
(

p− 1
2

)
p +

(
p− 1

3

)
p2 + . . .

)
︸ ︷︷ ︸

y

= 1 + py

Since (
p− 1

1

)
= p− 1

we see that
y = p− 1 mod p

so p 6 |y. Thus,

gp−1 = ((1 + p)g1)p−1 = (1 + py)(1 + px) = 1 + p(y + x + pxy)

Since p|x, we have
y + x + pxy = y mod p

256 Chapter 15 Primitive Roots

In particular, p 6 |y + x + pxy. Thus, by adjusting the primitive root a bit, we have
returned to the first case above, that gp−1 is of the form gp−1 = 1 + pz with p 6 |z.
In that case we already saw that such g is a primitive root mod pe for any e ≥ 1.

This finishes the proof of existence of primitive roots in Z/pe for p an odd
prime. ///

Corollary: (of proof) In fact, for an integer g which is a primitive root mod p,
either g is a primitive root mod pe and mod 2pe for all e ≥ 1, or else (1 + p)g is. In
particular, if gp−1 6= 1 mod p2, then g is a primitive root mod pe and mod 2pe for
all e ≥ 1. Otherwise, (1 + p)g is.

15.8 Counting primitive roots
After proving existence of primitive roots, it is at least equally interesting to have
an idea how many there are.
Theorem: If Z/n has a primitive root, then there are exactly

ϕ(ϕ(n))

primitive roots mod n. (Yes, that is Euler’s phi of Euler’s phi of n.) For example,
there are

ϕ(ϕ(p)) = ϕ(p− 1)

primitive roots modulo a prime p, and there are

ϕ(ϕ(pe)) = ϕ(p− 1) · (p− 1)pe−2

primitive roots mod pe for an odd prime p and e ≥ 2.

Proof: The hypothesis that Z/n has a primitive root is that the multiplicative
group Z/n× is cyclic. That is, for some element g (the ‘primitive root’)

Z/n× = 〈g〉

Of course, the order |g| of g must be the order ϕ(n) of Z/n×. From general discus-
sion of cyclic subgroups, we know that

g0, g1, g2, g3, . . . , gϕ(n)−1

is a complete list of all the different elements of 〈g〉. And from general properties
of cyclic groups

order of gk =
order of g

gcd(k, |g|)
So the generators for 〈g〉 are exactly the elements

gk with 1 ≤ k < |g| and k relatively prime to |g|

By definition of Euler’s ϕ-function, there are ϕ(|g|) of these. Thus, since |g| = ϕ(n),
there are ϕ(ϕ(n)) primitive roots. ///

15.9 Non-existence of primitive roots 257

Corollary: For an odd prime p, the fraction ϕ(p− 1)/p of the elements of Z/pe×

consists of primitive roots.

Proof: From the theorem just proven the ratio of primitive roots to all elements
is

ϕ(ϕ(pe))
ϕ(pe)

=
ϕ(p− 1) · (p− 1)pe−2

(p− 1)pe−1
=

ϕ(p− 1)
p

as claimed. ///

Remark: Thus, there are relatively many primitive roots modulo pe.

15.9 Non-existence of primitive roots
For generic integers n, there is no primitive root in Z/n.
Theorem: If n is not 2, 4, nor of the forms pe, 2pe for p an odd prime (and e a
positive integer), then there is no primitive root modulo n.

Proof: First, let’s look at Z/2e with e ≥ 3. Any b ∈ Z/2e× can be written as
b = 1 + 2x for integer x. Then

(1 + 2x)2 = 1 + 4x + 4x2 = 1 + 4x(x + 1)

The peculiar feature here is that for any integer x, the expression x(x+1) is divisible
by 2. Indeed, if x is even surely x(x + 1) is even, and if x is odd then x + 1 is even
and x(x + 1) is again even. Thus,

(1 + 2x)2 = 1 mod 8

(rather than merely modulo 4). And from the pattern

(1 + 2kx)2 = 1 + 2k+1x + 22kx2

we can prove by induction that

(1 + 8x)2
e−3

= 1 mod 2e

Putting this together, we see that

(1 + 2x)2
e−2

= 1 mod 2e

But 2e−2 < 2e−1 = ϕ(2e). That is, there cannot be a primitive root modulo 2e

with e > 2.
Now consider n not a power of 2. Then write n = pem with p an odd prime

not dividing m. By Euler’s theorem, we know that

bϕ(pe) = 1 mod pe

bϕ(m) = 1 mod m

258 Chapter 15 Primitive Roots

Let M = lcm(ϕ(pe), ϕ(m)). Then (as usual)

bM = (bϕ(pe))M/ϕ(pe) = 1M/ϕ(pe) = 1 mod pe

and
bM = (bϕ(m))M/ϕ(m) = 1M/ϕ(m) = 1 mod m

Thus, certainly
bM = 1 mod pe m

But a primitive root g would have the property that no smaller exponent
` than ϕ(pem) has the property that g` = 1 mod pem. Therefore, unless
gcd(ϕ(pe), ϕ(m)) = 1 we’ll have

lcm(ϕ(pe), ϕ(m)) < ϕ(pe) ϕ(m) = ϕ(pe m)

which would deny the possibility that there is a primitive root.
Thus, we need ϕ(m) relatively prime to ϕ(pe) = (p − 1)pe−1. Since p − 1 is

even, this means that ϕ(m) must be odd. If an odd prime q divides m, then q − 1
divides ϕ(m), which would make ϕ(m) even, which is impossible. Thus, no odd
prime can divide m. Further, if any power of 2 greater than just 2 itself divides m,
again ϕ(m) would be even, and no primitive root could exist.

Thus, except for the cases where we’ve already proven that a primitive root
does exist, there is no primitive root mod n. ///

15.10 An algorithm to find primitive roots
If we know the factorization of p − 1 for a prime p, then there is a reasonable
algorithm to find a primitive root modulo p.

First we give an efficient criterion to check whether or not a candidate b is a
primitive root modulo p or not. This uses knowledge of the factorization of p− 1.
Lemma: Let p be a prime. An integer b is a primitive root modulo p if and only
if b(p−1)/q 6= 1 mod p for all primes q dividing p− 1.

Proof: If b is a primitive root, certainly the conditions of the lemma are met.
On the other hand, suppose that the conditions of the lemma are fulfilled for a
particular b. Let qe be the exact power of q dividing p− 1, and let t be the order of
q in Z/p×. Then t|p−1 by Fermat’s Little Theorem. If qe did not divide t, then still
t would divide (p− 1)/q. But by hypothesis t does not divide (p− 1)/q. Therefore,
qe|t. Since this is true for every prime q dividing p− 1, the least common multiple
m of all these prime powers also divides t, by unique factorization of integers. Of
course, the least common multiple of all prime powers dividing any number p − 1
is that number itself. Thus, m = p− 1, and p− 1 divides t. Since t divides p− 1,
this gives t = p− 1. That is, b is a primitive root modulo p. ///

Remark: Note that the number of primes dividing p− 1 is well below log2 p.
Remark: And recall that the number of primitive roots modulo p (for p prime)
is ϕ(p − 1), which is typically greater than (p − 1)/4. Thus, choosing primitive

Exercises 259

root candidates at random has roughly a 1/4 chance of success. Thus, by a typical
expected value computation, as a heuristic, we should usually expect to find a
primitive root after about 4 tries.

The algorithm to find a primitive root b modulo a prime p, using knowledge
of the factorization of p − 1, and to verify that b really is a primitive root, is as
follows:
• Pick a random b.
• For each prime q dividing p− 1, compute b(p−1)/q mod p.
• If any of these values is 1 mod p, reject b and try a different random candidate.
• Else if none of these values is 1 mod p, then b is a primitive root modulo p.

Remark: Again, roughly a quarter or more of the elements of Z/p× are primitive
roots, so random guessing will succeed in finding a primitive root very quickly. And
the lemma above justifies the fairly efficient procedure to verify whether or not a
given candidate is a primitive root. And of course we take for granted that we use
an efficient exponentiation algorithm.
Remark: Very often 2 or 3 is a primitive root. For example, among the 168
primes under 1000, only 60 have the property that neither 2 nor 3 is a primitive
root. Among the 168 primes under 1000, only the 7 moduli 191, 311, 409, 439, 457,
479, and 911 have the property that none of 2,3,5,6,7,10,11 is a primitive root.

Exercises

15.01 Find a prime p > 2 such that 2 is not a primitive root modulo p.

15.02 Find all the primitive roots in Z/17. (ans.)

15.03 Find all the primitive roots in Z/19.

15.04 Find any repeated factors of x4 + x2 + 1 in F2[x]. (ans.)

15.05 Find any repeated factors of x6 + x4 + x2 + 1 in F2[x].

15.06 Determine the cyclotomic polynomials ϕ2, ϕ3, ϕ4, ϕ5, ϕ6. (ans.)

15.07 Determine the cyclotomic polynomials ϕ8, ϕ9, ϕ12.

15.08 Use a bit of cleverness to avoid working too much, and determine the cyclo-
tomic polynomials ϕ14, ϕ16, ϕ18. (ans.)

15.09 Use a bit of cleverness to avoid working too much, and determine the cyclo-
tomic polynomials ϕ20, ϕ24, ϕ25.

15.10 Use some cleverness as well as perseverance to determine the cyclotomic
polynomials ϕ15, ϕ21.

15.11 Find a primitive root in F2[x] modulo x2 + x + 1. (ans.)

15.12 Find a primitive root in F2[x] modulo x3 + x + 1. (ans.)

15.13 Find a primitive root in F2[x] modulo x3 + x2 + 1.

15.14 Find a primitive root in F2[x] modulo x4 + x + 1.

15.15 (*) Find a cyclotomic polynomial that has coefficients other than 0,+1,−1.
(ans.)

16

Primitive Polynomials

16.1 Definition of primitive polynomials
16.2 Examples mod 2
16.3 Testing for primitivity
16.4 Periods of LFSRs
16.5 Two-bit errors in CRCs

The notion of primitivity of a polynomial with coefficients in F2 or some other
finite field Fq is very important in many different applications. Unfortunately, it is
not particularly intuitive.

We give two applications here: length of period of linear feedback shift registers,
and two-bit error detections by cyclic redundancy checks.

16.1 Definition of primitive polynomials
Primitive polynomials and primitive roots in finite fields have a complementary
relationship to each other.

A polynomial P of degree N in Fq[x] is primitive if P is irreducible and

xqN−1 = 1 mod P

and
x` 6= 1 mod P

for 0 < ` < qN − 1.
Proposition: An irreducible polynomial P of degree N in Fq[x] is primitive if
and only if x-mod-P is a primitive element in the finite field Fq[x]/P .

Proof: The only thing to worry about is that Fq[x]/P should be a field. This
requires exactly that P be irreducible. ///

Theorem: An irreducible polynomial P of degree N in Fq[x] is primitive if and
only if P divides the (qN − 1)th cyclotomic polynomial in Fq[x].

260

16.2 Examples mod 2 261

Proof: On one hand, suppose that P is primitive. By definition, this means that

xqN−1 = 1 mod P

but that no smaller positive exponent will do. That is, P divides xqN−1 − 1 but
not xM − 1 for any positive M smaller than qN − 1. We have seen that

ϕ`(x) =
x` − 1

lcm of all xt − 1 with t|`

By unique factorization of polynomials (in one variable, with coefficients in a field),
we conclude that P divides the (qN − 1)th cyclotomic polynomial.

On the other hand, suppose that P is irreducible of degree N and divides the
(qN −1)th cyclotomic polynomial. The multiplicative group of non-zero elements of
the field Fq[x]/P has qN − 1 elements, so by Lagrange’s theorem and its corollaries

x(qN−1) = 1 mod P

That is, P divides x(qN−1) − 1. We must prove that P does not divide xt − 1 for
any divisor t of qN −1 smaller than qN −1 itself. Note that the characteristic of the
field (the prime dividing the prime power q) certainly does not divide qN−1. Thus,
x(qN−1)−1 has no repeated roots. Thus, again using the definition of the cyclotomic
polynomial quoted just above, and again using unique factorization, P (x) has no
common factors with xt − 1 for divisors t of aN − 1 with t < qN − 1. In particular,
P does not divide xt − 1 for any divisor t of qN − 1 with 0 < t < qN − 1. Thus,
x is of order exactly qN − 1 modulo P , rather than of order any proper divisor of
qN − 1. That is, P is primitive. ///

Remark: In fact, a little further preparation would allow proof that for N =
2, 3, 4, 5, 6, . . . the irreducible factors of the (qN − 1)th cyclotomic polynomial in
Fq[x] are all of degree exactly N .

The order of a polynomial Q modulo P is the smallest positive integer M so
that

QM = 1 mod P

Thus, paraphrasing the previous proposition, an irreducible polynomial P of degree
N in Fq[x] is primitive if and only if the order of x mod P is qN − 1. In any case,
by Lagrange’s theorem, the order of Q mod P is always a divisor of qN − 1.

16.2 Examples mod 2
For applications, some of the most important polynomials are those with coefficients
in F2. Here we’ll look at low-degree primitive polynomials modulo 2.

A linear polynomial in F2[x] is primitive, by definition, if it is irreducible and
divides the (21 − 1)th cyclotomic polynomial, which is

ϕ1 = x− 1 = x + 1

262 Chapter 16 Primitive Polynomials

This directly shows that the linear polynomial x + 1 is primitive, while x is not.
A quadratic polynomial in F2[x] is primitive, by definition, if it is irreducible

and divides the (22 − 1)th cyclotomic polynomial, which is

ϕ22−1 = ϕ3 =
x3 − 1
x− 1

= x2 + x + 1

which is by coincidence quadratic itself. It’s easy to check (by trial division) that
x2 + x + 1 is irreducible, so x2 + x + 1 is the only primitive quadratic polynomial
mod 2.

A cubic polynomial in F2[x] is primitive, by definition, if it is irreducible and
divides the (23 − 1)th cyclotomic polynomial, which is

ϕ23−1 = ϕ7 =
x7 − 1
x− 1

= x6 + x5 + x4 + x3 + x2 + x + 1

From earlier (trial division), we know that the irreducible cubics mod 2 are exactly

x3 + x2 + 1 x3 + x + 1

Just checking, multiply out

(x3 + x2 + 1) · (x3 + x + 1) = x6 + x5 + x4 + x3 + x2 + x + 1

We conclude that both the irreducible cubics are primitive.
A quartic polynomial in F2[x] is primitive, by definition, if it is irreducible

and divides the (24 − 1)th cyclotomic polynomial, which is

ϕ24−1 = ϕ15 =
x15 − 1

ϕ1(x) ϕ3(x) ϕ5(x)
=

x15 − 1
ϕ3(x) (x5 − 1)

=
x15 − 1

(x2 + x + 1)(x5 − 1)

= x8 + x7 + x5 + x4 + x3 + x + 1

From earlier (trial division), we know that the irreducible quartics mod 2 are exactly
the 3

x4 + x3 + x2 + x + 1 x4 + x3 + 1 x4 + x + 1

If we make a lucky (?!) guess that the second two are the primitive ones (since they
are somewhat related to each other) then we check:

(x4 + x3 + 1) · (x4 + x + 1) = x8 + x7 + x5 + x4 + x3 + x + 1

Yes, these two are the primitive quartics mod 2. So 2 out of 3 irreducible quartics
are primitive.

Note that we might have recognized that x4 + x3 + x2 + x + 1 is not primitive
by the fact that it is in fact exactly ϕ5. That implies that every root λ of it has
order 5 rather than 15.

16.2 Examples mod 2 263

A quintic polynomial in F2[x] is primitive, by definition, if it is irreducible
and divides the (25 − 1)th cyclotomic polynomial, which is

ϕ25−1 = ϕ31 =
x31 − 1
x− 1

This is of degree 30, so if we imagine that it’s exactly the product of the primitive
quintics, then there should be 6 of them.

But in fact we already saw (by trial division) that there are exactly 6 irreducible
quintics,

x5 + 0 + x3 + x2 + x + 1
x5 + x4 + 0 + x2 + x + 1
x5 + x4 + x3 + 0 + x + 1
x5 + x4 + x3 + x2 + 0 + 1

x5 + x3 + 1
x5 + x2 + 1

A person who cared enough could really check that the product of these is ϕ31.
A sextic polynomial in F2[x] is primitive, by definition, if it is irreducible and

divides the
(26 − 1)th = 63th = (3 · 3 · 7)th

cyclotomic polynomial, which is of degree

ϕ(26 − 1) = ϕ(3 · 3 · 7) = (3− 1)3(7− 1) = 42

So if we imagine that it’s exactly the product of the primitive sextics, then there
should be 42/6 = 7 of them.

How many irreducible sextics are there mod 2? It turns out (as we will see
later in our discussion of the Frobenius automorphism and other further structure
of finite fields) that there are

26 − 23 − 22 + 21

6
=

54
6

= 9

So two irreducible sextics are not primitive. Which two?
A septic polynomial in F2[x] is primitive, by definition, if it is irreducible and

divides the
(27 − 1)th = 127th

cyclotomic polynomial, which is of degree

ϕ(27 − 1) = 127− 1 = 2 · 3 · 3 · 7

(since 127 is prime). So if we imagine that it’s exactly the product of the primitive
septics, then there should be 2 · 3 · 3 = 18 of them.

How many irreducible septics are there mod 2? It turns out that there are

27 − 21

7
=

126
7

= 18

264 Chapter 16 Primitive Polynomials

So all irreducible septics mod 2 are primitive.
An octic polynomial in F2[x] is primitive, by definition, if it is irreducible and

divides the
(28 − 1)th = 255th = (3 · 5 · 17)th

cyclotomic polynomial, which is of degree

ϕ(28 − 1) = (3− 1)(5− 1)(7− 1) = 24̇ · 6 = 48

So if we imagine that it’s exactly the product of the primitive octics, then there
should be 48/8 = 6 of them.

How many irreducible octics are there mod 2? It turns out that there are

28 − 24

8
= 25 − 2 = 30

So only 6 of the 30 irreducible octics are primitive.

16.3 Testing for primitivity
For large degree d, it is not good to test for primitivity of polynomials in Fq[x] by
actually computing the (pd − 1)th cyclotomic polynomial, since the degree of this
grows exponentially in d, and too much memory would be needed to do this! There
is a better approach expressible as an algorithm, which uses hardly any memory.
Theorem: Let P be an irreducible polynomial of degree n in Fq[x]. Let N =
pn − 1. Then P is primitive if and only if

xN/r 6= 1 mod P

for every prime number r dividing N .
Remark: As usual, the way we test whether a polynomial f is 1 mod P is to
divide-with-remainder f by P , and see whether or not the remainder is 1.
Remark: Of course, we should use the fast exponentiation algorithm here.
Remark: The fast exponentiation algorithm in F2[x] runs especially fast, since
all that is necessary to square such a polynomial is to double the exponents (of
terms which actually occur). For example, in F2[x],

(x5 + x4 + x + 1)2 = x10 + x8 + x2 + 1

Example: Let’s verify that the nonic (degree nine polynomial) 1 + x4 + x9 is
primitive, while the nonic 1+x+x9 is irreducible but not primitive. In both cases,
we’ll take the irreducibility for granted. Also, for brevity, let’s express polynomials
in F2[x] as arrays of non-negative integers, where an integer i occurs if and only
if xi occurs in the polynomial. (Of course this trick is special to the case that the
coefficients are in F2.) For example, x3 + x + 1 would be denoted by [0, 1, 3].

First, note that
29 − 1 = 7 · 73

16.3 Testing for primitivity 265

so (by Lagrange’s theorem, etc.) it might be that

x7 = 1 mod irred nonic

or
x73 = 1 mod irred nonic

if the nonic is not primitive. In the first case, x7 is already reduced modulo any
nonic polynomial, so it cannot be that x7 = 1 modulo any nonic. Next, compute
x73 mod 1 + x4 + x9 via the Fast Modular Exponentiation Algorithm: initiate
(X, E, Y) = (x, 73, 1) and at each step in the algorithm we list the triple of values
(X, E, Y) at that point. When E = 0 the algorithm terminates and the value of Y
is the desired x73 modulo the polynomial.

[1] 73 [0]
[1] 72 [1]
[2] 36 [1]
[4] 18 [1]
[8] 9 [1]
[8] 8 [0, 4]

[2, 6, 7] 4 [0, 4]
[0, 3, 5, 7] 2 [0, 4]
[1, 4, 6] 1 [0, 4]
[1, 4, 6] 0 [4, 6, 8]

Thus,
x73 = x4 + x6 + x8 mod 1 + x4 + x9

which is not 1 mod 1 + x4 + x9.
Just to check, let’s verify that x511 = 1 mod 1 + x4 + x9. Of course, taking

advantage of the power-of-2 situation, it would be smarter to verify that x512 =
x mod 1 + x4 + x9. We again use the Fast Modular Exponentiation Algorithm,
displaying the values of (X, EY) at successive steps in the execution:

[1] 512 [0]
[2] 256 [0]
[4] 128 [0]
[8] 64 [0]

[2, 6, 7] 32 [0]
[0, 3, 5, 7] 16 [0]
[1, 4, 6] 8 [0]

[2, 3, 7, 8] 4 [0]
[0, 2, 5, 7] 2 [0]

[1] 1 [0]
[1] 0 [1]

So that x512 = x mod 1 + x4 + x9 as it should.

266 Chapter 16 Primitive Polynomials

Remark: If for some nonic P it happened that

x29
6= x mod P

then we would know that the nonic P was reducible. (Why?) For example, with

P (x) = 1 + x9 = (1 + x3)(1 + x3 + x6)

= (1 + x)(1 + x + x2)(1 + x3 + x6)

we compute x512 mod P (here there is an unusual shortcut):

x512 = x9·56+8 = (x9)56 · x8

= 1 · x8 = x8 mod x9 + 1

which is not x mod x9+1, so we have proven indirectly that x9+1 is not irreducible.
On the other hand, let’s look at the second nonic mentioned above, 1+x+x9.

Compute x73 mod 1 + x + x9 by fast exponentiation, with the abbreviation used
above:

[1] 73 [0]
[1] 72 [1]
[2] 36 [1]
[4] 18 [1]
[8] 9 [1]
[8] 8 [0, 1]

[7, 8] 4 [0, 1]
[5, 6, 7, 8] 2 [0, 1]

[1, 2, 3, 4, 5, 6, 7, 8] 1 [0, 1]
[1, 2, 3, 4, 5, 6, 7, 8] 0 [0]

That is,
x73 = 1 mod 1 + x + x9

which proves that 1 + x + x9 is not primitive.
Just to check, let’s compute x512 mod 1 + x + x9:

[1] 512 [0]
[2] 256 [0]
[4] 128 [0]
[8] 64 [0]

[7, 8] 32 [0]
[5, 6, 7, 8] 16 [0]

[1, 2, 3, 4, 5, 6, 7, 8] 8 [0]
[1, 3, 5, 7] 4 [0]

[1, 5] 2 [0]
[1] 1 [0]
[1] 0 [1]

16.4 Periods of LFSRs 267

Thus, x512 = x modulo 1 + x + x9, as it should because 1 + x + x9 is irreducible.
(Why?)

16.4 Periods of LFSRs
Linear feedback shift registers, LFSR’s, are among the simplest mechanisms
by which to generate a stream of pseudo-random numbers. The very first re-
quirement would be that the generator not repeat itself for a long time. This
requirement can be completely addressed by looking at the generating polyno-
mial for the shift register, and asking how close it is to being primitive.

Fix a size N , a modulus m (often m = 2), and choose coefficients c =
(c0, . . . , cN−1). Also choose a seed or initial state s = (s0, s1, s2, s3, . . . , sN−1).
This will be the beginning of the keystream, as well. Then we recursively define,
for n + 1 ≥ N ,

sn+1 = c0 sn + c1 sn−1 + c2 sn−2 + . . . + cN−1 sn−(N−1) % m

For example, with size N = 2, modulus 2, coefficients c = (1, 1), and seed
s = (s0, s1) = (0, 1) we have the Fibonacci sequence modulo 2, namely

s0 = 0
s1 = 1
s2 = s1 + s0 = 1 + 0 = 1
s3 = s2 + s1 = 1 + 1 = 0
s4 = s3 + s2 = 0 + 1 = 1
s5 = s4 + s3 = 1 + 0 = 1
s6 = s5 + s4 = 1 + 1 = 0
. . .

In this example it is apparent (and can be proven by induction) that the pattern
repeats in blocks of 3 bits, with each block being 0, 1, 1.

As another example, with size N = 3, modulus 2, coefficients c = (1, 1, 1), and
seed s = (s0, s1, s2) = (0, 0, 1) we have

s0 = 0
s1 = 0
s2 = 1
s3 = s2 + s1 + s0 = 1 + 0 + 0 = 1
s4 = s3 + s2 + s1 = 1 + 1 + 0 = 0
s5 = s4 + s3 + s2 = 0 + 1 + 1 = 0
s6 = s5 + s4 + s3 = 0 + 0 + 1 = 1
s7 = s6 + s5 + s4 = 1 + 0 + 0 = 1
. . .

and the pattern repeats in blocks of 0011. With the seed 101 and the same coeffi-

268 Chapter 16 Primitive Polynomials

cients we have
s0 = 1
s1 = 0
s2 = 1
s3 = s2 + s1 + s0 = 1 + 0 + 1 = 0
s4 = s3 + s2 + s1 = 0 + 1 + 0 = 1
s5 = s4 + s3 + s2 = 1 + 0 + 1 = 0
s6 = s5 + s4 + s3 = 0 + 1 + 0 = 1
s7 = s6 + s5 + s4 = 1 + 0 + 1 = 0
. . .

so there is a shorter time-to-repeat with this seed, in blocks of 01.
By contrast, with size N = 3, modulus 2, coefficients c = (1, 0, 1), and seed

s = (s0, s1) = (0, 0, 1) we have

s0 = 0
s1 = 0
s2 = 1
s3 = s2 + s0 = 1 + 0 = 1
s4 = s3 + s1 = 1 + 0 = 1
s5 = s4 + s2 = 1 + 1 = 0
s6 = s5 + s3 = 0 + 1 = 1
s7 = s6 + s4 = 1 + 1 = 0
s8 = s7 + s5 = 0 + 0 = 0
s9 = s8 + s6 = 0 + 1 = 1

and thereafter the pattern repeats. Note that with size N = 3 this example repeats
in blocks of 7, by contrast to the previous example.

The kind of recursive definition used to define the keystream here can be writ-
ten in terms of matrices. For simplicity, let’s just suppose that N = 4. From
coefficients c = (c0, c1, c2, c3), we make a matrix

C =

c0 c1 c2 c3

1 0 0 0
0 1 0 0
0 0 1 0

and the recursion relation can be written as

sn+1

sn

sn−1

sn−2

 = C ·

sn

sn−1

sn−2

sn−3

 (all modulo m)

For example suppose the modulus is m = 2 and the coefficients are

c0 = 1, c1 = 0, c2 = 0, c3 = 1

16.4 Periods of LFSRs 269

so that the output stream is produced by

si+1 = c0 · si + c1 · si−1 + c2 · si−2 + c3 · si−3

= 1 · si + 0 · si−1 + 0 · si−2 + 1 · si−3 = si + si−3

With seed
(s0, s1, s2, s3) = (1, 1, 0, 0)

the whole stream produced (including the initial (1, 1, 0, 0)) is

1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, . . .

In this case, if an earlier occurring pattern of 4 consecutive bits recurs, then the
stream will repeat itself, since the four previous values completely determine the
next one. Here the initial (1, 1, 0, 0) recurred after 15 steps.

The possibility of expressing the computation of the output stream in terms
of matrices is both convenient for computations and as an exploitable vulnerability
for cryptanalytic attacks.

It is possible that for some choices of seed the keystream has a large period,
but for other choices of seed the keystream has a short period, both with the same
coefficients c. For this reason, in some scenarios the coefficients c0, c1, c2, . . . should
be chosen carefully, and only the seed (s0, s1, s2, . . .) chosen ‘at random’.
Theorem: If the generating polynomial

xN − c0x
N−1 − c1x

N−2 − c2x
N−3 − . . .− cN−1

in Fq[x] is primitive, then the linear feedback shift register with coefficients
c0, . . . , cN−1 has period qN − 1 for any initial state s0, s1, . . . , sN−1 (other than
all 0’s).
Remark: If that polynomial is not primitive, then the period will be less, and
there will be several ‘bad’ initial states which will cause the LFSR to have a much
smaller period.

Proof: Define the transition matrix L by

L =

c0 c1 c2 . . . cN−2 cN−1

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 . . . 0 1 0

That is, the top row consists of the coefficients (note the ordering of them!) and
everything else is 0 except for the 1’s on the subdiagonal. Then

L ·

sn

sn−1

. . .
sn−(N−2)

sn−(N−1)

 =

sn+1

sn

. . .
sn−(N−3)

sn−(N−2)

270 Chapter 16 Primitive Polynomials

As is standard in linear algebra, the idea is to express the initial state
sN−1

sN−2

. . .
s1

s0

as a linear combination

sN−1

sN−2

. . .
s1

s0

 = a1 · v1 + . . . + an · vn

of eigenvectors vi of L with corresponding eigenvalue λi, thereby being easily able
to evaluate Lk:

Lk

sN−1

sN−2

. . .
s1

s0

 = λk
1a1 · v1 + . . . + λk

nan · vn

If you understand how determinants work, then you can see that the charac-
teristic polynomial of a matrix of the special form that L has is just

PL(x) = xN − c0x
N−1 − c1x

N−2 − c2x
N−3 − . . .− cN−1

But we cannot expect to ‘solve’ high-degree polynomial equations explicitly.
Instead of being so explicit, we could demand that all the eigenvalues λi have

the largest possible order(s). That is, the smallest positive integer ` so that λ`
i = 1

is as large as possible.
Remark: A possible problem here is that if we’ve only discussed the finite fields
Fp and no others then we don’t know where to look to find these eigenvalues, since
we probably cannot solve the characteristic equation in Fp! We need to understand
finite fields more generally to understand what’s going on with LFSR’s, even though
we don’t mention finite fields in the definition of LFSR! But let’s not worry too
much.

Assuming (as we did) that PL is irreducible, these eigenvalues lie in the finite
field FpN (since PL is of degree N). In the discussion of primitive roots, we actually
showed that the multiplicative group of any finite field is cyclic, so F×

pN is cyclic, of
order pN − 1. That is, every non-zero element of FpN satisfies

xpN−1 − 1 = 0

But we want to exclude elements with smaller orders (so by Lagrange’s theorem
having order proper divisors of PL). That is, we want to look at the polynomial

16.4 Periods of LFSRs 271

that’s left after removing from xpN−1−1 = 0 all its common factors with polynomi-
als xd − 1 where d is a proper divisor of pN − 1. From the discussion of cyclotomic
polynomials, what remains after such common factors are removed is exactly the
(pN − 1)th cyclotomic polynomial.

Therefore the hypothesis that PL is irreducible and divides the (pN − 1)th

cyclotomic polynomial assures that the order of each eigenvalue is pN − 1.
Then look at the periodicity condition

λi+`
1 a1 · v1 + . . . + λi+`

n an · vn = λi
1a1 · v1 + . . . + λi

nan · vn

This simplifies to

(λi+`
1 − λi

1)v1 + . . . + (λi+`
N − λi

N)vN = 0

or
(λ`

1 − 1)λi
1v1 + . . . + (λ`

N − 1)λi
NvN = 0

Certainly if pN −1 divides ` then the quantities in parentheses are all 0, so the sum
is 0.

To prove the other half, that this vector sum being zero implies that every
λ`

i − 1 = 0, we need a bit more information about eigenvectors. First, in this
situation we know that PL has distinct roots, since PL is a divisor of the (pN−1)th

cyclotomic polynomial, which we know to have distinct roots. Now we claim that
for an N -by-N matrix M with distinct eigenvalues λ1, . . . , λN , any relation

a1v1 + . . . + aNvN = 0

among corresponding eigenvectors vi must have all coefficients ai equal to 0. To
prove this, make the clever hypothesis that we have such a relation, and that among
all such relations it has the fewest non-zero ai’s. Apply M to both sides of that
relation, obtaining

λ1a1v1 + . . . + λNaNvN = 0

Multiplying the first relation by λj and subtracting from the second gives a vector
relation

(λ1 − λj)a1v1 + . . . + (λN − λj)aNvN = 0

This has the effect of getting rid of the jth term. Note that since the eigenvalues
are all distinct none of the quantities λi − λj is 0 except for i = j. Thus, we can
obtain a relation with fewer non-zero coefficients by using this trick to kill off some
non-zero coefficient. Contradiction.

Thus, in the case at hand,

(λ`
1 − 1)λi

1v1 + . . . + (λ`
N − 1)λi

NvN = 0

if and only if all coefficients (λ`
i − 1)λi are 0. Since λpN−1

i = 1, λi is non-zero itself,
so the condition is that

λ`
i − 1 = 0 (for all i)

272 Chapter 16 Primitive Polynomials

Since every λi has order pN − 1, this holds if and only if ` divides pN − 1. That is,
we’ve proven that the order of such a LFSR is pN − 1. ///

Remark: We did not prove above that every vector can be expressed as a linear
combination

v = a1v1 + . . . + aNvN

of eigenvectors vi. Since the eigenvalues are all different from each other, this
is true. We proved above that eigenvectors attached to different eigenvalues are
linearly independent. On the other hand, N linearly independent vectors in an
N -dimensional space implies that these vectors are a basis. (See the appendix on
linear algebra.)

16.5 Two-bit errors in CRCs
The question of which two-bit errors are detected by a cyclic redundancy check
(CRC) can be completely answered in terms of primitivity (or not) of the gener-
ator polynomial.

First let’s recall how a CRC works. Given data expressed as a stream of bits
such as 11100010100, create a data polynomial with coefficients in the finite field
F2 from it by using the 0’s and 1’s as coefficients: from this string of bits, make
polynomial

11100010100→ x10 + x9 + x8 + x4 + x2

A CRC-computing algorithm is specified by its generating polynomial,
which is also a polynomial with coefficients in the finite field F2. For example,
we might take generating polynomial

x3 + x + 1

Then the CRC of the data is computed by finding the remainder when the data
polynomial is divided by the generating polynomial: With data polynomial
and generating polynomial as above, we’d get

x7 +x6 +0 +0 +x3 +0 +0 +1 R x2+x1 +x0

x3 +0 +x1 +x0 x10 +x9 +x8 +0 +0 +0 +x4 +0 +x2 +0 +0
x10 +0 +x8 +x7 +0 +0 +0 +0 +0 +0 +0

x9 +0 +x7 +0 +0 +x4 +0 +x2 +0 +0
x9 +0 +x7 +x6 +0 +0 +0 +0 +0 +0

x6 +0 +x4 +0 +x2 +0 +0
x6 +0 +x4 +x3 +0 +0 +0

x3 +x2 +0 +0
x3 +0 +x1 +x0

x2 +x1 +x0

Thus, the remainder is x2 + x + 1, which we translate back to bits as 111. That is

CRC with generating polynomial x3 + x + 1 computed for 11100010100 = 111

Exercises 273

As discussed earlier, when a piece of data is expressed as a stream of 0’s and
1’s, a change of any 0 to a 1 or vice versa is a bit error. In general, the number
of 0-to-1 or 1-to-0 changes in a chunk of data (viewed as a stream of 0’s and 1’s) is
the number of bit errors.
Theorem: Let g(x) be a CRC generating polynomial with coefficients in F2

and non-zero constant coefficient. Suppose that g(x) has a factor h(x) which is
primitive, of degree N . Then for this CRC to fail to detect some two-bit error it
must be that the two altered bits are a distance apart which is a multiple of 2N .

Proof: Let e(x) = xm − xn = xn(xm−n − 1) be the error viewed as a polynomial,
with m > n. To fail to be detected by the CRC with generator g(x) it must be that
g(x) divides e(x). Since g(x) has non-zero constant coefficient, it has no factor of
x, so to divide xn(xm−n − 1) it must be that g(x) divides xd − 1, where d = m− n
is the distance apart of the two single-bit errors. By the definition of primitivity,
s = 2N − 1 is the smallest exponent such that h(x) divides xs − 1. Since g(x)
divides xd − 1, the primitive polynomial h(x) of degree N must also divide xd − 1.
Invoking the division algorithm, write d = qs + r with 0 ≤ r < |s|. Then

xd = xqs+r = (xs)q · xr = 1q · xr = xr mod h(x)

because xs = 1 mod h(x). But also xd = 1 mod h(x), so xr = 1 mod h(x). Since s
was the smallest positive exponent with this property, it must be that r = 0, and
thus s = 2N − 1 divides d, the distance apart. ///

Remark: Thus, it is desirable to have a CRC generating polynomial be divisible
by a pretty-high-degree primitive polynomial.

Exercises

16.01 Find the (multiplicative) order of x mod x3 +x+1 with coefficients in Z/2.
(ans.)

16.02 Find the (multiplicative) order of x + 1 mod x3 + x + 1 with coefficients in
Z/2.

16.03 Find the (multiplicative) order of x2 +x+1 mod x3 +x+1 with coefficients
in Z/2.

16.04 Find the (multiplicative) order of x mod x4+x3+x2+x+1 with coefficients
in Z/2. (ans.)

16.05 Find the (multiplicative) order of x mod x4 +x+1 with coefficients in Z/2.

16.06 Find the (multiplicative) order of x2 +x+1 mod x4 +x+1 with coefficients
in Z/2.

16.07 Find an element of order 63 in F64, where F64 is modeled as F2[x] modulo
1010111 where those are the coefficients in order of decreasing degree. (ans.)

16.08 Find an element of order 63 in F64, where F64 is modeled as F2[x] modulo
1110101 where those are the coefficients in order of decreasing degree.

274 Chapter 16 Primitive Polynomials

16.09 Define a linear feedback shift register by

sn+1 = sn + sn−1 + sn−2 + sn−3

where for an index n the state is a list of 4 bits (or elements of F2)
(sn, sn−1, sn−2, sn−3). With initial state (s3, s2, s1, s0) = (1, 1, 1, 1), after
how many steps will the state return to this? (ans.)

16.10 Define a linear feedback shift register by

sn+1 = sn + sn−3

where for an index n the state is a list of 4 bits (or elements of F2)
(sn, sn−1, sn−2, sn−3). With initial state (s3, s2, s1, s0) = (1, 1, 1, 1), after
how many steps will the state return to this? (ans.)

16.11 Define a linear feedback shift register by

sn+1 = sn−2 + sn−4

where for an index n the state is a list of 5 bits (sn, sn−1, sn−2, sn−3, sn−4).
With initial state (s4, s3, s2, s1, s0) = (1, 1, 1, 1, 1), after how many steps will
the state return to this? (ans.)

16.12 Define a linear feedback shift register by

sn+1 = sn−1 + sn−4

where for an index n the state is a list of 5 bits (sn, sn−1, sn−2, sn−3, sn−4).
With initial state (s4, s3, s2, s1, s0) = (1, 0, 0, 0, 0), after how many steps will
the state return to this?

16.13 Define a linear feedback shift register by

sn+1 = sn−3 + sn−4

where for an index n the state is a list of 5 bits (sn, sn−1, sn−2, sn−3, sn−4).
With initial state (s4, s3, s2, s1, s0) = (1, 0, 0, 0, 0), after how many steps will
the state return to this? (ans.)

16.14 Define a linear feedback shift register by

sn+1 = sn−3 + sn−3 + sn−4 + sn−5

where for index n the state is a list of 6 bits (sn, sn−1, sn−2, sn−3, sn−4, sn−5).
With initial state (s5, s4, s3, s2, s1, s0) = (1, 0, 0, 0, 0), after how many steps
will the state return to this?

16.15 Define a linear feedback shift register by

sn+1 = sn−4 + sn−5

Exercises 275

where for index n the state is a list of 6 bits (sn, sn−1, sn−2, sn−3, sn−4, sn−5).
With initial state (s5, s4, s3, s2, s1, s0) = (1, 0, 0, 0, 0), after how many steps
will the state return to this?

16.16 Let F16 be modeled as F2[x] modulo 10011, the latter indicating coefficients
in order of decreasing degree. Find two roots of the equation y2 + y + 1 = 0
in this field. (ans.)

16.17 Let F16 be modeled as F2[x] modulo 10111, the latter indicating coefficients
in order of decreasing degree. Find two roots of the equation y2 + y + 1 = 0
in this field.

17

RS and BCH Codes

17.1 Vandermonde determinants
17.2 Variant check matrices for cyclic codes
17.3 Reed-Solomon codes
17.4 Hamming codes
17.5 BCH codes

So far in our story we have not been very succesful in making error-correcting
codes. Yet Shannon’s Noisy Coding Theorem assures us of the existence of codes
which correct as close to 100% of errors as we want (with chosen rate, also). It is
simply hard to find these codes.

We know that a linear code can correct e errors if and only if any 2e columns
of its check matrix are linearly independent. This transformation of the question is
much more helpful than the more primitive (though entirely correct) idea that to
correct e errors the minimum distance must be 2e + 1. (Equivalently, for linear
codes, the minimum weight of non-zero vectors in the code must be 2e + 1.) The
linear algebra condition about linear independence is more accessible. For example
we can use this criterion to easily construct the Hamming [7, 4] code which can
correct any single error. The next immediate question is how to achieve this linear
independence property for correction of multiple errors.

The examples we give here are not merely linear, but cyclic. The simplest ones
after the Hamming codes are Reed-Solomon codes or RS codes, and do achieve
correction of arbitrarily large numbers of errors. Generalizing these somewhat are
the BCH codes. They were created by Bose, Chaudhuri, and independently by
Hocquengham, about 1959–60, and were considered big progress at the time. All
of these can be viewed as a certain kind of generalization of Hamming codes. In
the end, these codes are not so good, but, still, they are the simplest examples of
multiple-error-correcting codes. (Actually, we’ll only consider primitive, narrow-
sense BCH codes.)

To construct these codes we need larger and larger finite fields, at least for
auxiliary purposes. Our little friend F2 = {0, 1} is unfortunately not adequate.
One approach is simply to use Z-mod-p = Z/p for large prime numbers p. From

276

17.1 Vandermonde determinants 277

a theoretical viewpoint this is fine, but from some practical viewpoints we would
much prefer to be able to rearrange everything as a binary code in the end. This
will require us to use finite fields F2n = GF (2n) with 2n elements.

Remark: It is very important to realize that we cannot realize finite fields F2n

by using simply Z-mod-something:

Z/2n 6= F2n (unless n = 1)

Instead, we need an irreducible polynomial P (x) of degree n with coefficients in
F2, and then

F2n = F2[x]/P = F2[x] modulo P (x)

• It is important to realize that the issue is not so much the number of errors
corrected, but rather the ratio

relative error correction =
number of errors correctible

block length

and maintaining a high rate. After all, correcting 2 errors but needing a
block size of 1000000 is not very good, since it is quite likely that more than
2 errors will occur in a block that size! Thus, a code can be a failure even if
its rate is high, and even if it corrects many errors, if its block length is just
too long by comparison.

Despite having been used for decades in engineering applications, from an
abstract viewpoint the Hamming, RS, and BCH codes are very limited successes.
Specifically, as we try to use these ideas to correct more and more errors, the block
size goes up too fast, and the relative error correction goes to 0.

17.1 Vandermonde determinants
So: a linear code can correct e errors if and only if any 2e columns of its check
matrix are linearly independent. How to achieve this effect? From basic linear
algebra we may know that ` vectors of length ` are linearly independent if and
only if the determinant of the matrix made by sticking them together is not 0. But
determinants are not easy or cheap to evaluate in general. What is needed is some
easy and systematic trick to know that a whole class of determinants is non-zero,
to be exploited in making suitable check matrices for cyclic codes later. We will
introduce the two standard types of Vandermonde matrix and note that under very
simple hypotheses their determinants are not 0.

A move in the right direction to use this is to ‘recall’ that n vectors

(v11, v12, v13, v14, . . . , v1n)
(v21, v22, v23, v24, . . . , v2n)
(v31, v32, v33, v34, . . . , v3n)

. . .
(vn1, vn2, vn3, vn4, . . . , vnn)

278 Chapter 17 RS and BCH Codes

are linearly independent if and only if the determinant of the n-by-n matrix made
by sticking the vectors in (either as rows or columns) is non-zero:

det

v11 v12 v13 v14 . . . v1n

v21 v22 v23 v24 . . . v2n

v31 v32 v33 v34 . . . v3n

. . .
vn1 vn2 vn3 vn4 . . . vnn

 6= 0

But whether you remember how to evaluate such a determinant or not, it is
a fact that it is a pain to evaluate big determinants, and you should try to avoid
evaluating big determinants.

And, in the present case, we don’t really need its value, but only the assurance
that it’s not 0. Since the entries of our matrices will be elements of a finite field,
we effectively know the entries with infinite precision, so round-off errors are not
the issue here.

Not surprisingly, over the centuries various special matrices arose in practice
which luckily could be evaluated easily. One such type is a Vandermonde matrix.
One version of Vandermonde matrix is any matrix of the form

M =

1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

. . .
xn−1

1 xn−1
2 xn−1

3 xn−1
4 . . . xn−1

n

where the x1, x2, . . . , xn are ‘numbers’ or ‘indeterminates’, or nearly anything. That
is, the ith column is formed by taking successively increasing powers of the ith

entity xi. The determinant of a Vandermonde matrix is called a Vandermonde
determinant.

The amazing fact is that there is a simple general formula for the determinant
of such a matrix:

det M = (−1)n(n−1)/2
∏
i<j

(xi − xj)

More to the point, for example if the xi’s lie in a field, then
• If for all i < j we have xi 6= xj then the corresponding Vandermonde deter-

minant is not 0.

Remark: Keep in mind that in greatest generality the product of a bunch of non-
zero things can nevertheless be 0. But this counter-intuitive phenomenon certainly
does not occur in fields, for example. More generally, recall that a commutative
ring in which ab = 0 only when either a or b is 0 is an integral domain. Every
field is an integral domain. The ordinary integers Z are an example of an integral
domain which is not a field.

17.1 Vandermonde determinants 279

For example, for α in a field k, assuming that all the quantities 1, α, α2,
α3, . . ., α` are different from each other, by taking xi = αi−1, we get a non-zero
determinant

det

1 1 1 1 . . . 1
1 α α2 α3 . . . αn−1

1 α2 (α2)2 (α3)2 . . . (αn−1)2

1 α3 (α2)3 (α3)3 . . . (αn−1)3

1 α4 (α2)4 (α3)4 . . . (αn−1)4

. . .
1 αn−1 (α2)n−1 (α3)n−1 . . . (αn−1)n−1

6= 0

More generally, there is no reason that the different powers of α have to be consec-
utive: the only requirement is that they’re not equal to each other. That is, for a
non-zero element α of a field and for integers `1, . . . , `n so that

α`1 , α`2 , α`3 , . . . , α`n

are distinct, we have a non-zero determinant

det

1 1 1 1 . . . 1
1 α`1 α`2 α`3 . . . α`n−1

1 (α`1)2 (α`2)2 (α`3)2 . . . (α`n−1)2

1 (α`1)3 (α`2)3 (α`3)3 . . . (α`n−1)3

1 (α`1)4 (α`2)4 (α`e)4 . . . (α`n−1)4

. . .
1 (α`1)n−1 (α`2)n−1 (α`3)n− 1 . . . (α`n−1)n−1

6= 0

• A fundamental property of determinants is that if a row or column of a matrix
is multiplied by β, then the whole determinant is multiplied by β.

This property allows us to certify that a still larger class of determinants is
non-zero. From the fact that

M =

1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

. . .
xn−1

1 xn−1
2 xn−1

3 xn−1
4 . . . xn−1

n

6= 0

for distinct x1, . . . , xn we can multiply through the ith column by xi to obtain

M =

x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

x5
1 x5

2 x5
3 x5

4 . . . x5
n

. . .
xn

1 xn
2 xn

3 xn
4 . . . xn

n

6= 0

280 Chapter 17 RS and BCH Codes

for the x1, . . . , xn all different from each other, and non-zero. This type of matrix
is also called a Vandermonde matrix.

17.2 Variant check matrices for cyclic codes
We already saw that for cyclic codes of block length n we can easily write down one
kind of check matrix. This works over arbitrary finite fields Fq with q elements, as
follows.

Every cyclic code of block length n can be given by a generator polynomial g(x)
for some polynomial g(x) dividing xn− 1. The collection of all codewords specified
by g(x) is the collection of all polynomials of degree < n which are polynomial
multiples of g(x). This gives an [n, k] code with

k = n− deg g

Let
g(x) = co + c1x + . . . + csx

s

Then the code has generator matrix

G =

co c1 . . . cs 0 0 . . . 0
0 co . . . cs−1 cs 0 . . . 0
0 0 . . . cs−2 cs−1 cs . . . 0

. . .

Let

h(x) =
xn − 1
g(x)

= bo + b1x + . . . + btx
t

(with s + t = n). We can easily make one kind of check matrix, as we saw earlier
works for any cyclic code, by

H =

bt bt−1 bt−2 bt−3 . . . b1 bo 0 . . . 0
0 bt bt−1 bt−2 . . . b2 b1 bo . . . 0
0 0 bt bt−1 . . . b3 b2 b1 . . . 0

. . .

Now we’ll make a different kind of check matrix for such a cyclic code, which

illustrates better the error-correction possibilities via the linear independence of
columns condition. Suppose that the above discussion took place with all coef-
ficients bi and cj in a finite field Fq. Let Fqm be a larger finite field containing
the finite field Fq and large enough so that the polynomial g(x) factors into linear
factors when we allow coefficients in Fqm . To be sure that this happens, we need
the following proposition.
Proposition: Given a non-constant polynomial g(x) with coefficients in Fq, there
is a larger finite field Fqm in which g(x) factors into linear factors.

Proof: Let f(x) be an irreducible factor of g(x), of degree d > 1. Then from our
discussion of finite fields and polynomial rings the quotient rign Fq[x]/f(x) is a

17.2 Variant check matrices for cyclic codes 281

field, with qd elements. (In fact, f(x) factors into linear polynomials in this field,
but seeing this requires more effort than we can exert at the moment, so we must
continue as though we did not know this.) Let α be the image of x in this quotient.
Then as seen earlier f(α) = 0. Thus, by unique factorization of polynomials, x−α
is a factor of f(x), hence of g(x). Thus, we can divide, obtaining a polynomial of
lower degree

h(x) = g(x)/(x− α)

What we have shown so far is that if a polynomial does not already factor into linear
factors then we can enlarge the finite field so as to find a further linear factor. We
repeat this process (by induction on degree) to enlarge the field sufficiently to factor
g(x) into linear factors entirely. ///

Factor g(x) into irreducible polynomials

g(x) = f1(x)f2(x) . . . f`(x)

where each fi has coefficients in Fq. For the subsequent discussion we need to
assume that no factor fi occurs more than once. An easy way to be sure
that this is so is to require that gcd(n, q) = 1, for example.

Let βi be a root of the ith irreducible factor fi in Fqm . We claim that

H =

1 β1 β2

1 β3
1 . . . βn−1

1

1 β2 β2
2 β3

2 . . . βn−1
2

1 β3 β2
3 β3

3 . . . βn−1
3

. . .
1 β` β2

` β3
` . . . βn−1

`

is a check matrix for G.

Proof: The ith row of the cyclic generator matrix G, interpreted as the coefficients
of polynomials ordered by ascending degree, is xi−1g(x). Thus, G ·H> = 0 if and
only if

βi−1
j g(βj) = 0

for all indices j and i. Since none of the βjs is 0, this is equivalent to the set of
equations

g(βj) = 0

for all indices j. Since the βjs are roots of this equation, certainly G ·H> = 0.
Now we prove that v ·H> = 0 implies that v is in the code. Since βj is a root

of fj(x) = 0 with fj(x) irreducible, as in our earlier discussion of field extensions
we can take

βj = x mod fj(x)

Again interpreting v as a polynomial, the condition v ·H> = 0 is equivalent to

v(βj) = 0

282 Chapter 17 RS and BCH Codes

(for all j) which by the previous remark is equivalent to

v(x) = 0 mod fj(x)

for all j. Thus fj(x) divides v(x) for all indices j. Since the f)j(x)s have no common
factor, their least common multiple is simply their product, and we conclude that
g(x) divides v(x). That is, v(x) is a linear combination of xig(x)s. That is, v is in
the rowspace of G, so by definition is in the code. ///

17.3 Reed-Solomon codes
We can use the linear algebra from the Vandermonde determinant story to make
progress in constructing linear codes to correct several errors. The first examples
are Reed-Solomon codes. These are cyclic (linear) codes.

Let Fq be a finite field. For example, if q is simply a prime number (rather
than a power of a prime number), then we can take

Fq = Z/q = Z-mod-q

We will make codes over Fq of block length n = q − 1.
Let β be a primitive root (equivalently, primitive element) in Fq. As

usual, this means that βq−1 = 1 but no smaller positive power of β is 1. And

1, β, β2, β3, β4, . . . , βq−3, βq−2

are all distinct. Further, since every non-zero element of Fq is a power of β,

xq−1 − 1 = (x− 1)(x− β)(x− β2)(x− β3) . . . (x− βq−3)(x− βq−2)

For chosen t in the range 2 ≤ t ≤ q − 1, define a degree t− 1 polynomial by

g(x) = (x− β)(x− β2)(x− β3) . . . (x− βt−2)(x− βt−1)

The cyclic code specified by this will be a [n, n− t + 1]-code using the alphabet Fq

rather than just {0, 1}. This is a Reed-Solomon code over Fq. The t is called
the designed distance.
• The Reed-Solomon code C over Fq with generating polynomial

g(x) = (x− β)(x− β2)(x− β3) . . . (x− βt−2)(x− βt−1)

(where β is a primitive root in Fq) has minimum distance at least t.

Remark: Thus, calling t the designed distance is reasonable at least in the sense
that we are sure that the minimum distance is at least t.

Corollary: With t = 2e + 1, the minimum distance 2e + 1 assures that the Reed-
Solomon [q − 1, q − 1− 2e] code with alphabet Fq can correct any e errors. ///

17.3 Reed-Solomon codes 283

Proof: We will make a variant-type check matrix for C in which any t columns are
linearly independent. This linear independence will be proven by observing that
the t-by-t matrix consisting of any t columns is a Vandermonde determinant.

Let

H =

1 β β2 β3 . . . βn

1 β2 (β2)2 (β3)2 . . . (βn)2

1 β3 (β2)3 (β3)3 . . . (βn)3

1 β4 (β2)4 (β3)4 . . . (βn)4

. . .
1 βt−1 (β2)t−1 (β3)t−1 . . . (βn)t−1

The jth column consists of powers of βj−1. Since β is a primitive root, the entries
of the top row are distinct. Thus, any t− 1 columns together form a Vandermonde
matrix with non-zero determinant! This proves linear independence, and by earlier
discussions proves the minimum distance assertion. ///

Example: Let’s make a code that will correct 2 errors. For this, we’ll need
designed distance t = 5. Since we need t ≤ q− 1, we need 5 ≤ q− 1. For simplicity
we’ll have q be a prime number, so to satisfy 5 ≤ q − 1 take q = 7. Let β be a
primitive root mod 7, for example β = 3. Then take a generating polynomial

g(x) = (x− 3)(x− 32)(x− 33)(x− 34)

= (x− 3)(x− 2)(x− 6)(x− 4) = x4 + 6x3 + 3x2 + 2x + 4

Thus, this will make a [6, 2]-code, since deg g = t − 1 = 4 and 2 = 6 − 4. A
generating matrix is

G =
(

4 2 3 6 4 0
0 4 2 3 6 4

)
To obtain a check matrix in the usual form for cyclic codes, take

h(x) =
x6 − 1
g(x)

= (x− 1)(x− 5) = x2 + x + 5

Then the check matrix is (note, as usual, the reversal of order of coefficients)

H =

1 1 5 0 0 0
0 1 1 5 0 0
0 0 1 1 5 0
0 0 0 1 1 5

Evidently any 4 columns are linearly independent. To verify this directly we’d
have to check

(
6
4

)
= 15 different possibilities, which would be too tedious. But our

variant check matrix proves this for us indirectly! This gives us a [6, 2]-code with
alphabet Z/7 which can correct any 2 errors. The rate is 2/6.
Example: Let’s make a Reed-Solomon code that can correct any 3 errors, with
alphabet Fq. For this, we need designed distance t = 2 · 3 + 1 = 7. Since we must
have t ≤ q − 1, we take q = 11, so Fq = Z/11. This will make a code of block

284 Chapter 17 RS and BCH Codes

length q − 1 = 11− 1 = 10 with alphabet Z/11. Let β be a primitive root mod 11.
For example, take β = 2. Then use generating polynomial of degree t− 1 = 6 given
by

g(x) = (x−2)(x−22)(x−23)(x−24)(x−25)(x−26) = x6+9x5+9x4+7x3+x2+4x+8

The other polynomial is

h(x) = (x− 27)(x− 28)(x− 29)(x− 1) = x4 + 5x3 + 9x2 + 2x + 5

Together,
g(x)h(x) = x10 − 1

A generating matrix is

G =

8 4 1 7 9 9 1 0 0 0
0 8 4 1 7 9 9 1 0 0
0 0 8 4 1 7 9 9 1 0
0 0 0 8 4 1 7 9 9 1

A check matrix is (note, as usual, the reversal of order of coefficients)

H =

1 5 9 2 5 0 0 0 0 0
0 1 5 9 2 5 0 0 0 0
0 0 1 5 9 2 5 0 0 0
0 0 0 1 5 9 2 5 0 0
0 0 0 0 1 5 9 2 5 0
0 0 0 0 0 1 5 9 2 5

It’s not obvious, but evidently any 6 columns of H are linearly independent. Thus,
this [10, 4]-code over alphabet Z/11 can correct any 3 errors. It has rate 4/10.

Remark: The rate of the Reed-Solomon code with parameters q, n = q− 1, and
designed distance t ≤ q − 1 is computable in the standard manner by which the
rate of any cyclic code is determined:

rate =
n− deg g

n
=

q − t

q − 1
= 1− t− 1

q − 1

Taking t = 2e + 1 to correct e errors, this is

rate = 1− 2e

q − 1

At the same time, the relative error correction is

relative error correction =
2e

block length
=

2e

q − 1

17.4 Hamming codes 285

Thus, we can either correct lots of errors per block length, or maintain a high rate,
but not both.
Remark: The Reed-Solomon codes are maximum-distance separating codes,
meaning that they meet the Singleton bound.
Remark: And, although now we finally have examples where arbitrary numbers
of errors can be corrected, these are not binary codes. For practical applications
we might be compelled to have a binary code, which is one of the possibilities of
the BCH codes treated below.

17.4 Hamming codes
Let’s see how we can make binary codes which correct single errors, from the
viewpoint of the new sort of check matrix above. These are binary Hamming
codes. The discussion can easily be extended to non-binary codes, but our point
here is to avoid endlessly changing alphabets (as the Reed-Solomon codes require)
and manage instead to obtain binary codes.

Fix the block length n = 2k − 1. Let g be a primitive polynomial of degree
k. Let β be a root of g(x) = 0, so β is a primitive element in F2k . Let C be
the cyclic code generated by g(x). From our discussion of cyclic codes, this is an
[n, n− k]-code. Specifically, it is a [2k − 1, 2k − 1− k]-code.

Motivated by the idea of the variant check matrices above, we could take an
extreme simple form of check matrix

H = (1 β β2 . . . βn−1)

Since any two columns of this check matrix are linearly independent, simply by
not being multiples of each other, the minimum distance of the code arising from
this is at least 3 (and it can correct any single error: (3− 1)/2 = 1).

Proof: We want to prove directly in this example that the minimum distance is at
least 3. Since the code is linear, this is equivalent to the assertion that the minimum
weight is at least 3. Suppose not. Then there is at least one vector v in the code
with weight 2, that is, with only two non-zero entries say at the ith and jth places
(indexing from 0 to n− 1). Then

0 = v ·Ht = βi + βj

Without loss of generality, i < j. Then

βj−i + 1 = 0

That is, seemingly β satisfies an equation of degree j − i with coefficients in F2.
But by hypothesis g(x) = 0 is the lowest-degree equation satisfied by β, and g has
degree n > j ≥ j − i, so this is impossible. Thus, the minimum distance is at least
3. ///

Example: For example, with k = 3, n = 23−1 = 7, we can easily find a primitive
cubic polynomial: g(x) = x3+x+1 will do. (The other primitive cubic is x3+x2+1.)

286 Chapter 17 RS and BCH Codes

The cyclic code generated by this should give a binary [7, 4]-code correcting any
single error. A generating matrix is made from the coefficients 1101 (in ascending
order) of g(x):

G =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

This is not in the ‘standard form’, but since the code is cyclic, we have an easy

way to make the check matrix. We will not make the ‘variant’ check matrix as just
above, but rather the general type applicable to any cyclic code. Take

h(x) =
x7 − 1
g(x)

=
x7 − 1

x3 + x + 1
= x4 + x2 + x + 1 = (x + 1)(x3 + x2 + 1)

Then a check matrix is given by (note the reversal of the coefficient order)

H =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

From examination of the variant-type check matrix we know that the code has

minimum distance at least 3, so we know without directly checking that any two
columns of this H are linearly independent. This can also be verified directly, but
it would be silly to do so.

The rate of this code is dimension/length = 4/7.
Example: With k = 4, n = 24 − 1 = 15, we need a primitive quartic. We can
use g(x) = x4 + x + 1 (or x4 + x3 + 1) as the generating polynomial. This will
make a binary cyclic [15, 11]-code, since 15 = 24− 1 and 11 = 24− 1− 4. Using the
coefficient of g(x) in ascending order, a generating matrix is

G =

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

The rate of this code is 11/15. Note that as the size of these Hamming codes

grows the rate approaches 1. But on the other hand the relative error correction

number of errors correctible
block size

17.5 BCH codes 287

goes to 0 as the block size grows. This is bad. Thus, the useful codes among the
Hamming codes are the relatively small ones.

17.5 BCH codes
The Reed-Solomon codes require an alphabet consisting of larger and larger finite
fields in order to correct more errors. If we want binary codes, or even just codes
over a fixed alphabet, this is unacceptable. Among other accomplishments, the
BCH codes overcome this objection. They continue to make use of Vandermonde
determinants. These Bose-Chaudhuri-Hocquengham codes can correct multi-
ple errors. BCH codes are cyclic (linear) codes generalizing the construction of
Reed-Solomon codes. Unfortunately, they suffer from the same shortcoming as do
the Hamming and Reed-Solomon codes: as the block size increases, they become
worse and worse in the sense that the relative error correction rate goes to 0, as
just above.

Start with a finite field Fq with q elements. Very often we will be thinking of
the case q = 2, but the development of the idea does not depend upon this. Choose
a block size n. For simplicity, we’ll suppose that n and q are relatively prime. In
the case q = 2, that means we will always look at odd block sizes.

In particular, trying to correct any two errors by having any 4 columns be
linear independent, imagine that we could have a (variant-type) check matrix like

H =

1 α α2 α3 . . . αn−1

1 α2 (α2)2 (α3)2 . . . (αn−1)2

1 α3 (α2)2 (α3)3 . . . (αn−1)3

1 α4 (α2)4 (α3)4 . . . (αn−1)4

with α possibly lying in some larger field Fqm . We suppose that 1, α, α2, α3,
. . ., αn−1 are all distinct and non-zero, and that n − 1 ≥ 4, so n ≥ 5. The
discussion of Vandermonde determinants above implies that the determinant of
any 4-by-4 matrix made from 4 different columns of this matrix is non-zero. Thus,
the corresponding linear code will correct 2 errors, since the minimum distance is
4 + 1 = 5 and a code with minimum distance d will correct any number of errors
< d/2.

Further, we can just as well make check matrices with any 6 columns linear
independent (so any 3 errors correctible), any 8 columns linearly independent (so
any 4 errors correctible), and so on. This much was already done by Reed-Solomon
codes, as long as the alphabet Fq was sufficiently large.

The new ingredient is that we want to allow the element α to be in a larger field
Fqm than just the field Fq which is used as the actual alphabet for the code. This
would be in contrast to the Reed-Solomon codes where we never went outside the
finite field Fq used as the code alphabet. Staying inside Fq was what required that
Reed-Solomon codes use larger and larger Fq as the block size goes up. Instead,
if we can make check matrices over larger fields but keep the code alphabet itself
fixed, we can make multiple-error-correcting codes using small alphabets. Such
possibilities were already hinted at in the discussion of variant check matrices, and
illustrated in a rather trivial case in the reconstruction of Hamming codes above.

288 Chapter 17 RS and BCH Codes

Certainly allowing α to be in a larger field than Fq is necessary to construct
binary codes correcting many errors, since if the only choices for α are 0,1 it will
be impossible to arrange that 1, α, α2, α3, . . . , αn−1 are all different, unless we just
take n = 2, which would not be enough.

Let α lie in the finite field Fqm with qm elements. Take α to be a primitive
element in Fqm , so αqm−1 = 1 but no smaller exponent will do, and all smaller
positive powers of α are distinct. For simplicity, take

block length = n = qm − 1

Then for any integer t with t < n = qm − 1 the matrix

H =

1 α α2 α3 . . . αn−1

1 α2 (α2)2 (α3)2 . . . (αn−1)2

1 α3 (α2)3 (α3)3 . . . (αn−1)3

. . .
1 αt−2 (α2)t−2 (α3)t−2 . . . (αn−1)t−2

1 αt−1 (α2)t−1 (α3)t−1 . . . (αn−1)t−1

has the property that the (t− 1)-by-(t− 1) matrix formed from any t− 1 columns
has non-zero determinant. This follows from properties of Vandermonde matrices.
• In this notation, the quantity t is the designed distance, because if we make

a code with this check matrix then it will have minimum distance at least t.
This generalizes the use of the terminology in the Reed-Solomon case.

We would need to connect such a variant check matrix with generating poly-
nomials for a cyclic code. For 1 ≤ i ≤ t − 1, let fi be the irreducible polynomial
with coefficients in Fq so that

fi(αi) = 0

Since α lies in Fqm (and is primitive besides), by Lagrange’s theorem (or even more
elementary reasoning) each irreducible fi(x) must be a factor of xqm−1 − 1. Then
let

g(x) = least common multiple of (f1, . . . , ft−1)

This will be a polynomial (with coefficients in Fq) dividing xn − 1.
• Since by assumption n = qm−1 and q are relatively prime, xqm−1−1 has no

repeated factors, so unless two or more of the fi are simply the same, their
least common multiple is their product. The lack of repeated factors follows
from the fact that any repeated factor of a polynomial f(x) must also be a
factor of the derivative f ′(x) of f(x), as observed earlier: if f = P 2Q with
polynomials P,Q, then

f ′ = 2PP ′Q + P 2Q′ = P · (2P ′Q + PQ)

Using the Euclidean algorithm, we can compute without great difficulty that
the gcd of xn − 1 and nxn−1 is 1 when n 6= 0 in the field Fq.

So the generating polynomial g(x) for the code C with the check matrix H
above is the product of the different irreducible polynomials fi which have roots

17.5 BCH codes 289

αi (1 ≤ i < t), not repeating a given polynomial fi if two different αi and αj are
roots of the same fi. Then the question is: given q, m, block length n = qm − 1,
primitive element α, and designed distance t,
• How can we nicely determine g(x) as a function of t?

The answer to this question cannot be described well by a simple formula, but
can be answered systematically.
• For a in the finite field Fqm , the Frobenius map Fqm → Fqm is defined to

be
a→ aq

(There is no completely standard symbol for this map!)

Theorem: For a, b in the finite field Fqm , the Frobenius map a → aq has the
properties
• (xy)q = xq yq

• (x + y)q = xq + yq

• For a polynomial f with coefficients in Fq, suppose the equation f(x) = 0
has root a ∈ Fqm . Then also f(aq) = 0.

(Let’s not worry about the proof of all this right now. It’s not very hard in
any case.)

In particular, this means that not only is α = α1 a root of f1, but also αq, αq2
,

etc. are all roots of f1. Of course this is not really an infinite list, because αqm

= α
so the list cycles on itself. And α2, (α2)q, (α2)q2

, etc. are roots of f2. Further, α3,
(α3)q, (α3)q2

, etc. are roots of f3. And so on.
The key question is: among α, α2, . . . , αt−1, how many different polynomials

fi do we need? The more we need, the larger the degree of g, and thus the smaller
the quantity

n− deg g

which occurs in the expression for the rate of the code

rate = 1− deg g

n

In the worst-case scenario, even with designed distance t much less than the block
length n, it can be that by accident g(x) must be

g(x) =
xn − 1
x− 1

=
xqm−1 − 1

x− 1

which would leave us a code with rate 1
n . This would be bad.

Another key point is that
• The degree of each irreducible factor fi of xn − 1 = xqm−1 − 1 is ≤ m.

So, conceivably, with designed distance t

t ≈ 1 +
qm − 1

m

290 Chapter 17 RS and BCH Codes

if no two of the α, α2, . . . , αt−1 are roots of the same irreducible factor fi, then the
degree of the generating polynomial g for the code is

deg g = (t− 1) ·m ≈ qm − 1 = deg xn − 1 (= deg xqm−1 − 1)

so the code is low-dimensional and has a very low rate.
Let’s illustrate this by a simple example. We’ll be interested in binary codes,

that is, with code alphabet F2.
Suppose we want block size n = 23− 1 = 7. (So m = 3 in the notation above).

What designed distance t will give something worthwhile by this constuction? Cer-
tainly we must have t < n = 7. Let’s make a binary code that corrects any 2 errors,
so we have to take designed distance t = 5. To specify a primitive element α in F23

we describe F23 as
F23 = F2[x]/P

for some primitive cubic polynomial P (coefficients in F2), and let

α = x-mod-P (x)

For example, we can use the primitive polynomial

P (x) = x3 + x + 1

Thus, our generalized check matrix is

H =

1 α α2 . . . α6

1 α2 (α2)2 . . . (α2)6

1 α3 (α3)2 . . . (α3)6

1 α4 (α4)2 . . . (α4)6

Here the polynomial xn − 1 = x7 − 1 factors as

x7 − 1 = (x− 1)(x3 + x + 1)(x3 + x2 + 1)

(by trial-and-error!). By testing, all three irreducible factors are primitive. (We
used one of them to define the field F23 .) The α, α2, and α4 = (α2)2 are obtained by
applying the Frobenius automorphism to α, so these must all be roots of x3+x+1 =
0. The α3 cannot be obtained in this manner, yet is not simply 1 (since α is
primitive!), so by default must be a zero of the other factor x3 + x2 + 1 of x7 − 1.
(After all, since α7 = 1, surely (α3)7 = 1 as well.) Thus, the generating polynomial
for this code must be the product of these two cubics:

g(x) = (x3 + x + 1)(x3 + x2 + 1) = x6 + x5 + x4 + x3 + x2 + x + 1

A generating matrix must be

G = (1 1 1 1 1 1 1)

17.5 BCH codes 291

Too bad: this is disappointing. It has collapsed back to a majority-logic repetition
code: send each bit 7 times, and evidently look at the 7 bits received and decode
by taking the most common received bit. This is nothing new. (Also, the rate is
low, only 1/7.)

Try again in another example: enlarge the block size to n = 24 − 1 = 15.
(So m = 4.) What designed distance t will give something worthwhile by this
construction? Certainly we must have t < n = 15. Let’s try again to make a binary
code that corrects any 2 errors, so we have to take designed distance t = 5. To
specify a primitive element α in F24 we describe F24 as

F24 = F2[x]/P

for some primitive quartic polynomial P (coefficients in F2), and let

α = x-mod-P (x)

For example, we can use the primitive polynomial

P (x) = x4 + x + 1

Thus, our generalized check matrix is H =
1 α α2 . . . α14

1 α2 (α2)2 . . . (α2)14

1 α3 (α3)2 . . . (α3)14

1 α4 (α4)2 . . . (α4)14

Here the polynomial xn − 1 = x15 − 1 factors as

x15 − 1 = (x− 1)(x2 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)

(by trial and error!). By testing, only the last two polynomials are primitive. (We
used one of them to define the field F24 .)

So we need to identify which among the factors

(x− 1), (x2 + x + 1), (x4 + x3 + x2 + x + 1), (x4 + x + 1), (x4 + x3 + 1)

get used to make equations of which the α, α2, α3, α4 are roots. Since here q = 2,
the image α2 of α under the Frobenius map is just the next power of α in the
sequence, and also α4 = (α2)2. That’s good. But to have α3 be a root we need
another polynomial.

For the moment let’s shirk the general problem of determining such polynomi-
als, and try to be a little lucky: we know that α15 = 1, so surely

(α3)5 = 1

The polynomial x5−1 factors a little (over any field, though we use −1 = +1 here):

x5 − 1 = (x4 + x3 + x2 + x + 1)(x + 1)

292 Chapter 17 RS and BCH Codes

Since α3 6= 1 (since α is primitive) it must be that

α4 + α3 + α2 + α + 1 = 0

Thus, the generating polynomial is

g(x) = (x4 + x + 1)(x4 + x3 + x2 + x + 1) = x8 + x4 + x2 + x + 1

Arranging this in descending order, and cycling suitably, this gives generating ma-
trix

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1

This is a binary [15, 7]-code and has minimum distance at least 5, by construction,
so can correct any 2 errors.
Remark: Notice that it was not so easy to predict from the specification that the
resulting binary code would be [15, 7]. Indeed, since the generalized check matrix
had only 4 rows and had block size 15, a person might have mistakenly thought
that the code would have dimension 15− 4 = 11 rather than just 7. The difference
is accounted for in a subtle way by the fact that we get a binary code, not a code
with alphabet F16, but the check matrix uses F16.

One more example: let’s make a code with designed distance t = 7, to make
a binary code to correct any 3 errors. We can use the block size n = 15 = 24 − 1
again, and check matrix

H =

1 α α2 . . . α14

1 α2 (α2)2 . . . (α2)14

1 α3 (α3)2 . . . (α3)14

1 α4 (α4)2 . . . (α4)14

1 α5 (α5)2 . . . (α5)14

1 α6 (α6)2 . . . (α6)14

The generating polynomial g(x) will be the ‘minimal’ polynomial so that

g(α) = 0, g(α2) = 0, g(α3) = 0, g(α4) = 0, g(α5) = 0, g(α6) = 0

By applying the Frobenius map and the little theorem above, we see that α, α2, α4

will all be roots of a single irreducible factor of x16 − 1, namely x4 + x + 1 = 0
since α was effectively defined as a root of this. Likewise, α3 and α6 = (α3)2 will
both be roots of the irreducible polynomial x4 + x3 + x2 + x + 1 which has α3 as a
root (determined by luck above). All that is left is α5. We’ll again try to be lucky
rather than systematic. Since α15 = 1, we have (α5)3 = 1, or

((α5)2 + (α5) + 1)(α5 + 1) = 0

17.5 BCH codes 293

Since α5 6= 1, because α was primitive, necessarily

(α5)2 + (α5) + 1 = 0

Thus,

g(x) = (x4 +x+1)(x4 +x3 +x2 +x+1)(x2 +x+1) = x10 +x9 +x8 +x6 +x5 +x2 +1

Thus, we managed to add 2 to the designed distance (by adding 2 rows) while only
increasing the degree of g by 2.

This gives the generating matrix

G =

1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 1 0 1 1 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

This is a binary [15, 5]-code that can correct any 3 errors. The fact that the rate is
only 5/15 = 1/3 might be disappointing. Also, the relative error correction rate
is only 3/15 = 1/5.

One more example: using block size n = 25 − 1 = 31, let’s try again to correct
3 errors, so we need designed distance t = 7. Thus, the check matrix is

H =

1 α α2 . . . α30

1 α2 (α2)2 . . . (α2)30

1 α3 (α3)2 . . . (α3)30

1 α4 (α4)2 . . . (α4)30

1 α5 (α5)2 . . . (α5)30

1 α6 (α6)2 . . . (α6)30

where α is a primitive element in F32. For example, let’s model F32 = F2[x]/P (x)
where P (x) is the primitive quintic

P (x) = x5 + x2 = 1

Then α, α2, α4 are all roots of P (x) = 0, α3, α6 go together, and α5 is by itself.
Since 31 = 25 − 1 is prime, all these elements are again primitive, so we need 2
more distinct irreducible quintics as factors to be able to have α, α2, α3, α4, α5, α6

as roots: without worrying about determining these quintics, we do know

deg g = 3 · 5 = 15

Therefore, we get a binary [31, 16]-code, since 16 = 31−15. This gives a rate above
1/2 again. But now the relative error correction is only 3/31 < 1/10.
Remark: Although our success here was very limited, we did manage to make a
relatively straightforward class of multiple-error-correcting codes. Since they are

294 Chapter 17 RS and BCH Codes

linear, the decoding (for example, by syndrome decoding) is reasonably efficient.
Unfortunately, as with the Reed-Solomon codes which are generalized by these
BCH codes, as block size becomes larger we cannot keep both a good rate and good
relative error correction: one or the other must go to 0.

Finally, we give an algorithm to determine the dimensiona and to estimate the
minimum distance of BCH codes. It is reasonably efficient to proceed as follows.

First, the Frobenius automorphism x → xp (over the finite field GF (p)) is
applied repeatedly to the rows of the initial check matrix H for the BCH code,
making a larger check matrix, called the Frobenius-stable check matrix (after all
the different possibilities are included, but without repetition). The row rank of
this Frobenius-stable check matrix is the ‘true’ row rank, in the sense that

dimension of BCH code = length− row rank of Frob-stable check matrix

Further, a better estimate of the minimum distance can be obtained from the
Frobenius stable check matrix: let t′ be the largest integer so that contiguous
exponents 1, 2, 3, . . . , t′−2, t′−1 appear as exponents (of the primitive root) in the
second column of the Frobenius-stable check matrix. Then the minimum distance is
at least t′. (We cannot easily reach a stronger conclusion about minimum distance
since we have only the Vandermonde determinant criterion for linear independence
of columns.)

More efficiently, given the set of exponents (of the primitive root) in the second
column of the usual check matrix for a length n BCH code using GF (pm) over
GF (p), to determine the set of such exponents in the Frobenius-stable version we
repeatedly multiply these exponents by p (reducing modulo pm − 1). Let r be the
number of exponents in the Frobenius-stabilized set: then the actual dimension k
of the code is k = n − r. That is, there is no need to write the whole rows of any
check matrix, but only the exponents occurring in the second column, since that
exponent determines the whole row.

For example, to determine the dimension and estimate the minimum distance
of the BCH code of length 26 constructed with designed distance 9 using the field
extension GF (33) of the finite field GF (3), proceed as indicated above. Here, the
initial set of exponents in the second column of the check matrix is 1, 2, 3, . . . , 8
(going up to design distance t less 1). Repeatedly multiplying by 3 (effectively
applying the Frobenius) gives the Frobenius-stable set

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 19, 20, 21, 24

which has 18 elements. Thus, the row rank of the Frobenius-stable check matrix is
18, and the dimension of the BCH code is (with length 26)

26 - 18 = 8

The largest t′ so that contiguous exponents 1, 2, . . . , t′ − 1 is visibly 13. Thus, we
can conclude that the actual minimum distance is at least 13.

As another example, determine the dimension and minimum distance of the
BCH code of length 24 constructed with designed distance 11 using the field ex-
tension GF (52) of the finite field GF (5). The initial set of exponents in the second

Exercises 295

column of the check matrix is 1, 2, 3, . . . , 10 (going up to design distance t less 1).
Repeatedly multiplying by 5 (applying the Frobenius) gives the Frobenius-stable
set

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 20, 21

which has 15 elements. Thus, the row rank of the Frobenius-stable check matrix is
15, and the dimension of the BCH code is (with length 24)

24 - 15 = 9

The largest t′ so that contiguous exponents 1, 2, . . . , t′ − 1 is visibly 12. Thus, we
can conclude that the actual minimum distance is at least 12.

Exercises

17.01 Compute the determinant of
(

1 2
7 8

)
(ans.)

17.02 Compute the determinant of
(

3 5
7 8

)

17.03 Compute the determinant of

 1 2 3
4 5 6
7 8 9

 (ans.)

17.04 Compute the determinant of

 1 2 3
4 3 2
7 0 8

17.05 Compute the determinant of

1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

 (ans.)

17.06 Compute the determinant of

1 1 1 1
5 6 7 8
25 36 49 64
125 216 343 512

17.07 Using the alphabet GF (13) find a generator matrix for a Reed-Solomon code

correcting any 5 bit errors. Use primitive root 2 mod 13. (ans.)

17.08 Using the alphabet GF (17) find a generator matrix for a Reed-Solomon code
correcting any 7 bit errors. (Use primitive root 3 mod 17.)

17.09 Using the alphabet GF (11) find a generator matrix for a Reed-Solomon code
correcting any 4 bit errors. (Use primitive root 2 mod 11.)

17.10 Using the alphabet GF (19) find a generator matrix for a Reed-Solomon code
correcting any 8 bit errors. (Use primitive root 2 mod 19.)

17.11 Determine the dimension and minimum distance of the BCH code of length
48 constructed with designed distance 9 using the field extension GF (72) of
the finite field GF (7). (ans.)

296 Chapter 17 RS and BCH Codes

17.12 Determine the dimension and minimum distance of the BCH code of length
31 constructed with designed distance 7 using the field extension GF (25) of
the finite field GF (2).

17.13 Determine the dimension and minimum distance of the BCH code of length
124 constructed with designed distance 9 using the field extension GF (53)
of the finite field GF (5).

17.14 For a polynomial f with coefficients in Fq, suppose the equation f(x) = 0
has root a ∈ Fqm . Prove that also f(aq) = 0.

18

Concatenated Codes

18.1 Mirage codes
18.2 Concatenated codes
18.3 Justesen codes
18.4 Some explicit irreducible polynomials

In this chapter we first give a non-constructive proof that there exist infinite
families of linear codes with information rate 1/2 and minimum distance at least
1/10 of the length, all lying in a very restricted class of linear codes. That is,
both the information rate and the error correction rate (ratio of minimum length
to length) are bounded away from 0. We say that such an infinite family of codes
is asymptotically good. RS and BCH codes do not have this property. But the
non-constructive nature of this proof means basically that we cannot find these
codes or describe them in any useful manner.

But there is a clever adaptation of the idea of that proof to make tangible ex-
amples of asymptotically good codes, due to Justesen. This was achieved relatively
recently, in the late 1970s. The codes Justesen made were examples of concate-
nated codes, meaning that they are made by combining simpler building-block
codes in a way that has a synergistic effect on the error-correction properties, etc.

Concatenated codes were apparently introduced by G.D. Forney in about 1966
(in the context of convolutional codes rather than block codes). The general idea
is simple enough: repeatedly encode a message. Of course working out the details
in a way to make it advantageous is the whole trick of it.

For now, this is the only known way to make a constructive infinite family of
longer and longer codes so that neither the information rate nor the relative error
correction go to 0 as the length goes to ∞.

18.1 Mirage codes
We call these codes ‘mirage’ codes because they are out of reach: we have no way
(at present) to find them explicitly, much as in Shannon’s theorem. That is, we can
prove that they exist, but no one knows how to construct them. A funny situation.

297

298 Chapter 18 Concatenated Codes

This is a simple and well-known example. We’ll make an infinite family of
binary codes, all with information rate 1/2, whose minimum distance is at least
1/10 of the length.

Fix an integer n. Choose an irreducible polynomial P (x) of degree n in F2[x].
Then we know that F2[x]/P (x) is a finite field F2n = GF (2n) with 2n elements.
Further, in the same way that we often choose representatives 0, 1, 2, . . . , p− 1 for
Z/p, we can choose representatives for F2[x]/P (x) consisting of polynomials of
degrees < n. Then we can express elements

α = a0 + a1x + . . . + an−1x
n−1 ∈ GF (2n)

in reduced form (mod P (x)) as being the binary length n vector of the coefficients:

α←→ (a0, a1, . . . , an−1)

For fixed n and α ∈ GF (2n), define a length 2n code

C2n(α) = {(v, αv) : v ∈ Fn
2}

depending on α, where the expression αv means to view v as being in F2n (as
above) and multiply it by α (and then turn it back into a binary vector).
Theorem: For any integer n ≥ 4 there is a choice of α ∈ F2n so that the length
2n code Cn(α) has information rate 1

2 and minimum distance at least n/10.

Proof: The idea of the proof is to count the number of α’s which give relatively
low minimum Hamming weight, and see that there are many α’s left over. These
leftovers must necessarily give relatively good codes.

Notice that any single non-zero binary word (v, αv) in the code C2n(α) deter-
mines α, by the relation

α = (vα) · v−1

where inverse and multiplication are as elements of F2n . Fix a real number c in
the range 0 < c < 1/2. If the code has minimum weight < c · 2n, then there is a
non-zero word (v, αv) in C2n(α) with Hamming weight < c · 2n, so α is expressible
as α = (αv) · v−1 for some v so that (v, αv) is in C2n(α) and has Hamming weight
< c · 2n.

The number of (v, αv)’s in C2n(α) with Hamming weight < c · 2n is certainly
at most the number of binary vectors of length 2n with Hamming weight < c · 2n
(that is, without assuming they’re in C2n(α)). Thus,

(number of (v, αv)’s with Hamming weight < c · 2n) ≤
∑

i≤c·2n

(
2n

i

)

since there are
(
2n
i

)
locations to put i 1s in a length 2n vector. From the lemma

below, we have a slightly subtle estimate of this sum of binomial coefficients∑
i<c·2n

(
2n

i

)
≤ 22n·H(c)

18.1 Mirage codes 299

where as usual
H(c) = −c log2 c− (1− c) log2 (1− c)

We wish to choose c such that the number of these bad α’s is ≤ 2n − 2, so, since
there are 2n−1 αs available altogether, not all the αs would be bad. That is, there
would be at least one α so that C2n(α) has minimum weight ≥ c · 2n.

That is, we want
2H(c)·2n ≤ 2n − 2

so must choose c such that H(c) is somewhat less than 1/2. Some numerical
experimentation yields

H(0.1) ≈ 0.46899559358928122 <
1
2

Therefore, certainly asymptotically as n becomes large we have the desired inequal-
ity. In fact, already for n ≥ 4 we have the inquality, by numerical computation:

2H(0.1)·2·4 ≈ 13.472678057860175 ≤ 24 − 2

The derivative

d

dt

[
2t − 2− 2H(0.1)·2·t

]
= t ln 2 (1− 2 ·H(c)) ·

[
2t − 2− 2H(0.1)·2·t

]
is likewise positive for t ≥ 4 since for this value of c

1− 2 ·H(c) > 0

Thus, the desired inequality holds for all n ≥ 4. That is, for n ≥ 4 there is α such
that the length 2n code C2n has minimum distance at least c · 2n = 2n/10. ///

Now we prove the lemma giving the necessary estimate on sums of binomial
coefficients used in the proof above.
Lemma: Fix 0 ≤ c ≤ 1/2. As usual let

H(c) = −c log2 c− (1− c) log2 (1− c)

For positive integers `, ∑
i<c`

(
`

i

)
≤ 2`·H(c)

Proof: By the binomial theorem,

1 = 1` = (c + (1− c))` =
∑

0≤i≤`

(
`

i

)
ci (1− c)`−i

≥
∑

0≤i≤c`

(
`

i

)
ci (1− c)`−i

300 Chapter 18 Concatenated Codes

Now note that

ci (1− c)`−i =
(

c

1− c

)i

(1− c)` ≥
(

c

1− c

)c`

(1− c)`

since i ≤ c` and since c/(1− c) ≤ 1 (because 0 ≤ c ≤ 1/2). Therefore,

1 ≥
∑

0≤i≤c`

(
`

i

) (
c

1− c

)c`

(1− c)` =
(

c

1− c

)c`

(1− c)`
∑

0≤i≤c`

(
`

i

)

Take logarithm base 2 of the factor in front:

log2

((
c

1− c

)c`

(1− c)`)

)
= c` log2 c− c` log2 (1− c) + ` log2 (1− c)

= `[c log2 c + (1− c) log2 (1− c)] = −` ·H(c)

Thus,

1 ≥ 2−`·H(c) ·
∑

0≤i≤c`

(
`

i

)
Moving the power of 2 to the other side gives the inequality. ///

Example: Let’s make a length 8 binary code with information rate 1/2 and
determine its minimum distance by brute force. Model F8 as F2[x]/(x3 + x + 1).
Let β be the image of x in that field. First try α = β and make the corresponding
binary code. The encoding of F8 in binary is by encoding v = a + bβ + cβ2 as
(a, b, c). Then, starting to compute the encodings of the 7 non-zero length-3 words,
we have

100 → 1 → (1, β) → 100010
010 → β → (β, β2) → 010001
001 → β2 → (β2, 1 + β) → 001110
110 → 1 + β → (1 + β, β + β2) → 110011
101 → 1 + β2 → (1 + β2, 1) → 101100
011 → β + β2 → (β + β2, 1 + β + β2) → 011111

It is clear that using α = β has the disadvantage that some weight-1 length-3
codewords v will give (v, αv) of weight only 2, not enough to correct even a single
error. Thus, we try this again with α = β + 1:

100 → 1 → (1, 1 + β) → 100110
010 → β → (β, β + β2) → 010011
001 → β2 → (β2, 1 + β + β2) → 001111
110 → 1 + β → (1 + β, 1 + β2) → 110101
101 → 1 + β2 → (1 + β2, β2) → 101001
011 → β + β2 → (β + β2, 1) → 011100

18.2 Concatenated codes 301

This is a relative success, in the sense that we have achieved a minimum distance
3, so one bit error can be corrected. This is not as good as the Hamming [7, 4]
code, however, since the information rate of the present code is 1/2 while that of
the Hamming code is 4/7 > 1/2.
Example: Now make a length 8 code of information rate 1/2, hoping to have a
minimum distance greater than 3. Model F16 as F2[x]/(x4 + x + 1). Let β be the
image of x in the field. Encode

a + bβ + cβ2 + dβ3 → (a, b, c, d)

To avoid having the weight-1 length-4 binary words encode as weight 3 or less, we
try

α = 1 + β + β2

The weight-1 words encode as

1000 → 1 → (1, 1 + β + β2) → 10001110
0100 → β → (β, β + β2 + β3) → 01000111
0010 → β2 → (β2, 1 + β + β2 + β3) → 00101111
0001 → β3 → (β3, 1 + β2 + β3) → 00011011

We get no word with Hamming weight less than 4. Continuing with our brute-force
computations, encoding weight-2 length-4 words we have

0011 → 00110100
0101 → 01011100
1001 → 10010101
0110 → 01101000
1010 → 10100001
1100 → 11001001

Unfortunately, the fourth one encodes as a weight-3 codeword. Indeed, the Ham-
ming bound says that this attempt is too optimistic, because a length 8 binary code
with 24 = 16 codewords and minimum distance would have to satisfy

28 ≥ 24 ·
(

1 +
(

8
1

)
+
(

8
2

))
which is false. Thus, we would need to consider longer mirage codes to achieve
minimum distance 5 and correction of two bit errors. The computations are not
illuminating, and we might concede once again that we do not understand how to
explicitly construct good codes.

18.2 Concatenated codes
Now we introduce the idea of putting together simpler codes to make bigger con-
catenated ones. This was first introduced in the somewhat different context of
convolutional codes by [Forney 1966].

302 Chapter 18 Concatenated Codes

The basic idea of a concatenated code, in our context, is that the symbols in
the alphabet of the outer code Cout are interpreted as being the words of the inner
code Cin, and after the outer encoding is applied the inner encoding is applied to
each alphabet symbol. Sometimes such a process is also called superencoding,
and the concatenated code is sometimes called a supercode.

We’ll take both codes to be linear. More specifically, let Cout be a linear code
with alphabet F2k , and let Cin be a binary linear code of length n. (To identify
elements of F2k with binary vectors of length k, as usual choose an irreducible poly-
nomial P (x) in F2[x] of degree k so that we have a model for F2k as F2[x]/P (x)).
If the outer code Cout is an (N,K,D) code (with alphabet F2k) and the inner code
Cin is a binary (n, k, d) code, then a word

a = (a0, a1, . . . , aK−1) ∈ FK
2k

is encoded by the outer code as some N -tuple

b = (b0, b1, . . . , bN−1) ∈ FN
2k

Then each bi ∈ F2k is rewritten as some binary vector

bi = (bi,0, bi,1, b1,2, . . . , bi,k−1) ∈ Fk
2

(for a choice of irreducible degree k polynomial P (x) ∈ F2[x]), and encoded by the
inner code to

ci = (ci,0, ci,1, c1,2, . . . , ci,n−1) ∈ Fn
2

Proposition: The concatenated code made from an outer (N,K,D) code with
alphabet F2k and an inner binary (n, k, d) code is essentially a binary (nN, kK)-
code. That is, the information rate of such a concatenated code is equal to the
product of the rates of the inner and outer codes.

Proof: This is almost clear from the very definition of the concatenated code.

information rate =
log2(number of codewords)

log2(all words)
=

kK

nN

=
log2k((2k)K)
log2k((2k)N)

· log2(2k)
log2(2n)

= (outer info rate) · (inner info rate)

///

Also we have an easy-to-prove fact about minimum distances:
Proposition: The minimum distance of a concatenated code is at least the prod-
uct of the minimum distances of the outer and inner codes.

Proof: Let D be the minimum distance of the outer code and d the minimum
distance of the inner code. Let w = (α0, . . . , αN−1) be a codeword in FN

2k . Then
there are at least D nonzero entries among the αi. Now viewing each αi as a binary
vector, if αi is non-zero then it has at least d non-zero entries. Thus, the length

18.3 Justesen codes 303

Nn binary version of w has at least Dd non-zero entries, which is to say that the
minimum distance is at least Dd, as claimed. ///

Remark: As it stands, there is no visible reason to use concatenated codes, but
Justesen found a further trick.

18.3 Justesen codes
The Justesen codes are a practical version of the non-constructive codes discussed
above, made by a sort of variable concatenation of codes. It turns out that a
clever compromise in the mirage code description makes it possible to constructively
describe the Justesen codes, and at the same time retain the virtues of the mirage
codes.

To make an example following Justesen, using the description of a concatenated
code above, we will take the outer code Cout to be a Reed-Solomon code, and the
inner code Cin to be variable depending on the position of the symbol in a word of
the outer code. Indeed, there is no compulsion to encode the symbols in different
positions the same way.

Fix a degree k irreducible polynomial P (x) in F2[x], and view F2k as

F2k = F2[x]/P (x)

Let N = 2m − 1 for some integer m, and take the outer code Cout to be an
(N,K,D) Reed-Solomon code over F2k . That is, a codeword in Cout is an N -tuple
of elements of F2k . A message word

a = (a0, . . . , aK−1) ∈ FK
2k

gets encoded by the outer Reed-Solomon code as some codeword

b = (b0, . . . , bN−1) ∈ FN
2k

Let g be a primitive element in the finite field F2k . Then for each position
0 ≤ i ≤ N − 1 we have a code Cin(i) which encodes

bi → (bi, g
i · bi) ∈ F2

2k

So the outer-code codeword b gets encoded by this aggregate inner code as

(b0, g
0b0, b1, g

1b1, b2, g
2b2, b3, g

3b3, . . . , bN−1, g
N−1bN−1)

The code obtained by this variable concatenation is a Justesen code.

Remark: These varying inner codes are the codes discussed earlier, among which
the really good ones are mirages since we cannot readily locate them. But the idea
is that even the average is good enough so that the supercode is still pretty good.
But of course we need to verify some details.

304 Chapter 18 Concatenated Codes

Theorem: There is an infinite family of Justesen codes with information rates
at least 1/4 and with minimum distance asymptotically at least 1/40 of the block
length.

Remark: The particular number 1/5 and 1/90 are not so interesting in themselves,
and not so terrific in terms of performance, either. The point is that we can
demonstrate in a computationally effective manner a family of longer and longer
codes whose performance does not deteriorate.

Proof: A Reed-Solomon (N,K,D) code always has minimum distance at least
D = N − K + 1, regardless of what finite field we use as its alphabet. So out of
the N symbols of each codeword of the outer code, at least D are not 0. But we
have no idea which of the N codeword symbols are the non-zero ones, so we must
prove that among any D of the inner codes enough of them are good enough so
that the minimum distance of the binary supercode is a definite positive fraction
of its length Nn = N · 2k.

In discussing the mirage codes we noted that a two-tuple (v, αv) with v ∈ F2k

non-zero determines α. And we can get an upper bound for the number of bad α’s
for which (v, αv) has Hamming weight ≤ c · 2k, by counting the number of ways of
distributing ≤ c · 2k 1’s among the 2k positions in the binary vector (v, αv). Using
binomial coefficients to count this, we get

(number of α’s with some (v, αv) of weight less than c · 2k) ≤
∑

i<c·2k

(
2k

i

)

In the discussion of the mirage codes we proved a lemma asserting the inequality

∑
i<c·2k

(
2k

i

)
≤ 2H(c)·2k

We know that at least D/N of the codeword symbols from the outer code are
not 0, and we want to use this inequality to estimate how good or bad the better
half of the worst D/N fraction of the inner codes can be. That is, we are interested
in guessing a fraction 0 < c < 1/2 so that at most the fraction 1

2 ·D/N of the inner
codes have minimum distance < c · 2k. That is, using the lemma, we want to find
c so that

2H(c)·2k ≤ 1
2
· D
N
·N

This simplifies to

2H(c)·2k ≤ 1
2
·D

Since at least 1
2 ·D/N of the inner codes have minimum distance ≥ c ·2k, then we’ll

get a lower bound for the minimum distance of the supercode:

min distance for supercode ≥ (c · 2k) · (1
2
·D)

18.3 Justesen codes 305

and the lower bound for ratio of minimum distance to length is

min distance
length

≥
(c · 2k) · (1

2 ·D)
2k ·N

=
c ·D
2N

=
c ·D

2(2k − 1)
≥ c ·D

2k+1

(A Reed-Solomon code over the field F2k has length N = 2k − 1.)
If we try taking

D =
1
2
· 2k ≈ 1

2
·N

then we require

2H(c)·2k ≤ 1
2
·D ≤ 1

2
· 1
2
· 2k =

1
4
· 2k

If we take c so that H(c) < 1/2, then for sufficiently large k this inequality will
hold. Specifically, for

k ≥ 2
1− 2 ·H(c)

the inequality holds. For example, as with the mirage codes earlier, taking c = 1/10
gives

H(c) = H(0.1) ≤ 0.469 <
1
2

Then with this choice of D and c we want k large enough such that

1
2
·D − 2H(c)·2k ≥ 1

4
· 2k − 20.469 2k

For k ≥ 33 this holds. In any case, to get H(c) < 1/2 we must take c < 0.11, since

H(0.11) ≈ 0.4999 ≈ 1
2

Thus, for k ≥ 33 and c ≤ 1/10 for example, with D = 2k/2, the minimum
distance is at least

(c · 2k) · (1
2
·D) ≥ 1

10
· 2k · 1

2
· 1
2
· 2k = k · 2k/20

The length of the binary supercode is 2k · (2k − 1) ≤ 2k · 2k, so we have

min distance
length

≥ k · 2k/20
2k · 2k

=
1
40

From the relation D = N −K + 1 for a Reed-Solomon code, we see that the
information rate for the outer code is K/N ≈ 1/2. The inner code information
rates are all 1/2, so the information rate of the concatenated code is about 1/4.
(The information rate goes to 1/4 as k goes to infinity.)

That is, for k = 33, 34, 35, . . . we can make concatenated binary codes of lengths
2k · (2k − 1), with information rate going to 1/4 in the limit, and with minimum
distance asymptotically at least 1/40 of the length. ///

306 Chapter 18 Concatenated Codes

18.4 Some explicit irreducible polynomials
As an afterthought we might want to see if we can really create an infinite family
of irreducible polynomials in F2[x], in order to make the creation of the Justesen
codes really computationally constructive. It turns out that this is not so hard,
given what we know about primitive roots in finite fields.

Remark: We will use the fact that if α is a root of f(x) = 0 for irreducible
f(x) ∈ F2[x] then α2 is also, and in fact the complete list of roots is

α, α2, α22
, α23

, α24
, α25

, . . . , α2t−1

where the degree of the polynomial is t.

Proposition: Let ` be a positive integer. Let m = 3` for any positive integer `.
Then the polynomial

x2m + xm + 1

in F2[x] is irreducible.

Proof: First, we check that the order t of 2 modulo 3`+1 is exactly 2 ·3` = ϕ(3`+1).
By Euler’s theorem and Lagrange’s theorem, t is a divisor of 2 ·3`. So what we want
to show is that 2 is a primitive root in Z/3`+1. From our discussion of primitive
roots, we know that it suffices to show that 2 is a primitive root mod 32. And,
indeed, 23 = −1 6= 1 mod 32, 22 = 4 6= 1 mod 32, so 2 is a primitive root as desired.

Next, let P be any irreducible polynomial of degree 2m = 2 · 3` over F2, so
that we have a concrete model

F22m ≈ F[x]/P (x)

(Note that we do not have to give a constructive proof that P exists! Why?) Since
3` divides 22m − 1 (that is, since the order of 2 mod 3`+1 is 2 · 3` = 2m) and since
there is a primitive root g in F22m , the element

ξ = g(22m−1)/3`

is of order 3`. Since the field F2 is of characteristic 2, if α is a root of a polynomial
then α2, α22

, α23
, . . . are roots as well. Since the order of 2 mod 3` is exactly 2 · 3`,

we obtain roots
ξ, ξ2, ξ22

, ξ23
, . . . , ξ22m−1

of the irreducible polynomial of which ξ is a root. In particular, that irreducible
polynomial is of degree at least 2m, since it has at least these 2m distinct roots.
Since 2 is relatively prime to 3`, all these elements ξ2i

are also of order m = 3`.
Now the polynomial

x3`

− 1

Exercises 307

has roots in F2m consisting of all elements whose orders are powers of 3 less than
or equal 3`. The element of order 1 (namely 1 itself) is a root of x−1, the elements
of order 3 are roots of

(x3 − 1)/(x− 1) = x2 + x + 1

and generally the elements of order 3i are roots of x3i − 1 but not x3i−1 − 1, so by
unique factorization are roots of

x3i − 1
x3i−1 − 1

= x2 3i−1
+ x3i−1

+ 1

Thus, we find factors of x3` − 1

(x− 1)(x2 + x + 1)(x6 + x3 + 1)(x18 + x9 + 1) . . . (x2m + xm + 1)

By good luck here, the sum of the degrees is

1 + 2 + 2 · 3 + 2 · 32 + 2 · 33 + . . . + 2 · 3` = 1 +
2 · (3` − 1)

3− 1
= 3`

That is, we’ve found a factorization of x3` − 1. Since every factor but the last has
degree strictly less than 2m, and since the irreducible polynomial of which ξ is a
root is a divisor of x3` − 1, the last factor must be the irreducible polynomial of
which ξ is a root. This proves the proposition. ///

Remark: A similar argument works for other primes p in place of 3, such as 5
(but not 7) for which 2 is a primitive root modulo p2. That is, for such p, let

m = p`

Then
x(p−1)m + x(p−2)m + . . . + x3m + x2m + xm + 1 ∈ F2[x]

is irreducible.

Exercises

18.01 Let α be the image of x in F4 = F2[x]/(x2 + x + 1). Write out the 3 non-
zero codewords of the corresponding mirage code and observe the minimum
distance. (ans.)

18.02 Let α be the image of x + 1 in F4 = F2[x]/(x2 + x + 1). Write out the 3
non-zero codewords and observe the minimum distance.

18.03 Let F8 = F2[x]/(x3 +x2 +1), let α be the image of 1+x, and write out the
encoding of the corresponding mirage code of length 6 and information rate
1/2. Note the minimum distance.

308 Chapter 18 Concatenated Codes

18.04 Can you find α ∈ F32 to give a mirage code of length 10 with minimum
distance at least 4?

18.05 Find a constant c such that ∑
i<c·3n

(
3n

i

)
< 22n

(ans.)

18.06 In a variant on mirage codes, encode binary n-bit strings v by v → (v, αv, βv)
viewing v as lying in F2n and with α, β chosen in F2n to make a binary code
of length 3n with information rate 1/3. As with the mirage codes, prove a
lower bound on the error-correction rate for such a code, with optimal (but
inexplicit) α and β. (ans.)

18.07 Prove that the minimum distance of a concatenated code is at least the
product of the minimum distances of the inner and outer code.

19

More on Rings and Fields

19.1 Ideals in commutative rings
19.2 Ring homomorphisms
19.3 Quotient rings
19.4 Maximal ideals and fields
19.5 Field extensions
19.6 The Frobenius automorphism
19.7 Counting irreducibles
19.8 Counting primitives

Here we develop in greater detail some aspects of ring theory touched upon
very briefly earlier.

19.1 Ideals in commutative rings
The concept of ideal in a commutative ring is a sort of generalization of the concept
of number. In fact, originally there was a closely related notion of ideal number
which extended the usual notion of number. This phrase has since been shortened
simply to ‘ideal’.

Let R be a commutative ring with unit 1. An ideal in R is a subset I of R so
that
• For all r ∈ R and i ∈ I we have r · i ∈ I. (Closure under multiplication by

ring elements)
• For all x, y ∈ I we have x + y ∈ I. (Closure under addition)
• For all x ∈ I we have −x ∈ I. (Closure under inverse)

The second and third conditions can be capsulized as requiring that I-with-
addition must be a subgroup of the additive group R-with-addition.

The first condition may seem a little peculiar. For one thing, it is a stronger
requirement than that I be a subring of R, since we require that I be closed under
multiplication by elements of R, not merely by elements of I itself.
Example: The basic example is the following. In the ring Z, for any fixed n, the
set n ·Z consisting of all multiples of n is an ideal. Indeed, if x = mn is a multiple

309

310 Chapter 19 More on Rings and Fields

of n, and if r ∈ Z, then r ·x = r(mn) = (rm)n is still a multiple of n. Likewise, 0 is
contained in nZ, nZ is closed under sums, and nZ is closed under taking additive
inverses.

Example: Let R = k[x] be the ring of polynomials in one variable x with coeffi-
cients in a field k. Fix a polynomial P (x), and let I ⊂ R be the set of all polynomial
multiples M(x) ·P (x) of P (x). Verification that I is an ideal is identical in form to
the previous example.

Example: Abstracting the previous two examples: let R be any commutative
ring with unit 1, and fix n ∈ R. Then the set I = n · R = {rn : r ∈ R} consisting
of all multiples of m is an ideal, called the principal ideal generated by n. The
same argument proves that it is an ideal. Such an ideal is called a principal ideal.

Example: In any ring, the trivial ideal is just the set I = {0}. Consistent with
typical usage in mathematics, an ideal I is proper if it is neither the trivial ideal
{0} nor the whole ring R (which is also an ideal).

The following proposition is an important basic principle.

Proposition: Let I be an ideal in a commutative ring R with unit 1. If I contains
any element u ∈ R×, then I = R.

Proof: Suppose I contains u ∈ R×. The fact that u is a unit means that there is
a multiplicative inverse u−1 to u. Then, for any r ∈ R,

r = r · 1 = r · (u−1 · u) = (r · u−1) · u

That is, r is a multiple of u. Since I is an ideal, it must contain every multiple of
u, so I contains r. Since this is true of every element r ∈ R, it must be that R = I.

///

Corollary: Let I be an ideal in a polynomial ring k[x] where k is a field. If I
contains any non-zero ‘constant’ polynomial, then I = k[x].

Proof: This will follow from the previous proposition if we check that non-zero
constant polynomials are units (that is, have multiplicative inverses). Indeed, for
a ∈ k with a 6= 0, since k is a field there is a−1 ∈ k ⊂ k[x]. Thus, certainly a is
invertible in the polynomial ring k[x]. ///

We can recycle the notation we used for cosets to write about ideals in a more
economical fashion. For two subsets X, Y of a ring R, write

X + Y = {x + y : x ∈ X, y ∈ Y }

X · Y = X Y

= {finite sums
∑

i

xi yi : xi ∈ X, yi ∈ Y }

Note that in the context of ring theory the notation X · Y has a different meaning
than it does in group theory. Then we can say that an ideal I in a commutative
ring R is an additive subgroup so that R I ⊂ I.

19.1 Ideals in commutative rings 311

Proposition: Every ideal I in Z is principal, that is, of the form I = n · Z. In
particular, the integer n so that this is true is the least positive element of I unless
I = {0}, in which case n = 0.

Proof: If I = {0}, then certainly I = Z · 0, and we’re done. So suppose I is
non-zero. Since I is closed under taking additive inverses, if I contains x < 0 then
it also contains −x > 0. So a non-trivial ideal I does indeed contain some positive
element. Let n be the least element of I. Let x ∈ I, and use the Division Algorithm
to get q, r ∈ Z with 0 ≤ r < n and

x = q · n + r

Certainly qn is still in I, and then −qn ∈ I also. Since r = x − qn, we conclude
that r ∈ I. Since n was the smallest positive element of I, it must be that r = 0.
Thus, x = qn ∈ n · Z, as desired. ///

Proposition: Let k be a field. Let R = k[x] be the ring of polynomials in one
variable x with coefficients in k. Then every ideal I in R is principal, that is, is of
the form I = k[x] · P (x) for some polynomial P . In particular, P (x) is the monic
polynomial of smallest degree in I, unless I = {0}, in which case P (x) = 0.

Proof: If I = {0}, then certainly I = k[x] · 0, and we’re done. So suppose I is
non-zero. Suppose that Q(x) = anxn + . . . + a0 lies in I with an 6= 0. Since k is a
field, there is an inverse a−1

n . Then, since I is an ideal, the polynomial

P (x) = a−1
n ·Q(x) = xn + a−1

n an−1x
n−1 + . . . + a−1

n a0

also lies in I. That is, there is indeed a monic polynomial of lowest degree of any
element of the ideal. Let x ∈ I, and use the Division Algorithm to get Q,R ∈ k[x]
with deg R < deg P and

x = Q · P + R

Certainly Q · P is still in I, and then −Q · P ∈ I also. Since R = x − Q · P , we
conclude that R ∈ I. Since P was the monic polynomial in I of smallest degree, it
must be that R = 0. Thus, x = Q · P ∈ n · k[x], as desired. ///

Remark: The proofs of these two propositions can be abstracted to prove that
every ideal in a Euclidean ring is principal.

Example: Let R be a commutative ring with unit 1, and fix two elements x, y ∈ R.
Then

I = R · x + R · y = {rx + sy : r, s ∈ R}

is an ideal in R. This is checked as follows. First,

0 = 0 · x + 0 · y

so 0 lies in I. Second,
−(rx + sy) = (−r)x + (−s)y

312 Chapter 19 More on Rings and Fields

so I is closed under inverses. Third, for two elements rx + sy and r′x + s′y in I
(with r, r′, s, s′ ∈ R) we have

(rx + sy) + (r′x + s′y) = (r + r′)x + (s + s′)y

so I is closed under addition. Finally, for rx + sy ∈ I with r, s ∈ R, and for r′ ∈ R,

r′ · (rx + sy) = (r′r)x + (r′s)y

so R · I ⊂ I as required. Thus, this type of I is indeed an ideal. The two elements
x, y are the generators of I.
Example: Similarly, for fixed elements x1, . . . , xn of a commutative ring R, we
can form an ideal

I = R · x1 + . . . + R · xn

Example: To construct new, larger ideals from old, smaller ideals we can proceed
as follows. Let I be an ideal in a commutative ring R. Let x be an element of R.
Then let

J = R · x + I = {rx + i : r ∈ R, i ∈ I}

Let’s check that J is an ideal. First

0 = 0 · x + 0

so 0 lies in J . Second,
−(rx + i) = (−r)x + (−i)

so J is closed under inverses. Third, for two elements rx+ i and r′x+ i′ in J (with
r, r′ ∈ R and i, i′ ∈ I) we have

(rx + i) + (r′x + i′) = (r + r′)x + (i + i′)

so J is closed under addition. Finally, for rx + i ∈ J with r ∈ R, i ∈ I, and for
r′ ∈ R,

r′ · (rx + i) = (r′r)x + (r′i)

so R · J ⊂ J as required. Thus, this type of set J is indeed an ideal.
Remark: In the case of rings such as Z, where we know that every ideal is
principal, the previous construction does not yield any more general type of ideal.
Remark: In some rings R, it is definitely the case that not every ideal is principal.
That is, there are some ideals that cannot be expressed as R · x. The simplest
example is the following. Let

R = {a + b
√
−5 : a, b ∈ Z}

It is not hard to check that this is a ring. Let

I = {x · 2 + y · (1 +
√
−5) : x, y ∈ R}

19.2 Ring homomorphisms 313

With just a little bit of cleverness, one can show that this ideal is not principal.
This phenomenon is closely related to the failure of unique factorization into primes
in this ring. For example, we have two apparently different factorizations

2 · 3 = 6 = (1 +
√
−5) · (1−

√
−5)

(All the numbers 2, 3, 1 +
√
−5, 1−

√
−5 are ‘prime’ in the naive sense that they

can’t be further factored in the ring R.) These phenomena are not of immediate
relevance, but did provide considerable motivation in the historical development of
algebraic number theory.
Remark: In rings R that are not necessarily commutative, there are three different
kinds of ideals. A left ideal I is an additive subgroup so that R I ⊂ I, a right ideal
I is an additive subgroup so that I R ⊂ I, and a two-sided ideal I is an additive
subgroup so that R I R ⊂ I. Mostly we’ll only care about ideals in commutative
rings, so we can safely ignore this complication most of the time.

19.2 Ring homomorphisms
Quite analogous to group homomorphisms, ring homomorphisms are maps from one
ring to another which preserve the ring structures.

A ring homomorphism f : R→ S from one ring R to another ring S is a map
such that for all r, r′ in R we have

f(r + r′) = f(r) + f(r′)

f(rr′) = f(r) f(r′)

That is, we would say that f preserves or respects both addition and multiplication.
A ring homomorphism which is a bijection is an isomorphism. Two rings

which are isomorphic are construed as ‘the same’ for all ring-theoretic purposes.
As in the case of groups and group homomorphisms, we do not make an attempt

to use different notations for the addition and multiplication in the two different
rings R and S in this definition. Thus, more properly put, f converts addition in
R into addition in S, and likewise multiplication.

Very much like the case of groups, the kernel of a ring homomorphism f :
R→ S is

ker f = {r ∈ R : f(r) = 0}

where (implicitly) the latter 0 is the additive identity in S.
Example: The most basic example of a ring homomorphism is

f : Z→ Z/n

given by
f(x) = x-mod-n

The assertion that this f is a ring homomorphism is the combination of the two
assertions

(x-mod-n) + (y-mod-n) = (x + y)-mod-n

314 Chapter 19 More on Rings and Fields

and
(x-mod-n) · (y-mod-n) = (x · y)-mod-n

Even though it is slightly misleading, this homomorphism is called the reduction
mod n homomorphism.

Now we prove that
• The kernel of any ring homomorphism f : R→ S is an ideal in R.

Let x be in the kernel, and r ∈ R. Then

f(rx) = f(r)f(x) = f(r) · 0 = 0

since by now we’ve proven that in any ring the product of anything with 0 is 0.
Thus, rx is in the kernel of f . And, for x, y both in the kernel,

f(x + y) = f(x) + f(y) = 0 + 0 = 0

That is, x + y is again in the kernel. And f(0) = 0, so 0 is in the kernel. And for
x in the kernel f(−x) = −f(x) = −0 = 0, so −x is in the kernel. ///

Example: Some homomorphisms which are very important in applications are
evaluation homomorphisms or substitution homomorphisms, described as
follows. Let R be a commutative ring and R[x] the polynomial ring in one variable
with coefficients in R. Fix ro ∈ R. We want to talk about evaluating polynomials
at ro, or, equivalently, substituting ro for x in a polynomial. What is meant by this
is that a polynomial

P (x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

should be mapped to

P (ro) = anrn
o + an−1r

n−1
o + . . . + a2r

2
o + a1ro + a0

Let ero denote this map, which is the evaluation map.
• The evaluation map ero : R[x] → R is a ring homomorphism from the poly-

nomial ring R[x] to the ring R.
Before proving this, note that our experience makes us anticipate the fact

that such maps really are ring homomorphisms: indeed, we know that to evaluate
the product or sum of two polynomials we can evaluate them individually and then
multiply/add, or multiply/add first and then evaluate. This is exactly the assertion
that evaluation is a ring homomorphism.

Proof: Let g(x) =
∑

i ai xi and h(x) =
∑

i bi xi be two polynomials. That addi-
tion is preserved is easy:

ero(g + h) =
∑

i

(ai + bi)ri
o =

∑
i

air
i
o +

∑
i

bir
i
o = ero(g) + ero(h)

Multiplication is potentially more complicated notationally, but is also not difficult:

ero
(g · h) =

∑
k

 ∑
i+j=k

(ai · bi)

 rk
o =

(∑
i

air
i
o

)
·

∑
j

bjr
j
o

 = ero(g) · ero(h)

19.2 Ring homomorphisms 315

///

• Let f : R→ S be a ring homomorphism. Let 0R, 0S be the additive identitites
in R,S, respectively. Then f(0R) = 0S . That is, always the image of an
additive identity under a ring homomorphism is the additive identity in the
‘target’ ring.

Proof: (that f(0R) = 0S .) First,

f(0R) + f(0R) = f(0R + 0R)

by the defining property of ‘group homomorphism’. Then

0R + 0R = 0R

(by the property of the additive identity in R), so

f(0R + 0R) = f(0R)

Thus, together, we have

f(0R) + f(0R) = f(0R + 0R) = f(0R)

Add the additive inverse −f(0R) to both sides:

(f(0R) + f(0R))− f(0R) = f(0R + 0R)− f(0R)

= f(0R)− f(0R) = 0S

where the last equality uses the definition of additive inverse. Using associativity
of addition,

(f(0R) + f(0R))− f(0R) = f(0R) + (f(0R))− f(0R)) = f(0R) + 0S = f(0R)

where we also use the defining property of 0S . Putting these together (repeating a
little):

f(0R) = f(0R) + f(0R)− f(0R) = f(0R + 0R)− f(0R) = f(0R)− f(0R) = 0S

as claimed. ///

• Let f : R → S be a surjective ring homomorphism. Suppose that R has a
multiplicative identity 1R. Then S has a multiplicative identity 1S and

f(1R) = 1S

Remark: Notice that, unlike the discussion about the additive identity, here we
need the further hypothesis of surjectivity. Otherwise the assertion is false: see the
remark after the proof.

316 Chapter 19 More on Rings and Fields

Proof: Given s ∈ S, let r ∈ R be such that f(r) = s. Then

f(1R) · s = f(1R) · f(r) = f(1R · r) = f(r) = s

Thus, f(1R) behaves like the unit in S. By the already proven uniqueness of units,
it must be that f(1R) = 1S . ///

Remark: It is important to note that it is not necessarily true that the image of
the multiplicative identity 1R under a ring homomorphism f : R→ S has to be the
multiplicative identity 1S of S. For example, define a ring homomorphism

f : Q→ S

from the rational numbers Q to the ring S of 2-by-2 rational matrices by

f(x) =
(

x 0
0 0

)
Then the image of 1 is simply (

1 0
0 0

)
which is certainly not the same as the multiplicative identity(

1 0
0 1

)
in the ring S.

There are also examples in commutative rings where the unit is mapped to
something other than the unit. For example, let R = Z/3 and S = Z/6, and define
f : R→ S by

f(r mod 3) = 4r mod 6

Check that this is well-defined: if r = r′ mod 3, then 3|(r − r′). Then surely
6|4(r−r′), so indeed 4r = 4r′ mod 6. This proves well-definedness. Check that this
is a homomorphism:

f(x + y) = 4(x + y) = 4x + 4y = f(x) + f(y)

This would have worked with any number, not just 4. To see that f preserves
multiplication, the crucial feature of the situation is that

4 · 4 = 4 mod 6

Then
f(x · y) = 4(x · y) = (4 · 4)(x · y) = (4x) · (4y) = f(x) · f(y)

Thus, f is a homomorphism. But f(1) 6= 1.

19.3 Quotient rings 317

19.3 Quotient rings
Now we give a construction of new rings from old in a manner that includes as a
special case the construction of Z/n from Z.

Let R be a commutative ring with unit 1. Let I be an ideal in R. The quotient
ring R/I (‘R mod I’) is defined to be the set of cosets

r + I = {r + i : i ∈ I}

We define operations of addition and multiplication on R/I by

(r + I) + (s + I) = (r + s) + I

(r + I) · (s + I) = (r · s) + I

The zero in this quotient will be 0R/I = 0 + I, and the unit will be 1R/I = 1 + I.
Example: The basic example is that Z/n is the quotient ring Z/I where I = n ·Z.

But, just as we had to check that the operations of addition and multiplication
in Z/n were well-defined, we must do so here as well. The point is that the set r+I
typically can be named in several different ways, and we want the alleged addition
and multiplication operations not to depend on the way the coset is named, but
only on what it is. This is what well-definedness is about.

So suppose r + I = r′ + I and s + I = s′ + I. That is, we have two cosets,
each named in two possibly different ways. To prove well-definedness of addition
we need to check that

(r + s) + I = (r′ + s′) + I

and to prove well-definedness of multiplication we must check that

(r · s) + I = (r′ · s′) + I

Since r′ + I = r + I, in particular r′ = r′ + 0 ∈ r + I, so r′ can be written as
r′ = r + i for some i ∈ I. Likewise, s′ = s + j for some j ∈ I. Then

(r′ + s′) + I = (r + i + s + j) + I = (r + s) + (i + j + I)

The sum k = i+j is an element of I. We claim that for any k ∈ I we have k+I = I.
Certainly since I is closed under addition, k + I ⊂ I. On the other hand, for any
x ∈ I we can write

x = k + (x− k)

with x− k ∈ I, so also k + I ⊃ I. Thus, indeed, k + I = I. Thus,

(r′ + s′) + I = (r + s) + I

which proves the well-definedness of addition in the quotient ring. Likewise, looking
at multiplication:

(r′ · s′) + I = (r + i) · (s + j) + I = (r · s) + (rj + si + I)

318 Chapter 19 More on Rings and Fields

Since I is an ideal, rj and si are again in I, and then rj + si ∈ I. Therefore, as
just observed in the discussion of addition, rj + si + I = I. Thus,

(r′ · s′) + I = (r · s) + I

and multiplication is well-defined.
The proofs that 0 + I is the zero and 1 + I is the unit are similar.
And in this situation the quotient homomorphism

q : R→ R/I

is the natural map
q(r) = r + I

In fact, the discussion just above proves
Proposition: For a commutative ring R and ideal I, the quotient map R→ R/I
is a ring homomorphism. ///

19.4 Maximal ideals and fields
Now we see how to make fields by taking suitable quotients by maximal ideals.
This is a fundamental construction.

Let R be a commutative ring with unit 1. An ideal M in R is maximal if
M 6= R and if for any other ideal I with I ⊃M it must be that I = R. That is, M
is a maximal ideal if there is no ideal strictly larger than M (containing M) except
R itself.
Proposition: For a commutative ring R with unit, and for an ideal I, the quotient
ring R/I is a field if and only if I is a maximal ideal.

Proof: Let x+I be a non-zero element of R/I. Then x+I 6= I, so x 6∈ I. Note that
the ideal Rx+ I is therefore strictly larger than I. Since I was already maximal, it
must be that Rx + I = R. Therefore, there are r ∈ R and i ∈ I so that rx + i = 1.
Looking at this last equation modulo I, we have rx ≡ 1 mod I. That is, r + I is
the multiplicative inverse to x + I. Thus, R/I is a field.

On the other hand, suppose that R/I is a field. Let x ∈ R but x 6∈ I. Then
x + I 6= 0 + I in R/I. Therefore, x + I has a multiplicative inverse r + I in R/I.
That is,

(r + I) · (x + I) = 1 + I

From the definition of the multiplication in the quotient, this is rx + I = 1 + I, or
1 ∈ rx + I, which implies that the ideal Rx + I is R. But Rx + I is the smallest
ideal containing I and x. Thus, there cannot be any proper ideal strictly larger
than I, so I is maximal. ///

19.5 Field extensions
Now we’ll make the construction above more concrete, making ‘bigger’ fields by
taking quotients of polynomial rings with coefficients in ‘smaller’ fields. This is a
very basic procedure.

19.5 Field extensions 319

Let k be a field. Another field K containing k is called an extension field of
k, and k is a subfield of K.
Theorem: Let k be a field and P (x) an irreducible polynomial in k[x] (other than
the zero polynomial). Then the principal ideal I = k[x] · P (x) is maximal. Thus,
the quotient ring k[x]/I is a field. Further, the composite map

k → k[x]→ k[x]/I

is injective, so we may consider the field k as a subset of the field k[x]/I. Now let
α = x + I be the image in k[x]/I of the indeterminate x. Then (in the quotient
k[x]/I)

P (α) = 0

Last, any element β ∈ k[x]/I can be uniquely expressed in the form

β = R(α)

where R is a polynomial with coefficients in k and of degree strictly less than the
degree of P .
Remark: The degree of the extension K of k is the degree of the polynomial P
used in the construction.
Remark: In this situation, thinking of α as ‘existing’ now and being a root of the
equation P (x) = 0, we say that we have adjoined a root of P (x) = 0 to k, and
write

k[α] = k[x]/I

Remark: As a notational convenience, often a quotient

k[x]/k[x] · P (x)

is written as
k[x]/P (x)

where it is meant to be understood that the quotient is by the ideal generated by
P (x). This is entirely consistent with the notation Z/n for Z/Z · n.
Remark: An element β of k[x]/I expressed as a polynomial R(α) with R of
degree less than the degree of P is reduced. Of course, since k[x]/I is a ring, any
polynomial R(α) in α gives something in k[x]/I. But everything can be expressed
by a polynomial of degree less than that of P , and uniquely so. This is exactly
analogous to the fact that every equivalence class in the quotient ring Z/n has a
unique representative among the integers reduced modulo n, namely {0, 1, 2, . . . , n−
1}.

Proof: Let J be a polynomial not in the ideal I = k[x] · P . We want to show
that the ideal k[x] · J + I is k[x], thereby proving the maximality of I. Since P is
irreducible, the gcd of J and P is just 1. Therefore, by the Euclidean Algorithm in
k[x], there are polynomials A,B in k[x] so that

A · P + B · J = 1

320 Chapter 19 More on Rings and Fields

That is, k[x] · J + I contains 1. Then for any polynomial M we have

M = M · 1 = M · (A · P + B · J) = (M ·A) · P + (M ·B) · J

which lies in k[x] · J + k[x] · P . That is, M is in the ideal k[x] · J + k[x] · P , so the
latter ideal is the whole ring k[x]. This proves the maximality of k[x] · J + k[x] ·P .

Next, we show that the composite map

k → k[x]→ k[x]/k[x] · P

is an injection. Let I = k[x] · P . The first map k → k[x] is the obvious one, which
takes a ∈ k to the ‘constant’ polynomial a. Suppose a, b ∈ k so that a + I = b + I.
Then, by subtracting, (a− b) + I = 0 + I, which gives

a− b = (a− b) + 0 ∈ (a− b) + I = I

so a − b ∈ I. That is, a − b is a multiple of P . Thus, either a − b = 0 or
deg(a − b) ≥ deg P , because the degree of a product of polynomials is the sum
of the degrees, and degrees are non-negative integers except in the case of the 0
polynomial. Thus, since deg P > 0 and deg(a− b) ≤ 0, it must be that a− b = 0.

Next, we prove that P (α) = 0. Let q : k[x] → k[x]/I be the quotient homo-
morphism. Write out P as

P (x) = anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0

To show that P (α) = 0 in the quotient, we compute

P (α) = anαn + an−1α
n−1 + . . . + a2α

2 + a1α + a0

= anq(x)n + an−1q(x)n−1 + . . . + a2q(x)2 + a1α + a0

= q(anxn + an−1x
n−1 + . . . + a2x

2 + a1x + a0) = q(P (x))

since q is a ring homomorphism and since the ‘constants’ in k are essentially un-
changed in mapping to the quotient. Since P (x) ∈ I, the image q(P (x)) of it under
q is 0. That is, we have proven that P (α) = 0.

Finally, we prove that any element of the quotient k[x]/I is uniquely expressible
as a polynomial in α = x + I, of degree less than the degree of P . Indeed, given
β ∈ k[x]/I there is some polynomial J so that q(J(x)) = β. Using the Division
Algorithm for polynomials in one variable over a field, we have

J(x) = Q(x) · P (x) + R(x)

where deg R < deg P . Then, under the homomorphism q we have

β = q(J(x)) = q(Q(x)) · q(P (x)) + q(R(x)) = q(Q(x)) · 0 + R(q(x)) = R(α)

since q(P (x)) = P (α) = 0, and of course using the ring homomorphism properties.
Thus, every element in the quotient is representable as claimed. For uniqueness,

19.6 The Frobenius automorphism 321

suppose that q(R(x)) = q(S(x)) for two polynomials R,S of degrees less than the
degree of P . Then R(x) = S(x) mod P (x), which is to say that P (x) divides
R(x)−S(x). Since the degree of R(x)−S(x) is strictly less than that of P (x), this
can happen only for R(x) = S(x). This is the desired result. ///

Corollary: When the field k is finite with q elements, for an irreducible polynomial
P of degree n, the field extension K = k[x]/P (x) has qn elements.

Proof: Let α be the image of x in K. We use the fact that every element of K
has a unique expression as R(α) for a polynomial R of degree less than n. There
are q choices for each of the n coefficients (for powers of α ranging from 0 to n−1),
so there are qn elements altogether. ///

Remark: A field extension k[x]/P (x) with irreducible polynomial P is called
quadratic if P is quadratic, cubic if P is cubic, quartic if P is quartic, quintic
if P is quintic, etc.

19.6 The Frobenius automorphism
One essential higher-level structural feature of finite fields is the presence of Frobe-
nius maps, which play a central technical role. Several basic theorems about finite
fields which don’t mention the Frobenius maps directly nevertheless make use of
the Frobenius maps in their proofs. In this section we will think about finite fields
more abstractly and rely less upon specific models of them depending upon choices
of irreducible polynomials. In fact this more abstract study will be used to give
proofs of the counting assertions about irreducible and primitive polynomials.

In this section we also briefly develop just a few aspects of the idea of automor-
phism group of a larger field over a smaller field, in the context of finite fields. This
is a forerunner of Galois theory, which is the systematic study of such automorphism
groups.

Let k = Fq = GF (q) be a finite field with q elements, where q = pn is a power
of a prime number p. Fix an integer N > 1 and suppose we have a larger finite field
K = FqN = GF (qN) containing k. The Frobenius map of K over k is simply

Φ(α) = αq

This is also sometimes called the Frobenius automorphism of K over k, for
reasons that will be clarified somewhat in what follows. Since K is closed under
multiplication, it is clear that Φ maps K to itself.
Remark: Yes, Φ is just the map that takes the qth power of things inside K,
where q is the cardinality of the littler field k inside K. And, yes, the way we’re
writing it the notation does not forcefully tell us what the corresponding K and k
are. This implicit reference to K and k is harmless, though, because we won’t be
doing anything devious with Φ.
Proposition: The Frobenius map Φ of K = FqN over k = Fq is a bijection of
K to K. In particular,

ΦN = Φ ◦ Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
N

322 Chapter 19 More on Rings and Fields

is the identity map on K (which maps every element of K to itself).

Proof: Again, since the Frobenius map Φ is just taking qth powers and K is
closed under multiplication, Φ maps K to itself. What needs more attention is the
injectivity and surjectivity. One way to prove injectivity is to note that the kernel
of ΦN (or of any power of Φ) is {0}, so ΦN is injective, by the trivial kernel criterion
for injectivity of a ring homomorphism. And for functions from a finite set to itself,
injectivity implies surjectivity. Also, some thought should make clear that proving
ΦN is the identity map on K certainly is sufficient to prove that Φ is both injective
and surjective.

The multiplicative group K× is of order qN −1, so by Lagrange’s theorem and
its corollaries the order of any β ∈ K× is a divisor of qN − 1, and

βqN−1 = 1

Therefore, for nonzero β in K,

Φ(β) = βqN

= β · βqN−1 = β · 1 = β

This proves the proposition. ///

Proposition: The Frobenius map Φ restricted to k is the identity map. That is,
for every α in k = Fq, Φ(α) = α. If α ∈ K has the property that Φ(α) = α, then
in fact α ∈ k.

Proof: Half of the proposition is really just a corollary of Lagrange’s theorem. The
first point is that the multiplicative group k× of nonzero elements in k has q − 1
elements. So, by Lagrange’s theorem and its corollaries, the order of any element α
in k is a divisor d of q−1, and, further, αq−1 = 1 for that reason. Then for nonzero
α ∈ k we have

Φ(α) = αq = (α)q−1 · α = 1 · α = α

And certainly 0q = 0, so this proves half of the proposition.
Now suppose that α ∈ K and Φ(α) = α. By the definition of Φ this means

that α is a solution of the equation xq − x = 0 lying inside the field K. By unique
factorization of polynomials (with coefficients in a field), we know that a polynomial
equation of degree q has at most q roots in a field. We already found q roots of
this equation, namely the elements of the smaller field k sitting inside K. So there
simply can’t be any other roots of that equation other than the elements of k. This
shows that Φ(α) = α implies α ∈ k, which is the second half of the proposition. ///

Lemma: Let 1K be the multiplicative identity in K. Then

1K + . . . + 1K︸ ︷︷ ︸
p

= 0

As a consequence, for any α in K,

α + . . . + α︸ ︷︷ ︸
p

= 0

19.6 The Frobenius automorphism 323

Remark: A more systematic development of general field theory would make the
result of the last lemma much clearer, but would have taken more time altogether
than the funny proof given below.

Proof: By Lagrange’s theorem and its corollaries, in the group obtained by taking
K with its addition (ignoring for the moment its multiplication), the order of any
element α is a divisor of the order qN of the group, and

qN · α = α + . . . + α︸ ︷︷ ︸
qN

= 0

Since q = pn, this is
pnN · α = α + . . . + α︸ ︷︷ ︸

pnN

= 0

For the moment, use the abbreviation

t = 1K + . . . + 1K︸ ︷︷ ︸
p

Taking α = 1K in the formula above,

0 = 1K + . . . + 1K︸ ︷︷ ︸
qN

= tnN

Since K is a field, whenever the product of several elements is 0, one of the factors
is itself 0. Thus, t is 0, as asserted in the lemma. And then

α + . . . + α︸ ︷︷ ︸
p

= 1K · α + . . . + 1K · α︸ ︷︷ ︸
p

= (1K + . . . + 1K︸ ︷︷ ︸
p

) · α = 0 · α = 0

This proves the lemma. ///

Proposition: The Frobenius map Φ of K over k has the property that for any
α, β in K

Φ(α + β) = Φ(α) + Φ(β)
Φ(α · β) = Φ(α) · Φ(β)

That is, Φ preserves addition and multiplication. Since we already saw that Φ is
bijective, Φ is said to be a ring isomorphism.

Proof: The second assertion, about preserving multiplication, is simply the asser-
tion that the qth power of a product is the product of the qth powers. This is true
in great generality as long as the multiplication is commutative, which it is here.
This doesn’t depend at all on what the particular exponent is.

The proof that Φ preserves addition makes quite sharp use of the fact that the
exponent is q, which is a power of a prime number p. This wouldn’t work for other
exponents. To start with, we claim that for α, β in K

(α + β)p = αp + βp

324 Chapter 19 More on Rings and Fields

Expanding by the binomial theorem, the left-hand side is

αp +
(

p

1

)
αp−1b +

(
p

2

)
αp−2b2 + . . . +

(
p

p− 1

)
α1bp−1 + βp

Here the multiplication of elements of K by positive integers means repeated ad-
dition. As observed in the proof of Fermat’s Little Theorem, all those binomial
coefficients in the middle of the expansion are integers divisible by p, so by the
previous lemma all the middle terms of the expansion are 0 in K. Thus, we have
proven that

(α + β)p = αp + βp

Then, repeatedly invoking this result,

(α + β)p2
= (αp + βp)p = ap2

+ bp2

(α + β)p3
= (αp + βp)p2

= (ap2
+ bp2

)p = αp3
+ βp3

and so on, so by induction we could prove that

(α + β)pnN

= αpnN

+ βpnN

as asserted. That is, the Frobenius map preserves addition. ///

Proposition: Let P (x) be a polynomial with coefficients in k = Fq. Let α ∈ K

be a root of the equation P (x) = 0. Then Φ(α) = αq, Φ2(α) = Φ(Φ(α)) = αq2
, . . .

are also roots of the equation.

Proof: Let P have coefficients

P (x) = cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

with all the ci’s in k. Apply the Frobenius map to both sides of the equation

0 = cnαn + cn−1α
n−1 + . . . + c2α

2 + c1α + c0

to obtain

Φ(0) = Φ(cn)Φ(α)n + Φ(cn−1)Φ(α)n−1 + . . . + Φ(c2)Φ(α)2 + Φ(c1)Φ(α) + Φ(c0)

since Φ preserves addition and multiplication in K, in the sense of the previous
proposition. The coefficients ci are in k, as is the 0 on the left-hand side, so Φ
doesn’t change them. Thus, in fact we have

0 = cnΦ(α)n + cn−1Φ(α)n−1 + . . . + c2Φ(α)2 + c1Φ(α) + c0

That is, we have
0 = P (Φ(α))

19.6 The Frobenius automorphism 325

That proves that Φ(α) is a root of P (x) = 0 if α is. By repeating this, we obtain
the assertion of the proposition. ///

Proposition: Let
A = {α1, . . . , αt}

be a set of (t distinct) elements of K, with the property that for any α in A, Φ(α)
is again in A. Then the polynomial

(x− α1)(x− α2) . . . (x− αt)

(when multiplied out) has coefficients in k.

Proof: For a polynomial

P (x) = cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

with coefficients in the larger field K, define a new polynomial Φ(P) by letting Φ
just act on the coefficients:

Φ(P)(x) = Φ(cn)xn + Φ(cn−1)xn−1 + . . . + Φ(c2)x2 + Φ(c1)x + Φ(c0)

Since Φ preserves addition and multiplication in K, it is not hard to check that it
also preserves addition and multiplication of polynomials with coefficients in K, in
the sense that for two such polynomials P and Q

Φ(P + Q) = Φ(P) + Φ(Q)
Φ(P ·Q) = Φ(P) · Φ(Q)

Then applying Φ to the product

(x− α1)(x− α2) . . . (x− αt)

will merely mix around the factors, by the hypothesis that Φ just permutes the
elements of the set A. The order in which the factors are multiplied certainly
doesn’t matter here, so we have

Φ((x− α1)(x− α2) . . . (x− αt)) = (x− α1)(x− α2) . . . (x− αt)

That means that the multiplied-out version

(x− α1)(x− α2) . . . (x− αt) = cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

has the property that

cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

= Φ(cn)xn + Φ(cn−1)xn−1 + . . . + Φ(c2)x2 + Φ(c1)x + Φ(c0)

326 Chapter 19 More on Rings and Fields

The meaning of ‘equality’ for polynomials is that the corresponding coefficients are
equal, so the previous inequality implies that Φ(ci) = ci for all indices i. By now
we know that this implies that ci ∈ k, for all indices i. ///

Proposition: Let α be an element of K = k[x]/Q. There is exactly one monic
irreducible polynomial P in k[x] so that α is a root of P (x) = 0, namely

P (x) = (x− α)(x− Φ(α))(x− Φ2(α)) . . . (x− Φd−1(α))

where d is the smallest positive integer so that Φd(α) = α.

Proof: Consider the successive images Φi(α) of α under the Frobenius map. Since
the field is finite, at some point Φi(α) = Φj(α) for some 0 ≤ i < j. Since Φ is a
bijection of K to K, it has an inverse map Φ−1. Applying this inverse i times to
the equation Φi(α) = Φj(α), we find

α = Φ0(α) = Φj−i(α)

That is, in fact i = 0. That means that for the smallest j so that Φj(α) is already
Φj(α) = Φi(α) for 1 ≤ i < j, in fact this duplication occurs as

Φj(α) = α

rather than duplicating some other element farther along on the list. Let

α, Φ(α), . . . , Φd−1(α)

be the distinct images of α under the Frobenius map. We just saw that Φd(α) = α.
Let

P (x) = (x− α)(x− Φ(α))(x− Φ2(α)) . . . (x− Φd−1(α))

As just above, application of Φ to P only permutes the factors on the right-hand
side, by shifting indices forward by one, and wrapping around at the end since
Φd(α) = α. Thus, when multiplied out, the polynomial P is unchanged by applica-
tion of Φ, so has coefficients in the smaller field k. We saw this phenomenon already
in the discussion of the Frobenius map. And visibly α is a root of the equation
P(x) = 0.

From just above, if β is a root in K of a polynomial equation with coefficients
in the smaller field k, then Φ(β) is also a root. So any polynomial with coefficients
in k of which α is a zero must have factors x − Φi(α) as well, for 1 ≤ i < d. By
unique factorization of polynomials with coefficients in a field, this shows that this
is the unique such polynomial.

In particular, P must be irreducible in k[x], because if it properly factored
in k[x] as P = P1P2 then (by unique factorization) α would be a root of either
P1(x) = 0 or P2(x) = 0, and then all the d distinct elements Φi(α) would be roots
of the same equation as well. Since the number of roots is at most the degree, there
cannot be any proper factorization, so P is irreducible in k[x]. ///

19.6 The Frobenius automorphism 327

Corollary: Let β be the image of x in K = Fq[x]/Q, and let n be the degree of
Q. Then

Q(x) = (x− β)(x− Φ(β))(x− Φ2(β)) . . . (x− Φn−1(β))

We have Φn(β) = β, and n is the smallest positive integer so that this is so.

Proof: This is a special case of the proposition. ///

We need to develop one further abstraction. Let e denote the identity map of
K = Fq[x]/Q to itself, and let

G = {e,Φ,Φ2, . . . ,Φn−1}

where Q is of degree n. This is a set of maps of K to itself. As noted above, each
one of these maps when restricted to Fq is the identity map on Fq. Since each Φi

is the identity on Fq and maps K bijectively to itself, we say that G is a set of
automorphisms of K over Fq.
Proposition: This set G of automorphisms of K over Fq is a group, with identity
e.

Proof: Let β be the image of x in K. We first check that Φn(α) = α for any α in
K. We know that we can express α as a polynomial in β with coefficients in Fq,
say α = R(β). Then because Φ preserves addition and multiplication, and because
Φn(β) = β by the previous corollary,

Φn(α) = Φn(R(β)) = R(Φn(β)) = R(β) = α

Since Φn = e, for any integer `

Φ` = Φ`%n

as a function from K to itself, where as usual %n means reduction modulo n. There-
fore, the set G is closed under multiplication (meaning composition of functions):

Φi ◦ Φj = Φ(i+j)%n

Further, this shows that G is closed under inverses:

(Φi)−1 = Φn−i

The associativity follows as a consequence of the associativity of composition of
functions from a set to itself. That the identity element of the group is the identity
map e is clear. ///

Keeping in mind that G acts on K, for α in K, the stabilizer subgroup Gα

of α in G is defined to be

Gα = {g ∈ G : g(α) = α}

Of course, we should verify that this really is a subgroup of G:

328 Chapter 19 More on Rings and Fields

Proposition: For α in K the stabilizer subgroup Gα of α is a subgroup of G.

Proof: Certainly Gα contains the identity map e. Suppose that g ∈ G so that
g(α) = α. Applying the function g−1 to this equality gives

α = g−1(g(α)) = g−1(α)

so Gα is closed under inverses. If g and h are both in Gα, then

g(h(α)) = g(α) = α

which proves closure under multiplication. Thus, Gα really is a group. ///

Proposition: Given α in K = Fq[x]/Q, the number of distinct images Φi(α) of
α under repeated applications of the Frobenius map is a divisor of the degree n of
Q.

Proof: What we should really claim here is that the collection of distinct images
Φi(α) is naturally in bijection with the collection of cosets G/Gα where Gα is the
stabilizer subgroup of α in the automorphism G. Indeed, if g ∈ G and h ∈ Gα,
then

(gh)(α) = g(h(α)) = g(α)

This proves that gGα → g(α) is well-defined. And if g(α) = g′(α), then α =
g−1g′(α), so g−1g′ is in the stabilizer subgroup Gα. This proves that no two distinct
cosets gGα and g′Gα of Gα send α to the same thing. ///

Corollary: For α in the field K = k[x]/Q, the degree of the unique monic ir-
reducible polynomial P with coefficients in k so that P (α) = 0 is a divisor of the
degree n of Q.

Proof: From above,

P (x) = (x− α)(x− Φ(α))(x− Φ2(α)) . . . (x− Φd−1(α))

where α, Φ(α), Φ2(α), . . ., Φd−1(α) are the distinct images of α and d is then the
degree of P . As was shown in the course of the proof of Lagrange’s theorem and its
corollaries, all cosets of Gα have the same cardinality. By this and by the previous
proposition,

card(G) = d · card(Gα)

Likewise, in the special case of the image β of x in K, the stabilizer subgroup is
just {e}, so

card(G) = n · 1

so card(G) = n. This proves that d is a divisor of n. ///

Remark: In the discussion of this section we did not make any assumptions
about the uniqueness of ‘the’ finite fields Fq and FqN . Rather, we just used this
notation as an occasional reminder of the number of elements in the finite fields k
and K.

19.7 Counting irreducibles 329

19.7 Counting irreducibles
Knowing that finite fields have primitive roots enables us to count the number of
irreducible polynomials of a given degree. We make essential use of facts we’ve
developed about Frobenius maps. Along the way, it is inevitable that we develop
more structural properties of finite fields, and these are of interest in their own
right.

An integer is usually said to be square-free if it is not divisible by the square
of any prime number. Recall that the Möbius function µ is defined on positive
integers by

µ(n) =

 (−1)t if n is square-free, divisible by exactly t primes
1 if n = 1
0 if n is divisible by the square of some prime

Theorem: The number of irreducible monic polynomials in Fq[x] of degree n is

1
n

∑
1≤d≤n, d|n

µ(d) qn/d

That is, this number is

1
n
·

qn −
∑
p1|n

qn/p1 +
∑

p1,p2|n

qn/p1p2 −
∑

p1,p2,p3|n

qn/p1p2p3 + . . .

where the sums are over collections of distinct prime divisors of n.

We can specialize this formula to some interesting and more memorable special
cases:
Corollary: If n = p1 is prime, then there are

qn − q

n

irreducible monic polynomials of degree n in Fq[x]. ///

Corollary: If n = p1p2 is a product of two distinct primes p1 and p2, then there
are

qp1p2 − qp1 − qp2

p1p2

irreducible monic polynomials of degree n = p1p2 in Fq[x]. ///

Corollary: If n = pe
1 is a power of a prime p1, then there are

qpe
1 − qpe−1

1

n

330 Chapter 19 More on Rings and Fields

irreducible monic polynomials of degree n = pe
1 in Fq[x]. ///

Let Q be a fixed irreducible monic polynomial of degree n in Fq[x]. We know
that K = Fq[x]/Q is a field with qn elements. Let

Φ(γ) = γq

be the Frobenius automorphism of K over k = Fq. From the discussion of the
Frobenius automorphism above, we know that for any α in K there is a unique
monic irreducible polynomial P with coefficients in k = Fq so that P (α) = 0, and
in fact

P (x) = (x− α)(x− Φ(α))(x− Φ2(α)) . . . (x− Φd−1(α))

where d is the number of distinct images of α under repeated applications of the
Frobenius automorphism Φ of K over k = Fq. We have a converse:
Proposition: Let P be an irreducible monic polynomial of degree d with d divid-
ing the degree n of irreducible Q. Then P (x) = 0 has d distinct roots in K = k[x]/Q,
so P (x) factors into distinct linear factors in K.

Proof: The quotient ring L = k[x]/P is a field. Let α be the image of x there.
We know that P (α) = 0, and from discussion of the Frobenius map we know that

P (x) = (x− α)(x− Φ(α))(x− Φ2(α)) . . . (x− Φd−1(α))

By Lagrange’s theorem and its corollaries, we know that αqd−1 = 1, since the order
of L× is qd − 1. By unique factorization of polynomials with coefficients in a field,
this implies that P (x) divides xqd−1− 1 as polynomials with coefficients in k = Fq.

On the other hand, the existence of a primitive root g in K means exactly
that gqn−1 = 1 but no smaller positive exponent makes this true. And, thus, the
elements g1, g2, g3, . . . , gqn−1 are all distinct (and nonzero). For any integer t

(gt)qn−1 = (gqn−1)t = 1t = 1

so these qn − 1 elements are all roots of xqn−1 − 1 = 0. On the other hand, this
equation is of degree qn − 1, so has at most qn − 1 roots. We conclude that

xqn−1 − 1 = (x− g1)(x− g2)(x− g3) . . . (x− gqn−1)

in K[x], that is, allowing coefficients in the larger field K.
For d dividing n, we have a basic algebra identity

qn − 1 = (qd − 1)(q(n−d) + q(n−2d) + q(n−3d) + . . . + qd + 1)

Thus, qd − 1 divides qn − 1, and by the same basic identity xqd−1 − 1 divides
xqn−1− 1. As P (x) divides xqd−1− 1, P (x) divides xqn−1− 1. Thus, P (x) = 0 has
d roots in K, since xqn−1 − 1 factors into linear factors in K[x]. ///

Proof: (of theorem) At last we can count the elements of K by grouping them in
d-tuples of roots of elements of irreducible monic polynomials with coefficients in

19.8 Counting primitives 331

k = Fq, where d runs over positive divisors of n including 1 and n. Let Nd be the
number of irreducible monic polynomials of degree d with coefficients in k = Fq.
Then this grouping and counting argument gives

qn =
∑
d|n

d ·Nd

By Möbius inversion we obtain the formula

n ·Nn =
∑
d|n

µ(d) qn/d

which gives the assertion of the theorem. ///

19.8 Counting primitives
Our more refined discussion of finite fields just above also allows us to prove the
counting formula for primitive polynomials, as a corollary of the characterization
of primitive polynomials as irreducible factors of cyclotomic polynomials.

Fix a power q of a prime number, and let k = Fq be a finite field with q
elements. Recall that a polynomial Q with coefficients in k of degree n is primitive
if

xqn−1 = 1 mod Q(x)

and no smaller positive integer will do in place of this n. For brevity, let

N = qn − 1

Theorem: A primitive polynomial Q of degree n in Fq[x] is an irreducible factor
of the (qn− 1)th cyclotomic polynomial. Conversely, every irreducible factor of the
(qn − 1)th cyclotomic polynomial is of degree n, and is primitive.

Let ϕ be Euler’s phi-function. Recall that the degree of the N th cyclotomic
polynomial ϕN is ϕ(N). Again, the counting corollary of the latter theorem is
Corollary: There are ϕ(qn − 1)/n primitive polynomials of degree n in the poly-
nomial ring Fq[x].

Proof: By the theorem, every such primitive polynomial is an irreducible factor of
the cyclotomic polynomial ϕN , where N = qn − 1. And every irreducible factor of
ϕN is primitive of degree n. Because qn− 1 is relatively prime to the characteristic
p of the fields in question, ϕN has no repeated factors, so no irreducible factor
appears more than once. Since the degree of a product is the sum of the degrees,
we have

degree ϕN = (number of primitives of degree n) · n

from which we obtain the formula of the corollary. ///

Proof: Without loss of generality, we only consider the case n > 1, since the linear
case can be treated separately and easily. In particular, this excludes the case that
an irreducible polynomial is divisible by x.

332 Chapter 19 More on Rings and Fields

On one hand, suppose that Q divides the (qn−1)th cyclotomic polynomial ϕN

and the degree of Q is n. Since ϕN divides xqn−1 − 1, certainly

xqn−1 = 1 mod Q(x)

If any smaller positive integer t were to have the property that

xt = 1 mod Q(x)

then Q(x) would divide xt− 1. But from the discussion of cyclotomic polynomials,
since p and qn − 1 are relatively prime, ϕN and xt − 1 have no common factor for
t < qn − 1. Thus, we see that the smallest power of x which is 1 modulo Q(x) is
qn − 1, so Q is primitive of degree n.

On the other hand, suppose that Q is primitive of degree n. The condition

xqn−1 = 1 mod Q(x)

is by definition equivalent to asserting that Q(x) is a divisor of xqn−1−1. Likewise,
the condition that no smaller power of x is 1 modulo Q asserts that Q(x) does not
divide xN − 1 for any smaller N . From the discussion of cyclotomic polynomials,
using unique factorization, if we remove from xqn−1 − 1 any factors that it has
in common with xN − 1 for N < qn − 1, then what remains is the cyclotomic
polynomial ϕN . Thus, primitive Q of degree n divides the (qn − 1)th cyclotomic
polynomial ϕN .

Now we will prove that all the irreducible factors of ϕN have degree n. Let
Q be any irreducible factor of ϕN . Then L = Fq[x]/Q is a field, and the image
α of x is of order N = qn − 1 in the multiplicative group L×, by construction of
the cyclotomic polynomial ϕN . Therefore, if d is the degree of Q, by Lagrange’s
theorem and its corollaries,

qn − 1 divides qd − 1

In particular, d ≥ n. That is, on one hand, any irreducible factor of ϕN has degree
at least n. On the other hand, let Φ be the Frobenius map

Φ(β) = βq

of L over Fq. The statement

xqn−1 = 1 mod Q

is
αqn−1 = 1

which is equivalent to
αqn

= α

Exercises 333

which is
Φn(α) = α

From the discussion of the Frobenius automorphism, this implies that the unique
monic irreducible polynomial f(x) in Fq[x] so that f(α) = 0 is of degree at most n.
At the same time, in the construction of finite fields we saw that Q(α) = 0 as well.
As a corollary of the discussion of the Frobenius automorphism, there is exactly
one monic irreducible polynomial f so that f(α) = 0, so Q = f . Since f has degree
at most n, the degree of Q is at most n. Thus, all the irreducible factors of ϕN are
of degree n, where N = qn − 1.

Finally, we observe that primitive polynomials are necessarily irreducible. In-
deed, a primitive polynomial Q of degree n in Fq[x] divides the cyclotomic poly-
nomial ϕN with N = qn − 1. Just above we proved that all the irreducible factors
of ϕN are of degree n, so by unique factorization Q has no alternative but to be
irreducible. ///

Exercises

19.01 Let N be an integer. Prove carefully that N · Z is an ideal in Z.

19.02 Fix an integer N > 1. Prove carefully that the map f : Z → Z/NZ given
by f(x) = x + NZ is a ring homomorphism.

19.03 Show that x2 − y2 = 102 has no solution in integers. (ans.)

19.04 Show that x3 + y3 = 3 has no solution in integers. (ans.)

19.05 Show that x3 + y3 + z3 = 4 has no solution in integers. (ans.)

19.06 Show that x2 + 3y2 + 6z3 − 9w5 = 2 has no solution in integers.

19.07 Let I, J be two ideals in a ring R. Show that I ∩ J is also an ideal in R.

19.08 Let I, J be two ideals in a ring R. Let

I + J = {i + j : i ∈ I and j ∈ J}

Show that I + J is an ideal.

19.09 Let f : R→ S be a surjective ring homomorphism (with R,S commutative,
for simplicity). Let I be an ideal in R. Show that J = {f(i) : i ∈ I} is an
ideal in S.

19.10 Let f : R → S be a ring homomorphism (with R,S commutative, for sim-
plicity). Let J be an ideal in I. Show that I = {i ∈ I : f(i) ∈ J} is an ideal
in S.

19.11 Show that there is no element x ∈ F13 so that x4 + x3 + x2 + x + 1 = 0.
(ans.)

19.12 Show that there is no solution to x2 + 1 in F11.

19.13 Consider the polynomial ring Z[x] in one variable over the ring of integers.
Show that the ideal

I = Z[x] · 2 + Z[x] · x

334 Chapter 19 More on Rings and Fields

generated by 2 and x is not principal, that is, that there is no single polyno-
mial f(x) such that I consists of all polynomial multiples of f(x). (ans.)

19.14 Let k be a field. Show that in the polynomial ring k[x, y] in two variables
the ideal I = k[x, y] · x + k[x, y] · y is not principal.

19.15 (*) Show that the maximal ideals in R = Z[x] are all of the form I =
R · p + R · f(x) where p is a prime and f(x) is a monic polynomial which is
irreducible modulo p.

20

Curves and Codes

20.1 Plane curves
20.2 Singularities of curves
20.3 Projective plane curves
20.4 Curves in higher dimensions
20.5 Genus, divisors, linear systems
20.6 Geometric Goppa codes
20.7 The Tsfasman-Vladut-Zink-Ihara bound

The material of this chapter is significantly more difficult than earlier ones, and
we are very far from giving a complete treatment. Indeed, the theory of algebraic
curves over fields of positive characteristic was only developed within the last 60
years or so, and is not elementary. An introductory treatment of the applications
to coding theory, at a similar level, is to be found in [Walker 2000].

The discovery described in [Tsfasman Vladut Zink 1982] of codes exceeding
the Gilbert-Varshamov bound was sensational not only because these codes were
so good, but also because their construction used such esoteric mathematics.

We cannot pretend to do justice to the theory of algebraic curves or to the
additional mathematics necessary to fully explain these codes, but can only give an
approximate idea of the more accessible aspects of these ideas.

20.1 Plane curves
We have the idea from analytic geometry that the graph of a single equation de-
scribes a ‘curve’ in the plane. This idea can be pushed a little bit to have the
benefit of ‘geometric intuition’ in the analysis of solutions of polynomial equations
over finite fields rather than solutions in R or C.

Let k be a field (such as R, C, Fq) and let k[x, y] denote the polynomial ring
in two variables with coefficients in k. For a polynomial f(x, y) other than the 0
polynomial, the (algebraic) curve Xf attached to f defined over k is

Xf = {(x, y) ∈ Fq : f(x, y) = 0}

335

336 Chapter 20 Curves and Codes

We may add the modifier ‘algebraic’ to the word ‘curve’ to emphasize that we use
only algebra to define this set of points, rather than transcendental functions such
as ex, which might not work right over finite fields anyway. The field k is sometimes
called the field of definition of the curve.
Remark: Often we say ‘the curve f(x, y) = 0’ rather than the more proper ‘the
curve defined by f(x, y) = 0’. But do not be deceived: an equation is not a curve.

Actually, what we have defined here is the set of k-rational points on a curve.
For example, taking k to be the real numbers R the curve x2 + y2 = −1 has no
(real-valued) points on it at all, since the square of a real number is non-negative.
Yet taking k to be the complex numbers C it has infinitely many.
Remark: Unlike the family of examples y = f(x), in general it is a highly non-
trivial problem to figure out what rational points lie on a curve, or even whether
there are any at all.
Example: Consider the curve X defined over the rational numbers Q by x2+y2 =
1. This is the set of points on the usual unit circle in the plane R2 which happen
to have rational coordinates (here ‘rational’ means in Q). We can systematically
find all the rational points on this curve, as follows. First, there is at least one
‘easy’ point to notice on the curve: (1, 0) is such. Second, and this is considerably
more subtle, it turns out that if we consider any (straight) line y = −t · (x − 1)
passing through the point (1, 0) with rational slope −t, then the other point in
which this line intersects the circle is also rational. (The converse is easier: for
any other rational point on the curve, the straight line connecting it to (1, 0) will
have rational slope.) Let’s verify the claim that the second point of intersection is
rational: we want to solve the system of equations{

x2 + y2 = 1
y = −t(x− 1)

where t is viewed as a fixed parameter. The situation suggests that we replace y
by t(x− 1) in the first equation, to obtain

x2 + t2(x− 1)2 = 1

This might look unpromising, but we know in advance that this quadratic equation
in x has one root x = 1. Recall that the discriminant ∆ of a quadratic equation
ax2 + bx + c = 0 is defined to be

∆ =
√

b2 − 4ac

and the quadratic formula (obtained really by simply completing the square) gives
a formula for the roots of the quadratic equation ax2 + bx + c = 0: the roots are

roots =
−b±

√
b2 − 4ac

2a

Since the parameter t is rational, the discriminant of the quadratic equation is
rational. Thus, the other root must also be rational, however unclear this is from

20.1 Plane curves 337

the equation itself. This should give us sufficient courage to go ahead with the
computation. Rearrange the equation to the standard form

(1 + t2)x2 − 2t2x + (t2 − 1) = 0

Then, invoking the quadratic formula,

{
roots of x2 + t2(x− 1)2 = 1

}
=

2t2 ±
√

(2t2)2 − 4(1 + t2)(t2 − 1)
2(1 + t2)

=
t2 ±

√
t4 + (1 + t2)(1− t2)

1 + t2

=
t2 ±

√
t4 + 1− t4

1 + t2
=

t2 ± 1
t2 + 1

=
{

t2 + 1
t2 + 1

,
t2 − 1
t2 + 1

}
=
{

1,
t2 − 1
t2 + 1

}
That is, the other solution is

x =
t2 − 1
t2 + 1

Then the corresponding y value is

y = t(x− 1) = t

(
t2 − 1
t2 + 1

− 1
)

=
2t

t2 + 1

Thus, every rational point on the curve is of the form

(x, y) =
(

t2 − 1
t2 + 1

,
2t

t2 + 1

)
This formula has been known for about 2500 years.
Remark: Another way to think about the previous example is that the sum of
the roots of a monic quadratic equation x2 + ax + b = 0 is −a. Thus, rearranging
the equation x2 + t2(x− 1)2 = 1 to a monic version

x2 +
−2t2

t2 + 1
+

t2 − 1
t2 + 1

= 0

shows that the sum of the two roots is 2t2/(t2 + 1). We know that one of the two
roots is 1, so the other root is

2t2

t2 + 1
− 1 =

t2 − 1
t2 + 1

Remark: In the last example we used the fact that a quadratic equation has (at
most) two roots, and that if the coefficients of the equation are rational, and if
one root is rational, then so is the other root. More generally, as a consequence of
unique factorization of polynomials with coefficients in a field, we have:

338 Chapter 20 Curves and Codes

Proposition: Let f(x) be a polynomial of degree n with coefficients in a field k.
If the equation f(x) = 0 has n − 1 distinct roots α1, . . ., αn−1 in k, then it has a
further root αn in k.

Proof: We have earlier observed that α is a root of the equation f(x) = 0 if and
only if the linear polynomial x − α divides the polynomial f(x). From this, and
from unique factorization, we conclude that each x − α1, x − α2, . . ., x − αn−1

divides f(x), and so does the product

(x− α1)(x− α2) . . . (x− αn−1)

We also know by now that the degree of f(x) divided by this product will be the
difference of their degrees, hence just 1. That is, this division will leave a linear
factor c(x − αn) (with c 6= 0). Since the computation takes place inside k[x], the
coefficients c and cα are in k. Thus, α is necessarily in k, since c is non-zero. This
αn is the last root of the equation. ///

Example: Consider the equation y2 = 1−x3 defined over Q. By design, this has
two rational points that are easy to observe by trial and error: (1, 0) and (0, 1). The
straight line passing through two points (x1, y1) and (x2, y2) is easily parametrized
as

(x, y) = (tx1 + (1− t)x2, ty1 + (1− t)y2)

In the present simple case the line through (1, 0) and (0, 1) is just

(x, y) = (t, 1− t)

We already know that this line meets the cubic curve in the two given (ratio-
nal!) points. Let’s find a third point: replacing x by t and y by 1 − t, from the
parametrization, will give a cubic equation in t, with coefficients in Q, for which
we already know 2 roots in Q. By the proposition, we anticipate that there will be
a third rational root. Doing the computation, we have

(1− t)2 = 1− t3

Both sides have a factor of t− 1, corresponding to the point (1, 0). Removing this
factor and simplifying gives

t(t + 2) = 0

The solution t = 0 corresponds to the other previously known point (0, 1). The
new point is at t = −2, which gives (−2, 3).

Already in the case of Q plane curves f(x, y) = 0 have many points that are
not rational. For example, y2 = 3x2 + 1 does have some points with coordinates in
Q, such as (0, 1), (0,−1), and in general

(x, y) =
(
−2t

t2 − 3
,
−t2 − 3
t2 − 3

)
by the method above. But it also has many more points in R2 that are not rational,
such as (2,

√
13). Indeed, for any real value of x since 3x2 + 1 is positive there will

20.2 Singularities of curves 339

be two real square roots y of that expression, although only occasionally will these
square roots be rational.

This phenomenon is even more pronounced over finite fields Fq. For example,
over F5 = Z/5 the equation

y2 = x5 − x + 2

has no rational points at all: by Fermat’s little theorem x5 − x = 0 for every x in
F5, so for x, y in F5 the equation is equivalent to y2 = 2. But 2 is not a square in
Z/5, so there is no such y in F5. Thus, the set of rational points of this ‘curve’ is
the empty set. This might correctly seem to be missing some information, and it
is indeed so. We should consider the family of all finite fields F5n containing the
little field F5 in this case, and ask about points (x, y) with x, y in F5n satisfying
y2 = x5 − x + 2 as n gets larger and larger.

We can give a preliminary imprecise definition: an algebraic closure of Fq

is ‘the union’ of all the extension fields Fqn of it.
Thus, without worrying about how to organize that definition properly and

make it precise, we should anticipate that we might care about points on a curve
(defined over Fq) with coordinates in the algebraic closure of Fq.
Remark: We should also be sure that up to inessential differences there is only
one finite field Fpn with pn elements for p prime. There is more to be said here!

20.2 Singularities of curves
The notion of whether a curve has sharp corners or self-intersections makes sense
intuitively when we do analytic geometry in R2, but has less obvious meaning if the
‘curves’ in question are defined over a finite field Fq so that pictures don’t really
apply literally.
Example: The equation y2 = x2 defines two crossing lines in the plane. Away
from the point (0, 0), if we look at a piece of this ‘curve’, since we only see one of
the two lines what we see really does look like a smooth curve. However, if we look
at (0, 0) and nearby it, we see the crossed lines, and might consider the crossing
point ‘bad’.
Example: The curve y2 = x3 + x2 is much more complicated than the previous
example of two crossed lines but, nevertheless, near (0, 0) it looks roughly like two
crossed lines. A heuristic to understand this is that for very small real values of x
the x3 is much smaller than the x2 term, so is ‘negligible’, and we’re back in the
previous case y2 = x2. But we’d want a computationally effective procedure that
doesn’t require visualizing things.

For a polynomial f(x, y) in two variables with coefficients in a field k, let

fx(x, y) = f1(x, y) =
∂f

∂x
(x, y)

fy(x, y) = f2(x, y) =
∂f

∂y
(x, y)

be the partial derivatives with respect to the first and second inputs, respectively.

340 Chapter 20 Curves and Codes

Remark: Most often the first input will be x, and likewise most often the second
input will be y, but it is slightly dangerous to rely upon this, and even to use the
notation fx which presumes this. The notation fi for the partial derivative with
respect to the ith input is more reliable.

While derivative-taking as a limit is familiar in case the underlying field k is
R or C, we cannot possibly define derivatives in such manner when the underlying
field is a finite field Fq. Rather, as done in the one-variable case earlier to look at
the issue of multiple factors, the formulas that we prove in the familiar case will be
taken as the definition in the abstract case. That is, bring the exponent down into
the coefficient and subtract one from the exponent:

∂

∂x

∑
i,j

cij xi yj

 =
∑
i,j

i · cij xi−1 yj

∂

∂y

∑
i,j

cij xi yj

 =
∑
i,j

j · cij xi yj−1

Unfortunately, it requires proof to know that this direct algebraic definition really
does have the other properties to which we’re accustomed. It does!

A plane curve defined by a single equation f(x, y) = 0 is non-singular at a
point (x0, y0) on the curve if and only if (in addition to the condition f(x0, y0) = 0)
we have

fx(x0, y0) 6= 0 or fy(x0, y0) 6= 0

If both of these partial derivatives vanish, then the point (x0, y0) is a singular
point of the curve. That is, the point (x0, y0) is a non-singular point of the curve
if and only if the gradient

∇f(xo, yo) =
(

∂f(xo, yo)
∂x

,
∂f(xo, yo)

∂y
,

)
evaluated at (xo, yo) is not the zero vector.
Remark: These conditions on partial derivatives should remind an astute observer
of the implicit function theorem.

Over the rational numbers Q, the real numbers R, and even more so in the
case of finite fields Fq, there may be singular points which are not rational over the
field of definition. An example is

y2 = (x2 − 3)2

which has a singular point at (
√

3, 0).
A plane curve defined over Fq is non-singular if it has no singular points over

any extension field Fqn . That is, it is non-singular if it has no singular points over
an algebraic closure of Fq.
Example: Consider f(x, y) = x2 + y2 − 1. Since over the real numbers the
equation f(x, y) = 0 defines a circle, which is plausibly non-singular, we hope that

20.2 Singularities of curves 341

this curve is non-singular. We can practice the partial derivative criterion to verify
this computationally, as follows. To find singular points (x, y), solve the system f(x, y) = 0

fx(x, y) = 0
fy(x, y) = 0

In the present case this is x2 + y2 = 1
2x = 0
2y = 0

From the last two equations, if 2 6= 0 in the field, the only possible singular point
is (0, 0), but it doesn’t lie on the curve. Therefore, there are no singular points if
2 6= 0 in the field. (If 2 = 0 in the field, this curve degenerates.)
Example: Consider f(x, y) = x2−y2−1. Since over the real numbers the equation
f(x, y) = 0 defines a hyperbola, which is plausibly non-singular, we expect that this
curve is non-singular. Again, we use the partial derivative criterion to verify this
computationally. To find singular points (x, y), solve the systemx2 − y2 = 1

2x = 0
−2y = 0

Again, from the last two equations, if 2 6= 0 in the field, then the only possible
singular point is (0, 0) , but it doesn’t lie on the curve. Therefore, there are no
singular points. (If 2 = 0 in the field, this curve degenerates.)
Example: Consider f(x, y) = x3− y2. Use the partial derivative criterion to find
singular points, if any. To find singular points (x, y), solve the systemx3 − y2 = 0

3x2 = 0
−2y = 0

From the last two equations, if neither 2 = 0 nor 3 = 0 in the field, then the only
possible singular point is (0, 0), which does lie on the curve. Therefore, if neither
2 = 0 nor 3 = 0 in the field, then the only singular point is (0, 0).
Example: A general family of curves whose non-singularity can be verified sys-
tematically is those of the form

y2 = f(x)

where f is a polynomial in k[x] without repeated factors (even over extension fields).
These are called hyperelliptic. (The cases that the degree of f is 1, 2, 3, or 4
are special: the degree 2 curves are called rational curves, and the degree 3 and
4 curves are called elliptic curves.) The system of equations to be solved to find
singularities is y2 = f(x)

0 = fx(x)
2y = 0

342 Chapter 20 Curves and Codes

The last equation shows that the only possible singularities occur at points with
y-coordinate 0 if 2 6= 0 in k. Substituting that into the first equation and carrying
along the second equation gives a system{

0 = f(x)
0 = fx(x)

We have already observed that if this system has a solution x0 then at least the
square (x− x0)2 of the linear factor x− x0 must divide f(x). That is, f(x) would
have a repeated factor, contrary to assumption. Thus, the curve has no singularities
in the plane (at least if 2 6= 0 in the field).
Remark: On the other hand, in the previous example, if the underlying field does
have 2 = 0, as happens in the case that k = F2, then the curve degenerates. It
turns out that a more proper analogue of hyperelliptic curve in characteristic 2
(that is, when 2 = 0) is a modifed equation of the form

y2 + ay + bxy = f(x)

with at least one of a, b non-zero.

20.3 Projective plane curves
To make counting arguments about intersections of lines and curves come out more
symmetrically, we might find motivation to introduce some idealized points at
infinity. However, to avoid merely fooling ourselves, we should do this in a manner
that can be legitimized, as follows.

As the simplest example of what we’d like to ‘fix up’, recall the fact that either
two (distinct) lines in the plane meet in a single point or they are parallel. The
special parallel case might be irksome, and we might attempt to ‘fix’ it by saying
(optimistically?!) that two parallel lines do have a common point, at infinity. Then
we would have a prettier assertion, that two lines always meet in a point. But
there is the obvious danger that maybe this ‘point at infinity’ is complete nonsense.
Thus, we must take some care to formalize this without presuming the conclusion
we want to reach.

Let k be any field, including C and R and also finite fields Fq. Let

k× = {non-zero elements in k}

Let
Ω = {(x, y, z) ∈ k3 : not all x, y, z are 0}

That is, Ω is k3 with the origin removed. Define an equivalence relation ∼ on Ω
by

(x, y, z) ∼ (x′, y′, z′) if, for some λ ∈ k×, (x, y, z) = (λx′, λy′, λz′)

The projective plane P2 (over k) is defined to be the set of ∼-equivalence classes
in Ω:

P2 = Ω/ ∼

20.3 Projective plane curves 343

The coordinates (x, y, z) are called homogeneous coordinates for points in P2.
Emphatically, if two points (x1, y1, z1) and (x2, y2, z2) are in the relation

(x1, y1, z1) ∼ (x2, y2, z2)

then we consider them to be the same.
For example, with k = Q, using homogeneous coordinates on P2,

(1, 2, 3) ∼ (4, 8, 12) ∼ (−1,−2,−3)

(0, 2, 0) ∼ (0, 1, 0) ∼ (0,−1, 0)

Remark: There is simply more than one way to give coordinates to a point in
projective space, in the same way that there is more than one way to specify a
fraction

1
2

=
3
6

=
7
14

and in the same way that there is more than one way to specify a residue class mod
m:

3 = 3 + m mod m = 3 + 2m mod m = 3− 7m mod m = . . .

Remark: The projective plane P2 can also be thought of as the collection of lines
in three-space, by identifying a point (a, b, c) in homogeneous coordinates with
the line through the origin defined by the equation ax + by + cz = 0. Note that
changing the representative (a, b, c) by multiplying through by a non-zero scalar
does not change the line.

The affine plane k2 embeds into P2 nicely by

(x, y)→ (x, y, 1)

Note that (x, y, 1) ∼ (x′, y′, 1) if and only if (x, y) = (x′, y′).
Thus, for example, the point (3, 4) in the (affine) plane is identified with (3, 4, 1)

in homogeneous coordinates on the projective plane P2.
A point given in projective coordinates (x, y, z) with z = 0 is called the point

at infinity, and the line at infinity is the set of points (x, y, z) in P2 with z = 0.
That is,

all points at infinity = line at infinity = {(x, y, 0) : not both x, y are 0 }

One justification for this terminology is that no such point lies in the embedded
copy of the (affine) plane k2, so whatever they are these points at infinity really do
lie outside the usual plane.

The total degree of a term cijkxiyjzk (with cijk 6= 0) is simply the sum i+j+k
of the exponents. The total degree deg(f) of a polynomial f is the maximum of
the total degrees of all the summands in it. A polynomial in 3 variables x, y, z is
homogeneous of degree N if there is a non-negative integer N so that every
term cijkxiyjzk (with cijk 6= 0) has the same total degree N , that is,

i + j + k = N

344 Chapter 20 Curves and Codes

Given an affine curve f(x, y) = 0, we create the corresponding projective
curve as follows. First we must create the corresponding homogeneous equation
F (x, y, z) = 0 to replace f(x, y) = 0. To homogenize each term cijx

iyj we replace
it by

cijx
iyjzdeg(f)−i−j

That is, we insert powers of z termwise so that the total degree of each term is equal
to the maximum. Thus, an ‘inhomogeneous’ polynomial

f(x, y) =
∑
i,j

cijx
iyj

is replaced by the corresponding ‘homogeneous’ polynomial

F (x, y, z) =
∑
i,j

cijx
iyjzdeg(f)−i−j

The original curve is F (x, y, 1) = 0.
Example: Starting with the affine curve y2 = x3−1, we see that the total degree is
3. Thus, filling in z’s in every summand to make the degree equal to the maximum,
we have the homogeneous equation

y2z = x3 − z3

Proposition: Let F (x, y, z) be the homogeneous polynomial attached to a poly-
nomial f(x, y) in two variables, and let x, y, z in k satisfy F (x, y, z) = 0. Then for
any t ∈ k×

F (tx, ty, tz) = 0

That is, the equation F (x, y, z) = 0 (not including the point (0, 0, 0)) specifies a
well-defined subset of P2. And the intersection of this set with the imbedded affine
plane F 2 is the original affine curve f(x, y) = 0.

Proof: One basic feature of the ‘homogenization’ process is that for any x, y, z

F (tx, ty, tz) = tdeg(f) · F (x, y, z)

The other basic feature is that

F (x, y, 1) = f(x, y)

The first property makes clear the first assertion of the proposition, and then the
second makes clear the second assertion of the proposition. ///

Now we give the beginning of better justification of the terminology and con-
struction by returning to the simple example of two lines in the plane. From the
equation of a straight line L

ax + by + c = 0

20.3 Projective plane curves 345

in the usual coordinates on k2 (with not both a, b zero), we create the associated
homogenized equation

ax + by + cz = 0

If (x, y, z) satisfies this equality, then so does (λx, λy, λz) for any λ ∈ k×. That is,
the homogenized equation defines a curve L̃ in the projective plane P2. And it has
the desirable property that under the embedding of k2 into P2 the original line L
is mapped to a subset of L̃.

What points at infinity are there on the extended version L̃ of L? This
amounts to looking for solutions to ax + by + cz = 0 with z = 0: That means
ax+by = 0. Since not both a, b are zero, without loss of generality we may suppose
that b 6= 0 and get y = (−a/b)x. Thus, we get points

(x,−ax/b, 0) ∼ (1,−a/b, 0)

on L̃. That is, these are just different homogenous coordinates for the same point:
there is a single point at infinity lying on a given line.

We really do have the smoothed-out symmetrical assertion:

Theorem: Any two (distinct) lines in the projective plane P2 intersect in exactly
one point.

Proof: Let the two lines in P2 be, in homogeneous coordinates,

ax + by + cz = 0
a′x + b′y + c′z = 0

The assumption on the lines is that (a, b, c) is not a scalar multiple of (a′, b′, c′)
(and equivalently (a′, b′, c′) is not a scalar multiple of (a, b, c)). We must solve this
system of equations for (x, y, z).

Suggested by basic linear algebra, we might view this as hunting for a vector
(x, y, z) so that

(x, y, z) · (a, b, c) = 0
(x, y, z) · (a′, b′, c′) = 0

with the usual dot product. Suggested by basic linear algebra over the real
numbers, we might anticipate that the cross product of (a, b, c,) and (a′, b′, c′) is
a solution: try

(x, y, z) = (bc′ − b′c,−ac′ + a′c, ab′ − a′b)

Indeed,
a(bc′ − b′c) + b(−ac′ + a′c) + c(ab′ − a′b) = 0

a′(bc′ − b′c) + b′(−ac′ + a′c) + c′(ab′ − a′b) = 0

Note that it is the fact that (a, b, c) and (a′, b′, c′) are not scalar multiples of each
other that makes (x, y, z) 6= (0, 0, 0).

A little more work, as in the preceding proposition, would show that the collec-
tion of all solutions is exactly the collection of scalar multiples of a given solution.
Thus, in P2 there is a unique solution. ///

346 Chapter 20 Curves and Codes

Example: Consider the affine quadratic curve x2 − 3xy + 2y2 + 3x + 5y + 7 = 0.
The homogenization of this equation is x2 − 3xy + 2y2 + 3xz + 5yz + 7z2 = 0. The
points at infinity lying on this curve are the points (x, y, z) with z = 0 (and not
both x, y zero). Setting z = 0 gives the equation

x2 − 3xy + 2y2 = 0

for points (x, y, 0) on the curve. If y = 0 then from the equation also x = 0, which
is impossible since we are talking about homogeneous coordinates on projective
space. If y 6= 1, then we may as well take y = 1 without loss of generality, since

(x, y, 0) ∼ (x/y, 1, 0)

Then the equation becomes
x2 − 3x + 2 = 0

This gives two solutions, 3 and 2, which give points at infinity (3, 1, 0) and (2, 1, 0).
That is, there are two points at infinity on the projectivized version of this curve.

Example: A cubic curve with equation y2 = x3+ax+b has homogeneous form

y2z = x3 + axz2 + bz3

The point is that we insert factors of z into each term, so that each term is of
degree 3. This has the effect that if (x, y, z) satisfies the homogenized equation,
then so does (λx, λy, λz) for any λ ∈ k×. Let’s see what points at infinity lie on
the extended cubic curve: set z = 0 and solve.

0 · y2 = x3 + 02 · ax + 03 · c

or
0 = x3

Therefore, the only point at infinity is given by the homogeneous coordinates
(0, 1, 0).

Finally, we might wonder about determination of the singularity or not of
a projective curve defined by a projective equation F (x, y, z) = 0, especially near
points at infinity. Fortunately, this can be reduced to the more intuitive affine
case we’ve already treated, as follows. Given an equivalence class representa-
tive (x1, y1, z1) for a point on the curve attached to the homogeneous equation
F (x, y, z) = 0, at least one of x1, y1, z1 is not 0, by the definition of the projective
plane. To say that the point (x1, y1, z1) is at infinity is exactly to say that z1 = 0.
Then one or the other of x1 and y1 is necessarily non-zero. Without loss of gen-
erality, we can suppose that y1 6= 0, so then take representative (x1/y1, 1, z1/y1)
instead, and consider the dehomogenized equation

f(x, z) = F (x, 1, z) = 0

20.3 Projective plane curves 347

to study the part of the curve near (x1, y1, z1) with y1 6= 0. Thus, reasonably
declaring a projective curve to be non-singular if all these affine parts of it are
non-singular in the usual affine sense, we see that

Proposition: A projective curve given by a single homogeneous equation
F (x, y, z) = 0 is non-singular if and only if at every point (x0, y0, z0) on the curve
the gradient

∇F =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
does not vanish. ///

The following theorem is a very nice justification of the introduction of the
projective plane and points at infinity, and is the beautiful generalization of the
assertion that two (distinct) lines always intersect in a single point.

Theorem: (Bezout’s Theorem) Let F (x, y, z) = 0 and G(x, y, z) = 0 be two
homogeneous equations, of total degrees deg(F) and deg(G), respectively. (Assume
that F and G have no common factor.) Then the number of points of intersection
of the two corresponding projective curves is

number of points in intersection = deg(F) · deg(G)

(where points are counted including multiplicities).

Proof: Omitted.

Remark: The notion of multiplicity is familiar in the case of polynomials in a
single variable, where the left-hand side of a polynomial equation f(x) = 0 may
have repeated linear factors, as in the case

(x− 1)2 · (x− 2) = x3 − 4x2 + 5x− 2 = 0

which has a double root at x = 1. In the case at hand, the spirit of the idea of
multiplicity is similar, but is more complicated to define precisely and so as to make
Bezout’s theorem exactly true. Perhaps one may view the notion of multiplicity
as a technical refinement to deal with somewhat special or extreme cases, since
generically there will be no multiple points, in the same way that it is unusual for
a polynomial in a single variable to have a multiple root.

Corollary: Let f(x, y) = 0 and g(x, y) = 0 be two equations, of total degrees
deg(f) and deg(g), respectively. (Assume that f and g have no common factor.)
Then the number of points of intersection of the two corresponding affine curves is

number of points in intersection ≤ deg(f) · deg(g)

Proof: (of corollary) Affine plane curves will have the same points of intersection
as the corresponding projective plane curves, except that they’ll be missing any
points of intersection that are points at infinity. Thus, instead of the equality
that we get in Bezout’s theorem for projective curves, we merely get an inequality,

348 Chapter 20 Curves and Codes

since we may have ‘lost’ some points (and we may have failed to properly count
multiplicities). ///

20.4 Curves in higher dimensions
Certainly it is intuitively clear that ‘curves’ exist in 3-space and in higher dime-
nensions, but one immediate complication is that in such generality curves cannot
be defined by single equations. Thus, the algebra becomes more complicated. Here
we briefly comment on some of the difficulties.

Not every ‘projective algebraic curve’ can be imbedded into 2-space (projective
or not) without introducing singularities. This is not so easy to see. It is even less
easy to see that curves whose natural definition imbeds them in high-dimensional
spaces (rather than the plane) include those with relatively large numbers of ratio-
nal points. The latter fact makes consideration of this more complicated scenario
inescapable in the long run. There are of course technical complications.

Following the general intuition that the ‘dimension’ of something might be the
‘number of variables’ minus the ‘number of conditions’, we would first guess that a
curve in n-space would need n−1 equations to define it. This is nearly true, but not
quite: in some cases a greater number of defining equations is necessary. Further,
the technical question of ascertaining whether a set of (non-linear!) polynomial
equations in several variables is ‘independent’ is much more complicated than in
the simple case of linear equations.

If we turn to alternatives, in analogy with multi-variable calculus we might
hope to be able to parametrize curves in n-space. Unfortunately, already in the
case of plane curves, the only ones which are parametrizable are quadratic ones.

It is possible to consider algebraic curves imbedded in higher-dimensional
spaces, but the technical demands exceed our resources at this point.

20.5 Genus, divisors, linear systems
Here we do a blisteringly fast sketch of some essential ideas from the basic theory
of algebraic curves, just enough to explain the idea of the geometric Goppa codes
subsequently.

The field of rational functions Fq(x, y) in two variables over Fq is the
collection of ratios

h(x, y)
g(x, y)

where h and g are polynomials in Fq[x, y], and g is not the zero polynomial.

Remark: Notice that the only notational device that distinguishes this field of
rational functions from the ring of polynomials is the use of (‘round’) parentheses
rather than (‘square’) brackets.

Let X be an affine plane curve defined by an equation f(x, y) = 0 over Fq.
We suppose that f(x, y) has no repeated factors. (It is in fact a little tricky to
understand what this means, since we’re talking about polynomials in two variables,

20.5 Genus, divisors, linear systems 349

not one.) For two other polynomials r(x, y) and s(x, y), we write

r(x, y) = s(x, y) mod f(x, y)

if r(x, y) − s(x, y) is a polynomial multiple of f(x, y). Note that there is no divi-
sion/reduction algorithm for polynomials in two variables, so that we cannot be
so glib about ‘dividing’ one polynomial by another in this context as we were in
the one-variable context. Further, for two rational functions r1(x, y)/s1(x, y) and
r2(x, y)/s2(x, y), we write

r1(x, y)
s1(x, y)

=
r2(x, y)
s2(x, y)

mod f(x, y)

if
r1(x, y) · s2(x, y) = r2(x, y) · s1(x, y) mod f(x, y)

That is, two ‘fractions’ are equal modulo f if and only if we have equality when we
‘multiply out’ the fractions to have simply polynomials.

Recall that non-zero elements r, s in a commutative ring R are zero divisors
if r · s = 0. The field of fractions of a commutative ring R without zero divisors
is the field consisting of all ‘fractions’ r/s with r ∈ R, 0 6= s ∈ R, where

r

s
=

r′

s′
if rs′ = sr′

(The latter is the expected condition for equality of fractions.) Addition, multipli-
cation, and inversion of fractions are by the usual formulas

a

b
+

c

d
=

ad + bc

bd

a

b
· c
d

=
ac

bd

1/
(a

b

)
=

b

a
(for a 6= 0)

One should verify that the axioms for a field are met. As perhaps expected, assum-
ing that R has a unit 1, there is an injective ring homomorphism of the original
ring R into this field of fractions by r → r/1.

The field of rational functions on the plane curve X defined by f(x, y) = 0
is defined to be the field of fractions of

Fq[x, y] mod f(x, y)

That is, it consists of all ratios of polynomials-modulo- f(x, y). This field is denoted
Fq(X).
Remark: So every ‘rational function’ on a plane curve X is expressible as a ratio
of polynomials, but in more than one way, since two such ratios are ‘equal on X’
if they are equal modulo f(x, y).

350 Chapter 20 Curves and Codes

Thinking about it in a ‘projective’ context, we would define the field of func-
tions on the projective plane P2 to be the collection of ratios of homogeneous
polynomials in 3 variables where the degree of the numerator is equal to the degree
of the denominator. On the face of it, this is a different thing than the field of ra-
tional functions in two variables defined above. But they are in fact essentially the
same thing: every ratio of not necessarily homogeneous polynomials in two variables
may be converted to a ratio of homogeneous polynomials (with degree of numera-
tor equal to degree of denominator) simply by homogenizing both numerator and
denominator (and adding extra factors of z to either numerator or denominator in
order to make the degrees equal). The process can likewise be reversed.

The idea of field-of-functions on a plane curve has a projective version as well.
Everything here is predictable, in principle, from thinking about the proper way
to ‘projectivize’ the affine case discussed just above. But we’ll repeat it in the
projectivized setting just for emphasis. Let X be a projective curve defined by
a homogeneous equation F (x, y, z) = 0 over Fq. We suppose that F (x, y, z) has
no repeated factors (!?). For two other homogeneous polynomials R(x, y, z) and
S(x, y, z), say

R(x, y, z) = S(x, y, z) mod F (x, y, z)

if R(x, y, z) − S(x, y, z) is a polynomial multiple of F (x, y, z). For two ratios
r1(x, y, z)/s1(x, y, z) and r2(x, y, z)/s2(x, y, z) of homogeneous polynomials, we
write

r1(x, y, z)
s1(x, y, z)

=
r2(x, y, z)
s2(x, y, z)

mod F (x, y, z)

if
r1(x, y, z) · s2(x, y, z) = r2(x, y, z) · s1(x, y, z) mod F (x, y, z)

That is, two ‘fractions’ are equal modulo F if and only if we have equality when
we ‘multiply out’ the fractions to have simply polynomials.

The field of rational functions on the projective curve X defined by
F (x, y, z) = 0 is defined to be

Fq(x, y, z) mod F (x, y, z)

That is, it consists of all ratios of homogeneous polynomials and two such ratios
are ‘the same’ if they are equal modulo F (x, y, z). This field is denoted Fq(X).
Remark: So every ‘rational function’ on a projective plane curve X is expressible
as a ratio of homogeneous polynomials in the three ‘projective’ coordinates, but in
more than one way, since two such ratios are ‘equal on X’ if they are equal modulo
F (x, y, z).
Example: Consider the projective plane curve C given by x2 + y2 + z2 = 0.
The gradient ∇F of F (x, y, z) = x2 + y2 + z2 is simply (2x, 2y, 2z). Thus, if
2 6= 0 in the field, the gradient never vanishes and the curve is non-singular. The
rational function f(x, y, z) = xy/z2 is the same rational function on C as g(x, y, z) =
−xy/(x2 + y2) since

x2 + y2 = −z2

20.5 Genus, divisors, linear systems 351

is the defining relation of the curve. In general, things need not be quite so simple.
Let P1, P2, . . . , Pn be a set of distinct points on a projective curve X defined

over Fq. A divisor on X is an expression

D = `1 · P1 + . . . + `n · Pn

with integers `i. Such a thing once would have been called a ‘formal finite sum
of points’. However, rather than misguidedly wasting our time trying to legitimize
this by imagining what ‘adding points’ might mean, or what ‘multiplying points
by integers’ might mean, we make sense of this as follows. A divisor on X is an
integer-valued function ` on X, which takes the value 0 at all but finitely many
points. That is certainly legal. Then the expression above is really the sum∑

P∈X

`(P) · P

and the notation is that `(Pi) = `i.
Example: Let C be the projective plane curve defined by the homogeneous equa-
tion x3 + y3 + z3 = 0. The points P1 = (1,−1, 0), P2 = (1, 0,−1), P3 = (0, 1,−1)
are distinct points on the projective plane, and all lie on the curve C. Thus, the
expression

5 · P1 − 17 · P2 + 11 · P3

is a divisor on the curve.
Remark: The previous expression does not indicate scalar multiplication or vector
addition, but rather operations inside a more abstract object (which is a group).

The degree of a divisor is just the sum of the coefficients:

deg (`1 · P1 + . . . + `n · Pn) = `1 + . . . + `n

Assuming that the points Pi are distinct, the coefficient `i corresponding to the
point Pi is the multiplicity of the divisor at Pi. The support of a divisor is the
set of points at which the divisor has non-zero multiplicity. A non-zero divisor is
positive if all its multiplicities are non-negative.
Example: Let C again be the projective plane curve defined by the homogeneous
equation x3 + y3 + z3 = 0, with points P1 = (1,−1, 0), P2 = (1, 0,−1), P3 =
(0, 1,−1) on it. The degree of the divisor

D = 5 · P1 − 17 · P2 + 11 · P3

is
deg D = 5− 17 + 11 = −1

Let C1 and C2 be two projective plane curves (defined by single equations
without a common factor). Then by Bezout’s theorem the intersection is a finite
set of points P1, . . . , Pn, whose number is equal to the product of the degrees (being

352 Chapter 20 Curves and Codes

sure to count multiplicities). The intersection divisor is the divisor which is the
‘sum’ of all the points in this intersection, counting multiplicities:

div(C1 ∩ C2) =
∑

i

Pi

Let ϕ = g/h be a rational function on a projective plane curve X, with homo-
geneous polynomials g and h of the same degree. Let Zg be the projective curve
defined by g(x, y, z) = 0, and let Zh be the curve defined by h(x, y, z) = 0. We have

zeros of ϕ on X = div(Zg ∩X)

poles of ϕ on X = div(Zh ∩X)

One should think of the poles as being where the function blows up. The divisor
div(f) ϕ is

div(f) = div(Zg ∩X)− div(Zh ∩X)

That is, roughly, the divisor of a function is simply the ‘formal sum’ of zeros minus
poles.

The linear system L(D) attached to a divisor D on a projective plane curve
X is

L(D) = {f ∈ Fq(X) : div(f) + D is a positive divisor}

By convention, we also include the zero function in any such linear system. This
linear system is a vector space over Fq, in the sense that any two elements of it can
be added, there are additive inverses, and there is a scalar multiplication. Thus,
there is a corresponding notion of dimension of L(D).
Remark: The integer g, the ‘genus’, occurring in the following theorem, has a
more intuitive origin that is described afterward, but in reality its importance lies
in such things as the more technical content of this theorem.
Theorem: (Riemann-Roch) Let X be a non-singular projective plane curve.
There is a non-negative integer g such that for any divisor D,

dimension of vector space L(D) ≥ deg(D) + 1− g

and in fact if deg(D) > 2g − 2, we have the equality

dimension of vector space L(D) = deg(D) + 1− g

Example: Suppose that X is the usual line with the added point at infinity. (That
is, X is the projective line.) The point at infinity we will suggestively denote by∞.
Then for a positive integer ` the linear system L(` · ∞) consists of the polynomial
functions of degree less than or equal `. In particular, the functions in that linear
system are not allowed to have poles anywhere but at ∞, and the order of pole at
∞ is bounded by `.

It is not possible to give a complete-yet-accurate description of where ‘genus’
came from, but a heuristic description is possible, along with a family of examples.

20.6 Geometric Goppa codes 353

First, a curve defined over C, with points at infinity properly inserted, is provably
geometrically ‘equivalent’ to a sphere with a number of ‘handles’ attached. For
example, attaching a single handle gives a geometric thing ‘equivalent’ to the surface
of a doughnut (called a torus). Attaching no handles leaves us simply with a sphere.
Any number of handles may be attached, and in fact in slightly different ways, but
for the moment all we care about is the number of handles attached, in effect. If
a curve X over C is described as a sphere with g handles attached, then the curve
X is said to have genus g. In some cases there is a computationally effective way
to determine genus: for hyperelliptic curves

y2 = f(x) (with f(x) having no repeated factors)

(after desingularizing this curve at infinity when the degree of f is odd) the genus
is

genus of {y2 = f(x)} =
{ deg f−2

2 (deg f even)
deg f−1

2 (deg f odd)

This geometric discussion doesn’t quite make sense if the defining field is Fq,
and in that case the abstracted version of genus is a trickier thing. Nevertheless, for
hyperelliptic curves, for example, the formula for genus is the same as for complex
curves.

20.6 Geometric Goppa codes
First, we reconsider the Reed-Solomon codes from a viewpoint that suggests how
to try some interesting generalizations. Then we describe geometric Goppa codes
in terms of linear systems on curves.

Let L(k − 1) be the collection of all polynomials in Fq[x] of degree less than
or equal k − 1. (This set can be viewed as a vector space of dimension k over Fq.)
Let α1, . . . , αq−1 be the q − 1 non-zero elements in Fq. Then a way of describing
the simplest Reed-Solomon (‘RS’) code attached to q, k slightly different from our
earlier matrix-oriented approach is as

C = {(f(α1), . . . , f(αq−1)) : f ∈ L(k)}

That is, the code consists of all ordered sets of values of these polynomials f at
the non-zero elements of Fq. We want to view the collection of non-zero elements
of Fq as being points other than 0 and ∞ on a line, which then we’ll view as a
very special case of an algebraic curve. This is the germ of Goppa’s idea (although
it’s certainly not clear from this whether or not such things would give rise to good
codes).

Here is Goppa’s generalization. Let X be a non-singular projective plane curve
over Fq, and D a divisor on X. Let P1, . . . , Pn be a set of n distinct Fq-rational
points on X. Assume that no one of the Pi is in the support of D. Then the
algebraic geometry code C(X, D, {Pi}) attached to this data is

C(X, D, {Pi}) = {(f(P1), . . . , f(Pn)) : f ∈ L(D)}

354 Chapter 20 Curves and Codes

Theorem: (Goppa) Let X be a non-singular projective plane curve of genus g
defined over Fq. Let {P1, . . . , Pn} be a set of n distinct Fq-rational points on X.
Let D be a divisor on X satisfying

2g − 2 < deg(D) < n

Then the algebraic-geometry code C(X, D, {Pi}) defined just above is of length n,
dimension

k = deg(D) + 1− g

and minimum distance

minimum distance d ≥ n− deg(D)

Thus, such a code C = C(X, D, {Pi}) has

information rate =
deg(D) + 1− g

n

relative min distance ≥ n− deg(D)
n

We would want both of these to be large. Or, as a sort of compromise, we’d want
the sum to be large. Here

information rate + relative min distance ≥ N + 1− g

n
= 1 + 1/n− g/n

Planning to take longer and longer codes, we have

lim
n→∞

information rate + relative min distance ≥ 1− g/n

We want g/n to become small, or, equivalently, n/g to become large. In particular,
this means that we want the curves to have a ‘large’ number of Fq-rational points
available to use as the Pi’s.

20.7 The Tsfasman-Vladut-Zink-Ihara bound
In 1982, Tsfasman, Vladut, and Zink found a sequence of curves designed so that
the associated geometric Goppa codes surpass the Gilbert-Varshamov bound. This
was big news! Ihara generalized that result considerably soon after.

First, there is an inequality that tells an upper bound for the number of rational
points there may be on an algebraic curve. The critical invariant attached to a curve
is not really the degree, which would be harder to define for curves imbedded in
higher-dimensional spaces anyway, but rather the genus. And the following very
serious result exactly uses ‘genus’:
Theorem: (Hasse-Weil Inequality) Let X be a projective non-singular curve de-
fined over Fq of genus g, with N rational points over Fq. Then

|N − (q + 1)| ≤ 2g
√

q

Exercises 355

A curve that achieves the maximum allowed by this inequality is the hermitian
curve

yqz + yzq = xq+1

over the field Fq2 with q2 elements.
Theorem: (Tsfasman, Vladut, Zink, Ihara) Let q be an even power of a prime.
There is a constructible infinite sequence of curves Xi defined over Fq so that

lim
i→∞

number of Fq-rational points on Xi

genus of Xi
=
√

q − 1

Remark: Thus, if we trace back the implications of this for the geometric Goppa
codes, and compare asymptotically with the Gilbert-Varshamov bound, we would
see that we’ve done better!
Remark: The curves constructed to exceed the Gilbert-Varshamov bound are
modular curves, meaning that they are very special among algebraic curves, in
particular admitting a very sharp analysis of their rational points!

Exercises

20.01 Find all solutions (x, y) to x2 − 2y2 = 1 with x, y in Q. (ans.)

20.02 Find all solutions (x, y) to x2 − 3y2 = 1 with x, y in Q.

20.03 Find all solutions (x, y) to x2 + xy + y2 = 1 with x, y in Q.

20.04 Determine all the points at infinity of the projectivization of the curve x2−
2y2 = 1. (ans.)

20.05 Determine singular points of the affine curve x2 − 2y2 = 1. (ans.)

20.06 Are the points at infinity of the projectivization of x2 − 2y2 = 1 singular?
(ans.)

20.07 Determine all the points at infinity of the projectivization of the curve x2 +
xy + y2 = 1. Which are singular points?

20.08 Over a field of characteristic 2, show that y2 + y = x3 + x + 1 is non-
singular. Find all the points at infinity and show that they are non-singular.
Determine the genus.

20.09 Prove Euler’s identity: for a homogeneous polynomial f(x1, . . . , xn) of
total degree d, prove that

n∑
i=1

∂

∂xi
f = d · f

20.10 Show that the hermitian curve yqz + yzq = xq+1 over the field Fq2 with q2

elements is non-singular and has a unique point at infinity.

20.11 Determine the genus of the hermitian curve yqz + yzq = xq+1.

Appendix: Stirling’s Formula

The properties of the factorial function

n! = 1 · 2 · 3 · 4 · 5 · . . . · (n− 2) · (n− 1) · n

are important to understand, considering that many counting problems have an-
swers involving factorials, or in terms of binomial coefficients (which are made from
factorials).

The most obvious feature of the factorial function n! is that it grows very
rapidly as a function of n. Therefore, in many situations the question is not to
compute factorials exactly, but rather only to express them in terms of simpler
functions whose size (large though it may be) we can discuss more easily. The
approximation we obtain here is nearly the simplest case of Stirling’s Approxi-
mation, but suffices for our purposes. The proof itself is fairly memorable.

(This estimate also plays a role in elementary approaches to the Prime Number
Theorem.)
Proposition: The limit

lim
n→∞

n!
nn+ 1

2 e−n

exists. Its value is
√

2π. Further, in fact, for n ≥ 2
√

2π nn+ 1
2 e−n · e

1
12(n+1) < n! <

√
2π nn+ 1

2 e−n · e 1
12n

Proof: The proof starts by comparing

ln(n!) = ln 1 + ln 1 + ln 3 + . . . + lnn

to the integrals∫ n+1

1

lnx dx = [x lnx− x]n+1
1 = (n + 1) ln(n + 1)− (n + 1)

and ∫ n

0

lnx dx = [x lnx− x]n0 = n lnn− n

(The latter integral is ‘improper’ at 0, but converges.) First, for each n = 2, 3, 4, . . .,
since ln is an increasing function,∫ t

t−1

lnx dx ≤ ln t ≤
∫ t+1

t

lnx dx

356

Appendix: Stirling’s Formula 357

From this we get

n lnn− n ≤ ln n! ≤ (n + 1) ln(n + 1)− (n + 1)

Already this is interesting: if we exponentiate we get

nn e−n ≤ n! ≤ (n + 1)n+1 e−(n+1)

The key quantity to consider is (n + 1
2) ln n− n, which is a moderately clever

choice of an average between the lower and upper bounds we just obtained. Then
let

En = ln n!−
[(

n +
1
2

)
lnn− n

]
be the error in estimating ln n! by this average. We have

En − En+1

= ln n!−
[(

n +
1
2

)
lnn− n

]
−
[
ln (n + 1)!−

[(
n + 1 +

1
2

)
ln(n + 1)− (n + 1)

]]
=
(

n +
1
2

)
ln
(

1 +
1
n

)
− 1

after simplifying and rearranging. Next use the Taylor expansion

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

to obtain
En − En+1

=
(

n +
1
2

)(
1
n
− 1

2n2
+

1
3n3
− . . .

)
− 1

=
(

1
1
− 1

2n
+

1
3n2
− . . .

)
+

1
2

(
1
n
− 1

2n2
+

1
3n3
− . . .

)
− 1

=
(

1
3
− 1

4

)
1
n2

+
(
−1

4
+

1
6

)
1
n3

+
(

1
5
− 1

8

)
1
n4

+
(
−1

6
+

1
10

)
1
n5

+ . . .

by cancelling the ‘1’ and the 1
2n . For any n ≥ 1 this is an alternating decreasing

sequence.
Recall that for an alternating decreasing sequence

a1 − a2 + a3 − a4 + . . .

(that is, with each ai > 0 and ai > ai+1 for all i), we have identities such as

a1 − a2 < a1 − a2 + a3 − a4 + . . . < a1 − a2 + a3

358 Appendix: Stirling’s Formula

Therefore,

1
12

(
1
n2
− 1

n3

)
< En − En+1 <

1
12n2

− 1
12n3

+
1

40n4

In particular, since the left-hand side is always positive, each of the values
En − En+1 is positive, so the sequence En itself is decreasing.

Subtracting 1
12n and adding 1

12(n+1) to the right-hand inequality here, we get(
En −

1
12n

)
−
(

En+1 −
1

12(n + 1)

)
<

1
12n2

− 1
12n3

+
1

40n4
− 1

12n
+

1
12(n + 1)

The right-hand side (miraculously) simplifies to

12− 28n

12 · 40 · n3(n + 1)

which is negative for all n ≥ 1. Therefore, the sequence En − 1
12n is increasing.

Since En is decreasing and En − 1
12n is increasing, and since 1

12n goes to 0, we
conclude that En is a bounded decreasing sequence, so has a limit C. This limit is
actually

√
2π, but we’ll not prove that just now.

Similarly, subtracting 1
12(n+1) and adding 1

12((n+1)+1) to the left-hand inequal-
ity, we have

1
12

(
1
n2
− 1

n3

)
− 1

12(n + 1)
+

1
12((n + 1) + 1)

<

(
En −

1
12(n + 1)

)
−
(

En+1 −
1

12((n + 1) + 1)

)
The left-hand side simplifies (not as miraculously as the previous episode) to

2n2 − n− 2
n3 · 12(n + 1) · 12((n + 1) + 1)

The numerator satisfies

2n2 − n− 2 = 2 ·

[(
n− 1

4

)2

− 1
16
− 1

]
≥ 2 ·

[(
2− 1

4

)2

− 17
16

]
= 4 > 0

for n ≥ 2. Therefore, at least starting with n ≥ 2, the sequence

En −
1

12(n + 1)

is decreasing.
In summary,

lim
n

En = C

Appendix: Stirling’s Formula 359

and since the sequences 1
12n and 1

12(n+1) go to 0,

En −
1

12n
increases to C

En −
1

12(n + 1)
decreases to C

Therefore, for n ≥ 2,

C +
1

12(n + 1)
< En < C +

1
12n

That is,

C +
1

12(n + 1)
+
(

n +
1
2

)
lnn− n < ln n! < C +

1
12n

+
(

n +
1
2

)
lnn− n

This is the statement of the proposition. ///

Appendix: Linear Algebra

A.1 Basics
A.2 Dimension
A.3 Homomorphisms and duals
A.4 Scalar products
A.5 Vandermonde determinants

This appendix consists entirely of proofs of some basic linear algebra results.
Even though our immediate interests are in tangible linear algebra involving row
vectors, row spaces, and other concrete versions of vectors and operations upon
them, it turns out to be economical to give relatively abstract proofs of some im-
portant basic properties of them.

A.1 Basics
This section gives definitions for ‘abstract’ vector spaces over arbitrary fields that
subsume concrete definitions in terms of matrices, row-vectors, and column-vectors.

Let k be a field, whose elements we may also call scalars. A vector space
over k is a set V with a special element 0 (the zero vector) and with a vector
addition denoted ’+’ with the expected properties

0 + v = v + 0 for all v ∈ V (property of 0)
v + w = w + v for all v, w ∈ V (commutativity)
(u + v) + w = u + (v + w) for all u, v, w ∈ V (associativity)

and for every v ∈ V there is −v ∈ V such that

v + (−v) = 0 (additive inverse)

There is a scalar multiplication of vectors by scalars, written αv of α ·v for α ∈ k
and v ∈ V , with properties

α(v + w) = αv + αw for all v, w ∈ V , α ∈ k (distributivity)
(α + β)v = αv + βv for all v ∈ V , αβ ∈ k (distributivity)
α(βv) = (αβ)v for all v ∈ V , αβ ∈ k (associativity)
1 · v = v for all v ∈ V (property of 1)

Remark: The last axiom may seem unnecessary, but in abstract situations it is
not automatically satisfied, and must be explicitly required.

360

A.1 Basics 361

A familiar vector space over a field k is the space of ordered n-tuples of elements
from k

kn = {(x1, . . . , xn) : x1, . . . , xn ∈ k}

with component-wise addition and scalar multiplication. The 0-vector is

0 = (0, . . . , 0)

Remark: Note the use of the word ‘over’ in the above definition to tell what the
field of scalars is. This is a peculiar but standard mathematical usage.
Remark: Ignoring the scalar multiplication, a vector space V is an abelian group.
Thus, some basic properties of groups could be recycled here to immediately deduce
some properties of vector spaces.
• There is exactly one vector in V with the property of the zero vector 0.

Proof: Let z ∈ V also have the property that z + v = v for even a single v ∈ V .
Then, using associativity and the definition of −v,

z = z + 0 = z + (v + (−v)) = (z + v) + (−v) = v + (−v) = 0

as claimed. ///

• The additive inverse of a vector v ∈ V is unique.

Proof: Let x, y ∈ V be such that x+v = 0 and y+v = 0. Then, using associativity,

y = y + 0 = y + (v + x) = (y + v) + x = 0 + x = x

as claimed. ///

• The 0 scalar multiple 0 · v of any vector is the zero vector 0:

0 · v = 0

Proof: From the distributivity property,

0 · v = (0 + 0) · v = 0 · v + 0 · v

Then add −(0 · v) to both sides (without assuming anything about what this may
be!) to obtain, via associativity and the property of the additive inverse,

0 = 0 · v − (0 · v) = (0 · v + 0 · v)− (0 · v)

= 0 · v + (0 · v)− (0 · v)) = 0 · v + 0 = 0 · v

as claimed. ///

• For any scalar α, α · 0 = 0.

Proof: Using distributivity

α · 0 = α · (0 + 0) = α · 0 + α · 0

362 Appendix: Linear Algebra

Then add −(α ·0) (whatever the latter is!) to both sides to obtain, via associativity
and the property of the additive inverse,

0 = α · 0− (α · 0) = (α · 0 + α · 0)− (alf · 0)

= α · 0 + (α · 0)− (α · 0)) = α · 0 + 0 = α · 0

as claimed. ///

• The additive inverse −v of a vector v is (−1) · v:

−v = (−1) · v

Proof: From the previous result, 0 · v = 0, so by distributivity

0 = 0 · v = (1− 1) · v = 1 · v + (−1) · v = v + (−1) · v

invoking the property of scalar multiplication by 1. By uniqueness of inverses,
proven above, (−1) · v = v. ///

A (vector) subspace W of a vector space V is a subset of V with the following
closure properties.
• For w ∈W the inverse −w is in W .
• For v, w ∈W the sum v + w is in W .
• For v ∈ W and α ∈ k the scalar multiple α · v is in W . Note that since

0 = w + (−w) it follows that 0 ∈ W . The whole vector space V itself is
surely a subspace, as is the subset consisting solely of the zero vector, {0}.
The latter is the trivial subspace of V . A subspace is proper if it is not the
whole space.

• The intersection of a (non-empty) set of subspaces of a vector space V is a
subspace.

Proof: This is surprisingly easy. Let {Wi : i ∈ I} be a set of subspaces of V ,
where I is any index set. For w lying in every Wi, since Wi is a subspace the
additive inverse −w lies in Wi. Thus, −w lies in the intersection. The same sort of
argument proves the other two properties of subspaces. ///

A linear combination of vectors v1, . . ., vn in a vector space V with coeffi-
cients c1, . . ., cn in the scalars k is the vector

c1 · v1 + . . . + cn · vn

The vectors v1, . . ., vn are linearly dependent if there is a set of coefficients
c1, . . ., cn not all zero such that the corresponding linear combination is the zero
vector:

c1 · v1 + . . . + cn · vn = 0

Conversely, vectors v1, . . ., vn are linearly independent if

c1 · v1 + . . . + cn · vn = 0

A.2 Dimension 363

implies that all the coefficients ci are 0.
The subspace spanned by a set X of vectors in a vector space V is the

intersection of all subspaces containing all the vectors in X. Since the whole space
V contains X, this intersection is non-empty. By the last bulleted point above this
intersection is indeed a subspace.
• The subspace spanned by a set X of vectors in a vector space V is the

collection of all linear combinations of vectors from X.

Proof: Since a vector subspace is closed under scalar multiplication and vector
addition, certainly every linear combination of vectors taken from X must lie in
any vector subspace containing X. On the other hand, we must show that any
vector in the intersection of all subspaces containing X is expressible as a linear
combination of vectors in X. But it is not hard to check that the collection of these
linear combinations is a vector subspace of V , and certainly contains X. Therefore,
the intersection is no larger than this set of linear combinations. ///

A linearly independent set of vectors spanning a subspace W of V is a basis
for W .
Proposition: Given a basis e1, . . . , en for a vector space V , there is exactly one
expression for an arbitrary vector v ∈ V as a linear combination of e1, . . . , en.

Proof: That there is at least one such expression follows from the spanning prop-
erty. If ∑

i

aiei = v =
∑

i

biei

are two expressions for v, then subtract to obtain∑
i

(ai − bi)ei = 0

Since the ei are linearly independent, this implies that ai = bi for all indices i. ///

A.2 Dimension
The first main results involve the notion of dimension. The conclusions of this sec-
tion are not surprising, but must be considered carefully for subsequent discussions
to be well-founded.

The argument in the proof of the following fundamental theorem is sometimes
called the Lagrange replacement principle. This is the first and main non-trivial
result in linear algebra.
Theorem: Let v1, . . . , vm be a linearly independent set of vectors in a vector
space V , and let w1, . . . , wn be a basis for V . Then m ≤ n, and (renumbering the
vectors wi if necessary!) the vectors

v1, . . . , vm, wm+1, wm+2, . . . , wn

are a basis for V .

364 Appendix: Linear Algebra

Proof: Since the wi’s are a basis, we may express v1 as a linear combination

v1 = c1w1 + . . . + cnwn

of them. Not all the coefficients can be 0, since v1 is not 0. Renumbering the wi’s if
necessary, we can suppose that c1 6= 0. It is at this point that we use the fact that
the scalars k are a field, namely that every non-zero element has a multiplicative
inverse. Thus, we can rearrange, expressing w1 in terms of v1 and w2, . . . , wn, as

w1 = c−1
1 v1 + (−c−1

1 c2)w2 + . . . + (−c−1
1 c2)wn

This proves that (replacing w1 by v1) the vectors v1, w2, w3, . . . , wn span V . They
are still linearly independent, since if v1 were a linear combination of w2, . . . , wn

then the expression for w1 in terms of v1, w2, . . . , wn would show that w1 was a
linear combination of w2, . . . , wn. This would contradict the linear independence
of w1, . . . , wn.

Continuing, suppose inductively that v1, . . . , vi, wi+1, . . . , wn form a basis for
V , with i < n. Express vi+1 as a linear combination

vi+1 = a1v1 + . . . + aivi + bi+1wi+1 + . . . + bnwn

Some bj must be non-zero, or else vi is a linear combination of v1, . . . , vi, contra-
dicting the linear independence of the vj ’s. By renumbering the wj ’s (again!) if
necessary, we may assume that bi+1 6= 0. Then rewrite this to express wi+1 as a
linear combination of v1, . . . , vi, wi+1, . . . , wn:

wi+1 = (−b−1
i+1a1)v1 + . . . + (−b−1

i+1ai)vi + (b−1
i+1)vi+1

+ (−b−1
i+1bi+2)wi+2 + . . . + (−b−1

i+1bn)wn

Thus, v1, . . . , vi+1, wi+2, . . . , wn span V . We claim that these vectors are linearly
independent. Indeed, if for some coefficients aj and bj

a1v1 + . . . + ai+1vi+1 + bi+2wi+2 + . . . + bnwn = 0

then some ai+1 must be non-zero, because of the (inductively assumed) lin-
ear independence of v1, . . . , vi, wi+1, . . . , wn, thus surely of the subcollection
v1, . . . , vi, wi+2, . . . , wn. Thus, we can rearrange to express vi+1 as a linear com-
bination of v1, . . . , vi, wi+2, . . . , wn. Then the expression for wi+1 in terms of
v1, . . . , vi, vi+1, wi+2, . . . , wn becomes an expression for wi+1 as a linear combina-
tion of v1, . . . , vi, wi+2, . . . , wn. But this would contradict the (inductively assumed)
linear independence of v1, . . . , vi, wi+1, wi+2, . . . , wn.

Consider the possibility that m > n. Then, by the above argument, v1, . . . , vn

is a basis for V . Thus, vn+1 is a linear combination of v1, . . . , vn, contradicting their
linear independence. Therefore, m ≤ n, and v1, . . . , vm, wm+1, . . . , wn is a basis for
V , as claimed. ///

A.3 Homomorphisms and duals 365

The previous theorem allows us to define the dimension of a vector space to
be the number of elements in a basis for it, since the theorem says that this number
is the same for any basis. Write

dim V = dimension of V

A vector space is finite-dimensional if it has a finite basis. What we actually
proved is only the finite-dimensional case of this well-definedness, but we will not
need the infinite-dimensional case.

Corollary: A linearly independent set of vectors in a finite-dimensional vector
space can be augmented to be a basis.

Proof: Let v1, . . . , vm be the linearly independent set of vectors, let w1, . . . , wn be
a basis, and apply the theorem. ///

Corollary: The dimension of a proper subspace of a finite-dimensional vector
space is strictly less than the dimension of the whole space.

Proof: Let w1, . . . , wm be a basis for the subspace. By the theorem, it can be
extended to a basis w1, . . . , wm, vm+1, . . . , vn of the whole space. It must be that
n > m, or else the subspace is the whole space. ///

Corollary: The dimension of kn is n.

Proof: The vectors
e1 = (1, 0, 0, . . . , 0, 0)
e2 = (0, 1, 0, . . . , 0, 0)
e3 = (0, 0, 1, . . . , 0, 0)

. . .
en = (0, 0, 0, . . . , 0, 1)

spans kn, since
(c1, . . . , cn) = c1e1 + . . . + cnen

On the other hand, a linear dependence relation

0 = c1e1 + . . . + cnen

gives
(c1, . . . , cn) = (0, . . . , 0)

from which each ci is 0. Thus, these vectors are a basis for kn. ///

Remark: The vectors in the latter proof are the standard basis for kn.

A.3 Homomorphisms and duals
Now we can introduce vector space homomorphisms, their kernels, their images,

and prove a fundamental result about how dimensions behave in this situation. The
dual of a vector space is an important special case of this discussion.

366 Appendix: Linear Algebra

A vector space homomorphism f : V → W from a vector space V over a
field k to a vector space W over the same field k is a function f such that

f(v1 + v2) = f(v1) + f(v2) (for all v1, v2 ∈ V)
f(α · v) = α · f(v) (for all α ∈ k, v ∈ V)

The kernel of f is
ker f = {v ∈ V : f(v) = 0}

and the image of f is
Imf = {f(v) : v ∈ V }

Vector space homomorphisms are also called linear. A homomorphism is an iso-
morphism if it is one-to-one (injective) and onto (surjective).
• A vector space homomorphism f : V →W sends 0 (in V) to 0 (in W).

Proof: First,
f(0) = f(0 + 0) = f(0) + f(0)

Then add −f(0) (whatever it may be) to both sides, obtaining

0 = −f(0)+f(0) = −f(0)+(f(0)+f(0)) = (−f(0)+f(0))+f(0) = 0+f(0) = f(0)

proving what was claimed. ///

• For a vector space homomorphism f : V →W , for v ∈ V ,

f(−v) = −f(v)

Proof: Above we saw that −v = (−1) · v. Thus,

f(−v) = f((−1) · v) = (−1) · f(v) = −f(v)

using the linearity of f . ///

Proposition: The kernel and image of a vector space homomorphism f : V →W
are vector subspaces of V and W , respectively.

Proof: Regarding the kernel, the previous proposition shows that it contains 0.
The last bulleted point observed that additive inverses of elements in the kernel are
again in the kernel. And for x, y ∈ ker f

f(x + y) = f(x) + f(y) = 0 + 0 = 0

so the kernel is closed under addition. Finally, for α ∈ k and v ∈ V

f(α · v) = α · f(v) = α · 0 = 0

so the kernel is closed under scalar multiplication. Thus, the kernel is a vector
subspace.

A.3 Homomorphisms and duals 367

Similarly, f(0) = 0 shows that 0 is in the image of f . For w = f(v) in the
image of f and α ∈ k

α · w = α · f(v) = f(αv) ∈ Imf

For x = f(u) and y = f(v) both in the image of f ,

x + y = f(u) + f(v) = f(u + v) ∈ Imf

And from above
f(−v) = −f(v)

Thus, the image is a vector subspace. ///

Corollary: A linear map f : V → W is one-to-one (injective) if and only if its
kernel is the trivial subspace {0}.

Proof: If f(x) = f(y) for x, y ∈ V , then

f(x− y) = f(x)− f(y) = 0

Thus, if f is not injective, for some x 6= y we have f(x) = f(y), so x − y 6= 0 is
in the kernel of f . On the other hand, if f is injective, then f(x) = 0 implies that
f(x) = f(0), so x = 0 (by injectivity), and the kernel is {0}. ///

Corollary: Let f : V → W be a vector space homomorphism, with V finite-
dimensional. Then

dim ker f + dim Imf = dim V

Proof: Let v1, . . . , vm be a basis for ker f , and, invoking the theorem, let
wm+1, . . . , wn be vectors in V such that v1, . . . , vm, wm+1, . . . , wn form a basis for
V . We claim that the images f(wm+1), . . . , f(wn) form a basis for Imf . First,
show that these vectors span the image. Indeed, for f(v) = w, express v as a linear
combination

v = a1v1 + . . . + amvm + bm+1wm+1 + . . . + bnwn

and apply f , using its linearity

w = a1f(v1) + . . . + amf(vm) + bm+1f(wm+1) + . . . + bnf(wn)

= a1 · 0 + . . . + am · 0(vm) + bm+1f(wm+1) + . . . + bnf(wn)

= bm+1f(wm+1) + . . . + bnf(wn)

since the vi’s are in the kernel. This shows that the f(wj)’s span the image. For
linear independence, suppose that

0 = bm+1f(wm+1) + . . . + bnf(wn)

368 Appendix: Linear Algebra

Then
0 = f(bm+1wm+1 + . . . + bnwn)

Then, bm+1wm+1+ . . .+bnwn would be in the kernel of f , so would be a linear com-
bination of the vi’s, which would contradict the fact that v1, . . . , vm, wm+1, . . . , wn

is a basis, unless all the bj ’s were 0. Thus, the images f(wj) are linearly indepen-
dent, so form a basis for Imf . ///

Proposition: An isomorphism f : V →W sends a basis for V to a basis for W .

Proof: Let e1, . . . , en be a basis for V . Given w ∈ W , let v ∈ V be such that (by
the surjectivity) f(v) = w. Write v =

∑
i ciei. Then

w = f(v) = f

(∑
i

ciei

)
=
∑

i

f(ciei) =
∑

i

cif(ei)

by the linearity of f , showing that w is a linear combination of the images f(ei).
On the other hand, suppose that ∑

i

cif(ei) = 0

Then

0 =
∑

i

cif(ei) =
∑

i

f(ciei) = f

(∑
i

ciei

)
Since f is injective

∑
i ciei = 0. Since the ei form a basis for V , it must be that all

ci’s are 0. This proves that the f(ei)’s are linearly independent. ///

A (linear) functional λ : V → k on a vector space V over k is a linear map
from V to the field k itself, viewed as a one-dimensional vector space over k. The
collection V ∗ of all such linear functionals is the dual space of V .
Proposition: The collection V ∗ of linear functionals on a vector space V over k
is itself a vector space over k, with the addition

(λ + µ)(v) = λ(v) + µ(v)

and scalar multiplication
(α · λ)(v) = α · λ(v)

Proof: The 0-vector in V ∗ is the linear functional which sends every vector to 0.
The additive inverse −λ is defined by

(−λ)(v) = −λ(v)

The distributivity properties are readily verified:

(α(λ+µ))(v) = α(λ+µ)(v) = α(λ(v)+µ(v)) = αλ(v)+αµ(v) = (αλ)(v)+(αµ)(v)

A.3 Homomorphisms and duals 369

and

((α + β) · λ)(v) = (α + β)λ(v) = αλ(v) + βλ(v) = (αλ)(v) + (βλ)(v)

as desired. ///

Let V be a finite-dimensional vector space, with a basis e1, . . . , en for V . A
dual basis λ1, . . . , λn for V ∗ (and {ei}) is a basis for V ∗ with the property that

λj(ei) =
{

1 (for i = j)
0 (for i 6= j)

From the definition alone it is not at all clear that a dual basis exists, but the
following proposition proves that it does.
Proposition: The dual space V ∗ to an n-dimensional vector space V (with n a
positive integer) is also n-dimensional. Given a basis e1, . . . , en for V , there exists
a unique corresponding dual basis λ1, . . . , λn for V ∗, namely a basis for V ∗ with
the property that

λj(ei) =
{

1 (for i = j)
0 (for i 6= j)

Proof: Proving the existence of a dual basis corresponding to the given basis will
certainly prove the dimension assertion. Using the uniqueness of expression of a
vector in V as a linear combination of the basis vectors, we can unambiguously
define a linear functional λj by

λj

(∑
i

ciei

)
= cj

These functionals certainly have the desired relation to the basis vectors ei. We
must prove that the λj are a basis for V ∗. If∑

j

bjλj = 0

then apply this functional to ei to obtain

bi =

∑
j

bjλj

 (ei) = 0(ei) = 0

This holds for every index i, so all coefficients are 0, proving the linear independence
of the λj . To prove the spanning property, let λ be an arbitrary linear functional
on V . We claim that

λ =
∑

j

λ(ej) · λj

370 Appendix: Linear Algebra

Indeed, evaluating the left-hand side on
∑

i aiei gives
∑

i aiλ(ei), and evaluating
the right-hand side on

∑
i aiei gives∑

j

∑
i

ai λ(ej) λj(ei) =
∑

i

aiλ(ei)

since λj(ei) = 0 for i 6= j. This proves that any linear functional is a linear
combination of the λj . ///

Let W be a subspace of a vector space V over k. The orthogonal comple-
ment W⊥ of W in V ∗ is

W⊥ = {λ ∈ V ∗ : λ(w) = 0, for all w ∈W}

• The orthogonal complement W⊥ of a subspace W of a vector space V is a
vector subspace of V ∗.

Proof: Certainly W⊥ contains 0. If λ(w) = 0 and µ(w) = 0 for all w ∈ W , then
certainly (λ + µ)(w) = 0. Likewise, (−λ)(w) = λ(−w), so W⊥ is a subspace. ///

Corollary: Let W be a subspace of a finite-dimensional vector space V over k.

dim W + dim W⊥ = dim V

Proof: Let e1, . . . , em be a basis of W , and extend it to a basis e1, . . . , em,
fm+1, . . . , fn of V , invoking the results above. Let λ1, . . . , λm, µm+1, . . . , µn be
the corresponding dual basis of V ∗. To prove the corollary it would suffice to prove
that µm+1, . . . , µn form a basis for W⊥. First, these functionals do lie in W⊥, since
they are all 0 on the basis vectors for W . To see that they span W⊥, let

λ =
∑

1≤i≤m

aiλi +
∑

m+1≤j≤n

bjµj

be a functional in W⊥. Evaluating both sides on e` ∈W gives

0 = λ(e`) =
∑

1≤i≤m

aiλi(e`) +
∑

m+1≤j≤n

bjµj(e`) = a`

by the defining property of the dual basis. That is, every functional in W⊥ is a
linear combination of the µj , and thus the latter form a basis for W⊥. Then

dim W + dim W⊥ = m + (n−m) = n = dim V

as claimed. ///

The second dual V ∗∗ of a vector space V is the dual of its dual. There is a
natural vector space homomorphism ϕ : V → V ∗∗ of a vector space V to its second
V ∗∗ by

ϕ(v)(λ) = λ(v)

A.3 Homomorphisms and duals 371

for v ∈ V , λ ∈ V ∗.
Corollary: Let V be a finite-dimensional vector space. Then the natural map of
V to V ∗∗ is an isomorphism.

Proof: If v is in the kernel of the linear map v → ϕ(v), then ϕ(v)(λ) = 0 for all
λ, so λ(v) = 0 for all λ. But if v is non-zero then v can be part of a basis for V ,
which has a dual basis, among which is a functional λ such that λ(v) = 1. Thus,
for ϕ(v)(λ) to be 0 for all λ it must be that v = 0. Thus, the kernel of ϕ is {0}, so
(from above) ϕ is an injection. From the formula

dim kerϕ + dim Imϕ = dim V

it follows that dim Imϕ = dim V . We showed above that the dimension of V ∗ is
the same as that of V , since V is finite-dimensional. Likewise, the dimension of
V ∗∗ = (V ∗)∗ is the same as that of V ∗, hence the same as that of V . Since the
dimension of the image of ϕ in V ∗∗ is equal to the dimension of V , which is the
same as the dimension of V ∗∗, the image must be all of V ∗∗. Thus, ϕ : V → V ∗∗ is
an isomorphism. ///

Corollary: Let W be a subspace of a finite-dimensional vector space V over k.
Let ϕ : V → V ∗∗ be the isomorphism of the previous corollary. Then

(W⊥)⊥ = ϕ(W)

Proof: First, show that
ϕ(W) ⊂ (W⊥)⊥

Indeed, for λ ∈W⊥,
ϕ(w)(λ) = λ(w) = 0

On the other hand,
dim W + dim W⊥ = dim V

and likewise
dim W⊥ + dim(W⊥)⊥ = dim V ∗ = dim V

Thus, ϕ(W) ⊂ (W⊥)⊥ and

dim(W⊥)⊥ = dim ϕ(W)

since ϕ is an isomorphism. Therefore, ϕ(W) = (W⊥)⊥. ///

As an illustration of the efficacy of the present viewpoint, we can prove a useful
result about matrices.
Corollary: Let M be an m-by-n matrix with entries in a field k. Let R be the
subspace of kn spanned by the rows of M . Let C be the subspace of km spanned
by the columns of M . Let

column rank of M = dim C
row rank of M = dim R

372 Appendix: Linear Algebra

Then
column rank of M = row rank of M

Proof: The matrix M gives a linear transformation T : kn → km by T (v) = Mv
where v is a column vector of length n. It is easy to see that the column space of
M is the image of T . It is a little subtler that the row space is (ker T)⊥. From
above,

dim kerT + dim ImT = dim V

and also
dim kerT + dim(kerT)⊥ = dim V

Thus,
column rank M = dim ImT = dim(kerT)⊥ = row rank M

as claimed. ///

A.4 Scalar products
It turns out that the familiar properties of inner products can be treated in ab-

straction. This is very useful in applications.
An inner product or scalar product or dot product on a vector space V

over k is a k-valued function of two V -variables, written v · w or 〈v, w〉, with the
following properties for u, v, w ∈ V and α ∈ k
• (Symmetry) 〈u, v〉 = 〈v, u〉
• (Linearity in first argument) 〈u+v, w〉 = 〈u, w〉+〈v, w〉 and 〈αu, v〉 = α〈u, v〉
• (Non-degeneracy in first argument) For all v 6= 0 in V there is w ∈ V such

that 〈v, w〉 6= 0

Remark: From the symmetry it follows that there are corresponding linearity
and non-degeneracy properties for the second argument, as well:

〈u, v + w〉 = 〈u, w〉+ 〈u, v〉 and 〈u, αv〉 = α〈u, v〉

and for all w 6= 0 in V there is v ∈ V such that 〈v, w〉 6= 0.

Remark: When the scalars are the complex numbers C, often a variant of the
symmetry condition is useful, namely a hermitian condition that 〈u, v〉 = 〈v, u〉
where the bar denotes complex conjugation.

Remark: When the scalars are real, sometimes the non-degeneracy condition is
usefully replaced by a positive-definiteness condition, namely that 〈v, v〉 ≥ 0 and
is 0 only for v = 0. An analogous condition is likewise often appropriate in the
complex-scalar case.

When a vector space V has a scalar product 〈, 〉, there is a natural linear map
v → λv from V to its dual V ∗ given by

λv(w) = 〈v, w〉

A.4 Scalar products 373

That λv is a linear functional on V is an immediate consequence of the linearity
of 〈, 〉 in its second argument, and the linearity of the map v → λv itself is an
immediate consequence of the linearity of 〈, 〉 in its first argument.
Corollary: Let V be a finite-dimensional vector space. The linear map v → λv

above is an isomorphism V → V ∗.

Proof: The non-degeneracy in the first argument means that for v 6= 0 the linear
functional λv is not 0, since there is w ∈ V such that λv(w) 6= 0. Thus, the linear
map v → λv has kernel {0}, so v → λv is injective. Since V is finite-dimensional,
from above we know that it and its dual have the same dimension. Let L(v) = λv.
Since (from above)

dim ImL + dim kerL = dim V

the image of V under v → λv in V is that of V . Since (from above) proper subspaces
have strictly smaller dimension it must be that L(V) = V ∗. ///

Corollary: Let V be a finite-dimensional vector space. Under the isomorphism
v → λv of V to its dual V ∗

L ({v ∈ V : 〈v, w〉 = 0 for all w ∈W}) = W⊥

Proof: Suppose that L(v) ∈ W⊥. Thus, λv(w) = 0 for all w ∈ W . That is,
〈v, w〉 = 0 for all w ∈ W . On the other hand, suppose that 〈v, w〉 = 0 for all
w ∈W . Then λv(w) = 0 for all w ∈W , so λv ∈W⊥. ///

Corollary: Redefine

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}

Then
dim W + dim W⊥ = dim V

and
W⊥⊥ = W

Proof: With our original definition of W⊥
orig as

W⊥
orig = {λ ∈ V ∗ : λ(w) = 0 for all w ∈W}

we had proven
dim W + dim W⊥

orig = dim V

We just showed that L(W⊥) = W⊥
orig, and since the map L : V → V ∗ by v → λv is

an isomorphism
dim W⊥ = dim W⊥

orig

Thus,
dim W + dim W⊥ = dim V

374 Appendix: Linear Algebra

as claimed. Next, we claim that W ⊂W⊥⊥. Indeed, for w ∈W it is certainly true
that for v ∈W⊥

〈w, v〉 = 〈v, w〉 = 0

That is, we see easily that W ⊂W⊥⊥. On the other hand, from

dim W + dim W⊥ = dim V

and
dim W⊥ + dim W⊥⊥ = dim V

we see that dim W⊥⊥ = dim W . Since W is a subspace of W⊥⊥ with the same
dimension, the two must be equal (from our earlier discussion). ///

A.5 Vandermonde determinants
Granting facts about polynomials in several variables, we can compute Vander-
monde determinants. We had already stated that

det

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = (−1)n(n−1)/2 ·
∏
i<j

(xi − xj)

where the
∏

means product over the indicated indices, just as
∑

means sum. A
matrix of that form is a Vandermonde matrix, and its determinant is a Van-
dermonde determinant. Granting some standard facts about determinants, the
idea of the proof of this formula is straightforward. However, to make the idea
fully legitimate, it is necessary to do some further work, namely verify that poly-
nomial rings in several variables are unique factorization domains. We do that in
the following appendix.

The idea of the proof of the identity is as follows. First, we note that whatever
the determinant is it is a polynomial in x1, . . ., xn. It is a standard fact that if
two columns of a matrix are the same, then the determinant is 0. From this we
conclude (!) that for i 6= j the determinant is divisible by xi − xj . Since xi − xj

and xj−xi only differ by ±1 and we do not want inadvertently to include the same
factor twice, we conclude (!) that the determinant is divisible by the product∏

i<j

(xi − xj)

We want to argue that the determinant can have no further polynomial factors,
so up to a constant (which we’ll determine) is equal to the latter product. The
notion of total degree is useful. The total degree of a monomial xm1

1 . . . xmn
n is

m1 + . . . + mn. The total degree of a polynomial is the maximum of the total

A.5 Vandermonde determinants 375

degrees of the monomials occurring in it. We grant for the moment the result of
the proposition below, that the total degree of a product is the sum of the total
degrees of the factors. The total degree of our product is∑

1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

To determine the total degree of the determinant, we invoke a standard formula for
the determinant of a matrix M with entries Mij , namely that

det M =
∑

p

σ(p) M1p(1)M2p(2) . . .Mnp(n)

where p runs over permutations of n things and σ(p) is the sign or parity of p, that
is, σ(p) is +1 if p is a product of an even number of 2-cycles and is −1 if p is the
product of an odd number of 2-cycles. Qualitatively, up to ±1, this expresses the
determinant as a sum of products of elements from the first, second, third, . . ., nth

columns, no two in the same row. In particular, since the matrix is square, there
must be exactly one factor from each row. In a Vandermonde matrix all the top
row entries have total degree 0, all the second row entries have total degree 1, and
so on. Thus, in this sort of sum for a Vandermonde determinant, each summand
has total degree

0 + 1 + 2 + . . . + (n− 1) =
1
2
n(n− 1)

That is, the total degree of the determinant is equal to the total degree of the
product ∑

1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

Thus, we conclude (!) that

det

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = constant ·
∏
i<j

(xi − xj)

Granting this, to determine the constant it suffices to compare a single monomial in
both the determinant and the product expression. Among many other reasonable
choices, we will compare the coefficients of

xn−1
1 xn−2

2 xn−3
3 . . . x1

n−1x
0
n

In the product expression, the only way we can get xn−1
1 is by taking all the x1s

in the linear factors x1 − xj with 1 < j. After this, the only way to get xn−2
2 is

376 Appendix: Linear Algebra

by taking all the x2s in the linear factors x2 − xj with 2 < j. Continuing in this
manner, we get a coefficient of +1 in the product.

In the determinant, the only way to obtain this monomial is as the product
of entries from lower left to upper right. The indices of these entries are (n, 1),
(n − 1, 2), . . . , (2, n − 1), (1, n). Thus, the coefficient of this monomial is (−1)t

where t is the number of 2-cycles necessary to obtain the permutation p with the
property

p(i) = n + 1− i

There are at least two ways to count this. We might observe that this permutation
is expressible as a product of two-cycles

p =

 (1 n)(2n− 1) (3 n− 3) . . . (n
2

n
2 + 1) (for n even)

(1 n)(2n− 1) (3 n− 3) . . . (n−1
2

n+1
2) (for n odd)

Thus, for n even there are n/2 two-cycles, and for n odd there are (n − 1)/2 two-
cycles. We might insist on arranging a closed form for this. Since these numbers
will be the exponent on −1, we only care about their values modulo 2. Thus,
because of the division by 2, we only care about n modulo 4, and we have values

n/2 = 0 mod 2 (for n = 0 mod 4)
(n− 1)/2 = 0 mod 2 (for n = 1 mod 4)

n/2 = 1 mod 2 (for n = 3 mod 4)
(n− 1)/2 = 1 mod 2 (for n = 1 mod 4)

After some experimentation, we find a closed expression for this, namely

n(n− 1)/2 mod 2

Thus, finally, have determined the leading constant

(−1)n(n−1)/2

in the expression for the Vandermonde determinant. ///

Now we verify the property of total degree used above.
Proposition: Let f(x1, . . . , xn) and g(x1, . . . , xn) be polynomials in k[x1, . . . , xn]
where k is a field. Then the total degree of the product is the sum of the total
degrees:

total degree f · g = (total degree f) + (total degree g)

Proof: The fact that the total degree of the product is less than or equal the
sum of the total degrees is clear. However, it is less clear that there cannot be
any cancellation which might cause the total degree of the product to be strictly
less than the sum of the total degrees. It is true that such cancellation does not
occur, but the proof is a little less clear than in the single-variable case. One way
to demonstrate the non-cancellation is as follows.

A.5 Vandermonde determinants 377

Let xe1
1 . . . xen

n and xf1
1 . . . xfn

n be two monomials of highest total degree t oc-
curring with non-zero coefficients in f and g, respectively. We can assume without
loss of generality that the exponents e1 and f1 of x1 in the two expressions are the
largest among all monomials of total degree t in f and g, respectively. Similarly,
we can assume without loss of generality that the exponents e2 and f2 of x2 in the
two expressions are the largest among all monomials of total degree t in f and g,
respectively, and so on. We claim that the coefficient of the monomial

M = xe1+f1 . . . xen+fn
n

is simply the product of the coefficients of xe1
1 . . . xen

n and xf1
1 . . . xfn

n , so non-zero.
Let xu1

1 . . . xun
n and xv1

1 . . . xvn
n be two other monomials occurring in f and g such

that for all indices i we have ui + vi = ei + fi. By the maximality assumption on
e1 and f1, we have e1 ≥ u1 and f1 ≥ v1, so the only way that the necessary power
of x1 can be achieved is that e1 = u1 and f1 = v1. Among exponents with these
maximal exponents of x1, e2 and f2 are maximal, so e2 ≥ u2 and f2 ≥ v2, and
again it must be that e2 = u2 and f2 = v2 in order to obtain the exponent of x2.
Continuing inductively, we find that ui = ei and vi = fi for all indices. That is,
the only terms in f and g which contribute to the coefficient of the monomial M
in the product f · g are the two monomials xe1

1 . . . xen
n and xf1

1 . . . xfn
n . Thus, the

coefficient of the monomial M is non-zero, and the total degree is indeed as large
as claimed. ///

Appendix: Polynomials

The goal here is to prove that rings of polynomials in several variables with
coefficients in a field are unique factorization domains, meaning that such poly-
nomials can be factored essentially uniquely into irreducible polynomials. We will
make this precise. Among other uses, this fact is necessary in discussion of Van-
dermonde determinants, and is useful in the proof that the parity (or sign) of a
permutation is well-defined.

For precision, we need some definitions. Let R be a commutative ring R with
1. For r, s in R, r divides s, written r|s, if there is t ∈ R such that s = tr. Such R is
said to be a domain or integral domain if for r, s ∈ R the equation r · s = 0 implies
that either r or s is 0. The units R× in R are the elements in R with multiplicative
inverses. An irreducible element p in R is a non-unit with the property that if
p = xy for x, y ∈ R then either x or y is a unit.

Remark: Sometimes irreducible elements are called prime elements, although
equally often the terminology is used to make an important distinction. Namely, to
prove uniqueness of factorization (not to prove existence) into irreducible elements
in a ring R it is critical that we be able to prove that if an irreducible element p
divides a product ab in R, then p|a or p|b. This does not hold in all rings, but we
will be able to prove it in the case at hand. Sometimes only elements p with the
property that p|ab implies either p|a or p|b are called prime.

Remark: Quite generally, in a domain R elements p with the property that p|ab
implies either p|a or p|b are irreducible. Indeed, suppose p has this property and
p factors as p = xy. Then certainly p|xy, so either p|x or p|y by the definition of
primality. Suppose without loss of generality that p|x, so x = ap for some a ∈ R.
Then

p = xy = (ap)y

As observed earlier, since R is a domain, the cancellation property holds, namely,
that ax = bx and x 6= 0 implies a = b. Indeed, ax = bx implies that (a− b)x = 0,
and since R is a domain and x 6= 0 it must be that a− b = 0. Thus, 1 = ay, and y
is a unit. By contrast, already in the examples given earlier to illustrate the failure
of unique factorization in more exotic rings, elements do have factorizations into
irreducibles, but these irreducibles may fail to be prime, thus allowing a failure of
unique factorization in such rings.

Definition: Two irreducible elements p and q in a domain R are equivalent if
they differ by a unit, that is, if p = uq for some u ∈ R×. This is easily seen to be
an equivalence relation.

Definition: A factorization of an element r into irreducibles in an integral domain

378

Appendix: Polynomials 379

R is an expression for r of the form

r = u · pe1
1 . . . pem

m

where u is a unit, p1 through pm are inequivalent irreducible elements, and the eis
are positive integers.
Definition: Two factorizations

r = u · pe1
1 . . . pem

m

r = v · qf1
1 . . . qfn

n

into irreducibles pi and qj with units u, v are equivalent if m = n and (after possibly
renumbering the irreducibles) qi is equivalent to pi for all indices i. Here we assume
that
Definition: A domain R is a unique factorization domain if any two factorizations
are equivalent.
Theorem: (Gauss) Let R be a commutative ring with 1 that is a unique factoriza-
tion domain. Then the polynomial ring in one variable R[x] is a unique factorization
domain.
Remark: The idea of the proof is to factor a given polynomial f(x) in R[x] in
the larger ring k[x] where k is the field of fractions of R (reviewed below), and
rearrange constants to get all coefficients to be in R rather than k. Uniqueness of
the factorization should follow from the uniqueness of factorization in R together
with the uniqueness of factorization in k[x]. Moving back and forth between R[x]
and k[x] requires some finesse, for which we must prepare.
Corollary: A polynomial ring k[x1, . . . , xn] in a finite number of variables x1,
. . ., xn over a field k is a unique factorization domain. (Proof by induction via the
theorem.) ///

Before proving the theorem itself, we must explicitly observe that unique fac-
torization does allow us to recover some of our usual ideas about divisibility.
Definition: Given r, s ∈ R not both 0, an element g ∈ R dividing both r and s,
such that any divisor d of both r and s also divides g, is a greatest common divisor
of r and s, denoted g = gcd(r, s).
Remark: It is of course not at all clear that such greatest common divisors exist
in general rings. Indeed, in general they do not.
Proposition: Let R be a unique factorization domain. For r, s in R not both 0
there exists gcd(r, s) and it is unique up to an element of R×. We have a formula
for the greatest common divisor, as follows. Factor both r and s into irreducibles

r = u · pe1
1 . . . pem

m

s = v · pf1
1 . . . pfn

m

where u and v are units and where the pi are mutually inequivalent irreducibles,
but we allow the exponents to be 0, so that we can use a common set of irreducibles

380 Appendix: Polynomials

to express both r and s. Then the greatest common divisor has exponents which
are the minima of those of r and s

gcd(r, s) = p
min(e1,f1)
1 . . . pmin(em,fm)

m

Proof: Let
g = p

min(e1,f1)
1 . . . pmin(em,fm)

m

First, it is easy to see that g does divide both r and s. On the other hand, let
d be any common divisor of both r and s. Enlarge the collection of inequivalent
irreducibles pi if necessary such that d can be expressed as

d = w · ph1
1 . . . phm

m

with a unit w and non-negative integer exponents. To say that d|r is to say that
there is D ∈ R such that dD = r. Let

D = W · pH1
1 . . . pHm

m

Then we find

wW · ph1+H1
1 . . . phm+Hm

m = d ·D = r = u · pe1
1 . . . pem

m

Then unique factorization (and the non-equivalence of the pis) implies that the
exponents are the same: for all indices i we have

hi + Hi = ei

Thus, hi ≤ ei. The same argument applies with r replaced by s, so hi ≤ fi,
and hi ≤ min(ei, fi). Thus, d|g. For uniqueness, observe that any other greatest
common divisor h would have g|h, but also h|r and h|s. Using the (unique up to
units) factorizations, it is immediate that the exponents of the irreducibles in g and
h must be the same, so g and h must differ only by a unit. ///

Proposition: Let R be a unique factorization domain. For r, s in R, let g =
gcd(r, s). Then

gcd(r/g, s/g) = 1

Proof: The characterization of the greatest common divisor given in the previous
proposition shows that for each irreducible p in factorizations of r and s at least
one of the exponents of p in r/g and s/g is 0. ///

Definition: The field of fractions k of R is the collection of fractions a/b with
a, b ∈ R and b 6= 0 and with the usual rules for addition and multiplication. More
precisely, we might say that k is the set of ordered pairs (a, b) with a, b ∈ R and
b 6= 0, modulo the equivalence relation that

(a, b) ∼ (c, d)

Appendix: Polynomials 381

if and only if ad − bc = 0. (This corresponds to the ordinary rule for equality of
two fractions.) Multiplication and addition would be simply the encoded version
of the usual rules, namely

(a, b) · (c, d) = (ac, bd)

(a, b) + (c, d) = (ad + bc, bd)

And we identify r ∈ R with (r, 1) (thinking of the fraction r/1). One should note
that the assumption that R is a domain (meaning has no non-zero 0-divisors) is
needed to make this work as stated. From now on we write a/b rather than (a, b)
modulo ∼. Further, since R is a unique factorization ring, whenever we want we can
suppose without loss of generality that fractions a/b are in lowest terms, meaning
that gcd(a, b) = 1, by dividing both a and b by their greatest common divisor. We
saw in the last proposition just above that this effectively removes any common
factors from a and b.

We extend the notions of divisibility and of greatest common divisor so as to
apply to elements of the fraction field k of R. First, say that x|y for two elements
x and y in k if there is r ∈ R such that s = rx. That is, x divides y if y is an R-
multiple of x. And, continuing this parallel for r1, . . ., rn in k, not all 0, a greatest
common divisor gcd(r1, . . . , rn) is an element g ∈ k such g divides each ri and such
that if d ∈ k divides each ri then d|g.
Remark: Note that for non-zero r in the domain R, rx|ry if and only if x|y.
Indeed, if ry = m · rx then by cancellation (using the domain property), y = m · x.
And of course y = m · x implies ry = m · rx directly.
Proposition: In the field of fractions k of a unique factorization domain R great-
est common divisors exist.

Proof: We reduce this to the case when everything is inside the ring R. Given
a list of elements xi = ai/bi in k with ai and bi all in R, take 0 6= r ∈ R such
that rxi ∈ R for all indices i. For example, taking r to be the product of the
denominators bi would do. Let G the the greatest common divisor of the rxi,
and then put g = G/r. We claim that this g is the greatest common divisor
of the original xis. This is straightforward. On one hand, from G|rxi it follows
immediately that g|xi. On the other hand, if d|xi then rd|rxi, so rd divides G = rg
and then d|g. ///

Definition: The content cont(f) of a polynomial f in k[x] is the greatest common
divisor of the coefficients of f .

The following lemma is the crucial point in proving the theorem.
Lemma: (Gauss) Let f and g be two polynomials in k[x]. Then

cont(fg) = cont(f) · cont(g)

Remark: The values of the content function are only well-defined up to units R×.
Thus, the content of Gauss’ lemma more properly concerns the equivalence classes
of irreducibles dividing the respective coefficients.

382 Appendix: Polynomials

Proof: From the remark just above we see that for any c ∈ k×

cont(c · f) = c · cont(f)

Thus, from the proposition above which notes that

gcd(
a

gcd(a, b)
,

b

gcd(a, b)
) = 1

we can assume without loss of generality that cont(f) = 1 and cont(g) = 1 and
must prove that cont(fg) = 1. Suppose not. Then there is a a non-unit irreducible
element p of R dividing all the coefficients of fg. Put

f(x) = a0 + a1x + a2x
2 + . . .

g(x) = b0 + b1x + b2x
2 + . . .

But p does not divide all the coefficients of f , nor all those of g. Let i be the
smallest integer such that p does not divide ai. Let j be the largest integer such
that p does not divide bj . Now consider the coefficient of xi+j in fg. It is

a0bi+j + a1bi+j−1 + . . . + ai−1bj−1 + aibj + ai+1bj−1 + . . . + ai+j−1b1 + ai+jb0

In all the summands to the left of aibj the factor ak with k < i is divisible by p,
and in all the summand to the right of aibj the factor bk with k < j is divisible by
p. This leaves only the summand aibj to consider. Since the whole sum is divisible
by p, it follows that p|aibj . Since R is a unique factorization domain, either p|ai or
p|bj , contradiction. Thus, it could not have been that p divided all the coefficients
of fg. ///

Corollary: Let f be a polynomial in R[x]. If f factors properly in k[x] then
f factors properly in R[x]. More precisely, if f factors as f = g · h with g and h
polynomials in k[x] both of positive degree, then there is c ∈ k× such that cg ∈ R[x]
and h/c ∈ R[x], and then

f = (cg) · (h/c)

is a factorization of f in R[x].

Proof: Since f has coefficients in R, cont(f) is in R. By replacing f by f/c we
may suppose that cont(f) = 1. Then, by Gauss’ lemma above,

cont(g) · cont(h) = cont(f) = 1

Let cont(g) = c. Then cont(h) = 1/c, and cont(g/c) = 1 and cont(c · h) = 1, so
both g/c and ch are in R[x], and (g/c) · (ch) = f . Thus f is reducible in R[x]. ///

Corollary: The irreducibles in R[x] are of two sorts, namely irreducibles in R
and polynomials f in R[x] with cont(f) = 1 which are irreducible in k[x].

Appendix: Polynomials 383

Proof: If an irreducible p in R were to factor in R[x] as p = gh, then the degrees
of both g and h would be 0 (since degrees add under polynomial multiplication),
so g and h would lie in R. The irreducibility of p in R would imply that one or the
other of g or h would be a unit. Thus, irreducibles in R remain irreducible in R[x].

Now suppose p were an irreducible in R[x] of positive degree. If cont(p) were
a non-unit g, then p = (p/g) · g would be a proper factorization of p, contradic-
tion. Thus, cont(p) = 1. The previous corollary to Gauss’ lemma shows that p is
irreducible in p.

Last suppose that f is irreducible in k[x], and has cont(f) = 1. The irreducibil-
ity in k[x] implies that if f = gh in R[x] then the degree one of g or h must be 0.
Without loss of generality suppose the degree of g is 0, so cont(g) = g. Since

1 = cont(f) = cont(g)cont(h)

We see that g is a unit in R, so this is not a proper factorization after all, and f is
irreducible in R[x]. ///

Proof: (of theorem) We can now combine the corollaries of Gauss’ lemma to
prove the theorem. Given a polynomial f in R[x], let c = cont(f), so from above
cont(f/c) = 1. The hypothesis that R is a unique factorization domain allows us
to factor u into irreducibles in R, and we showed just above that these irreducibles
remain irreudicble in R[x].

Replace f by f/cont(f) to assume now that cont(f) = 1. Factor f into irre-
ducibles in k[x] as

f = u · pe1
1 · · · pem

m

where u is in k×, the pis are irreducibles in k[x], and the eis are positive integers.
We can replace each pi by pi/cont(pi) and replace u by

u · cont(p1)e1 · · · cont(pm)em

so then the new pis are in R[x] and have content 1. Since content is multiplicative,
from cont(f) = 1 we find that cont(u) = 1, so u is a unit in R. The previous
corollaries demonstrate the irreducibility of the (new) pis in R[x], so this gives a
factorization of f into irreducibles in R[x]. That is, we have an explicit existence
of a factorization into irreducibles.

Now suppose that we have two factorizations

f = u · pe1
1 · · · pem

m = v · qf1
1 · · · qfn

n

where u, v are in R (and have unique factorizations there) and the pi and qj are
irreducibles in R[x] of positive degree. From above, all the contents of these irre-
ducibles must be 1. Looking at this factorization in k[x], it must be that m = n
and up to renumbering pi differs from qi by a constant in k×, and ei = fi. Since all
these polynomials have content 1, in fact pi differs from qi by a unit in R. By equat-
ing the contents of both sides, we see that u and v differ by a unit in R×. Thus,
by the unique factorization in R their factorizations into irreducibles in R (and,
from above, in R[x]) must be essentially the same. Thus, we obtain uniqueness of
factorization in R[x]. ///

Bibliography

The fundamental paper from which nearly all these things originate is [Shan-
non 1948]. There are several other introductory texts on coding, meeting various
tastes, mostly emphasizing the error-correction aspects and omitting discussion of
compression. [Roman 1992] includes both. Some devoted mostly to error correc-
tion are [Berlekamp 1968], [Lidl Niederreiter 1986], [van Lint 1998], [McEliece 1977],
[Pless 1998], [Pretzel 1999], [Wells 1999], [Welsh 1988]. Discussion of compression
appears in its own right in other sources such as [Salomon 1998] and [Sayood 1996].
An encyclopedic reference for error-correction is [MacWilliams Sloane 1977]. The
collection [Verdu McLaughlin 2000] contains many tutorial and historical articles.
[Conway Sloane 1988] discusses lattices and sphere packing and applications to
coding, among many other uses.

[Berlekamp 1968] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New
York, 1968.

[Conway Sloane 1988] J. H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and
Groups, Springer-Verlag, New York, 1988.

[Forney 1966] G. D. Forney, Concatenated Codes, M.I.T Press, Cambridge, MA,
1966.

[Justesen 1972] J. Justesen, A class of constructive asymptotically good algebraic
codes, IEEE Trans. Info. Theory 18 (1972), pp. 652–656.

[Lidl Niederreiter 1986] R. Lidl, H. Niederreiter, Introduction to finite fields and
their applications, University Press, Cambridge, 1986.

[van Lint 1998] J. H. van Lint, Introduction to Coding Theory, third edition,
Springer-Verlag, New York, 1998.

[MacWilliams Sloane 1977] F. J. MacWilliams, N. A. J. Sloane, The Theory of
Error-Correcting Codes, North-Holland, Amsterdam, 1977.

[McEliece 1977] R. J. McEliece, The Theory of Information and Coding, Ency-
clopedia of Math. and its Applications, Vol. 3, Addison-Wesley, Reading, MA,
1977.

384

Bibliography 385

[Pless 1998] V. Pless, Introduction to the Theory of Error-Correcting Codes, third
edition, John Wiley & Sons, New York, 1998.

[Pretzel 1999] O. Pretzel, Error-Correcting Codes and Finite Fields, student edition,
Clarendon Press, Oxford, 1999.

[Roman 1992] S. Roman, Coding and Information Theory, Springer-Verlag, New
York, 1992.

[Salomon 1998] D. Salomon, Data Compression, the Complete Reference, Springer-
Verlag, New York, 1998.

[Sayood 1996] K. Sayood, Introduction to Data Compression, Morgan Kaufmann,
San Francisco, 1996.

[Shannon 1948] C. E. Shannon, A mathematical theory of communication, Bell Syst.
Tech. J. 27 (1948), pp. 379–423, 623–656.

[Tietavainen 1973] A. Tietavainen, On the nonexistence of perfect codes over finite
fields, SIAM J. Appl. Math. 24 (1973), pp. 88–96.

[Tsfasman Vladut Zink 1982] M. A. Tsfasman, S. G. Vladut, T. Zink, Modular
curves, Shimura curves, and Goppa codes, better than Vashamov-Gilbert bound
Math. Nachr. 109 (1982), pp. 21–28.

[van der Geer van Lint 1988] G. van der Geer, J. H. van Lint, Introduction to Coding
Theory and Algebraic Geometry, Birkhäuser, Basel, 1988.

[Vasilyev 1962] J. L. Vasilyev, On nongroup close-packed codes (Russian), Probl.
Kibernet. 8 (1962), pp. 337–339, translated in Probleme der Kybernetik 8 (1965),
pp. 375–378.

[Verdu McLaughlin 2000] S. Verdu, S. McLaughlin, Information Theory, Fifty Years
of Discovery, IEEE Press, Piscataway, NJ, 2000.

[Walker 2000] J. Walker, Codes and Curves, Amer. Math. Soc., Providence, RI,
2000.

[Wells 1999] R. B. Wells, Applied Coding and Information Theory for Engineers,
Prentice Hall, Upper Saddle River, NJ, 1999.

[Welsh 1988] D. Welsh, Codes and Cryptography, Clarendon Press, Oxford, 1988.

Selected Answers

1.01 5, 7, 6 elements, respectively.

1.02 {1, 2, 3, 4, 5, 6, 7}, {3, 4, 5}, {1, 2},
respectively.

1.03 {}, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3}.

1.04 (1, 2), (1, 3), (2, 2), (2, 3), (3, 2),

(3, 3)

1.05 4 choices for the first element, for

each such choice 4 − 1 choices for the

second, for each such choices 4− 2 for the

third, and finally 4 − 3 for the last. This

is 4! = 24.

1.06 10 choices for the first, for each such

choice 10−1 for the second, for each choice

10 − 2 for the third, and then divide by

3! since ordering does not matter. Thus,(
10
3

)
= 120.

1.07
(
7
4

)
= 35

1.08
(
10
2

)
, 10 · 9, respectively.

1.09 For each of the 3 possible inputs

there are 4 possible outputs, so 43 = 64.

1.10 4 choices for the image of 1, for each

such choice, 4 − 1 choices for the image

of 2 (since it must be different from the

image of 1), for each such choices, 4 − 1

choices for the image of 3 (since it must

be different from the images of 1 and 2).

Thus, 4 · 3 · 2.

1.12 Since the target set has just one

fewer element than the source set, there

are exactly two elements among the source

set which must be sent to the same

element of the target. There are
(
4
2

)
choices for a two-element subset of the

source. For each such choice, there are

3! choices for how to allocate the source

elements to different target set elements.

Thus,
(
4
2

)
· 3! = 36.

1.20 Hint: consider the expansion of

(1 + 1)n via the Binomial Theorem.

1.22 Go down the list of all elements in

the set: for each one you have 2 choices,

to include it or to exclude it. Altogether

2n choices.

1.23
(
8
3

)
·
(
8−3
3

)
= 8!

3! 3! 2!

1.24 Send 2n to n.

1.25 Send 0 to 0, send n > 0 to 2n, and

n < 0 to 2|n| − 1.

1.28
(
10
3

)
2−10

1.29 1
2

(
1− 2−10

(
10
5

))
, 1

2

(
1− 2−20

(
20
10

))
,

1.30
(

3
3+7

)2
1.39 The correct answer as well as

intuitively appealing answer is 3
7
· 20,

but justification is needed. Invoke the

theorem which says that the expected

value of a sum of random variables is the

sum of the expected values, applied to

a sum of much simpler random variables

whose sum computes the desired total.

1.40
∑∞

i=0
i · 2−(i+1) = 1 (This equality

386

Answers 387

is not obvious.)

1.53 Use Chebysheff’s inequality.

1.54 Use Chebysheff’s inequality.

1.55 Use Chebysheff’s inequality.

1.56 Use Chebysheff’s inequality.

2.01 15
8

3.01 Start from the Kraft-MacMillan

inequality. With lengths ` at most 5, the

smallest possible value of the summands

2−` in Kraft-MacMillan is 2−5. Thus, we

can have at most 25 = 32 of these.

3.03 By the Noiseless Coding Theorem,

the average word length for any encoding

is at least the entropy H(p1, . . . , pn)

where the pi are the probabilities of the

codewords. Granting that for fixed n the

maximum value of this occurs for all the pi

equal, we have pi = 1/n, and the entropy

is log2 n. Then log2 n ≥ 4 implies that

the number of codewords is n ≥ 16.

3.04 One Huffman coding is to encode

the probability 1
2

source word as ‘1’, 1
4

as ‘01’, 1
8

as ‘001’, 1
16

as ‘0001’, and the

second 1
16

as ‘0000’.

3.07 There will be a length 1 codeword

if and only if there is a source word of

probability at least 1/2. There will be 2 of

length 2 if and only if there are two source

words the sum of whose probabilities is at

least 1/2. There will be 4 of length 3 if and

only if there are four source words the sum

of whose probabilities is at least 1/2.

4.01 1− (1/4)2

4.02 1− (1/6)4

4.03 Hint: one should really use the

theorem that the expected value of a

sum of random variables is the sum of

the expected values. The intuitively

reasonable answer Np is indeed correct,

but does not actually follow easily from

the definition of expected value.

4.08
log2 24

5
= 4

5

4.09 1/2

4.10 Hint: This is the probability that

a non-trivial error occurs in the first 4

bits and exactly the same as the error

occurs in the second 4 bits. There are(
4
i

)
different patterns of i bit errors in the

first 4 bits, and the probability of each

one is pi(1 − p)4−i. The probability that

the same pattern of errors occurs in the

second 4 bits is pi(1 − p)4−i. Thus, the

sum over i = 1, 2, 3, 4 of
(
4
i

)
p2i(1− p)8−2i

is the probability of undetected error.

5.05 0000

5.07 Divide the given polynomial into

x4 − 1 and see that the remainder is 0.

One might even recall the algebra identity

that (x−1)(x3 +x2 +x+1) equals x4−1.

6.02 10

6.03 56

6.04 For N = a0+10a1+100a2+. . . with

each ai an integer in the range 0 ≤ ai <

10, the ones’-place digit is a0. Dividing by

10 shows that the remainder is a0.

6.08 77

6.11 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

and their negatives. To be sure that these

are all we can give a slightly higher-level

argument to count the number of factors,

as follows. Since 60 = 22 ·3 ·5 is the prime

factorization of 60, to make a positive

divisor of 60 we use the same prime factors

raised to (non-negative integer) powers

less than or equal to those occurring in

388 Answers

this prime factorization. Thus, we have 3

choices (0, 1, or 2) of how many factors

of 2 to include, 2 choices (0 or 1) of how

many factors of 3 to include, and similarly

2 choices of how many factors of 5 to

include. 3 · 2 · 2 = 12 positive factors.

6.13 To say that d|m is to say that there

is an integer k such that k · d = m. Then

−k · d = −m, which shows that d divides

−m.

6.15 One really should recognize the

binomial coefficients: 1331 = (1+10)3 and

14641 = (1 + 10)4.

6.16 73

6.17 11

6.18 128

6.19 Since d|n there is an integer a such

that ad = n. Likewise, there is an integer

b such that bd = n + 2. Subtracting,

(b− a)d = (n + 2)− n = 2. Thus d|2.

6.21 We must treat three cases. If n is

divisible by 3, we are done. Otherwise,

either n = 3N + 1 or n = 3N + 2 for

some N . In the case n = 3N + 1, n + 2 =

3N + 1 + 2 is divisible by 3. Similarly, in

the case n = 3N + 2, n + 4 = 3N + 2 + 4

is divisible by 3.

6.26 This is the product of 111 and

1, 001, 001, 001, 001.

6.27 This is the product of 101 and

1, 000, 100, 010, 001.

6.29 n2−1 = (n−1)(n+1) and both the

right-hand-side factors are integers larger

than 1 if n > 2.

6.37 Via the extended Euclidean

Algorithm, 8 = 15 · 1112− 18 · 1544.

6.44 It may be more conceptual to count

the number of partitions of this four-

element set, and to group these by the

sizes of the mutually disjoint subsets

which appear. There is 1 partition with

one subset, there are
(
4
3

)
partitions with

a 3-element and 1-element subsets,
(
4
2

)
/2!

with two 2-element subsets,
(
4
2

)
with a 2-

element and two 1-element subsets, and

1 with four 1-element subsets. Adding

these up, there are 15 partitions, hence

15 equivalence relations.

6.46 n

6.47 8

6.51 Since 32 = −1 mod 10, we have

34 = (−1)2 = 1 mod 10. Since 999 =

4 · 249 + 3, 3999 mod 10 is 34·249+3 =

(34)249 · 33 modulo 10, which simplifies to

1249 · 33 modulo 10, since 34 = 1 mod 10.

6.52 67 Brute force is plausible here. Or

the Extended Euclidean Algorithm.

6.53 This is less palatable by brute force,

but the Extended Euclidean Algorithm

works well and gives −143, equivalently,

1091.

6.54 Obvious solutions 1 and 14, and less

obvious are 4 and 11.

6.55 In addition to the obvious 1 and

104, there are also the less obvious 29, 34,

41, 64, 71, and 76.

6.56 8, 8, and 8

6.60 18

6.61 375

6.62 4 and 83

6.68 No, by Euler’s criterion, since

2(101−1)/2 = −1 mod 101.

6.69 Yes, by Euler’s criterion, since

2(103−1)/2 = 1 mod 103.

6.71 No, by Euler’s criterion, since

2(103−1)/3 = 46 mod 103.

Answers 389

6.75 Let a be such that a2 = b mod p.

Then, modulo p,

(b(p+1)/4)2 = ap+1 = a · a = b

since ap = a mod p by Fermat’s Little

Theorem, so b(p+1)/4 really is a square

root of b.

6.77 Fermat’s Little Theorem. Let rs =

1 + k(p− 1) for some integer k.

(bs)r = b1+k(p−1) = b · 1

since bp−1 = 1 modulo p by Fermat’s

Little Theorem.

6.79 Let rs = 1 + k(p − 1)/r for some

integer k, and ar = b mod p. Then

(bs)r = (ar)1+k(p−1)/r = b · (ap−1)k = b

since ap−1 = 1 modulo p by Fermat’s

Little Theorem.

7.01 (1 2 5) · (3 4) of order lcm(2, 3) = 6

7.03 (1 2 3 4 7 6 5) of order 7

7.05 (
1 2 3 4 5 6 7

5 4 7 6 2 1 3

)
7.07 5·4·3

3
= 20

7.11 6 = lcm(2, 3)

7.12 12 = lcm(3, 4)

7.13 20 = lcm(4, 5)

7.16 Labeling by position modulo 11 =

10+1, a 10-cycle (1 2 4 8 5 10 9 7 3 6 1) since

2 is a primitive root modulo 11 = 10 + 1.

7.18 Note that 15 has no primitive root.

(1 2 4 8) ◦ (3 6 12 9) ◦ (5 10) ◦ (7 14 13 11)

8.01 Roughly, h(xy)h−1 = (hx)e(yh−1)

= (hx)(h−1h)(yh−1) = (hxh−1)(hyh−1)

8.04 The elements 2, 3, 4 have no

multiplicative inverses.

8.11 {0}, {0, 8}, {0, 4, 8, 12},
{0, 2, 4, 6, 8, 10, 12, 14}, and the whole

{0, 1, 2, . . . , 15}.

8.13 {1}, {1, 11}, {1, 7, 19, 13}, {1, 19},
{1, 29}, {1, 17, 19, 23}, {1, 19, 29, 11},
{1, 7, 11, 13, 17, 19, 23, 29}

8.20 An element and its inverse have the

same order.

8.21 4, 3

8.26 All elements are of order 1 or 2.

9.02 Closedness under addition and

multiplication is easy. What may be

surprising is that 3 functions as a

multiplicative identity, namely 3 · 3 =

3 mod 6, and 3 · 0 = 0 mod 6.

9.05 {1, 3}, {1, 2, 3, 4}, {1, 5},
respectively.

9.15 Add −r to both sides to obtain

(using associativity) 0+r = 0, from which

r = 0.

9.16 3 and 5, 6 and 5, 3 and 10, etc.

10.02 x(x − 1)(x − 2)(x − 3)(x − 4)

(Fermat’s Little Theorem may suggest

this.)

10.03 (x3 + x2 + 1)(x2 + x + 1)

10.05 (x + 1)3(x3 + x2 + 1)

10.07 x4 + x2 + 1

10.10 x2 + x + 1

10.12 x3 + x2 + 1

11.01 α + 1

11.03 α2 + α + 1

11.05 α + 1

390 Answers

11.06 α2

11.09 x(x + 1)(x2 + x + 1)

11.10 x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

12.03 4/7

12.05 (1, 2) = −3(3, 4) + 2(5, 7)

12.08 (1, 0, 1) = −(8, 3, 2) + 3(3, 1, 1)

12.09 (1, 0, 1) + (0, 0, 1) + (0, 1, 1)

12.11 (1, 1, 1, 0)+(0, 1, 1, 1)+(1, 1, 0, 1)+

(1, 1, 1, 1)

12.14 C is the rowspace of G, just 4

vectors, (0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 1),

and (0, 1, 1, 0). By direct observation,

the minimum distance to (0, 0, 0, 0) of

the others is 2. So single-bit errors are

detected but not corrected.

12.16 yH> = (0 0) (y is a codeword)

12.18

G =

(
1 0 1 0

1 1 0 1

)

13.01 No. Hamming bound violated:

27 − 17 · (1 + 7) < 0.

13.03 No. Hamming bound violated:

28 − [7 · (1 + 8 + 8 · 7/2)] < 0.

13.04 Yes, by Gilbert-Varshamov:

2(5−2) − 1− (5− 1) > 0.

13.06 No, the Hamming bound is

violated. There are 23 codewords, and

25 − 23 · (1 + 5) < 0.

13.08 Yes, by Gilbert-Varshamov:

2(7−2) − 1− (7− 1)− (7− 1)(7− 2)/2 > 0.

14.01 4

14.03(
1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

)

15.02 3 is one such, and then odd powers

of 3, since ϕ(17) = 16: 3, 10, 5, 11, 14,

7, 12, 6. This computation is easier than

testing all elements modulo 17.

15.04 x2 + x + 1

15.06 ϕ2(x) = x+1, ϕ3(x) = x2 +x+1,

ϕ4(x) = x2+1, ϕ5(x) = x4+x3+x2+x+1,

ϕ6(x) = x2 − x + 1

15.08 x6−x5+x4−x3+x2−x+1, x8+1,

x6 − x3 + 1

15.11 x modulo x2 + x + 1

15.12 x modulo x3 + x + 1

15.15 ϕ105(x) has some coefficients ±2.

16.01 7

16.04 5

16.07 Not x, as x21 = 1 modulo the

polynomial. Rather, x + 1 works.

16.09 By brute force, with initial state

1111, the subsequent states are 0111,

1011, 1101, 1110, 1111, so the initial state

reappears on the 5th step.

16.10 Brute force would be tedious

here. Instead, observe that the associated

polynomial x4 + x3 + 1 is primitive of

degree 4, so for any non-zero initial state

it will take 24 − 1 = 15 steps to return to

the initial state.

16.11 The associated polynomial x5 +

x2 + 1 is primitive, so for any non-zero

initial state it will take 25 − 1 = 31 steps

to return to the initial state.

16.13 The associated polynomial x5 +

x + 1 is the product of two primitive

polynomials x2 + x + 1 and x3 + x2 + 1,

so for any non-zero initial state it will take

Answers 391

lcm((22−1), (23−1)) = 21 steps to return

to the initial state.

16.16 x2 + x modulo 10011 and x2 +

x + 1 modulo 10011. These are x5 and

x10 reduced modulo 10011, and note that

y2 + y + 1 = (y3 − 1)/(y − 1).

17.01 1 · 8− 2 · 7 = −6

17.03 1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8− 7 · 5 ·
3− 8 · 6 · 1− 9 · 4 · 2 = 0

17.05 A Vandermonde determinant: (1−
2)(1− 3)(1− 4)(2− 3)(2− 4)(3− 4) = 12

17.07 To correct e errors the minimum

distance must be ≥ 2 · e + 1, so to correct

5 bit errors, take designed distance 2 · 5 +

1 = 11. For an RS code take generating

polynomial g(x) = (x − 2)(x − 22)(x −
23)(x−24) . . . (x−211−2)(x−211−1). The

length of an RS code using alphabet

GF (13) is 13− 1 = 12. By Fermat’s little

theorem x12 − 1 is the product of all the

linear polynomials x − 2k with 1 ≤ k ≤
13−1, namely x12−1 = (x−2)(x−22)(x−
23)(x− 24) . . . (x− 213−2)(x− 213−1). To

get the check polynomial h(x) we divide

x12 − 1 by g(x) h(x) = (x − 211)(x −
213−1) = x2 + 5x + 7. The generator

polynomial is g(x) = (x12 − 1)/h(x), or

g(x) = x10 + 8x9 + 5x8 + 10x7 + 6x6 +

4x5 + 3x4 + 9x3 + 12x2 + 7x + 11 Insert

the coefficients in descending order into

a 2-by-12 matrix, padding at the right

with 0s in the first line and cycling to the

right until the constant coefficient bumps

against the right edge to obtain generating

matrix (
11 . . . 8 1 0

0 11 . . . 8 1

)

17.11 The exponents in the second

column of the check matrix are 1, 2, 3,

. . ., 8. Repeatedly multiplying by 7 gives

Frobenius-stable set 1, 2, 3, 4, 5, 6, 7,

8, 14, 21, 28, 35, 42 with 13 elements

so the rank of the Frobenius-stable check

matrix is 13 and the dimension of the code

is 48 − 13 = 35. Adjacent exponents

1, 2, . . . , t′ − 1 appear for t′ = 9, so the

minimum distance is ≥ 9.

18.01 Use binary coordinates (a, b) for

a + bα in F4. The 3 non-zero words v

are (1, 0), (0, 1), and (1, 1). Keep in mind

that α2 = 1 + α. The 3 codewords (v, αv)

are (1, α) which has binary encoding

(1, 0, 0, 1), (α, 1 + α) which has binary

encoding (0, 1, 1, 1), and (1 + α, 1) which

has binary encoding (1, 1, 1, 0). Thus, the

minimum distance is 2.

18.05 Use the lemma which asserts that∑
i<c·N

(
N

i

)
≤ 2N·H(c)

where

H(c) = −c log2 c− (1− c) log2 (1− c)

Thus, we want H(c) < 2/3. Numerical

experimentation yields H(.1667) ≈ 0.65.

18.06 Imitate the proof for the mirage

codes. There are (2n−1) · (2n−1) choices

for (α, β), and we want the number of bad

pairs to be less than the total:∑
i<c·3n

(
3n

i

)
≤ (2n − 1)2 − 1

By the lemma, we want

23n·H(c) ≤ (2n − 1)2 − 1

Use (2n − 1)2 − 1 > 22n−1. From 3n ·
H(c) ≤ 2n−1 we see that we want H(c) <

2/3. As computed above H(.1667) works.

With this value of c, for n ≥ 4

23n·H(c) ≤ (2n − 1)2 − 1

392 Answers

That is, for n ≥ 4 there is a choice of α, β

such that the code has minimum distance

at least c · 3n ≈ 1
6
· 3n = n/2. The error-

correction rate is at least 1/6, and the

information rate is 1/3.

19.03 Look at this equation modulo 4,

and realize (check!) that the only squares

mod 4 are 0, 1.

19.04 Look at this modulo 7. The cubes

modulo 7 are 0 and ±1.

19.05 Look at this modulo 9.

19.11 Hint: the polynomial x4+x3+x2+

x+1 is the 5th cyclotomic polynomial, and

F×13 is a cyclic group of order 12 while 5 is

relatively prime to 12.

19.13 First, show that 1 is not in I: if

1 = g(x) · 2 + h(x) · x, then modulo x we

have 1 = g(0) · 2, but this would say that

1 is an even integer, which it is not. Next,

observe that the quotient ring Z[x]/I is

Z/2, since in the homomorphism to the

quotient polynomials lose their higher-

degree terms since x goes to 0. Likewise,

2 goes to 0. (But 1 does not go to 0.)

20.01 The point (1, 0) is an obvious point

on the curve. Consider the line of slope t

through (1, 0), y = t(x − 1). We find its

intersection with the curve x2 − 2y2 = 1

by substituting for y, obtaining x2−2t(x−
1)2 = 1. This quadratic equation has

the root x = 1 and another root x =

(2t2 + 1)/(2t2 − 1). The corresponding

y = t(x − 1) is 2t/(2t2 − 1). Thus, every

rational t gives a solution. Conversely, any

solution other than (1, 0) gives a line of

rational slope, hence is of this form for

some t.

20.04 The projectivization is given by

the homogenized equation x2 − 2y2 = z2.

The points at infinity are those where

z = 0, namely given by the equation

x2−2y2 = 0. If there is a square root α of

2 in whatever the field is, then the points

(±α, 1, 0) (in projective coordinates) are

the points at infinity. If there is no square

root in the underlying field then there are

no points at infinity.

20.05 The gradient of the function

f(x, y) = x2 − 2y2 is (2x,−4y). If the

characteristic of the underlying field is not

2, this vector is the zero vector only for x,

y both 0, which is a point not on the curve.

That is, there are no singular points in the

affine plane.

20.06 From an earlier exercise, just

above, if there is no square root of 2 in the

underlying field, then there are no points

at infinity. If there is a square root α of

2, then there are points (±α, 1, 0). If the

characteristic of the field is not 2, then

the gradient (2x,−4x,−2z) of f(x, y, z) =

x2−2y2−z2 does not vanish there, so these

points are non-singular.

Index

abelian group 146

addition modulo P 197

addition of polynomials 84

additive identity 167

additive inverse 167

additivity of degrees 179

affine plane 343

algebraic closure 339

algebraic curve 335

algebraic derivative 244

algebraic geometry code 354

alphabet 45

ambiguous decoding 201

atomic event 13

augmented matrix 216

automorphism 327

average word length 51

ball of radius r 228

basis 363

BCH codes 287

Bezout’s theorem 347

big-oh notation 73

bijective 3

binary code 54, 218

binary erasure channel 62

binary symmetric channel 62

binomial coefficient 6

binomial distribution 24

Binomial Theorem 6, 7, 118

birthday paradox 31

bit 37

bit error probability 62

bits per symbol 68

block interleaver 141

Bose-Chaudhuri-Hocquengham codes 287

Braille 46

burst errors 91

cancellation property 168

cardinality 3

cartesian power 2, 17

cartesian product 2, 17

channel capacity 67, 68

channel matrix 62

characteristic of field 241

characteristic polynomial 270

characters 45

Chebysheff inequality 27

check matrix 236, 280

checksum 87

Chinese remainder theorem 124

closure under group operation 147

closure under inverses 147

coefficients of polynomial 83, 178

coin, fair 9

column operations 211

column vector 211

common multiple 97

commutative ring 116, 168

compact code 54

components of vector 209

composite function 4

composition of permutations 135

compound event 13

compression 44

393

394 Index

concatenated codes 297, 301

conditional entropy 42

conditional probability 16

congruence 111

congruence class 193, 112

congruent modulo m 111

coprime 97

coset 148, 224

coset leader 225

counting irreducibles 329

counting primitive roots 256

counting primitives 331

CRC 86, 272

curves 335

cycles 135

cyclic 158

cyclic codes 235, 282, 287

cyclic redundancy checks 86

cyclic subgroup 153

cyclotomic polynomial 247

cylinders 20

data polynomial 86

decimal 46

decoding 63

decomposition into disjoint cycles 136

degree of divisor 351

degree of field extension 319

degree of polynomial 83, 178 195

derivative 244

designed distance 282

diagonal 210

dimension 208, 211, 364

discrete logarithm 120

discrete memoryless channel 61

disjoint 2

disjoint cycles 136

distinct 5

distributive 167

divides 96, 182

divisibility 181

division algorithm 93

division of polynomials 85

division ring 168

divisor 96, 348, 351

dot product 210, 371

dual basis 368

dual code 222

dual space 368

efficient code 54

eigenvectors 270

element 2

elementary column operations 211

elementary row operations 211

elliptic curve 342

encoding 45

entries of vector 209

entropy 33, 37, 39

equivalence class 109, 112

equivalence relation 108, 109

erasure channel 62

erasures 36

error polynomial 88

error probability 62

error vector 88

Euclidean algorithm 105, 181, 187

Euler criterion 121

Euler phi-function 97, 118, 128

Euler totient function 97

Euler’s theorem 118, 154

evaluation homomorphism 173

evaluation map 173

event 13

exclusive-or 87

expected value 20

exponent 247

exponent of group 155

exponents 151

extension field 195, 319

factorial 5

factorization 100

failure of unique factorization 103

failure to detect error 88

fair coin 9

fair wager 21

fast modular exponentiation 122

Index 395

Fermat’s Little Theorem 117

field 193

field 115, 168, 175

field extension 195

field of definition of curve 336

field of fractions 349

field of functions 350

field of rational functions 348

finite field 82, 115, 192, 193

finite group 148

finite-dimensional 364

floor function 73, 221

Frobenius automorphism 321

Frobenius map 289, 321

function 3

functional 368

Galois field 82, 193

gcd 97, 105, 182

generating functions 25

generating matrix 219, 230

generating polynomial 282

generating polynomial for LFSR 267

generating polynomial of CRC 86

generator of group 158

generators of ideal 312

genus 348, 352

geometric Goppa codes 353

Gilbert-Varshamov bound 230

Goppa codes 353

gradient 340

greatest common divisor 97, 105, 182

group 145

group homomorphism 156

group identity 145

group inverse 146

group of units 168

Hamming [7, 4] code 205

Hamming bound 230

Hamming codes 285

Hamming decoding 207

Hamming distance 66, 228

Hamming weight 66, 88 228

Hartley 39

Hasse-Weil inequality 355

hermitian curve 355

hexadecimal 46

homogeneous coordinates 343

homogenize 344

homogenized equation 345

homomorphism 156, 171 313, 365

Huffman encoding 54

hyperelliptic curve 341

ideal 172, 309

identity 167

identity function 4

identity in a group 145

identity matrix 210

i.i.d. 45

image 156, 365

independent 12

independent events 17

independent random variables 22

independent trials 14

indeterminate 83

index 120

index of subgroup 150

infinite 4

infinity, points at 342

information 33

information positions 220

information rate 34, 71

initial state 267

injective 3

inner code 301

inner product 210, 371

input alphabet 61

instantaneous code 47

integers modulo m 108, 111, 112

integers modulo primes 83, 115

integral domain 168

interleaver 141

intersection 2

intersection divisor 352

inverse function 4

inverse in group 146

396 Index

inverse permutation 135

inverses modulo P 197

irreducible 182

irreducible polynomial 90

isomorphism 158, 171 313, 365

joint entropy 40

Justesen codes 303

kernel 156, 172, 313, 365

Kraft inequality 48

Lagrange replacement principle 363

Lagrange theorem 148

law of large numbers 28

laws of exponents 151

left coset 148

left ideal 313

left translate 148

length 48

LFSR 267

limiting frequency 11, 15

linear [n, k]-code 220

linear algebra 360

linear codes 200, 218, 282, 287

linear combination 362

linear dependence 209, 215, 362

linear feedback shift register 267

linear functional 368

linear independence 209, 362

linear system 352

linear systems on curves 348

list 1

look-ahead 47

MacMillan inequality 48

majority vote 36

map 3

mapping 3

Markov inequality 27

matrix 210

maximal ideal 318

maximum-likelihood decoding 66, 71

maximum-likelihood rule 66

MDS code 232, 285

meet 2

memoryless source 44

minimum-distance 221

minimum-distance decoding 67, 71, 221

minimum-distance separating code 232

minimum-distances in linear codes 234

minimum-error rule 66

mirage codes 297

modular curves 355

modular exponentiation 122

modulus 94

monic polynomial 179

Monty Hall paradox 31

multiple 96, 182

multiple factors 243

multiplication modulo P 197

multiplication of polynomials 84

multiplicative inverse 168

multiplicative inverse modulo m 96, 107

multiplicative inverses modulo P 197

multiplicity 347

mutually disjoint 14

mutually exclusive 14

mutually prime 97

noise 61

noiseless coding 44

noiseless coding theorem 51

noiseless decoding 33

noisy coding theorem 72

non-existence of primitive roots 257

non-singular curve 340

non-unique factorization 103

one-to-one 3

onto 3

optimal code 54

optimality of Huffman encoding 58

order of a permutation 138

order of group 148

order of shuffle 141

ordered k-tuple 5

ordered pair 2

Index 397

ordering 5

orthogonal complement 369

outer code 301

output alphabet 61

overhand shuffle 139

pair 2

parity-check 63, 82

parity-check bit 82, 86, 87

parity-check condition 224

parity-check matrix 224, 280

parity-check positions 220

partition 111

perfect code 230

perfect field 245

period of LFSR 270

permutation 134

phi-function 97, 118, 128

pigeon-hole principle 155

pivot 212

planar curve 335

point at infinity 342, 343

polynomial 83, 178

polynomial ring 178

power, cartesian 2

power residues 121

power set 3

powers in a group 162

prefix 47

prefix code 47

primality test 102, 184

prime factorization 102

prime number 97

primitive element 240, 252

primitive polynomial 90, 260, 331

primitive root 120, 241, 253, 256

primitivity test 264

principal ideal 310

probability 8

probability measure 13

product, cartesian 2

product of permutations 135

product random variable 22

projective plane 343

projective plane curve 342

proper divisior 97, 184

proper ideal 310

proper subset 2

properties of exponents 151

pseudo-random numbers 267

quotient homomorphism 318

quotient ring 317

random variable 20

rate 71, 203

rational curve 341

rational points on curve 336

real-life CRCs 88

reduced form 194, 195, 219

reduced modulo P 193

reduction 181

reduction algorithm 93

reduction homomorphism 172

reduction modulo m 93

redundancy 33, 34

Reed-Solomon code 282

reflexivity 109

relation on a set 109

relative error correction 284

relatively prime 97

repeated factors 243

replacement principle 363

representative for equivalence class 110

residue class 112

retransmission 36

Riemann-Roch theorem 352

riffle shuffle 140

right ideal 313

ring 116, 167

ring homomorphism 171

roots in a group 162

roots modulo primes 121

row operations 211

row reduced 212

row reduction 213

row space 212, 220

RS code 282

398 Index

rule 2

sample space 13

scalar multiple 209

scalar product 210, 371

second dual 370

seed 267

self-information 37

semantics-based error correction 35

set 1

shuffle 139

Singleton bound 232, 285

singular point of curve 340

singularities of curves 339

source words 44, 220

span 362

sphere-packing bound 230

stabilizer subgroup 328

standard basis 365

standard deviation 24

standard form 219

Stirling’s formula 356

stochastic matrix 62

strings 45

subfield 195, 319

subgroup 147

subgroup generated by g 153

subgroup index 150

subring 309

subset 2

subspace spanned 362

sum random variable 22

Sun-Ze’s theorem 124

supercode 301

support of divisor 351

surjective 3

symmetric group 134

symmetry 109

syndrome 224

syndrome decoding 222

syntax-based error correction 35

systematic 220

systematic form 219

test primality 102

testing for primitivity 264

total degree 344

transition matrix 269

transition probabilities 62

transitivity 109

translate 148

transpose 210

trial 9

trial division 102, 184

triangle inequality 203, 229

trivial ideal 310

trivial permutation 135

Tsfasman-Vladut-Zink-Ihara bound 354

uncertainty 33

uncorrectible error 201

undetectable error 201

union 2

unique decipherability 46

unique factorization 100, 189

unit 167

unordered list 1

Vandermonde determinant 277

Vandermonde matrix 277

variance 20, 24

variant check matrix 280

Varshamov-Gilbert bound 230

vector 208

vector space 360

vector subspace 362

vector sum 209

volume of ball 228

Weak Law of Large Numbers 28

word error probability 71

word length 48

XOR checksum 87

zero divisor 168

zero matrix 211

zero vector 209

