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Introduction

These notes are intended to provide a first view of Lie theory accessible to mathematics undergrad-

uates. Although the prerequisites are kept as low level as possible, the material is sophisticated and

contains many of the key themes of the mature subject. In order to achieve this we confine ourselves

to matrix groups, i.e., closed subgroups of general linear groups. One of the main results that we prove

shows that every matrix group is in fact a Lie subgroup, the proof being modelled on that in the expos-

itory paper of Howe [5]. Indeed the latter paper together with the book of Curtis [4] played a central

part in setting our goals for the course based on these notes.

Of course, the classical Lie groups are easily introduced at undergraduate level, and it is possible

to discuss many of their features. The spinor groups are also introduced and through them the rôle of

global topology.

In Chapter 1 the general linear groups GLn(k) where k = R, the real numbers, or k = C, the complex

numbers, are introduced and studied as both groups and topological spaces. Matrix groups are defined

and a number of standard examples are discussed, including the unimodular groups SLn(k), orthogonal

O(n) and special orthogonal groups SO(n), unitary U(n) and special unitary groups SU(n), as well as

more exotic examples such as Lorentz groups and symplectic groups. The relation of complex to real

matrix groups is also studied and finally the exponential map for the general linear groups is introduced.

In Chapter 2 the Lie algebra of a matrix group is defined. The special cases of SU(2) and SL2(C)

and their relationships with SO(3) and the Lorentz group are studied in detail.

In Chapter 3 the units in a finite dimensional algebra over R or C are studied as a source of matrix

groups using the reduced regular representation. The quaternions and more generally the real Clifford

algebras are defined and spinor groups constructed and shown to double cover the special orthogonal

groups. The quaternionic symplectic groups Sp(n) are also defined, thus completing the list of compact

classical groups and their universal covers.

In Chapter 4 we define the idea of a Lie group and show that all matrix groups are Lie subgroups of

general linear groups.

In Chapter 5 we discuss homeogeneous spaces and show how to recognise them as orbits of smooth

actions. Then in Chapter 6 we discuss connectivity of Lie groups and use homogeneous spaces to prove

that many familiar Lie groups connected.

In Chapter 7 the basic theory of compact connected Lie groups and their maximal tori is studied

and the relationship to well known diagonalisation results highlighted.

I would like to thank the Universität Bern for inviting me to visit and teach a course in the spring of

2000; particular thanks go to the students who spotted numerous errors and obscurities and Z. Balogh

who helped with the problem classes. Thanks also the mathematicians of Glasgow, especially R. Odoni.

Finally, many thanks to the topologists and fellow travellers of Manchester University from whom I learnt

much of my mathematics.
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CHAPTER 1

Real and complex matrix groups

1. Groups of matrices

In these notes we will usually consider the cases of the fields k = R, the real numbers, and k = C, the

complex numbers. However, the general framework of this section is applicable for any (commutative)

field k. Actually, much of it applies to the case of a general division algebra, with the example of the

quaternions discussed in Chapter 3 being of most interest to us.

Let Mm,n(k) be the set of m× n matrices with entries in k. We will denote (i, j) entry of an m× n
matrix A by Aij or aij ,

A = [aij ] =


a11 · · · a1n

...
. . .

...

am1 · · · amn

 .
We set Mn(k) = Mn,n(k). Then Mn(k) is a (not usually commutative) ring under the usual addition and

multiplication of matrices, with identity In. Recall the determinant function det : Mn(k) −→ k.

Proposition 1.1. det : Mn(k) −→ k has the following properties.

a) For A,B ∈ Mn(k), det(AB) = detAdetB.

b) det In = 1.

c) A ∈ Mn(k) is invertible if and only if detA 6= 0.

We use the notation

GLn(k) = {A ∈ Mn(k) : detA 6= 0}

for the set of invertible n× n matrices, and

SLn(k) = {A ∈ Mn(k) : detA = 1} ⊆ GLn(k)

for the set of n× n unimodular matrices.

Theorem 1.2. The sets GLn(k), SLn(k) are groups under matrix multiplication. Furthermore,

SLn(k) is a subgroup of GLn(k), i.e., SLn(k) 6 GLn(k).

GLn(k) is called the n × n general linear group , while SLn(k) is called the n × n special linear or

unimodular group. When k = R or k = C we will refer to GLn(R) and GLn(C) as the real and complex

general linear groups. Of course, we can also consider subgroups of these groups, but before doing so we

consider the topology of Mn(R) and Mn(C).

2. Groups of matrices as metric spaces

In this section we assume that k = R,C. We may view Mn(k) as a vector space over k of dimension

n2. We will define a norm on Mn(k) as follows. Let k
n be the set of n × 1 matrices over k, and for

x ∈ k
n let

|x| =
√
|x1|2 + · · ·+ |xn|2, where x =


x1

...

xn

 .
1



2 1. REAL AND COMPLEX MATRIX GROUPS

For A ∈ Mn(k) consider the set

SA =
{
|Ax|
|x|

: 0 6= x ∈ k
n

}
.

It turns out that SA is bounded and so we can define the real number

‖A‖ = sup SA.

Putting

S1
A =

{
|Ax|
|x|

: x ∈ k
n, |x| = 1

}
,

we have

‖A‖ = sup S1
A = max S1

A,

since {x ∈ k
n : |x| = 1} is compact.

Remark 1.3. The following gives a procedure for calculating ‖A‖; it may be familiar from numerical

linear algebra where it is also used.

All the eigenvalues of the positive hermitian matrix A∗A are non-negative real numbers, hence it has

a largest non-negative real eigenvalue λ. Then

‖A‖ =
√
λ.

In fact, for any unit eigenvector v of A∗A for the eigenvalue λ, ‖A‖ = |Av|.
When A is real, A∗A = ATA is real positive symmetric and there are unit eigenvectors w ∈ R

n ⊆ C
n

of A∗A for the eigenvalue λ for which ‖A‖ = |Aw|. In particular, this shows that ‖A‖ is independent of

whether A is viewed as a real or complex matrix.

Proposition 1.4. ‖ ‖ is a k-norm on Mn(k), i.e.,

a) ‖tA‖ = |t| ‖A‖ for t ∈ k, A ∈ Mn(k);

b) ‖AB‖ 6 ‖A‖ ‖B‖ for A,B ∈ Mn(k);

c) ‖A+B‖ 6 ‖A‖+ ‖B‖ for A,B ∈ Mn(k);

d) ‖A‖ = 0 if and only if A = 0.

This norm ‖ ‖ is called the operator or sup (= supremum) norm. We define a metric ρ on Mn(k) by

ρ(A,B) = ‖A−B‖.

Associated to this metric is a natural topology on Mn(k), which allows us to define continuous functions

Mn(k) −→ X into a topological space X.

For A ∈ Mn(k) and r > 0, let

NMn(k)(A; r) = {B ∈ Mn(k) : ‖B −A‖ < r},

which is the open disc of radius r in Mn(k). Similarly if Y ⊆ Mn(k) and A ∈ Y , set

NY (A; r) = {B ∈ Y : ‖B −A‖ < r} = NMn(k)(A; r) ∩ Y.

Then a subset V ⊆ Y is open in Y if and only if for every A ∈ V , there is a δ > 0 such that NY (A; δ) ⊆ V .

Definition 1.5. Let Y ⊆ Mn(k) and (X,T) be a topological space. Then a function f : Y −→ X is

continuous or a continuous map if for every A ∈ Y and U ∈ T such that f(A) ∈ U , there is a δ > 0 for

which

B ∈ NY (A; δ) =⇒ f(B) ∈ U.

Equivalently, f is continuous if and only if for U ∈ T, f−1U ⊆ Y is open in Y .
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Recall that for a topological space (X,T), a subset W ⊆ X is closed if X −W ⊆ X is open. Yet

another alternative formulation of the definition of continuity is that f is continuous if and only if for

every closed subset W ⊆ X, f−1W ⊆ Y is closed in Y .

In particular we may take X = k and T to be the natural metric space topology associated to the

standard norm on k and consider continuous functions Y −→ k.

Proposition 1.6. For 1 6 r, s 6 n, the coordinate function

coordrs : Mn(k) −→ k; coordrs(A) = Ars

is continuous.

Proof. For the standard unit basis vectors ei (1 6 i 6 n) of k
n, we have

|Ars| 6

√√√√ n∑
i=1

|Ais|2

=

∣∣∣∣∣
n∑
i=1

Aisei

∣∣∣∣∣
= |Aes|

6 ‖A‖.

So for A,A′ ∈ Mn(k),

|A′rs −Ars| 6 ‖A′ −A‖.

Now given A ∈ Mn(k) and ε > 0, ‖A′ − A‖ < ε implies |A′rs − Ars| < ε. This shows that the function

coordrs is continuous at every A ∈ Mn(k). �

Corollary 1.7. If f : k
n2 −→ k is continuous, then the associated function

F : Mn(k) −→ k; F (A) = f((Aij)16i,j6n),

is continuous.

Corollary 1.8. The determinant det : Mn(k) −→ k and trace tr : Mn(k) −→ k are continuous

functions.

Proof. The determinant is the composite of the continuous function Mn(k) −→ k
n2

(which identifies

Mn(k) with k
n2

) and a polynomial function k
n2 −→ k (which is also continuous). Similarly for the trace,

trA =
n∑
i=1

Aii.

�

There is a sort of converse of these results.

Proposition 1.9. For A ∈ Mn(k),

‖A‖ 6
n∑

i,j=1

|Aij |.



4 1. REAL AND COMPLEX MATRIX GROUPS

Proof. Let x = x1e1 + · · ·+ xnen with |x| = 1. Then since each |xk| 6 1,

|Ax| = |x1Ae1 + · · ·+ xnAen|

6 |x1Ae1|+ · · ·+ |xnAen|

6 |Ae1|+ · · ·+ |Aen|

6

√√√√ n∑
i=1

A2
i1 + · · ·+

√√√√ n∑
i=1

A2
in

6
n∑

i,j=1

|Aij |.

Since this is true for all vectors x with |x| = 1, by definition of ‖A‖,

‖A‖ 6
n∑

i,j=1

|Aij |.

�

In fact, Mn(k) is complete with respect to the norm ‖ ‖.

Definition 1.10. A sequence {Ar}r>0 for which the following holds is a Cauchy sequence.

• For every ε > 0, there is an N such that r, s > N implies ‖Ar −As‖ < ε.

Theorem 1.11. For k = R,C, every Cauchy sequence {Ar}r>0 in Mn(k) has a limit lim
r→∞

Ar.

Furthermore,

( lim
r→∞

Ar)ij = lim
r→∞

(Ar)ij .

Proof. By Proposition 1.6, the limit on the right hand side exists, so it is sufficient to show that

the required matrix limit is the matrix A with

Aij = lim
r→∞

(Ar)ij .

The sequence {Ar −A}r>0 satisfies

‖Ar −A‖ 6
n∑

i,j=1

|(Ar)ij −Aij | → 0

as r →∞, so by Proposition 1.9, Ar → A. �

It can be shown that the metric topologies induced by ‖ ‖ and the usual norm on k
n2

agree in the

sense that they have the same open sets (actually this is true for any two norms on k
n2

). We summarise

this in a useful criterion whose proof is left as an exercise.

Proposition 1.12. A function F : Mm(k) −→ Mn(k) is continuous with respect to the norms ‖ ‖ if

and only if each of the component functions Frs : Mm(k) −→ k is continuous.

A function f : Mm(k) −→ k is continuous with respect to the norm ‖ ‖ and the usual metric on k if

and only if it is continuous when viewed as a function k
m2 −→ k.

We now consider the topology of some subsets of Mn(k), in particular some groups of matrices.

Proposition 1.13. If k = R,C,

a) GLn(k) ⊆ Mn(k) is an open subset;

b) SLn(k) ⊆ Mn(k) is a closed subset.
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Proof. We have seen that the function det : Mn(k) −→ k is continuous. Then

GLn(k) = Mn(k)− det−1{0},

which is open since {0} is closed, hence (a) holds. Similarly,

SLn(k) = det−1{1} ⊆ GLn(k),

which is closed in Mn(k) and GLn(k) since {1} is closed in k, so (b) is true. �

The addition and multiplication maps add,mult : Mn(k) × Mn(k) −→ Mn(k) are also continuous

where we take the product metric space topology on the domain. Finally, the inverse map

inv : GLn(k) −→ GLn(k); inv(A) = A−1,

is also continuous since each entry of A−1 has the form

polynomial in Aij ’s
detA

which is a continuous function of the entries of A and so is a continuous function of A itself.

Definition 1.14. Let G be a topological space and view G × G as the product space (i.e., give it

the product topology). Suppose that G is also a group with multiplication map mult : G×G −→ G and

inverse map inv : G −→ G. Then G is a topological group if mult, inv are continuous.

The most familiar examples are obtained from arbitrary groups G given discrete topologies. In

particular all finite groups can be viewed this way.

Theorem 1.15. For k = R,C, each of the groups GLn(k),SLn(k) is a topological group with the

evident multiplication and inverse maps and the subspace topologies inherited from Mn(k).

3. Matrix groups

Definition 1.16. A subgroup G 6 GLn(k) which is also a closed subspace is called a matrix group

over k or a k-matrix group. If we wish to make the value of n explicit, we say that G is a matrix subgroup

of GLn(k).

Before considering some examples and properties, we record the following useful fact.

Proposition 1.17. Let G 6 GLn(k) be a matrix subgroup and H 6 G a closed subgroup of G. Then

H 6 GLn(k) is a matrix subgroup.

Proof. Every sequence {An}n>0 in H with a limit in GLn(k) actually has its limit in G since each

An ∈ H ⊆ G and G is closed in GLn(k). Since H is closed in G, this means that {An}n>0 has a limit in

H. So H is closed in GLn(k), showing it is a matrix subgroup. �

Example 1.18. SLn(k) 6 GLn(k) is a matrix group over k.

Proof. By Proposition 1.13, SLn(k) is closed in Mn(k) and SLn(k) ⊆ GLn(k). �

Definition 1.19. A closed subgroup H 6 G of a matrix group G is called a matrix subgroup of G.

Proposition 1.20. A matrix subgroup H 6 G of a matrix group G is a matrix group.

Proof. This is a direct consequence of Proposition 1.17. �
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Example 1.21. We can consider GLn(k) as a subgroup of GLn+1(k) by identifying the n×n matrix

A = [aij ] with

[
A 0

0 1

]
=


a11 · · · a1n 0
...

. . .
...

...

an1 · · · ann 0

0 · · · 0 1


and it is easily verified that GLn(k) is closed in GLn+1(k), hence GLn(k) is a matrix subgroup of

GLn+1(k).

Restricting this embedding to SLn(k) we find that it embeds as a closed subgroup of SLn+1(k) 6

GLn+1(k). Hence SLn(k) is a matrix subgroup of SLn+1(k).

More generally, any matrix subgroup of GLn(k) can also be viewed as a matrix subgroup of GLn+1(k)

with the aid of this embedding.

Given a matrix subgroup G 6 GLn(k), it will often be useful to restrict the determinant to a function

detG : G −→ k
×, where detGA = detA; we usually write this as det when no ambiguity can arise. This

is a continuous group homomorphism.

When k = R, we set

R
+ = {t ∈ R : t > 0}, R

− = {t ∈ R : t < 0}, R
× = R

+ ∪ R
−.

Notice that R
+ is a subgroup of GL1(R) = R

× which is both closed and open as a subset, while R
− is

an open subset; hence R
+ and R

− are clopen subsets, i.e., both closed and open. For G 6 GLn(R),

det−1
G R

+ = G ∩ det−1 GLn(R),

and also

G = det−1
G R

+ ∪ det−1
G R

−.

Hence G is a disjoint union of the clopen subsets

G+ = det−1
G R

+, G− = det−1
G R

−.

Since In ∈ G+ = det−1
G R

+, the component G+ is never empty. Indeed, G+ is a closed subgroup of G,

hence it is a matrix subgroup of GLn(R). When G− 6= ∅, the space G is not connected since it is the

union of two disjoint open subsets. When G− = ∅, G = G+ may or may not be connected.

If k = R,C, recall that a subset X ⊆ k
m is compact if and only of it is closed and bounded.

Identifying subsets of Mn(k) with subsets of k
n2

, we can specify compact subsets of Mn(k). A matrix

group G 6 GLn(k) is compact if it is compact as a subset of Mn(k) ⊇ GLn(k). The following result is

standard for metric spaces.

Proposition 1.22. X ⊆ Mn(k) is compact if and only if the following two conditions are satisfied:

• there is a b ∈ R
+ such that for all A ∈ X, ‖A‖ 6 b;

• every Cauchy sequence {Cn}n>0 in X has a limit in X.

Finally, we have the following characterisation of compact sets which is usually taken as the definition

of a compact topological space.

Theorem 1.23 (Heine-Borel Theorem). X ⊆ Mn(k) is compact if and only if every open cover

{Uα}α∈Λ of X contains a finite subcover {Uα1 , . . . , Uαk}.
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4. Some examples of matrix groups

In this section we discuss some important examples of real and complex matrix groups.

For n > 1, an n× n matrix A = [aij ] is upper triangular if it has the form

a11 a12 · · · · · · · · · a1n

0 a21
. . . . . . . . . a2n

0 0
. . . . . . . . .

...
...

...
. . . an−2n−2

. . .
...

...
...

. . . 0 an−1n−1

...

0 0 · · · 0 0 ann


,

i.e., aij = 0 if i < j. A matrix is unipotent if it is upper triangular and also has all diagonal entries equal

to 1, i.e., aij = 0 if i < j and aii = 1.

The upper triangular or Borel subgroup) of GLn(k) is

UTn(k) = {A ∈ GLn(k) : A is upper triangular},

while the unipotent subgroup of GLn(k) is

SUTn(k) = {A ∈ GLn(k) : A is unipotent}.

It is easy to see that UTn(k) and SUTn(k) are closed subgroups of GLn(k). Notice also that SUTn(k) 6

UTn(k) and is a closed subgroup.

For the case

SUT2(k) =

{[
1 t

0 1

]
∈ GL2(k) : t ∈ k

}
6 GL2(k),

the function

θ : k −→ SUT2(k); θ(t) =

[
1 t

0 1

]
,

is a continuous group homomorphism which is an isomorphism with continuous inverse. This allows us

to view k as a matrix group.

The n-dimensional affine group over k is

Affn(k) =

{[
A t

0 1

]
: A ∈ GLn(k), t ∈ k

n

}
6 GLn+1(k).

This is clearly a closed subgroup of GLn+1(k). If we identify the element x ∈ k
n with

[
x

1

]
∈ k

n+1, then

since [
A t

0 1

][
x

1

]
=

[
Ax + t

1

]
,

we obtain an action of Affn(k) on k
n. Transformations of k

n having the form x 7→ Ax+t with A invertible

are called affine transformations and they preserve lines (i.e., translates of 1-dimensional subspaces of

the k-vector space k
n). The associated geometry is affine geometry has Affn(k) as its symmetry group.

Notice that we can view the vector space k
n itself as the translation subgroup of Affn(k),

Transn(k) =

{[
In t

0 1

]
: t ∈ k

n

}
6 Affn(k),

and this is a closed subgroup.
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For n > 1,

O(n) = {A ∈ GLn(R) : ATA = In},

is the n× n real orthogonal group where AT is the transpose of A = [aij ],

(AT )ij = aji.

It is easy to see that every orthogonal matrix A ∈ O(n) has an inverse, namely AT . Moreover, the

product of two orthogonal matrices is orthogonal since (AB)T = BTAT . Hence O(n) ⊆ GLn(R). If

A,B ∈ O(n) then

(AB)T (AB) = BTATAB = BInB
T = BBT = In,

hence O(n) is closed under multiplication. Notice also that In ∈ O(n). Together these facts imply that

O(n) 6 GLn(R), i.e., O(n) is a subgroup of GLn(R).

The single matrix equation ATA = In is equivalent to n2 equations for the n2 real numbers aij ,

(1.1)
n∑
k=1

akiakj = δij

where the Kronecker symbol δij is defined by

δij =

1 if i = j,

0 if i 6= j.

This means that O(n) is a closed subset of Mn(R) and hence of GLn(R).

Let us consider the determinant function restricted to O(n), det : O(n) −→ R
×. Then for A ∈ O(n),

det In = det(ATA) = detAT detA = (detA)2,

hence detA = ±1. So we have

O(n) = O(n)+ ∪O(n)−,

where

O(n)+ = {A ∈ O(n) : detA = 1}, O(n)− = {A ∈ O(n) : detA = −1}.

The subgroup SO(n) = O(n)+ is called the n× n special orthogonal group.

One of the main reasons for the study of these groups SO(n),O(n) is their relationship with isometries

where an isometry of R
n is a distance preserving function f : R

n −→ R
n. If such an isometry fixes

the origin 0 then it is actually a linear transformation and so with respect to say the standard basis

corresponds to a matrix A. The isometry condition is equivalent to the fact that

Ax ·Ay = x · y (x,y ∈ R
n),

which is in turn equivalent to the condition that ATA = In, i.e., A is orthogonal. Elements of SO(n) are

called direct isometries or rotations; elements of O(n)− are sometimes called indirect isometries.

A more general situation is associated with an n × n real symmetric matrix Q. Then there is an

analogue of the orthogonal group,

OQ = {A ∈ GLn(R) : ATQA = Q}.

It is easy to see that this is a closed subgroup of GLn(R) and so is a matrix group. Moreover, if detQ 6= 0,

for A ∈ OQ we have detA = ±1. We can also define

O+
Q = det−1

R
+, O−Q = det−1

R
−

and can write OQ as a disjoint union of clopen subsets OQ = O+
Q ∪O−Q where O+

Q is a subgroup.



4. SOME EXAMPLES OF MATRIX GROUPS 9

An important example of this occurs in relativity where n = 4 and

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

The Lorentz group Lor is the closed subgroup of O+
Q ∩SL2(R) which preserves each of the two connected

components of the hyperboloid

x2
1 + x2

2 + x2
3 − x2

4 = −1.

A similar construction can be carried out starting with an n× n real skew symmetric matrix S, i.e.,

ST = −S. If detS 6= 0 then it turns out that n has to be even, so n = 2m. The standard example is

built up from 2× 2 blocks

J =

[
0 −1

1 0

]
and we get

J2m =


J O2 · · · O2

O2 J · · · O2

...
...

. . .
...

O2 O2 · · · J

 .
The matrix group

Symp2m(R) = {A ∈ GL2m(R) : ATJ2mA = J2m} 6 GL2m(R),

is called the 2m×2m real symplectic group. It is easily checked that Symp2(R) = SL2(R), but in general

Symp2m(R) 6= SL2m(R).

Symplectic geometry has become extremely important and is the natural geometry associated to

Hamiltonian mechanics and therefore to quantum mechanics; it is also important as an area of differential

geometry and in the study of 4-dimensional manifolds. The symplectic groups are the natural symmetry

groups of such geometries.

For A = [aij ] ∈ Mn(C),

A∗ = (A)T = (AT ),

is the hermitian conjugate of A, i.e., (A∗)ij = aji. The n× n unitary group is the subgroup

U(n) = {A ∈ GLn(C) : A∗A = I} 6 GLn(C).

Again the unitary condition amounts to n2 equations for the n2 complex numbers aij (compare Equation

(1.1)),

(1.2)
n∑
k=1

akiakj = δij .

By taking real and imaginary parts, these equations actually give 2n2 bilinear equations in the 2n2 real

and imaginary parts of the aij , although there is some redundancy.

The n× n special unitary group is

SU(n) = {A ∈ GLn(C) : A∗A = I and detA = 1} 6 U(n).
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Again we can specify that a matrix is special unitary by requiring that its entries satisfy the (n2 + 1)

equations

(1.3)


∑n
k=1 akiakj = δij (1 6 i, j 6 n),

detA = 1.

Of course, detA is a polynomial in the aij . Notice that SU(n) is a normal subgroup of U(n), SU(n)/U(n).

The dot product on R
n can be extended to C

n by setting

x · y = x∗y =
n∑
k=1

xkyk,

where

x =


x1

...

xn

 , y =


y1

...

yn

 .
Note that this is not C-linear but satisfies

(ux) · (vy) = uv(x · y).

This dot product allows us to define the length of a complex vector by

|x| =
√

x · x

since x · x is a non-negative real number which is zero only when x = 0. Then a matrix A ∈ Mn(C) is

unitary if and only if

Ax ·Ay = x · y (x,y ∈ C
n).

5. Complex matrix groups as real matrix groups

Recall that the complex numbers can be viewed as a 2-dimensional real vector space, with basis 1, i

for example. Similarly, every n×n complex matrix Z = [zij ] can also be viewed as a 2n× 2n real matrix

as follows.

We identify each complex number z = x+ yi with a 2× 2 real matrix by defining a function

ρ : C −→ M2(R); ρ(x+ yi) =

[
x −y
y x

]
.

This turns out to be an injective ring homomorphism, so we can view C as a subring of M2(R), i.e.,

im ρ =

{[
a b

c d

]
∈ M2(R) : d = a, c = −b

}
.

Notice that complex conjugation corresponds to transposition, i.e.,

(1.4) ρ(z) = ρ(z)T .

More generally, given Z = [zij ] ∈ Mn(C) with zrs = xrs + yrsi, we can write

Z = [xij ] + i[yij ]

where the two n× n matrices X = [xij ], Y = [yij ] are real symmetric.

Define a function

ρn : Mn(C) −→ M2n(R); ρn(Z) =

[
X −Y
Y X

]
,

which is an injective ring homomorphism.
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Let J2n denote the 2n× 2n real matrix with block form

J2n =

[
On −In
In On

]
.

Notice that J2
2n = −I2n and JT2n = −J2n. We have

ρn(Z) =

[
X On

On X

]
+

[
Y On

On Y

]
J2n;

ρn(Z) = ρn(Z)T .

Notice that ρn(GLn(C)) 6 GL2n(R), so any matrix subgroup G 6 GLn(C) can be viewed as a matrix

subgroup of GL2n(R) by identifying it with its image ρnG under ρn (this uses the fact that ρn is

continuous).

6. Continuous homomorphisms of matrix groups

In group theory the notion of a homomorphism of groups is central. For matrix groups we need to

be careful about topological properties as well as the algebraic ones.

Definition 1.24. Let G,H be two matrix groups. A group homomorphism ϕ : G −→ H is a

continuous homomorphism of matrix groups if it is continuous and its image imϕ = ϕG 6 H is a closed

subspace of H.

Example 1.25. The function

ϕ : SUT2(R) −→ U(1); ϕ

([
1 t

0 1

])
= [e2πit]

is a continuous surjective group homomorphism, so it is a continuous homomorphism of matrix groups.

To see why this definition is necessary, consider the following example.

Example 1.26. Let

G =

{[
1 n

0 1

]
∈ SUT1(R) : n ∈ Z

}
.

Then G is a closed subgroup of SUT1(R), so it is a matrix group.

For any irrational number r ∈ R−Q, the function

ϕ : G −→ U(1); ϕ

([
1 n

0 1

])
=
[
e2πirn

]
is a continuous group homomorphism. But its image is a dense proper subset of U(1). So ϕ is not a

continuous homomorphism of matrix groups.

The point of this example is that ϕG has limit points in U(1) which are not in ϕG, whereas G is

discrete as a subspace of SUT2(R).

Whenever we have a homomorphism of matrix groups ϕ : G −→ H which is a homeomorphism (i.e.,

a bijection with continuous inverse) we say that ϕ is a continuous isomorphism of matrix groups and

regard G and H as essentially identical as matrix groups.

Proposition 1.27. Let ϕ : G −→ H be a continuous homomorphism of matrix groups. Then kerϕ 6

G is a closed subgroup, hence kerϕ is a matrix group.

The quotient group G/ kerϕ can be identified with the matrix group ϕG by the usual quotient iso-

morphism ϕ : G/ kerϕ −→ ϕG.
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Proof. Since ϕ is continuous, whenever it makes sense in G,

lim
n→∞

ϕ(An) = ϕ( lim
n→∞

An),

which implies that a limit of elements of kerϕ in G is also in kerϕ. So kerϕ is a closed subset of G.

The fact that kerϕ 6 G is a matrix group follows from Proposition 1.17. �

Remark 1.28. G/ kerϕ has a natural quotient topology which is not obviously a metric topology.

Then ϕ is always a homoeomorphism.

Remark 1.29. Not every closed normal matrix subgroup N / G of a matrix group G gives rise to

a matrix group G/N ; there are examples for which G/N is a Lie group but not a matrix group. This

is one of the most important differences between matrix groups and Lie groups (we will see later that

every matrix group is a Lie group). One consequence is that certain important matrix groups have

quotients which are not matrix groups and therefore have no faithful finite dimensional representations;

such groups occur readily in Quantum Physics, where their infinite dimensional representations play an

important rôle.

7. Continuous group actions

In ordinary group theory, the notion of a group action is fundamental. Suitably formulated, it

amounts to the following. An action µ of a group G on a set X is a function

µ : G×X −→ X

for which we usually write µ(g, x) = gx if there is no danger of ambiguity, satisfying the following

conditions for all g, h ∈ G and x ∈ X and with ι being the identity element of G:

• (gh)x = g(hx), i.e., µ(gh, x) = µ(g, µ(h, x));

• ιx = x.

There are two important notions associated to such an action.

For x ∈ X, the stabilizer of x is

StabG(x) = {g ∈ G : gx = x} ⊆ G,

while the orbit of x is

OrbG(x) = {gx ∈ X : g ∈ G} ⊆ X.

Theorem 1.30. Let G act on X.

a) For x ∈ X, StabG(x) 6 G, i.e., StabG(x) is a subgroup of G.

b) For x, y ∈ X, y ∈ OrbG(x) if and only if OrbG(y) = OrbG(x).

For x ∈ X, there is a bijection

ϕ : G/ StabG(x) −→ OrbG(x); ϕ(g) = gx.

Furthermore, this is G-equivariant in the sense that for all g, h ∈ G,

ϕ((hg) StabG(x)) = hϕ(g StabG(x)).

c) If y ∈ OrbG(x), then for any t ∈ G with y = tx,

StabG(y) = t StabG(x)t−1.

For a topological group there is a notion of continuous group action on a topological space.

Definition 1.31. Let G be a topological group and X a topological space. Then a group action

µ : G×X −→ X is a continuous group action if the function µ is continuous.
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In this definition G × X has the product topology. When G and X are metric spaces this can be

obtained from a suitable metric. Details of this can be found in the the first Problem Set.

If X is Hausdorff then any one-element subset {x} is closed and StabG(x) 6 G is a closed subgroup.

This provides a useful way of producing closed subgroups.

8. The matrix exponential and logarithm functions

Let k = R or C. The power series

Exp(X) =
∑
n>0

1
n!
Xn, Log(X) =

∑
n>1

(−1)n−1

n
Xn,

have radii of convergence (r. o. c) ∞ and 1 respectively. If z ∈ C, the series Exp(z), Log(z) converge

absolutely whenever |z| < r. o. c.

Let A ∈ Mn(k). The matrix valued series

Exp(A) =
∑
n>0

1
n!
An = I +A+

1
2!
A2 +

1
3!
A3 + · · · ,

Log(A) =
∑
n>1

(−1)n−1

n
An = A− 1

2
A2 +

1
3
A3 − 1

4
A4 + · · · ,

will converge provided ‖A‖ < r. o. c. So Exp(A) makes sense for every A ∈ Mn(k) while Log(A) only

exists if ‖A‖ < 1.

Proposition 1.32. Let A ∈ Mn(k).

a) For u, v ∈ C, Exp((u+ v)A) = Exp(uA) Exp(vA).

b) Exp(A) ∈ GLn(k) and Exp(A)−1 = Exp(−A).

Proof.

a) Expanding the series gives

Exp((u+ v)A) =
∑
n>0

1
n!

(u+ v)nAn

=
∑
n>0

(u+ v)n

n!
An.

By a series of manipulations that can be justified since these series are all absolutely convergent,

Exp(uA) Exp(vA) =

∑
r>0

ur

r!
Ar

∑
s>0

vs

s!
As


=
∑
r>0
s>0

urvs

r!s!
Ar+s

=
∑
n>0

(
n∑
r=0

urvn−r

r!(n− r)!

)
An

=
∑
n>0

1
n!

(
n∑
r=0

(
n

r

)
urvn−r

)
An

=
∑
n>0

(u+ v)n

n!
An

= Exp((u+ v)A).

b) From part (a),

I = Exp(O) = Exp((1 + (−1))A) = Exp(A) Exp(−A),
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so Exp(A) is invertible with inverse Exp(−A). �

Using these series we define the exponential function

exp: Mn(k) −→ GLn(k); exp(A) = Exp(A).

Proposition 1.33. If A,B ∈ Mn(k) commute then

exp(A+B) = exp(A) exp(B).

Proof. Again we expand the series and perform a sequence of manipulations all of which can be

justified.

exp(A) exp(B) =

∑
r>0

1
r!
Ar

∑
s>0

1
s!
Bs


=
∑
r>0
s>0

1
r!s!

ArBs

=
∑
n>0

(
n∑
r=0

1
r!(n− r)!

ArBn−r

)

=
∑
n>0

1
n!

(
n∑
r=0

(
n

r

)
ArBn−r

)

=
∑
n>0

1
n!

(A+B)n

= Exp(A+B).

Notice that we make crucial use of the commutativity of A and B in the identity
n∑
r=0

(
n

r

)
ArBn−r = (A+B)n.

�

Define the logarithmic function

log : NMn(k)(I; 1) −→ Mn(k); log(A) = Log(A− I).

Then for ‖A− I‖ < 1,

log(A) =
∑
n>1

(−1)n−1

n
(A− I)n.

Proposition 1.34. The functions exp and log satisfy

a) if ‖A− I‖ < 1, then exp(log(A)) = A;

b) if ‖ exp(B)− I‖ < 1, then log(exp(B)) = B.

Proof. These results follow from the formal identities between power series

∑
m>0

1
m!

∑
n>1

(−1)n−1

n
(X − 1)n

m

= X,

∑
n>1

(−1)n−1

n

∑
m>1

1
m!
Xm

n

= X,

proved by comparing coefficients. �
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The functions exp, log are continuous and in fact infinitely differentiable on their domains. By

continuity of exp at O, there is a δ1 > 0 such that

NMn(k)(O; δ1) ⊆ exp−1 NGLn(k)(I; 1).

In fact we can actually take δ1 = log 2 since

exp NMn(k)(O; r) ⊆ NMn(k)(I; er − 1).

Hence we have

Proposition 1.35. The exponential function exp is injective when restricted to the open subset

NMn(k)(O; ln 2) ⊆ Mn(k), hence it is locally a diffeomorphism at O with local inverse log.

It will sometimes be useful to have a formula for the derivative of exp at an arbitrary A ∈ Mn(k).

When B ∈ Mn(k) commutes with A,

(1.5)
d
d t |t=0

exp(A+ tB) = lim
h→0

1
h

(exp(A+ hB)− exp(A)) = exp(A)B = B exp(A).

However, the general situation is more complicated.

For a variable X consider the series

F (X) =
∑
r>0

1
(k + 1)!

Xk =
exp(X)− 1

X

which has infinite radius of convergence. If we have a linear operator Φ on Mn(C) we can apply the

convergent series of operators

F (Φ) =
∑
r>0

1
(k + 1)!

Φk

to elements of Mn(C). In particular we can consider

Φ(C) = AC − CA = adA(C),

where

adA : Mn(C) −→ Mn(C); adA(C) = AC − CA,

is viewed as a C-linear operator. Then

F (adA)(C) =
∑
r>0

1
(k + 1)!

(adA)k(C).

Proposition 1.36. For A,B ∈ Mn(C) we have

d
d t |t=0

exp(A+ tB) = F (adA)(B) exp(A).

In particular, if A = O or more generally if AB = BA,

d
d t |t=0

exp(A+ tB) = B exp(A).

Proof. We begin by observing that if D =
d
d s

and f(s) is a smooth function of the real variable s,

then

(1.6) F (D)|s=0f(s) =
∫ 1

0

f(s) d s.

This holds since the Taylor expansion of a smooth function g satisfies∑
r>1

1
k!
Dkg(s) = g(s+ 1)− g(s),
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hence taking g(s) =
∫
f(s) d s to be an indefinite integral of f we obtain∑

r>0

1
(k + 1)!

Dkf(s) = g(s+ 1)− g(s).

Evaluating at s = 0 gives the Equation (1.6).

Now note that the matrix valued function

ϕ(s) = exp(sA)B exp((1− s)A)

satisfies

ϕ(s) = exp(sA)B exp(A) exp(−sA)

= exp(s adA)(B exp(A))

= exp(s adA)(B) exp(A),

since for m,n > 1

, (adA)m(BAn) = (adA)m(B)An.

So

F (D)(ϕ(s)) =

∑
k>0

((s+ 1)k+1 − sk+1)
(k + 1)!

(adA)k

 (B) exp(A)

giving

F (D)(ϕ(s))|s=0 =

∑
k>0

1
(k + 1)!

(adA)k

 (B) exp(A)

= F (adA)(B) exp(A).

�



CHAPTER 2

Lie algebras for matrix groups

1. Differential equations in matrices

Let A ∈ Mn(R). Let (a, b) ⊆ R be the open interval with endpoints a, b and a < b; we will usually

assume that a < 0 < b. We will use the standard notation

α′(t) =
d
d t

α(t).

Consider the first order differential equation

(2.1) α′(t) = α(t)A,

where α : (a, b) −→ Mn(R) is assumed to be a differentiable function.

If n = 1 then taking A to be a non-zero real number we know that the general solution is α(t) = ceAt

where α(0) = c. Hence there is a unique solution subject to this boundary condition. In fact this solution

is given by a power series

α(t) =
∑
k>0

tk

k!
α(0).

This is indicative of the general situation.

Theorem 2.1. For A,C ∈ Mn(R) with A non-zero, and a < 0 < b, the differential equation of (2.1)

has a unique solution α : (a, b) −→ Mn(R) for which α(0) = C. Furthermore, if C is invertible then so

is α(t) for t ∈ (a, b), hence α : (a, b) −→ GLn(R).

Proof. First we will solve the equation subject to the boundary condition α(0) = I. For t ∈ (a, b),

by Chapter 1 Section 8 the series

∑
k>0

tk

k!
Ak =

∑
k>0

1
k!

(tA)k = exp(tA)

converges, so the function

α : (a, b) −→ Mn(R); α(t) = exp(tA),

is defined and differentiable with

α′(t) =
∑
k>1

tk−1

(k − 1)!
Ak = exp(tA)A = A exp(tA).

Hence α satisfies the above differential equation with boundary condition α(0) = I. Notice also that

whenever s, t, (s+ t) ∈ (a, b),

α(s+ t) = α(s)α(t).

In particular, this shows that α(t) is always invertible with α(t)−1 = α(−t).

17
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One solution subject to α(0) = C is easily seen to be α(t) = C exp(tA). If β is a second such solution

then γ(t) = β(t) exp(−tA) satisfies

γ′(t) = β′(t) exp(−tA) + β(t)
d
d t

exp(−tA)

= β′(t) exp(−tA)− β(t) exp(−tA)A

= β(t)A exp(−tA)− β(t) exp(−tA)A

= O.

Hence γ(t) is a constant function with γ(t) = γ(0) = C. Thus β(t) = C exp(tA), and this is the unique

solution subject to β(0) = C. If C is invertible so is C exp(tA) for all t. �

2. One parameter subgroups

Let G 6 GLn(k) be a matrix group and let ε > 0 or ε =∞.

Definition 2.2. A one parameter semigroup in G is a continuous function γ : (−ε, ε) −→ G which

is differentiable at 0 and satisfies

γ(s+ t) = γ(s)γ(t)

whenever s, t, (s+ t) ∈ (−ε, ε). We will refer to the last condition as the homomorphism property.

If ε =∞ then γ : R −→ G is called a one parameter group in G or one parameter subgroup of G.

Notice that for a one parameter semigroup in G, γ(0) = I.

Proposition 2.3. Let γ : (−ε, ε) −→ G be a one parameter semigroup in G. Then γ is differentiable

at every t ∈ (−ε, ε) and

γ′(t) = γ′(0)γ(t) = γ(t)γ′(0).

Proof. For small h ∈ R we have

γ(h)γ(t) = γ(h+ t) = γ(t+ h) = γ(t)γ(h).

Hence

γ′(t) = lim
h→0

1
h

(γ(t+ h)− γ(t))

= lim
h→0

1
h

(γ(h)− I)γ(t)

= γ′(0)γ(t),

and similarly

γ′(t) = γ(t)γ′(0).

�

Proposition 2.4. Let γ : (−ε, ε) −→ G be a one parameter semigroup in G. Then there is a unique

extension to a one parameter group γ̃ : R −→ G in G, i.e., such that for all t ∈ (−ε, ε), γ̃(t) = γ(t).

Proof. Let t ∈ R. Then for a large enough natural number m, t/m ∈ (−ε, ε). Hence

γ(t/m), γ(t/m)m ∈ G.

Similarly, for a second such natural number n,

γ(t/n), γ(t/n)n ∈ G.



3. CURVES, TANGENT SPACES AND LIE ALGEBRAS 19

Then since mn > m,n we have t/mn ∈ (−ε, ε) and

γ(t/n)n = γ(mt/mn)n

= γ(t/mn)mn

= γ(nt/mn)m

= γ(t/m)m.

So γ(t/n)n = γ(t/m)m showing that we get a well defined element of G for every real number t. This

defines a function

γ̃ : R −→ G; γ̃(t) = γ(t/n)n for large n.

It is easy to see that γ̃ is a one parameter group in G. �

We can now determine the form of all one parameter groups in G.

Theorem 2.5. Let γ : R −→ G be a one parameter group in G. Then it has the form

γ(t) = exp(tA)

for some A ∈ Mn(k).

Proof. Let A = γ′(0). By Proposition 2.3 this means that γ satisfies the differential equation

γ′(t) = A, γ(0) = I.

By Theorem 2.1, this has the unique solution γ(t) = exp(tA). �

Remark 2.6. We cannot yet reverse this process and decide for which A ∈ Mn(k) the one parameter

group

γ : R −→ GLn(k); γ(t) = exp(tA)

actually takes values in G. The answer involves the Lie algebra of G. Notice that we also have a curious

phenomenon in the fact that although the definition of a one parameter group only involves first order

differentiability, the general form exp(tA) is always infinitely differentiable and indeed analytic as a

function of t. This is an important characteristic of much of Lie theory, namely that conditions of first

order differentiability and even continuity often lead to much stronger conclusions.

3. Curves, tangent spaces and Lie algebras

Throughout this section, let G 6 GLn(k) be a matrix group.

Definition 2.7. A differentiable curve in G is a function

γ : (a, b) −→ G ⊆ Mn(k)

for which the derivative γ′(t) exists at each t ∈ (a, b).

Here we define the derivative as an element of Mn(k) by

γ′(t) = lim
s→t

1
(s− t)

(γ(s)− γ(t)) ,

provided this limit exists. We will usually assume that a < 0 < b.

Definition 2.8. The tangent space to G at U ∈ G is

TU G = {γ′(0) ∈ Mn(k) : γ a differentiable curve in G with γ(0) = U}.

Proposition 2.9. TU G is a real vector subspace of Mn(k).
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Proof. Suppose that α, β are differentiable curves in G for which α(0) = β(0) = U . Then

γ : domα ∩ domβ −→ G; γ(t) = α(t)U−1β(t),

is also a differentiable curve in G with γ(0) = U . The Product Rule now gives

γ′(t) = α′(t)U−1β(t) + α(t)U−1β′(t),

hence

γ′(0) = α′(0)U−1β(0) + α(0)U−1β′(0) = α′(0) + β′(0),

which shows that TU is closed under addition.

Similarly, if r ∈ R and α is a differentiable curve in G with α(0) = U , then η(t) = α(rt) defines

another such curve. Since

η′(0) = rα′(0),

we see that TU G is closed under real scalar multiplication. �

Definition 2.10. The dimension of the real matrix group G is

dimG = dimR TI G.

If G is complex then its complex dimension

dimC G = dimC TI G.

We will adopt the notation g = TI G for this real vector subspace of Mn(k). In fact, g has a more

interesting algebraic structure, namely that of a real Lie algebra.

Definition 2.11. A k-Lie algebra consists of a vector space a over a field k, equipped with a

k-bilinear map [ , ] : a× a −→ a such that for x, y, z ∈ a,

[x, y] = −[y, x],(Skew symmetry)

[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0.(Jacobi identity)

Here k-bilinear means that for x1, x2, x, y1, y2, y ∈ a and r1, r2, r, s1, s2, s ∈ k,

[r1x1 + r2x2, y] = r1[x1, y] + r2[x2, y],

[x, s1y1 + s2y2] = s1[x, y1] + s2[x, y2].

[ , ] is called the Lie bracket of the Lie algebra a.

Example 2.12. Let k = R and a = R
3 and set

[x,y] = x × y,

the vector or cross product. For the standard basis vectors e1, e2, e3,

(2.2) [e1, e2] = −[e2, e1] = e3, [e2, e3] = −[e3, e2] = e1, [e3, e1] = −[e1, e3] = e2.

Then R
3 equipped with this bracket operation is an R-Lie algebra. In fact, as we will see later, this is

the Lie algebra of SO(3) and also of SU(2) in disguise.

Given two matrices A,B ∈ Mn(k), their commutator is

[A,B] = AB −BA.

This is a k-bilinear function Mn(k)×Mn(k) −→ Mn(k) satisfying the conditions of Definition 2.11. Recall

that A,B commute if AB = BA.

Proposition 2.13. [A,B] = On if and only if A,B commute.
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Suppose that a is a k-vector subspace of Mn(k). Then a is a k-Lie subalgebra of Mn(k) if it is closed

under taking commutators of pairs of elements in a, i.e., if A,B ∈ a then [A,B] ∈ a. Of course Mn(k) is

a k-Lie subalgebra of itself.

Theorem 2.14. For k = R or k = C, if G 6 GLn(k) is a matrix subgroup, then g is an R-Lie

subalgebra of Mn(k).

If G 6 GLm(C) is a matrix subgroup and g is a C-subspace of Mm(C), then g is a C-Lie subalgebra.

Proof. We will show that for two differentiable curves α, β in G with α(0) = β(0) = In, there is

such a curve γ with γ′(0) = [α′(0), β′(0)].

Consider the function

F : domα× domβ −→ G; F (s, t) = α(s)β(t)α(s)−1.

This is clearly continuous and differentiable with respect to each of the variables s, t. For each s ∈ domα,

F (s, ) is a differentiable curve in G with F (s, 0) = In. Differentiating gives

dF (s, t)
d t |t=0

= α(s)β′(0)α(s)−1,

and so

α(s)β′(0)α(s)−1 ∈ g.

Since g is a closed subspace of Mn(k), whenever this limit exists we also have

lim
s→0

1
s

(
α(s)β′(0)α(s)−1 − β′(0)

)
∈ g.

We will use the following easily verified matrix version of the usual rule for differentiating an inverse:

(2.3)
d
d t
(
α(t)−1

)
= −α(t)−1α′(t)α(t)−1.

We have

lim
s→0

1
s

(
α(s)β′(0)α(s)−1 − β′(0)

)
=

d
d s |s=0

α(s)β′(0)α(s)−1

=α′(0)β′(0)α(0)− α(0)β′(0)α(0)−1α′(0)α(0)−1

[by Equation (2.3)]

=α′(0)β′(0)α(0)− α(0)β′(0)α′(0)

=α′(0)β′(0)− β′(0)α′(0)

=[α′(0), β′(0)].

This shows that [α′(0), β′(0)] ∈ g, hence it must be of the form γ′(0) for some differentiable curve. The

second part follows easily. �

So for each matrix group G there is a Lie algebra g = TI G. A suitable type of homomorphism

G −→ H between matrix groups gives rise to a linear transformation g −→ h respecting the Lie algebra

structures.

Definition 2.15. Let G 6 GLn(k), H 6 GLm(k) be matrix groups and ϕ : G −→ H a continuous

map. Then ϕ is said to be a differentiable map if for every differentiable curve γ : (a, b) −→ G, the

composite curve ϕ ◦ γ : (a, b) −→ H is differentiable, with derivative

(ϕ ◦ γ)′(t) =
d
d t
ϕ(γ(t)),
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and if whenever two differentiable curves α, β : (a, b) −→ G both satisfy the conditions

α(0) = β(0), α′(0) = β′(0),

then

(ϕ ◦ α)′(0) = (ϕ ◦ β)′(0).

Such a ϕ is a differentiable homomorphism if it is also a group homomorphism. A continuous homomor-

phism of matrix groups that is also a differentiable map is called a Lie homomorphism.

We will see later that the technical restriction in this definition is unnecessary. For now we note

that if ϕ : G −→ H is the restriction of a differentiable map Φ: GLn(k) −→ GLm(k) then ϕ is also a

differentiable map.

Proposition 2.16. Let G,H,K be matrix groups and ϕ : G −→ H, θ : H −→ K be differentiable

homomorphisms.

a) For each A ∈ G there is an R-linear transformation dϕ : TAG −→ Tϕ(A)H given by

dϕA(γ′(0)) = (ϕ ◦ γ)′(0),

for every differentiable curve γ : (a, b) −→ G with γ(0) = A.

b) We have

d θϕ(A) ◦ dϕA = d(θ ◦ ϕ)A.

c) For the identity map IdG : G −→ G and A ∈ G,

d IdG = IdTAG .

Proof. a) The definition of dϕA makes sense since by the definition of differentiability, given

X ∈ TAG, for any curve γ with

γ(0) = A, γ′(0) = X,

(ϕ ◦ γ)′(0) depends only on X and not on γ. Linearity is established using similar ideas to the proof of

Proposition 2.9.

The identities of (b) and (c) are straightforward to verify. �

If ϕ : G −→ H is a differentiable homomorphism then since ϕ(I) = I, dϕI : TI G −→ TI H is a

linear transformation called the derivative of ϕ which will usually be denoted

dϕ : g −→ h.

Definition 2.17. Let g, h be Lie algebras over a field k. A k-linear transformation Φ: g −→ h is a

homomorphism of Lie algebras if

Φ([x, y]) = [Φ(x),Φ(y)] (x, y ∈ g).

Theorem 2.18. Let G,H be matrix groups and ϕ : G −→ H a differentiable homomorphism. Then

the derivative dϕ : g −→ h is a homomorphism of Lie algebras.

Proof. Following ideas and notation in the proof of Theorem 2.14, for differentiable curves α, β in

G with α(0) = β(0) = I, we can use the composite function ϕ ◦ F given by

ϕ ◦ F (s, t) = ϕ(F (s, t)) = ϕ(α(s))ϕ(β(t))ϕ(α(s))−1,

to deduce

dϕ([α′(0), β′(0)]) = [dϕ(α′(0)),dϕ(β′(0))]).

�
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4. Some Lie algebras of matrix groups

The Lie algebras of GLn(R) and GLn(C). Let us start with the matrix group GLn(R) ⊆ Mn(R).

For A ∈ Mn(R) and ε > 0 there is a differentiable curve

α : (−ε, ε) −→ Mn(R); α(t) = I + tA.

For t 6= 0, the roots of the equation det(t−1I + A) = 0 are of the form t = −1/λ where λ is a non-zero

eigenvalue of A. Hence if

ε < min
{

1
|λ|

: λ a non-zero eigenvalue of A
}
,

then imα ⊆ GLn(R), so we might as well view α a function α : (−ε, ε) −→ GLn(R). Calculating the

derivative we find that α′(t) = A, hence α′(0) = A. This shows that A ∈ TI GLn(R). Since A ∈ Mn(R)

was arbitrary, we have gln(R) = TI GLn(R) = Mn(R),

dim GLn(R) = n2.
(2.4)

Similarly, 
gln(C) = TI GLn(C) = Mn(C),

dimC GLn(C) = n2,

dim GLn(C) = 2n2.

(2.5)

For SLn(R) 6 GLn(R), suppose that α : (a, b) −→ SLn(R) is a curve lying in SLn(R) and satisfying

α(0) = I. For t ∈ (a, b) we have detα(t) = 1, so

d(detα(t))
d t

= 0.

Lemma 2.19. We have
d(detα(t))

d t |t=0

= trα′(0).

Proof. Recall that for A ∈ Mn(k),

trA =
n∑
i=1

Aii.

It is easy to verify that the operation ∂ =
d
d t |t=0

on functions has the derivation property

(2.6) ∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)∂γ2.

Put aij = α(t)ij and notice that when t = 0,

aij = δij .

Write Cij for the cofactor matrix obtained from α(t) by deleting the i th row and j th column. By

expanding along the n th row we obtain

detα(t) =
n∑
j=1

(−1)n+janj detCnj

Then

∂ detα(t) =
n∑
j=1

(−1)n+j ((∂anj) detCnj + anj(∂ detCnj))

=
n∑
j=1

(−1)n+j ((∂anj) detCnj) + (∂ detCnn).
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For t = 0, detCnj = δjn since α(0) = I, hence

∂ det(α(t)) = ∂ann + ∂ detCnn.

We can repeat this calculation with the (n− 1)× (n− 1) matrix Cnn and so on. This gives

∂ det(α(t)) = ∂ann + ∂a(n−1)(n−1) + ∂ detC(n−1)(n−1)

...

= ∂ann + ∂a(n−1)(n−1) + · · ·+ ∂a11)

= trα′(0).

�

So we have trα′(0) = 0 and hence

sln(R) = TI SLn(R) ⊆ ker tr ⊆ Mn(R).

If A ∈ ker tr ⊆ Mn(R), the function

α : (−ε, ε) −→ Mn(R); α(t) = exp(tA) =
∑
k>0

tk

k!
Ak,

is defined for every ε > 0 and satisfies the boundary conditions

α(0) = I, α′(0) = A.

We will use the following result for which another proof appears in Chapter 4, Section 5.

Lemma 2.20. For A ∈ Mn(C) we have

det exp(A) = etrA.

Proof using differential equations. Consider the curve

γ : R −→ GL1(C) = C
×; γ(t) = det exp(tA).

Then

γ′(t) = lim
h→0

1
h

(det exp((t+ h)A)− det exp(tA))

= det exp(tA) lim
h→0

1
h

(det exp(hA)− 1)

= det exp(tA) trA

= γ trA

by Lemma 2.19 applied to the curve t 7→ det exp(tA). So α satisfies the same differential equation and

initial condition as the curve t 7→ et trA. By the uniqueness part of Theorem 2.1,

α(t) = det exp(tA) = et trA.

�

Proof using Jordan Canonical Form. If S ∈ GLn(C),

det exp(SAS−1) = det
(
S exp(A)S−1

)
= detS det exp(A) detS−1

= det expA,
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and

etrSAS
−1

= etrA.

So it suffices to prove the identity for SAS−1 for a suitably chosen invertible matrix S. Using for example

the theory of Jordan Canonical Forms, there is a suitable choice of such an S for which

B = SAS−1 = D +N,

with D diagonal, N strictly upper triangular and Nij = 0 whenever i > j. Then N is nilpotent, i.e.,

Nk = On for large k.

We have

exp(B) =
∑
k>0

1
k!

(D +N)k

=

∑
k>0

1
k!
Dk

+
∑
k>0

1
(k + 1)!

(
(D +N)k+1 −Dk+1

)
= exp(D) +

∑
k>0

1
(k + 1)!

N(Dk +Dk−1N + · · ·+Nk).

Now for k > 0, the matrix

N(Dk +Dk−1N + · · ·+Nk)

is strictly upper triangular, hence

exp(B) = exp(D) +N ′,

where N ′ is strictly upper triangular. If D = diag(λ1, . . . , λn), on calculating the determinant we find

that

det exp(A) = det exp(B)

= det exp(D)

= det diag(eλ1 , . . . , eλn)

= eλ1 · · · eλn

= eλ1 + · · ·+ λn .

Since trD = λ1 + · · ·+ λn, this implies

det exp(A) = etrD.

�

Using this Lemma and the function α, we obtainsln(R) = TI SLn(R) = ker tr ⊆ Mn(R),

dim SLn(R) = n2 − 1.
(2.7)

Working over C we also have 
sln(C) = TI SLn(C) = ker tr ⊆ Mn(C),

dimC SLn(C) = n2 − 1,

dim SLn(C) = 2n2 − 2.

(2.8)
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The Lie algebras of UTn(k) and SUTn(k). For n > 1 and k = R,C, recall the upper triangular

and unipotent subgroups of GLn(k). Let

α : (−ε, ε) −→ UTn(R)

be a differentiable curve with α(0) = I. Then α′(t) is upper triangular. Moreover, using the argument

for GLn(k) we see that given any upper triangular matrix A ∈ Mn(k), there is a curve

α : (−ε, ε) −→ UTn(k); α(t) = I + tA,

where ε > 0 has to be chosen small and α′(0) = A. We then have

(2.9)


utn(k) = TI UTn(k) = set of all upper triangular matrices in Mn(k),

dim utn(k) =
(
n+ 1

2

)
dimR k.

An upper triangular matrix A ∈ Mn(k) is strictly upper triangular if all its diagonal entries are 0, i.e.,

aii = 0. Then

(2.10)


sutn(k) = TI SUTn(k) = set of all strictly upper triangular matrices in Mn(k),

dim sutn(k) =
(
n

2

)
dimR k.

The Lie algebras of O(n) and SO(n). Let O(n) be the n× n orthogonal group, i.e.,

O(n) = {A ∈ GLn(R) : ATA = I} 6 GLn(R).

Given a curve α : (a, b) −→ O(n) satisfying α(0) = I we have

d
d t
α(t)Tα(t) = O,

and so

α′(t)Tα(t) + α(t)Tα′(t) = O,

implying

α′(0)T + α′(0) = O.

Thus we must have α′(0)T = −α′(0), i.e., α′(0) is skew symmetric. Thus

o(n) = TI O(n) ⊆ Sk-Symn(R),

the set of n× n real skew symmetric matrices.

On the other hand, if A ∈ Sk-Symn(R), for ε > 0 we can consider the curve

α : (−ε, ε) −→ GLn(R); α(t) = exp(tA).

Then

α(t)Tα(t) = exp(tA)T exp(tA)

= exp(tAT ) exp(tA)

= exp(−tA) exp(tA)

= I.

Hence we can view α as a curve α : (−ε, ε) −→ O(n). Since α′(0) = A, this shows that

Sk-Symn(R) ⊆ o(n) = TI O(n)
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and so

o(n) = TI O(n) = Sk-Symn(R).

Notice that if A ∈ Sk-Symn(R) then

trA = trAT = tr(−A) = − trA,

hence trA = 0. By Lemma 2.20 we have

det exp(tA) = 1,

hence α : (−ε, ε) −→ SO(n) where SO(n) is the n × n special orthogonal group. So we have actually

shown that

so(n) = TI SO(n) = o(n) = TI O(n) = Sk-Symn(R).

The Lie algebras of U(n) and SU(n). Now consider the n× n unitary group

U(n) = {A ∈ GLn(C) : A∗A = I}.

For a curve α in U(n) satisfying α(0) = I, we obtain

α′(0)∗ + α′(0) = 0

and so α′(0)∗ = −α′(0), i.e., α(0) is skew hermitian. So

u(n) = TI U(n) ⊆ Sk-Hermn(C),

the set of all n× n skew hermitian matrices.

If H ∈ Sk-Hermn(C) then the curve

η : (−ε, ε) −→ GLn(C); η(t) = exp(tH)

satisfies

η(t)∗η(t) = exp(tH)∗ exp(tH)

= exp(tH∗) exp(tH)

= exp(−tH) exp(tH)

= I.

Hence we can view η as a curve η : (−ε, ε) −→ U(n). Since η′(0) = H, this shows that

Sk-Hermn(C) ⊆ u(n) = TI U(n).

Hence

u(n) = TI U(n) ⊆ Sk-Hermn(C).

The special unitary group SU(n) can be handled in a similar way. Again we have

su(n) = TI SU(n) ⊆ Sk-Hermn(C).

But also if η : (a, b) −→ SU(n) is a curve with η(0) = I then as in the analysis for SLn(R),

tr η′(0) = 0.

Writing

Sk-Herm0
n(C) = {H ∈ Sk-Hermn(C) : trH = 0},

this gives su(n) ⊆ Sk-Herm0
n(C). On the other hand, if H ∈ Sk-Herm0

n(C) then the curve

η : (−ε, ε) −→ U(n); η(t) = exp(tH),
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takes values in SU(n) by Lemma 2.20 and has η′(0) = H. Hence

su(n) = TI SU(n) ⊆ Sk-Herm0
n(C).

Remark 2.21. Later, we will see that for a matrix group G 6 GLn(R), the following are true and

can be used in determining Lie algebras of matrix groups as above.

• The function

expG : g −→ GLn(R); expG(X) = exp(X),

has image contained in G, expG g ⊆ G; so we will normally write expG : g −→ G for the

exponential on G and sometimes even just exp.

• If G is compact and connected then expG g = G.

• There is an open disc Ng(O; r) ⊆ g on which exp is injective and gives a homeomorphism

exp: Ng(O; r) −→ exp Ng(O; r) where exp Ng(O; r) ⊆ G is in fact an open subset.

5. SO(3) and SU(2)

In this section we will discuss the groups SO(3) and SU(2) and their Lie algebras in detail. The Lie

algebras are both 3-dimensional real vector spaces, having for example the following bases:

so(3) : P =


0 −1 0

1 0 0

0 0 0

 , Q =


0 0 −1

0 0 0

1 0 0

 , R =


0 0 0

0 0 −1

0 1 0

 ,
su(2) : H =

1
2

[
i 0

0 −i

]
, E =

1
2

[
0 1

−1 0

]
, F =

1
2

[
0 i

i 0

]
.

The non-trivial Lie brackets are then

[P,Q] = R, [Q,R] = P, [R, P ] = Q,(2.11a)

[H,E] = F, [E,F ] = H, [F,H] = E.(2.11b)

This means that the R-linear isomorphism

(2.12) ϕ : su(2) −→ so(3); ϕ(xH + yE + zF ) = xP + yQ+ zR (x, y, z ∈ R),

satisfies

ϕ([U, V ]) = [ϕ(U), ϕ(V )],

hence is an isomorphism of R-Lie algebras. Thus these Lie algebras look the same algebraically. This

suggests that there might be a close relationship between the groups themselves. Before considering this,

notice also that for the Lie algebra of Example 2.12, the R-linear transformation

R
3 −→ so(3); xe1 + ye2 + ze3 7−→ xP + yQ+ zR,

is an isomorphism of R-Lie algebras by Formulæ (2.2).

Now we will construct a Lie homomorphism SU(2) −→ SO(3) whose derivative at I is ϕ. Recall the

adjoint action of Ad of SU(2) on su(2) by

AdA(U) = AUA−1 = AUA∗ (A ∈ SU(2), U ∈ su(2)).

Then each AdA is an R-linear isomorphism su(2) −→ su(2).

We can define a real inner product ( | ) on su(2) by

(X | Y ) = − tr(XY ) (X,Y ∈ su(2)).
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Introducing the elements

Ĥ =
√

2H =
1√
2

[
i 0

0 −i

]
, Ê =

√
2E =

1√
2

[
0 1

−1 0

]
, F̂ =

√
2F =

1√
2

[
0 i

i 0

]
,

we obtain an R-linear isomorphism

(2.13) θ : R
3 −→ su(2); θ(xe1 + ye2 + ze3) = xĤ + yÊ + zF̂ ,

which is an isometry since Ĥ, Ê, F̂ form an orthonormal basis of su(2) with respect to ( | ), i.e.,

(Ĥ | Ĥ) = (Ê | Ê) = (F̂ | F̂ ) = 1,(2.14a)

(Ĥ | Ê) = (Ĥ | F̂ ) = (Ê | F̂ ) = 0.(2.14b)

Remark 2.22. It would perhaps be more natural to rescale the inner product ( | ) so that H,E, F

were all unit vectors. This would certainly make many of the following formulæ neater as well making

the Lie bracket in SU(2) correspond exactly with the vector product in R
3. However, our choice of ( | )

agrees with the conventional one for SU(n).

Proposition 2.23. ( | ) is a real symmetric bilinear form on su(2) which is positive definite. It is

invariant in the sense that

([Z,X] | Y ) + (X | [Z, Y ]) = 0 (X,Y, Z ∈ su(2)).

Proof. The R-bilinearity is clear, as is the symmetry. For positive definiteness, notice that for

x, x′, y, y′, z, z′ ∈ R,

(xĤ + yÊ + zF̂ | x′Ĥ + y′Ê + z′F̂ ) = xx′ + yy′ + zz′

and in particular,

(xĤ + yÊ + zF̂ | xĤ + yÊ + zF̂ ) = x2 + y2 + z2 > 0,

with equality precisely when x = y = z = 0.

The invariance is checked by a calculation. �

Also, for A ∈ SU(2) and X,Y ∈ su(2),

(AXA∗ | AY A∗) = − tr(AXA∗AY A∗)

= − tr(AXY A∗)

= − tr(AXY A−1)

= − tr(XY )

= (X | Y ),

hence AdA is actually an orthogonal linear transformation with respect to this inner product. Using the

orthonormal basis Ĥ, E, F̂ , we can identify su(2) with R
3 and ( | ) with the usual inner product · , then

each AdA corresponds to an element of O(3) which we will still write as AdA. It is then easy to see that

the function

Ad: SU(2) −→ O(3); Ad(A) = AdA ∈ O(3),

is a continuous homomorphism of groups. In fact, SU(2) is path connected, as is SO(3); so since Ad(I) =

I,

Ad SU(2) ⊆ SO(3),

hence we will redefine

Ad: SU(2) −→ SO(3); Ad(A) = AdA .
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Proposition 2.24. The continuous homomorphism of matrix groups

Ad: SU(2) −→ SO(3); Ad(A) = AdA,

is smooth, has ker Ad = {±I} and is surjective.

Proof. The identification of the kernel is an easy exercise. The remaining statements can be proved

using ideas from Chapter 4, especially Section 1. We will give a direct proof that ker Ad is surjective to

illustrate some important special geometric aspects of this example.

We can view an element of su(2) as a vector in R
3 by identifying the orthonormal basis vectors Ĥ, Ê,

F̂ with e1, e2, e3. From Equations (2.11), the non-trivial brackets of these basis elements are as follows:

(2.15) [Ĥ, Ê] =
√

2F̂ , [Ê, F̂ ] =
√

2Ĥ, [F̂ , Ĥ] =
√

2Ê.

So apart from the factors of
√

2, this behaves exactly like the vector product on R
3.

Proposition 2.25. For U1 = x1Ĥ + y1Ê + z1F̂ , U2 = x2Ĥ + y2Ê + z2F̂ ∈ su(2),

[U1, U2] =
√

2

(∣∣∣∣∣y1 z1

y2 z2

∣∣∣∣∣ Ĥ −
∣∣∣∣∣x1 z1

x2 z2

∣∣∣∣∣ Ê +

∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣ F̂
)
.

Proof. This follows from the formula

xe1 + ye2 + ze3 = (x1e1 + y1e2 + z1e3) × (x2e1 + y2e2 + z2e3)

=

∣∣∣∣∣y1 z1

y2 z2

∣∣∣∣∣ e1 −

∣∣∣∣∣x1 z1

x2 z2

∣∣∣∣∣ e2 +

∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣ e3.

�

We can similarly calculate a product of elements of su(2) in terms of the dot and cross products.

However, note that in general if U1, U2 ∈ su(2) then U1U2 /∈ su(2).

Proposition 2.26. U1 = x1Ĥ + y1Ê + z1F̂ , U2 = x2Ĥ + y2Ê + F̂ ∈ su(2),

U1U2 = − (x1x2 + y1y2 + z1z2)
2

I +
1√
2

(∣∣∣∣∣y1 z1

y2 z2

∣∣∣∣∣ Ĥ −
∣∣∣∣∣x1 z1

x2 z2

∣∣∣∣∣ Ê +

∣∣∣∣∣x1 y1

x2 y2

∣∣∣∣∣ F̂
)

= − (U1 | U2)
2

I +
1
2

[U1, U2].

Proof. Calculation! �

Corollary 2.27. If U1, U2 ∈ su(2) are orthogonal, i.e., (U1 | U2) = 0, then

U1U2 =
1
2

[U1, U2] ∈ su(2).

Next we will examine the effect of A ∈ SU(2) acting as an R-linear transformation on su(2) which

we will identify with R
3. Note that A can be uniquely written as

(2.16) A =

[
u v

−v u

]
for u, v ∈ C and |u|2 + |v|2 = 1. This allows us to express A in the form

A = cos θI + S,

where S is skew hermitian and Reu = cos θ for θ ∈ [0, π], so sin θ > 0. A calculation gives

S2 = −((Imu)2 + |v|2)I = − sin2 θI,(2.17a)

(S | S) = 2 sin2 θ.(2.17b)
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Since A ∈ SU(2), we have

A−1 = A∗ = cos θI − S.

Notice that for any t ∈ R,

AdA(tS) = A(tS)A−1 = tS.

On the other hand, if U ∈ su(2) with (S | U) = 0, then by the above results,

AdA(U) = (cos θI + S)U(cos θI − S)

= (cos θU + SU)(cos θI − S)

= cos2 θU + cos θSU − cos θUS − SUS

= cos2 θU + cos θ[S,U ]− SUS.

A further calculation using properties of the vector product shows that

SUS =
(S | S)

2
U.

By Equation (2.17b), whenever (S | U) = 0 we have

AdA(U) = (cos2 θ − sin2 θ)U + cos θ[S,U ]

= (cos 2θ)U + cos θ[S,U ]

= (cos 2θ)U +
√

2 cos θ sin θ[Ŝ, U ]

= cos 2θ U + sin 2θŜ × U,

where Ŝ =
1√

2 sin θ
S is of unit length. Noting that U and Ŝ × U are orthogonal to S, we see that the

effect of AdA on U is to rotate it in the plane orthogonal to S (and spanned by U and Ŝ × U) through

the angle θ.

We can now see that every element R ∈ SO(3) has the form AdA for some A ∈ SU(2). This follows

from the facts that the eigenvalues of R have modulus 1 and detR = 1. Together these show that at

least one of the eigenvalues of R must be 1 with corresponding eigenvector v say, while the other two

have the form e±ϕi = cos±i sinϕ for some ϕ. Now we can take A = cos(ϕ/2)I + S where S ∈ su(2)

is chosen to correspond to a multiple of v and (S | S) = 2 sin2(ϕ/2). If we choose −ϕ in place of ϕ we

obtain −A in place of A. �

Let B ∈ su(2). Then the curve

β : R −→ SU(2); β(t) = exp(tB),

gives rise to the curve

β : R −→ SO(3); β(t) = Adβ(t).

We can differentiate β at t = 0 to obtain and element of so(3) which R3 identified with su(2) by the

formula:

β
′
(0)(X) =

d
d t

exp(tB)X exp(−tB)|t=0

= BX −XB = [B,X].

For example when B = H,

[H,H] = 0, [H,E] = F, [H,F ] = −E,
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hence the matrix of H acting on su(2) relative to the basis H,E, F is
0 0 0

0 0 −1

0 1 0

 = R.

Similarly,

[E,H] = −F, [E,E] = 0, [E,F ] = Ĥ,

giving the matrix 
0 0 1

0 0 0

−1 0 0

 = Q,

and

[F,H] = E, [F,E] = −H, [F, F ] = 0,

giving the matrix 
0 −1 0

1 0 0

0 0 0

 = P.

So the corresponding derivative map is

d Ad: su(2) −→ so(3); d Ad(xH + yE + zF ) = xR+ yQ+ zP.

Apart from the change in order, this is the obvious isomorphism between these two Lie algebras.

To summarize, we have proved the following.

Theorem 2.28. Ad: SU(2) −→ SO(3) is a surjective Lie homomorphism with ker Ad = {±I}.
Furthermore, the derivative d Ad: su(2) −→ so(3) is an isomorphism of R-Lie algebras.

6. SL2(C) and the Lorentz group

Let us now consider the Lie algebra SL2(C), sl2(C). By Equation (2.8),

sl2(C) = ker tr ⊆ M2(C)

and dimC sl2(C) = 3. The following matrices form a C-basis for sl2(C):

H ′ =

[
1 0

0 −1

]
, E′ =

[
0 1

0 0

]
, F ′ =

[
0 0

1 0

]
.

The elements H ′, iH ′, E′, iE′, F ′, iF ′ form an R-basis and dim sl2(C) = 6. Notice also that su(2) ⊆ sl2(C)

and the elements H,E, F ∈ su(2) form a C-basis of sl2(C), so H, iH,E, iE, F, iF form an R-basis. The

Lie brackets of H ′, E′, F ′ are determined by

[H ′, E′] = 2E′, [H ′, F ′] = −2F ′, [E′, F ′] = H ′.

Notice that the subspaces spanned by each of the pairs H ′, E′ and H ′, F ′ are C-Lie subalgebras. In fact,

H ′, E′ span the Lie algebra ut2(C) of the group of upper triangular complex matrices, while H ′, F ′ spans

the Lie algebra of the group of lower triangular complex matrices.

Given the existence of the double covering homomorphism Ad: SU(2) −→ SO(3) of Section 5, it

seems reasonable to ask if a similar homomorphism exists for SL2(C). It does, but we need to use the

special Lorentz group Lor and then obtain a double covering homomorphism SL2(C) −→ Lor which

appears in Physics in connection with spinors and twistors.
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Next we will determine the R-Lie algebra of Lor 6 SL4(R), lor. Let α : (−ε, ε) −→ Lor be a

differentiable curve with α(0) = I. By definition, for t ∈ (−ε, ε) we have

α(t)Qα(t)T = Q,

where

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .
Differentiating and setting t = 0 we obtain

α′(0)Q+Qα′(0)T = O,

giving
α′(0)11 α′(0)12 α′(0)13 −α′(0)14

α′(0)21 α′(0)22 α′(0)23 −α′(0)24

α′(0)31 α′(0)32 α′(0)33 −α′(0)34

α′(0)41 α′(0)42 α′(0)43 −α′(0)44

+


α′(0)11 α′(0)21 α′(0)31 α′(0)41

α′(0)12 α′(0)22 α′(0)32 α′(0)42

α′(0)13 α′(0)23 α′(0)33 α′(0)43

−α′(0)14 −α′(0)42 −α′(0)34 −α′(0)44

 = O.

So we have

α′(0) =


0 α′(0)12 α′(0)13 α′(0)14

−α′(0)12 0 α′(0)23 α′(0)24

−α′(0)13 −α′(0)23 0 α′(0)34

α′(0)14 α′(0)24 α′(0)34 0

 .
Notice that the trace of such a matrix is zero.

In fact, every matrix of the form

A =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

a14 a24 a34 0


or equivalently satisfying AQ + QAT = O (and hence trA = 0), is in lor. This holds since there is a

curve

α : R −→ GL4(R); α(t) = exp(tA),

with α′(0) = A which satisfies

Q exp(tA)T = exp(tA)Q exp(tAT ) = exp(tA) exp(−tA)Q = Q,

since QAT = −AQ, and by Lemma 2.20,

det exp(tA) = etr(tA) = 1,

and moreover it preserves the components of the hyperboloid x2
1 + x2

2 + x2
3 − x2

4 = −1; all of this shows

that exp(tA) ∈ Lor. Therefore we might as well redefine

α : R −→ Lor; α(t) = exp(tA).

We have shown that

(2.18) lor = {A ∈ M4(R) : AQ+QAT = O} =

A ∈ M4(R) : A =


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

a14 a24 a34 0


 .
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We also have

(2.19) dim Lor = dim lor = 6.

An R-basis for lor consists of the elements

P12 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , P13 =


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , P14 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

P23 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , P24 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , P34 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 .
The non-trivial brackets for these are

[P12, P13] = P23, [P12, P14] = P24, [P12, P23] = −P13, [P12, P24] = −P14, [P12, P34] = 0,

[P13, P14] = P34, [P13, P23] = P12, [P13, P24] = 0, [P13, P34] = 0,

[P14, P23] = 0, [P14, P24] = −P12, [P14, P34] = −P13,

[P23, P24] = P34, [P23, P34] = −P24, [P24, P34] = −P23.

We will now define the homomorphism SL2(C) −→ Lor. To do this we will identify the 2 × 2 skew

hermitian matrices Sk-Herm2(C) with R
4 by[

(t+ x)i y + zi

−y + zi (t− x)i

]
←→ xe1 + ye2 + ze3 + te4.

Define an R-bilinear inner product on Sk-Herm2(C) by the formula

(2.20) 〈S1|S2〉 =
1
4

(det(S1 + S2)− det(S1 − S2)).

When S1 = S2 = S we obtain

〈S|S〉 =
1
4

(det 2S − detO) = detS,

It is easy to check that

(2.21)

〈[
(t1 + x1)i y1 + z1i

−y1 + z1i (t1 − x1)i

]
|
[

(t2 + x2)i y2 + z2i

−y2 + z2i (t2 − x2)i

]〉
= x1x2 + y1y2 + z1z2 − t1t2,

which is the Lorentzian inner product on R
4, which is also given by

x1x2 + y1y2 + z1z2 − t1t2 =
[
x1 y1 z1 t1

]


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



x2

y2

z2

t2


The polarization identity allows us to write

(2.22) 〈S1|S2〉 =
1
4

(det(S1 + S2)− det(S1 − S2)).

Now observe that for A ∈ SL2(C) and S ∈ Sk-Herm2(C),

(ASA∗)∗ = AS∗A∗ = −ASA∗,
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so ASA∗ ∈ Sk-Herm2(C). By Equation (2.22), for S1, S2 ∈ Sk-Herm2(C), and the fact that detA = 1 =

detA∗,

〈AS1A
∗|AS2A

∗〉 =
1
4

(detA(S1 + S2)A∗ − detA(S1 − S2)A∗)

=
1
4

(detA det(S1 + S2) detA∗ − detAdet(S1 − S2) detA∗)

=
1
4

(det(S1 + S2)− det(S1 − S2))

= 〈S1|S2〉 .

Hence the function

Sk-Herm2(C) −→ Sk-Herm2(C); S 7→ ASA∗,

is an R-linear transformation preserving the inner product 〈 | 〉. We can identify this with an R-linear

transformation ÃdA : R
4 −→ R

4 which preserves the Lorentzian inner product. In fact, det ÃdA = 1 and

AdA preserves the components of the hyperboloid x2 + y2 + z2 − t2 = −1. Let

Ãd: SL2(C) −→ Lor; Ãd(A) = ÃdA.

Ãd is homomorphism since

ÃdAB(S) = AB(S)(AB)∗ = AB(S)B∗A∗ = ÃdA(ÃdB(S)) = ÃdAÃdB(S).

It is also continuous. Also, A ∈ ker Ãd if and only if ASA∗ = S for all S ∈ Sk-Herm2(C), and it is easy

to see that this occurs exactly when A = ±I. This shows that ker Ãd = {±I}.

Theorem 2.29. Ãd: SL2(C) −→ Lor is a continuous surjective Lie homomorphism with ker Ãd =

{±I}, hence SL2(C){±I} ∼= Lor. Furthermore the derivative sl2(C) −→ lor is an isomorphism of R-Lie

algebras.

We will not prove that Ãd is surjective but merely consider what happens at the Lie algebra level. As

in the case of SU(2) and SO(3), we can determine the derivative d Ãd by considering for each C ∈ sl2(C),

the curve

γ : R −→ Lor; γ(t) = exp(tC),

which gives rise to the curve

γ : R −→ Lor; γ(t) = Ãdγ(t).

Using as an R-basis for Sk-Herm2(C) the vectors

V1 =

[
i 0

0 −i

]
, V2 =

[
0 1

−1 0

]
, V3 =

[
0 i

i 0

]
, V4 =

[
i 0

0 i

]
,

we can determine the action of Ãdγ(t) on Sk-Herm2(C) and interpret it as an element of Lor. Differ-

entiating we obtain the action of C as an element of lor and so d Ãd(C). For X ∈ Sk-Herm2(C) we

have

Ãdγ(t)(X) = exp(tC)X exp(tC)∗ = exp(tC)X exp(tC∗),

hence
d
d t

Ãdγ(t)(X)|t = 0 = CX +XC∗.

So for the R-basis H, iH,E, iE, F, iF of sl2(C), we have

H(x1V1 + x2V2 + x3V3 + x4V4) + (x1V1 + x2V2 + x3V3 + x4V4)H∗ = x2V3 − x3V2,



36 2. LIE ALGEBRAS FOR MATRIX GROUPS

so

d Ãd(H) =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 .
Here is the complete list written in terms of the matrices Prs which we know form an R-basis of Lor:

d Ãd(H) =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 = P23, d Ãd(iH) =


0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

 = −P14,

d Ãd(E) =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 = −P13, d Ãd(iE) =


0 0 0 0

0 0 0 −1

0 0 0 0

0 −1 0 0

 = −P24,

d Ãd(F ) =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 = P12, d Ãd(iF ) =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 −1 0

 = −P34.

This shows that d Ãd(C) maps a basis for Sk-Herm2(C) to one for lor and hence it is an isomorphism of

Lie algebras.



CHAPTER 3

Quaternions, Clifford algebras and some associated groups

1. Algebras

In this section k will denote any field, although our main interest will be in the cases R,C.

Definition 3.1. A finite dimensional (associative and unital) algebra A is a finite dimensional

k-vector space which is an associative and unital ring such that for all r, s ∈ k and a, b ∈ A,

(ra)(sb) = (rs)(ab).

If A is a ring then A is a commutative k-algebra.

If every non-zero element u ∈ A is a unit, i.e., is invertible, then A is a division algebra.

In this last equation, ra and sb are scalar products in the vector space structure, while (rs)(ab) is

the scalar product of rs with the ring product ab. Furthermore, if 1 ∈ k is the unit of A, for t ∈ k, the

element t1 ∈ A satisfies

(t1)a = ta = t(a1) = a(t1).

If dim kA > 0, then 1 6= 0, and the function

η : k −→ A; η(t) = t1

is an injective ring homomorphism; we usually just write t for η(t) = t1.

Example 3.2. For n > 1, Mn(k) is a k-algebra. Here we have η(t) = tIn. For n > 1, Mn(k) is

non-commutative.

Example 3.3. The ring of complex numbers C is an R-algebra. Here we have η(t) = t. C is

commutative. Notice that C is a commutative division algebra.

A commutative division algebra is usually called a field while a non-commutative division algebra is

called a skew field. In French corps (∼ field) is often used in sense of possibly non-commutative division

algebra.

In any algebra, the set of units of A forms a group A× under multiplication, and this contains k
×.

For A = Mn(k), Mn(k)× = GLn(k).

Definition 3.4. Let A,B be two k-algebras. A k-linear transformation that is also a ring homo-

morphism is called a k-algebra homomorphism or homomorphism of k-algebras.

A homomorphism of k-algebras ϕ : A −→ B which is also an isomorphism of rings or equivalently of

k-vector spaces is called isomorphism of k-algebras.

Notice that the unit η : k −→ A is always a homomorphism of k-algebras. There are obvious notions

of kernel and image for such homomorphisms, and of subalgebra.

Definition 3.5. Given two k-algebras A,B, their direct product has underlying set A×B with sum

and product

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2), (a1, b1)(a2, b2) = (a1a2, b1b2).

The zero is (0, 0) while the unit is (1, 1).

37
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It is easy to see that there is an isomorphism of k-algebras A×B ∼= B ×A.

Given a k-algebra A, it is also possible to consider the ring Mn(A) consisting of m×m matrices with

entries in A; this is also a k-algebra of dimension

dimk Mm(A) = m2 dimk A.

It is often the case that a k-algebra A contains a subalgebra k1 ⊆ A which is also a field. In that

case A can be viewed as a over k1 in two different ways, corresponding to left and right multiplication

by elements of k1. Then for t ∈ k1, a ∈ A,

t · a = ta;(Left scalar multiplication)

a · t = at.(Right scalar multiplication)

These give different k1-vector space structures unless all elements of k1 commute with all elements of A,

in which case k1 is said to be a central subfield of A. We sometimes write k1A and Ak1 to indicate which

structure is being considered. k1 is itself a finite dimensional commutative k-algebra of some dimension

dimk k1.

Proposition 3.6. Each of the k1-vector spaces k1A and Ak1 is finite dimensional and in fact

dimk A = dimk1(k1A) dimk k1 = dimk1 Ak1 dimk k1.

Example 3.7. Let k = R and A = M2(R), so dimR A = 4. Let

k1 =

{[
x y

−y x

]
: x, y ∈ R

}
⊆ M2(R).

Then k1
∼= C so is a subfield of M2(R), but it is not a central subfield. Also dimk1 A = 2.

Example 3.8. Let k = R and A = M2(C), so dimR A = 8. Let

k1 =

{[
x y

−y x

]
: x, y ∈ R

}
⊆ M2(C).

Then k1
∼= C so is subfield of M2(C), but it is not a central subfield. Here dimk1 A = 4.

Given a k-algebra A and a subfield k1 ⊆ A containing k (possibly equal to k), an element a ∈ A acts

on A by left multiplication:

a · u = au (u ∈ A).

This is always a k-linear transformation of A, and if we view A as the k1-vector space Ak1 , it is always

a k1-linear transformation. Given a k1-basis {v1, . . . , vm} for Ak1 , there is an m ×m matrix ρ(a) with

entries in k1 defined by

λ(a)vj =
m∑
r=1

λ(a)rjvr.

It is easy to check that

λ : A −→ Mm(k1); a 7−→ λ(a)

is a homomorphism of k-algebras, called the left regular representation of A over k1 with respect to the

basis {v1, . . . , vm}.

Lemma 3.9. λ : A −→ Mm(k1) has trivial kernel kerλ = 0, hence it is an injection.

Proof. If a ∈ kerλ then λ(a)(1) = 0, giving a1 = 0, so a = 0. �

Definition 3.10. The k-algebra A is simple if it has only one proper two sided ideal, namely (0),

hence every non-trivial k-algebra homomorphism θ : A −→ B is an injection.
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Proposition 3.11. Let k be a field.

i) For a division algebra D over k, D is simple.

ii) For a simple k-algebra A, Mn(A) is simple. In particular, Mn(k) is a simple k-algebra.

On restricting the left regular representation to the group of units of A×, we obtain an injective

group homomorphism

λ× : A× −→ GLm(k1); λ×(a)(u) = au,

where k1 ⊆ A is a subfield containing k and we have chosen a k1-basis of Ak1 . Because

A× ∼= imλ× 6 GLm(k1),

A× and its subgroups give groups of matrices.

Given a k-basis of A, we obtain a group homomorphism

ρ× : A× −→ GLn(k); ρ×(a)(u) = ua−1.

We can combine λ× and ρ× to obtain two further group homomorphisms

λ× × ρ× : A× ×A× −→ GLn(k); λ× × ρ×(a, b)(u) = aub−1,

∆: A× −→ GLn(k); ∆(a)(u) = aua−1.

Notice that these have non-trivial kernels,

kerλ× × ρ× = {(1, 1), (−1,−1)}, ker ∆ = {1,−1}.

2. Linear algebra over a division algebra

Throughout this section, let D be a finite dimensional division algebra over a field k.

Definition 3.12. A (right) D-vector space V is a right D-module, i.e., an abelian group with a right

scalar multiplication by elements of D so that for u, v ∈ V , x, y ∈ D,

v(xy) = (vx)y,

v(x+ y) = vx+ vy,

(u+ v)x = ux+ vx,

v1 = v.

All the obvious notions of D-linear transformations, subspaces, kernels and images make sense as do

notions of spanning set and linear independence over D.

Theorem 3.13. Let V be a D-vector space. Then V has a D-basis.

If V has a finite spanning set over D then it has a finite D-basis; furthermore any two such finite

bases have the same number of elements.

Definition 3.14. A D-vector space V with a finite basis is called finite dimensional and the number

of elements in a basis is called the dimension of V over D, denoted dimD V .

For n > 1, we can view D
n as the set of n× 1 column vectors with entries in D and this becomes a

D-vector space with the obvious scalar multiplication
z1

z2

...

zn

x =


z1x

z2x
...

znx
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Proposition 3.15. Let V,W be two finite dimensional vector spaces over D, of dimensions dimD V =

m, dimD W = n and with bases {v1, . . . , vm}, {w1, . . . , wn}. Then a D-linear transformation ϕ : V −→W

is given by

ϕ(vj) =
n∑
r=1

wrarj

for unique elements aij ∈ D. Hence if

ϕ

(
n∑
s=1

vsxs

)
=

n∑
s=1

wryr,

then 
y1

y2

...

yn

 =


a11 a12 . . . a1m

a21 a22 . . . a2m

...
. . . . . .

...

an1 an2 . . . amn




x1

x2

...

xn


In particular, for V = D

m and W = D
n, every D-linear transformation is obtained in this way from left

multiplication by a fixed matrix.

This is of course analogous to what happens over a field except that we are careful to keep the scalar

action on the right and the matrix action on the left.

We will be mainly interested in linear transformations which we will identify with the corresponding

matrices. If θ : D
k −→ D

m and ϕ : D
m −→ D

n are D-linear transformations with corresponding matrices

[θ], [ϕ], then

(3.1) [θ][ϕ] = [θ ◦ ϕ].

Also, the identity and zero functions Id, 0: D
m −→ D

m have [Id] = Im and [0] = Om.

Notice that given a D-linear transformation ϕ : V −→ W , we can ’forget’ the D-structure and just

view it as a k-linear transformation. Given D-bases {v1, . . . , vm}, {w1, . . . , wn} and a basis {b1, . . . , bd}
say for D, the elements

vrbt (r = 1, . . . ,m, t = 1, . . . , d),

wsbt (s = 1, . . . , n, t = 1, . . . , d)

form k-bases for V,W as k-vector spaces.

We denote the set of al m× n matrices with entries in D by Mm,n(D) and Mn(D) = Mn,n(D). Then

Mn(D) is a k-algebra of dimension dim Mn(D) = n2 dimk D. The group of units of Mn(D) is denoted

GLn(D). However, for non-commutative D there is no determinant function so we cannot define an

analogue of the special linear group. We can however use the left regular representation to overcome this

problem with the aid of some algebra.

Proposition 3.16. Let A be algebra over a field k and B ⊆ A a finite dimensional subalgebra. If

u ∈ B is a unit in A then u−1 ∈ B, hence u is a unit in B.

Proof. Since B is finite dimensional, the powers uk (k > 0) are linearly dependent over k, so for

some tr ∈ k (r = 0, . . . , `) with t` 6= 0 and ` > 1, there is a relation∑̀
r=0

tru
r = 0.

If we choose k suitably and multiply by a non-zero scalar, then we can assume that

uk −
∑̀
r=k+1

tru
r = 0.
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If v is the inverse of u in A, then multiplication by vk+1 gives

v −
∑̀
r=k+1

tru
r−k−1 = 0,

from which we obtain

v =
∑̀
r=k+1

tru
r−k−1 ∈ B.

�

For a division algebra D, each matrix A ∈ Mn(D) acts by multiplication on the left of D
n. For any

subfield k1 ⊆ D containing k, A induces a (right) k1-linear transformation,

D
n −→ D

n; x 7−→ Ax.

If we choose a k1-basis for D, A gives rise to a matrix ΛA ∈ Mnd(k1) where d = dimk1 Dk1 . It is easy to

see that the function

Λ: Mn(D) −→ Mnd(k1); Λ(A) = ΛA,

is a ring homomorphism with ker Λ = 0. This allows us to identify Mn(D) with the subring im Λ ⊆
Mnd(k1).

Applying Proposition 3.16 we see that A is invertible in Mn(D) if and only if ΛA is invertible in

Mnd(k1). But the latter is true if and only if det ΛA 6= 0.

Hence to determine invertibility of A ∈ Mn(D), it suffices to consider det ΛA using a subfield k1. The

resulting function

Rdetk1 : Mn(D) −→ k1; Rdetk1(A) = det ΛA,

is called the k1-reduced determinant of Mn(D) and is a group homomorphism. It is actually true that

det ΛA ∈ k, not just in k1, although we will not prove this here.

Proposition 3.17. A ∈ Mn(D) is invertible if and only if Rdetk1(A) 6= 0 for some subfield k1 ⊆ D

containing k.

3. Quaternions

Proposition 3.18. If A is a finite dimensional commutative R-division algebra then either A = R

or there is an isomorphism of R-algebras A ∼= C.

Proof. Let α. Since A is a finite dimensional R-vector space, the powers 1, α, α2, . . . , αk, . . . must

be linearly dependent, say

(3.2) t0 + t1α+ · · ·+ tmα
m = 0

for some tj ∈ R with m > 1 and tm 6= 0. We can choose m to be minimal with these properties. If

t0 = 0, then

t1 + t2α+ t3α
2 + · · ·+ tmα

m−1 = 0,

contradicting minimality; so t0 6= 0. In fact, the polynomial p(X) = t0 + t1X + · · · + tmX
m ∈ R[X] is

irreducible since if p(X) = p1(X)p2(X) then since A is a division algebra, either p1(α) = 0 or p2(α) = 0,

which would contradict minimality if both deg p1(X) > 0 and deg p2(X) > 0.

Consider the R-subspace

R(α) = {
k∑
j=0

sjα
j : sj ∈ R} ⊆ A.

Then R(α) is easily seen to be a R-subalgebra of A. The elements 1, α, α2, . . . , αm−1 form a basis by

Equation (3.2), hence dimR R(α) = m.
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Let γ ∈ C be any complex root of the irreducible polynomial t0 + t1X + · · ·+ tmX
m ∈ R[X] which

certainly exists by the Fundamental Theorem of Algebra). There is an R-linear transformation which is

actually an injection,

ϕ : R(α) −→ C; ϕ(
m−1∑
j=0

sjα
j) =

m−1∑
j=0

sjγ
j .

It is easy to see that this is actually an R-algebra homomorphism. Hence ϕR(α) ⊆ C is a subalgebra.

But as dimR C = 2, this implies that m = dimR R(α) 6 2. If m = 1, then by Equation (3.2), α ∈ R. If

m = 2, then ϕR(α) = C.

So either dimR A = 1 and A = R, or dimR A > 1 and we can choose an α ∈ A with C ∼= R(α). This

means that we can view A as a finite dimensional C-algebra. Now for any β ∈ A there is polynomial

q(X) = u0 + u1X + · · ·+ u`X
` ∈ C[X]

with ` > 1 and u` 6= 0. Again choosing ` to be minimal with this property, q(X) is irreducible. But then

since q(X) has a root in C, ` = 1 and β ∈ C. This shows that A = C whenever dimR A > 1. �

The above proof actually shows that if A is a finite dimensional R-division algebra, then either A = R

or there is a subalgebra isomorphic to C. However, the question of what finite dimensional R-division

algebras exist is less easy to decide. In fact there is only one other up to isomorphism, the skew field of

quaternions H. We will now show how to construct this skew field.

Let

H =

{[
z w

−w z

]
: z, w ∈ C

}
⊆ M2(C).

It is easy to see that H is a subring of M2(C) and is in fact an R-subalgebra where we view M2(C) as an

R-algebra of dimension 8. It also contains a copy of C, namely the R-subalgebra{[
z 0

0 z

]
: z ∈ C

}
⊆ H.

However, H is not a C-algebra since for example[
i 0

0 −i

][
0 1

−1 0

]
=

[
0 i

i 0

]
= −

[
0 1

−1 0

][
i 0

0 −i

]
6=
[

0 1

−1 0

][
i 0

0 −i

]
.

Notice that if z, w ∈ C, then z = 0 = w if and only if |z|2 + |w|2 = 0. We have[
z w

−w z

][
z −w
w z

]
=

[
|z|2 + |w|2 0

0 |z|2 + |w|2

]
,

hence

[
z w

−w z

]
is invertible if and only if

[
z w

−w z

]
6= O; furthermore in that case,

[
z w

−w z

]−1

=


z

|z|2 + |w|2
−w

|z|2 + |w|2
w

|z|2 + |w|2
z

|z|2 + |w|2


which is in H. So an element of H is invertible in H if and only if it is invertible as a matrix. Notice that

SU(2) = {A ∈ H : detA = 1} 6 H
×.

It is useful to define on H a norm in the sense of Proposition 1.4:∣∣∣∣∣
[

z w

−w z

]∣∣∣∣∣ = det

[
z w

−w z

]
= |z|2 + |w|2.
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Then

SU(2) = {A ∈ H : |A| = 1} 6 H
×.

As an R-basis of H we have the matrices

1 = I, i =

[
i 0

0 −i

]
, j =

[
0 1

−1 0

]
, k =

[
0 i

i 0

]
.

These satisfy the equations

i2 = j2 = k2 = −1, ij = k = −ji, k = i = −kj, ki = j = −ik.

This should be compared with the vector product on R
3 as discussed in Example 2.12. From now on we

will write quaternions in the form

q = xi + j + zk + t1 (x, y, z, t ∈ R).

q is a pure quaternion if and only if t = 0; q is a real quaternion if and only if x = y = z = 0. We can

identify the pure quaternion xi+yj+zk with the element xe1 +ye2 +ze3 ∈ R
3. Using this identification

we see that the scalar and vector products on R
3 are related to quaternion multiplication by the following.

Proposition 3.19. For two pure quaternions q1 = x1i + y1j + z1k, q2 = x2i + y2j + z2k,

q1q2 = −(x1i + y1j + z1k) · (x2i + y2j + z2k) + (x1i + y1j + z1k) × (x2i + y2j + z2k).

In particular, q1q2 is a pure quaternion if and only if q1 and q2 are orthogonal, in which case q1q2 is

orthogonal to each of them.

The following result summarises the general situation about solutions of X2 + 1 = 0.

Proposition 3.20. The quaternion q = xi + j + zk + t1 satisfies q2 + 1 = 0 if and only if t = 0 and

x2 + y2 + z2 = 1.

Proof. This easily follows from Proposition 3.19. �

There is a quaternionic analogue of complex conjugation, namely

q = xi + j + zk + t1 7−→ q = q∗ = −xi− j− zk + t1.

This is ‘almost’ a ring homomorphism H −→ H, in fact it satisfies

(q1 + q2) = q1 + q2;(3.3a)

(q1q2) = q2q1;(3.3b)

q = q ⇐⇒ q is real quaternion;(3.3c)

q = −q ⇐⇒ q is a pure quaternion.(3.3d)

Because of Equation (3.3b) this is called a homomorphism of skew rings or anti-homomorphism of rings.

The inverse of a non-zero quaternion q can be written as

(3.4) q−1 =
1

(qq)
q =

q

(qq)
.

The real quantity qq is the square of the length of the corresponding vector,

|q| =
√
qq =

√
x2 + y2 + z2 + t2.

For z = with u, v ∈ R, z = u1− vi is the usual complex conjugation.

In terms of the matrix description of H, quaternionic conjugation is given by hermitian conjugation,[
z w

−w z

]
7−→

[
z w

−w z

]∗
=

[
z −w
w z

]
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From now on we will write

1 = 1, i = i, j = j, k = k.

4. Quaternionic matrix groups

The above norm | | on H extends to a norm on H
n, viewed as a right H-vector space. We can define

an quaternionic inner product on H by

x · y = x∗y =
n∑
r=1

xryr,

where we define the quaternionic conjugate of a vector by
x1

x2

...

xn


∗

=
[
x1 x2 · · · xn

]
.

Similarly, for any matrix [aij ] over H we can define [aij ]∗ = [aji].

The length of x ∈ H
n is defined to be

|x| =
√

x∗x =

√√√√ n∑
r=1

|xr|2.

We can also define a norm on Mn(H) by the method used in Section 2 of Chapter 1, i.e., for A ∈ Mn(H),

‖A‖ = sup
{
|Ax|
|x|

: 0 6= x ∈ H
n

}
.

Then the analogue of Proposition 1.4 is true for ‖ ‖ and the norm | | on H, although statements involving

scalar multiplication need to be formulated with scalars on the right. There is also a resulting metric on

Mn(H),

(A,B) 7−→ ‖A−B‖,

and we can use this to do analysis on Mn(H). The multiplication map Mn(H) ×Mn(H) −→ Mn(H) is

again continuous, and the group of invertible elements GLn(H) ⊆ Mn(H) is actually an open subset.

This can be proved using either of the reduced determinants

RdetR : Mn(H) −→ R, RdetC : Mn(H) −→ C,

each of which is continuous. By Proposition 3.17,

GLn(H) = Mn(H)− Rdet−1
R

0,(3.5a)

GLn(H) = Mn(H)− Rdet−1
C

0.(3.5b)

In either case we see that GLn(H) is an open subset of Mn(H). It is also possible to show that the images

of embeddings GLn(H) −→ GL4n(R) and GLn(H) −→ GL2n(C) are closed. So GLn(H) and its closed

subgroups are real and complex matrix groups.

The n× n quaternionic symplectic group is

Sp(n) = {A ∈ GLn(H) : A∗A = I} 6 GLn(H).

These are easily seen to satisfy

Sp(n) = {A ∈ GLn(H) : ∀x,y ∈ H
n, Ax ·Ay = x · y}.
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These groups Sp(n) form another infinite family of compact connected matrix groups along with familiar

examples such as SO(n),U(n),SU(n). There are further examples, the spinor groups Spin(n) whose

description involves the real Clifford algebras Cln.

5. The real Clifford algebras

The sequence of real division algebras R,C,H can be extended by introducing the real Clifford

algebras Cln, where

Cl0 = R, Cl1 = C, Cl2 = H, dimR = 2n.

There are also complex Clifford algebras, but we will not discuss these. The theory of Clifford algebras

and spinor groups is central in modern differential geometry and topology, particularly Index Theory.

It also appears in Quantum Theory in connection with the Dirac operator. There is also a theory of

Clifford Analysis in which the complex numbers are replaced by a Clifford algebra and a suitable class

of analytic functions are studied; a motivation for this lies in the above applications.

We begin by describing Cln as an R-vector space and then explain what the product looks like in

terms of a particular basis. There are elements e1, e2, . . . , en ∈ Cln for which

(3.6a)

eser = −eser, if s 6= r.

e2
r = −1.

Moreover, the elements ei1ei2 · · · eir for increasing sequences 1 6 i1 < i2 < · · · < ir 6 n with 0 6 r 6 n,

form an R-basis for Cln. Thus

(3.6b) dimR Cln = 2n.

When r = 0, the element ei1ei2 · · · eir is taken to be 1.

Proposition 3.21. There are isomorphisms of R-algebras

Cl1 ∼= C, Cl2 ∼= H.

Proof. For Cl1, the function

Cl1 −→ C; x+ ye1 7−→ x+ yi (x, y ∈ R),

is an R-linear ring isomorphism.

Similarly, for Cl2, the function

Cl2 −→ H; t1 + xe1 + ye2 + ze1e2 7−→ t1 + xi+ yj + zk (t, x, y, z ∈ R),

is an R-linear ring isomorphism. �

We can order the basis monomials in the er by declaring ei1ei2 · · · eir to be number

1 + 2i1−1 + 2i2−1 + · · ·+ 2ir−1,

which should be interpreted as 1 when r = 0. Every integer k in the range 1 6 k 6 2n has a unique

binary expansion

k = k0 + 2k1 + · · ·+ 2jkj + · · ·+ 2nkn,

where each kj = 0, 1. This provides a one-one correspondence between such numbers k and the basis

monomials of Cln. Here are the basis orderings for the first few Clifford algebras.

Cl1 : 1, e1; Cl2 : 1, e1, e2, e1e2; Cl3 : 1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3.

Using the left regular representation over R associated with this basis of Cln, we can realise Cln as a

subalgebra of M2n(R).
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Example 3.22. For Cl1 we have the basis {1, e1} and we find that

ρ(1) = I2, ρ(e1) =

[
0 −1

1 0

]
.

So the general formula is

ρ(x+ ye1) =

[
x −y
y x

]
(x, y ∈ R).

For Cl2 the basis {1, e1, e2, e1e2} leads to a realization in M4(R) for which ρ(1) = I4 and

ρ(e1) =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , ρ(e2) =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , ρ(e1e2) =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 .
In all cases the matrices ρ(ei1ei2 · · · eir ) are generalized permutation matrices all of whose entries

are entries 0,±1 and exactly on non-zero entry in each row and column. These are always orthogonal

matrices of determinant 1.

These Clifford algebras have an important universal property which actually characterises them.

First notice that there is an R-linear transformation

jn : R
n −→ Cln; jn

(
n∑
r=1

xrer

)
=

n∑
r=1

xrer.

By an easy calculation,

(3.7) jn

(
n∑
r=1

xrer

)2

= −
n∑
r=1

x2
r = −

∣∣∣∣∣
n∑
r=1

xrer

∣∣∣∣∣
2

.

Theorem 3.23 (The Universal Property of Clifford algebras). Let A be a R-algebra and f : R
n −→ A

an R-linear transformation for which

f(x)2 = −|x|21.

Then there is a unique homomorphism of R-algebras F : Cln −→ A for which F ◦ jn = f , i.e., for all

x ∈ R
n,

F (jn(x)) = f(x).

Proof. The homomorphism F is defined by setting F (er) = f(er) and showing that it extends to

a ring homomorphism on Cln. �

Example 3.24. There is an R-linear transformation

α0 : R
n −→ Cln; α0(x) = −jn(x) = jn(−x).

Then

α0(x)2 = jn(−x)2 = −|x|2,

so by the Theorem there is a unique homomorphism of R-algebras α : Cln −→ Cln for which

α(jn(x)) = α0(x).

Since jn(er) = er, this implies

α(er) = −er.

Notice that for 1 6 i1 < i2 < · · · < ik 6 n,

α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik

 ei1ei2 · · · eik if k is even,

−ei1ei2 · · · eik if k is odd.
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It is easy to see that α is an isomorphism and hence an automorphism.

This automorphism α : Cln −→ Cln is often called the canonical automorphism of Cln.

We record explicit form of the next few Clifford algebras. Consider the R-algebra M2(H) of dimension

16. Then we can define an R-linear transformation

θ4 : R
4 −→ M2(H); θ4(x1e1 + x2e2 + x3e3 + x4e4) =

[
x1i+ x2j + x3k x4k

x4k x1i+ x2j − x3k

]
.

Direct calculation shows that θ4 satisfies the condition of Theorem 3.23, hence there is a unique R-algebra

homomorphism Θ4 : Cl4 −→ M2(H) with Θ4 ◦ j4 = θ4. This is in fact an isomorphism of R-algebras, so

Cl4 ∼= M2(H).

Since R ⊆ R
2 ⊆ R

3 ⊆ R
4 we obtain compatible homomorphisms

Θ1 : Cl1 −→ M2(H), Θ2 : Cl2 −→ M2(H), Θ3 : Cl3 −→ M2(H),

which have images

im Θ1 = {zI2 : z ∈ C},

im Θ2 = {qI2 : q ∈ H},

im Θ3 =

{[
q1 0

0 q2

]
: q1, q2 ∈ H

}
.

This shows that there is an isomorphism of R-algebras

Cl3 ∼= H×H,

where the latter is the direct product of Definition 3.5. We also have

Cl5 ∼= M4(C), Cl6 ∼= M8(R), Cl7 ∼= M8(R)×M8(R).

After this we have the following periodicity result, where Mm(Cln) denotes the ring of m ×m matrices

with entries in Cln.

Theorem 3.25. For n > 0,

Cln+8
∼= M16(Cln).

In the next section we will make use of some more structure in Cln. First there is a conjugation

( ) : Cln −→ Cln defined by

ei1ei2 · · · eik = (−1)keikeik−1 · · · ei1

whenever 1 6 i1 < i2 < · · · < ik 6 n, and satisfying

x+ y = x+ y,

txtx,

for x, y ∈ Cln and t ∈ R. Notice that this is not a ring homomorphism Cln −→ Cln since for example

whenever r < s,

eres = eser = −eres = −eres 6= eres.

However, it is a ring anti-homomorphism in the sense that for all x, y ∈ Cln,

(3.8) xy = y x (x, y ∈ Cln).

When n = 1, 2 this agrees with the conjugations already defined in C and H.
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Second there is the canonical automorphism α : Cln −→ Cln defined in Example 3.24. We can use α

to define a ±-grading on Cln:

Cl+n = {u ∈ Cln : α(u) = u}, Cl−n = {u ∈ Cln : α(u) = −u}.

Proposition 3.26. i) Every element v ∈ Cln can be unique expressed in the form v = v+ +v− where

v+ ∈ Cl+n and v− ∈ Cl−n . Hence as an R-vector space, Cln = Cl+n ⊕ Cl−n .

ii) This decomposition is multiplicative in the sense that

uv ∈ Cl+n if u, v ∈ Cl+n or u, v ∈ Cl−n ,

uv, vu ∈ Cl+n if u ∈ Cl+n and v ∈ Cl−n .

Proof. i) The elements

v+ =
1
2

(v + α(v)), v− =
1
2

(v − α(v)),

satisfy α(v+) = v+, α(v−) = −v− and v = v+ + v−. This expression is easily found to be the unique

one with these properties and defines the stated vector space direct sum decomposition.

ii) This is easily checked using the fact that α is a ring homomorphism. �

Notice that for bases of Cl±n we have the monomials

(3.9)

 ej1 · · · ej2m ∈ Cl+n (1 6 j1 < · · · < j2m 6 n),

ej1 · · · ej2m+1 ∈ Cl−n (1 6 j1 < · · · < j2m+1 6 n).

Finally, we introduce an inner product · and a norm | | on Cln by defining the distinct monomials

ei1ei2 · · · eik with 1 6 i1 < i2 < · · · < ik 6 n to be an orthonormal basis, i.e.,

(ei1ei2 · · · eik) · (ej1ej2 · · · ej`) =

1 if ` = k and ir = jr for all r,

0 otherwise,

and

|x| =
√
x · x.

A more illuminating way to define · is by the formula

(3.10) u · v =
1
2

Re(u v + v u),

where for w ∈ Cln we define its real part Rew to be the coefficient of 1 when w is expanded as an R-linear

combination of the basis monomials ei1 · · · eir with 1 6 i1 < · · · < ir 6 n and 0 6 r. It can be shown

that for any u, v ∈ Cln and w ∈ jnR
n,

(3.11) (wu) · (wv) = |w|2(u · v).

In particular, when |w| = 1 left multiplication by w defines an R-linear transformation on Cln which

is an isometry. The norm | | gives rise to a metric on Cln. This makes the group of units Cl×n into a

topological group while the above embeddings of Cln into matrix rings are all continuous. This implies

that Cl×n is a matrix group. Unfortunately, they are not norm preserving. For example, 2 + e1e2e3 ∈ Cl3
has |2 + e1e2e3| =

√
5, but the corresponding matrix in M8(R) has norm

√
3. However, by defining for

each w ∈ Cln
‖w‖ = {|wx| : x ∈ Cln, |x| = 1} ,

we obtain another equivalent norm on Cln for which the above embedding Cln −→ M2n(R) does preserve

norms. For w ∈ jnR
n we do have ‖w‖ = |w| and more generally, for w1, . . . , wk ∈ jnR

n,

‖w1 · · ·wk‖ = |w1 · · ·wk| = |w1| · · · |wk|.
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For x, y ∈ Cln,

‖xy‖ 6 ‖x‖ ‖y‖,

without equality in general.

6. The spinor groups

In this section we will describe the compact connected spinor groups Spin(n) which are groups of

units in the Clifford algebras Cln. Moreover, there are surjective Lie homomorphisms Spin(n) −→ SO(n)

each of whose kernels have two elements.

We begin by using the injective linear transformation jn : R
n −→ Cln to identify R

n with a subspace

of Cln, i.e.,
n∑
r=1

xrer ←→ jn(
n∑
r=1

xrer) =
n∑
r=1

xrer.

Notice that R
n ⊆ Cl−n , so for x ∈ R

n, u ∈ Cl+n and v ∈ Cl−n ,

(3.12) xu, ux ∈ Cl−n , xv, vx ∈ Cl+n .

Inside of R
n ⊆ Cln is the unit sphere

S
n−1 = {x ∈ R

n : |x| = 1} = {
n∑
r=1

xrer :
n∑
r=1

x2
r = 1}.

Lemma 3.27. Let u ∈ S
n−1 ⊆ Cln. Then u is a unit in Cln, u ∈ Cl×n .

Proof. Since u ∈ R
n,

(−u)u = u(−u) = −u2 = −(−|u|2) = 1,

so (−u) is the inverse of u. Notice that −u ∈ S
n−1. �

More generally, for u1, . . . , uk ∈ S
n−1 we have

(3.13) (u1 · · ·uk)−1 = (−1)kuk · · ·u1 = u1 · · ·uk.

Definition 3.28. The pinor group Pin(n) is the subgroup of Cl×n generated by the elements of S
n−1,

Pin(n) = {u1 · · ·uk : k > 0, ur ∈ S
n−1} 6 Cl×n .

Notice that Pin(n) is a topological group and is bounded as a subset of Cln with respect to the

metric introduced in the last section. It is in fact a closed subgroup of Cl×n and so is a matrix group; in

fact it is even compact. We will show that Pin(n) acts on R
n in an interesting fashion.

We will require the following useful result.

Lemma 3.29. Let u, v ∈ R
n ⊆ Cln. If u · v = 0, then

vu = −uv.



50 3. QUATERNIONS, CLIFFORD ALGEBRAS AND SOME ASSOCIATED GROUPS

Proof. Writing u =
∑n
r=1 xrer and v =

∑n
s=1 yses with xr, ys ∈ R, we obtain

vu =
n∑
s=1

n∑
r=1

ysxreser

=
n∑
r=1

yrxre
2
r +

∑
r<s

(xsyr − xrys)eres

= −
n∑
r=1

yrxr −
∑
r<s

(xrys − xsyr)eres

= −u.v −
∑
r<s

(xrys − xsyr)eres

= −
∑
r<s

(xrys − xsyr)eres

= v.u−
∑
r<s

(xrys − xsyr)eres

= −
n∑
r=1

n∑
s=1

xryseres

= −uv.

�

For u ∈ S
n−1 and x ∈ R

n,

α(u)xu = (−u)x(−u) = uxu.

If u · x = 0, then by Lemma 3.29,

(3.14a) α(u)xu = −u2x = −(−1)x = x,

since u2 = −|u|2 = −1. On the other hand, if x = tu for some t ∈ R, then

(3.14b) α(u)xu = tu2u = −tu.

So in particular α(u)xu ∈ R
n. This allows us to define a function

ρu : R
n −→ R

n; ρu(x) = α(u)xu = uxu.

Similarly for u ∈ Pin(n), we can consider α(u)xu; if u = u1 · · ·ur for u1, . . . , ur ∈ S
n−1, we have

α(u)xu = α(u1 · · ·ur)xu1 · · ·ur

= ((−1)ru1 · · ·ur)x((−1)rur · · ·u1)

= ρu1 ◦ · · · ◦ ρur (x) ∈ R
n.(3.15)

So there is a linear transformation

ρu : R
n −→ R

n; ρu(x) = α(u)xu.

Proposition 3.30. For u ∈ Pin(n), ρu : R
n −→ R

n is an isometry, i.e., an element of O(n).

Proof. By Equation (3.15) it suffices to show this for u ∈ S
n−1. Now Equations (3.14) show that

geometrically ρu : R
n −→ R

n is reflection in the hyperplane orthogonal to u which is an isometry. �

Since each ρu ∈ O(n) we actually have a continuous homomorphism

ρ : Pin(n) −→ O(n); ρ(u) = ρu.

Proposition 3.31. ρ : Pin(n) −→ O(n) is surjective with kernel ker ρ = {1,−1}.
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Proof. The observation in the proof of Proposition 3.30 shows that reflection in the hyperplane

orthogonal to u ∈ S
n−1 has the form ρu. Surjectivity follows using the standard fact that every element

of O(n) is a composition of reflections in hyperplanes.

Suppose that for some u1, . . . , uk ∈ S
n−1, u = u1 · · ·uk ∈ ker ρ, i.e., ρu = In. Then

1 = det ρu = det(ρu1 · · · ρuk) = det ρu1 · · ·det ρuk .

Each ρur is a reflection and so has det ρur = −1. These facts imply k must be even, u ∈ Cl+n , and then

by Equation (3.13),

u−1 = uk · · ·u1 = u.

So for any x ∈ R
n we have

x = ρu(x) = uxu−1,

which implies that

xu = ux.

For each r = 1, . . . , n we can write

u = ar + erbr = (a+
r + erb

−
r ) + (a−r + erb

+
r ),

where ar, br ∈ Cln do not involve er in their expansions in terms of the monomial bases of Equation

(3.9). On taking x = er we obtain

er(ar + erbr) = (ar + erbr)er,

giving

ar + erbr = −er(ar + erbr)er

= −erarer − e2
rbrer

= −e2
rar − erbr

= ar − erbr

= (a+
r − erb−r ) + (a−r − erb−r )

= ar − erbr,

where we use the fact that for each es 6= er, eser = −eres. Thus we have br = 0 and so u = ar does not

involve er. But this applies for all r, so u = t1 for some t ∈ R. Since u = t1,

t21 = uu = (−1)k = 1,

by Equation (3.13) and the fact that k is even. This shows that t = ±1 and so u = ±1. �

For n > 1, the spinor groups are defined by

Spin(n) = ρ−1 SO(n) 6 Pin(n).

Theorem 3.32. Spin(n) is a compact, path connected, closed normal subgroup of Pin(n), satisfying

Spin(n) = Pin(n) ∩ Cl+n ,(3.16a)

Pin(n) = Spin(n) ∪ er Spin(n),(3.16b)

for any r = 1, . . . , n.

Furthermore, when n > 3 the fundamental group of Spin(n) is trivial, π1 Spin(n) = 1.
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Proof. We only discuss connectivity. Recall that the sphere S
n−1 ⊆ R

n ⊆ Cln is path connected.

Choose a base point u0 ∈ S
n−1. Now for an element u = u1 · · ·uk ∈ Spin(n) with u1, . . . , uk ∈ S

n−1, as

noted in the proof of Proposition 3.31, we must have k even, say k = 2m. In fact, we might as well take

m to be even since u = u(−w)w for any w ∈ S
n−1. Then there are continuous paths

pr : [0, 1] −→ S
n−1 (r = 1, . . . , 2m),

for which pr(0) = u0 and pr(1) = ur. Then

p : [0, 1] −→ S
n−1 p(t) = p1(t) · · · p2m(t)

is a continuous path in Pin(n) with

p(0) = u2m
0 = (−1)m = 1, p(1) = u.

But t 7→ ρ(p(t)) is a continuous path in O(n) with ρ(p(0)) ∈ SO(n), hence ρ(p(t)) ∈ SO(n) for all t. This

shows that p is a path in Spin(n). So every element u ∈ Spin(n) can be connected to 1 and therefore

Spin(n) is path connected.

The equations of (3.16) follow from details in proof of Proposition 3.31.

The final statement involves homotopy theory and is not proved here. It should be compared with

the fact that for n > 3, π1 SO(n) ∼= {1,−1} and in fact the map is a universal covering. �

The double covering maps ρ : Spin(n) −→ SO(n) generalize the case of SU(2) −→ SO(3) discussed in

Section 5 of Chapter 2. In fact, around each element u ∈ there is an open neighbourhood Nu ⊆ Spin(n)

for which ρ : Nu −→ ρNu is a homeomorphism, and actually a diffeomorphism. This implies the following.

Proposition 3.33. The derivative d ρ : spin(n) −→ so(n) is an isomorphism of R-Lie algebras and

dim Spin(n) = dim SO(n) =
(
n

2

)
.

7. The centres of spinor groups

Recall that for a group G the centre of G is

C(G) = {c ∈ G : ∀g ∈ G, gc = cg}.

Then C(G) / G. It is well known that for groups SO(n) with n > 3 we have

Proposition 3.34. For n > 3,

C(SO(n)) = {tIn : t = ±1, tn = 1} =

{In} if n is odd,

{±In} if n is even.

Proposition 3.35. For n > 3,

C(Spin(n)) =


{±1} if n is odd,

{±1,±e1 · · · en} if n ≡ 2 mod 4,

{±1,±e1 · · · en} if n ≡ 0 mod 4.

∼=


Z/2 if n is odd,

Z/4 if n ≡ 2 mod 4,

Z/2× Z/2 if n ≡ 0 mod 4.
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Proof. If g ∈ C(Spin(n)), then since ρ : Spin(n) −→ SO(n), ρ(g) ∈ C(SO(n)). As ±1 ∈ C(Spin(n)),

this gives |C(Spin(n))| = 2|C(SO(n))| and indeed

C(Spin(n)) = ρ−1 C(SO(n)).

For n even,

(±e1 · · · en)2 = e1 · · · ene1 · · · en = (−1)(
n
2)e2

1 · · · e2
n = (−1)(

n
2)+n = (−1)(

n+1
2 ).

Since (
n+ 1

2

)
=

(n+ 1)n
2

≡

0 mod 2 if n ≡ 2 mod 4,

1 mod 2 if n ≡ 0 mod 4,

this implies

(±e1 · · · en)2 =

 1 if n ≡ 2 mod 4,

−1 if n ≡ 0 mod 4.

Hence for n even, the multiplicative order of ±e1 · · · en is 1 or 2 depending on the congruence class of n

modulo 4. This gives the stated groups. �

We remark that Spin(1) and Spin(2) are abelian.

8. Finite subgroups of spinor groups

Each orthogonal group O(n) and SO(n) contains finite subgroups. For example, when n = 2, 3, these

correspond to symmetry groups of compact plane figures and solids. Elements of SO(n) are often called

direct isometries, while elements of O(n)− are called indirect isometries. The case of n = 3 is explored

in the Problem Set for this chapter. Here we make some remarks about the symmetric and alternating

groups.

Recall that for each n > 1 the symmetric group Sn is the group of all permutations of the set

n = 1, . . . , n. The corresponding alternating group An 6 Sn is the subgroup consisting of all even

permutations, i.e., the elements σ ∈ Sn for which sign(σ) = 1 where sign: Sn −→ {±1} is the sign

homomorphism.

For a field k, we can make Sn act on k
n by linear transformations:

σ ·


x1

x2

...

xn

 =


xσ−1(1)

xσ−1(2)

...

xσ−1(n)

 .

Notice that σ(er) = eσ(r). The matrix [σ] of the linear transformation induced by σ with respect to the

basis of er’s has all its entries 0 or 1, with exactly one 1 in each row and column. For example, when

n = 3,

[(1 2 3)] =


0 0 1

1 0 0

0 1 0

 , [(1 3)] =


0 0 1

0 1 0

1 0 0


When k = R each of these matrices is orthogonal, while when k = C it is unitary. For a given n we

can view Sn as the subgroup of O(n) or U(n) consisting of all such matrices which are usually called

permutation matrices.
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Proposition 3.36. For σ ∈ Sn,

sign(σ) = det([σ]).

Hence we have

An =

SO(n) ∩ Sn if k = R,

SU(n) ∩ Sn if k = C.

Recall that if n > 5, An is a simple group.

As ρ : Pin(n) −→ O(n) is onto, there are finite subgroups S̃n = ρ−1Sn 6 Pin(n) and Ãn = ρ−1An 6

Spin(n) for which there are surjective homomorphisms ρ : S̃n −→ Sn and ρ : Ãn −→ An whose kernels

contain the two elements ±1. Note that |S̃n| = 2 · n!, while |Ãn| = n!. However, for n > 4, there are no

homomorphisms τ : Sn −→ S̃n, τ : An −→ Ãn for which ρ ◦ τ = Id.

Sn
τ //

IdSn   @
@@

@@
@@

@ S̃n

ρ

��
Sn

An
τ //

IdAn   A
AA

AA
AA

A Ãn

ρ

��
An

Similar considerations apply to other finite subgroups of O(n).

In Cl×n we have a subgroup En consisting of all the elements

±ei1 · · · eir (1 6 i1 < · · · < ir 6 n, 0 6 r).

The order of this group is |En| = 2n+1 and as it contains ±1, its image under ρ : Pin(n) −→ O(n)

is En = ρEn of order |En| = 2n. In fact, {±1} = C(En) is also the commutator subgroup since

eieje
−1
i e−1

j = −1 and so En is abelian. Every non-trivial element in En has order 2 since e2
i = −1,

hence En 6 O(n) is an elementary 2-group, i.e., it is isomorphic to (Z/2)n. Each element ρ(er) ∈ O(n)

is a generalized permutation matrices with all its non-zero entries on the main diagonal. There is also a

subgroup E
0

n = ρE0
n 6 SO(n) of order 2n−1, where

E0
n = En ∩ Spin(n).

In fact E
0

n is isomorphic to (Z/2)n−1. These groups En and E0
n are non-abelian and fit into exact

sequences of the form

1→ Z/2 −→ En −→ (Z/2)n → 1, 1→ Z/2 −→ E0
n −→ (Z/2)n−1 → 1,

in which each kernel Z/2 is equal to the centre of the corresponding group En or E0
n. This means they

are extraspecial 2-groups.



CHAPTER 4

Matrix groups as Lie groups

In this chapter we will discuss the basic ideas of smooth manifolds and Lie groups. Our main aim is

to prove a theorem which identifies every real matrix of GLn(R) is a Lie subgroup.

1. Smooth manifolds

Definition 4.1. A continuous map g : V1 −→ V2 where each Vk ⊆ R
mk is open, is called smooth if

it is infinitely differentiable. A smooth map g is a diffeomorphism if it has an inverse g−1 which is also

smooth.

Let M be a separable Hausdorff topological space.

Definition 4.2. A homeomorphism f : U −→ V where U ⊆ M and V ⊆ R
n are open subsets, is

called an n-chart for U .

If U = {Uα : α ∈ A} is an open covering of M and F = {fα : Uα −→ Vα} is a collection of charts,

then F is called an atlas for M if, whenever Uα ∩ Uβ 6= ∅,

fβ ◦ f−1
α : fα(Uα ∩ Uβ) −→ fβ(Uα ∩ Uβ)

is a diffeomorphism.

(4.1) Uα ∩ Uβ
fβ

&&NNNNNNNNNN

fα(Uα ∩ Uβ)

f−1
α

88pppppppppp

fβ◦f−1
α

// fβ(Uα ∩ Uβ)

We will sometimes denote an atlas by (M,U,F) and refer to it as a smooth manifold of dimension n

or smooth n-manifold.

Definition 4.3. Let (M,U,F) and (M ′,U′,F′) be atlases on topological spaces M and M ′. A

smooth map h : (M,U,F) −→ (M ′,U′,F′) is a continuous map h : M −→M ′ such that for each pair α, α′

with h(Uα) ∩ U ′α′ 6= ∅, the composite

f ′α′ ◦ h ◦ f−1
α : fα(h−1U ′α′) −→ V ′α′

is smooth.

(4.2) fα(h−1U ′α′)
f ′
α′◦h◦f

−1
α //

f−1
α

��

V ′α′

f ′
α′
−1

��
h−1U ′α′ h

// h(Uα) ∩ U ′α′

2. Tangent spaces and derivatives

Let (M,U,F) be a smooth n-manifold and p ∈ M . Let γ : (a, b) −→ M be a continuous curve with

a < 0 < b.

55
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Definition 4.4. γ is differentiable at t ∈ (a, b) if for every chart f : U −→ V with γ(t) ∈ U , the

curve f ◦ γ : (a, b) −→ V is differentiable at t ∈ (a, b), i.e., (f ◦ γ)′(t) exists. γ is smooth at t ∈ (a, b) if

all the derivatives of f ◦ γ exists at t.

The curve γ is differentiable if it is differentiable at all points in (a, b). Similarly γ is smooth if it is

smooth at all points in (a, b).

Lemma 4.5. Let f0 : U0 −→ V0 be a chart with γ(t) ∈ U0 and suppose that

f0 ◦ γ : (a, b) ∩ f−1
0 V0 −→ V0

is differentiable/smooth at t. Then for any chart f : U −→ V with γ(t) ∈ U ,

f ◦ γ : (a, b) ∩ f−1V −→ V

is differentiable/smooth at t.

Proof. This follows using the ideas of Definition 4.2. The smooth composite f ◦ α is defined on

a subinterval of (a, b) containing t and there is the usual Chain or Function of a Function Rule for the

derivative of the composite

(4.3) (fγ)′(t) = Jacf◦f−1
0

(f0γ(t))(f0γ)′(t).

Here, for a differentiable function

h : W1 −→W2; h(x) =


h1(x)

...

hm2(x)


with W1 ⊆ R

m1 and W2 ⊆ R
m2 open subsets, and x ∈W1, the Jacobian matrix is

Jach(x) =
[
∂hi
∂xj

(x)
]
∈ Mm2,m1(R).

�

If γ(0) = p and γ is differentiable at 0, then for any (and hence every) chart f0 : U0 −→ V0 with

γ(0) ∈ U0, there is a derivative vector v0 = (fγ)′(0) ∈ R
n. In passing to another chart f : U −→ V with

γ(0) ∈ U by Equation (4.3) we have

(fγ)′(0) = Jacff−1
0

(f0γ(0))(f0γ)′(0).

In order to define the notion of the tangent space TpM to the manifold M at p, we consider all pairs of

the form

((fγ)′(0), f : U −→ V )

where γ(0) = p ∈ U , and then impose an equivalence relation ∼ under which

((f1γ)′(0), f1 : U1 −→ V1) ∼ ((f2γ)′(0), f2 : U2 −→ V2).

Since

(f2γ)′(0) = Jacf2f−1
1

(f1γ(0))(f1γ)′(0),

we can also write this as

(v, f1 : U1 −→ V1) ∼ (Jacf2f−1
1

(f1(p))v, f2 : U2 −→ V2),

whenever there is a curve α in M for which

γ(0) = p, (f1γ)′(0) = v.
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The set of equivalence classes is TpM and we will sometimes denote the equivalence class of (v, f : U −→
V ) by [v, f : U −→ V ].

Proposition 4.6. For p ∈M , TpM is an R-vector space of dimension n.

Proof. For any chart f : U −→ V with p ∈ U , we can identify the elements of TpM with objects

of the form (v, f : U −→ V ). Every ∈ R
n arises as the derivative of a curve γ : (−ε, ε) −→ V for which

γ(0) = f(p). For example for small enough ε, we could take

γ(t) = f(p) + tv.

There is an associated curve in M ,

γ : (−ε, ε) −→M ; γ(t) = f−1γ(t),

for which γ(0) = p. So using such a chart we can identify TpM with R
n by

[v, f : U −→ V ]←→ v.

The same argument as used to prove Proposition 2.9, shows that TpM is a vector space and that the

above correspondence is a linear isomorphism. �

Let h : (M,U,F) −→ (M ′,U′,F′) be a smooth map between manifolds of dimensions n, n′. We will

use the notation of Definition 4.3. For p ∈M , consider a pair of charts as in Diagram (4.2) with p ∈ Uα
and h(p) ∈ U ′α′ . Since hα′,α = f ′α′ ◦ h ◦ f−1

α is differentiable, the Jacobian matrix Jachα′,α(fα(p)) has an

associated R-linear transformation

dhα′,α : R
n −→ R

n′ ; dhα′,α(x) = Jachα′,α(fα(p))x.

It is easy to verify that this passes to equivalence classes to give a well defined R-linear transformation

dhp : TpM −→ Th(p)M
′.

The following result summarises the properties of the derivative and should be compared with Proposition

2.16.

Proposition 4.7. Let h : (M,U,F) −→ (M ′,U′,F′) and g : (M ′,U′,F′) −→ (M ′′,U′′,F′′) be smooth

maps between manifolds M,M ′,M ′′ of dimensions n, n′, n′′.

a) For each p ∈M there is an R-linear transformation dhp : TpM −→ Th(p)M
′.

b) For each p ∈M ,

d gh(p) ◦ dhp = d(g ◦ h)p.

c) For the identity map Id : M −→M and p ∈M ,

d Idp = IdTpM .

Definition 4.8. Let (M,U,F) be a manifold of dimension n. A subset N ⊆M is a submanifold of

dimension k if for every p ∈ N there is an open neighbourhood U ⊆M of p and an n-chart f : U −→ V

such that

p ∈ f−1(V ∩ R
k) = N ∩ U.

For such an N we can form k-charts of the form

f0 : N ∩ U −→ V ∩ R
k; f0(x) = f(x).

We will denote this manifold by (N,UN ,FN ). The following result is immediate.
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Proposition 4.9. For a submanifold N ⊆M of dimension k, the inclusion function incl : N −→M

is smooth and for every p ∈ N , d inclp : TpN −→ TpM is an injection.

The next result allows us to recognise submanifolds as inverse images of points under smooth map-

pings.

Theorem 4.10 (Implicit Function Theorem for manifolds). Let h : (M,U,F) −→ (M ′,U′,F′) be a

smooth map between manifolds of dimensions n, n′. Suppose that for some q ∈ M ′, dhp : TpM −→
Th(p)M

′ is surjective for every p ∈ N = h−1q. Then N ⊆ M is submanifold of dimension n − n′ and

the tangent space at p ∈ N is given by TpN = ker dhp.

Proof. This follows from the Implicit Function Theorem of Calculus. �

Another important application of the Implicit Function Theorem is to the following version of the

Inverse Function Theorem.

Theorem 4.11 (Inverse Function Theorem for manifolds). Let h : (M,U,F) −→ (M ′,U′,F′) be

a smooth map between manifolds of dimensions n, n′. Suppose that for some p ∈ M , dhp : TpM −→
Th(p)M

′ is an isomorphism. Then there is an open neighbourhood U ⊆M of p and an open neighbourhood

V ⊆M ′ of h(p) such that hU = V and the restriction of h to the map h1 : U −→ V is a diffeomorphism.

In particular, the derivative dhp : Tp −→ Th(p) is an R-linear isomorphism and n = n′.

When this occurs we say that h is locally a diffeomorphism at p.

Example 4.12. Consider the exponential function exp: Mn(R) −→ GLn(R). Then by Proposition

1.36,

d expO(X) = X.

Hence exp is locally a diffeomorphism at O.

3. Lie groups

The following should be compared with Definition 1.14.

Definition 4.13. Let G be a smooth manifold which is also a topological group with multiplication

map mult : G×G −→ G and inverse map inv : G −→ G and view G×G as the product manifold. Then

G is a Lie group if mult, inv are smooth maps.

Definition 4.14. Let G be a Lie group. A closed subgroup H 6 G that is also a submanifold is

called a Lie subgroup of G. It is then automatic that the restrictions to H of the multiplication and

inverse maps on G are smooth, hence H is also a Lie group.

For a Lie group G, at each g ∈ G there is a tangent space Tg G and when G is a matrix group this

agrees with the tangent space defined in Chapter 2. We adopt the notation g = T1G for the tangent

space at the identity of G. A smooth homomorphism of Lie groups G −→ H has the properties of a Lie

homomorphism as in Definition 2.15.

For a Lie group G, let g ∈ G. There are following three functions are of great importance.

Lg : G −→ G; Lg(x) = gx. (Left multiplication)

Rg : G −→ G; Rg(x) = xg. (Right multiplication)

χg : G −→ G; χg(x) = gxg−1. (Conjugation)

Proposition 4.15. For g ∈ G, the maps Lg, Rg, χg are all diffeomorphisms with inverses

L−1
g = Lg−1 , R−1

g = Rg−1 , χ−1
g = χg−1 .
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Proof. Charts for G×G have the form

ϕ1 × ϕ2 : U1 × U2 −→ V1 × V2,

where ϕk : Uk −→ Vk are charts for G. Now suppose that µU1 × U2 ⊆ W ⊆ G where there is a chart

θ : W −→ Z. By assumption, the composition

θ ◦ µ ◦ (ϕ1 × ϕ2)−1 = θ ◦ µ ◦ (ϕ−1
1 × ϕ

−1
2 ) : V1 × V2 −→ Z.

is smooth. Then Lg(x) = µ(g, x), so if g ∈ U1 and x ∈ U2, we have

Lg(x) = θ−1(θ ◦ Lg ◦ ϕ−1
2 ) ◦ ϕ2(x).

But then it is clear that

θ ◦ ϕ−1
2 : V2 −→ Z

is smooth since it is obtained from θ ◦ µ ◦ (ϕ1 × ϕ2)−1, but treating the first variable as a constant.

A similar argument deals with Rg. For χg, notice that

χg = Lg ◦ Rg = Rg ◦ Lg,

and a composite of smooth maps is smooth. �

The derivatives of these maps at the identity 1 ∈ G are worth studying. Since Lg and Rg are

diffeomorphisms with inverses Lg−1 and Rg−1 ,

d(Lg)1, d(Rg)1 : g = T1G −→ Tg G

are R-linear isomorphisms. We can use this to identify every tangent space of G with g. The conjugation

map χg fixes 1, so it induces an R-linear isomorphism

Adg = d(χg)1 : g −→ g.

This is the adjoint action of g ∈ G on g. For G a matrix group this is the same as defined in Chapter 2.

There is also a natural Lie bracket [ , ] defined on g, making it into an R-Lie algebra. The construction

follows that for matrix groups. The following Lie group analogue of Theorem 2.18 holds.

Theorem 4.16. Let G,H be Lie groups and ϕ : G −→ H a Lie homomorphism. Then the derivative

is a homomorphism of Lie algebras. In particular, if G 6 H is a Lie subgroup, the inclusion map

incl : G −→ H induces an injection of Lie algebras d incl : g −→ h.

4. Some examples of Lie groups

Example 4.17. For k = R,C, GLn(k) is a Lie group.

Proof. This follows from Proposition 1.13(a) which shows that GLn(k) ⊆ Mn(k) is an open subset

where as usual Mn(k) we identify with k
n2

. For charts we take the open sets U ⊆ GLn(k) and the

identity function Id: U −→ U . The tangent space at each point A ∈ GLn(k) is just Mn(k). So the

notions of tangent space and dimension of Sections 1,2 and of Chapter 2 agree here. The multiplication

and inverse maps are obviously smooth as they are defined by polynomial and rational functions between

open subsets of Mn(k). �

Example 4.18. For k = R,C, SLn(k) is a Lie group.
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Proof. Following Proposition 1.13(b), we have

SLn(k) = det−1 1 ⊆ GLn(k)

where det : GLn(k) −→ k is continuous. k is a smooth manifold of dimension dimR k with tangent space

Tr R = R at each r ∈ R and det is smooth. In order to apply Theorem 4.10, we will first show that the

derivative d detA : Mn(k) −→ R is surjective for every A ∈ GLn(k). To do this, consider a smooth curve

α : (−ε, ε) −→ GLn(k) with α(0) = A. We calculate the derivative on α′(0) using the formula

d detA(α′(0)) =
d detα(t)

d t |t=0

.

The modified curve

α0 : (−ε, ε) −→ GLn(k); α0(t) = A−1α(t)

satisfies α0(0) = I and Lemma 2.19 implies

d detI(α′0(0)) =
d detα0(t)

d t |t=0

= trα′0(0).

Hence we have

d detA(α′(0)) =
d det(Aα0(t))

d t |t=0

= detA
d det(α0(t))

d t |t=0

= detA trα′0(0).

So d detA is the k-linear transformation

d detA : Mn(k) −→ k; d detA(X) = detA tr(A−1X).

The kernel of this is ker d detA = Asln(k) and it is also surjective since tr is. In particular this is true for

A ∈ SLn(k). By Theorem 4.10, SLn(k) −→ GLn(k) is a submanifold and so is a Lie subgroup. Again we

find that the two notions of tangent space and dimension agree. �

There is a useful general principle at work in this last proof. Although we state the following two

results for matrix groups, it is worth noting that they still apply when GLn(R) is replaced by an arbitrary

Lie group.

Proposition 4.19 (Left Translation Trick). Let F : GLn(R) −→M be a smooth function and suppose

that B ∈ GLn(R) satisfies F (BC) = F (C) for all C ∈ GLn(R). Let A ∈ GLn(R) with dFA surjective.

Then dFBA is surjective.

Proof. Left multiplication by B ∈ G, LB : GLn(R) −→ GLn(R), is a diffeomorphism, and its

derivative at A ∈ GLn(R) is

d(LB) : Mn(R) −→ Mn(R); d LB(X) = BX.

By assumption, F ◦ LB = F as a function on GLn(R). Then

dFBA(X) = dFBA(B(B−1X))

= dFBA ◦ d(LB)A(B−1X)

= d(F ◦ LB)A(B−1X)

= dFA(B−1X).

Since left multiplication by B−1 on Mn(R) is surjective, this proves the result. �

Proposition 4.20 (Identity Check Trick). Let G 6 GLn(R) be a matrix subgroup, M a smooth

manifold and F : GLn(R) −→ M a smooth function with F−1q = G for some q ∈ M . Suppose that for

every B ∈ G, F (BC) = F (C) for all C ∈ GLn(R). If dFI is surjective then dFA is surjective for all

A ∈ G and ker dFA = Ag.
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Example 4.21. O(n) is a Lie subgroup of GLn(R).

Proof. Recall from Chapter 2 that we can specify O(n) ⊆ GLn(R) as the solution set of a family

of polynomial equations in n2 variables arising from the matrix equation ATA = I. In fact, the following

n+
(
n

2

)
=
(
n+ 1

2

)
equations in the entries of the matrix A = [aij ] are sufficient:

n∑
k=1

a2
kr − 1 = 0 (1 6 r 6 n),

n∑
k=1

akraks = 0 (1 6 r < s 6 n).

We combine the left hand sides of these in some order to give a function F : GLn(R) −→ R
(n+1

2 ), for

example

F ([aij ]) =



∑n
k=1 a

2
k1 − 1

...∑n
k=1 a

2
kn − 1∑n

k=1 ak1ak2

...∑n
k=1 ak1akn

...∑n
k=1 ak(n−1)akn



.

We need to investigate the derivative dFA : Mn(R) −→ R
(n+1

2 ).

By the Identity Check Trick 4.20, to show that dFA is surjective for all A ∈ O(n), it is sufficient to

check the case A = I. The Jacobian matrix of F at A = [aij ] = I is the
(
n+ 1

2

)
× n2 matrix

dFI =



2 0 0 0 · · · 0 0
...

. . .
...

...

0 0 0 0 · · · 0 2

0 1 1 0 · · · 0 0
...

. . .
...

...

0 1 0 · · · 0 1 0
...

. . .
...

...

0 0 0 · · · 1 1 0


where in the top block of n rows, the r th row has a 2 corresponding to the variable arr and in the bottom

block, each row has a 1 in each column corresponding to one of the pair ars, asr with r < s. The rank of

this matrix is n+
(
n

2

)
=
(
n+ 1

2

)
, so dFI is surjective. It is also true that

ker dFI = Sk-Symn(R) = o(n).

Hence O(n) 6 GLn(R) is a Lie subgroup and at each element, the tangent space and dimension agree

with those obtained using the definitions of Chapter 2. �

This example is typical of what happens for any matrix group that is a Lie subgroup of GLn(R). We

summarise the situation in the following, whose proof involves a careful comparison between the ideas

introduced in Chapter 2 and the definitions involving manifolds.

Theorem 4.22. Let G 6 GLn(R) be a matrix group which is also a submanifold, hence a Lie

subgroup. Then the tangent space to G at I agrees with the Lie algebra g and the dimension of the

smooth manifold G is dimG; more generally, TAG = Ag.



62 4. MATRIX GROUPS AS LIE GROUPS

In the next sections, our goal will be to prove the following important result.

Theorem 4.23. Let G 6 GLn(R) be a matrix subgroup. Then G is a Lie subgroup of GLn(R).

The following more general result also holds but we will not give a proof.

Theorem 4.24. Let G 6 H be a closed subgroup of a Lie group H. Then G is a Lie subgroup of H.

5. Some useful formula in matrix groups

Let G 6 GLn(R) be a closed matrix subgroup. We will use Proposition 1.35. Choose r so that

0 < r 6 1/2 and if A,B ∈ NMn(R)(O; r) then exp(A) exp(B) ∈ exp(NMn(R)(O; 1/2)). Since exp is

injective on NMn(R)(O; r), there is a unique C ∈ Mn(R) for which

(4.4) exp(A) exp(B) = exp(C).

We also set

(4.5) S = C −A−B − 1
2

[A,B] ∈ Mn(R).

Proposition 4.25. ‖S‖ satisfies

‖S‖ 6 65(‖A‖+ ‖B‖)3.

Proof. For X ∈ Mn(R) we have

exp(X) = I +X +R1(X),

where the remainder term R1(X) is given by

R1(X) =
∑
k62

1
k!
Xk.

Hence,

‖R1(X)‖ 6 ‖X‖2
∑
k62

1
k!
‖X‖k−2,

so if ‖X‖ 6 1,

‖R1(X)‖ 6 ‖X‖2
∑
k62

1
k!

 = ‖X‖2(e− 2) < ‖X‖2,

Since ‖C‖ < 1/2,

(4.6) ‖R1(C)‖ < ‖C‖2.

Similarly,

exp(C) = exp(A) exp(B) = I +A+B +R1(A,B),

where

R1(A,B) =
∑
k>2

1
k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
giving

‖R1(A,B)‖ 6
∑
k>2

1
k!

(
k∑
r=0

(
k

r

)
‖A‖r‖B‖k−r

)

=
∑
k>2

(‖A‖+ ‖B‖)k

k!

= (‖A‖+ ‖B‖)2
∑
k>2

(‖A‖+ ‖B‖)k−2

k!

6 (‖A‖+ ‖B‖)2
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since ‖A‖+ ‖B‖ < 1.

Combining the two ways of writing exp(C), we have

(4.7) C = A+B +R1(A,B)−R1(C)

and so

‖C‖ 6 ‖A‖+ ‖B‖+ ‖R1(A,B)‖+ ‖R1(C)‖

< ‖A‖+ ‖B‖+ (‖A‖+ ‖B‖)2 + ‖C‖2

6 2(‖A‖+ ‖B‖) +
1
2
‖C‖2,

since ‖A‖, ‖B‖, ‖C‖ 6 1/2. Finally this gives

‖C‖ 6 4(‖A‖+ ‖B‖).

Equation (4.7) also gives

‖C −A−B‖ 6 ‖R1(A,B)‖+ ‖R1(C)‖

6 (‖A‖+ ‖B‖)2 + (4(‖A‖+ ‖B‖))2
,

giving

‖C −A−B‖ = 17(‖A‖+ ‖B‖)2.(4.8)

�

Now we will refine these estimates further. Write

exp(C) = I + C +
1
2
C2 +R2(C)

where

R2(C) =
∑
k>3

1
k!
Ck

which satisfies the estimate

‖R2(C)‖ 6 1
3
‖C‖3

since ‖C‖ 6 1. With the aid of Equation (4.5) we obtain

exp(C) = I +A+B +
1
2

[A,B] + S +
1
2
C2 +R2(C)

= I +A+B +
1
2

[A,B] +
1
2

(A+B)2 + T

= I +A+B +
1
2

(A2 + 2AB +B2) + T,(4.9)

where

T = S +
1
2

(C2 − (A+B)2) +R2(C).(4.10)

Also,

(4.11) exp(A) exp(B) = I +A+B +
1
2

(A2 + 2AB +B2) +R2(A,B)

where

R2(A,B) =
∑
k>3

1
k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
,

which satisfies

‖R2(A,B)‖ 6 1
3

(‖A‖+ ‖B‖)3
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since ‖A‖+ ‖B‖ 6 1.

Comparing Equations (4.9) and (4.11) and using (4.4) we see that

S = R2(A,B) +
1
2

((A+B)2 − C2)−R2(C).

Taking norms we have

‖S‖ 6 ‖R2(A,B)‖+
1
2
‖(A+B)(A+B − C)− (A+B − C)C‖+ ‖R2(C)‖

6
1
3

(‖A‖+ ‖B‖)3 +
1
2

(‖A‖+ ‖B‖+ ‖C‖)‖A+B − C‖+
1
3
‖C‖3

6
1
3

(‖A‖+ ‖B‖)3 +
5
2

(‖A‖+ ‖B‖) · 17(‖A‖+ ‖B‖)2 +
1
3

(4‖A‖+ ‖B‖)3

6 65(‖A‖+ ‖B‖)3,

yielding the estimate

‖S‖ 6 65(‖A‖+ ‖B‖)3.(4.12)

Theorem 4.26. If U, V ∈ Mn(R), then the following identities are satisfied.

exp(U + V ) = lim
r→∞

(exp((1/r)U) exp((1/r)V ))r .

[Trotter Product Formula]

exp([U, V ]) = lim
r→∞

(exp((1/r)U) exp((1/r)V ) exp(−(1/r)U) exp(−(1/r)V ))r
2

.[Commutator Formula]

Proof. For large r we may take A =
1
r
U and B =

1
r
V and apply Equation (4.5) to give

exp((1/r)U) exp((1/r)V ) = exp(Cr)

with

‖Cr − (1/r)(U + V )‖ 6 17(‖U‖+ ‖V ‖)2

r2
.

As r →∞,

‖rCr − (U + V )‖ =
17(‖U‖+ ‖V ‖)2

r
→ 0,

hence rCr → (U + V ). Since exp(rCr) = exp(Cr)r, the Trotter Formula follows by continuity of exp.

We also have

Cr =
1
r

(U + V ) +
1

2r2
[U, V ] + Sr

where

‖Sr‖ 6 65
(‖U‖+ ‖V ‖)3

r3
.

Similarly, replacing U, V by −U,−V we have

exp((−1/r)U)) exp((−1/r)V )) = exp(C ′r),

where

C ′r =
1
r

(U + V ) +
1

2r2
[U, V ] + S′r

and

‖S′r‖ 6 65
(‖U‖+ ‖V ‖)3

r3
.

Combining these we obtain

exp((1/r)U)) exp((1/r)V )) exp((−1/r)U)) exp((−1/r)V )) = exp(Cr) exp(C ′r)

= exp(Er),
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where

Er = Cr + C ′r +
1
2

[Cr, C ′r] + Tr

=
1
r2

+
1
2

[Cr, C ′r] + Sr + S′r + Tr.(4.13)

Here Tr is defined from Equation (4.5) by setting Cr = A, C ′r = B and Tr = S.

A tedious computation now shows that

[Cr, C ′r] =
[

1
r

(U + V ) +
1

2r2
[U, V ] + Sr,

−1
r

(U + V ) +
1

2r2
[U, V ] + S′r

]
=

1
r3

[U + V, [U, V ]] +
1
r

[U + V, Sr + S′r] +
1

2r2
[[U, V ], S′r − Sr] + [Sr, S′r].

By Proposition 4.25, all four of these terms has norm bounded by an expression of the form (constant)/r3,

so the same is true of [Cr, C ′r]. Proposition 4.25 also implies that Sr, S′r, Tr have similarly bounded norms.

Setting

Qr = r2Er − [U, V ],

we obtain

‖Qr‖ =
∥∥∥∥Er − 1

r2
[U, V ]

∥∥∥∥ 6 (constant)
r3

→ 0

as r →∞, so

exp(Er)r
2

= exp([U, V ] +Qr)→ exp([U, V ]).

The Commutator Formula now follows using continuity of exp. �

Another proof of Lemma 2.20. As an application of the Trotter formula, we will reprove the

formula of Lemma 2.20:

det exp(A) = exp(trA).

The case n = 1 is immediate, so assume that n > 1.

If U, V ∈ Mn(C) then by the Trotter formula together with the fact that det is continuous and

multiplicative,

det exp(U + V ) = det
(

lim
r→∞

(exp((1/r)U) exp((1/r)V ))r
)

= lim
r→∞

det (exp((1/r)U) exp((1/r)V ))r

= lim
r→∞

det exp((1/r)U)r det exp((1/r)V )r

= lim
r→∞

det (exp((1/r)U)r) det (exp((1/r)V )r)

= lim
r→∞

det exp(U) det exp(V )

= det exp(U) det exp(V ).

More generally, given U1 . . . , Uk ∈ Mn(C) we have

(4.14) det exp(U1 + · · ·+ Uk) = det exp(U1) · · ·det exp(Uk).

So if A = A1 + · · ·+Ak where the Aj satisfy

det exp(Aj) = exp(trAj) (j = 1, . . . , k),
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we have

det exp(A) = det exp(A1 + · · ·+Ak)

= exp(trA1) · · · exp(trAk)

= exp(trA1 + · · ·+ trAk)

= exp(trA).

So it suffices to show that every matrix A has this form.

Recall that A = [aij ] can be expressed as

A =
∑

16r6n
16s6n

arsE
rs,

where Ers is the matrix having 1 in the (r, s) place and 0 everywhere else, i.e.,

Ersij = δirδjs.

For z ∈ C,

det exp(zErs) = det

∑
k>0

1
k!

(zk(Ers)k


=

det((ez − 1)Err + In) if r = s,

det In if r 6= s,

=

ez if r = s,

1 if r 6= s.

On the other hand,

tr zErs =

z if r = s,

0 if r 6= s.

Thus

exp(tr zErs) =

ez if r = s,

1 if r 6= s,

giving the desired equation

det exp(zErs) = exp(tr zErs).

�

6. Matrix groups are Lie groups

Our goal in this section is to prove Theorem 4.23. Let G 6 GLn(R) be a matrix subgroup. Recall

that the Lie algebra g = TI G is an R-Lie subalgebra of gln(R) = Mn(R). Let

g̃ = {A ∈ Mn(R) : ∀t ∈ R, exp(tA) ∈ G}.

Theorem 4.27. g̃ is an R-Lie subalgebra of Mn(R).
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Proof. By definition g̃ is closed under multiplication by real scalars. If U, V ∈ g̃ and r > 1, then

the following are in G:

(exp((1/r)U) exp((1/r)V )) ,

(exp((1/r)U) exp((1/r)V ))r ,

(exp((1/r)U) exp((1/r)V ) exp(−(1/r)U) exp(−(1/r)V ))r
2

,

(exp((1/r)U) exp((1/r)V ) exp(−(1/r)U) exp(−(1/r)V ))r
2

.

By Theorem 4.26, for t ∈ R,

exp(tU + tV ) = lim
r→∞

(exp((1/r)tU) exp((1/r)tV ))r ,

exp(t[U, V ]) = exp([tU, V ])

= lim
r→∞

(exp((1/r)tU) exp((1/r)V ) exp(−(1/r)tU) exp(−(1/r)V ))r
2

,

and as these are both limits of elements of the closed subgroup G they are also in G.

Hence g̃ is a Lie subalgebra of gln(R) = Mn(R). �

Proposition 4.28. For a matrix subgroup G 6 GLn(R), g̃ is an R-Lie subalgebra of g.

Proof. Let U ∈ g̃. The curve

γ : R −→ G; γ(t) = exp(tU),

has γ(0) = I and γ′(0) = U . Hence U ∈ g. �

Remark 4.29. Eventually we will see that g̃ = g.

Later we will require the following technical result.

Lemma 4.30. Let {An ∈ exp−1G}n>1 and {sn ∈ R}n>1 be sequences for which ‖An‖ → 0 and

snAn → A ∈ Mn(R) as n→∞. Then A ∈ g̃.

Proof. Let t ∈ R. For each n, choose an integer mn ∈ Z so that |tsn −mn| 6 1. Then

‖mnAn − tA‖ 6 ‖(mn − tsn)An‖+ ‖tsnAn − tA‖

= |mn − tsn| ‖An‖+ ‖tsnAn − tA‖

6 ‖An‖+ ‖tsnAn − tA‖ → 0

as n→∞, showing that mnAn → tA. Since

exp(mnAn) = exp(An)mn ∈ G,

and G is closed in GLn(R), we have

exp(tA) = lim
n→∞

exp(mnAn) ∈ G.

Thus every real scalar multiple tA is in exp−1G, showing that A ∈ g̃. �

Choose a complementary R-subspace w to g̃ in gln(R) = Mn(R), i.e., any vector subspace such that

g̃ + w = Mn(R),

dimR g̃ + dimR w = dimR Mn(R) = n2.

The second condition is equivalent to g̃ ∩ w = 0. This gives a direct sum decomposition of Mn(R), so

every element X ∈ Mn(R) has a unique expression of the form

X = U + V, (U ∈ g̃, V ∈ w).
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Consider the map

Φ: Mn(R) −→ GLn(R); Φ(U + V ) = exp(U) exp(V ) (U ∈ g̃, V ∈ w).

Φ is a smooth function which maps 0 to I. Notice that the factor exp(U) is in G. Consider the derivative

at O,

d ΦO : Mn(R) −→ gln(R) = Mn(R).

To determine d ΦO(A+B), where A ∈ g̃ and B ∈ w, we differentiate the curve t 7→ Φ(t(A+B)) at t = 0.

Assuming that A,B are small enough and following the notation of Equations (4.4),(4.5) for small t ∈ R,

there is a unique C(t) depending on t for which

Φ(t(A+B)) = exp(C(t)).

Proposition 4.25 gives

‖(C(t)− tA− tB)− t2

2
[A,B]‖ 6 65|t|3(‖A‖+ ‖B‖)3.

From this we obtain

‖(C(t)− tA− tB‖ 6 t2

2
‖[A,B]‖+ 65|t|3(‖A‖+ ‖B‖)3

=
t2

2
(
‖[A,B]‖+ 130|t|(‖A‖+ ‖B‖)3

)
and so

d
d t

Φ(t(A+B))|t=0 =
d
d t

exp(C(t))|t=0 = A+B.

By linearity of the derivative, for small A,B,

d ΦO(A+B) = A+B,

so d ΦO is the identity function on Mn(R). By the Inverse Function Theorem 4.11, Φ is a diffeomorphism

onto its image when restricted to a small open neighbourhood of O, and we might as well take this to

be an open disc NMn(k)(O; δ) for some δ > 0; hence the restriction of Φ to

Φ1 : NMn(k)(O; δ) −→ ΦNMn(k)(O; δ)

is a diffeomorphism.

Now we must show that Φ maps some open subset (which we could assume to be an open disc) of

NMn(k)(O; δ)∩g̃ containingO onto an open neighbourhood of I inG. Suppose not; then there is a sequence

of elements Un ∈ G with Un → I as n → ∞ but Un /∈ Φg̃. For large enough n, Un ∈ ΦNMn(k)(O; δ),

hence there are unique elements An ∈ g̃ and Bn ∈ w with Φ(An + Bn) = Un; notice that Bn 6= O

since otherwise Un ∈ Φg̃. As Φ1 is a diffeomorphism, An + Bn → O and this implies that An → O and

Bn → O. By definition of Φ,

exp(Bn) = exp(An)−1Un ∈ G,

hence Bn ∈ exp−1G. Consider the elements Bn = (1/‖Bn‖)Bn of unit norm. Each Bn is in the unit

sphere in Mn(R), which is compact hence there is a convergent subsequence of {Bn}. By renumbering

this subsequence, we can assume that Bn → B as n→∞, where ‖B‖ = 1. Applying Lemma 4.30 to the

sequences {Bn} and {1/‖Bn‖} we find that B ∈ g̃. But each Bn (and hence Bn) is in w, so B must be

too. Thus B ∈ g̃ ∩w, contradicting the fact B 6= O.

So there must be an open disc

Ng̃(O; δ1) = NMn(R)(O; δ1) ∩ g̃
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which is mapped by Φ onto an open neighbourhood of I in G. So the restriction of Φ to this open disc

is a local diffeomorphism at O. The inverse map gives a chart for GLn(R) at I and moreover Ng̃(O; δ1)

is then a submanifold of NMn(R)(O; δ1).

We can use left translation to move this chart to a new chart at any other point U ∈ G, by considering

LU ◦ Φ. We leave the details as an exercise.

So we have shown that G 6 GLn(R) is a Lie subgroup, proving Theorem 4.23. Notice that the

dimension of G as a manifold is dimR g̃. By Proposition 4.28, g̃ ⊆ g so dimR g̃ 6 dimR g. But by Theorem

4.22, these dimensions are in fact equal, hence g̃ = g.

We have established a fundamental result that we now reformulate. The proof of the second part is

similar to our proof of the first with minor adjustments required for the general case.

Theorem 4.31. A subgroup of GLn(R) is a closed Lie subgroup if and only if it is a matrix subgroup,

i.e., a closed subgroup.

More generally, a subgroup of an arbitrary Lie group G is a closed Lie subgroup if and only if it is a

closed subgroup.

7. Not all Lie groups are matrix groups

For completeness we describe the simplest example of a Lie group which is not a matrix group. In

fact there are finitely many related examples of such Heisenberg groups Heisn and the example we will

discuss Heis3 is particularly important in Quantum Physics.

For n > 3, the Heisenberg group Heisn is defined as follows. Recall the group of n×n real unipotent

matrices SUTn(R), whose elements have the form

1 a12 · · · · · · · · · a1n

0 1 a21
. . . . . . a2n

0 0
. . . . . . . . .

...
...

...
. . . 1 an−2n−1

...
...

...
. . . 0 1 an−1n

0 0 · · · 0 0 1


,

with aij ∈ R. The Lie algebra sutn(R) of SUTn(R) consists of the matrices of the form

0 t12 · · · · · · · · · t1n

0 0 t21
. . . . . . t2n

0 0
. . . . . . . . .

...
...

...
. . . 0 tn−2n−1

...
...

...
. . . 0 0 tn−1n

0 0 · · · 0 0 0


with tij ∈ R. SUTn is a matrix subgroup of GLn(R) with dim SUTn =

(
n

2

)
. It is a nice algebraic

exercise to show that the following hold in general.

Proposition 4.32. For n > 3, the centre C(SUTn) of SUTn consists of all the matrices [aij ] ∈ Heisn
with aij = 0 except when i = 1 and j = n. Furthermore, C(SUTn) is contained in the commutator

subgroup of SUTn.

Notice that there is an isomorphism of Lie groups R ∼= C(SUTn). Under this isomorphism, the

subgroup of integers Z ⊆ R corresponds to the matrices with a1n ∈ Z and these form a discrete normal
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(in fact central) subgroup Zn / SUTn. We can form the quotient group

Heisn = SUTn /Zn.

This has the quotient space topology and as Zn is a discrete subgroup, the quotient map q : SUTn −→
Heisn is a local homeomorphism. This can be used to show that Heisn is also a Lie group since charts

for SUTn defined on small open sets will give rise to charts for Heisn. The Lie algebra of Heisn is the

same as that of SUTn, i.e., heisn = sutn.

Proposition 4.33. For n > 3, the centre C(Heisn) of Heisn consists of the image under q of

C(SUTn). Furthermore, C(Heisn) is contained in the commutator subgroup of Heisn.

Notice that C(Heisn) = C(SUTn)/Zn is isomorphic to the circle group

T = {z ∈ C : |z| = 1}

with the correspondence coming from the map

R −→ T; t 7−→ e2πit.

When n = 3, there is a surjective Lie homomorphism

p : SUT3 −→ R
2;


1 x t

0 1 y

0 0 1

 7→
[
x

y

]

whose kernel is ker p = C(SUT3). Since Z3 6 ker p, there is an induced surjective Lie homomorphism

p : Heis3 −→ R
2 for which p ◦ q = p. In this case the isomorphism C(Heisn) ∼= T is given by

1 0 t

0 1 0

0 0 1

Z3 ←→ e2πit

From now on we will write [x, y, e2πit] for the element
1 x t

0 1 y

0 0 1

Z3 ∈ Heis3 .

Thus a general element of Heis3 has the form [x, y, z] with x, y ∈ R and z ∈ T. The identity element is

1 = [0, 0, 1]. The element 
1 x t

0 1 y

0 0 1


of the Lie algebra heis3 will be denoted (x, y, t).

Proposition 4.34. Multiplication, inverses and commutators in Heis3 are given by

[x1, y1, z1][x2, y2, z2] = [x1 + x2, y1 + y2, z1z2e
2πix1y2 ],

[x, y, z]−1 = [−x,−y, z−1e2πixy]

[x1, y1, z1][x2, y2, z2][x1, y1, z1]−1[x2, y2, z2]−1 = [0, 0, e2πi(x1y2−y1x2)].

The Lie bracket in heis3 is given by

[(x1, y1, t1), (x2, y2, t2)] = (0, 0, x1y2 − y1x2).
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The Lie algebra heis3 is often called a Heisenberg (Lie) algebra and occurs throughout Quantum

Physics. It is essentially the same as the Lie algebra of operators on differentiable functions f : R −→ R

spanned by 1,q given by

1f(x) = f(x), pf(x) =
d f(x)

dx
, qf(x) = xf(x).

The non-trivial commutator involving these three operators is given by the canonical commutation rela-

tion

[p,q] = pq− qp = 1.

In heis3 he elements (1, 0, 0), (1, 0, 0), (0, 0, 1) a basis with the only non-trivial commutator

[(1, 0, 0), (1, 0, 0)] = (0, 0, 1).

Theorem 4.35. There are no continuous homomorphisms ϕ : Heis3 −→ GLn(C) with trivial kernel

kerϕ = 1.

Proof. Suppose that ϕ : Heis3 −→ GLn(C) is a continuous homomorphism with trivial kernel and

suppose that n is minimal with this property. For each g ∈ Heis3, the matrix ϕ(g) acts on vectors in C
n.

We will identify C(Heis3) with the circle T as above. Then T has a topological generator z0; this is an

element whose powers form a cyclic subgroup 〈z0〉 6 T whose closure is T. Proposition 7.7 will provide

a more general version of this phenomenon. For now we point out that for any irrational number r ∈ R,

the following is true: for any real number s ∈ R and any ε > 0, there are integers p, q ∈ Z such that

|s− pr − q| < ε.

This implies that e2πir is a topological generator of T since its powers are dense.

Let λ be an eigenvalue for the matrix ϕ(z0), with eigenvector v. If necessary replacing z0 with z−1
0 ,

we may assume that λ > 1. If ‖λ‖ > 1, then

ϕ(zk0 )v = ϕ(z0)kv = λkv

and so

‖ϕ(zk0 )‖ > ‖λ‖k.

Thus ‖ϕ(zk0 )‖ → ∞ as k → ∞, implying that ϕT is unbounded. But ϕ is continuous and T is compact

hence ϕT is bounded. So in fact ‖λ‖ = 1.

Since ϕ is a homomorphism and z0 ∈ C(Heis3), for any g ∈ Heis3 we have

ϕ(z0)ϕ(g)v = ϕ(z0g)v = ϕ(gz0)v = ϕ(g)ϕ(z0)v = λϕ(g)v,

which shows that ϕ(g) is another eigenvector of ϕ(z0) for the eigenvalue λ. If we set

Vλ = {v ∈ C
n : ∃k > 1 s.t. (ϕ(z0)− λIn)kv = 0},

then Vλ ⊆ C
n is a vector subspace which is also closed under the actions of all the matrices ϕ(g) with

g ∈ Heis3. Choose k0 > 1 to be the largest number for which there is a vector v0 ∈ Vλ satisfying

(ϕ(z0)− λIn)k0v0 = 0, (ϕ(z0)− λIn)k0−1v0 6= 0.

If k0 > 1, there are vectors u,v ∈ Vλ for which

ϕ(z0)u = λu + v, ϕ(z0)v = λv.

Then

ϕ(zk0 )u = ϕ(z0)ku = λku + kλk−1v
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and since |λ| = 1,

‖ϕ(zk0 )‖ = ‖ϕ(z0)k‖ > |λu + kv| → ∞

as k → ∞. This also contradicts the fact that ϕT is bounded. So k0 = 1 and Vλ is just the eigenspace

for the eigenvalue λ. This argument actually proves the following important general result, which in

particular applies to finite groups viewed as zero-dimensional compact Lie groups.

Proposition 4.36. Let G be a compact Lie group and ρ : G −→ GLn(C) a continuous homomor-

phism. Then for any g ∈ G, ρ(g) is diagonalizable.

On choosing a basis for Vλ, we obtain a continuous homomorphism θ : Heis3 −→ GLd(C) for which

θ(z0) = λId. By continuity, every element of T also has the form (scalar)Id. By minimality of n, we must

have d = n and we can assume ϕ(z0) = λIn.

By the equation for commutators in Proposition 4.34, every element z ∈ T 6 Heis3 is a commutator

z = ghg−1h−1 in Heis3, hence

detϕ(z) = ϕ(ghg−1h−1) = 1,

since det and ϕ are homomorphisms. So for every z ∈ T, ϕ(z) = µ(z)Id and µ(z)d = 1, where the

function µ : T −→ C
× is continuous. But T is path connected, so µ(z) = 1 for every z ∈ T. Hence for

each z ∈ T, the only eigenvalue of ϕ(z) is 1. This shows that T 6 kerϕ, contradicting the assumption

that kerϕ is trivial. �

A modification of this argument works for each of the Heisenberg groups Heisn (n > 3), showing

that none of them is a matrix group.



CHAPTER 5

Homogeneous spaces

1. Homogeneous spaces as manifolds

Let G be a Lie group of dimension dimG = n and H 6 G a closed subgroup, which is therefore a

Lie subgroup of dimension dimH = k. The set of left cosets

G/H = {gH : g ∈ G}

has an associated quotient map

π : G −→ G/H; π(g) = gH.

We give G/H a topology by requiring that a subset W ⊆ G/H is open if and only if π−1W ⊆ G is open;

this is called the quotient topology on G/H.

Lemma 5.1. The projection map π : G −→ G/H is an open mapping and G/H is a topological space

which is separable and Hausdorff.

Proof. For U ⊆ G,

π−1(πU) =
⋃
h∈H

Uh,

where

Uh = {uh ∈ G : u ∈ U} ⊆ G.

If U ⊆ G is open, then each Uh (h ∈ H) is open, implying that πU ⊆ G is also open.

G/H is separable since a countable basis of G is mapped by π to a countable collection of open

subsets of G/H that is also a basis.

To see that G/H is Hausdorff, consider the continuous map

θ : G×G −→ G; θ(x, y) = x−1y.

Then

θ−1H = {(x, y) ∈ G×G : xH = yH},

and this is a closed subset since H ⊆ G is closed. Hence,

{(x, y) ∈ G×G : xH = yH} ⊆ G×G

is open. By definition of the product topology, this means that whenever x, y ∈ G with xH 6= yH, there

are open subsets U, V ⊆ G with x ∈ U , y ∈ V , U 6= V and πU ∩πV = ∅. Since πU, πV ⊆ G/H are open,

this shows that G/H is Hausdorff. �

The quotient map π : G −→ G/H has an important property which characterises it.

Proposition 5.2 (Universal Property of the Quotient Topology). For any topological space X, a

function f : G/H −→ X is continuous if and only if f ◦ π : G −→ X is continuous.

We would like to make G/H into a smooth manifold so that π : G −→ G/H is smooth. Unfortunately,

the construction of an atlas is rather complicated so we merely state a general result then consider some

examples where the smooth structure comes from an existing manifold which is diffeomorphic to a

quotient.

73
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Theorem 5.3. G/H can be given the structure of a smooth manifold of dimension

dimG/H = dimG− dimH

so that the projection map π : G −→ G/H is smooth and at each g ∈ G,

ker(dπ : Tg G −→ TgH G/H) = d Lgh.

There is an atlas for G/H consisting of charts of the form θ : W −→ θW ⊆ R
n−k for which there is a

diffeomorphism Θ: W ×H −→ π−1W satisfying the conditions

Θ(w, h1h2) = Θ(w, h1)h2, π(Θ(w, h)) = w (w ∈W, h, h1, h2 ∈ H).

W ×H

proj1 ##G
GG

GG
GG

GG
Θ // π−1W

π
{{xxxxxxxx

W

The projection π looks like proj1 : π−1W −→ W , the projection onto W , when restricted to π−1W .

For such a chart, the map Θ is said to provide a local trivialisation of π over W . An atlas consisting of

such charts and local trivialisations (θ : W −→ θW,Θ) provides a local trivalisation of π. This is related

to the important notion of a principal H-bundle over G/H.

Notice that given such an atlas, an atlas for G can be obtained by taking each pair (θ : W −→ θW,Θ)

and combining the map θ with a chart ψ : U −→ ψU ⊆ R
k for H to get a chart

(θ × ψ) ◦Θ−1 : Θ(W × U) −→ θW × ψU ⊆ R
n−k × R

k = R
n.

Such a manifold G/H is called a homogeneous space since each left translation map Lg on G gives rise

to a diffeomorphism

Lg : G/H −→ G/H; Lg(xH) = gxH,

for which π ◦ Lg = Lg ◦ π.

G
Lg−−−−→ G

π

y π

y
G/H

Lg−−−−→ G/H

So each point gH has a neighbourhood diffeomorphic under L
−1

g to a neighbourhood of 1H; so locally

G/H is unchanged as gH is varied. This is the basic insight in Felix Klein’s view of a Geometry which

is characterised as a homogeneous space G/H for some group of transformations G and subgroup H.

2. Homogeneous spaces as orbits

Just as in ordinary group theory, group actions have orbits equivalent to sets of cosets G/H, so

homogeneous spaces also arise as orbits associated to smooth groups actions of G on a manifolds.

Theorem 5.4. Suppose that a Lie group G acts smoothly on a manifold M . If the element x ∈ M
has stabilizer StabG(x) 6 G and the orbit OrbG(x) ⊆M is a closed submanifold, then the function

f : G/ StabG(x) −→ OrbG(x); f(g StabG(x)) = gx

is a diffeomorphism.

Example 5.5. For n > 1, O(n) acts smoothly on R
n by matrix multiplication. For any nonzero

vector v ∈ R
n, the orbit OrbO(n)(v) ⊆ R

n is diffeomorphic to O(n)/O(n− 1).
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Proof. First observe that when v is the standard basis vector en, for A ∈ O(n), Aen = en if and

only if en is the last column of A, while all the other columns of A are orthogonal to en. Since the

columns of A must be an orthonormal set of vectors, this means that each of the first (n− 1) columns of

A has the form 

a1k

a2k

...

ank

0


where the matrix 

a11 a12 · · · a1n−1

a21 a22 · · · a2n−1

...
. . .

an−1 1 an−1 2 · · · an−1n−1


is orthogonal and hence in O(n−1). We identify O(n−1) with the subset of O(n) consisting of matrices

of the form 

a11 a12 · · · a1n−1 0

a21 a22 · · · a2n−1 0
...

. . . 0

an−1 1 an−1 2 · · · an−1n−1 0

0 0 · · · 0 1


and then have StabO(n)(en) = O(n− 1). The orbit of en is the whole unit sphere S

n−1 ⊆ R
n since given

a unit vector u we can extend it to an orthonormal basis u1, . . . ,un−1,un = u which form the columns

of an orthogonal matrix U ∈ O(n) for which Uen = u. So we have a diffeomorphism

O(n)/ StabO(n)(en) = O(n)/O(n− 1) −→ OrbO(n)(en) = S
n−1.

Now for a general nonzero vector v notice that StabO(n)(v) = StabO(n)(v̂) where v̂ = (1/|v|)v and

OrbO(n)(v) = S
n−1(|v|),

the sphere of radius |v|. If we choose any P ∈ O(n) with v̂ = Pen, we have

StabO(n)(v) = P StabO(n)(en)P−1

and so there is a diffeomorphism

OrbO(n)(v) −→ O(n)/P O(n− 1)P−1 χP−1−−−→ O(n)/O(n− 1).

�

A similar result holds for SO(n) and the homogeneous space SO(n)/SO(n − 1). For the unitary

and special unitary groups we can obtain the homogeneous spaces U(n)/U(n− 1) and SU(n)/SU(n− 1)

as orbits of non-zero vectors in C
n on which these groups act by matrix multiplication; these are all

diffeomorphic to S
2n−1. The action of the quaternionic symplectic group Sp(n) on H

n leads to orbits of

non-zero vectors diffeomorphic to Sp(n)/Sp(n− 1) and S
4n−1.
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3. Projective spaces

More exotic orbit spaces are obtained as follows. Let k = R,C,H and set d = dimR k. Consider k
n+1

as a right k-vector space. Then there is an action of the group of units k
× on the subset of non-zero

vectors k
n+1
0 = k

n+1 − {0}:

z · x = xz−1.

The set of orbits is denoted kPn and is called n-dimensional k-projective space. Projective spaces An

element of kPn written [x] is a set of the form

[x] = {xz−1 : z ∈ k
×} ⊆ k

n+1
0 .

Notice that [x] = [y] if and only if there is a z ∈ k
× for which y = xz−1.

Remark 5.6. Because of this we can identify elements kPn with k-lines in k
n+1 (i.e., 1-dimensional

k-vector subspaces). kPn is often viewed as the set of all such lines, particularly in the study of Projective

Geometry.

There is a quotient map

qn : k
n+1
0 −→ kPn; qn(x) = [x],

and we give kPn the quotient topology which is Hausdorff and separable.

Proposition 5.7. kPn is a smooth manifold of dimension dim kPn = n dimR k. Moreover, the

quotient map qn : k
n+1
0 −→ kPn is smooth with surjective derivative at every point in k

n+1
0 .

Proof. For r = 1, 2, . . . , n, set kPnr = {[x] : xr 6= 0}, where as usual we write x =


x1

x2

...

xn+1

. Then

kPnr ⊆ kPn is open. There is a function

σr : kPnr −→ k
n; σr([x]) =



x1x
−1
r

x2x
−1
r

...

xr−1x
−1
r

xr+1x
−1
r

...

xn+1x
−1
r


which is a continuous bijection that is actually a homeomorphism. Whenever r 6= s, the induced map

σ−1
s ◦ σr : σ−1

r kPnr ∩ kPns −→ σ−1
s kPnr ∩ kPns

is given by

σ−1
s ◦ σr(x) =



y1

y2

...

ys−1

ys+1

...

yn+1
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where

yj =

xjx−1
s if j 6= r, s,

x−1
s if j = r.

These (n+ 1) charts form the standard atlas for n-dimensional projective space over k. �

An alternative description of kPn is given by considering the action of the subgroup

k
×
1 = {z ∈ k

× : |z| = 1} 6 k
×

on the unit sphere S
(n+1)d−1 ⊆ k

n+1
0 . Notice that every element [x] ∈ kPn contains elements of S

n.

Furthermore, if x,y ∈ k
n+1
0 have unit length |x| = |y| = 1, then [x] = [y] if and only if y = xz−1 for

some z ∈ k
×
1 . This means we can also view kPn as the orbit space of this action of k

×
1 on S

(n+1)d−1, and

we also write the quotient map as qn : S
(n+1)d−1 −→ kPn; this map is also smooth.

Proposition 5.8. The quotient space given by the map qn : S
(n+1)d−1 −→ kPn is compact Hausdorff.

Proof. This follows from the standard fact that the image of a compact space under a continuous

mapping is compact. �

Consider the action of O(n+ 1) on the unit sphere S
n ⊆ R

n+1. Then for A ∈ O(n+ 1), z = ±1 and

x ∈ S
n, we have

A(xz−1) = (Ax)z−1.

Hence there is an induced action of O(n+ 1) on RPn given by

A · [x] = [Ax].

This action is transitive and also the matrices ±In+1 fix every point of RPn. There is also an action of

SO(n+ 1) on RPn; notice that −In+1 ∈ SO(n+ 1) only if n is odd.

Similarly, U(n + 1) and SU(n + 1) act on CPn with scalar matrices wIn+1 (w ∈ C
×
1 ) fixing every

element. Notice that if wIn+1 ∈ SU(n+ 1) then wn+1 = 1, so there are exactly (n+ 1) such values.

Finally, Sp(n+ 1) acts on HPn and the matrices ±In+1 fix everything.

There are some important new quotient Lie groups associated to these actions, the projective unitary,

special unitary and quaternionic symplectic groups

PU(n+ 1) = U(n+ 1)/{wIn+1 : w ∈ C
×
1 },

PSU(n+ 1) = SU(n+ 1)/{wIn+1 : wn+1 = 1},

PSp(n+ 1) = Sp(n+ 1)/{±In+1}.

Projective spaces are themselves homogeneous spaces. Consider the subgroup of O(n + 1) consisting of

elements of the form 

a11 a12 · · · a1n−1 0

a21
. . . . . . . . . 0

...
. . . . . . . . .

...

an−1 1
. . . . . . . . . 0

0 0 · · · 0 ±1
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We denote this subgroup of O(n + 1) by O(n) × O(1). There is a subgroup ˜O(n) 6 SO(n + 1) whose

elements have the form 

a11 a12 · · · a1n−1 0

a21
. . . . . . . . . 0

...
. . . . . . . . .

...

an−1 1
. . . . . . . . . 0

0 0 · · · 0 w


where 

a11 a12 · · · a1n−1

a21
. . . . . . . . .

...
. . . . . . . . .

an−1 1
. . . . . . an−1n−1

 ∈ O(n), w = det


a11 a12 · · · a1n−1

a21
. . . . . . . . .

...
. . . . . . . . .

an−1 1
. . . . . . an−1n−1

 .

Similarly, there is a subgroup U(n)×U(1) 6 U(n+ 1) whose elements have the form

a11 a12 · · · a1n−1 0

a21
. . . . . . . . . 0

...
. . . . . . . . .

...

an−1 1
. . . . . . an−1n−1 0

0 0 · · · 0 w


and Ũ(n) 6 SU(n+ 1) with elements

a11 a12 · · · a1n−1 0

a21
. . . . . . . . . 0

...
. . . . . . . . .

...

an−1 1
. . . . . . an−1n−1 0

0 0 · · · 0 w


where 

a11 a12 · · · a1n−1

a21
. . . . . . . . .

...
. . . . . . . . .

an−1 1
. . . . . . an−1n−1

 ∈ U(n), w = det


a11 a12 · · · a1n−1

a21
. . . . . . . . .

...
. . . . . . . . .

an−1 1
. . . . . . an−1n−1



−1

.

Finally we have Sp(n)× Sp(1) ∈ Sp(n+ 1) consisting of matrices of the form

a11 a12 · · · a1n−1 0

a21
. . . . . . . . . 0

...
. . . . . . . . .

...

an−1 1
. . . . . . an−1n−1 0

0 0 · · · 0 w


.

Proposition 5.9. There are diffeomorphisms between

• RPn and O(n+ 1)/O(n)×O(1), SO(n+ 1)/˜O(n);

• CPn and U(n+ 1)/U(n)×U(1), SU(n+ 1)/˜U(n);
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• HPn and Sp(n+ 1)/Sp(n)× Sp(1).

There are similar homogeneous space of the general and special linear groups giving these projective

spaces. We illustrate this with one example.

SL2(C) contains the matrix subgroup P consisting of its lower triangular matrices[
u 0

w v

]
∈ SL2(C).

This is often called a parabolic subgroup.

Proposition 5.10. CP1 is diffeomorphic to SL2(C)/P.

Proof. There is smooth map

ψ : SL2(C) −→ CP1; ψ(A) = [Ae2].

Notice that for B =

[
u 0

w v

]
∈ P, [

u 0

w v

][
0

1

]
=

[
0

v

]
,

hence [(AB)e2] = [Ae2] for any A ∈ SL2(C). This means that ψ(A) only depends on the coset AP ∈
SL2(C)/P. It is easy to see that is onto and that the induced map SL2(C)/P −→ CP1 is injective. �

4. Grassmannians

There are some important families of homogeneous spaces directly generalizing projective spaces.

These are the real, complex and quaternionic Grassmannians which we now define.

Let O(k)×O(n− k) 6 O(n) be closed the subgroup whose elements have the form[
A Ok,n−k

On−k,k B

]
(A ∈ O(k), B ∈ O(n− k))

Similarly there are closed subgroups U(k)×U(n−k) 6 U(n) and Sp(k)×Sp(n−k) 6 Sp(n) with elements

U(k)×U(n− k) :

[
A Ok,n−k

On−k,k B

]
(A ∈ U(k), B ∈ U(n− k));

Sp(k)× Sp(n− k) :

[
A Ok,n−k

On−k,k B

]
(A ∈ Sp(k), B ∈ Sp(n− k)).

The associated homogeneous spaces are the Grassmannians

Grk,n(R) = O(n)/O(k)×O(n− k);

Grk,n(C) = U(n)/U(k)×U(n− k);

Grk,n(H) = Sp(n)/Sp(k)× Sp(n− k).

Proposition 5.11. For k = R,C,H, the Grassmannian Grk,n(k) can be viewed as the set of all

k-dimensional k-vector subspaces in k
n.

Proof. We describe the case k = R, the others being similar.

Associated to element W ∈ O(n) is the subspace spanned by the first k columns of W , say w1, . . . ,wk;

we will denote this subspace by 〈w1, . . . ,wk〉. As the columns of W are an orthonormal set, they are

linearly independent, hence dimR 〈w1, . . . ,wk〉 = k. Notice that the remaining (n − k) columns give
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rise to another subspace 〈wk+1, . . . ,wn〉 of dimension dimR 〈wk+1, . . . ,wn〉 = n − k. In fact these are

mutually orthogonal in the sense that

〈wk+1, . . . ,wn〉 = 〈w1, . . . ,wk〉⊥

= {x ∈ R
n : x ·wr = 0, r = 1, . . . , k},

〈w1, . . . ,wk〉 = 〈wk+1, . . . ,wn〉⊥

= {x ∈ R
n : x ·wr = 0, r = k + 1, . . . , n}.

For a matrix [
A Ok,n−k

On−k,k B

]
∈ O(k)×O(n− k),

the columns in the product

W ′ = W

[
A Ok,n−k

On−k,k B

]
span subspaces 〈w′1, . . . ,w′k〉 and

〈
w′k+1, . . . ,w

′
n

〉
. But note that w′1, . . . ,w

′
k are orthonormal and also

linear combinations of w1, . . . ,wk; similarly, w′k+1, . . . ,w
′
n are linear combinations of wk+1, . . . ,wn.

Hence

〈w′1, . . . ,w′k〉 = 〈w1, . . . ,wk〉 ,
〈
w′k+1, . . . ,w

′
n

〉
= 〈wk+1, . . . ,wn〉 .

So there is a well defined function

O(n)/O(k)×O(n− k) −→ k-dimensional vector subpaces of R
n

which sends the coset of W to the subspace 〈w1, . . . ,wk〉. This is actually a bijection.

Notice also that there is another bijection

O(n)/O(k)×O(n− k) −→ (n− k)-dimensional vector subpaces of R
n

which sends the coset of W to the subspace 〈wk+1, . . . ,wn〉. This corresponds to a diffeomorphism

Grk,n(R) −→ Grn−k,n(R) which in turn corresponds to the obvious isomorphism O(k) × O(n − k) −→
O(n− k)×O(k) induced by conjugation by a suitable element P ∈ O(n). �



CHAPTER 6

Connectivity of matrix groups

1. Connectivity of manifolds

Definition 6.1. A topological space X is connected if whenever X = U ∪ V with U, V 6= ∅, then

U ∩ V 6= ∅.

Definition 6.2. A topological space X is path connected if whenever x, y ∈ X, there is a continuous

path p : [0, 1] −→ X with p(0) = x and p(1) = y.

X is locally path connected if every point is contained in a path connected open neighbourhood.

The following result is fundamental to Real Analysis.

Proposition 6.3. Every interval [a, b], [a, b), (a, b], (a, b) ⊆ R is path connected and connected. In

particular, R is path connected and connected.

Proposition 6.4. If X is a path connected topological space then X is connected.

Proof. Suppose X is not connected. Then X = U ∪ V where U, V ⊆ X are non-empty and

U ∩V = ∅. Let x ∈ U and y ∈ V . By path connectedness of there X, is a continuous map p : [0, 1] −→ X

with p(0) = x and p(1) = y. Then [0, 1] = p−1U ∪ p−1V expresses [0, 1] as a union of open subsets with

no common elements. But this contradicts the connectivity of [0, 1]. So X must be connected. �

Proposition 6.5. Let X be a connected topological space which is locally path connected. Then X

is path connected.

Proof. Let x ∈ X, and set

Xx = {y ∈ X : ∃ p : [0, 1] −→ X continuous such that p(0) = x and p(1) = y}.

Then for each y ∈ Xx, there is a path connected open neighbourhood Uy. But for each point z ∈ Uy
there is a continuous path from to z via y, hence Uy ⊆ Xx. This shows that

Xx =
⋃
y∈Xx

Uy ⊆ X

is open in X. Similarly, if w ∈ X −Xx, then Xw ⊆ X −Xx and this is also open. But then so is

X −Xx =
⋃

w∈X−Xx

Xw.

Hence X = Xx ∪ (X −Xx), and so by connectivity, Xx = ∅ or X −Xx = ∅. So X is path connected.

�

Proposition 6.6. If the topological spaces X and Y are path connected then their product X × Y is

path connected.

Corollary 6.7. For n > 1, R
n is path connected and connected.

It is also useful to record the following standard results.

81
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Proposition 6.8. i) Let n > 2. The unit sphere S
n−1 ⊆ R

n is path connected. In S
0 = {±1} ⊆ R,

the subsets {1} and {−1} are path connected. The set of non-zero vectors R
n
0 ⊆ R

n is path connected.

ii) For n > 1, the sets of non-zero complex and quaternionic vectors C
n
0 ⊆ C

n and H
n
0 ⊆ H

n are path

connected.

Proposition 6.9. Every manifold is locally path connected. Hence every connected manifold is path

connected.

Proof. Every point is contained in an open neighbourhood homeomorphic to some open subset of

R
n which can be taken to be an open disc which is path connected. The second statement now follows

from Proposition 6.5. �

Theorem 6.10. Let M be a connected manifold and N ⊆M a non-empty submanifold which is also

a closed subset. If dimN = dimM then N = M .

Proof. Since N ⊆M is closed, M −N ⊆M is open. But N ⊆M is also open since every element

is contained in an open subset of M contained in N ; hence M −N ⊆M is closed. Since M is connected,

M −N = ∅. �

Proposition 6.11. Let G be a Lie group and H 6 G a closed subgroup. If G/H and H are connected,

then so is G.

Proof. First we remark on the following: for any g ∈ G, left translation map Lg : H −→ gH

provides a homeomorphism between these spaces, hence gH is connected since H is.

Suppose that G is not connected, and let U, V ⊆ G be nonempty open subsets for which U ∩ V = ∅
and U ∪ V = G. By Lemma 5.1 the projection π : G −→ G/H is a surjective open mapping, so

πU, πV ⊆ G/H are open subsets for which πU ∪ πV = G/H. As G/H is connected, there is an element

gH say in πU ∩ πV . In G we have

gH = (gH ∩ U) ∪ (gH ∩ V ),

where (gH ∩ U), (gH ∩ V ) ⊆ gH are open subsets in the subspace topology on gH since U, V are open

in G. By connectivity of gH, this can only happen if gH ∩U = ∅ or gH ∩ V = ∅, since these are subsets

of U, V which have no common elements. As

π−1gH = {gh : h ∈ H},

this is false, so (gH ∩ U) ∩ (gH ∩ V ) 6= ∅ which implies that U ∩ V 6= ∅. This contradicts the original

assumption on U, V . �

This result together with Proposition 6.9 gives a useful criterion for path connectedness of a Lie

group which may need to be applied repeatedly to show a particular example is path connected. Recall

that by Theorem 4.31, a closed subgroup of a Lie group is a submanifold.

Proposition 6.12. Let G be a Lie group and H 6 G a closed subgroup. If G/H and H are connected,

then G is path connected.

2. Examples of path connected matrix groups

In this section we apply Proposition 6.12 to show that many familiar matrix groups are path con-

nected.

Example 6.13. For n > 1, SLn(R) is path connected.
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Proof. For the real case, we proceed by induction on n. Notice that SL1(R) = {1}, which is

certainly connected. Now suppose that SLn−1(R) is path connected for some n > 2.

Recall that SLn(R) acts continuously on R
n by matrix multiplication. Consider the continuous

function

f : SLn(R) −→ R
n; f(A) = Aen.

The image of f is im f = R
n
0 = R

n − {0} since every vector v ∈ R
n
0 can be extended to a basis

v1 . . . ,vn−1,vn = v

of R
n, and we can multiply v1 by a suitable scalar to ensure that the matrix Av with these vectors as

its columns has determinant 1. Then Aven = v.

Notice that Pen = en if and only if

P =

[
Q 0

w 1

]
,

where Q is (n−1)× (n−1) with detQ = 1, is the (n−1)×1 zero vector and w is an arbitrary 1× (n−1)

vector. The set of all such matrices is the stabilizer of en, StabSLn(R)(en), which is a closed subgroup of

SLn(R). More generally, Aen = v if and only if

A = AvP for some P ∈ StabSLn(R)(en).

So the homogeneous space SLn(R)/StabSLn(R)(en) is homeomorphic to R
n
0 .

Since n > 2, it is well known that R
n
0 is path connected, hence is connected. This implies that

SLn(R)/StabSLn(R)(en) is connected.

The subgroup SLn−1(R) 6 StabSLn(R)(en) is closed and the well defined map

StabSLn(R)(en)/SLn−1(R) −→ R
n−1;

[
Q 0

w 1

]
SLn−1(R) 7−→ (wQ−1)T

is a homeomorphism so the homogeneous space StabSLn(R)(en)/SLn−1(R) is homeomorphic to R
n−1.

Hence by Corollary 6.7 together with the inductive assumption, StabSLn(R)(en) is path connected. We

can combine this with the connectivity of R
n
0 to deduce that SLn(R) is path connected, demonstrating

the inductive step. �

Example 6.14. For n > 1, GL+
n (R) is path connected.

Proof. Since SLn(R) 6 GL+
n (R), it suffices to show that GL+

n (R)/SLn(R) is path connected. But

for this we can use the determinant to define a continuous map

det : GL+
n (R) −→ R

+ = (0,∞),

which is surjective onto a path connected space. The homogeneous space GL+
n (R)/SLn(R) is then

diffeomorphic to R
+ and hence is path connected. So GL+

n (R) is path connected. �

This shows that

GLn(R) = GL+
n (R) ∪GL−n (R)

is the decomposition of GLn(R) into two path connected components.

Example 6.15. For n > 1, SO(n) is path connected. Hence

O(n) = SO(n) ∪O(n)−

is the decomposition of O(n) into two path connected components.
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Proof. For n = 1, SO(1) = {1}. So we will assume that n > 2 and proceed by induction on n. SO

assume that SO(n− 1) is path connected.

Consider the continuous action of on R
n by left multiplication. The stabilizer of en is SO(n− 1) 6

SO(n) thought of as the closed subgroup of matrices of the form[
P 0

0T 1

]
with P ∈ SO(n− 1) and 0 the (n− 1)× 1 zero matrix. The orbit of en is the unit sphere S

n−1 which is

path connected. Since the orbit space is also diffeomorphic to SO(n)/SO(n − 1) we have the inductive

step. �

Example 6.16. For n > 1, U(n) and SU(n) are path connected.

Proof. For n = 1, U(1) is the unit circle in C while SU(1) = {1}, so both of these are path

connected. Assume that U(n− 1) and SU(n− 1) are path connected for some n > 2.

Then U(n) and SU(n) act on C
n by matrix multiplication and by arguments of Chapter 5,

StabU(n)(en) = U(n− 1), StabSU(n)(en) = SU(n− 1).

We also have

OrbU(n)(en) = OrbSU(n)(en) = S
2n−1,

where S
2n−1 ⊆ C

n ∼= R
2n denotes the unit sphere consisting of unit vectors. Since S

2n−1 is path

connected, we can deduce that U(n) and SU(n) are too, which gives the inductive step. �

3. The path components of a Lie group

Let G be a Lie group. We say that two elements x, y ∈ G are connected by a path in G if there is a

continuous path p : [0, 1] −→ G with p(0) = x and p(1) = y; we will then write x∼
G
y.

Lemma 6.17. ∼
G

is an equivalence relation on G.

For g ∈ G, we can consider the equivalence class of g, the path component of g in G,

Gg = {x ∈ G : x∼
G
g}.

Proposition 6.18. The path component of the identity is a clopen normal subgroup of G, G1 / G;

hence it is a closed Lie subgroup of dimension dimG.

The path component Gg agrees with the coset of g with respect to G1, Gg = gG1 = G1g and is a

closed submanifold of G.

Proof. By Proposition 6.9, Gg contains an open neighbourhood of g in G. This shows that every

component is actually a submanifold of G with dimension equal to dimG. The argument used in the

proof of Proposition 6.5 shows that each is Gg actually clopen in G.

Let x, y ∈ G1. Then there are continuous paths p, q : [0, 1] −→ G with p(0) = 1 = q(0), p(0) = x and

q(0) = y. The product path

r : [0, 1] −→ G; r(t) = p(t)q(t)

has r(0) = 1 and r(1) = xy. So G1 6 G. For g ∈ G, the path

s : [0, 1] −→ G; s(t) = gp(t)g−1

has s(0) = 1 and s(1) = gxg−1; hence G1 / G. If z ∈ gG1 = G1g, then g−1z ∈ G1 and so there is a

continuous path h : [0, 1] −→ G with h(0) = 1 and h(1) = g−1z. Then the path

gh : [0, 1] −→ G; gh(t) = g(h(t))
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has gh(0) = g and gh(1) = z. So each coset gG1 is path connected, hence gG1 ⊆ Gg. To show equality,

suppose that g is connected by a path k : [0, 1] −→ G in G to w ∈ Gg. Then the path g−1k connects 1

to g−1w, so g−1w ∈ G1, giving w ∈ gG1. This shows that Gg ⊆ gG1. �

The quotient group G/G1 is the group of path components of G, which we will denote by π0G.

Example 6.19. We have the following groups of path components:

π0 SO(n) = π0SLn(R) = π0 SU(n) = π0 U(n) = π0SLn(C) = π0GLn(C) = {1},

π0 O(n) ∼= π0GLn(R) ∼= {±1}.

Example 6.20. Let

T =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 : θ ∈ R

 6 SO(3).

and let G = NSO(3)(T ) 6 SO(3) be its normalizer. Then T and G are Lie subgroups of SO(3) and

π0G ∼= {±1}.

Proof. A straightforward computation shows that

NSO(3)(T ) = T ∪



− cos θ sin θ 0

sin θ cos θ 0

0 0 −1

 : θ ∈ R

 = T ∪


−1 0 0

0 1 0

0 0 −1

T.
Notice that T is isomorphic to the unit circle,

T ∼= T;


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

←→ eθi.

This implies that T is path connected and abelian since T is. The function

ϕ : G −→ R
×; ϕ([aij ]) = a3 3

is continuous with

ϕ−1
R

+ = T, ϕ−1
R
− = T


−1 0 0

0 1 0

0 0 −1

 ,
hence these are clopen subsets. This shows that the path components of G are

GI = T,


−1 0 0

0 1 0

0 0 −1

T.
Hence π0G ∼= {±1}.

Notice that NSO(3)(T ) acts by conjugation on T and in fact every element of T / NSO(3)(T ) acts

trivially since T is abelian. Hence π0G acts on T with the action of the non-trivial coset given by
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conjugation by the matrix


−1 0 0

0 1 0

0 0 −1

,


−1 0 0

0 1 0

0 0 −1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



−1 0 0

0 1 0

0 0 −1


−1

=


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


−1

which corresponds to the inversion homomorphism on the unit circle T ∼= T . �

Example 6.21. Let T = {x1+yi : x, y ∈ R, x2+y2 = 1} 6 Sp(1), the group of unit quaternions. Let

G = NSp(1)(T ) 6 Sp(1) be its normalizer. Then T and G are Lie subgroups of Sp(1) and π0G ∼= {±1}.

Proof. By a straightforward calculation,

G = T ∪ {xj − yk : x, y ∈ R, x2 + y2 = 1} = T ∪ jT.

T is isomorphic to the unit circle so is path connected and abelian. The function

θ : G −→ R; θ(t1 + xi+ yj + zk) = y2 + z2,

is continuous and

θ−10 = T, θ−11 = jT.

Hence the path components of G are T, jT . So π0G =∼= {±1}.
The conjugation action of G on T has every element of T acting trivially, so π0G acts on T . The

action of the non-trivial coset is given by conjugation with j,

j(x1 + yi)j−1 = x1− yi,

corresponding to the inversion map on the unit circle T ∼= T . �

The significance of such examples will become clearer when we discuss maximal tori and their nor-

malizers in Chapter 7.

4. Another connectivity result

The following result will be used in Chapter 7.

Proposition 6.22. Let G be a connected Lie group and H 6 G a subgroup which contains an open

neighbourhood of 1 in G. Then H = G.

Proof. Let U ⊆ H be an open neighbourhood of 1 in G. Since the inverse map inv : G −→ G is a

homeomorphism and maps H into itself, by replacing U with U ∩ invU if necessary, we can assume that

inv maps the open neighbourhood into itself, i.e., invU = U .

For k > 1, consider

Uk = {u1 · · ·uk ∈ G : uj ∈ U} ⊆ H.

Notice that invUk = Uk. Also, Uk ⊆ G is open since for u1, . . . , uk ∈ U ,

u1 · · ·uk ∈ Lu1···uk−1U ⊆ Uk
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where Lu1···uk−1U = L−1
(u1···uk−1)−1U is an open subset of G. Then

V =
⋃
k>1

Uk ⊆ H

satisfies inv V = V .

V is closed in G since given g ∈ G − V , for the open set gV ⊆ G, if x ∈ gV ∩ V there are

u1, . . . , ur, v1 . . . , vs ∈ U such that

gu1 · · ·ur = v1 · · · vs,

implying g = v1 · · · vsu−1
1 · · ·u−1

r ∈ V , contradicting the assumption on g.

So V is a nonempty clopen subset of G, which is connected. Hence G−V = ∅, and therefore V = G,

which also implies that H = G. �





CHAPTER 7

Compact connected Lie groups and their maximal tori

In this chapter we will describe some results on the structure of compact connected Lie groups,

focusing on the important notion of a maximal torus which is central to the classification of simple

compact connected Lie Groups. From Chapter 6 we know that many familiar examples of compact

matrix groups are path connected.

Although we state results for arbitrary Lie groups we will often only give proofs for matrix groups.

However, there is no loss in generality in assuming this because of the following important result which

we will not prove (the proof uses ideas of Haar measure and integration on such compact Lie groups).

Theorem 7.1. Let G be a compact Lie group. Then there are injective Lie homomorphisms G −→
O(m) and G −→ U(n) for some m,n. Hence G is a matrix group.

1. Tori

The circle group

T = {z ∈ C : |z| = 1} 6 C
×

is a matrix group since C
× = GL1(C). For each r > 1, the standard torus of rank r is

T
r = {diag(z1, . . . , zr) : ∀k, |zk| = 1} 6 GLr(C).

This is a matrix group of dimension r. More generally, a torus of rank r is a Lie group isomorphic to

T
r. We will often view elements of T

r as sequences of complex numbers (z1, . . . , zr) with |zk| = 1, this

corresponds to the identification

T
r ∼= T× · · · × T 6 (C×)r (r factors).

Such a torus is a compact path connected abelian Lie group.

Now let G be Lie group and T 6 G a closed subgroup which is a torus. Then T is maximal in G if

the only torus T ′ 6 G for which T 6 T ′ is T itself. Here are some examples.

For θ ∈ [0, 2π), let

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
∈ SO(2).

89
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More generally, for each n > 1, and θi ∈ [0, 2π) (i = 1, . . . , n), let

R2n(θ1, . . . , θn) =


R(θ1) O · · · · · · · · · O

O R(θ2) O
. . . . . .

...
...

. . . . . . . . . . . .
...

O · · · · · · · · · O R(θn)

 ∈ SO(2n),

R2n+1(θ1, . . . , θn) =



R(θ1) O · · · · · · · · · · · · O

O R(θ2) O
. . . . . . . . . . . .

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . O R(θn) O

O · · · · · · · · · · · · O 1


∈ SO(2n+ 1),

where each entry marked O is an appropriately sized block so that these are matrices of size 2n×2n and

(2n+ 1)× (2n+ 1) respectively.

By identifying C with R
2 as real vector spaces using the bases {1, i} and {e1, e2}, we obtain an

isomorphism

U(1) −→ SO(2), eθi 7−→ R2(θ).

Proposition 7.2. Each of the following is a maximal torus in the stated group.

{R2n(θ1, . . . , θn) : ∀k, θk ∈ [0, 2π)} 6 SO(2n).

{R2n+1(θ1, . . . , θn) : ∀k, θk ∈ [0, 2π)} 6 SO(2n+ 1).

{diag(z1, . . . , zn) : ∀k, |zk| = 1} 6 U(n).

{diag(z1, . . . , zn) : ∀k, |zk| = 1, z1 · · · zn = 1} 6 SU(n).

{diag(z1, . . . , zn) : ∀k zk ∈ C, |zk| = 1} 6 Sp(n).

The maximal tori listed will be referred to as the standard maximal tori for these groups.

Proposition 7.3. Let T be a torus. Then T is compact, path-connected and abelian.

Proof. Since the circle T is compact and abelian the same is true for T
r and hence for any torus.

If (z1, . . . , zr) ∈ T
r, let zk = eθki. Then there is a continuous path

p : [0, 1] −→ T
r; p(t) = (etθ1i, . . . , etθri),

with p(0) = (1, . . . , 1) and p(1) = (z1, . . . , zr). So T
r and hence any torus is path connected �

Theorem 7.4. Let H be a compact Lie group. Then H is a torus if and only if it is connected and

abelian.

Proof. We know that H is a compact Lie group. Every torus is path connected and abelian by

Proposition 7.3. So we need to show that when H is connected and abelian it is a torus since by

Proposition 6.9 it would be path connected.

Suppose that dimH = r and let h be the Lie algebra of H; then dim h = r. From the definition of

the Lie bracket in the proof of Theorem 2.14, for X,Y ∈ h,

[X,Y ] =
d
d s |s=0

d
d t |t=0

exp(sX) exp(tY ) exp(−sX) = 0

since exp(sX), exp(tY ) ∈ H and so exp(sX) exp(tY ) exp(−sX) = exp(tY ) because H is abelian. Thus

all Lie brackets in h are zero. Consider the exponential map exp: h −→ H. For X,Y ∈ h, Propositions
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1.33 and 1.32 give

exp(X) exp(Y ) = exp(X + Y ), exp(−X) = exp(X)−1.

So exp h = im exp ⊆ H is a subgroup. By Proposition 1.35 exp h is a subgroup containing a neighbour-

hood of 1, hence by Proposition 6.22, exp h = H.

As exp is a continuous homomorphism, its kernel K = ker exp must be discrete since otherwise

dim exp(h) < r. This means that K ⊆ h is a free abelian subgroup with basis {v1, . . . , vs} for some s 6 r.

Extending this to an R-basis {v1, . . . , vs, vs+1, . . . , vr} of h we obtain isomorphisms of Lie groups

exp(h) ∼= h/K ∼= R
s/Zs × R

r−s.

But the right hand term is only compact if s = r, hence K contains a basis of h and

R
r/Zr ∼= h/K ∼= H.

Since T ∼= R/Z, this gives H the structure of a torus. �

Notice that in this proof and that of Theorem 7.4, we made use of the following fact.

Proposition 7.5. Let T be a torus of rank r. Then the exponential map exp: t −→ T is a surjective

homomorphism of Lie groups, whose kernel is a discrete subgroup isomorphic to Z
r. Hence there is an

isomorphism of Lie groups R
r/Zr ∼= T .

In the proof Theorem 4.35, we met the idea of a topological generator of the circle group. It turns

out that all tori have such generators.

Definition 7.6. Let G be a Lie group. Then an element g ∈ G is a topological generator or just a

generator of G if the cyclic subgroup 〈g〉 6 G is dense in G, i.e., 〈g〉 = G.

Proposition 7.7. Every torus T has a generator.

Proof. Without loss of generality we can assume T = R
r/Zr and will write elements in the form

[x1, . . . , xr] = (x1, . . . , xr) + Z
r. The group operation is then addition. Let U1, U2, U3, . . . be a countable

base for the topology on T .

A cube of side ε > 0 in T is a subset of the form

C([u1, . . . , ur], ε) = {[x1, . . . , xr] ∈ T : |xk − uk| < ε/2 ∀k},

for some [u1, . . . , ur] ∈ T . Such a cube is the image of a cube in R
r under the quotient map R

r −→ T .

Let C0 ⊆ T be a cube of side ε > 0. Suppose that we have a decreasing sequence of cubes Ck of side

εk,

C0 ⊇ C1 ⊇ · · · ⊇ Cm,

where for each 0 6 k 6 m, there is an integer Nk satisfying Nkεk > 1 and NkCk ⊆ Uk. Now choose an

integer Nm+1 large enough to guarantee that Nm+1Cm = T . Now choose a small cube Cm+1 ⊆ Cm of

side εm+1 so that Nm+1Cm+1 ⊆ Um+1. Then if z = [z1, . . . , zr] ∈
⋂
k>1 Ck, we have Nkz ∈ Ck for each

k, hence the powers of z are dense in T , so z is a generator of T . �

2. Maximal tori in compact Lie groups

We now begin to study the structure of compact Lie groups in terms of their maximal tori. Through-

out the section, let G be a compact connected Lie group and T 6 G a maximal torus.

Theorem 7.8. If g ∈ G, there is an x ∈ G such that g ∈ xTx−1, i.e., g is conjugate to an element

of T . Equivalently,

G =
⋃
x∈G

xTx−1.
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Proof. The proof this uses the powerful Lefschetz Fixed Point Theorem from Algebraic Topology

and we only give a sketch indicating how this is used.

The quotient space G/T is a compact space and each element g ∈ G gives rise to a continuous map

µg : G/T −→ G/T ; µg(xT ) = (gx)T = gxT.

Since G is path connected, there is a continuous map

p : [0, 1]×G/T −→ G/T ;

for which p(0, xT ) = xT and p(1, xT ) = gxT , i.e., p is a homotopy IdG/T ' µg.
The Lefschetz Fixed Point Theorem asserts that µg has a fixed point provided the Euler characteristic

χ(G/T ) is non-zero. Indeed it can be shown that χ(G/T ) 6= 0, so this tells us that there is an x ∈ G
such that gxT = xT , or equivalently g ∈ xTx−1. �

Theorem 7.9. If T, T ′ 6 G are maximal tori then they are conjugate in G, i.e., there is a y ∈ G
such that T ′ = yTy−1.

Proof. By Proposition 7.7, T ′ has a generator t say. By Theorem 7.8, there is a y ∈ G such that

t ∈, so T ′ 6 yTy−1 As T ′ is a maximal torus and yTy−1 is a torus, we must have T ′ = yTy−1. �

The next result gives some important special cases related to the examples of Proposition 7.2. Notice

that if A ∈ SO(m), A−1 = AT , while if B ∈ U(m), B−1 = B∗.

Theorem 7.10 (Principle Axis Theorem). In each of the following matrix groups every element is

conjugate to one of the stated form.

• SO(2n) : R2n(θ1, . . . , θn), ∀k θk ∈ [0, 2π);

• SO(2n+ 1): R2n+1(θ1, . . . , θn), ∀k θk ∈ [0, 2π);

• U(n) : diag(z1, . . . , zn), ∀k zk ∈ C, |zk| = 1;

• SU(n) : diag(z1, . . . , zn), ∀k zk ∈ C, |zk| = 1, z1 · · · zn = 1

• Sp(n) : diag(z1, . . . , zn), ∀k zk ∈ C, |zk| = 1.

We can also deduce a results on the Lie algebra g of such a compact, connected matrix group G.

Recall that for each g ∈ G, there is a linear transformation

Adg : G −→ g; Adg(t) = gtg−1.

Proposition 7.11. Suppose that g ∈ G and H,H ′ 6 G are Lie subgroups with gHg−1 = H ′. Then

Adg h = h′.

Proof. By definition, for x ∈ h there is a curve γ : (−ε, ε) −→ H with γ(0) = 1 and γ′(0) = x.

Then

Adg(t) =
d
d t
gγ(t)g−1

|t=0
∈ h′,

since t 7→ gγ(t)g−1 is a curve in H ′. �

If x, y ∈ g and y = Adg(x) we will say that x is conjugate in G to y. This defines an equivalence

relation on g.

For t ∈ R, let

R′(t) =

[
0 −t
t 0

]
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and

R′2n(t1, . . . , tn) =


R′(t1) O · · · · · · · · · O

O R′(t2) O
. . . . . .

...
...

. . . . . . . . . . . .
...

O · · · · · · · · · O R′(tn)

 ∈ so(2n),

R′2n+1(t1, . . . , tn) =



R′(t1) O · · · · · · · · · · · · O

O R′(t2) O
. . . . . . . . . . . .

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . O R′(tn) O

O · · · · · · · · · · · · O 1


∈ so(2n+ 1).

Theorem 7.12 (Principle Axis Theorem for Lie algebras). For each of the following Lie algebras,

every element x ∈ g is conjugate in G to one of the stated form.

• so(2n) : R′2n(t1, . . . , tn), ∀k θk ∈ [0, 2π);

• so(2n+ 1): R′2n+1(t1, . . . , tn), ∀k θk ∈ [0, 2π);

• u(n) : diag(t1i, . . . , tni), ∀k tk ∈ R;

• su(n) : diag(t1i, . . . , tni), ∀k tk ∈ R, t1 + · · ·+ tn = 1;

• sp(n) : diag(t1i, . . . , tni), ∀k tk ∈ R.

We can now give an important result which we have already seen is true for many familiar examples.

Theorem 7.13. Let G be a compact, connected Lie group. Then the exponential map exp: g −→ G

is surjective.

Proof. Let T 6 G be a maximal torus. By Theorem 7.8, every element g ∈ G is conjugate to an

element xgx−1 ∈ T . By Proposition 7.5, xgx−1 = exp(t) for some t ∈ t, hence

g = x−1 exp(t)x = exp(Adx(t)),

where Adx(t) ∈ g. So g ∈ exp g. Therefore exp g = G. �

3. The normalizer and Weyl group of a maximal torus

Given Theorem 7.8, we can continue to develop the general theory for a compact connected Lie group

G.

Proposition 7.14. Let A 6 G be a compact abelian Lie group and suppose that A1 6 A is the

connected component of the identity element. If A/A1 is cyclic then A has a generator and hence A is

contained in a torus in G.

Proof. Let d = |A/A1|. As A1 is connected and abelian, it is a torus by Theorem 7.4, hence it has

a generator a0 by Proposition 7.7. Let g ∈ A be an element of A for which the coset gA1 generates A/A1.

Notice that gd ∈ A1 and therefore a0g
−d ∈ A1. Now choose b ∈ A1 so that a0g

−d = bd. Then a0 = (gb)d,

so the powers (gb)kd are dense in A1. More generally, the powers of the from (gb)kd+r are dense in the

coset grA1. Hence the powers of gb are dense in A, which shows that this element is a generator of A.

Let T 6 G be a maximal torus. By Theorem 7.8, any generator u of A is contained in a maximal

torus xTx−1 conjugate to T . Hence 〈u〉 and its closure A are contained in xTx−1 which completes the

proof of the Proposition. �

Proposition 7.15. Let A 6 G be a connected abelian subgroup and let g ∈ G commute with all the

elements of A. Then there is a torus T 6 G containing the subgroup 〈A, g〉 6 G generated by A and g.
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Proof. By replacing A by its closure which is also connected, we can assume that A is closed in G,

hence compact and so a torus, by Theorem 7.4. Now consider the abelian subgroup 〈A, g〉 6 G generated

by A and g, whose closure B 6 G is again compact and abelian. If the connected component of the

identity is B1 6 B then B1 has finitely many cosets by compactness, and these is of the form grB1

(r = 0, 1, . . . , d− 1) for some d. By Proposition 7.14, 〈A, g〉 is contained in a torus. �

Theorem 7.16. Let T 6 G be a maximal torus and let T 6 A 6 G where A is abelian. Then A = T .

Equivalently, every maximal torus is a maximal abelian subgroup.

Proof. For each element g ∈ A, Proposition 7.15 implies that there is a torus containing 〈T, g〉, but

by the maximality of T this must equal T . Hence A = T . �

We have now established that every maximal torus is also a maximal abelian subgroup, and that

any two maximal tori are conjugate in G.

Recall that for a subgroup H 6 G, the normalizer of H in G is

NG(H) = {g ∈ G : gHg−1 = H}.

Then NG(H) 6 G is a closed subgroup of G, hence compact. It also contains H and its closure in G as

normal subgroups. There is a continuous left action of NG(H) on H by conjugation, i.e., for g ∈ NG(H)

and h ∈ H, the action is given by

g · h = ghg−1.

If H = T is a maximal torus in G, the quotient group NG(T )/T acts on T since T acts trivially on itself

by conjugation. Notice that the connected component of the identity in NG(T ) contains T , in fact it

agrees with T by the following Lemma.

Lemma 7.17. Let T 6 G be a torus and let Q 6 NG(T ) be a connected subgroup acting on T by

conjugation. Then Q acts trivially, i.e., for g ∈ Q and x ∈ T ,

g · x = gxg−1 = x.

Proof. Recall that T ∼= R
r/Zr as Lie groups. By Proposition 7.5, the exponential map is a surjective

group homomorphism exp: t −→ T whose kernel is a discrete subgroup. In fact, there is a commutative

diagram
ker exp −−−−→ t −−−−→ T

∼=
y ∼=

y ∼=
y

Z
r −−−−→ R

r −−−−→ R
r/Zr

in which all the maps are the evident ones.

Now a Lie group automorphism α : T −→ T lifts to homomorphism α̃ : t −→ t restricting to an

isomorphism α̃0 : ker exp −→ ker exp. Indeed, since each element of ker exp ∼= Z
r is uniquely divisible

in t ∼= R
r, continuity implies that α̃0 determines α̃ on t. But the automorphism group Aut(ker exp) ∼=

Aut(Zr) of ker exp ∼= Z
r is a discrete group.

From this we see that the action of Q on T by conjugation is determined by its restriction to the

action on ker exp. As Q is connected, every element of Q gives rise to the identity automorphism of the

discrete group Aut(ker exp). Hence the action of Q on T is trivial. �

This result shows that NG(T )1, the connected component of the identity in NG(T ), acts trivially on

the torus T . In fact, if g ∈ NG(T ) acts trivially on T then it commutes with all the elements of T , so by

Theorem 7.16 g is in T . Thus T consists of all the elements of G with this property, i.e.,

(7.1) T = {g ∈ G : gxg−1 = x ∀x ∈ T}.
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In particular, we have NG(T )1 = T .

The Weyl group of the maximal torus T in G is the quotient group

WG(T ) = NG(T )/T = π0 NG(T )

which is also the group of path components π0 NG(T ). The Weyl group WG(T ) acts on T by conjugation,

i.e., according to the formula

gT · x = gxg−1.

Theorem 7.18. Let T 6 G be a maximal torus. Then the Weyl group WG(T ) is finite and acts

faithfully on T , i.e., the coset gT ∈ NG(T )/T acts trivially on T if and only if g ∈ T .

Proof. NG(T ) has finitely many cosets of T since it is closed, hence compact, so each coset is

clopen. The faithfulness of the action follows from Equation (7.1). �

Proposition 7.19. Let T 6 G be a maximal torus and x, y ∈ T . If x, y are conjugate in G then

they are conjugate in NG(T ), hence there is an element w ∈WG(T ) for which y = w · x.

Proof. Suppose that y = gxg−1. Then the centralizer CG(y) 6 G of y is a closed subgroup

containing T . It also contains the maximal torus gTg−1 since every element of this commutes with y.

Let H = CG(y)1, the connected component of the identity in CG(y); this is a closed subgroup of G since

it is closed in CG(y). Then as T, gTg−1 are connected subgroups of CG(y) they are both contained in

H. So T, gTg−1 are tori in H and must be maximal since a torus in H containing one of these would be

a torus in G where they are already maximal.

By Theorem 7.8 applied to the compact connected Lie group H, gTg−1 is conjugate to T in H, so

for some h ∈ H we have gTg−1 = hTh−1 which gives

(h−1g)T (h−1g)−1 = T.

Thus h−1g ∈ NG(T ) and

(h−1g)x(h−1g)−1 = h−1yh = y.

Now setting w = h−1gT ∈WG(T ) we obtain the desired result. �
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Problem sets

Throughout these problem sets, k will denote one of the fields R,C and treat vectors in k
n as column

vectors. All other notation follows the notes.

Problems on Chapter 1

1-1. Determine ‖A‖ for each of the following matrices A, where t, u, v ∈ R.[
u 0

0 v

]
,

[
u 1

0 u

]
,

[
cos t − sin t

sin t cos t

]
,

[
cosh t sinh t

sinh t cosh t

]
.

What can be said when u, v ∈ C?

1-2. Let A ∈ Mn(C).

a) If B ∈ U(n), show that ‖BAB−1‖ = ‖A‖.
b) For a general element C ∈ GLn(C), what can be said about ‖CAC−1‖?

1-3. [This problem relates to Remark 1.3 ] Let A ∈ Mn(C).

a) Show that ‖A‖ satisfies

‖A‖2 = sup{x∗A∗Ax : x ∈ C
n, |x| = 1} = max{x∗A∗Ax : x ∈ C

n, |x| = 1}.

b) Show that the eigenvalues of A∗A are non-negative real numbers. Deduce that if λ ∈ R is the largest

eigenvalue of A∗A then ‖A‖ =
√
λ and for any unit eigenvector v ∈ C

n of A∗A for the eigenvalue λ,

‖A‖ = |Av|.
c) When A is real, show that ‖A‖ = |Aw| for some unit vector w ∈ R

n.

1-4. If {Ar}r>0 is a sequence of matrices Ar ∈ Mn(k), prove the following.

a) If lim
r→∞

‖Ar+1‖
‖Ar‖

< 1, the series
∑∞
r=0Ar converges in Mn(k).

b) If lim
r→∞

‖Ar+1‖
‖Ar‖

> 1, the series
∑∞
r=0Ar diverges in Mn(k).

c) Develop other convergence tests for
∑∞
r=0Ar.

1-5. Suppose that A ∈ Mn(k) and ‖A‖ < 1.

a) Show that the series
∞∑
r=0

Ar = I +A+A2 +A3 + · · ·

converges in Mn(k).

b) Show that (I −A) is invertible and give a formula for (I −A)−1.

c) If A nilpotent (i.e., Ak = O for k large) determine (I −A)−1 and exp(A).

1-6. a) Show that the set of all n× n real orthogonal matrices O(n) ⊆ Mn(R) is compact.

b) Show that the set of all n× n unitary matrices U(n) ⊆ Mn(C) is compact.

1
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c) Show that GLn(k) and SLn(k) are not compact if n > 2.

d) Investigate which of the other matrix groups of Section 4 are compact.

1-7. Using Example 1.21, for n > 1 show that

a) O(n) is a matrix subgroup of O(n+ 1);

b) SO(n) is a matrix subgroup of SO(n+ 1);

c) U(n) is a matrix subgroup of U(n+ 1);

d) SU(n) is a matrix subgroup of SU(n+ 1).

1-8. For t ∈ R, determine the matrices

exp

([
0 t

−t 0

])
, exp

([
0 t

t 0

])
.

1-9. Let k = R,C, and A ∈ Mn(k).

a) Show that for B ∈ GLn(k),

exp(BAB−1) = B exp(A)B−1.

b) If A is diagonalisable, say with A = C diag(λ1, . . . , λn)C−1, for C ∈ GLn(k), determine exp(A).

c) Use this to find the matrices

exp

([
0 t

−t 0

])
, exp

([
0 t

t 0

])
.

1-10. If S ∈ Mn(R) be skew symmetric (i.e., ST = −S), show that exp(S) is orthogonal, i.e., exp(S)T =

exp(S)−1.

More generally, if S ∈ Mn(C) is skew hermitian (i.e., S∗ = −S), show that exp(S) is unitary, i.e.,

exp(S)∗ = exp(S)−1.

1-11. Let

G = {A ∈ GLn(R) : detA ∈ Q} 6 GLn(R).

a) Show that G not a closed subgroup of GLn(R).

b) Find the closure G of G in GLn(R).

1-12. For k = R,C and n > 1, let N ∈ Mn(k).

a) If N is strictly upper triangular, show that exp(N) is unipotent.

b) Determine exp(N) when N is an arbitrary upper triangular matrix.

The next two problems relate to Section 7.

1-13. Let (X1, ρ1), (X2, ρ2) be two metric spaces. Define a function

ρ : (X1 ×X2)× (X1 ×X2) −→ R
+; ρ((x1, x2), (y1, y2)) =

√
ρ1(x1, y1)2 + ρ2(x2, y2)2.

a) Show that (X1 ×X2, ρ) is a metric space.

b) Show that a sequence {(x1,r, x2,r)}r>0 converges (i.e., has a limit) in X1 × X2 if and only if the

sequences {(x1,r)}r>0, {(x2,r)}r>0 converge in X1 and X2 respectively.

1-14. a) Using the previous question, define a metric on Mn(k)× k
n and show that the product map

ϕ : Mn(k)× k
n −→ k

n; ϕ(A,x) = Ax,
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is continuous.

b) Let G 6 GLn(k) be a matrix subgroup. By restricting the metric and product ϕ of (a) to the subset

G× k
n, consider the resulting continuous group action of G on k

n. Show that the stabilizer of x ∈ k
n,

StabG(x) = {A ∈ G : Ax = x}

is a matrix subgroup of G. More generally, if X ⊆ k
n is a closed subset, show that

StabG(X) = {A ∈ G : AX = X}

is a matrix subgroup of G, where AX = {Ax : x ∈ X}.
c) For the standard basis vector en = [0, · · · , 0, 1]T and X = {ten : t ∈ R}, determine StabG(en) and

StabG(X) for each of the following matrix subgroups G 6 GLn(R):

G = GLn(R), G = SLn(R), G = O(n), G = SO(n).
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Problems on Chapter 2

2-1. a) Solve the differential equation[
x′(t)

y′(t)

]
=

[
−1 −2

0 1

][
x(t)

y(t)

]
,

[
x(0)

y(0)

]
=

[
1

2

]
.

by finding a solution of the form [
x(t)

y(t)

]
= α(t)

[
1

2

]
with α : R −→ GL2(R). Sketch the trajectory of this solution as a curve in the xy-plane. What happens

for other initial values x(0), y(0)?

b) Repeat this with the equations[
x′(t)

y′(t)

]
=

[
0 −2

1 −2

][
x(t)

y(t)

]
,

[
x(0)

y(0)

]
=

[
0

1

]
;

[
x′(t)

y′(t)

]
=

[
0 −1

−1 0

][
x(t)

y(t)

]
,

[
x(0)

y(0)

]
=

[
1

1

]
.

2-2. Let G be a matrix group and U ∈ G.

a) Show that each the functions

LU : G −→ G; LU (A) = UA,

RU : G −→ G; RU (A) = AU,

CU : G −→ G; CU (A) = UAU−1,

is a differentiable map and determine its derivative at I.

b) Using (a), show that there R-linear isomorphisms

λU : TI G −→ TU G, ρU : TI G −→ TU G, χU : TI G −→ TI G,

such that for all U, V ∈ G,

λUV = λU ◦ λV , ρUV = ρV ◦ ρU , χUV = χU ◦ χV .

2-3. For each of the following matrix groups G determine its Lie algebra g.

G = {A ∈ GL2(R) : AQAT = Q}, Q =

[
1 0

0 0

]
;(a)

G = {A ∈ GL2(R) : AQAT = Q}, Q =

[
1 0

0 −1

]
;(b)

G = {A ∈ GL3(R) : AQAT = Q}, Q =


1 0 0

0 0 0

0 0 −1

 ;(c)

G = Affn(k);(d)

G = Symp2m(R), (m = 1, 2, . . .).(e)

2-4. Consider the set of all n× n real special orthogonal matrices SO(n) and its subset

U = {A ∈ SO(n) : det(I +A) 6= 0} ⊆ SO(n).
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Define the function

Φ: U −→ Mn(R); Φ(A) = (I −A)(I +A)−1.

a) Show that im Φ = Sk-Symn(R), the set of all n× n real skew symmetric matrices. Hence we might as

well write Φ: U −→ Sk-Symn(R).

b) Find the inverse map Φ−1 : Sk-Symn(R) −→ U .

c) Use (b) to determine the dimension of SO(n).

[ Φ is the real Cayley transform.]

2-5. Consider the set of all n× n unitary matrices U(n) and its subset

V = {A ∈ U(n) : det(I +A) 6= 0} ⊆ U(n).

Define the function

Θ: V −→ Mn(C); Θ(A) = (I −A)(I +A)−1.

a) Show that im Θ = Sk-Hermn(C), the set of all n×n skew hermitian matrices. Hence we might as well

write Θ: V −→ Sk-Hermn(C).

b) Find the inverse map Θ−1 : Sk-Hermn(C) −→ V .

c) Use (b) to determine the dimension of U(n).

d) For the case n = 2 show that Θ(V ∩ SU(2)) ⊆ Sk-Herm0
2(C) and Θ−1 Sk-Herm0

2(C) ⊆ SU(2). Is this

true for n > 2?

[Φ is the complex Cayley transform.]



6 PROBLEM SETS

Problems on Chapter 3

3-1. Using the bases {1, i, j, k} of HR over R and {1, j} of HC over C, determine the reduced determinants

RdetR : GLn(H) −→ R
× and RdetC : GLn(H) −→ C

×.

3-2. i) Verify that Mn(H) is complete with respect to the norm ‖ ‖. Using this, explain how to define

an exponential function exp: Mn(H) −→ GLn(H) with properties analogous to those for the exponential

functions on Mn(R),Mn(C).

ii) When n = 1, determine exp(q) using the decomposition q = r + su with r, s ∈ R and u a pure

quaternion of unit length |u| = 1.

3-3. For each of the following matrix groups G, determine the Lie algebra g and dimension dimG:

i) G = GLn(H);

ii) G = Spn(H);

iii) G = ker Rdetk : GLn(H) −→ k
× where k = R,C;

iv) G = ker Rdetk : Sp(n) −→ k
× where k = R,C.

3-4. The group of unit quaternions

Sp(1) = {q ∈ H : |q| = 1}

has an R-linear action on H given by

q · x = qxq−1 = qxq (x ∈ H).

i) By identifying H with R
4 using the basis {i, j, k, 1}, show that this defines a Lie homomorphism

Sp(1) −→ SO(4).

ii) Show that this action restricts to an action of Sp(1) on the space of pure quaternions and by identifying

this with R
3 using the basis {i, j, k}, show that this defines a surjective Lie homomorphism α : Sp(1) −→

SO(3). Show that the kernel of α is {1,−1}.

3-5. Using the surjective homomorphism α : Sp(1) −→ SO(3) of the previous question, for a subgroup

G 6 SO(3) set

G̃ = α−1G = {g ∈ Sp(1) : α(g) ∈ G} 6 Sp(1).

From now on assume that G is finite.

i) What is the order of G̃?

ii) Show that the order of the centre of G̃, C(G̃), is even.

iii) If G contains an element of order 2, show that the group homomorphism α : G̃ −→ G is not split in

the sense that there is no group homomorphism β : G̃ −→ G for which α ◦ β = IdG.

G
β //

IdG ��?
??

??
??

? G̃

α

��
G

iv) Show that Q8 = {±1,±i,±j,±k} is a subgroup of Sp(1) and find a geometric interpretation as a

group of symmetries for αQ8 6 SO(3). Generalize this by considering for each n > 2,

Q2n =
{
e2πir/n : r = 0, . . . , n− 1

}
∪
{
e2πir/nj : r = 0, . . . , n− 1

}
.

v) Show that the set T24 consisting of the 24 elements

±1, ±i, ±j, ±k, 1
2

(±1± i± j ± k)
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is a subgroup of Sp(1) and find a geometric interpretation for the group αT24 6 SO(3).

vi) [Challenge question: not for the fainthearted!] Let Icos be a regular icosahedron in R
3 centred at

the origin. The group of direct symmetries of Icos is known to be isomorphic to the alternating group,

Symm+(Icos) ∼= A5. Find α−1 Symm+(Icos) 6 Sp(1).

This requires a good way to view the icosahedron relative to the x, y, z-axes. Nice graphics and information

on the icosahedron can be found at

http://mathworld.wolfram.com/Icosahedron.html

The resulting subgroup of Sp(1) is called the binary icosahedral group since it double covers the symmetry

Symm+(Icos); it also provides a non-split double covering Ã5 −→ A5 of the simple group A5.

3-6. In the Clifford algebra Cln, let u, v ∈ R
n ⊆ Cln.

i) If |u| = 1, by expressing v as a sum v1 + v2 with v1 = tu and u · v2 = 0, find a general formula for uvu.

ii) If {u1, . . . , un} is any orthonormal basis for R
n, show that

ujui =

−1 if j = i,

−uiuj if j 6= i.

Deduce that every element A ∈ O(n) induces an automorphism A∗ : Cln −→ Cln for which A∗x = Ax if

x ∈ R
n.

3-7. In the following, use the Universal Property of Theorem 3.23.

i) Show that the natural embedding

in : R
n −→ R

n+1;


x1

...

xn

 7−→

x1

...

xn

0

 ,
induces an injective R-algebra homomorphism i′n : Cln −→ Cln+1 for which i′n(x) = in(x) whenever

x ∈ R
n. Determine the image im i′n ⊆ Cln+1.

ii) Show that the R-linear transformation

kn : R
n −→ Cln+1; kn(x) = xen+1,

induces an injective R-algebra homomorphism k′n : Cln −→ Cln+1 for which k′n(x) = kn(x) whenever

x ∈ R
n. Show that im k′n = Cl+n+1.



8 PROBLEM SETS

Problems on Chapter 4

4-1. Show that the subset

M = {(A, b) ∈ Mn(R)× R : bdetA = 1} ⊆ Mn(R)× R

is a closed submanifold and determine T(A,b)M for (A, b) ∈M .

Show that M has the structure of a Lie group with multiplication µ given by

µ((A1, b1), (A2, b2)) = (A1A2, b1b2).

To which standard matrix group is M isomorphic?

Repeat this with R replaced by C.

4-2. Write out the details of the calculation in Example 4.21 for the cases n = 2, 3.

4-3. Modify the details of Example 4.21 to show that U(n) 6 GLn(C) is a Lie subgroup. It might be

helpful to do the cases n = 1, 2, 3 first.

Use the determinant function

det : U(n) −→ T = {z ∈ C : |z| = 1}

together with the Identity Check Trick 4.20, to show that SU(n) 6 U(n) is a Lie subgroup.

4-4. Let G be a matrix group. Use Theorem 4.23 to show that each of the following subgroups of G is

a Lie subgroup. In each case, try to find a proof that works when G is an arbitrary Lie group.

a) For g ∈ G, the centralizer of g, CG(g) = {x ∈ G : xgx−1 = g}.
b) The centre of G, C(G) =

⋂
g∈G CG(g).

c) For H 6 G a closed subgroup, the normalizer of H, NG(g) = {x ∈ G : xHx−1 = H}.
d) The kernel of ϕ, kerϕ, where ϕ : G −→ H is a continuous homomorphism into a matrix group H.

4-5. Let G be a matrix group and M a smooth manifold. Suppose that µ : G×M −→M be a continuous

group action as defined in Chapter 1 Section 7 and investigated in the Problems on Chapter 1. Also

suppose that µ is smooth.

a) Show that for each x ∈M , StabG(x) 6 G is a Lie subgroup.

b) If X ⊆M is a closed subset, show that StabG(X) = {g ∈ G : gX = X} 6 G is a Lie subgroup.

4-6. For a Lie group G and a closed subgroup H 6 G, show that the cosets gH, Hg and conjugate

gHg−1 are submanifolds of G. In each case, identify the the tangent space at a point in terms of a

suitable tangent space to H.

4-7. Let G and H be Lie groups and ϕ : G −→ H a Lie homomorphism. Show that kerϕ 6 G is a Lie

subgroup and identify the tangent space Tg kerϕ at g ∈ kerϕ.

4-8. Determine the Lie bracket [ , ] for the Lie algebra heis4 of the Heisenberg group Heis4.
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Problems on Chapters 5 and 6

5-1. Let SLn(R) act smoothly on R
n by matrix multiplication.

a) Find StabSLn(R)(en) and OrbSLn(R)(en).

b) Identify the homogeneous space SLn(R)/StabSLn(R)(en) and show that it is path connected if n > 2.

Use this to give another proof that GLn(R) has two path components.

5-2. Let SLn(C) act smoothly on C
n by matrix multiplication.

a) Find StabSLn(C)(en) and OrbSLn(C)(en).

b) Identify the homogeneous space SLn(C)/StabSLn(C)(en) and show that it is path connected. Use this

to prove that SLn(C) is path connected.

c) By making use of the determinant det : GLn(C) −→ C
×, deduce that GLn(C) is path connected.

5-3. Let A ∈ GLn(R).

a) Show that the symmetric matrix S = AAT is positive definite, i.e., its eigenvalues are all positive

real numbers. Deduce that S has a positive definite real symmetric square root, i.e., there is a positive

definite real symmetric matrix S1 satisfying S2
1 = S.

b) Show that S−1
1 A is orthogonal.

c) If PR = QS where P,Q are positive definite real symmetric and R, S ∈ O(n), show that P 2 = Q2.

d) Let S2 be a positive definite real symmetric matrix which satisfies S2
2 = diag(λ1, . . . , λn). Show that

S2 = diag(
√
λ1, . . . ,

√
λn).

e) Show that A can be uniquely expressed as A = PR where P is positive definite real symmetric and

R ∈ O(n). If detA > 0, show that R ∈ SO(n).

f) Show that the homogeneous space GL+
n (R)/SO(n) is path connected. Using Example 6.15, deduce

that GL+
n (R) is path connected.

g) Let B ∈ GLn(C). By suitably modifying the details of the real case, show that B can be uniquely

expressed as B = QT with Q positive definite Hermitian and T ∈ U(n). Using Example 6.16, deduce

that GLn(C) is path connected.

[These factorizations are known as polar decompositions of A and B.]

5-4. For k = R,C and n > 1, the affine group Affn(k) acts on k
n as explained in Chapter 1.

a) Find StabAffn(k)(0) and OrbAffn(k)(0).

b) Show that the affine group Affn(R) has two path components, while Affn(C) is path connected.



10 PROBLEM SETS

Problems on Chapter 7

7-1. Show that there are exactly two Lie isomorphisms T −→ T, but infinitely many Lie isomorphisms

T
r −→ T

r when r > 2.

7-2. a) Show that the be the subgroup D consisting of all the diagonal matrices diag(α, β) is a maximal

torus of U(2). Determine NU(2)(D), π0 NU(2)(D) and its action by conjugation on D.

b) Show that the subgroup of diagonal matrices in SU(3) is a maximal torus and determine its normalizer

and group of path components and describe the conjugation action of the latter on this torus.

c) Let T2 = {diag(u, v) ∈ Sp(2) : u, v ∈ C} 6 Sp(2). Show that T2 is a maximal torus of Sp(2). Using

Example 6.21, determine NSp(2)(T2) and π0 NSp(2)(T2) and describe its conjugation action on T2.

7-3. Show that the group

A = {(cos θ1 + sin θ1e1e2)(cos θ2 + sin θ2e3e4) · · · (cos θn + sin θne2n−1e2n) : θ1, . . . , θn ∈ [0, 2π)}

is a maximal torus in each of the spinor groups Spin(2n), Spin(2n+ 1).

For small values of n, determine the normalizers and Weyl groups of A in Spin(2n) and Spin(2n+1).

Find the conjugation action of each Weyl group on A.

Under the double covering maps ρ of Chapter 3, how are these maximal tori related to the maximal

tori of SO(2n) and SO(2n+ 1) given by Proposition 7.2?

7-4. a) For n > 1, show that the group


ε1 0 · · · 0

0 ε2
. . .

...
...

. . . . . .
...

0 · · · · · · εn

 : ε1, . . . , εn = ±1


is a maximal abelian subgroup of O(n).

b) Let T2n 6 SO(2n), T2n+1 6 SO(2n+ 1) be the maximal tori given by Proposition 7.2 and

T ′2n = T2n

T ′2n+1 = T2n+1 ∪


1 0 · · · 0

0 1
. . .

...
...

. . . . . .
...

0 · · · · · · −1

T2n+1.

Show that T ′2n 6 O(2n) and T ′2n+1 6 O(2n+ 1) are maximal abelian subgroups.

c) Explain why these results are compatible with those of Chapter 7.


