
MULTIMEDIA
IMAGE and VIDEO
PROCESSING

© 2001 by CRC Press LLC

IMAGE PROCESSING SERIES
Series Editor: Phillip A. Laplante

Forthcoming Titles

Adaptive Image Processing: A Computational Intelligence
Perspective
Ling Guan, Hau-San Wong, and Stuart William Perry
Shape Analysis and Classification: Theory and Practice
Luciano da Fontoura Costa and Roberto Marcondes Cesar, Jr.

Published Titles
Image and Video Compression for Multimedia Engineering
Yun Q. Shi and Huiyang Sun

© 2001 by CRC Press LLC

Boca Raton London New York Washington, D.C.
CRC Press

Edited by
Ling Guan

Sun-Yuan Kung
Jan Larsen

MULTIMEDIA
IMAGE and VIDEO
PROCESSING

© 2001 by CRC Press LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval
system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal
use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid
directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for
users of the Transactional Reporting Service is ISBN 0-8493-3492-6/01/$0.00+$.50. The fee is subject to
change without notice. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such
copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-3492-6

Library of Congress Card Number 00-030341
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Multimedia image and video processing / edited by Ling Guan, Sun-Yuan Kung, Jan Larsen.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-3492-6 (alk.)
1. Multimedia systems. 2. Image processing—Digital techniques. I. Guan, Ling. II.
Kung, S.Y. (Sun Yuan) III. Larsen, Jan.

QA76.575 2000
006.4

′

2—dc21 00-030341

Contents

1 Emerging Standards for Multimedia Applications
Tsuhan Chen
1.1 Introduction
1.2 Standards
1.3 Fundamentals of Video Coding

1.3.1 Transform Coding
1.3.2 Motion Compensation
1.3.3 Summary

1.4 Emerging Video and Multimedia Standards
1.4.1 H.263
1.4.2 H.26L
1.4.3 MPEG-4
1.4.4 MPEG-7

1.5 Standards for Multimedia Communication
1.6 Conclusion
References

2 An Efficient Algorithm and Architecture for Real-Time Perspective Image
Warping
Yi Kang and Thomas S. Huang
2.1 Introduction
2.2 A Fast Algorithm for Perspective Transform

2.2.1 Perspective Transform
2.2.2 Existing Approximation Methods
2.2.3 Constant Denominator Method
2.2.4 Simulation Results
2.2.5 Sprite Warping Algorithm

2.3 Architecture for Sprite Warping
2.3.1 Implementation Issues
2.3.2 Memory Bandwidth Reduction
2.3.3 Architecture

2.4 Conclusion
References

 ©2001 CRC Press LLC

3 Application-Specific Multimedia Processor Architecture
Yu Hen Hu and Surin Kittitornkun
3.1 Introduction

3.1.1 Requirements of Multimedia Signal Processing (MSP) Hardware
3.1.2 Strategies: Matching Micro-Architecture and Algorithm

3.2 Systolic Array Structure Micro-Architecture
3.2.1 Systolic Array Design Methodology
3.2.2 Array Structures for Motion Estimation

3.3 Dedicated Micro-Architecture
3.3.1 Design Methodologies for Dedicated Micro-Architecture
3.3.2 Feed-Forward Direct Synthesis: Fast Discrete Cosine Transform (DCT)
3.3.3 Feedback Direct Synthesis: Huffman Coding

3.4 Concluding Remarks
References

4 Superresolution of Images with Learned Multiple Reconstruction Kernels
Frank M. Candocia and Jose C. Principe
4.1 Introduction
4.2 An Approach to Superresolution

4.2.1 Comments and Observations
4.2.2 Finding Bases for Image Representation
4.2.3 Description of the Methodology

4.3 Image Acquisition Model
4.4 Relating Kernel-Based Approaches

4.4.1 Single Kernel
4.4.2 Family of Kernels

4.5 Description of the Superresolution Architecture
4.5.1 The Training Data
4.5.2 Clustering of Data
4.5.3 Neighborhood Association
4.5.4 Superresolving Images

4.6 Results
4.7 Issues and Notes
4.8 Conclusions
References

5 Image Processing Techniques for Multimedia Processing
N. Herodotou, K.N. Plataniotis, and A.N. Venetsanopoulos
5.1 Introduction
5.2 Color in Multimedia Processing
5.3 Color Image Filtering

5.3.1 Fuzzy Multichannel Filters
5.3.2 The Membership Functions
5.3.3 A Combined Fuzzy Directional and Fuzzy Median Filter
5.3.4 Application to Color Images

5.4 Color Image Segmentation
5.4.1 Histogram Thresholding
5.4.2 Postprocessing and Region Merging
5.4.3 Experimental Results

5.5 Facial Image Segmentation
5.5.1 Extraction of Skin-Tone Regions

 ©2001 CRC Press LLC

5.5.2 Postprocessing
5.5.3 Shape and Color Analysis
5.5.4 Fuzzy Membership Functions
5.5.5 Meta-Data Features
5.5.6 Experimental Results

5.6 Conclusions
References

6 Intelligent Multimedia Processing
Ling Guan, Sun-Yuan Kung, and Jenq-Neng Hwang
6.1 Introduction

6.1.1 Neural Networks and Multimedia Processing
6.1.2 Focal Technical Issues Addressed in the Chapter
6.1.3 Organization of the Chapter

6.2 Useful Neural Network Approaches to Multimedia Data Representation, Clas-
sification, and Fusion
6.2.1 Multimedia Data Representation
6.2.2 Multimedia Data Detection and Classification
6.2.3 Hierarchical Fuzzy Neural Networks as Linear Fusion Networks
6.2.4 Temporal Models for Multimodal Conversion and Synchronization

6.3 Neural Networks for IMP Applications
6.3.1 Image Visualization and Segmentation
6.3.2 Personal Authentication and Recognition
6.3.3 Audio-to-Visual Conversion and Synchronization
6.3.4 Image and Video Retrieval, Browsing, and Content-Based Indexing
6.3.5 Interactive Human–Computer Vision

6.4 Open Issues, Future Research Directions, and Conclusions
References

7 On Independent Component Analysis for Multimedia Signals
Lars Kai Hansen, Jan Larsen, and Thomas Kolenda
7.1 Background
7.2 Principal and Independent Component Analysis
7.3 Likelihood Framework for Independent Component Analysis

7.3.1 Generalization and the Bias-Variance Dilemma
7.3.2 Noisy Mixing of White Sources
7.3.3 Separation Based on Time Correlation
7.3.4 Likelihood

7.4 Separation of Sound Signals
7.4.1 Sound Separation using PCA
7.4.2 Sound Separation using Molgedey–Schuster ICA
7.4.3 Sound Separation using Bell–Sejnowski ICA
7.4.4 Comparison

7.5 Separation of Image Mixtures
7.5.1 Image Segmentation using PCA
7.5.2 Image Segmentation using Molgedey–Schuster ICA
7.5.3 Discussion

7.6 ICA for Text Representation
7.6.1 Text Analysis
7.6.2 Latent Semantic Analysis — PCA
7.6.3 Latent Semantic Analysis — ICA

 ©2001 CRC Press LLC

7.7 Conclusion
Acknowledgment
Appendix A
References

8 Image Analysis and Graphics for Multimedia Presentation
Tülay Adali and Yue Wang
8.1 Introduction
8.2 Image Analysis

8.2.1 Pixel Modeling
8.2.2 Model Identification
8.2.3 Context Modeling
8.2.4 Applications

8.3 Graphics Modeling
8.3.1 Surface Reconstruction
8.3.2 Physical Deformable Models
8.3.3 Deformable Surface–Spine Models
8.3.4 Numerical Implementation
8.3.5 Applications

References

9 Combined Motion Estimation and Transform Coding in Compressed Domain
Ut-Va Koc and K.J. Ray Liu
9.1 Introduction
9.2 Fully DCT-Based Motion-Compensated Video Coder Structure
9.3 DCT Pseudo-Phase Techniques
9.4 DCT-Based Motion Estimation

9.4.1 The DXT-ME Algorithm
9.4.2 Computational Issues and Complexity
9.4.3 Preprocessing
9.4.4 Adaptive Overlapping Approach
9.4.5 Simulation Results

9.5 Subpixel DCT Pseudo-Phase Techniques
9.5.1 Subpel Sinusoidal Orthogonality Principles

9.6 DCT-Based Subpixel Motion Estimation
9.6.1 DCT-Based Half-Pel Motion Estimation Algorithm (HDXT-ME)
9.6.2 DCT-Based Quarter-Pel Motion Estimation Algorithm (QDXT-ME

and Q4DXT-ME)
9.6.3 Simulation Results

9.7 DCT-Based Motion Compensation
9.7.1 Integer-Pel DCT-Based Motion Compensation
9.7.2 Subpixel DCT-Based Motion Compensation
9.7.3 Simulation

9.8 Conclusion
References

10 Object-Based Analysis–Synthesis Coding Based on Moving 3D Objects
Jörn Ostermann
10.1 Introduction
10.2 Object-Based Analysis–Synthesis Coding
10.3 Source Models for OBASC

 ©2001 CRC Press LLC

10.3.1 Camera Model
10.3.2 Scene Model
10.3.3 Illumination Model
10.3.4 Object Model

10.4 Image Analysis for 3D Object Models
10.4.1 Overview
10.4.2 Motion Estimation for R3D
10.4.3 MF Objects

10.5 Optimization of Parameter Coding for R3D and F3D
10.5.1 Motion Parameter Coding
10.5.2 2D Shape Parameter Coding
10.5.3 Coding of Component Separation
10.5.4 Flexible Shape Parameter Coding
10.5.5 Color Parameters
10.5.6 Control of Parameter Coding

10.6 Experimental Results
10.7 Conclusions
References

11 Rate-Distortion Techniques in Image and Video Coding
Aggelos K. Katsaggelos and Gerry Melnikov
11.1 The Multimedia Transmission Problem
11.2 The Operational Rate-Distortion Function
11.3 Problem Formulation
11.4 Mathematical Tools in RD Optimization

11.4.1 Lagrangian Optimization
11.4.2 Dynamic Programming

11.5 Applications of RD Methods
11.5.1 QT-Based Motion Estimation and Motion-Compensated Interpolation
11.5.2 QT-Based Video Encoding
11.5.3 Hybrid Fractal/DCT Image Compression
11.5.4 Shape Coding

11.6 Conclusions
References

12 Transform Domain Techniques for Multimedia Image and Video Coding
S. Suthaharan, S.W. Kim, H.R. Wu, and K.R. Rao
12.1 Coding Artifacts Reduction

12.1.1 Introduction
12.1.2 Methodology
12.1.3 Experimental Results
12.1.4 More Comparison

12.2 Image and Edge Detail Detection
12.2.1 Introduction
12.2.2 Methodology
12.2.3 Experimental Results

12.3 Summary
References

 ©2001 CRC Press LLC

13 Video Modeling and Retrieval
Yi Zhang and Tat-Seng Chua
13.1 Introduction
13.2 Modeling and Representation of Video: Segmentation vs.

Stratification
13.2.1 Practical Considerations

13.3 Design of a Video Retrieval System
13.3.1 Video Segmentation
13.3.2 Logging of Shots
13.3.3 Modeling the Context between Video Shots

13.4 Retrieval and Virtual Editing of Video
13.4.1 Video Shot Retrieval
13.4.2 Scene Association Retrieval
13.4.3 Virtual Editing

13.5 Implementation
13.6 Testing and Results
13.7 Conclusion
References

14 Image Retrieval in Frequency Domain Using DCT Coefficient Histograms
Jose A. Lay and Ling Guan
14.1 Introduction

14.1.1 Multimedia Data Compression
14.1.2 Multimedia Data Retrieval
14.1.3 About This Chapter

14.2 The DCT Coefficient Domain
14.2.1 A Matrix Description of the DCT
14.2.2 The DCT Coefficients in JPEG and MPEG Media
14.2.3 Energy Histograms of the DCT Coefficients

14.3 Frequency Domain Image/Video Retrieval Using DCT Coefficients
14.3.1 Content-Based Retrieval Model
14.3.2 Content-Based Search Processing Model
14.3.3 Perceiving the MPEG-7 Search Engine
14.3.4 Image Manipulation in the DCT Domain
14.3.5 The Energy Histogram Features
14.3.6 Proximity Evaluation
14.3.7 Experimental Results

14.4 Conclusions
References

15 Rapid Similarity Retrieval from Image and Video
Kim Shearer, Svetha Venkatesh, and Horst Bunke
15.1 Introduction

15.1.1 Definitions
15.2 Image Indexing and Retrieval
15.3 Encoding Video Indices
15.4 Decision Tree Algorithms

15.4.1 Decision Tree-Based LCSG Algorithm
15.5 Decomposition Network Algorithm

15.5.1 Decomposition-Based LCSG Algorithm
15.6 Results of Tests Over a Video Database

 ©2001 CRC Press LLC

15.6.1 Decomposition Network Algorithm
15.6.2 Inexact Decomposition Algorithm
15.6.3 Decision Tree
15.6.4 Results of the LCSG Algorithms

15.7 Conclusion
References

16 Video Transcoding
Tzong-Der Wu, Jenq-Neng Hwang, and Ming-Ting Sun
16.1 Introduction
16.2 Pixel-Domain Transcoders

16.2.1 Introduction
16.2.2 Cascaded Video Transcoder
16.2.3 Removal of Frame Buffer and Motion Compensation Modules
16.2.4 Removal of IDCT Module

16.3 DCT Domain Transcoder
16.3.1 Introduction
16.3.2 Architecture of DCT Domain Transcoder
16.3.3 Full-Pixel Interpolation
16.3.4 Half-Pixel Interpolation

16.4 Frame-Skipping in Video Transcoding
16.4.1 Introduction
16.4.2 Interpolation of Motion Vectors
16.4.3 Search Range Adjustment
16.4.4 Dynamic Frame-Skipping
16.4.5 Simulation and Discussion

16.5 Multipoint Video Bridging
16.5.1 Introduction
16.5.2 Video Characteristics in Multipoint Video Conferencing
16.5.3 Results of Using the Coded Domain and Transcoding Approaches

16.6 Summary
References

17 Multimedia Distance Learning
Sachin G. Deshpande, Jenq-Neng Hwang, and Ming-Ting Sun
17.1 Introduction
17.2 Interactive Virtual Classroom Distance Learning Environment

17.2.1 Handling the Electronic Slide Presentation
17.2.2 Handling Handwritten Text

17.3 Multimedia Features for On-Demand Distance Learning Environment
17.3.1 Hypervideo Editor Tool
17.3.2 Automating the Multimedia Features Creation for On-Demand System

17.4 Issues in the Development of Multimedia Distance Learning
17.4.1 Error Recovery, Synchronization, and Delay Handling
17.4.2 Fast Encoding and Rate Control
17.4.3 Multicasting
17.4.4 Human Factors

17.5 Summary and Conclusion
References

 ©2001 CRC Press LLC

18 A New Watermarking Technique for Multimedia Protection
Chun-Shien Lu, Shih-Kun Huang, Chwen-Jye Sze, and Hong-Yuan Mark Liao
18.1 Introduction

18.1.1 Watermarking
18.1.2 Overview

18.2 Human Visual System-Based Modulation
18.3 Proposed Watermarking Algorithms

18.3.1 Watermark Structures
18.3.2 The Hiding Process
18.3.3 Semipublic Authentication

18.4 Watermark Detection/Extraction
18.4.1 Gray-Scale Watermark Extraction
18.4.2 Binary Watermark Extraction
18.4.3 Dealing with Attacks Including Geometric Distortion

18.5 Analysis of Attacks Designed to Defeat HVS-Based Watermarking
18.6 Experimental Results

18.6.1 Results of Hiding a Gray-Scale Watermark
18.6.2 Results of Hiding a Binary Watermark

18.7 Conclusion
References

19 Telemedicine: A Multimedia Communication Perspective
Chang Wen Chen and Li Fan
19.1 Introduction
19.2 Telemedicine: Need for Multimedia Communication
19.3 Telemedicine over Various Multimedia Communication Links

19.3.1 Telemedicine via ISDN
19.3.2 Medical Image Transmission via ATM
19.3.3 Telemedicine via the Internet
19.3.4 Telemedicine via Mobile Wireless Communication

19.4 Conclusion
References

 ©2001 CRC Press LLC

Preface

Multimedia is one of the most important aspects of the information era. Although there are
books dealing with various aspects of multimedia, a book comprehensively covering system,
processing, and application aspects of image and video data in a multimedia environment is
urgently needed. Contributed by experts in the field, this book serves this purpose.

Our goal is to provide in a single volume an introduction to a variety of topics in image and
video processing for multimedia. An edited compilation is an ideal format for treating a broad
spectrum of topics because it provides the opportunity for each topic to be written by an expert
in that field.

The topic of the book is processing images and videos in a multimedia environment. It covers
the following subjects arranged in two parts: (1) standards and fundamentals: standards, mul-
timedia architecture for image processing, multimedia-related image processing techniques,
and intelligent multimedia processing; (2) methodologies, techniques, and applications: im-
age and video coding, image and video storage and retrieval, digital video transmission, video
conferencing, watermarking, distance education, video on demand, and telemedicine.

The book begins with the existing standards for multimedia, discussing their impacts to
multimedia image and video processing, and pointing out possible directions for new standards.

The design of multimedia architectures is based on the standards. It deals with the way
visual data is being processed and transmitted at a more practical level. Current and new
architectures, and their pros and cons, are presented and discussed in Chapters 2 to 4.

Chapters 5 to 8 focus on conventional and intelligent image processing techniques relevant to
multimedia, including preprocessing, segmentation, and feature extraction techniques utilized
in coding, storage, and retrieval and transmission, media fusion, and graphical interface.

Compression and coding of video and images are among the focusing issues in multimedia.
New developments in transform- and motion-based algorithms in the compressed domain,
content- and object-based algorithms, and rate–distortion-based encoding are presented in
Chapters 9 to 12.

Chapters 13 to 15 tackle content-based image and video retrieval. They cover video modeling
and retrieval, retrieval in the transform domain, indexing, parsing, and real-time aspects of
retrieval.

The last chapters of the book (Chapters 16 to 19) present new results in multimedia ap-
plication areas, including transcoding for multipoint video conferencing, distance education,
watermarking techniques for multimedia processing, and telemedicine.

Each chapter has been organized so that it can be covered in 1 to 2 weeks when this book is
used as a principal reference or text in a senior or graduate course at a university.

It is generally assumed that the reader has prior exposure to the fundamentals of image and
video processing. The chapters have been written with an emphasis on a tutorial presentation
so that the reader interested in pursuing a particular topic further will be able to obtain a solid
introduction to the topic through the appropriate chapter in this book. While the topics covered
are related, each chapter can be read and used independently of the others.

 ©2001 CRC Press LLC

This book is primarily a result of the collective efforts of the chapter authors. We are
very grateful for their enthusiastic support, timely response, and willingness to incorporate
suggestions from us, from other contributing authors, and from a number of our colleagues
who served as reviewers.

Ling Guan

Sun-Yuan Kung

Jan Larsen

 ©2001 CRC Press LLC

Contributors

Tülay Adali

University of Maryland, Baltimore, Maryland

Horst Bunke

Institute für Informatik und Angewandte Mathematik, Universität Bern,
Switzerland

Frank M. Candocia

University of Florida, Gainesville, Florida

Chang Wen Chen

University of Missouri, Columbia, Missouri

Tsuhan Chen

Carnegie Mellon University, Pittsburgh, Pennsylvania

Tat-Seng Chua

National University of Singapore, Kentridge, Singapore

Sachin G. Deshpande

University of Washington, Seattle, Washington

Li Fan

University of Missouri, Columbia, Missouri

Ling Guan

University of Sydney, Sydney, Australia

Lars Kai Hansen

Technical University of Denmark, Lyngby, Denmark

N. Herodotou

University of Toronto, Toronto, Ontario, Canada

Yu Hen Hu

University of Wisconsin-Madison, Madison, Wisconsin

Shih-Kun Huang

Institute of Information Science, Academia Sinica, Taiwan, China

Thomas S. Huang

Beckman Institute, University of Illinois at Urbana-Champaign,
Urbana, Illinois

Jenq-Neng Hwang

University of Washington, Seattle, Washington

Yi Kang

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

Aggelos K. Katsaggelos

Northwestern University, Evanston, Illinois

S.W. Kim

Korea Advanced Institute of Science and Technology, Taejon, Korea

Surin Kittitornkun

University of Wisconsin-Madison, Madison, Wisconsin

Ut-Va Koc

Lucent Technologies Bell Labs, Murray Hill, New Jersey

Thomas Kolenda

Technical University of Denmark, Lyngby, Denmark

 ©2001 CRC Press LLC

Sun-Yuan Kung Princeton University, Princeton, New Jersey

Jan Larsen Technical University of Denmark, Lyngby, Denmark

Jose A. Lay University of Sydney, Sydney, Australia

Hong-Yuan Mark Liao Institute of Information Science, Academia Sinica, Taipei, Taiwan

K.J. Ray Liu University of Maryland, College Park, Maryland

Chun-Shien Lu Institute of Information Science, Academia Sinica, Taipei, Taiwan

Gerry Melnikov Northwestern University, Evanston, Illinois

Jörn Ostermann AT&T Labs — Research, Red Bank, New Jersey

K.N. Plataniotis University of Toronto, Toronto, Ontario, Canada

Jose C. Principe University of Florida, Gainesville, Florida

K.R. Rao University of Texas at Arlington, Arlington, Texas

Kim Shearer Curtin University of Technology, Perth, Australia

Ming-Ting Sun University of Washington, Seattle, Washington

S. Suthaharan Tennessee State University, Nashville, Tennessee

Chwen-Jye Sze Institute of Information Science, Academia Sinica, Taiwan, China

A.N. Venetsanopoulos University of Toronto, Toronto, Ontario, Canada

Svetha Venkatesh Curtin University of Technology, Perth, Australia

Yue Wang Catholic University of America, Washington, D.C.

H.R. Wu Monash University, Clayton, Victoria, Australia

Tzong-Der Wu University of Washington, Seattle, Washington

Yi Zhang National University of Singapore, Kent Ridge, Singapore

 ©2001 CRC Press LLC

Chapter 1

Emerging Standards for Multimedia Applications

Tsuhan Chen

1.1 Introduction

Due to the rapid growth of multimedia communication, multimedia standards have received
much attention during the last decade. This is illustrated by the extremely active development
in several international standards including H.263, H.263 Version 2 (informally known as
H.263+), H.26L, H.323, MPEG-4, and MPEG-7. H.263 Version 2, developed to enhance
an earlier video coding standard H.263 in terms of coding efficiency, error resilience, and
functionalities, was finalized in early 1997. H.26L is an ongoing standard activity searching
for advanced coding techniques that can be fundamentally different from H.263. MPEG-4, with
its emphasis on content-based interactivity, universal access, and compression performance,
was finalized with Version 1 in late 1998 and with Version 2 1 year later. The MPEG-7 activity,
which has begun since the first call for proposals in late 1998, is developing a standardized
description of multimedia materials, including images, video, text, and audio, in order to
facilitate search and retrieval of multimedia content. By examining the development of these
standards in this chapter, we will see the trend of video technologies progressing from pixel-
based compression techniques to high-level image understanding. At the end of the chapter,
we will also introduce H.323, an ITU-T standard designed for multimedia communication over
networks that do not guarantee quality of service (QoS), and hence very suitable for Internet
applications.

The chapter is outlined as follows. In Section 1.2, we introduce the basic concepts of
standards activities. In Section 1.3, we review the fundamentals of video coding. In Section 1.4,
we study recent video and multimedia standards, including H.263, H.26L, MPEG-4, and
MPEG-7. In Section 1.5, we briefly introduce standards for multimedia communication,
focusing on ITU-T H.323. We conclude the chapter with a brief discussion on the trend of
multimedia standards (Section 1.6).

1.2 Standards

Standards are essential for communication. Without a common language that both the
transmitter and the receiver understand, communication is impossible. In multimedia commu-
nication systems the language is often defined as a standardized bitstream syntax. Adoption of

 ©2001 CRC Press LLC

standards by equipment manufacturers and service providers increases the customer base and
hence results in higher volume and lower cost. In addition, it offers consumers more freedom
of choice among manufacturers, and therefore is welcomed by the consumers.

For transmission of video or multimedia content, standards play an even more important
role. Not only do the transmitter and the receiver need to speak the same language, but the
language also has to be efficient (i.e., provide high compression of the content), due to the
relatively large amount of bits required to transmit uncompressed video and multimedia data.

Note, however, that standards do not specify the whole communication process. Although
it defines the bitstream syntax and hence the decoding process, a standard usually leaves the
encoding processing open to the vendors. This is the standardize-the-minimum philosophy
widely adopted by most video and multimedia standards. The reason is to leave room for
competition among different vendors on the encoding technologies, and to allow future tech-
nologies to be incorporated into the standards, as they become mature. The consequence
is that a standard does not guarantee the quality of a video encoder, but it ensures that any
standard-compliant decoder can properly receive and decode the bitstream produced by any
encoder.

Existing standards may be classified into two groups. The first group comprises those
that are decided upon by a mutual agreement between a small number of companies. These
standards can become very popular in the marketplace, thereby leading other companies to
also accept them. So, they are often referred to as the de facto standards. The second set of
standards is called the voluntary standards. These standards are defined by volunteers in open
committees. These standards are agreed upon based on the consensus of all the committee
members. These standards need to stay ahead of the development of technologies, in order
to avoid any disagreement between those companies that have already developed their own
proprietary techniques.

For multimedia communication, there are several organizations responsible for the definition
of voluntary standards. One is the International Telecommunications Union–Telecommunica-
tion Standardization Sector (ITU-T), originally known as the International Telephone and
Telegraph Consultative Committee (CCITT). Another one is the International Standardization
Organization (ISO). Along with the Internet Engineering Task Force (IETF), which defines
multimedia delivery for the Internet, these three organizations form the core of standards
activities for modern multimedia communication.

Both ITU-T and ISO have defined different standards for video coding. These standards are
summarized in Table 1.1. The major differences between these standards lie in the operating bit
rates and the applications for which they are targeted. Note, however, that each standard allows
for operating at a wide range of bit rates; hence each can be used for all the applications in
principle. All these video-related standards follow a similar framework in terms of the coding
algorithms; however, there are differences in the ranges of parameters and some specific coding
modes.

1.3 Fundamentals of Video Coding

In this section, we review the fundamentals of video coding. Figure 1.1 shows the general
data structure of digital video. A video sequence is composed of pictures updated at a certain
rate, sometimes with a number of pictures grouped together (group of pictures [GOP]). Each
picture is composed of several groups of blocks (GOBs), sometimes called the slices. Each
GOB contains a number of macroblocks (MBs), and each MB is composed of four luminance

 ©2001 CRC Press LLC

Table 1.1 Video Coding Standards Developed by Various Organizations
Organization Standard Typical Bit Rate Typical Applications

ITU-T H.261 p× 64 kbits/s, p =1 . . . 30 ISDN Video Phone
ISO IS 11172-2 1.2 Mbits/s CD-ROM

MPEG-1 Video
ISO IS 13818-2 4–80 Mbits/s SDTV, HDTV

MPEG-2 Videoa

ITU-T H.263 64 kbits/s or below PSTN Video Phone
ISO IS 14496-2 24–1024 kbits/s A variety of

MPEG-4 Video applications
ITU-T H.26L <64 kbits/s A variety of

applications
aITU-T also actively participated in the development of MPEG-2 Video. In fact,

ITU-T H.262 refers to the same standard and uses the same text as IS 13818-2.

blocks, 8 × 8 pixels each, which represent the intensity variation, and two chrominance blocks
(CB and CR), which represent the color information.

FIGURE 1.1
Data structure of digital video.

The coding algorithm widely used in most video coding standards is a combination of the
discrete cosine transform (DCT) and motion compensation. DCT is applied to each block to
transform the pixel values into DCT coefficients in order to remove the spatial redundancy. The
DCT coefficients are then quantized and zigzag scanned to provide a sequence of symbols, with
each symbol representing a number of zero coefficients followed by one nonzero coefficient.
These symbols are then converted into bits by entropy coding (e.g., variable-length coding
[VLC]). On the other hand, temporal redundancy is removed by motion compensation (MC).
The encoder estimates the motion by matching each macroblock in the current picture with
the reference picture (usually the previous picture) to find the motion vector that specifies the
best matching area. The residue is then coded and transmitted with the motion vectors. We
now discuss these techniques in detail.

 ©2001 CRC Press LLC

1.3.1 Transform Coding

Transform coding has been widely used to remove redundancy between data samples. In
transform coding, a set of data samples is first linearly transformed into a set of transform
coefficients. These coefficients are then quantized and coded. A proper linear transform
should decorrelate the input samples, and hence remove the redundancy. Another way to look
at this is that a properly chosen transform can concentrate the energy of input samples into a
small number of transform coefficients, so that resulting coefficients are easier to code than
the original samples.

The most commonly used transform for video coding is the DCT [1, 2]. In terms of both
objective coding gain and subjective quality, the DCT performs very well for typical image
data. The DCT operation can be expressed in terms of matrix multiplication by:

Z = CT XC

where X represents the original image block and Z represents the resulting DCT coefficients.
The elements of C, for an 8 × 8 image block, are defined as

Cmn = kn cos

[
(2m + 1)nπ

16

]
where kn =

{
1/(2

√
2) when n = 0

1/2 otherwise

After the transform, the DCT coefficients in Z are quantized. Quantization implies loss of
information and is the primary source of actual compression in the system. The quantization
step size depends on the available bit rate and can also depend on the coding modes. Except
for the intra-DC coefficients that are uniformly quantized with a step size of 8, an enlarged
“dead zone” is used to quantize all other coefficients in order to remove noise around zero.
Typical input–output relations for these two cases are shown in Figure 1.2.

FIGURE 1.2
Quantization with and without the “dead zone.”

The quantized 8 × 8 DCT coefficients are then converted into a one-dimensional (1D)
array for entropy coding by an ordered scanning operation. Figure 1.3 shows the zigzag scan
order used in most standards for this conversion. For typical video data, most of the energy
concentrates in the low-frequency coefficients (the first few coefficients in the scan order) and
the high-frequency coefficients are usually very small and often quantized to zero. Therefore,
the scan order in Figure 1.3 can create long runs of zero-valued coefficients, which is important
for efficient entropy coding, as we discuss in the next paragraph.

 ©2001 CRC Press LLC

FIGURE 1.3
Scan order of the DCT coefficients.

The resulting 1D array is then decomposed into segments, with each segment containing
either a number of consecutive zeros followed by a nonzero coefficient or a nonzero coefficient
without any preceding zeros. Let an event represent the pair (run, level), where “run” represents
the number of zeros and “level” represents the magnitude of the nonzero coefficient. This
coding process is sometimes called “run-length coding.” Then, a table is built to represent
each event by a specific codeword (i.e., a sequence of bits). Events that occur more often
are represented by shorter codewords, and less frequent events are represented by longer
codewords. This entropy coding process is therefore called VLC or Huffman coding. Table 1.2
shows part of a sample VLC table. In this table, the last bit “s” of each codeword denotes the
sign of the level, “0” for positive and “‘1” for negative. It can be seen that more likely events
(i.e., short runs and low levels), are represented with short codewords, and vice versa.

At the decoder, all the above steps are reversed one by one. Note that all the steps can be
exactly reversed except for the quantization step, which is where loss of information arises.
This is known as “lossy” compression.

1.3.2 Motion Compensation

The transform coding described in the previous section removes spatial redundancy within
each frame of video content. It is therefore referred to as intra coding. However, for video
material, inter coding is also very useful. Typical video material contains a large amount of
redundancy along the temporal axis. Video frames that are close in time usually have a large
amount of similarity. Therefore, transmitting the difference between frames is more efficient
than transmitting the original frames. This is similar to the concept of differential coding and
predictive coding. The previous frame is used as an estimate of the current frame, and the
residual, the difference between the estimate and the true value, is coded. When the estimate
is good, it is more efficient to code the residual than the original frame.

Consider the fact that typical video material is a camera’s view of moving objects. Therefore,
it is possible to improve the prediction result by first estimating the motion of each region in
the scene. More specifically, the encoder can estimate the motion (i.e., displacement) of each
block between the previous frame and the current frame. This is often achieved by matching
each block (actually, macroblock) in the current frame with the previous frame to find the best
matching area,1 as illustrated in Figure 1.4. This area is then offset accordingly to form the
estimate of the corresponding block in the current frame. Now, the residue has much less energy
than the original signal and therefore is much easier to code to within a given average error.

 ©2001 CRC Press LLC

Table 1.2 Part of a Sample
VLC Table

Run Level Code
0 1 11s
0 2 0100 s
0 3 0010 1s
0 4 0000 110s
0 5 0010 0110 s
0 6 0010 0001 s
0 7 0000 0010 10s
0 8 0000 0001 1101 s
0 9 0000 0001 1000 s
0 10 0000 0001 0011 s
0 11 0000 0001 0000 s
0 12 0000 0000 1101 0s
0 13 0000 0000 1100 1s
0 14 0000 0000 1100 0s
0 15 0000 0000 1011 1s
1 1 011s
1 2 0001 10s
1 3 0010 0101 s
1 4 0000 0011 00s
1 5 0000 0001 1011 s
1 6 0000 0000 1011 0s
1 7 0000 0000 1010 1s
2 1 0101 s
2 2 0000 100s
2 3 0000 0010 11s
2 4 0000 0001 0100 s
2 5 0000 0000 1010 0s
3 1 0011 1s
3 2 0010 0100 s
3 3 0000 0001 1100 s
3 4 0000 0000 1001 1s
.

This process is called motion compensation (MC), or more precisely, motion-compensated
prediction [3, 4]. The residue is then coded using the same process as that of intra coding.

Pictures that are coded without any reference to previously coded pictures are called intra
pictures, or simply I pictures (or I frames). Pictures that are coded using a previous picture
as a reference for prediction are called inter or predicted pictures, or simply P pictures (or
P frames). However, note that a P picture may also contain some intra-coded macroblocks.
The reason is as follows. For a certain macroblock, it may be impossible to find a good enough
matching area in the reference picture to be used for prediction. In this case, direct intra coding
of such a macroblock is more efficient. This situation happens often when there is occlusion
or intense motion in the scene.

1Note, however, that the standard does not specify how motion estimation should be done. Motion estimation can be a
very computationally intensive process and is the source of much of the variation in the quality produced by different
encoders.

 ©2001 CRC Press LLC

FIGURE 1.4
Motion compensation.

During motion compensation, in addition to bits used for coding the DCT coefficients of the
residue, extra bits are required to carry information about the motion vectors. Efficient coding
of motion vectors is therefore also an important part of video coding. Because motion vectors
of neighboring blocks tend to be similar, differential coding of the horizontal and vertical
components of motion vectors is used. That is, instead of coding motion vectors directly, the
previous motion vector or multiple neighboring motion vectors are used as a prediction for
the current motion vector. The difference, in both the horizontal and vertical components,
is then coded using a VLC table, part of which is shown in Table 1.3. Note two things in

Table 1.3 Part of a
VLC Table for Coding
Motion Vectors

MVD Code
.

−7 & 25 0000 0111
−6 & 26 0000 1001
−5 & 27 0000 1011
−4 & 28 0000 111
−3 & 29 0001 1
−2 & 30 0011
−1 011

0 1
1 010

2 & −30 0010
3 & −29 0001 0
4 & −28 0000 110
5 & −27 0000 1010
6 & −26 0000 1000
7 & −25 0000 0110

.

 ©2001 CRC Press LLC

this table. First, short codewords are used to represent small differences, because these are
more likely events. Second, one codeword can represent up to two possible values for motion
vector difference. Because the allowed range of both the horizontal component and the vertical
component of motion vectors is restricted to the range of −15 to +15, only one will yield a
motion vector with the allowable range. Note that the ±15 range for motion vector values
may not be adequate for high-resolution video with large amounts of motion; some standards
provide a way to extend this range as either a basic or optional feature of their design.

1.3.3 Summary

Video coding can be summarized into the block diagram in Figure 1.5. The left-hand side
of the figure shows the encoder and the right-hand side shows the decoder. At the encoder, the
input picture is compared with the previously decoded frame with motion compensation. The
difference signal is DCT transformed and quantized, and then entropy coded and transmitted.
At the decoder, the decoded DCT coefficients are inverse DCT transformed and then added to
the previously decoded picture with loop-filtered motion compensation.

FIGURE 1.5
Block diagram of video coding.

1.4 Emerging Video and Multimedia Standards

Most early video coding standards, including H.261, MPEG-1, and MPEG-2, use the same
hybrid DCT-MC framework as described in the previous sections, and they have very specific

 ©2001 CRC Press LLC

functionalities and targeted applications. The new generation of video coding standards,
however, contains many optional modes and supports a larger variety of functionalities. We
now introduce the new functionalities provided in these new standards, including H.263, H.26L,
MPEG-4, and MPEG-7.

1.4.1 H.263

The H.263 design project started in 1993, and the standard was approved at a meeting of
ITU-T SG 15 in November 1995 (and published in March 1996) [5]. Although the original
goal of this endeavor was to design a video coding standard suitable for applications with bit
rates around 20 kbits/s (the so-called very-low-bit-rate applications), it became apparent that
H.263 could provide a significant improvement over H.261 at any bit rate. In essence, H.263
combines the features of H.261 with several new methods, including the half-pixel motion
compensation first found in MPEG-1 and other techniques. Compared to an earlier standard
H.261, H.263 can provide 50% or more savings in the bit rate needed to represent video at a
given level of perceptual quality at very low bit rates. In terms of signal-to-noise ratio (SNR),
H.263 can provide about a 3-dB gain over H.261 at these very low rates. In fact, H.263 provides
superior coding efficiency to that of H.261 at all bit rates (although not nearly as dramatic an
improvement when operating above 64 kbits/s). H.263 can also provide a significant bit rate
savings when compared to MPEG-1 at higher rates (perhaps 30% at around 1 Mbit/s).

H.263 represents today’s state of the art for standardized video coding. Essentially any bit
rate, picture resolution, and frame rate for progressive-scanned video content can be efficiently
coded with H.263. H.263 is structured around a “baseline” mode of operation, which defines
the fundamental features supported by all decoders, plus a number of optional enhanced modes
of operation for use in customized or higher performance applications. Because of its high
performance, H.263 was chosen as the basis of the MPEG-4 video design, and its baseline
mode is supported in MPEG-4 without alteration. Many of its optional features are now also
found in some form in MPEG-4.

In addition to the baseline mode, H.263 includes a number of optional enhancement features
to serve a variety of applications. The original version of H.263 had about four such optional
modes. The latest version of H.263, known informally as H.263+ or H.263 Version 2, extends
the number of negotiable options to 16 [5]. These enhancements provide either improved
quality or additional capabilities to broaden the range of applications. Among the new ne-
gotiable coding options specified by H.263 Version 2, five of them are intended to improve
the coding efficiency. These are the advanced intra coding mode, alternate inter VLC mode,
modified quantization mode, deblocking filter mode, and improved PB-frame mode. Three
optional modes are especially designed to address the needs of mobile video and other unre-
liable transport environments. They are the slice structured mode, reference picture selection
mode, and independent segment decoding mode. The temporal, SNR, and spatial scalability
modes support layered bitstream scalability, similar to those provided by MPEG-2.

There are two other enhancement modes in H.263 Version 2: the reference picture resam-
pling mode and reduced-resolution update mode. The former allows a previously coded picture
to be resampled, or warped, before it is used as a reference picture.

Another feature of H.263 Version 2 is the use of supplemental information, which may
be included in the bitstream to signal enhanced display capabilities or to provide tagging
information for external use. One use of the supplemental enhancement information is to
specify the chroma key for representing transparent and semitransparent pixels [6].

Each optional mode is useful in some applications, but few manufacturers would want to
implement all of the options. Therefore, H.263 Version 2 contains an informative specification
of three levels of preferred mode combinations to be supported. Each level contains a number

 ©2001 CRC Press LLC

of options to be supported by an equipment manufacturer. Such information is not a normative
part of the standard. It is intended only to provide manufacturers some guidelines as to which
modes are more likely to be widely adopted across a full spectrum of terminals and networks.

Three levels of preferred modes are described in H.263 Version 2, and each level supports
the optional modes specified in lower levels. In addition to the level structure is a discussion
indicating that because the advanced prediction mode was the most beneficial of the origi-
nal H.263 modes, its implementation is encouraged not only for its performance but for its
backward compatibility with the original H.263.

The first level is composed of

• The advanced intra coding mode

• The deblocking filter mode

• Full-frame freeze by supplementary enhancement information

• The modified quantization mode

Level 2 supports, in addition to modes supported in Level 1

• The unrestricted motion vector mode

• The slice structured mode

• The simplest resolution-switching form of the reference picture resampling mode

In addition to these modes, Level 3 further supports

• The advanced prediction mode

• The improved PB-frames mode

• The independent segment decoding mode

• The alternative inter VLC mode

1.4.2 H.26L

H.26L is an effort to seek efficient video coding algorithms that can be fundamentally dif-
ferent from the MC-DCT framework used in H.261 and H.263. When finalized, it will be
a video coding standard that provides better quality and more functionalities than existing
standards. The first call for proposals for H.26L was issued in January 1998. According to the
call for proposals, H.26L is aimed at very-low-bit-rate, real-time, low-end-to-end delay coding
for a variety of source materials. It is expected to have low complexity, permitting software
implementation, enhanced error robustness (especially for mobile networks), and adaptable
rate control mechanisms. The applications targeted by H.26L include real-time conversational
services, Internet video applications, sign language and lip-reading communication, video stor-
age and retrieval services (e.g., VOD), video store and forward services (e.g., video mail), and
multipoint communication over heterogeneous networks. The schedule for H.26L activities is
shown in Table 1.4.

 ©2001 CRC Press LLC

Table 1.4 Schedule for H.26L

Jan 1998 Call for proposals
Nov 1998 Evaluation of the proposals
Jan 1999 1st test model of H.26L (TML1)
Nov 1999 Final major feature adoptions
Aug 2001 Determination
May 2002 Decision

1.4.3 MPEG-4

MPEG-4 [7] was originally created as a standard for very low bit rate coding of limited-
complexity audiovisual material. The scope was later extended to supporting new function-
alities such as content-based interactivity, universal access, and high-compression coding of
general material for a wide bit-rate range. It also emphasizes flexibility and extensibility. The
concept of content-based coding of MPEG-4 is shown inz Figure 1.6. Each input picture is
decomposed into a number of arbitrarily shaped regions called video object planes (VOPs).
Each VOP is then coded with a coding algorithm that is similar to H.263. The shape of each
VOP is encoded using context-based arithmetic coding.

FIGURE 1.6
Object-layer-based video coding in MPEG-4.

Comparing MPEG-4 video coding with earlier standards, the major difference lies in the
representation and compression of the shape information. In addition, one activity that dis-
tinguishes MPEG-4 from the conventional video coding standards is the synthetic and natural
hybrid coding (SNHC). The target technologies studied by the SNHC subgroup include face
animation, coding and representation of 2D dynamic mesh, wavelet-based static texture cod-
ing, view-dependent scalability, and 3D geometry compression. These functionalities used to
be considered only by the computer graphics community. MPEG-4 SNHC successfully brings
these tools into the scope of a video standard, and hence bridges computer graphics and image
processing.

 ©2001 CRC Press LLC

1.4.4 MPEG-7

MPEG-7 is targeted to produce a standardized description of multimedia material includ-
ing images, text, graphics, 3D models, audio, speech, analog/digital video, and composition
information. The standardized description will enable fast and efficient search and retrieval
of multimedia content and advance the search mechanism from a text-based approach to a
content-based approach. Currently, feature extraction and the search engine design are con-
sidered to be outside of the standard. Nevertheless, when MPEG-7 is finalized and widely
adopted, efficient implementation for feature extraction and search mechanism will be very
important. The applications of MPEG-7 can be categorized into pull and push scenarios. For
the pull scenario, MPEG-7 technologies can be used for information retrieval from a database
or from the Internet. For the push scenario, MPEG-7 can provide the filtering mechanism
applied to multimedia content broadcast from an information provider.

As pointed out earlier in this chapter, instead of trying to extract relevant features, manually
or automatically, from original or compressed video, a better approach for content retrieval
should be to design a new standard in which such features, often referred to as meta-data,
are already available. MPEG-7, an ongoing effort by the Moving Picture Experts Group, is
working exactly toward this goal (i.e., the standardization of meta-data for multimedia content
indexing and retrieval).

MPEG-7 is an activity triggered by the growth of digital audiovisual information. The group
strives to define a “multimedia content description interface” to standardize the description of
various types of multimedia content, including still pictures, graphics, 3D models, audio,
speech, video, and composition information. It may also deal with special cases such as facial
expressions and personal characteristics.

The goal of MPEG-7 is exactly the same as the focus of this chapter (i.e., to enable efficient
search and retrieval of multimedia content). Once finalized, it will transform the text-based
search and retrieval (e.g., keywords), as is done by most of the multimedia databases nowadays,
into a content-based approach (e.g., using color, motion, or shape information). MPEG-7 can
also be thought of as a solution to describing multimedia content. If one looks at PDF (portable
document format) as a standard language to describe text and graphic documents, then MPEG-
7 will be a standard description for all types of multimedia data, including audio, images, and
video.

Compared with earlier MPEG standards, MPEG-7 possesses some essential differences. For
example, MPEG-1, 2, and 4 all focus on the representation of audiovisual data, but MPEG-7
will focus on representing the meta-data (information about data). MPEG-7, however, may
utilize the results of previous MPEG standards (e.g., the shape information in MPEG-4 or the
motion vector field in MPEG-1 and 2).

Figure 1.7 shows the scope of the MPEG-7 standard. Note that feature extraction is outside
the scope of MPEG-7, as is the search engine. This is owing to one approach constantly
taken by most of the standard activities (i.e., “to standardize the minimum”). Therefore, the
analysis (feature extraction) should not be standardized, so that after MPEG-7 is finalized,
various analysis tools can be further improved over time. This also leaves room for com-
petition among vendors and researchers. This is similar to MPEG-1 not specifying motion
estimation and MPEG-4 not specifying segmentation algorithms. Likewise, the query process
(the search engine) should not be standardized. This allows the design of search engines and
query languages to adapt to different application domains, and also leaves room for further
improvement and competition. Summarizing, MPEG-7 takes the approach of standardizing
only what is necessary so that the description for the same content may adapt to different users
and different application domains.

We now explain a few concepts of MPEG-7. One goal of MPEG-7 is to provide a stan-
dardized method of describing features of multimedia data. For images and video, colors or

 ©2001 CRC Press LLC

FIGURE 1.7
The scope of MPEG-7.

motion are example features that are desirable in many applications. MPEG-7 will define a
certain set of descriptors to describe these features. For example, the color histogram can be a
very suitable descriptor for color characteristics of an image, and motion vectors (commonly
available in compressed video bitstreams) form a useful descriptor for motion characteristics
of a video clip. MPEG-7 also uses the concept of description scheme (DS), which means
a framework that defines the descriptors and their relationships. Hence, the descriptors are
the basis of a description scheme. Description then implies an instantiation of a description
scheme. MPEG-7 not only wants to standardize the description, but it also wants the de-
scription to be efficient. Therefore, MPEG-7 also considers compression techniques to turn
descriptions into coded descriptions. Compression reduces the amount of data that need to be
stored or processed. Finally, MPEG-7 will define a description definition language (DDL) that
can be used to define, modify, or combine descriptors and description schemes. Summarizing,
MPEG-7 will standardize a set of descriptors and DSs, a DDL, and methods for coding the
descriptions. Figure 1.8 illustrates the relationship between these concepts in MPEG-7.

FIGURE 1.8
Relationship between elements in MPEG-7.

The process to define MPEG-7 is similar to that of the previous MPEG standards. Since
1996, the group has been working on defining and refining the requirements of MPEG-7 (i.e.,
what MPEG-7 should provide). The MPEG-7 process includes a competitive phase followed

 ©2001 CRC Press LLC

by a collaborative phase. During the competitive phase, a call for proposals is issued and
participants respond by both submitting written proposals and demonstrating the proposed
techniques. Experts then evaluate the proposals to determine the strength and weakness of
each. During the collaborative phase, MPEG-7 will evolve as a series of experimentation
models (XMs), where each model outperforms the previous one. Eventually, MPEG-7 will
evolve into an international standard. Table 1.5 shows the timetable for MPEG-7 development.
At the time of this writing, the group is going through the definition process of the first XM.

Table 1.5 Timetable of MPEG-7

Call for test material Mar 1998
Call for proposals Oct 1998
Proposals due Feb 1999
First experiment model (XM) Mar 1999
Working draft (WD) Dec 1999
Committee draft (CD) Oct 2000
Final committee draft (FCD) Feb 2001
Draft international standard (DIS) July 2001
International standard (IS) Sep 2001

Once finalized, MPEG-7 will have a large variety of applications, such as digital libraries,
multimedia directory services, broadcast media selection, and multimedia authoring. Here are
some examples. With MPEG-7, the user can draw a few lines on a screen to retrieve a set
of images containing similar graphics. The user can also describe movements and relations
between a number of objects to retrieve a list of video clips containing these objects with
the described temporal and spatial relations. Also, for a given content, the user can describe
actions and then get a list of similar scenarios.

1.5 Standards for Multimedia Communication

In addition to video coding, multimedia communication also involves audio coding, control
and signaling, and the multiplexing of audio, video, data, and control signals. ITU-T specifies a
number of system standards for multimedia communication, as shown in Table 1.6 [8]. Due to
the different characteristics of various network infrastructures, different standards are needed.
Each system standard contains specifications about video coding, audio coding, control and
signaling, and multiplexing.

For multimedia communication over the Internet, the most suitable system standard in
Table 1.6 is H.323. H.323 [9] is designed to specify multimedia communication systems
on networks that do not guarantee QoS, such as ethernet, fast ethernet, FDDI, and token
ring networks. Similar to other system standards, H.323 is an umbrella standard that covers
several other standards. An H.323-compliant multimedia terminal has a structure as shown in
Figure 1.9. For audio coding, it specifies G.711 as the mandatory audio codec, and includes
G.722, G.723.1, G.728, and G.729 as optional choices. For video coding, it specifies H.261
as the mandatory coding algorithm and includes H.263 as an alternative. H.225.0 defines the
multiplexing of audio, video, data, and control signals, synchronization, and the packetization
mechanism. H.245 is used to specify control messages, including call setup and capability
exchange. In addition, T.120 is chosen for data applications. As in Figure 1.9, a receive path

 ©2001 CRC Press LLC

Table 1.6 ITU-T Multimedia Communication Standards
Network System Video Audio Mux Control

PSTN H.324 H.261/263 G.723.1 H.223 H.245
N-ISDN H.320 H.261 G.7xx H.221 H.242

B-ISDN/ATM H.321 H.261 G.7xx H.221 Q.2931
H.310 H.261/H.262 G.7xx, MPEG H.222.0/H.222.1 H.245

QoS LAN H.322 H.261 G.7xx H.221 H.242
Non-QoS LAN H.323 H.261 G.7xx H.225.0 H.245
Note:G.7xx represents G.711, G.722, and G.728.

delay is used to synchronize audio and video (e.g., for lip synchronization) and to control
jitters.

FIGURE 1.9
H.323 terminal equipment.

In addition to terminal definition, H.323 also specifies other components for multimedia
communication over non-QoS networks. These include the gateways and gatekeepers. As
shown in Figure 1.10, the responsibility of a gateway is to provide interoperability between
H.323 terminals and other types of terminals, such as H.320, H.324, H.322, H.321, and H.310.
A gateway provides the translation of call signaling, control messages, and multiplexing mech-
anisms between the H.323 terminals and other types of terminals. It also needs to support
transcoding when necessary. For example, for the audio codec on an H.324 terminal to inter-
operate with the audio codec on an H.323 terminal, transcoding between G.723.1 and G.711
is needed. On the other hand, a gatekeeper serves as a network administrator to provide the
address translation service (e.g., translation between telephone numbers and IP addresses)
and to control access to the network by H.323 terminals or gateways. Terminals have to get
permission from the gatekeeper to place or accept a call. The gatekeeper also controls the
bandwidth for each call.

 ©2001 CRC Press LLC

FIGURE 1.10
Interoperability of H.323.

1.6 Conclusion

In this chapter, we described several emerging video coding and multimedia communication
standards, including H.263, H.26L, MPEG-4, MPEG-7, and H.323. Reviewing the develop-
ment of video coding, as shown in Figure 1.11, we can see that the progress of video coding
and multimedia standards is tied to the progress in modeling of the information source. The
finer the model, the better we can compress the signals, and with more content accessibility to

FIGURE 1.11
Trend of video coding standards.

the user. At the same time, the price to pay includes higher complexity and less error resilience.
The complexity manifests itself not only in the higher computation power that is required, but
also in higher flexibility. For example, whereas H.261 is a well-defined and self-contained

 ©2001 CRC Press LLC

compression algorithm, MPEG-4 and MPEG-7 are toolboxes of a large number of different
algorithms.

References

[1] Ahmed, N., Natarajan, T., and Rao, K.R., “Discrete cosine transform,” IEEE Trans. on
Computers, C-23, pp. 90–93, 1974.

[2] Rao, K.R., and Yip, P., Discrete Cosine Transform, Academic Press, New York, 1990.

[3] Netravali, A.N., and Robbins, J.D., “Motion-compensated television coding: Part I,”
Bell Systems Technical Journal, 58(3), pp. 631–670, March 1979.

[4] Netravali, A.N., and Haskell, B.G., Digital Pictures, 2nd ed., Plenum Press, New York,
1995.

[5] ITU-T Recommendation H.263: “Video coding for low bit rate communication,” Ver-
sion 1, Nov. 1995; Version 2, Jan. 1998.

[6] Chen, T., Swain, C.T., and Haskell, B.G., “Coding of sub-regions for content-based scal-
able video,” IEEE Trans. on Circuits and Systems for Video Technology, 7(1), pp. 256–
260, February 1997.

[7] Sikora, T., “MPEG digital video coding standards,” IEEE Signal Processing Magazine,
pp. 82–100, Sept. 1997.

[8] Schaphorst, R., Videoconferencing and Videotelephony: Technology and Standards,
Artech House, Boston, 1996.

[9] Thom, G.A., “H.323: The multimedia communications standard for local area net-
works,” IEEE Communication Magazine (Special Issue on Multimedia Modem), pp. 52–
56, December 1996.

 ©2001 CRC Press LLC

Chapter 2

An Efficient Algorithm and Architecture for
Real-Time Perspective Image Warping

Yi Kang and Thomas S. Huang

2.1 Introduction

Multimedia applications are among the most important embedded applications. HDTV, 3D
graphics, and video games are a few examples. These applications usually require real-time
processing. The perspective transform used for image warping in MPEG-4 is one of the most
demanding algorithms among real-time multimedia applications. An algorithm is proposed
here for a real-time implementation of MPEG-4 sprite warping; however, it can be useful in
general computer graphics applications as well.

MPEG-4 is a new standard for digital audio–video compression currently being developed by
the ISO (International Standardization Organization) and the IEC (International Electrotech-
nical Commission). It will attempt to provide greater compression, error robustness, interac-
tiveness, support of hybrid natural and synthetic scenes, and scalability. MPEG-4 will require
more computational power than existing compression standards, and novel architectures will
probably be necessary for high-complexity MPEG-4 systems. Whereas current video com-
pression standards transmit the entire frame in a single bitstream, MPEG-4 will separately
encode a number of irregularly shaped objects in the frame. The objects in the frame can then
be encoded with different spatial or temporal resolutions [1].

By studying the MPEG-4 functions, we find that there are two critical parts for real-time
implementation: one is motion estimation in the encoder and the other is sprite warping in
the decoder. The algorithm for motion estimation in MPEG-4 is similar to those in previous
standards. There has already been plenty of work on algorithms and architectures for real-time
motion estimation. However, there have been few discussions on real-time sprite warping. We
therefore focus on algorithm and architecture development for sprite warping.

Real-time sprite warping involves implementing a perspective transform, a bilinear inter-
polation, and high-bandwidth memory accesses. It is both computationally expensive and
memory intensive. This poses a serious challenge for designing real-time MPEG-4 architec-
tures. With the goal of real time and cost-effectiveness in mind, we first optimize our algorithm
to reduce the computation burden of the perspective transform by proposing the constant de-
nominator algorithm. This algorithm dramatically reduces divisions and multiplications in
the perspective transform by an order of magnitude. Based on the proposed algorithm, we
designed an architecture which implements the real-time sprite warping. To make our architec-
ture feasible for implementation under current technologies, we address the design of the data
path as well as the memory system according to the real-time requirement of computations and

 ©2001 CRC Press LLC

memory accesses in the sprite warping. Other related issues for implementation of real-time
sprite warping are also discussed.

2.2 A Fast Algorithm for Perspective Transform

The perspective transform is widely used in image and video processing, but it is com-
putationally expensive. The most expensive part is its huge number of divisions. It is well
known that a division unit has the highest cost and the longest latency among all basic data
path units. The number of divisions in the perspective transform would make its real-time
implementation formidable without any fast algorithm. This motivates us to explore a new
algorithm for real-time perspective transform. The constant denominator method reduces the
number of required division operations to O(N) while maintaining high accuracy. It also has
fewer multiplications and divisions.

2.2.1 Perspective Transform

Perspective transforms are geometric transformations used to project scenes onto view planes
along lines which converge to a point. The perspective transform which maps two-dimensional
images onto a two-dimensional view plane is defined by

x′ = ax + by + c
gx + hy + 1

(2.1)

y′ = dx + ey + f
gx + hy + 1

(2.2)

where (x, y) is a coordinate in the reference image, (x′, y′) is the corresponding coordinate in
the transformed image, and a, b, c, d, e, f , g, and h are the transform parameters.

The perspective transform has many applications in computer-aided design, scientific visu-
alization, entertainment, advertising, image processing, and video processing [3]. One new
application for the perspective transform is MPEG-4. In MPEG-4 one of the additional func-
tionalities proposed to support is sprite coding [7]. A sprite is a reference image used to
generate different views of an object. The reference image is transmitted once, and future
images are produced by warping the sprite with the perspective transform. Because the trans-
form parameters a, b, c, d, e, f , g, and h are rational numbers, they are not encoded directly.
Instead, the image is encoded using four (x′, y′) pairs, since the transform parameters can
be determined from the reference and warped coordinates of four reference points using the
following system of equations:

x′
1

x′
2

x′
3

x′
4

y′
1

y′
2

y′
3

y′
4

=

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4

a

b

c

d

e

f

g

h

(2.3)

 ©2001 CRC Press LLC

High compression is therefore possible using sprite coding, especially for background sprites
and synthetic objects. After the original image is transmitted, the new view on the right can
be described using four points.

The warped image can be transmitted using fewer reference points. If three reference points
are transmitted, the affine transform is used for estimation. The affine transform is equivalent
to the perspective transform, with g and h equal to zero. Only two reference points are required
using an isotropic transformation, where g = h = 0, d = −b, and e = a. If only one reference
point is used, the transformation becomes simple translation, where g = h = 0, a = e = 1,
and b = d = 0. These simpler approximations provide less complexity, but generally provide
a less accurate estimate of the warped image.

To prevent holes or overlap in the warped sprite, backward perspective mapping is used.
Each point (x′, y′) in the warped sprite is obtained from point (x, y) in the reference image.
The backward perspective mapping can be obtained from the adjoint and determinant of the
forward transform matrix [10]:

x = (hf − e)x′ + (b − hc)y′ + (ec − bf)
(eg − dh)x′ + (ah− bg)y′ + (db − ae) = a′x′ + b′y′ + c′

g′x′ + h′y′ + i′ (2.4)

y = (d − fg)x′ + (cg − a)y′ + (af − dc)
(eg − dh)x′ + (ah− bg)y′ + (db − ae) = d ′x′ + e′y′ + f ′

g′x′ + h′y′ + i′ (2.5)

Though x′ and y′ are integers, x and y generally are not. Bilinear interpolation is used to
approximate the pixel value at point (x, y) from the four nearest integer points.

The perspective transform is computationally expensive. Computation of x and y using
equations (2.4) and (2.5) requires one division, eight multiplications, and nine additions per
pixel. The division is especially expensive. Since the transform parameters are not integers,
floating point computations are typically used. For real-time hardware implementations using
high-resolution images, direct computation of the transform is too slow. An approximation
method must be used.

2.2.2 Existing Approximation Methods

The perspective transform can be approximated using polynomials to avoid the expensive
divisions needed to compute the rational functions in equations (2.4) and (2.5). Linear approx-
imation is the simplest and most widely used approximation technique. However, it usually
results in large errors due to the simplicity of the approximation [2, 4]. To achieve greater
accuracy, more complex methods such as quadratic approximation, cubic approximation, bi-
quadratic approximation, and bicubic approximation have been proposed [6, 10]. Additional
methods to reduce aliasing and simplify resampling have also been developed, such as the
two-pass separable algorithm [10].

The Chebyshev approximation is a well-known method in numerical computation that also
has been used to approximate the perspective transform [2]. Its main advantage over other
methods is that its error is evenly distributed [8]. The result thus visually appears closer to the
ideal result. The formula for the Chebyshev approximation is

f (x) ≈
N−1∑
k=0

ckTk(x)− 0.5c0 (2.6)

where cj ’s are the coefficients computed as

cj = 2

N

N∑
k=1

f (xk) Tj (xk) , (2.7)

 ©2001 CRC Press LLC

Tj (x) is the j th base function for the approximation, f (x) is the target function to approximate,
and N is the order of the approximation. N = 2 for the quadratic Chebyshev approximation;
N = 3 for the cubic Chebyshev approximation.

Biquadratic and bicubic Chebyshev methods have also been proposed to approximate the
perspective transform [2]. These methods first calculate the Chebyshev control points, then
use transfinite interpolation to approximate the rational functions using polynomials.

All of the above approximation methods require more multiplications and additions than
direct computation of the original rational functions. For complex approximations such as the
Chebyshev methods, the additional multiplications and additions offset the benefit of avoiding
division. Simpler approximations such as linear approximation require fewer additional oper-
ations, but often achieve poor quality. These methods also require an initialization procedure
to compute the approximation coefficients on every scan line. This increases the hardware
overhead.

In the following section, a new method to perform the perspective transform is proposed.
This new method does not increase the number of multiplications and additions, has a simple
initialization procedure, and decreases the number of divisions from O(N2) to O(N).

2.2.3 Constant Denominator Method

Equations (2.4) and (2.5) both contain the same denominator: g′x′ + h′y′ + i′. Setting the
denominator equal to a constant value defines a line in the x′y′ plane.

k = g′x′ + h′y′ + i′ (2.8)

Furthermore, lines defined by different values of k are all parallel and all have slope equal to
−g′/h′. The constant k for the line with y′ intercept equal to q can be calculated as

kq = h′q + i′ (2.9)

By calculating the perspective transform along lines of constant denominator, the number of
divisions is reduced from one per pixel to one per constant denominator line.

The constant denominator method begins by calculating (d − fg), (cg − a), (af − dc),
(hf −e), (b−hc), (ec−bf), (eg−dh), (ah−bg), and (db−ae). These coefficients need only
be calculated once per frame. Next, (eg − dh) and (ah− bg) are used to calculate the slope
m of the constant denominator lines. There are four possible cases: m < −1, −1 ≤ m ≤ 0,
0 < m ≤ 1, and 1 < m. The case determines whether the constant denominator lines are
scanned in the horizontal or vertical direction.

Figure 2.1 illustrates a case where 0 < m < 1. The lines all have slope m = −g′/h′ and
represent constant values of g′x′ + h′y′ + i′. The pixels are shaded to indicate which constant
denominator line they approximately fall on. The pixels for the initial line are determined by
starting at the origin and applying Bresenham’s Algorithm. Bresenham’s Algorithm requires
only incremental integer calculations [3]. The result is the table in Figure 2.1, which lists the
corresponding vertical position for every horizontal position on the constant denominator line
that passes through the origin. By storing the table as the difference of subsequent entries, the
number of bits required to store the table is the larger of the width or height of the image.

After the position of the constant denominator line has been determined, the actual warping
is performed. The reciprocal of the denominator is first calculated for the constant denominator
line which crosses the origin:

r = 1

k0
= 1

h′ ∗ 0 + i′ = 1

i′
(2.10)

 ©2001 CRC Press LLC

FIGURE 2.1
Lines of constant denominator with 0 < slope < 1.

This is the only division required for the first constant denominator line. This reciprocal
is then multiplied by d ′, e′, f ′, a′, b′, and c′ to obtain the coefficients in equations (2.11)
and (2.12).

x = ra′x′ + rb′y′ + rc′ (2.11)

y = rd ′x′ + re′y′ + rf ′ (2.12)

The horizontal position x′ is incremented from 0 to M − 1, where M is the width of the
image. For each value of x′,�y′ is obtained from the line table. The current value of the x and
y coordinates, xn and yn, are calculated from the previous values of the x and y coordinates,
xn−1 and yn−1, using the following equations. If �y′ = 0,

xn = xn−1 + ra′ (2.13)

yn = yn−1 + rd ′ (2.14)

If �y′ = 1,

xn = xn−1 + [ra′ + rb′] (2.15)

yn = yn−1 + [rd ′ + re′] (2.16)

Only two additions are required to calculate xn and yn for each pixel on the constant denomi-
nator line. No multiplications or divisions are required per pixel.

The next constant denominator line is warped by calculating r for point (x′, y′) = (0, 1)
using the following equation:

r = 1

k1
= 1

h′ ∗ 1 + i′ = 1

h′ + k0
(2.17)

One addition and one division are required to calculate r . The line table is used to trace the
new line, and equations (2.13)–(2.16) are used to warp the pixels on the new line. Every constant
denominator line below the original line is warped, followed by the constant denominator lines
above the original line.

 ©2001 CRC Press LLC

Because xn and yn are generally not integers, bilinear interpolation is used to calculate the
value of the warped pixel using the four pixels nearest to (xn, yn) in the original sprite. The
warped pixel P is calculated using the following three equations, as shown in Figure 2.2:

P01 = P0 + (P1 − P0) ∗ dx (2.18)

P23 = P2 + (P3 − P2) ∗ dx (2.19)

P = P01 + (P23 − P01) ∗ dy (2.20)

FIGURE 2.2
Bilinear interpolation.

As shown above, the constant denominator method reduces the number of divisions required
to calculate (x, y) from one per pixel, using equations (2.4) and (2.5) directly, to one per
constant denominator line. For an image M pixels wide and N pixels high, the number of
divisions is reduced from MN using the direct method to, at most, M + N − 1. The number
of multiplications needed to calculate (x, y) is reduced from 8MN to 8(M + N − 1) + 17.
The drastic reduction in divisions and multiplications makes the constant denominator method
suitable for real-time sprite decoding.

In addition, the constant denominator method can be used to calculate the backward affine
transform when only three reference points are transmitted. In this case, r = 1 for every point
in the plane. No divisions and only 14 multiplications per frame are therefore required for the
affine transform.

2.2.4 Simulation Results

To compare the visual quality of the warping approximations, five methods were imple-
mented in C++: direct warping, constant denominator, quadratic, quadratic Chebyshev, and
cubic Chebyshev. The methods were then used to warp the checkerboard image, which is
a standard test image for computer graphics. The checkerboard image is useful because the
perspective transform should preserve straight lines. The parameters are set to a = 1.2, b = 0,
c = −100, d = 0, e = 1.2, f = −20, g = −.0082, and h = 0. The simulation shows that
straight lines in the original image are curved greatly by the quadratic and quadratic Chebyshev
methods. They are curved slightly by the cubic Chebyshev method. The constant denominator
method preserves the straight lines.

To generate test data for a wide range of cases, simulations were conducted varying g and
h over {−.1,−.01,−.001,−.0001, 0, .0001, .001, .01, .1}. Parameters a and e were set to 1,
and the remaining parameters were set to 0. An error image was calculated for each method
using the direct warping image as a reference, and the mean squared error (MSE) was computed
from each error image. The mean, median, and maximum values of mean squared error for

 ©2001 CRC Press LLC

each method are shown in Table 2.1. A histogram of the MSE for the four methods is shown
in Figure 2.3. The MSE is plotted on a logarithmic scale, and all MSEs less than 1 are plotted
at 1. One third of the simulations for the constant denominator method had MSEs below 1.
The largest error occurred for the case where g = 0.01 and h = −0.1. The other three methods
were significantly less accurate than the constant denominator method.

Error in the constant denominator method occurs because the pixels do not fall exactly on
constant denominator lines. Each pixel can lie a maximum of one-half pixel off the actual
constant denominator line if we treat each pixel as a square. An additional source of error is
from sprite resampling via the bilinear interpolation. Most of the error in Table 2.1 for the
constant denominator method is due to position computation because the direct warped image
with resampling is used as the error reference.

Table 2.1 Checkerboard Mean Squared Error
Table

Method Mean Median Max

Constant denominator 73 20 428
Quadratic 2,831 693 15,888

Quadratic Chebyshev 2,118 457 14,313
Cubic Chebyshev 1,822 392 14,116

FIGURE 2.3
Checkerboard mean squared error histogram.

The constant denominator method was also tested on natural images. Simulation was done
for the a = 1, b = 0, c = 0, d = 0, e = 1, f = 0, g = −0.1, and h = 0.002 case using a
coastguard image. The MSE for the constant denominator method was 0.00043. The error is
so small that it can hardly be picked up by the eyes. Table 2.2 shows a performance comparison

 ©2001 CRC Press LLC

between the various approximation methods as g and h are varied between −0.1 and 0.1 for
the coastguard image.

Table 2.2 Coastguard Mean Squared Error Table
Method Mean Median Max

Constant denominator 73 20 428
Quadratic 2,831 693 15,888
Quadratic Chebyshev 2,118 457 14,313
Cubic Chebyshev 1,822 392 14,116

2.2.5 Sprite Warping Algorithm

We designed an algorithm to perform sprite warping using the perspective transform as
specified in MPEG-4. The sprite warping algorithm performs the following tasks:

• Step 1: Compute the eight perspective transform parameters a, b, c, d, e, f , g, and h
from the reference coordinates.

• Step 2: Compute the nine backward transform coefficients (d−fg), (cg−a), (af −dc),
(hf − e), (b − hc), (ec − bf), (eg − dh), (ah− bg), and (db − ae).

• Step 3: Use Bresenham’s Algorithm to calculate the line table for the first constant
denominator line.

• Step 4: Compute the constant r in equation (2.17) using restoring division [5]. Then
compute the coefficients in equations (2.11) and (2.12). This step is performed once per
constant denominator line.

• Step 5: Perform the backward transform for every pixel along the constant denominator
line described above.

• Step 6: Fetch the four neighboring pixels from memory for every warped pixel and
perform bilinear interpolation to obtain the new pixel value.

Step 1 entails solving the system of equations given in equation (2.3). Using LU decom-
position, the eight sprite warping parameters can be calculated using 36 divisions, 196 mul-
tiplications, and 196 additions. Steps 2 through 5 use the constant denominator method to
perform the perspective transform. The computation of the backward transform coefficients
in step 2 requires 14 multiplications and nine additions. Calculating the line table in step 3
requires three multiplications, one division, and either M or N additions, depending on the
slope of the line. These three steps are performed once per frame. Step 4 requires one division,
eight multiplications, and three additions for every constant denominator line. Step 5 requires
two additions for every pixel. After the warped coordinate has been computed, the bilinear
interpolation in step 6 requires three multiplications and six additions for every pixel.

For gray-scale sprites M pixels wide and N pixels high and with horizontal scanning, the
entire sprite warping process requires at mostM+N + 36 divisions, 3MN + 8M+ 8N + 205
multiplications, and 8MN + 4M + 3N + 202 additions. Color sprites require additional
operations. For YUV images with 4:2:0 format, sprite warping requires at most a total of
1.5M + 1.5N + 35 divisions, 4.5MN + 12M + 12N + 200 multiplications, and 11.5MN +
6M + 4.5N + 199 additions.

 ©2001 CRC Press LLC

The computation burden can be reduced by using fixed point instead of floating point op-
erations wherever possible. Steps 1, 2, and 4 are best suited for floating point operations.
However, since steps 1 and 2 are performed once per frame, and step 4 is performed once per
constant denominator line, they consume only a small fraction of the computational power.
Step 3 is also performed once per frame. The additions in step 3 can be performed in fixed
point.

Most of the computations are performed in steps 5 and 6, since these steps are performed
on each pixel. In step 5, a floating point coefficient is multiplied by the integer coordinate x′
or y′. Therefore, instead of using true floating point, the coefficients can be represented in
block floating point format. Fixed point operations can then be used for step 5. After (x, y) is
calculated for each pixel, it is translated to a long fixed point number. Thus, only fixed point
computation is required for the bilinear interpolation in step 6.

By using fixed point operations for steps 5 and 6, the number of floating point multiplications
is reduced to at most 12M + 12N + 196 and the number of floating point additions becomes
4.5M + 4.5N + 199. The number of floating point divisions remains 1.5M + 1.5N + 35.
Almost all of the operations are now fixed point. 4.5MN fixed point multiplications and
11.5MN + 1.5M fixed point additions at most are required for steps 3, 5, and 6. Table 2.3
lists the number of operations required for various full-screen sprites.

Table 2.3 Number of Operations per Second
Required for 30 Frames per Second

Sprite Size QCIF CIF ITU-R 601

Sprite width 176 352 720
Sprite height 144 288 576
Float. divide 15,000 30,000 59,000

Float. multiply 120,000 240,000 470,000
Float. add 49,000 92,000 180,000

Fixed multiply 3.4 million 14 million 56 million
Fixed add 8.8 million 35 million 140 million

2.3 Architecture for Sprite Warping

An MPEG-4 sprite warping architecture is described which uses the constant denomina-
tor method. The architecture exploits the spatial locality of pixel accesses and pipelines an
arithmetic logic unit (ALU) with an interpolation unit to perform high-speed sprite warping.
Several other implementation issues (e.g., boundary clipping and error accumulation) are also
discussed.

2.3.1 Implementation Issues

One issue inherent to the perspective transform is aliasing. Subsampling the sprite can
cause aliasing artifacts for perspective scaling. However, sprite warping is intended for video
applications where aliasing is less of a problem due to the motion blur. To address aliasing
in the constant denominator method, techniques such as adaptive supersampling could be
used. Supersampling would be performed when consecutive accesses to the sprite memory
are widely separated.

 ©2001 CRC Press LLC

Boundary clipping can also be a concern. Sprite warping can attempt to access reference
pixels beyond the boundaries of the reference sprite. If the simple point clipping method is
used, four comparisons per pixel are required. Instead, a hybrid point–line clipping method
can be used with the constant denominator method. For each constant denominator line, the
endpoints are first checked to see if they fall within the boundaries of the reference sprite. If
both endpoints are in the reference sprite, the line is warped. If only one endpoint is outside
the boundary, warping begins with this endpoint using point clipping. Once a point within the
boundary is warped, clipping is turned off, because the remaining points on the line are within
the sprite. If both endpoints lie outside the reference sprite, point clipping is used beginning
with one of the endpoints. Once a point inside the reference sprite is reached, warping switches
to the other endpoint. Point clipping is used until the next point with the sprite is reached,
when point clipping is turned off. Using this method, comparisons are only required when the
reference pixel is out of bounds. Because memory accesses and interpolations are not required
for the out-of-bound pixels, and clipping computations are not required for in-bound pixels,
the clipping procedure does not slow the algorithm.

Error accumulation in the fixed-point, iterative calculation of equations (2.13)–(2.16) must
also be considered. Sufficient precision of the fractional part of xn and yn must be used
to prevent error from accumulating to 1. The number of bits k required for the fractional
part depends on the height N and width M of the warped sprite according to the following
inequality:

k ≥ log2(MAX[M,N]) (2.21)

The integral part of xn and yn must contain enough bits to avoid overflow. Because (xn, yn)
is a coordinate in the reference plane, they theoretically have infinite range. Practically, the
number of integral bits j is chosen according to the size of the reference sprite plus additional
bits to prevent overflow. If a is the number of overflow bits and the reference sprite is P ×Q
pixels, then

j ≥ log2(MAX[P,Q])+ a (2.22)

For example, if the reference and warped sprite are both 720 × 576 pixels and four overflow
bits are used, then a = 4, k = 10, j = 10, and 24 total bits are required for calculating xn and
yn.

2.3.2 Memory Bandwidth Reduction

Memory bandwidth is a concern for high-resolution sprites. Warped pixels are interpolated
from the four nearest pixels in the original sprite. Warping a sprite can therefore require four
reads and one write for every pixel in the sprite. An ITU-R 601 sprite requires 89 MB/s of
memory bandwidth at 30 frames per second.

Figure 2.4 illustrates the memory access pattern for sprite warping using the constant de-
nominator method. It shows lines of slope −g/h in the original sprite which correspond to
the lines of constant denominator in the warped sprite. While the memory access lines in the
original sprite are parallel to each other, they are not evenly spaced, and memory accesses on
different lines do not have the same spacing. Points in the warped sprite can also map to points
outside the original sprite.

The total memory access time required to warp a sprite can be reduced by either decreasing
the time required for each memory access or decreasing the number of accesses. Unlike scan-
line algorithms which enjoy the advantage of block memory access in consecutive addresses,
the constant denominator method must contend with diagonal memory access patterns. How-
ever, spatial locality inherent in diagonal access can be exploited. Figure 2.4 shows the use

 ©2001 CRC Press LLC

of spatial locality to reduce the time per access. The original sprite is divided into rectangular
pages, which correspond to pages in the sprite memory. Consecutive accesses on a line will
frequently lie on the same page. Fast page mode can therefore be used to retrieve the data
quickly.

FIGURE 2.4
Example memory access pattern.

A cache can be used to reduce the number of accesses per pixel. Consecutive accesses on a
constant denominator line often reference common pixels in the original sprite. Consecutive
constant denominator lines frequently use many of the same pixels. By retaining pixel values
in a cache, accesses to main memory can be avoided.

Cache effectiveness is dependent on the spacing between memory accesses. In the upper
left area of the example in Figure 2.4, memory access lines are closely spaced. Pixels on
the upper left will be accessed many times, and a cache will save memory accesses. In the
lower right area, however, memory access lines are widely spaced. Pixels are not shared
between consecutive lines, and a cache will not be as effective. However, because the lines are
widely spaced, most of the pixels in the lower right area are not accessed from memory. Many
accesses will instead occur outside the boundaries of the sprite memory and will be resolved
by boundary clipping instead of being retrieved from memory or the cache. The worst-case
memory access situation therefore does not occur for widely spaced lines. The cache should
be designed for line spacings small enough such that most of the reference sprite pixels are
read four times.

A very small cache which holds only four pixels will reduce the number of memory reads
per sprite. By keeping the four pixels used to interpolate the previous point in the cache, the
worst-case number of memory reads per sprite will be reduced from four times the number of
warped pixels to three times the number of warped pixels. The worst case occurs when pixels
on diagonal lines are accessed. If consecutive accesses on the lines are widely spaced, then
the cache will be of no use. However, many pixels on the diagonal lines will not be accessed
and the total number of accesses to sprite memory will be small. This is therefore not the
worst case. Instead, the worst case occurs when consecutive pixels on the diagonal lines are
accessed. One pixel in the cache can be reused; the three remaining pixels must be read in
from memory.

 ©2001 CRC Press LLC

A larger cache will further reduce the memory bandwidth required. Figure 2.5 illustrates
the use of a cache with a three-line capacity. The cache is three-way set associative to remove
conflict cache misses. For lines with slope greater than 1 or less than −1, as in the figure,
there is one set for every y coordinate in the sprite, and pixels are tagged with the x coordinate.
Shallower lines have one set for every x coordinate and are tagged with the y coordinate.
The three-line cache reduces the worst-case number of reads to one per pixel. For an ITU-R
601 sprite, a three-line cache requires approximately 17 Kbit.

FIGURE 2.5
Cache operation example.

2.3.3 Architecture

The data path for a sprite warping architecture is shown in Figure 2.6. It contains two
processors: an ALU to perform steps 1 through 5 in the sprite warping process and an inter-
polation unit to perform step 6. Since steps 5 and 6 are the two steps executed per pixel, they
are assigned to different processors.

The ALU performs integer addition and multiplication. It reads reference coordinates from
the coordinate buffer and calculates the perspective transform coefficients, using the small
scratch memory for intermediate storage. The nine backward transform coefficients are then
stored in the floating point coefficient buffer. The ALU uses Bresenham’s Algorithm to com-
pute the incremental line table for the first constant denominator lines. The line table is stored
in the Bresenham shift register, which is simply a line of serially connected, 1-bit flip-flops.
For each line, the ALU computes the six coefficients in equations (2.11) and (2.12). For each
pixel, the coordinates of the corresponding pixel in the original frame are calculated and par-
titioned into an integer part (xl, yl) and a fractional part (dx, dy). The integer part is output
to the pixel cache while the fractional part is passed to the interpolation unit.

The pixel cache outputs pixelsP0, P1, P2, andP3. These are the four pixels with coordinates
(xl, yl), (xl+1, yl), (xl, yl+1), and (xl+1, yl+1), which are shown in Figure 2.2. If the pixels

 ©2001 CRC Press LLC

FIGURE 2.6
Sprite warping architecture.

are not in the cache, they are retrieved from memory. The pixels are transmitted serially to the
interpolation unit.

The interpolation unit is based on a design commonly used for half-pixel motion compen-
sation [9]. It is shown in detail in Figure 2.7. The unit reads a new pixel whenever the cache
signals that the value P0123 is ready. It receives dx and dy from the ALU and outputs a bilin-
early interpolated pixel after reading every fourth pixel. P0 andP1 are first linearly interpolated
using dx to compute P01. P2 and P3 are then interpolated using dx to compute P23. Finally,
the vertical fraction dy is used to linearly interpolate P01 and P23 and obtain the bilinearly
interpolated pixel P . P is then output to the sprite memory.

If the four interpolation pixels are not in the cache, memory access time is critical. Table 2.4
lists the memory requirements for warping sprites with various resolutions. The memory
size listed is for a single sprite buffer. Since the warped sprite and original sprite are stored in
separate areas of sprite memory, two sprite buffers are required. To provide additional memory
bandwidth, the sprite buffers can be stored on separate memory chips. If a single warping unit
is used to warp k sprites, k + 1 sprite buffers are required.

Table 2.4 Memory Requirements for Sprite Warping
Sprite Format QCIF CIF ITU-R 601

Memory size 297 Kbits 1,188 Kbits 4,860 Kbits
Pixel reads/frame 152,000 608,000 2,488,000
Pixel writes/frame 38,000 152,000 622,080
Time/read at 30 fps 219 ns 54 ns 13 ns

Table 2.4 lists the worst-case number of pixel reads and writes required to warp a sprite.
The table also lists the average time per read that must be met if the sprite is to be warped at
30 frames per second. It assumes that the warped sprite and original sprite are contained in

 ©2001 CRC Press LLC

FIGURE 2.7
Interpolation unit.

separate memories. The times were obtained using

tread =
[(

number of frames

second

) (
number of pixel reads

frame

)]−1

(2.23)

If the pixels are currently in the cache, they will be transmitted to the interpolation unit
quickly, and the computation time in the interpolation unit becomes critical. A new pixel
cannot be read in until the previous pixel has been linearly interpolated. Assuming the linear
interpolation time, tinterpolate, is less than tpage hit (the time to read from memory on a page hit),
then the average read time is determined by

tread = ctinterpolate + (1 − c)[ptpage hit + (1 − p)tpage miss] (2.24)

where c is the cache hit ratio, p is the page hit ratio, and tpage miss is the time to read from
memory on a page miss.

If no cache is used, equation (2.24) reduces to

tread = ptpage hit + (1 − p)tpage miss (2.25)

Assuming DRAM access times of 20 ns on a page hit and 85 ns on a page miss, the 219-ns
cycle time listed in Table 2.4 for QCIF sprites can be easily obtained without a cache. CIF
sprites can also be warped without a cache, because the 73-ns cycle time can be met for p > .5,
which is a very low page hit ratio. For both sprite sizes, the interpolation unit can be designed
to match the memory access time.

With a four-pixel cache, the average read time equation becomes

tread = 1

4
tinterpolate + 3

4
[ptpage hit + (1 − p)tpage miss] (2.26)

where c = 1
4 is the cache hit ratio for the worst case. The four-pixel cache can be used to

warp sprite sizes larger than CIF. It cannot warp ITU-R 601 sprites, because they require the

 ©2001 CRC Press LLC

short 13-ns cycle from Table 2.4. Instead, the three-line cache is used, where c = 3
4 . For

tpage hit = 20 ns and tpage miss = 85 ns, equation (2.24) can then be rewritten as

tread = 3

4
tinterpolate + 1

4
[ptpage hit + (1 − p)tpage miss] = (28p − 17.3) nanoseconds (2.27)

which simplifies to

tinterpolate < (21.67p − 11) nanoseconds (2.28)

This equation is satisfied by realistic interpolation times and page hit ratios. For example, an
8.5-ns interpolation time and a 0.9 page hit ratio, or a 6.3-ns linear interpolation time and a
0.8 page hit ratio, can be used for real-time warping of ITU-R 601 sprites with 0.35µ m or
better VLSI technology.

2.4 Conclusion

We have presented a new fast algorithm for computing the perspective transform. The
constant denominator method reduces the number of divisions required fromO(N2) toO(N)
and also dramatically reduces multiplications in the computation. The speed of the constant
denominator method does not sacrifice the accuracy of the algorithm. Indeed, it has more than
35 times less error compared with other approximation methods. The algorithm primarily
targets real-time implementation of sprite warping. However, it is generally for speeding
up the perspective transform. Based on this algorithm, an architecture was proposed for
the implementation of sprite warping for MPEG-4. Our architecture is feasible under current
VLSI technology. We also analyzed the real-time requirement of the architecture and addressed
several other implementation issues.

References

[1] CCITT. MPEG-4 video verification model version 11.0. ISO-IEC JTC1/SC29/WG11
MPEG98/N2172, Mar. 1998.

[2] Demirer, M., and Grimsdale, R.L. Approximation techniques for high performance tex-
ture mapping. Computer & Graphics 20, 4 (1996).

[3] Hearn, D., and Baker, M.P. Computer Graphics, 2 ed., Prentice-Hall, Englewood Cliffs,
NJ, 1994.

[4] Heckbert, P., and Moreton, H.P. Interpolation for polygon texture mapping and shading.
In State of the Art in Computer Graphics Visualization and Modeling, D.F. Rogers and
R.A. Earnshaw, Eds., Springer-Verlag, Berlin, 1991.

[5] Hennessy, J.L., and Patterson, D.A. Computer Architecture: A Quantitative Approach,
2 ed., Morgan Kaufmann Publishers, 1996.

[6] Kirk, D., and Vorrhies, D. The rendering architecture of the dn10000vs. Computer
Graphics 24 (1990).

 ©2001 CRC Press LLC

[7] Lee, M.C., Chen, W., Lin, C.B., Gu, C., Markoc, T., Zabinsky, S.I., and Szeliski, R. A
layered video object coding system using sprite and affine motion model. IEEE Trans-
actions on Circuits and Systems for Video Technology 7, 1 (Feb. 1997).

[8] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. Numerical Recipes in
C, 2 ed., Cambridge University Press, London, 1994.

[9] Sun, M.T. Algorithms and VLSI architectures for motion estimation. In VLSI Imple-
mentations for Communications, P. Pirsh, Ed., Elsevier Science Publishers, New York,
1993.

[10] Wolberg, G. Digital Image Warping. IEEE Computer Society Press, 1990.

 ©2001 CRC Press LLC

Chapter 3

Application-Specific Multimedia Processor
Architecture

Yu Hen Hu and Surin Kittitornkun

3.1 Introduction

Multimedia signal processing concerns the concurrent processing of signals generated from
multiple sources, containing multiple formats and multiple modalities. A key enabling technol-
ogy for multimedia signal processing is the availability of low-cost, high-performance signal
processing hardware including programmable digital signal processors (PDSPs), application-
specific integrated circuits (ASICs), reconfigurable processors, and many other variations.

The purposes of this chapter are (1) to survey the micro-architecture of modern multimedia
signal processors, and (2) to investigate the design methodology of dedicated ASIC imple-
mentation of multimedia signal processing algorithms.

3.1.1 Requirements of Multimedia Signal Processing (MSP) Hardware

Real-Time Processing

With real-time processing, the results (output) of a signal processing algorithm must be
computed within a fixed, finite duration after the corresponding input signal arrives. In other
words, each computation has a deadline. The real-time requirement is a consequence of the
interactive nature of multimedia applications. The amount of computations per unit time,
also known as the throughput rate, required to achieve real-time processing varies widely
for different types of signals. If the required throughput rate cannot be met by the signal
processing hardware, the quality of service (QoS) will be compromised. Real-time processing
of higher dimensional signals, such as image, video, or 3D visualization, requires an ultra-high
throughput rate.

Concurrent, Multithread Processing

A unique feature of MSP hardware is the need to support concurrent processing of multiple
signal streams. Often more than one type of signal (e.g., video and sound) must be pro-
cessed concurrently as separate task threads in order to meet deadlines of individual signals.
Synchronization requirements also impose additional constraints.

 ©2001 CRC Press LLC

Low-Power Processing

Multimedia signal processing devices must support mobile computing to facilitate ominous
accessibility. Low-power processing is the key to wireless mobile computing. Technologies
(TTL vs. CMOS, power supply voltages) are the dominating factor for power consumption.
However, architecture and algorithm also play a significant role in system-wide power con-
sumption reduction.

3.1.2 Strategies: Matching Micro-Architecture and Algorithm

To achieve the performance goal (real-time processing) under the given constraint (low
power consumption), we must seek a close match between the multimedia signal processing
algorithm formulation and the micro-architecture that implements such an algorithm. On the
one hand, micro-architecture must be specialized in order to custom fit to the given algorithm.
On the other hand, alternative algorithm formulations must be explored to exploit its inherent
parallelism so as to take advantage of the power of parallel micro-architecture.

Specialization

Specialized hardware can be customized to execute the algorithm in the most efficient
fashion. It is suitable for low-cost, embedded applications where large-volume manufacturing
reduces the average design cost. Hardware specialization can be accomplished at different
levels of granularity. Special function units such as an array multiplier or multiply-and-
accumulator (MAC) have been used in programmable DSPs. Other examples include a bit
reversal unit for fast Fourier transform and so forth.

Another approach of specialization is to use a special type of arithmetic algorithm. For
example, CORDIC arithmetic unit is an efficient alternative when elementary functions such as
trigonometric, exponential, or logarithmic functions are to be implemented. Another example
is the so-called distributed arithmetic, where Boolean logic functions of arithmetic operations
are replaced with table-lookup operations using read-only memory.

At a subsystem level, specialized hardware has also been developed to realize operations that
are awkward to be realized with conventional word-based micro-architecture. For example,
the variable-length entropy-coding unit is often realized as a specialized subsystem.

Specialized hardware consisting of multiple function units to exploit parallelism is also
needed to handle computation-intensive tasks such as motion estimation, discrete cosine trans-
form, and so forth. At the system level, specialized hardware has also been developed to serve
large-volume, low-cost, and embedded consumer applications, such as the MPEG decoder
chip.

Parallelism

Parallelism is the key to achieving a high throughput rate with low power consumption.
To reduce power consumption, power supply voltage must be reduced. Lower power supply
voltage implies lower switching speed. As such, to meet the real-time processing throughput
constraint, more function units must be activated together, taking advantage of the potential
parallelism in the algorithm.

Many MSP algorithms can be formulated as nested iterative loops. For this family of
algorithms, they can be mapped algebraically into regular, locally interconnected pipelined
processing arrays such as the systolic array. Examples include discrete cosine transform, full
search motion estimation, discrete wavelet transform, and discrete Fourier transform.

In addition to the systolic array, parallelism can be exploited in different formats. A vector-
based parallel architecture is capable of performing vector operations efficiently. A specific

 ©2001 CRC Press LLC

vector-parallel architecture is known as the subword parallelism. It appears as the multimedia
extension (MMX) instructions in general-purpose microprocessors.

Some algorithms do not have a regular structure such as nested iterative loops. However,
since MSP applications often deal with indefinite streams of signals, it is also possible to
develop pipelined special-purpose hardware to exploit the parallelism. Examples include fast
discrete cosine transform (DCT) algorithms.

For programmable DSP processors, instruction-level parallelism (ILP) has dominated mod-
ern superscalar microprocessor architecture. A competing ILP approach is known as the very
long instruction word (VLIW) architecture. The main difference between ILP and VLIW
is that ILP architecture relies on a hardware-based instruction issuing unit to exploit the po-
tential parallelism inherent in the instruction stream during the run time, whereas the VLIW
micro-architecture relies heavily on a compiler to exploit ILP during the compile time.

3.2 Systolic Array Structure Micro-Architecture

3.2.1 Systolic Array Design Methodology

Systolic array [1, 2] is an unconventional computer micro-architecture first proposed by
H.T. Kung [3]. It features a regular array of identical, simple processing elements operated
in a pipelined fashion. It can be visualized that data samples and intermediate results are
processed in a systolic array in a manner analogous to how the blood is pumped by the heart —
a phenomenon called systole circulation — which is how this architecture received its name.

A systolic array exhibits characteristics of parallelism (pipelining), regularity, and local
communication. If an algorithm can be described as a nested “do” loop with simple loop body,
specifically known as a regular iterative algorithm, then it can be mapped algebraically onto
a systolic array structure.

A number of multimedia signal processing algorithms can be implemented using systolic
arrays. Examples include two-dimensional DCT (2D DCT), video block motion estimation,
and many others. To illustrate systolic array design methodology, consider the convolution of
a finite length sequence {h(n); 0 ≤ n ≤ M − 1} with an infinite sequence {x(n); n = 0, 1, . . .

yn =
min(n,M−1)∑

k=0

h(k)x(n − k) n = 0, 1, . . . (3.1)

This algorithm is usually implemented with a two-level nested do loop:

Algorithm 1:

For n = 0, 1, 2,...
y(n) = 0
For k = 0 to min(n,M-1),

y(n) = y(n)+h(k)*x(n-k)
end

end

It can be implemented using a systolic array containing M processing elements as depicted
in Figure 3.1. In Figure 3.1, the narrow rectangular box represents delay, and the square

 ©2001 CRC Press LLC

FIGURE 3.1
Convolution systolic array.

box represents a processing element (PE). Moreover, every PE is identical and performs its
computation in a pipelined fashion. The details of a PE are shown in Figure 3.2. In this

FIGURE 3.2
A processing element of the convolution systolic array.

figure, the circle represents arithmetic operations. The above implementation corresponds to
the following algorithm formulation:

Algorithm 2:

s(n,0) = x(n); g(n,0) = 0; n = 0, 1, 2,...
g(n,k+1) =g(n,k)+h(k)*s(n,k); n = 0, 1, 2,...; k = 0 to M-1,
s(n,k+1) = s(n,k); n = 0, 1, 2,...; k = 0 to M-1,
g(n+1,k+1) = g(n,k+1); n = 0, 1, 2,...; k = 0 to M-1,
s(n+2,k+1) = s(n,k+1); n = 0, 1, 2,...; k = 0 to M-1,
y(n) = g(n+M,M) ; n = 0, 1, 2,...

In the above formulation, n is the time index and k is the processing element index. It can
be verified manually that such a systolic architecture yields correct convolution results at the
sampling rate of x(n).

Given an algorithm represented as a nested do loop, a systolic array structure can be obtained
by the following three-step procedure:

1. Deduce a localized dependence graph of the computation algorithm. Each node of the
dependence graph represents computation of the innermost loop body of an algorithm
represented in a regular nested loop format. Each arc represents an inter-iteration de-
pendence relation. A more detailed introduction to the dependence graph will be given
later in this chapter.

2. Project each node and each arc of the dependence graph along the direction of a pro-
jection vector. The resulting geometry gives the configuration of the systolic array.

 ©2001 CRC Press LLC

3. Assign each node of the dependence graph to a schedule by projecting them along a
scheduling vector.

To illustrate this idea, let us consider the convolution example above. The dependence
graph of the convolution algorithm is shown in Figure 3.3. In this figure, the input x(n) is
from the bottom. It will propagate its value (unaltered) along the northeast direction. Each of
the coefficients {h(k)} will propagate toward the east. The partial sum of y(n) is computed
at each node and propagated toward the north. If we project this dependence graph along the
[1 0] direction, with a schedule vector [1 1], we obtain the systolic array structure shown on
the right-hand side of the figure. To be more specific, each node at coordinate (n, k) in the
dependence graph is mapped to processing element k in the systolic array. The coefficient
h(k) is stored in each PE. The projection of the dependence vector [1 1] associated with the
propagation of x(n) is mapped to a physical communication link with two delays (labeled by
2D in the right-hand portion of the figure). The dependence vector [0 1] is mapped to the
upward communication link in the systolic array with one delay. Figure 3.1 is identical to the
right side of Figure 3.3 except more details are given.

FIGURE 3.3
Dependence graph of convolution (left) and systolic array projection (right).

The systolic design methodology of mapping a dependence graph into a lower dimensional
systolic array is intimately related to the loop transformation methods developed in parallel
program compilers. A detailed description of loop transform can be found in [4].

3.2.2 Array Structures for Motion Estimation

Block motion estimation in video coding standards such as MPEG-1, 2, and 4, and H.261
and H.263 is perhaps one of the most computation-intensive multimedia operations. Hence it
is also the most implemented algorithm.

We will briefly explain block-based motion estimation using Figure 3.4. A basic assumption
of motion estimation is that there is high temporal correlation between successive frames
in video streams; hence, the content of one frame can be predicted quite well using the
contents of adjacent frames. By exploiting this temporal redundancy, one need not transmit
the predictable portion of the current frame as long as these reference frame(s) have been
successfully transmitted and decoded. Often, it is found that the effectiveness of this scheme
can be greatly enhanced if the basic unit for comparison is reduced from the entire frame to a
much smaller “block.” Often the size of a block is 16 × 16 or 8 × 8 (in the unit of pixels). This
is illustrated on the right-hand side of Figure 3.4. Let us now focus on the “current block” that
has a dotted pattern in the current frame. In the reference frame, we identify a search area that
surrounds a block having the same coordinates as the current block. The hypothesis is that
within this search area, there is an area equal to the size of the current block which best matches

 ©2001 CRC Press LLC

FIGURE 3.4
Block motion estimation.

(is similar to) the current block. Then, instead of transmitting all the pixels in the current block
of the current frame, all we need is to specify the displacement between the current block
location and the best matched blocking area on the reference frame. Then we cut-and-paste
this area from the reference frame to the locations of the current block on a reconstructed
current frame at the receiving end. Since the reference frame has been transmitted, the current
block at the current frame can be reconstructed this way without transmitting any bit in addition
to the displacement values, provided the match is perfect.

The displacement we specified above is called the motion vector. It inherits this name
from the motion estimation task in computer vision researches. However, there, the motion
estimation is performed on individual pixels, and the objective is to identify object motion
in sequential image frames. Since each pixel within the search area can be the origin of a
matching block, its coordinates become a candidate for a motion vector. If every pixel within
the search area is tested in order to find the best matching block, it is called a full-search block-
matching method. Obviously, a full search block-matching algorithm offers the best match.
But the computation cost is also extremely high. On the other hand, the matching operations
can be written in a regular six-level nested do loop algorithm. Thus, numerous systolic array
or other dedicated array architectures have been proposed. We note that there are also many
fast block-matching algorithms proposed to skip pixels in the search area in order to reduce
computation without significantly compromising matching quality. Unfortunately, most of
these fast search algorithms are too complicated for a systolic array implementation. In this
section, we will survey systolic array structures for the implementation of only the full-search
block-matching motion estimation algorithm. First, we review some notations and formulas
of this algorithm.

FBMA (Full-Search Block-Matching Algorithm)

Assume a current video frame is divided into Nh ×Nv blocks in the horizontal and vertical
directions, respectively, with each block containingN×N pixels. The most popular similarity
criterion is the mean absolute difference (MAD), defined as

MAD(m, n) = 1

N2

N−1∑
i=0

N−1∑
j=0

|x(i, j) − y(i + m, j + n)| (3.2)

 ©2001 CRC Press LLC

where x(i, j) and y(i +m, j + n) are the pixels of current frame and previous frame, respec-
tively. The motion vector (MV) corresponding to the minimum MAD within the search area
is given by

MV = arg{min MAD(m, n)} − p ≤ m, n ≤ p , (3.3)

where p is the search range parameter. We focus on the situation where the search area is a
region in the reference frame consisting of (2p + 1)2 pixels.

In the FBMA, MAD distortions between the current block and all (2p + 1)2 candidate
blocks are to be computed. The displacement that yields the minimum MAD among these
(2p+ 1)2 positions is chosen as the motion vector corresponding to the present block. For the
entire video frame, this highly regular FBMA can be described as a six-level nested do loop
algorithm, as shown below.

Algorithm 3: Six-level nested do loop of full-search
block-matching motion estimation

Do h=0 to Nh-1
Do v=0 to Nv-1

MV(h,v)=(0,0)

Dmin(h,v)=∞
Do m=-p to p (-1)
Do n=-p to p (-1)

MAD(m,n)=0
Do i=hN to hN+N-1
Do j=vN to vN+N-1

MAD(m,n)= MAD(m,n)+|x(i,j)-y(i+m,j+n)|
End do j
End do i
If Dmin(h,v) > MAD(m,n)

Dmin(h,v)=MAD(m,n)
MV(h,v)=(m,n)

End if
End do n
End do m

End do v
End do h

The frame rate for a particular resolution standard (e.g., MPEG-2, H.261) can be used as a
performance metric. Assuming that time to compute an MV of one block of N × N pixels is
Tblock, then the time to compute the whole video frame is

Tframe = NhNvTblock , (3.4)

and the frame rate Fframe is determined by

Fframe = 1

Tframe
. (3.5)

 ©2001 CRC Press LLC

Result
Local

Memory

Control Unit

Processing
Array

Synchronization

Data
Input

FIGURE 3.5
MEP block diagram.

Motion Estimation Subsystem Architecture

A generic block diagram of a motion estimation subsystem consists of a processing array,
local (on-chip) memory, and a control unit as shown in Figure 3.5.

The control unit provides the necessary clock timing signals and flags to indicate the begin-
ning and completion in processing the current block. The local memory unit not only acts as
an on-chip cache but also facilitates data reordering. The size of the local memory depends on
the specific systolic mapping performed. Based on the geometry of the processing array (in
conjunction with local memory), existing motion estimation array structures can be roughly
classified into four categories:

• 2D array

• linear array

• tree-type structure (TTS)

• hybrid

We will briefly survey each of these array structures.

2D Array Micro-Architecture

The AB2 architecture [5] shown in Figure 3.6 and its sibling AS2 (not shown) were among
the first motion estimation array structures. Subsequently, AB2 has been modified [6] to scan
the search area data sequentially in raster scan order using shift registers. This reduces the
need for a large number of input–output (I/O) pins. However, the overall processing element
utilization is rather inefficient. An improved AB2-based architecture is presented by [7]. The
movement of search area data is carefully studied so that it can exploit a spiral pattern of data
movement. On average, this processor array is able to compute two MADs in every cycle.
However, it requires a PE that is twice as complicated. This can reduce the computation latency
at the expense of more complicated PE architecture. These earlier array structures are often
derived in an ad hoc manner without employing a formal systolic array mapping strategy.

A modular semisystolic array derived by performing the systolic mapping of a six-level
nested do loop algorithm on an array is presented in [8]. First, we transform the three pairs
of indices (v, h), (m, n), (i, j) of the six-level nested do loop in Algorithm 3 to a three-level
nested do loop with indices (b, l, k), where b, l, and k represent block, search vector, and
pixel, respectively, of the entire frame. A systolic multiprojection technique [1] is then used
to project the 3D dependence graph (DG) into a linear array. Next, exploiting the fact that the
neighboring search area shares many reference frame pixels, this linear array is further folded
into a spiral 2D array as shown in Figure 3.7. In this configuration, the search area pixel y

 ©2001 CRC Press LLC

0

AD
0020 10 00

21 11 01

22 12 02

0

AD
01

AD
02

AD
12

AD
22

A A A M MV

0

AD
10

0

AD
20

AD
21

AD
11

FIGURE 3.6
AB2 architecture [5]. AD: absolute difference, A: addition, M: memory.

is broadcast to each processing element in the same column, and the current frame pixel x
is propagated along the spiral interconnection links. The constraint of N = 2p is imposed
to achieve a low I/O pin count. A simple PE is composed of only two eight-bit adders and a
comparator, as shown in Figure 3.7.

In [9] the six-level nested do loop is transformed into a two-level nested do loop, which is
then mapped into a linear array and then folded into a 2D spiral array. The resulting design has
better scalability to variable block sizes and search ranges and does not need data broadcasting.
In [10], another 2D array structure is proposed. It uses multiprojection directly to transform
the dependence graph corresponding to the six-level nested do loop into a 2D fully pipelined
systolic array. Two levels of on-chip caches are required to handle the data movements.
Furthermore, it has been shown that the previous motion estimation array architecture [6]
is a special case of this 2D array structure. In the architectures proposed in [11] and [12],
attention is paid to data movement before and after the motion estimation operations. Data
broadcasting is used to yield a semisystolic array [11]. Two sets of shift register arrays are
used to switch back and forth between two consecutive current blocks to ensure 100% PE
utilization (Figure 3.8).

Linear Array Architecture

A linear array configuration uses fewer processing elements but has a lower data throughput
rate. It is suitable for applications with a lower frame rate and lower resolution such as
videoconferencing and/or videophone. The AB1 [5] depicted in Figure 3.9 is an example of
linear array architecture.

The performance of a linear array architecture can be enhanced using data broadcasting to
reduce the pipelining latency in a systolic array where data are propagated only to its nearest
neighboring PE. In [13], it is suggested to broadcast either the current block pixels or the search
area pixels so that PEs that need these data can be computed earlier. Obviously, when the array
size grows, long global interconnection buses will be needed to facilitate data broadcasting.
This may increase the critical path delay and hence slow down the applicable clock frequency.

A hybrid SIMD (single instruction, multiple data) systolic array, consisting of four columns
of 16 PEs, has been proposed by [14]. It is essentially the collection of four independent 16 ×

 ©2001 CRC Press LLC

PE D D D
MV

D

PE PE PE

PE D D DPE PE PE

PE D D D

D

D

PE PE PE

PE

ctrl 1 ctrl 2
MUX

1 0

D D DPE PE PE

MUX
0 1

y(b,l+N-1,k-(N-1))x(b,l,k) y(b,l,k)

FIGURE 3.7
2D array with spiral interconnection (N = 4 and p = 2). PE: processing element, D:
delay, ctrl: control line, MUX: multiplexer.

1 linear arrays; hence, it should be considered as a variant of linear array architecture. More
recently, a linear array structure was reported in [15]. It is based on slicing and tiling of a 4D
DG onto a single 2D plane in order to make the projection easier. Global buses are needed to
broadcast search area data. Additional input buffers are required to reorder the input sequence
into a format suitable for the processing array. On the other hand, modules can be linearly
cascaded for better parallelism or to handle bigger block size as well as a larger search range.

Tree-Type Structure (TTS) Architecture

TTS is suitable for not only FBMA but also irregular block-matching algorithms such as
the three-step hierarchical search. Since each tree level shown in Figure 3.10 can be viewed
as a parallel pipeline stage, the latency is shorter. Nevertheless, the computation time is still
comparable to those of 1D or 2D array architectures. The problem associated with TTS is the
memory bandwidth bottleneck due to the limited number of input pins. This can be alleviated
by a method called 1/M-cut subtree, as proposed in [16], to seek a balance between memory
bandwidth and hardware complexity.

Hybrid Architecture

Several hybrid architectures proposed in the literature are now briefly reviewed.
In [17], two types (type 1 and type 2) of hybrid architectures are proposed. In these ar-

chitectures, search area data y are injected into a 2D array with tree adders in a meander-like
pattern. The type-1 architecture is similar to the AB2 array [5] shown in Figure 3.6. It imposes

 ©2001 CRC Press LLC

y

Com

Reg

MADb
x

AD A DFF

Min(MADa,MADb)

y

x

MADa

FIGURE 3.8
Diagram of an individual processing element. Reg: register, Com: compare, AD: abso-
lute difference, A: addition, DFF: D flip-flop.

AD AD AD AO

x x x

y y y

M MV

FIGURE 3.9
AB1 architecture [5]. AD: absolute difference, M: memory, -o-: delay.

the constraint that N = 2p + 1. The type-2 architecture is analogous to the AS2 array in [5].
These array architectures have registers on both the top and bottom of the processing array to
support meander-like movement of search area data.

In [17], a hybrid TTS/linear structure has been suggested. This architecture consists of a
parallel tree adder to accumulate all the partial sums calculated by a linear array of PEs. To
achieve the same throughput as a 2D array, clock frequency must be increased n times from the
2D array, where n is the degree of time-sharing. A register ring is added to accumulate SAD
after a tree adder, as reported in [18, 19]. Another hybrid architecture [20] utilizes a linear
array of N 1/2-cut subtrees with systolic accumulation instead of a single 1/32-cut subtree, as
shown in [16].

Performance Comparison

We use the following features to compare different motion estimation array architectures:

• Area and complexity

• Number of I/O ports and memory bandwidth

 ©2001 CRC Press LLC

A

D D D D

A

A

A

M

MV

x y x y x y x y

FIGURE 3.10
Tree-type structure [16]. D: absolute difference, A: addition, M: memory.

• Throughput rate of motion vectors

• Scalability to larger block size and search range

• Operating clock frequency

• Dynamic power consumption

• PE utilization

Area and complexity can be represented by the number of PEs, the micro-architecture of
an individual PE, and the number of on-chip memory units such as latches, pipeline registers,
shift registers, etc. Motion vector computation throughput rate can be determined by block
computation time. The memory bandwidth is proportional to the number of I/O ports required
by the processing array. I/O ports include current block, search area data, and motion vector
output ports. A multiple-chip solution provides the ability to support a bigger block size and
search range.

With today’s technology, a single-chip solution or subsystem solution is more practical and
cost-efficient. A few architectures can truly scale well but require a large number of fan-outs
as a result of broadcasting. Block-level PE utilization is taken into consideration rather than
the frame level. Power consumption becomes more and more important to support mobile
communication technology. The block size of N = 16 and search range of p = 8 are used as
common building blocks. In Tables 3.1 and 3.2, the performance parameters are formulated
as functions of N and p.

For simulated or fabricated layouts, important parameters such as maximum operating fre-
quency, die size, transistor count, and power consumption can be used to evaluate the perfor-
mance of each architecture in Table 3.2. For example, the bigger the die size, the more likely
lower yield becomes, leading to the higher list price. Within a certain amount of broadcasting,
the higher the transistor count, the more power is consumed. Otherwise, power consumed by
the inherent capacitance and inductance of long and wide interconnection may become more

 ©2001 CRC Press LLC

apparent. This can affect the battery time of a digital video camcorder and/or multimedia
mobile terminal.

3.3 Dedicated Micro-Architecture

3.3.1 Design Methodologies for Dedicated Micro-Architecture

A dedicated micro-architecture is a hardware implementation specifically for a given algo-
rithm. It achieves highest performance through both specialization and parallelism.

Implementation of Nonrecursive Algorithms

Any computing algorithm can be represented by a directed graph where each node represents
a task and each directed arc represents the production and consumption of data. In its most
primitive form, such a graph is called a data flow graph. Let us consider an algorithm with the
following formulation.

Algorithm 4:

tmp0= c4*(-x(3)+x(4));
y(3) = ic6*(x(3) + tmp0);
y(7) = ic2*(-x(3) + tmp0);

It can be translated into a data flow diagram as shown in Figure 3.11. In this algorithm,
three additions and three multiplication operations are performed. There are two input data
samples, x(3) and x(4), and two output data samples, y(3) and y(7). c4, ic2, and
ic6 are precomputed constant coefficients which are stored in memory and will be available
whenever needed. To implement this algorithm, one must have appropriate hardware devices
to perform addition and multiplication operations. Moreover, each device will be assigned to
perform a specific task according to a schedule. The collection of task assignment and schedule
for each of the hardware devices then constitutes an implementation of the algorithm.

FIGURE 3.11
An example of a data flow diagram.

 ©2001 CRC Press LLC

Table 3.1 Architecture Comparison for Search Range p = N/2 = 8

Architecture Search PE Computation Time I/O Ports Memory Units
Range (cycles) (8 bits) (8 bits)

Komarek and Pirsch [5]
AS1 −p/ + p 2p + 1 N(N + 2p)(2p + 1) 3 10p + 6
AB1 −p/ + p N N(N + 2p)(2p + 1) 2N + 1 2N + 1
AS2 −p/ + p N(2p + 1) N(N + 2p) N(N + 2P) 3(N + P)(3N + 2) + 1
AB2 −p/ + p N2 (N + 2p)(2p + 1) 2N + 1 2N2 + N + 1
Vos and Stegherr [17]
(2D)
2D array (type 1) −p/ + p N2 N2 4 7N2 + 2Np
Linear array −p/ + p N N(2p + 1)2 4 3N2 + 2Np
Yang et al. [13] −p/ + p − 1 N 2p(N2 + 2p) 4 4N
Hsieh and Lin [6] −p/ + p N2 (N + 2p)2 + 5 3 3N2 + (N − 1)(2p − 1)
Jehng et al. [16] −p/ + p N2/16 32(2p + 1)2 4 N2/16 + 1
Wu and Yeh [14] −p/ + p 4N 2N(2N + p) 4 N2

Nam et al. [18] & −p/ + p − 1 N (2p)2N + N + log2 N 4 8N + 1
Nam and Lee [19]
Chang et al. [15] −p + 1/ + p 2N (2p)2N 6 9N + 4p
Yeo and Hu [8] −p/ + p − 1 N2 N2 4 2N2

Pan et al. [7] −p + 1/ + p − 1 2N2 (N + 2p)(p + 3) N + 3 2N2 + 4N + 1
Chen et al. [20] −p/ + p 2N2 + 2 (2p + 2N/M)(2p + 1) 3 2N2 + 2N + 2
Lee and Lu [11] −p/ + p − 1 N2 (2p)2 4 5N2 + 2(N − 1)(N + 2p)
You and Lee [12] −p/ + p − 1 kv (2pN)2/kv 10 (N + 2p)2

Chen and Kung [10] −p/ + p N2 N2 3 2N2 + (N + 2p)2

STi3220 [21] −p/ + p − 1 N2 N2 + 46 5 2N2

Kittitornkun and Hu [9] −p/ + p (2p + 1)2 N2 4 3(2p + 1)2 + N2

Note: The number of PE corresponds to the number of arithmetic units that perform absolute difference (AD), addition (A), and
comparison (M).

 ©
2001 C

R
C

 Press L
L

C

Table 3.2 Parameter Comparison of Fabricated or Simulated Layouts
Architecture Techno. Max Freq I/O Die size Transistor Power

(µm) (MHz) Pads (mm2) Count Consum. (W)

Yang et al. [13] 1.2 25 116 3.15 × 3.13 52,000 Na.

Hsieh and Lin [6] 1.0 120 Na. Na. Na. Na.
Wu and Yeh [14] 0.8 23 65 5.40 × 4.33 86,000 Na.

Chang et al. [15] 0.8 Na. 100 6.44 × 5.26 102,000 Na.

Vos and Schobinger [22] 0.6 72 Na. 228 1,050,000 Na.
Nam and Lee [19] 0.8 50 Na. Na. Na. Na.
Chen et al. [20] 0.8 30 97 12.0 × 4.3 Na. Na.
Lee and Lu [11] 0.8 100 84 9.5 × 7.2 310,000 1.95

@ 50 MHz
Sti3220 [21] Na. 20 144 Na. Na. 2.4

@ 20 MHz
Na.: not available.

Assume that four hardware devices, two adders and two multipliers, are available. The delay
for an addition is one time unit, whereas for a multiplication it is two time units. Furthermore,
assume that after the execution of each task, the result will be stored in a temporary storage
element (e.g., a register) before it is used as the input by a subsequent task. A possible
implementation of Algorithm 4 is illustrated in Table 3.3.

Table 3.3 Implementation # 1 of Algorithm 4

In this table, each column represents one time unit, and each row represents a particular
device. The numerical number in each shaded box corresponds to the particular task in the
data flow graph. Blanked cells indicate that the corresponding device is left idle. Note that
task 2 cannot be commenced before task 1 is completed. This relationship is known as data
dependence. Also note that in time unit 4, tasks 3 and 5 are executed in both adders in parallel.
This is also the case in time units 5 to 6 where tasks 4 and 6 are executed in the two multipliers in
parallel. Thus, with a sufficient number of hardware devices, it is possible to exploit parallelism
to expedite the computation.

Suppose now that only one adder and one multiplier are available; then an implementation
will take longer to execute. An example is given in Table 3.4. Note that the total execution
time is increased from 6 to 8 time units. However, only half the hardware is needed.

Let us consider yet another possible implementation of Algorithm 4 when there is a stream
of data samples to be processed by the hardware.

 ©2001 CRC Press LLC

Table 3.4 Implementation # 2 of Algorithm 4

Algorithm 5:

for i = 1 to . . .,
tmp0(i)= c4*(x(3,i)+x(4,i));
y(3,i) = ic6*(x(3,i) + tmp0(i));
y(7,i) = ic2*(x(3,i) + tmp0(i));
end

Algorithm 5 contains an infinite loop of the same loop body as Algorithm 4. Since the
output of loop i (tmp0(i), y(3,i), y(7,i)) does not depend on the output of other
iterations, the corresponding DG of Algorithm 5 will contain infinitely many copies of the DG
of a single iteration shown in Figure 3.11. Since the DGs of different iteration index i are
independent, we need to focus on the realization of the DG of a single iteration. Then we may
duplicate the implementation of one iteration to realize other iterations. In particular, if the
input data samples x(3,i) and x(4,i) are sampled sequentially as i increases, multiple
iterations of the this algorithm can be implemented using two adders and three multipliers
(Table 3.5).

Table 3.5 Multi-Iteration Implementation # 1 of Algorithm 5

Note: Cells with the same texture or shade belong to tasks of the same iteration.

In this implementation, each type of box shading corresponds to a particular iteration in-
dex i. This implementation differs from the previous two implementations in several ways:
(1) Multiple iterations are realized on the same set of hardware devices. (2) Each adder or
multiplier performs the same task or tasks in every iteration. In other words, each task is
assigned to a hardware device statically, and the schedule is periodic. Also, note that execu-
tion of tasks of successive iterations overlap. Thus, we have an overlap schedule. (3) While
each iteration will take seven time units in total to compute, every successive iteration can
be initiated every two time units. Hence, the throughput rate of this implementation is two

 ©2001 CRC Press LLC

time units per iteration. The average duration between the initiation of successive iterations is
known as the initiation interval.

Comparing these three implementations, clearly there are trade-offs between the amount of
resource utilized (number of hardware devices, for example) and the performance (the total
delay, in this case) achieved. In general, this can be formulated as one of two constrained
optimization problems:

• Resource-constrained synthesis problem — Given the maximum amount of resources,
derive an implementation of an algorithm A such that its performance is maximized.

• Performance-constrained synthesis problem — Given the desired performance objec-
tive, derive an implementation of an algorithm A such that the total cost of hardware
resources is minimized.

The resource-constrained synthesis problem has an advantage in that it guarantees a solu-
tion as long as the available hardware resource is able to implement every required task in
algorithm A. On the other hand, given the desired performance objective, an implementation
may not exist regardless of how many hardware resources are used. For example, if the per-
formance objective is to compute the output y(3) and y(7)within four time units after input
data x(3) and x(4) are made available, then it is impossible to derive an implementation to
achieve this goal.

Implementation of Recursive Algorithms

Let us consider the following example:

Algorithm 6:

for i = 1 to . . .
y(i) = a*y(i-1) + x(i)

end

This is a recursive algorithm since the execution of the present iteration depends on the output
from the execution of a previous iteration. The data flow graph of this recursive algorithm
is shown in Figure 3.12. The dependence relations are labeled with horizontal arrows. The

FIGURE 3.12
Data flow graph of Algorithm 6.

thick arrows indicate inter-iteration dependence relations. Hence, the execution of the ith
iteration will have to wait for the completion of the (i − 1)th iteration. The data flow graph
can be conveniently expressed as an iterative computation dependence graph (ICDG) that
contains only one iteration, but label the inter-iteration dependence arc with a dependence
distance d , which is a positive integer. This is illustrated in Figure 3.13. We note that for a
nonrecursive algorithm, even if it has an infinite number of iterations (e.g., Algorithm 4), its
complete data flow graph contains separate copies of the DG of each iteration. These DGs
have no inter-iteration dependence arc linking them.

 ©2001 CRC Press LLC

FIGURE 3.13
ICDG of Algorithm 6.

A challenge in the implementation of a recursive algorithm is that one must consider the inter-
iteration dependence relations. Many design theories have been developed toward this goal [4],
[23]–[25]. The focus of study has been on the feasibility of performance-constrained synthesis.
Given a desired throughput rate (initiation interval), one wants to derive an implementation
that can achieve the desired performance using the minimum number of hardware modules.

Suppose that multiplication takes two clock cycles and addition takes one clock cycle. It is
easy to see that y(i) cannot be computed until three clock cycles after y(i) is computed. In
other words, the minimum initiation interval is (2+1) = 3 clock cycles. In a more complicated
ICDG that contains more than one tightly coupled cycle, the minimum initiation interval can
be found according to the formula

Imin = Max
k

∑
i

τi(k)

∑
j

�j (k)

where τi(k) is the computation time of the ith node of the kth cycle in the ICDG and �j(k) is
the j th inter-iteration dependence distance in the kth cycle. Let us now consider the example
in Figure 3.14. There are two cycles in the ICDG in this figure. The initiation interval can be

FIGURE 3.14
An ICDG containing two cycles.

calculated as follows:

Imin = max{(3 + 1 + 2 + 2)/(1 + 2), (3 + 2 + 2)/2} = max{8/3, 7/2} = 3.5

If the desired initiation interval is larger than the minimum initiation interval, one may consider
any efficient implementation of a single iteration of the ICDG, and then simply duplicate that
implementation to realize computations of different iterations. For example, in the case of
Algorithm 6, one may use a single adder and a multiplier module to implement the algorithm
if, say, the desired throughput rate is one data sample per four clock cycles. The corresponding
implementation is quite straightforward (Table 3.6).

Here we assume that x(i) is available at every fourth clock cycle: 4, 8, 12, Thus the
addition operation can take place only at these clock cycles. The shaded boxes in the adder
row of Table 3.6 are also labeled with the corresponding y(i) computed at the end of that

 ©2001 CRC Press LLC

Table 3.6 Implementation of Algorithm 6

Note: Initiation interval = four clock cycles.

clock cycle. The multiplication can then be performed in the immediate next two clock cycles.
However, the addition must wait until x(i) is ready.

Suppose now the desired throughput rate is increased to one sample per two clock cycles,
which is smaller than the minimum initiation interval of three clock cycles. What should
we do? The solution is to use an algorithm transformation technique known as the look-
ahead transformation. In essence, the look-ahead transformation is to substitute the iteration
expression of one iteration into the next so as to reduce the minimum initiation interval at the
expense of more computations per iteration. For example, Algorithm 6, after applying the
look-ahead transformation once, can be represented as:

Algorithm 7:

for i = 1 to . . .
y(i) = aˆ2*y(i-2) + a*x(i-1) + x(i)

end

The corresponding ICDG is displayed in Figure 3.15. The new minimum initiation interval

FIGURE 3.15
ICDG of Algorithm 7.

now becomes: (2 + 1)/2 = 1.5 < 2 clock cycles, as desired. Next, the question is how
to implement this transformed algorithm with dedicated hardware modules. To address this
question, another algorithm transformation technique called loop unrolling is very useful.
Specifically, we consider splitting the sequence {y(i)} into two subsequences {ye(i)} and
{yo(i)} such that

ye(i) = y(2i) and yo(i) = y(2i + 1).

Then the iterations in Algorithm 7 can be divided into two subiterations with ye(i) and yo(i):

Algorithm 8:

for i = 1 to . . .

 ©2001 CRC Press LLC

ye(i) = aˆ2*ye(i-1) + a*x(2i-1) + x(2i)
yo(i) = aˆ2*yo(i-1) + a*x(2i) + x(2i+1)

end

To implement Algorithm 8, we denote a new sequence

u(i) = x(i) + a ∗ x(i − 1)

Then one can see that Algorithm 8 corresponds to two independent subloops:

ye(i) = a2 ∗ ye(i − 1) + u(2i)

yo(i) = a2 ∗ yo(i − 1) + u(2i + 1)

Each of these subloops will compute at a rate twice as slow as u(i) is computed. Since x(i) is
sampled at a rate of one sample per two clock cycles, ye(i) and yo(i) each will be computed
at a rate of one sample every four clock cycles. Hence, on average, the effective throughput
rate is one sample of y(i) every two clock cycles. A possible implementation is shown in
Table 3.7.

Table 3.7 Implementation of the Loop-Unrolled ICDG of Algorithm 8

In this implementation, u(i) is computed using the adder and multiplier #1. For example,
u(3) is computed after a ∗ x(2) is computed and x(3) is available during the fifth clock cycle.
The two subloops share a common multiplier #2 and the same adder that is used to compute
u(i). Note that a2 ∗ ye(i) or a2 ∗ yo(i) is computed right after ye(i) or yo(i) is computed
in the adder. Also note that there are four clock cycles between when ye(1) and ye(2) are
computed. This is also the case between yo(1) and yo(2).

In the rest of this section, we survey a few multimedia algorithms and the corresponding
implementations.

3.3.2 Feed-Forward Direct Synthesis: Fast Discrete Cosine Transform (DCT)

Dedicated Micro-Architecture for 1D Eight-Point DCT

An N-point DCT is defined as:

y(k) = c(k)

N−1∑
n=0

cos
2πk(2n + 1)

4N
x(n) (3.6)

where c(0) = 1/
√
N and c(k) = √

(2/N), 1 ≤ k ≤ N − 1. The inverse DCT can be rewritten
as:

x(n) =
N−1∑
k=0

cos
2πk(2n + 1)

4N
c(k)y(k) (3.7)

 ©2001 CRC Press LLC

For the case of N = 8, the DCT can be written as a matrix vector product [26]

y = C8x (3.8)

The 8 × 8 matrix C8 can be factored into the product of three matrices:

C8 = P8K8B (3.9)

where P8 is a permutation matrix, and K8 is a block diagonal matrix

K8 = 1

2

G1

G1
G2

G4

 (3.10)

with G1 = cos(π/4), G2 =
[

cos(3π/8) cos(π/8)
− cos(π/8) cos(3π/8)

]
, and

G4 =

cos(5π/16) cos(9π/16) cos(3π/16) cos(π/16)
− cos(π/16) cos(5π/16) cos(9π/16) cos(3π/16)
− cos(3π/16) − cos(π/16) cos(5π/16) cos(9π/16)
− cos(9π/16) − cos(3π/16) − cos(π/16) cos(5π/16)

 (3.11)

is an anticirculant matrix. Finally, B can be further factored into the product of three matrices
consisting of 0, 1, and −1 as its entries: B = B1B2B3. Based on this factorization, Feig and
Winograd [26] proposed an efficient eight-point DCT algorithm that requires 13 multiplication
operations and 29 additions. An implementation of this algorithm in MatlabTM m-file format
is listed below.

Algorithm 9: Fast DCT Algorithm

function y=fdct(x0);
% implementation of fast DCT algorithm by Feig and Winograd
% IEEE Trans. SP, vol. 40, No. 9, pp. 2174-93, 1992.
% (c) copyright 1998, 1999 by Yu Hen Hu
%
% Note that the array index is changed from 0:7 to 1:8

% These are constants which can be stored as parameters.
C1 = 1/cos(pi/16); C2=1/cos(pi/8); C3 =1/cos(3*pi/16);
C4 = cos(pi/4);
C5 = 1/cos(5*pi/16); C6 = 1/cos(3*pi/8); C7 =1/cos(7*pi/16);

% Multiply by B3
A1 = x0(1) + x0(8); A5 = x0(1) - x0(8);
A2 = x0(2) + x0(7); A6 = x0(2) - x0(7);
A3 = x0(3) + x0(6); A7 = x0(3) - x0(6);
A4 = x0(4) + x0(5); A8 = x0(4) - x0(5);

% Multiply by B2
A9 = A1 + A4; A10 = A2 + A3;
A11 = A1 - A4; A12 = A2 - A3;

 ©2001 CRC Press LLC

% Multiply by B1
A13 = A9 + A10; A14 = A9 - A10;
% multiply by (1/2) G1
M1 = (1/2)*C4*A13; % y(1)
M2 = (1/2)*C4*A14; % y(5)
% multiply by (1/2) G2
A15 = -A12 + A11; M3 = cos(pi/4)*A15;
A20 = A12 + M3; A21 = -A12 + M3;
M6 = (1/4)*C6*A20; % y(3)
M7 = (1/4)*C2*A21; % y(7)
% Now multiply by (1/2)G4
% multiply by H_42
A16 = A8 - A5; A17 = -A7 + A5;
A18 = A8 + A6; A19 = -A17 + A18;
% Multiply by 1, G1, G2
M4 = C4*A16; M5 = C4*A19;
A22 = A17 + M5; A23 = -A17 + M5;
M8 = (1/2)*C6*A22; M9 = (1/2)*C2*A23;
% Multiply by H_41, then by Dˆ-1, and then 1/2 this is G4
% then multiply by (1/2) to make it (1/2) G4
A24 = - A7 + M4; A25 = A7 + M4;
A26 = A24 - M8; A27 = A25 + M9;
A28 = -A24 - M8; A29 = -A25 + M9;
M10 = -(1/4)*C5*A26; % y(2)
M11 = -(1/4)*C1*A27; % y(4)
M12 = (1/4)*C3*A28; % y(8)
M13 = -(1/4)*C7*A29; % y(6)

y(1) = M1; y(2) = M10; y(3) = M6; y(4) = M11;
y(5) = M2; y(6) = M13; y(7) = M7; y(8) = M12;

To support high-throughput real-time image and video coding, a DCT algorithm must be
executed at a speed that matches the I/O data rate. For example, in HDTV applications, videos
are processed at a rate of 30 frames per second, with each frame 2048 × 4096 pixels. At a
4:1:1 ratio, there can be as many as

30 × (6/4) × 2048 × 4096 × (2 × 8)/64
= 45 × 211+12+1+3−6 = 94, 371, 840 ≈ 94.5 million 8-point DCT operations

to be performed within one second. Hence, dedicated micro-architecture will be needed in
such an application.

The DG shown in Figure 3.16 completely describes the algorithm and dictates the ordering
of each operation that needs to be performed. In this figure, the inputs x(0) to x(7) are made
available at the left end and the results y(0) to y(7) are computed and made available at the right
end. Each shaded square box represents a multiplication operation, and each shaded circle
represents an addition. The open circles do not correspond to any arithmetic operations, but
are used to depict the routing of data during computation. Since the direction of dependence is
always from left to right, it is omitted in Figure 3.16 in the interests of clarity. From Figure 3.16,
it can be identified that the critical path is from any of the input nodes to M5, and from there
to any of the four output nodes y(1), y(3), y(5), and y(7). The total delay is five additions
and three multiplications.

 ©2001 CRC Press LLC

FIGURE 3.16
Dependence graph of the fast DCT algorithm.

Once a dependence graph is derived, one may directly map the DG into a dedicated hardware
implementation by (1) designating a hardware module to realize each computation node in the
DG, and (2) interconnecting these hardware modules according to the directed arcs in the DG.

Two types of hardware modules will be used here: an adder module, which takes one clock
cycle to perform an addition, and a multiplier module, which takes two clock cycles to compute
a multiplication. The mapping of the DG into a hardware module is a binding process where
each node of the DG is mapped onto one hardware module which can implement the function
to be performed on that node. A single hardware module may be used to implement one or
more nodes on the DG. As in the previous section, we assume the output of each hardware
module will be held in a register.

a. Performance-Constrained Micro-Architecture Synthesis

Suppose that one may use as many hardware modules as needed. Then, from a theoretical
point of view, one may always derive an implementation to achieve the desired throughput
rate. This is because successive eight-point DCT operations are independent of each other.
For each new arriving eight-point data sample, one can always assign a new set of hardware
modules and initiate the computation immediately. Hence the minimum initiation interval can
be made as small as possible. The only limiting factor would be the speed to redirect data
samples into appropriate hardware modules.

Next, suppose that in addition to the throughput rate, the latency (time between arrival of
data samples and when they are computed) is also bounded. The minimum latency, given
that a sufficient number of hardware modules are available, is equal to the time delay along
the critical path, which includes five addition operations and three multiplication operations.
Thus, the minimum latency is 5 × 1 + 3 × 2 = 11 clock cycles. The maximum latency is
equal to the total computing time, with every operation executed sequentially. Thus, the upper
bound of latency is 29 × 1 + 13 × 2 = 55 clock cycles.

 ©2001 CRC Press LLC

Table 3.8 shows an implementation that achieves a throughput rate of one 8-point DCT per
clock cycle and a latency of 11 clock cycles. Note that if the clock frequency is greater than
95 MHz, then this implementation can deliver the required throughput rate for HDTV main
profile performance.

The implementation is expressed in a warped format to save space. In this table, each item
Ai(1 ≤ i ≤ 29) or Mj (1 ≤ j ≤ 13) refers to a separate hardware module and should take up
a separate raw in the implementation. In Table 3.8, each entry Ai or Mj gives the schedule of
the particular hardware module corresponding to the same set of eight data samples.

Table 3.8 A Dedicated Implementation of 8-Point DCT

A1 A9 A13 M1 M1

A2 A10 A14 M2 M2

A3 A11 A15 M3 M3 A20 M6 M6

A4 A12 A21 M7 M7

A5 A16 M4 M4 A24 A26 M10 M10

A6 A17 A25 A27 M11 M11

A7 A18 A19 M5 M5 A22 M8 M8 A28 M12 M12

A8 A23 M9 M9 A29 M13 M13

Note: Throughput = 1 DCT/clock cycle, latency = 11 clock cycles.

The implementation is shown in a compact format.

In this implementation, 29 full adders and 13 pipelined multipliers are used. By pipelined
multiplier, we require each multiplication to be accomplished in two successive stages, with
each stage taking one clock cycle. A buffer between these two stages will store the intermediate
result. This way, while stage 2 is completing the second half of the multiplication of the present
iteration, stage 1 can start computing the first half of the multiplication of data from the next
iteration. Thus, with two-stage pipelined operation, such a multiplier can achieve a throughput
rate of one multiplication per clock cycle.

On the other hand, if one type of multiplier module which cannot be broken into two pipelined
stages is used, then two multipliers must be used to realize each multiplication operation in
Table 3.6 in an interleaved fashion. This is illustrated in Figure 3.17. The odd number of the
data set will use multiplier #1 while the even number of the data set will use multiplier #2. As
such, on average, two multiplication operations can be performed in two clock cycles. This
translates into an effective throughput rate of one multiplication per clock cycle. However, the
total number of multiplier modules needed will increase to 2 × 13 = 26.

FIGURE 3.17
Illustration of the difference between pipelined and interleaved multiplier implementa-
tion.

 ©2001 CRC Press LLC

Let us consider relaxing the performance constraints by lowering the throughput rate to one
8-point DCT per two clock cycles and allowing longer latency. One possible implementation,
in a compact format, is shown in Table 3.9.

Table 3.9 Eight-Point DCT Implementation

Note: Throughput rate: 1 DCT per 2 clock cycles; latency: 12 clock cycles; 15 adder modules and
13 multipliers are used.

In this implementation, we use only regular multiplier modules. If we use two-stage
pipelined multiplier modules, the number of multipliers can further be reduced to seven. In
order to minimize the number of adder modules, we choose to execute A26 and A27 (as well
as A28 and A29) sequentially. This change accounts for the additional clock cycle of latency.

b. Resource-Constrained Micro-Architecture Synthesis

In a resource-constrained synthesis problem, the number of hardware modules is given. The
objective is to maximize the performance (throughput rate) under this resource constraint. To
illustrate, let us consider the situation where only one adder module and one multiplier module
is available. In Table 3.10, the first row gives the clock-by-clock schedule for the adder module,

Table 3.10 Implementation of 8-Point DCT with 1 Adder and 1 Multiplier

and the second row gives the schedule for the multiplier module. The shaded area (M2, M6,
M7) indicates that those multiplication operations belong to the previous data set. Thus, this
is an overlapped schedule. The initiation interval is 29 clock cycles — the minimum that can
be achieved with only one adder module. The execution of the adder and the multiplier are
completely overlapped. Hence, we can conclude that this is one of the optimal solutions that
maximize the throughput rate (1 DCT in 29 clock cycles), given the resource constraint (one
adder and one multiplier module).

 ©2001 CRC Press LLC

c. Practical Implementation Considerations

In the above synthesis examples, the complexity of inter-module communication paths
(buses) is not taken into account, nor do we factor in the amount of temporary storage elements
(registers) needed to facilitate such realization.

Furthermore, in practical hardware synthesis, not all modules have the same word length.
Due to the addition and multiplication operations, the dynamic range (number of significant
digits) will increase. The adder at a later stage of computing will need more bits. Therefore,
before commencing a hardware synthesis, it is crucial to study the numerical property of
this fast DCT algorithm and determine its quantization noise level to ensure that it meets the
requirements of the standard.

Generalization to 2D Scaled DCT

In image and video coding standards such as JPEG and MPEG, a 2D DCT is to be performed
on an 8 × 8 image pixel block X:

Y = C8XCT
8 (3.12)

This corresponds to a consecutive matrix–matrix product. An array structure can be developed
to realize this operation using a systolic array. However, it would require many multipliers.
In [26], a different approach is taken. First, we note that the above formulation can be converted
into a matrix–vector product between a 64 × 64 matrix formed by the kroenecker product of
the DCT matrix, C8 ⊗ C8, and a 64 × 1 vector X formed by concatenating columns of the X
matrix. The result is a 64 × 1 vector Y that gives each column of the Y matrix:

Y = (C8 ⊗ C8)X (3.13)

The C8 matrix can be factorized, in this case, into the product as follows:

C8 = P8D8R8,1M8R8,2 (3.14)

where P8 is the same permutation matrix as in the 1D eight-point DCT algorithm. D8 is an
8 × 8 diagonal matrix; R8,1 is a matrix containing elements of 0, 1, and −1; and R8,2 is the
product of three matrices, each of which contains 0, 1, and −1 elements only.

M8 =

1
1

1
cos(π/8)

1
cos(π/8)

cos(3π/16) cos(π/16)
− cos(π/16) cos(3π/16)

(3.15)

For the kroenecker product C8 ⊗ C8, the factorization becomes

C8 ⊗ C8 = (
P8D8R8,1M8R8,2

) ⊗ (
P8D8R8,1M8R8,2

)
= [(

P8D8
) ⊗ (

P8D8
)] • [(

R8,1M8R8,2
) ⊗ (

R8,1M8R8,2
)]

(3.16)

= (
P8 ⊗ P8

) • (
D8 ⊗ D8

) • (
R8,1 ⊗ R8,1

) • (
M8 ⊗ M8

) • (
R8,2 ⊗ R8,2

)
Hence a fast 2D DCT algorithm can be developed accordingly. The hardware implementation
approach will be similar to that of 1D DCT. However, the complexity will be significantly
greater.

 ©2001 CRC Press LLC

One advantage of the factorization expression in (3.13) is that a scaled DCT can be per-
formed. Scaled DCT is very useful for JPEG image coding and MPEG intra-frame coding
standards. In these standards, the DCT coefficients will be multiplied element by element
to a quantization matrix to deemphasize visually unimportant frequency components before
applying scalar quantization. Thus, for each block, there will be 64 additional multiplication
operations performed before quantization can be applied. In effect, this quantization matrix
can be formulated as a 64 × 64 diagonal matrix W such that the scaled DCT coefficient vector

(= WY = W • (
P8 ⊗ P8

) • (
D8 ⊗ D8

) • (
R8,1 ⊗ R8,1

) • (
M8 ⊗ M8

) • (
R8,2 ⊗ R8,2

)
X

(3.17)

A complicated flow chart of the above algorithm is given in the appendix of [26]. Due to space
limitations, it is not included here. The basic ideas of designing a dedicated micro-architecture
for 2D scaled DCT will be similar to 1D DCT.

3.3.3 Feedback Direct Synthesis: Huffman Coding

In this section, we turn our attention to the dedicated micro-architecture implementation of
a different class of recursive multimedia algorithms, known as the Huffman entropy coding
algorithm.

Huffman coding encodes symbols with variable-length binary streams without a separator
symbol. It is based on the probability of symbol appearances in the vocabulary. Often the
encoding table is designed off line. During encoding, each symbol is presented to the encoder
and a variable-length bitstream is generated accordingly. This is essentially a table-lookup
procedure. The decoding procedure is more complicated: For each bit received, the decoder
must decide whether it is the end of a specific code or it is in the middle of a code. In other
words, the decoder must be realized as a sequential machine. Due to the variable-length
feature, the number of cycles to decode a codeword varies. The throughput in this case is 1 bit
per clock cycle. Let us consider a Huffman decoding example. Assume the coding table is as
in Table 3.11. Then we may derive the Mealy model state diagram, as shown in Figure 3.18.

Table 3.11 A
Huffman Coding Table

Symbol Codeword
A 0
B 10
C 1100
D 1101
E 1110
F 1111

Usually the total number of states is the total number of symbols minus 1, and the longest
cycle in the state diagram equals the longest codewords. In practical applications, such as in
JPEG or MPEG, there are a large number of symbols and long codewords. For example, in the
JPEG AC Huffman table, there are 162 symbols, and many codewords are as long as 16 bits.

Implementation of Finite State Machine

A general structure of implementing finite state machine is shown in Figure 3.19. The
state variables are implemented with flip-flops. The combinational circuits can be realized

 ©2001 CRC Press LLC

FIGURE 3.18
State diagram of the Huffman coding algorithm.

FIGURE 3.19
Finite state machine implementation of Huffman decoding algorithm.

with read-only memory (ROM), programmable logic array (PLA), or dedicated logic gates.
The design issues include: (1) how high the clock rate can go, and (2) how complicated the
combinational circuit design will be.

In the above example, there are five states (a, b, c, d, and e), which require at least three
state variables to represent. There are seven output symbols (A, B, C, D, E, F, and ——) to
be encoded in an additional 3 bits. Thus, there are at least six outputs of the combinational
circuit. In other words, the combinational circuit consists of six Boolean functions sharing the
same set of four Boolean variables (3 state variables + 1 bit input). If a ROM is used, it will
have a size of 16 words with each word containing 6 bits. Let us consider yet another example
of the JPEG AC Huffman table. The JPEG AC Huffman code contains 161 symbols and has
a codeword length smaller than or equal to 16 bits. Since the Huffman tree has 161 nodes, it
requires at least eight state variables (28 = 256 > 161). Output symbol encoding will also
require 8 bits. If a ROM is used to realize the combinational circuit, then it will have a size of
29 × (8 + 8) = 512 × 16 = 8K bits.

The above implementation using a finite state machine ensures a constant input rate in that
it consumes 1 bit each clock cycle. The number of symbols produced at the output varies.
However, on average, the number of clock cycles needed to produce a symbol is roughly equal
to the average codeword length Lavg. Asymptotically, Lavg is a good approximation of the
entropy of the underlying symbol probability distribution. If the input throughput rate is to be
increased, we may scan more than 1 bit at each clock cycle provided the input data rate is at
least twice the decoder’s internal clock rate. This will not increase the number of states, but it
will make the state transition more complicated. For example, if each time 2 bits of input data
are scanned, the corresponding state diagram will be as in Figure 3.20.

The size of the state table doubles for each additional bit being scanned in a clock cycle.
If a ROM is used to realize the state table, the number of addresses will double accordingly.
Moreover, since there can be more than one symbol in the output during each clock cycle, the

 ©2001 CRC Press LLC

FIGURE 3.20
State diagram decoding 2 bits at a time.

word length of the ROM will also be increased accordingly. Hence it is a trade-off between
hardware complexity and throughput rate.

Lei et al. [27] have proposed a constant output rate Huffman decoding method using FSM
realization. This is accomplished by scanning L bits of input at a time, with M being the
maximum codeword length. Each time, exactly one codeword is decoded. The remaining
bits, which are not part of the decoded symbols, then will be realigned and decoded again.
Let us consider the following bitstream 00110010011100100. During decoding, the decoder
scans the first 4 bits (0011) and determines that the first symbol is A(0). Next, it shifts by
1 (since A is encoded by 1 bit) and decodes the second bit as A again. Next, after shifting
another bit, its window contains 1100, which is decoded as C. The next iteration, it will shift
4 bits instead of 1 bit because the entire 1100 is used. Therefore, during each clock cycle, one
symbol is decoded. However, the rate at which the input data stream is consumed depends on
the composition of the given sequence. This process is depicted in Figure 3.21. Each double
arrow line segment indicates the 4 bits being scanned in a clock cycle. 0 : A indicates that the
left-most bit 0 is being decoded to yield the symbol A. Of course, one can be more opportunistic
by allowing more than one symbol to be decoded in each L-bit window and thereby increase
the decoding rate, at the expense of additional hardware complexity.

FIGURE 3.21
Illustration of constant symbol decoding rate Huffman decoder.

Concurrent VLC Decoding [28]

One way to further increase the coding speed is to exploit parallelism by decoding different
segments of a bitstream concurrently. Successive M-bit segments will be overlapped by an

 ©2001 CRC Press LLC

L-bit window, where M >> L and L is the maximum codeword length. Therefore, there
must be a split of two codewords within this window. In other words, in the successive M-
bitstreams, each can have at mostL different starting bit positions within thatL-bit window. By
comparing the potential starting bit position within this L-bit window of two M-bitstreams,
we can uniquely determine the actual starting point of each stream and therefore decouple
the successive streams to allow concurrent decoding. To illustrate, consider the bitstream in
Figure 3.22 and the partition into M = 10 bitstreams with an L = 4 bits overlapping window:

FIGURE 3.22
Concurrent VLC decoding.

In this figure, the dashed lines within each window indicate the legitimate codeword splitting
positions. The upper dashed lines are identified from the upper stream segments and the lower
dashed lines are from the lower stream segments. If the upper and lower splitting points
overlap, it will be accepted as a likely codeword splitting point. To elaborate, let us consider
window #1, which is the trailing window of the first upper stream segment. We note that if the
splitting point is at the position to the left of the window, then the previous 4 bits (0110) do not
correspond to any 4-bit symbols. They do contain the codeword B (10) as the last 2 bits. But
then the first 2 bits (01) must be part of a 4-bit codeword. In fact, from the Huffman table, they
must be part of the codeword 1101. Unfortunately, the 2 bits to the left of the stream (0110)
are 10 (the first 2 bits from the left). Hence, we conclude that such a split is not valid. In other
words, for each potential split position, we must trace back to the remainder of the bitstream
segment to validate if there is a legitimate split. In practical implementation, for each stream
segment, and each potential codeword splitting position in the leading window, a Huffman
decoding will be performed. If the decoder encounters an illegitimate Huffman code along
the way, the splitting point is deemed infeasible and the next potential splitting point will be
tested. If a splitting point in the leading window is consistent up to a codeword that partially
falls within the trailing window, the corresponding split position at the trailing window will
be recorded together with the splitting point in the leading window of the same segment. The
legitimate splitting points in the same window of the successive stream segments then will
be regarded as true codeword splitting points. After these points are determined, concurrent
decoding of each stream segment will commence.

3.4 Concluding Remarks

In this chapter, we surveyed implementation strategies for application-specific multimedia
signal processors. Using the application of video coding as an example, we illustrated how
each design style is applied to synthesize dedicated realization under different constraints.
Current research efforts have been focused on low-power implementation and reconfigurable
architecture. With these new research efforts, there will be more alternatives for designers to
choose.

 ©2001 CRC Press LLC

References

[1] Kung, S.Y., VLSI Array Processors. 1988, Englewood Cliffs, NJ, Prentice-Hall.

[2] Kung, S.Y., On supercomputing with systolic/wavefront array processors. Proc. IEEE,
1984. 72: p. 1054–1066.

[3] Kung, H.T., Why systolic array. IEEE Computers, 1982. 15: p. 37–46.

[4] Parhi, K.K., Algorithm transformation techniques for concurrent processors. Proc. IEEE,
1989. 77: p. 1879–1895.

[5] Komarek, T., and P. Pirsch, Array architectures for block matching algorithms. IEEE
Trans. on Circuits & Syst., 1989. 36: p. 1301–1308.

[6] Hsieh, C.H., and T. P. Lin, VLSI architecture for block motion estimation algorithm.
IEEE Trans. on Video Technol., 1992. 2(2): p. 169–175.

[7] Pan, S.B., S.S. Chae, and R.H. Park, VLSI architectures for block matching algorithm.
IEEE Trans. on Circuits Syst. Video Technol., 1996. 6(1): p. 67–73.

[8] Yeo, H., and Y.H. Hu, A novel modular systolic array architecture for full-search block
matching motion estimation. IEEE Trans. on Circuits Syst. Video Technol., 1995. 5(5):
p. 407–416.

[9] Kittitornkun, S., and Y.H. Hu, Systolic full-search block matching motion estimation
array structure. IEEE Trans. on Circuits Syst. Video Technol. (submitted), 1998.

[10] Chen, Y.-K., and S.Y. Kung, A systolic methodology with applications to full-search
block matching architectures. J. of VLSI Signal Processing, 1998. 19(1): p. 51–77.

[11] Lee, C.Y., and M.C. Lu, An efficient VLSI architecture for full-search block matching
algorithms. J. of VLSI Signal Processing, 1997. 15: p. 275–282.

[12] You, J., and S.U. Lee, High throughput, scalable VLSI architecture for block matching
motion estimation. J. of VLSI Signal Processing, 1998. 19(1): p. 39–50.

[13] Yang, K.M., M.T. Sun, and A.L. Wu, A family of VLSI designs for the motion compen-
sation block-matching algorithm. IEEE Trans. on Circuits Syst., 1989. 26(10): p. 1317–
1325.

[14] Wu, C.-M., and D.-K. Yeh, A VLSI motion estimator video image compression. IEEE
Trans. on Consumer Elec., 1993. 39(4): p. 837–846.

[15] Chang, S., J.-H. Hwang, and C.-W. Jen, Scalable array architecture design for full search
block matching. IEEE Trans. on Circuits Syst. Video Technol., 1995. 5(4): p. 332–343.

[16] Jehng, Y.-S., L.-G. Chen, and T.-D. Chiueh, An efficient and simple VLSI tree architec-
ture for motion estimation algorithms. IEEE Trans. on Signal Processing, 1993. 40(2):
p. 889–900.

[17] Vos, L.D., and M. Stegherr, Parametrizable VLSI architecture for the full-search block
matching algorithms. IEEE Trans. on Circuits Syst., 1989. 26(10): p. 1309–1316.

[18] Nam, S.H., J.S. Baek, and M.K. Lee, Flexible VLSI architecture of full search motion
estimation for video applications. IEEE Trans. on Consumer Elec., 1994. 40(2): p. 177–
184.

 ©2001 CRC Press LLC

[19] Nam, S.H., and M.K. Lee, Flexibility of motion estimator for video image compression.
IEEE Trans. on Circuits Syst., 1996. 43(6): p. 467–470.

[20] Chen, M.-J., L.-G. Chen, K.-N. Cheng, and M.C. Chen, Efficient hybrid tree/linear array
architectures for block-matching motion estimation algorithms. IEEE Proc.-Vis. Image
Signal Processing, 1996. 143(4): p. 217–222.

[21] SGS Thomson Microelectronics, STi3220 data sheet, 1994: http://www.st.com.

[22] Vos, L.D., and M. Schobinger, VLSI architecture for a flexible block matching processor.
IEEE Trans. on Circuits Syst. Video Technol., 1995. 5(5): p. 417–428.

[23] Wang, D.J., and Y.H. Hu, Fully static multiprocessor array realization of real time recur-
rence DSP applications. IEEE Trans. on Signal Processing, 1994. 42(5): p. 1288–1292.

[24] Wang, D.J., and Y.H. Hu, Rate optimal scheduling of recursive DSP algorithms by
unfolding. IEEE Trans. on Circuits Syst., 1994. 41(10): p. 672–675.

[25] Wang, D.J., and Y.H. Hu, Multiprocessor implementation of real time DSP algorithms.
IEEE Trans. on VLSI Syst., 1995. 3(3): p. 393–403.

[26] Feig, E., and S. Winograd, Fast algorithms for the discrete cosine transform. Trans. on
Signal Processing, 1992. 40(9): p. 2174–2191.

[27] Lei, S.-M., M.-T. Sun, and K.-H. Tzou, Design and hardware architecture of high-
order conditional entropy coding for images. IEEE Trans. on Video Technol., 1992. 2(2):
p. 176–186.

[28] Lin, H.D., and D.G. Messerschmitt, Designing high-throughput VLC decoder. Part II —
parallel decoding method. IEEE Trans. on Video Technol., 1992. 2: p. 197–206.

 ©2001 CRC Press LLC

	Multimedia Image and Video Processing
	Table of Contents
	Preface
	Contributors
	Chapter 1: Emerging Standards for Multimedia Applications
	1.1 Introduction
	1.2 Standards
	1.3 Fundamentals of Video Coding
	1.3.1 Transform Coding
	1.3.2 Motion Compensation
	1.3.3 Summary

	1.4 Emerging Video and Multimedia Standards
	1.4.1 H.263
	1.4.2 H.26L
	1.4.3 MPEG-4
	1.4.4 MPEG-7

	1.5 Standards for Multimedia Communication
	1.6 Conclusion
	References

	Chapter 2: An Efficient Algorithm and Architecture for Real-Time Perspective Image Warping
	2.1 Introduction
	2.2 A Fast Algorithm for Perspective Transform
	2.2.1 Perspective Transform
	2.2.2 Existing Approximation Methods
	2.2.3 Constant Denominator Method
	2.2.4 Simulation Results
	2.2.5 Sprite Warping Algorithm

	2.3 Architecture for Sprite Warping
	2.3.1 Implementation Issues
	2.3.2 Memory Bandwidth Reduction
	2.3.3 Architecture

	2.4 Conclusion
	References

	Chapter 3: Application-Specific Multimedia Processor Architecture
	3.1 Introduction
	3.1.1 Requirements of Multimedia Signal Processing (MSP) Hardware
	3.1.2 Strategies: Matching Micro-Architecture and Algorithm

	3.2 Systolic Array Structure Micro-Architecture
	3.2.1 Systolic Array Design Methodology
	3.2.2 Array Structures for Motion Estimation

	3.3 Dedicated Micro-Architecture
	3.3.1 Design Methodologies for Dedicated Micro-Architecture
	3.3.2 Feed-Forward Direct Synthesis: Fast Discrete Cosine Transform (DCT)
	3.3.3 Feedback Direct Synthesis: Huffman Coding

	3.4 Concluding Remarks
	References

