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Preface

©o eine Arbeit ird eigentlich nie fertig,
man muf fie jiir fertig erfldren,

toentnt man nad) Jeit und Umitdnbden
bas miglichjte getan Hat.

(G oethe, Caferta, 16. Marz 1787)

This book was planned in the late sixties by the second and third author
after the revival of non-Archimedean function theory. Drafts of Parts A and B
existed by 1970. They were mainly written while the authors were visiting at
the University of Maryland. However, many other commitments delayed the
completion. Fortunately in 1973 the first author joined the enterprise and gave
a new impetus to the project. The bulk of Part C is his work.*

Courses on the material covered in this book have been given by us on
several occasions. We were stimulated by our students and encouraged by
colleagues asking for a systematic presentation of this topic which finds more
and more applications in other fields of mathematics.

Parts of the manuscript were read in 1974 by J. Horvath, University of
Maryland, and by Mrs. J. SNow during her stay at Miinster in 1980. We thank
them for useful suggestions. It is our special pleasure to express our gratitude
to P. UrLricH, University of Miinster, who critically read the text at the
final stage and pointed out several flaws. He also set up the index and was of
invaluable help in proof-reading. Last not least our thanks go to Springer-
Verlag for the beautiful printing which is up to its old standards again.

Miinchen, Miinster, December 1982 S. Bosch, U. Giintzer, R. Remmert

* We thank the following institutions for granting Forschungssemester to the authors
(first author WS 77/78, WS 82/83; second author SS 73, WS 80/81; third author
WS 79/80):

«Der Minister fiir Wissenschaft und Forschung des Landes Nordrhein-Westfalen»
«Der Préasident der Freien Universitdt Berlin»
«Das Bayerische Staatsministerium fiir Unterricht und Kultus»

Substantial work on the book was done during parts of these sabbaticals.
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Introduction

The discovery of p-adic numbers by K. HENSEL in 1905 led to the creation
of the non-Archimedean completions @, of the field of rational numbers Q.
From a number theoretic point of view these fields are as natural as the Archi-
medean completion R of @. As the field R is the basis of classical analysis, so the
fields @, are the fundamentals of non-Archimedean analysis. The fields @,
are special examples of valued fields (bewertete Korper). J. KtrscHAK, 1913,
and A. OsTrowsKI, 1918, considered such fields and gave a classification.

In the twenties R. STRASSMANN and others studied power series in one
variable over the p-adic numbers. A very important paper dealing with function
theoretic problems in a general non-Archimedean setting is the paper by
W. ScuHOBE “Beitrdge zur Funktionentheorie in nichtarchimedisch bewerteten
Korpern”, Helios Verlag, Miinster 1930; unfortunately ScE6BE’s work never
really became available to the mathematical community. In the forties M. Kras-
NER started to work systematically on problems in non-Archimedean function
theory. In spite of the efforts of all these people, the topic was considered
exotic by most contemporary mathematicians.

Modern non-Archimedean function theory was born in 1961 when J. TATE
gave a seminar at Harvard entitled ‘‘Rigid Analytic Spaces’. Motivated by
the question how to characterize elliptic curves with bad reduction, he discov-
ered a new category of analytic-algebraic objects with a structure rich enough
to make possible the impossible: analytic continuation over totally discon-
nected ground fields. The notes by TATE were distributed in Paris in Spring
1962 with(out) his permission*. Incidently H. GRAUERT and the last named
author of this book were able to obtain a copy. It soon turned out that, for
complex analytically minded readers, the local part of TaTE’s new theory
could be understood very well as a partially global analogue of the WEIER-
STRASS approach to local complex function theory of several variables. This
point of view is explained in detail in [15] where the non-Archimedean WEIER-
STRASS Division and Preparation Theorems are stated and proved and used as
point of departure. The models for the new spaces and their structure algebras
were called affinoid; this word is to indicate that the models are a hybrid: they
carry affine algebraic as well as analytic algebroid features.

The affinoid spaces are the local parts of TATE’s global analytic spaces. He
considered analytic spaces (defined analogously as in the classical complex
case) and provided them with an extra ‘‘topological” structure which, from a

* Not till 9 years later were these notes published officially in the Inventiones, cf.[37]



2 Introduction

higher point of view, amounts to a non-trivial notion of connectedness, although
strictly speaking all these spaces are totally disconnected. The main idea is to
carry out analytic continuation only with respect to certain admissible open
coverings. Analytic functions are no longer considered on all open subsets of
such a space; one has to restrict oneself to admissible open sets*. TATE called
his new spaces rigid analytic spaces; this is to distinguish them from ordinary
analytic spaces which are only of very limited use over non-Archimedean
ground fields.

The definition of rigid analytic spaces was rather clumsy at the beginning.
Substantial simplifications are due to L. GERRITZEN and H. GRAUERT [12] in
the late sixties. Their notion of rattonal subdomains led to the classification of
affinoid subdomains of affinoid spaces. As a result, admissible open sets and
coverings of rigid analytic spaces became easier to handle. Simultaneously
R. K1EHL [23], [24] obtained some fundamental results on coherent modules:
the rigid analytic analogues of GRAUERT’s Direct Image Theorem and of
Theorems A and B of CarTAN and SERRE. Thereby it became clear that rigid
analytic geometry is related to algebraic geometry in the same way as is
complex analysis in the classical complex case. Namely, the methods of SERRE’s
fundamental article ‘“Géométrie Algébrique et Géométrie Analytique” carry
over to the non-Archimedean case almost verbatim; the results remain un-
changed [26].

Thus we see that, in the late sixties, TATE’s ideas had been worked out to
a considerable extent, and the new theory was ready to earn its first merits in
applications. There have been several fields of interest stemming from complex
analysis, algebraic geometry and number theory. All this is beyond the scope
of this book. However we cannot refrain from mentioning a special subject
which has attracted many rigid analysts. In the early seventies MuMFORD [27]
succeeded. in generalizing the uniformization of elliptic curves with bad reduc-
tion to curves of higher genus. The curves he considered had split degenerate
reduction; they are nowadays called SCHOTTKY or MUMFORD curves. At the
same time RayNAuD [32] indicated how to obtain the uniformization for
abelian varieties. Both MuMFORD and RAYNAUD were thinking in terms of
formal algebraic geometry over discrete valuation rings; however the relation-
ship to rigid analytic geometry was clear (see also the article [33] of Ray-
NAUD). Thus rigid analysts made efforts to set up a rigid analytic approach
towards the uniformization of algebraic curves and varieties, cf. [11], [14] and
[3]. Substantial progress was achieved. Today the subject is still of essential
interest.

The aim of this book is to develop in a systematic way affinoid and rigid
analytic geometry ab ovo. There are three parts; they are fairly independent
of each other. In Part A we are concerned with certain preliminaries and funda-
mentals of ultrametric analysis and with non-Archimedean valuations. Since

* The framework of GROTHENDIECK topologies provides a useful formalism for this
concept.



Introduction 3

ultrametric spaces are totally disconnected, there are no continuous paths.
Hence the power of line integrals is not at our disposal for the investigation of
analytic functions. Other devices of algebraic or functional analytic nature
have to be marshalled. In the literature, there is a variety of such methods
which are applied with slight variations again and again. It is one of the
main purposes of Part A to single out these tools and concepts once and for all.
To enumerate a few of them: reduction functors, the smoothing of norms and
semi-norms, spectral and supremum norms, BANAcH function algebras, and
stable fields will be most helpful. Within the framework of this systematization
we have included a detailed treatment of valuation theory from our point of
view.

In Part B the category of affinoid algebras over a given complete valued
ground field k is at the center of our considerations. The TATE algebra 7',
consisting of all strictly convergent power series in n variables (i.e., converging
on the ““closed” unit polydisc in k") is the prototype of such an algebra. It is a
proper subalgebra of the algebra of «ll power series converging about the
origin in k*. The restriction to 7', (which is surprising for complex analysts),
in conjunction with the concept of GROTHENDIECK topologies, will open the
door again to the ‘“paradise lost’ of analytic continuation (see Part C). Using
our WEIERSTRASS techniques, we show that RUCKERT’s classical results on the
structure of the ring of germs of holomorphic functions at 0 € C* carry over to
TATE algebras:

T, 1s a Noetherian factorial k-Banach algebra; all ideals wn T, arc closed.

The same methods lead to the affinoid analogue of the classical NOETHER
Normalization Lemma for finitely generated algebras. Thereby we obtain a key
result which is of indispensible value for handling general affinoid algebras. It
is needed throughout the rest of Part B for the discussion of the supremum
norm and for the finiteness of the reduction functor 4 ~> 4. Also we have
included a complete presentation of the finiteness theorem of GRAUERT REM-
MERT GRUSON for the functor 4 - 4.

In Part C we study rigid analytic spaces or rigid analytic varieties as we
prefer to call them. (In the course of the book we say ‘‘analytic’’, which is
meant as an abbreviation for ‘“‘rigid analytic”’.) First we introduce model
spaces, namely the affinoid varieties. They are just the spectra of affinoid
algebras. In terms of algebraic geometry these varieties correspond to affine
schemes; in terms of complex analysis they can be viewed as a special type of
STEIN spaces: the Acyclicity Theorem of TATE is a first step towards the
Theorem B of CArTAN and SERRE. We have paid particular attention to the
discussion of affinoid subdomains of affinoid varieties. These subdomains are
the rigid analytic analogues of the open affine subspaces of affine schemes;
they can be constructed by ‘‘analytic localization”, a process which corresponds
to ordinary localization in algebraic geometry. The GERRITZEN GRAUERT
Theorem on locally closed immersions gives a classification.

Global varieties are obtained by pasting model spaces in a certain way.
Of course, one has to specify the overlappings. In our case, the model spaces are
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the affinoid varieties, and the overlapping is described by affinoid subdomains
(more generally, by admissible open subsets of affinoid varieties). Thus, from
its construction, a global rigid analytic variety is always equipped with a
distinguished affinoid covering. This covering induces a GROTHENDIECK topol-
ogy and thereby defines the rigid structure of the analytic variety. There are
equivalent coverings, called admzissible coverings. However, not all affinoid
coverings are admissible; for an affinoid variety, the admissible coverings are
just the finite coverings by affinoid subdomains.

The discussion of rigid analytic varieties requires some formal techniques
which have to be developed judiciously; namely the theory of GROTHENDIECK
topologies, of sheaves and their CEcE cohomology. We give a self-contained
presentation which is adapted to our needs. Also we have included some sec-
tions dealing with KIEHL’s results on coherent modules. Except for the Direct
Image Theorem and the Theorem on Formal Functions, complete proofs are
given.

At the end of our book, there is a section on elliptic curves. The problem to
classify elliptic curves with bad reduction has attracted mathematicians since
the epochal paper by M. DEURING [7]; it has initiated TATE’s approach to
non-Archimedean analysis. By establishing some simple facts of rigid analytic
uniformization theory, we show that elliptic curves with bad reduction corre-
spond bijectively to one-dimensional rigid analytic tori. In contrast to TATE’s
original proof (see [34]), the necessary facts from algebraic geometry are kept to
a minimum. Although it is not the intention of the book to deal with appli-
cations, we hope to demonstrate thereby that rigid analytic geometry can act
in algebraic geometry as a powerful analytical method which is more than
just a “Glasperlenspiel”.

Reading vnstructions

There are different ways to read a book like this one, depending on the
experience and the interests of the reader. In order to get a feeling for the
subject, a novice should begin with Part B, after picking up some basic defi-
nitions from Part A if necessary. One can go through sections (5.1), (5.2),
(6.1), and maybe (6.2), and proceed then with Part C. After reading sections
(7.1) and (7.2) ((7.1.5) and (7.2.6) can be skipped), it is possible to pass on
directly to Chapter 9 if one is willing to accept the main result of (7.3) (Theorem
7.3.5/1) as well as Corollary 8.2.1/2 of TATE’s Acyclicity Theorem. The sections
(9.4) to (9.6) are not used for the discussion of elliptic curves in (9.7).
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Prerequisites

We have tried to make our presentation self-contained; besides the Open
Mapping Theorem for BANACH spaces, only some basic facts from commutative
algebra are assumed. Among these are the Lemma of ARTIN-REES and KRULL’s
Intersection Theorem (see [28], Theorems 3.7 and 3.11). In section (3.8), we
assume that the reader is familiar with the notion of integral dependence. In
almost all other cases, we have incorporated proofs for auxiliary results going
beyond the listed facts. For example, the Appendix to Part A contains a dis-
cussion of tame modules and Japanese rings.

References

There are only a few references to the literature in the text; however we
give a detailed bibliography at the end of the book. Besides a list of articles
referred to by numbers in square brackets, we have included a variety of
several other publications in non-Archimedean analysis. Some of them are
related to problems considered in this book, some go beyond it.

Most of the material we present has become standard by now. It goes with-
out saying that our treatment of the whole subject is deeply influenced by
TATE’s original notes [37], although the investigation of affinoid algebras
follows more or less the lines of the articles [15] and [16]. In addition to the
references given in the introduction, we mention the following other articles
whose ideas have served as guidelines: [20] (smoothing procedures), [2] (Lift-
ing Theorem), [19] (function algebras), [13] (finite 7',-modules), [10] (supre-
mum norm on affinoid algebras), [9] (Japaneseness of affinoid algebras),
[17] (stability), [1] (GROTHENDIECK topologies).

Cross references in the book are subject to the following conventions: the
different sections and subsections are referred to by their numbers in brackets;
theorems, propositions and definitions are cited with their numbers and
section numbers. Thus (7.3) means section (7.3), and Theorem 7.3.5/1 means
Theorem 1 in subsection (7.3.5). For cross references within a certain sub-
section, the subsection number is not repeated.



PART A

Linear Ultrametric Analysis
and Valuation Theory



CHAPTER 1

Norms and Valuations

In this chapter we are concerned with basic properties of non-Archimedean
norms and semi-norms. We look at the particular phenomena caused by the
non-Archimedean triangle inequality and give some important examples
(strictly convergent power series rings, ideal-adic semi-norms, formal power
series in countably many indeterminates). Norms and semi-norms are usually
considered on rings or modules. In order to avoid repetitions, we first study
semi-norms on groups. Then we add the multiplicative structure and continue
with semi-norms (and valuations) on rings. The smoothing procedures in
(1.3.2) as well as a first discussion of spectral values in (1.5.4) are of particular
interest for our treatment of valuation theory in Chapter 3.

The sections (1.7) on bald B-rings and (1.8) on quasi-Noetherian rings have
to be seen in the light of the articles [2], [16] and [21]. The theory of bald or
quasi-Noetherian B-rings is the basis for an alternative approach to affinoid
geometry, different from the one we have chosen in Part B. Except for the
proof of the Lifting Theorem in (2.7), we do not pursue this possibility any
further.

1.1. Semi-normed and normed groups

Let G denote an abelian group, which we shall write additively.

1.1.1. Ultrametric funetions. — We start with the basic

Definition 1. 4 function
[ |:G@—=>R,

on G with values vn the set R, of non-negative real numbers is sard to be ultrametric
if 1t has the following properties:

(@) [0 =0,
() |z — y| = max {|z|, [y]} forallx,ycG.

Condition (b) is the crucial point for all non-Archimedean function theory.
It implies the usual triangle inequality |x — y| =< lx| 4 |y|. As a matter of
fact, (b) is much stronger than this inequality; e.g., (b) immediately implies
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Proposition 2. For each positive real number r, the sets
G(r):={x e G; o] =1}, G (r):={x € G;|x| <r}
are subgroups of G.
Remark. We have G (r) = GQ°(r) ; therefore the ‘“‘residue groups”
G™(r):= @(r)/G"(r), r>0,

are well defined. These groups will turn out to be very important in our later
considerations.

The set
ker | |:= {x € G; |z| = 0}
is called the kernel of | |. Clearly,
ker| | =NG%r)=nNG ().
r>0 >0
In particular, ker | | is a subgroup of G.

Proposition 3. For all elements x, y of an abelian group G with ultrametric
function | |, we have

@) |—=yl = lyl,

(b) |z + y| = max {|z|, |y},

() |z + y| = max {||, [y}, *f || == |yl.

Proof. Inequality (b) of Definition 1 gives | —y| < max {|0], |y|}; this yields
|—y| = |y|. In the same way, we get |y| = |—y|. So we have (a).

By (a) and |& — (—y)| = max {[x], |—y|}, we get (b).

In order to prove (¢), we may assume |x| << |y|. Applying (b) of Definition 1, we
find |y| =< max {|x + y|, ||} = max {|y|, |x|}. The assumption |z| < |y| gives
max {|y|, ||} = |y|. Hence |y| = max {|x + y|, |z|}. From |z| < |y|, we deduce
ly] = |* + y|. This gives (c). O

By induction we get from (c) the so-called Principle of Domination:
Proposition 4. Let x, € G,v = 1, ..., m, such that |x,| > |x,| for ally > 1. Then

n
2
v=1

= |a,].

n
Corollary 5. If 3z, = 0, x, € G, m = 2, there exist two indices 7, j,

v=1

1 =7<j=n, such that
|i| = |2;| = max {[,]}.
1=v=n

We denote by |@| the set {|z|; x € G} = R,. The set |G| can be bounded or
even finite; e.g., |G| = {0, 1} for the trivial ultrametric function defined by
|z| := 1for all z &= 0. Obviously, for all » > 0, one has the equivalence: r € |G|

if and only if G™(r) == 0.
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Proposition 6. Let | | be an ultrametric function on G. Let | |': G — R,
be a map with 0]’ = 0 such that
x| = |y| always tmplies |x|" < |y|’, «,y €.

Then | |" vs ultrametric.

Proof. We have to show |r — y|' < max {|z|, |y|'} for all z,y € G. If
lz| = |y|, one deduces from [x — y| < max {|z|, |y|} = |y| that |z — y|
= ly|" = max {|z|’, |y|'}. If ly]| =< |x| one proceeds in exactly the same way. []

1.1.2. Filtrations. — With each ultrametric function | | on G, we associate
the function

—In |z if x| F0,
v(w) 1= .
o0 if || = 0.
An easy computation shows that v: G — IR u {oo} satisfies the following
properties:
(@) »(0) = oo,
(b") »( — y) = min {v(x), »(y)}.
Let us call each map v: @ — R u {oo} satisfying (a’) and (b’) a filtration of Q.
We have

If | | vs an ultrametric function on G, then v:= —In | | s a filtration of G.

Each filtration » of @ has the following properties (analogous to Propo-
sition 1.1.1/3):
v(—y) = »(y),
v(@ + y) = min {(x), »(y)},
v(@ + y) = min {p(z), v(y)}, if (@) F=2(y).
In applications it is sometimes convenient to use filtrations instead of

ultrametric functions. However the concepts are of equal strength, since it is
easy to pass back and forth from a filtration to an ultrametric function. Namely,

Let v be a filtration of G and let ¢ € R, 0 < ¢ << 1. Then
] 1= @, x€d,

defines an ultrametric function | | on G. For ¢:= e~ (where e = exp (1)), we
have v = —In| |.

In this book we shall always use ultrametric functions instead of filtra-
tions. This means that we adopt the ‘“‘multiplicative’” and not the “‘additive”
point of view.

1.1.3. Semi-normed and normed groups. Ultrametric topology. —

Definition 1. 4 pair (G, | |) consisting of an abelian group G and an ultra-
metric function | |: G — R, s called a semi-normed group. The pair (G, | |) s
called a normed group if ker | | = {0}.
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We often write @ instead of (G, | |), when there can be no confusion. The
function | | is referred to as the semi-norm or the norm on @, respectively.
For the rest of this subsection, G always denotes a semi-normed group.

With the definition

dz, y) := |z — y|, z,y € G,

we obtain a pseudometric topology on G' which makes @ into a topological
group; i.e., the group operation (x,y) — * — y is continuous. The group @
admits a countable neighborhood basis at 0, consisting of subgroups of G.
It is not hard to check that, conversely, every topological abelian group with
such a fundamental system of neighborhoods at 0 posesses an ultrametric
function defining the topology.

Proposition 2. The map | |: @ — R, s continuous, more precisely,
[lz| — yl| = |z — y| forall x,yc@.

Actually one has |x| = |y|, whenever |x — y| < max {|z|, |y|}. The subgroup
ker | | 7s closed wn G.

Proposition 3. G is Hausdorff if and only if G 7s a normed group.

The proofs are easy and we omit them.

The following statements show essential differences between the ultra-
metric topologies and the familiar ones of the real or complex Euclidian spaces.
These differences all come from condition (b) of Definition 1.1.1/1, which im-
plies that the metric d is ultrametric; i.e., d satisfies the additional axiom:

d(x, z) =< max {d(x, y), d(y, 2)} forall =z, y,z€Q@.

This can be stated geometrically: Each side of a triangle vs at most as long as
the longest one of the two other sides. This implies that each triangle is vsosceles, a
geometrical interpretation of Proposition 1.1.1/3(c).

To further see how the topology is influenced by condition (b) of Definition
1.1.1/1, let r > O be given. Two elements z, y € G are called r-near if d(x, y)
< r. In this case we write  ~~ y. Obviously, # ~ y if and only if x — y € G" (7).
Therefore,

The relation ~ is an equivalence relation on G.
Let
Bt(a,r):={x € G; |l — a|] <1},
B-(a,r):={x €CG;|x—a|l <r}
be the balls with center « € @ and radius » > 0 (with or without circumference,
respectively). Obviously, B~(a, r) is just the equivalence class of ~ containinga.

This implies B~(a’, r) = B~(a, r) for each a’ € B~(a, r). Similarly, one obtains
B*(a’, r) = B*(a, r) for each a’ € B*(a, r). Therefore,
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Each point of a ball is a center of this ball. In particular, all balls in G are
open.

From this we derive
Two balls in G are either disjoint or one vs contained in the other.

Indeed, if a € B, n B,, where B, and B, are balls, we may view a as the
common center of both balls. Then, of course, one ball must be contained. in the
other.

Let

S(a,r):={x €G;|lx —a| =1}

be the sphere with center ¢ € @ and radius r > 0, which is closed in G by
definition. If r ¢ |@|, this sphere is empty. We claim

Proposition 4. B~ (xz, r) = S(a, r) for each x € S(a, 7).

Proof. Let y € B-(x,r). Then |x — y| < |x — a] = r. Thus Proposition
1.1.1/3(c) implies: |y — a| = |(y — z) + (x — a)] = max {jly — z|, |[x —a|} =7}
ie., y € S(a, ). |

In particular,

Each sphere in G is open.

Moreover, since B~ (a, r) = B*(a,r) — S(a, r) and since B*(a, r) is closed,
we see that

Each ball in G s closed.
This also follows from the fact that, in a topological group, open subgroups are
always closed. Next we prove

Proposition 5. 4 normed group G is totally drsconnected (in the ultrametric
topology).

Proof. For each a € @ the connected component 7' of {a} is contained in
every open and closed neighborhood of {a}. By our previous remarks, the balls
B~(a, r) are such neighborhoods. Hence 7' = {a}. O

A group homomorphism ¢: G —> G’ between semi-normed groups is called
bounded if there is a real constant M > O such that |p(z)|]" =< M |z| for all
x € G. The homomorphism ¢ is called contractive if |@p(z)|" < |z| for all x € G.

As in the Archimedean case, one has the following connection between
continuity and boundedness.

Proposition 6. Let ¢: G — G’ be an (abstract) group homomorphism. Then:

(1) If @ 18 continuous at the origin 0 € G, then @ is continuous everywhere.
(ii) If @ is bounded, it is continuous.

In particular if @ is bijective, 1t defines an isomorphism of topological
groups between G and G’ if there are positive real numbers g, o' such that

p@)] <o lz] =<0 |p) forall x € @.
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The proof is obvious.

Note that continuous homomorphisms need not be bounded (cf. (2.1.8)).

Let @ and H be semi-normed groups and let ¢: G — H be a contractive
group homomorphism. For all » > 0, we have

@(G°(r)) = H°(r) and ¢(G"(r)) = H ().
Therefore ¢ induces a group homomorphism
@ (r): G (r) = H™(r).

It is easy to verify that G -~ G7(r) is a functor from the category of semi-
normed groups (with contractive homomorphisms as morphisms) to the cate-
gory of groups. The group G™(r) is a purely algebraic object, but nevertheless
it allows us to derive information about the semi-norm of G. This functor
(especially for r = 1) is an essential tool of non-Archimedean analysis.

1.1.4. Distance. — Let G be a semi-normed group, and let H be any sub-
group of G.

Definition 1. For each a € G, the non-negative real number
la, H| := inf |a + y|
yeEH
28 called the distance from a to H.

Obviously, |a + y, H| = |a, H| for all y€ H and |a, H| = infd(a, y).
Hence yeH
H = {xc@G;|x, H =0}.
Thus, if H is not dense in @, the function x > |z, H| is not identically zero.
For later applications we prove

Proposition 2. Let (G, | |) be a normed group and let H be a subgroup of G
which 1s ‘“‘e-dense” in G wn the following sense: there is a real number ¢ < 1
such that for each g € G there exists an h € H with |g + k| < ¢ g|.

Then H 7s dense in Q; t.e., H = G.

Proof. We may assume & > 0. Since H = {x € G; |x, H| = 0}, it is enough
to show that |z, H| = O for all « € G. Assume there is a ¢ € G such that |g, H|
> 0. Choose an h; € H such that |g + k| < &1 |g, H|; this is possible since
¢! > 1. By hypothesis there is an element h, € H such that |(g + h,) + h,|
= ¢elg + hy|. Since h; + h, € H, the inequality |g + (b, + hy)| < |g, H| is
impossible. Therefore, |z, H| = 0 for all x € G. J

1.1.5. Strietly closed subgroups. — We choose this place to introduce an
interesting notion for later use.

Definition 1. A subgroup H of a normed group (G,| |) s called strictly
closed 1f for each a € G there exists an element y, € H such that |a, H| = |a + y,|.
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Obviously, this condition can only be restrictive for elements a ¢ H, since
otherwise one may always choose y,:—= —a. Rephrasing the definition in the
language of functional analysis, we may say: H is strictly closed in G if and
only if to each a € @G there exists a ‘‘best approximation” y, in H. Notice that y,
is by no means uniquely determined.

Lemma 2. For all r > 0, the ball groups G°(r), G" (r) are strictly closed in G.
Proof. Let us restrict our attention to the case of a subgroup G°(r). Take

a € G — @°%r). Then |a| > r and therefore la + y| = |a| for all y € GOr).
Hence we may take y,:= 0. O

Since H = {x € G; |z, H| = 0}, we have

Lemma 3. Each strictly closed subgroup of a normed group s closed.

The following converse holds:

Proposition 4. Each closed subgroup H of a normed group G such that |H — {0}
s discrete vn IR — {0} vs strictly closed. In particular, if |G — {0}] s discrete in
IR, — {0}, then every closed subgroup vs strictly closed.

Proof. Obviously, it is enough to show the first assertion. For each a € G,
we have

(%) {lae + Rh|; h€ H and |a + k| > |a, H|} = |H|.

Indeed, for each h € H with |a@ + k| > |a, H|, we can find an element b’ ¢ H
such that |@ + k| > |a + h’|, and then we see

la 4+ k| = (@ + k) — (@ + k)| = |h — }'| € |H],

which proves (x). Assume now that a € G — H. Since H isclosed, this implies
|@, H| > 0. Knowing that |H — {0}] is discrete in IR, — {0}, we may deduce
from (x) that the set

{la+hl; heH and |a, H| = la + | < |a, H| + 1)

is finite. Therefore, the infimum of {|a -+ h|; b € H} is actually assumed ; i.e., H
is strictly closed. |

If |G — {0}] is not discrete, closedness does not necessarily imply strict
closedness as we shall see later. In this case the question of which closed sub-
groups of a normed group G are strictly closed is difficult to handle (being of
the type that an infimum has to be a minimum). As a matter of fact we shall
be very much concerned with this question in (2.4.2) and (5.2.7).

Lemma 5. Let G > H, > H, be normed groups such that H, ts a strictly
closed subgroup of G and H, vs a strictly closed subgroup of H,. Then H, ts also
strictly closed in G.

Proof. Let g € G be given. Then there is an h; € H, such that |g + h]
= 'g + x| forall x € H,. Furthermore, there is an h, € H, such that | —h, + h,|
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< |—n; + y| for all y € H,. We want to show
(*) lg + ho|l = lg +y| forall yeH,.
In order to do so, consider the inequalities
|9 + ho| = max {lg + P, [—h1 + hol} = max {lg + y|, [~k + yl}
forall ye€ H,.

But for all y € H,, one has |—h; + y| =< max {lg + y|, |g + M|} = lg + yl.
Thus, (%), and hence Lemma 5, has been proved. O

1.1.6. Quotient groups. — Let G denote a semi-normed group and let H
be a subgroup of @. The distance function fulfills the ultrametric inequality

@ + o', H < max {|a, H|, |a’, H|}, a,a €Q,
since for all y, ¥y’ € H we have |a + &' 4+ (y + ¥')| = max {|a + y|, |&' + ¥'|}.
Thus, we see

Proposition 1. Denote by n: G — G[H the residue epimorphism. Then
(G/H,|  |res), where

{”(x)lres = |z, H| = inf I.L"! ’
n(z’)=n(z)

18 a semi-normed group. The corresponding topology is the quotient topology.
The epitmorphism 7w is contractive. If H s closed in G, the function | | tS
a norm.

We call | |5 the residue semi-norm of G/H.

Corollary 2. If H:=Xker | |, then (G/H,| |is) %8 a normed group. More-
over, 7 18 an 1sometry; i.e., |7(x)|es = || for all x € G.

Proof of the corollary. The first statement follows from the second one. To

prove the second one, it is enough to show |x 4 y| = || for all y € ker | |,
x € G. But if |x| > 0, then |z + y| = max {|z|, |y|} = |«|. If |x| = 0, then
x + y € ker | | and therefore [x 4 y| = 0 = |«|. |

The following lemma is an immediate consequence of the definition of strict
closedness.

Lemma 3. If H us a strictly closed subgroup of a normed group G, then |G[H | eq
= |q|.

For later reference we need,

Lemma 4. Let G > H, = H, be normed groups such that H, vs a strictly closed
subgroup of G and such that H,/H, is a strictly closed subgroup of G|H,, where
both are provided with the residue norm. Then H, is also strictly closed in G.
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Proof. Let m denote the residue epimorphism =: G — G/H,. Let g € G be
given. Because s(H,;) is strictly closed in n((), there exists an k, € H; such
that |72(g) + 7(y)|pes = [(9) + 7(X)|pes = |g + x| for all x € H,. Further-
more, because H, is strictly closed in G, we can find an h, € H, such that
(g + P1) + ko] = |(g + hy) + x| for all x € H, or, equivalently, such that
l7t(g + P1)lres = lg + k1 + hs|. Finally, we get

g+ (s + ho)| = [7(g) + Aha)lres < lg + 2| forall weH,. 0O

1.1.7. Completions. — In every topological space X with pseudometricd one
has the notion of a “Cauchy sequence’”. A sequence (2,),¢n, #,€ X, isa Cauchy
sequence if and only if d(x,, z,) tends to 0 as v, u — oo. '

In a semi-normed group @, one has, due to property (b) of Definition 1.1.1/1,
the following characterization of Cauchy sequences:

Proposition 1. The sequence (a,),cn, @ € G, 18 a Cauchy sequence if and
only f |a,; — a,] tends to 0 as v — oo.

Note that this condition is not sufficient in the familiar metrics of real or
complex Euclidian spaces.

Definition 2. 4 semi-normed group G s called complete if every Cauchy se-
quence tn G has a limit vn Q.

Proposition 3. If G vs complete and if H is a subgroup of G, then G/H 1s
complele., ‘

Proof. Let n: G — G[H be the projection; let (c,) be a Cauchy sequence in
G/H. We shall construct a Cauchy sequence (a,), a, € G, such that =(a,) = c,.
Let a, be an arbitrary point in n~1(¢,). If a4, ..., a, are already determined,
choose an element aj € w~Y(c,yq — ¢,) such that |a;] =< |c,1 — €plres + i

. 1
Define a,,, = a;, + a,. Then n(a, 1) =cCp1and |a, 1 — @y =< [€pi1 — Calres —{—-’;"—.

Hence (a,) is a Cauchy sequence. Since G is complete, (a,) tends to a limit
a € G. Because the map = is continuous, (c¢,) = (n(a,)) tends to n(a) € G/H. []

Definition 4. Let G be a semi-normed group. A pair (G, ) is called a com-
pletion of G if the following conditions are fulfilled:

(i) G s a complete normed group.
(ii) 7: @ — G 1s an vsometric homomorphism.
(iii) 7(G) s dense in G.
Obviously, (i) and (ii) imply ker 7 = ker | |, where | | is the semi-norm
of G. If U is a subgroup of G and (@, 7) is a completion of G, then clearly
(Z(U), ©|U) is a completion of U, where #(U) denotes the closure of ¢(U ) in G.

Proposition 5. Each semi-normed group G admits a completion.
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Proof. Let C be the subgroup of all Cauchy sequences of the group G¥ of
all sequences of elements of G. For a = (a,),ny € C, we define
la|” = lim |a,|.
This limit exists, since “a,[ — [a,,” = |a, — a,| for all », 4 by Proposition
1.1.3/2. Obviously, (C,| |’) is a semi-normed group. Let ¢: G — C be the

isometry defined by
ar (a,a,...) €0, a € .

If a =(a),exy €C, then ¢(a,) tends to a, since |p(a,) — a|’ =lim |a, — a,
tends to 0 as v — oco. Hence ¢(@) is dense in C. p=>00
We claim that C is complete. Let (a,),cn, Gz € C, be a Cauchy sequence.

By looking at a subsequence, we may assume that |a,.; — a,|" < —. Let
n

ap = (@m)yex - There is a »(n) such that |@(a, ;) — a.]" = 1 for all » € N.
Define n

bn —_ ar”,,,(m .

We have the following estimate:

!bn+1 - bn[ = ]‘P(bn+1) - (P(bn)ll
= max {|g(bps1) — Anil’s [Gnir — aul’s |an — @)’}

Therefore, the diagonal sequence b = (b,),y is @ Cauchy sequence. Since
la, — b|” =< max {|a, — @(b,)|’, |pbs) — b|’} and since this expression tends
to 0, the sequence a, has b as limit in C. Thus, C is complete.

Set B:=ker | |. Then @:= O/B, provided with the norm | |":= ]| |les
is a normed group and the projection z: C' — G is isometric (Corollary 1.1.6/2).
Furthermore, G is complete by Proposition 3. The map t:=zmo¢: G -G
is ‘isometric, and (@) is dense in @, since ¢(@) is dense in C' and since =z is
continuous. |

Proposition 6. Let G and H be semi-normed groups, let (G, 7) (resp. (H, j)) be
a completion of G (resp. H), and let ¢ : G — H be a continuous group homomor-
phism.

(i) Then there is a unique continuous group homomorphism ¢ : G — H such
that the diagram

G—2— H
G —2 s p

commultes.
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(ii) If @ ©s bounded, then § s bounded with the same bound. If ¢ is an isometry,
80 18 . )

(iii) If G = H, (@, 7) = (H, j) and if ¢ is the identity map, then also § is the
identity. If F is a semz-normed group with a completion (F, HDand p: F — G vs

. . I A A
a contrnuous group homomorphism, then ¢ oy = @ o P.

Proof. First we have to define @. Let § be an arbitrary element of G. Then
there is a Cauchy sequence (¢,),cy in G such that i(g,) converges to §. Since ¢
is a continuous homomorphism, the image ((p(g,,+l) — (p(gn)) of the zero sequence
(gns1 — gn) is & zero sequence too. Since H is a complete normed group, the
sequence j((p(g,,)) must converge to a unique element € H which we define to
be the image of § under @. It is easy to see that f does not depend on the choice
of a particular sequence (g,) approximating §. Thus, we have defined a map
@: @ — H. Clearly ¢ is a group homomorphism and makes the diagram com-
mutative. Since ¢ is continuous, for every ¢ > 0, we can find a é > 0 such
that |g| < d implies |@(g)| = e. From the construction of ¢, one easily sees that
|§] =< 6 implies |@(§)] =< e. Thus, ¢ is continuous at the origin and hence every-
where. It is immediate that ¢ is the only continuous map from G to H making
the diagram commutative. Part (i) of the proposition is proved. Ad (ii): For
g € G choose a sequence (g,) in G such that 7(g,) converges to §. Then we

have |§(9)] = |lim j(g(g))| = lim |j(p(gs))| = lim |@(gs)| and |9 = |lim ¥(g,)|

= lim |(¢g,)| = lim |g,|, whence the assertion follows. Statement (iii) is a
n n A
straightforward consequence of the construction of ¢ (resp. ¢ and ¢ o y). |

It follows immediately from the proposition that completions are uniquely
determined up to isometric isomorphisms. Thus, we may speak of the com-
pletion G of a semi-normed group G. (In most cases, we shall consider normed
groups @. Then 7 is injective and @ can be embedded into its completion G.)
Proposition 6 may be reformulated in the following way: * is a covariant
functor of the category of semi-normed groups with continuous (resp. bounded)
homomorphisms into the category of complete normed groups with continuous
(resp. bounded) group homomorphisms.

For later reference note that the injection 7: G — G induces a group iso-
morphism ¢~(r) : @~ (r) — G~ (r), for all r > 0 (for the notation see (1.1.1)). That
is, the functor ~ does not distinguish between a group and its completion.

1.1.8. Convergent series. — In a metric space the notion of a convergent
sequence is fundamental. In a normed group G, one also has the notion of a

oo
convergent series ) a,, a, € G, meaning that the sequence of partial sums

n v=1
8, := 2 a, is convergent. The group G being Hausdorff, this limit is unique
v=1 00
and will also be denoted by J} a,.
v=1

In the following @ is always assumed to be a complete normed group.
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Proposition 1. 3 a, is convergent if and only if lim |a,] = 0.
v=1

Proof. The assertion is clear by Proposition 1.1.7/1, because s,.; — s,

= Ay D

Concerning the rearrangement of the terms of a convergent series, one gets
the following results:

[} o

Proposition 2. Let Y a,, a, € G, be a convergent seriesandlet N = U I,bea
v=1 u=1

decomposition of N wnto pairwise disjoint (finite or infinite) subsets. Then for all

[+ o0
u € N, the series 3 a, converges and we have Y a, = 3] (3 a,).

vEI[‘ v=1 u=1 VGI,,;

Proof. For all u € N, fix a specific order for the indices » € I,,. Taking the
elements a, in that order, we get a sequence, which is a finite or a zero sequence.

Hence b, := ) a, (where the sum is computed in the given order) is a well-
v€lp
defined element of G. (In Corollary 4 below we shall see that these precautions

are unnecessary, because the sum of the elements a,,» € 1,,, always has the

same value regardless of the ordering.) We have to show } a, = 2 b,. For
v=1 u=

any ¢ > 0, we can find an n € IN such that |a,| < ¢ for all » > n. Choose an

m € N such that I, u-.-ul, > {1,...,n}. Then we have ‘Zb,‘—é‘?av
=1 1

M__..
=] 2 ] <eand|b,] <efor u> m. Therefore, for all m’ = m, we can

velu--ul,,
v {L..n} m’ " o m n m’
make the followmg estimate: | 3/ b, — 3 a,|= ( 2 b — X a,) + 2 b,
o 1#=1 o =1 u=1 v==1 u=m+1
— Z’ a,| < & which yields }'b, = 3 a,. |
v=n-+1 u=1 v=1

Corollary 3. Let a,, be elements of G, for v, u € IN, such that for all ¢ > 0,
one has |a,,| < & for almost all pairs (v, u). Then one has

£(Zw)- 5 (Se)

u=1 \r=1

Proof. The elements a,, can be arranged into a zero sequence c¢;, e.g., by
some diagonal procedure. Then the series 3’ c¢; is convergent. Applying the
proposition to this series, we get the corollary. |

Now one could introduce, as usual, the notion of an absolutely convergent

oo oo

sertes — i.e., of a series ) a,suchthat 3 a,| is convergent. But, although not
1 1

all convergent series are absolutely convergent, they nevertheless behave as if

they were. Namely, we can draw the following conclusion from Proposition 2:
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Corollary 4. Let 3 a, be a convergent series and let w: IN — N be a bijection.

o0 ry=1
Then 3/ ., ts also convergent and
v=1
2 a, = Z an(v)'
v=1 r=1
Proof. Choose 1, := {n(u)} for all u € IN. Clearly this a disjoint decomposi-
tion of IN. Now Proposition 2 immediately yields the assertion. J

1.1.9. Strict homomorphisms and eompletions. — A map ¢: X —> ¥ between
topological spaces is called strict if the quotient topology on ¢(X) coincides
with the topology of ¢(X) inherited from Y. We need this concept for homo-
morphisms of semi-normed groups.

Definition 1. Let G and H be semi-normed groups. A group homomorphism
@ : @ — H 1s sard to be strict if the induced tsomorphism

¢ : G/ker ¢ — ¢(Q)

is a homeomorphism, where G|ker ¢ is provided with the quotient topology and
(@) with the topology inherited from H.

Strict group homomorphisms can be characterized as follows:

Lemma 2. 4 group homomorphism ¢: G — H between semi-normed groups is
strict if and only if ¢ is continuous and for every ¢ > O there is a real number
d > O such that, for every g € G, the tnequality |p(g)| << & vmplies |g + k| < ¢
for some k € ker g.

Proof. Denote by = : G — G/ker ¢ the canonical residue epimorphism. By
definition we have 1 o § o # = ¢, where ¢ : (@) — H is the canonical injection.
The map = is continuous, and § is continuous if and only if ¢ is continuous.
Furthermore, @ is continuous if and only if it is continuous at the point
0 € ¢(@). This is equivalent to the condition: for every ¢ > 0 there exists a
6 > 0 such that, for every g € G, the inequality |p(g)] < é implies lq‘z)‘l((p(g))[,es
< &, where | |.s denotes the residue semi-norm on G/ker ¢. Therefore, 1 is
continuous if and only if for every ¢ > 0 there is a real number § > 0 such that
lp(g)| < 6 implies the existence of an element k € ker ¢ such that |g + k| <e. [J

Proposition 3. (i) A monomorphism ¢@: G — H 7is strict if and only if
@ G — @(@) ©8 a homeomorphism.

(ii) An eptmorphism ¢ : G — H s strict if and only if 1t vs continuous and
open.

(iii) An vsomorphism ¢ : G — H 1is strict if and only if it ©s a homeomor-
phism.

Proof. Assertion (i) is immediate from the definition. Assertion (iii) is a
special case of (i). Thus we only have to show (ii). The map = : G — G/ker ¢
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is open, because, for any open U — @, the set U 4 ker ¢ is open in G. There-
fore, if @ is open, so is ¢ = @ o @. Conversely if ¢ is continuous and open, @ has
these properties too and hence @ is a homeomorphism. |

We want to study the behavior of strict homomorphisms under comple-
tion.

Proposition 4. If ¢ : @ — H s a strict group homomorphism between sema-
normed groups, then ¢ : G — H s strict too.

Proof. The homomorphism ¢ is continuous by Proposition 1.1.7/6. Let
e > 0. By Lemma 2, there exists a 6 > 0 such that |p(g)] < 6§, g € G, implies
lg + k| < & for some k € ker p. We have only to show that ¢ has the corre-
sponding property; ie., that |§(@)| < 8, § € G, implies |§ + k| < & for some
k € ker ¢. Assuming |$(9)| < 8, we choose a sequence (g,) — G such that i(g,)
converges to §, where ¢ denotes the isometric homomorphism from G into G.
According to the construction of ¢, we know that 7(<p Tn ) converges to @(g),
where j is the isometry H — H. For n large enough, we have simultaneously

g — i(gn)| < & and |p(g,)| = |7 )| < 8. Hence we can find an element
k, € ker ¢ such that |g, + k,| < . Then we get i(k,) € ker ¢ and |§ + 2(k,)|
= max {l!? - ?‘(gn)l: I?'(gn) + z(kn)‘} < & |

Proposition 5. Let ¢ : G — H be a strict group homomorphism, and consider
the commutative diagram

G—2> H
||

¥
a2 q.

Then 7 restricts to a homomorphism i’ : ker ¢ — ker ¢ such that (ker ¢, ') is
the completion of ker p. Simalarly, j restricts to a homomorphism j' : (@) — ¢(G)

——

such that (§(@), j') is the completion of p(@). In particular, we have ker ¢ = ker ¢

and (@) = $(@).

Proof. We verify the conditions of Definition 1.1.7/4. The subgroup ker ¢

— @ is closed, since the point 0 ist closed in A. Hence ker ¢ is complete with

respect to the norm on G. Furthermore, the homomorphism ¢’ : ker ¢ — ker ¢

is isometric, since 7: @ — G is. Thus, we have only to show that ¢(ker @) is

dense in ker ¢. Let § be an element of ker ¢ and choose a sequence (g,) = G

such that #(g,) converges to §j. Then we have 0 = ¢(§) = lim j((p(g,,)). Hence
n

®(g.) is a zero sequence. By Lemma 2 we can find a subsequence (g, ),y of
(9.) and a sequence (k,) — ker ¢ such that also |g, — k,| tends to zero. Since
t(g,,) tends to § and (g,,) — (k,) tends to zero, i(k,) converges to §. To verify
the remaining statement, we look at the subgroup ¢(G) of the normed group
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H. Since § is strict by Proposition 4, we see that $(@) = Q/ker ¢ is complete
(cf. Proposition 1.1.7/3). The homomorphism j': ¢(@) — $(G) is isometric,
since § is. Thus, it remains to show that the image of j’ is dense in $(@&). Let
k be an element of $(@), say h = §(9), where § € G. There exists a sequence
(g.) = G such that § = lim #(g,). Then we have

n

h = ¢(@) = lim ¢ o i(g,) = lim j o ¢(g,);
n n

i.e., h can be approximated by elements in the image of j'. Consequently, the
image of j’ is dense in ¢(G), and ($(@), j') is the completion of ¢(G). |

Corollary 6. Let F' -£» G 2+ H be an exact sequence of strict homomorphisms
between semi-normed groups. Then also the induced sequence F INY Iy - P

evact. If @: G—>H s a stricc monomorphism (resp. eptmorphism), so s
¢: @ — H.

1.2. Semi-normed and normed rings

By a ring we mean always a commutative ring with identity 1. Let 4 be
such a ring. The additive group of 4 is denoted by A+*. If (4*+,| |) is a semi-
normed group, it is natural to ask for conditions under which 4, provided
with the induced ultrametric topology, is a topological ring (i.e., the multi-
plication in 4 is continuous). Clearly this is the case if there is a real constant K
such that

-yl = K |2 -lyl, =xycd.

This condition plays a critical role because it is also necessary for the conti-
nuity of multiplication in many important cases.

1.2.1. Semi-normed and normed rings. —

Definition 1. 7he pair (4, | |) is called a semi-normed (resp. normed) ring

tf the following conditions are satisfied:
(1) A4+, ] |) #s a semi-normed (resp. normed) group.

(ii) |oyl = |l yl, =x,yed.

(iii) 1] = 1.
The function | | is called a semi-norm (resp. a norm) on A.

As in (1.1), we often write 4 instead of (4,| |) and call A semi-normed
(resp. normed). Note that ker | |isanidealin 4. Furthermore, since |1| < |1/,
we have |1| = 1 or |1| = 0. In the latter case, the semi-norm | | is identically

zZero.

The following proposition shows that the notion of a ring semi-norm is as
general as the property “|z - y| < K || - |y| for a real constant K and for all
x,y € A”.
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Proposition 2. Let | |, be a non-zero ultrametric function on the additive
group of A such that |x - y|; = K ||, - |yl for a fixed real K and for all x, y € A.
Then we have

(i) The function | |3: A — IR, given by
|y := sup {leyh - lylT'5 ¥ € 4, [yl =+ 0},

- makes A into a semv-normed ring. Furthermore, the functions | |, and | |, are
equivalent (i.e. induce the same topology on A).

(1) If a € A satisfies lax), = |a|, - |x|; for all x € 4, then |a|, = |a!; and
lax]y = |al, - |z]; for all x € A.

(iii) If a € A satvsfies |ax|; = |a|; - |x|; for all x € A and if |1, =< 1, then
aly = lals.

(iv) We have ker | |, = ker | |;; vn particular, | |, s a norm if and only
f | |1 18 @ norm.

Proof. The definition of | |, makessense, because | |; isanon-zerofunction
(in particular, |1]; &= 0) and because |vy|, = K [/, - |y|, implies |x|, < K |z
for all x € 4. We have |z|, = ||, (1|7 and, hence, |z|; =< |1|; ||, forallz € 4.
It is easy to check that (4*, ] |;) is a semi-normed group. The semi-norms
| |sand | |, define the same topology by Proposition 1.1.3/6.

We now check that conditions (ii) and (iii) of Definition 1 hold for | |,.
That |1], =1 is clear by the definition of | |,. In order to prove
lxyly =< |z|p |y]s, it is enough to verify |(xy) z|; = |x]s - |yla - |2]; for all z € 4
with |z]; &= 0. We may assume |xyz|; == 0; whence |yz|; =0 and |z|;, =0
follow. Therefore we get |(xy) z|; = x|y - |yzli = [x|s - |¥]2 * |2];. The remain-

ing statements of the proposition follow directly from the definition of | |[,.

|

Remark 1. If 4 s a field, then every non-zero semi-norm | | is a norm, be-
cause the kernel of | | must be the zero ideal.

Remark 2. Let a be an ideal in 4. Consider the quotient ring 4/a — thought
of as an additive abelian group — with the residue semi-norm | |, (cf. (1.1.6)).
A direct computation shows that (4/a, | |s) ¥ @ semi-normed ring.

Remark 3. According to Proposition 1.1.7/5, each semi-normed ring A4
admits a completon (4,| |*) when viewed as a semi-normed group. It is
easy to see that the ring multiplication on 4 induces a ring multiplication on
A and that (4, | |*) is @ normed ring.

We now give some useful estimates for semi-norms.

Proposition 3. Let | | be a semi-norm on A. Then
nf = 1

(n denotes the n-fold sum of the identity of 4). For all a, b € A, we have the
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inequality
l(@ — b)"| = max {[a”] [b*]}.
viu=n

Proof. The first assertion follows immediately from Definition 1 (iii), and
the second one follows from the first by the binomial formula: (@ — b)*
n
= 3 (—1) (”) ar="p’. |
v=0 4

Because of the property ‘“‘|n| < 1 for all » € Z”, semi-norms, as we have
defined them, are often referred to as non-Archimedean semi-norms. (Recall
that the Archimedean axiom of the real numbers says that, for each « € R,
there exists a natural number n, which is strictly greater than «.)

If | |isasemi-norm on 4, the corresponding filtration » = —In| | of the
additive group 4+ fulfills the conditions

v(1) =0, »xy) =r@) 4 2»(¥).

Let us call each filtration for which this holds a filtration of the ring A. We have

If v vs a filtration of the ring A, then for each (fixed) real ¢, 0 << e << 1, the
function | |:= & is a semi-norm on A.

1.2.2. Power-multiplicative and multiplicative elements. — The pair
(4,] |)always denotes a semi-normed ring. For each a € 4 and for all» € N,
we have |a"| < |a|®.

Definition 1. An element a € A s called power-multiplicative if
|a®| = |a|™ for all n € IN.

For filtrations, this condition reads»(a®) = n - »(a). Obviously, all powers of
a power-multiplicative element are power-multiplicative. If @ € 4 is a root of
unity and power-multiplicative, then |a| = 1if | | is not identically zero.

Proposition 2. All power-multiplicative elements of the milradical rad A of

A are elements of ker | |.

Proof. Let a be an element of rad 4; i.e., a® = 0 for some n € IN. Suppose

a is power-multiplicative. Then
0=[0 =|a* = l|a*; ie., |a]=0; ie., acker| |. O
Definition 3. An element a € A is called multiplicative (with respect to | |)

ifa ¢ ker | | and f
lax| = |a| - x| forall x€ A.

Each multiplicative element is power-multiplicative.

Proposition 4. Let ¢ be a unit in A. We suppose that | | is not identically
zero. Then |e| == 0 and |e71| = le|~1. If |e71| = |e|™1, then e 1s multiplicative.
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Proof. From 1 = |e - e71| < |e| - |e7!|, we get the first statement. Under the
assumption |e7!| = |e["!, we have |x| = |e7lex| < |e|7!|ex| for all z € 4;
whence le| - || = |e - x|. ™

The multiplicative elements of 4 form a ‘““multiplicatively closed set’ in 4 ;
i.e., if s;, s, are in this set, then s, - s, is also in this set.

Proposition 5. Let S be a multiplicatively closed subset of A comsisting of
multvplicative elements, and let As denote the ring of fractions with respect to S.
Then the semi-norm | | can be uniquely extended to As so that all elements of S
— =Il—c-l¥:for all a € A and all s € S. If | | s
s s
a norm, then the extenston s also a norm.

remarn multtplicative. One has

The proof is obvious.

1.2.3. The category 9% and the funetor 4 -~ A~. — Let N denote the
category of semi-normed rings with contractive homomorphisms as morphisms.
Often we write A € N instead of (4, | |) € N.

Since every 4 € M is also a semi-normed group, the objects A°(r) and
A’ (r), r > 0, are well-defined semi-normed groups (cf. 1.1.1). We may ask the
question: for which real numbers r > 0, are 4°(r) and A" (r) objects of N. If
r > 1, one cannot in general expect 4°(r) or A7 (r) to be closed under multi-
plication. If » << 1, the unit element is missing in 4°(r), 47 (r), and even in
A7 (1), unless the semi-norm on A is identically zero. Therefore, 4°(1) is the
only obvious candidate for a ring amongst the 4°(r) and 47 (r). Notice also
that all groups 4°(r) and A (r), r > 0, may be viewed as 4°(1)-modules.

We set A°:= A°(1), A" :=A"(1), and call 47 := A~(1) = A°/A" the
residue ring of the semi-normed ring 4. If ¢: A — B is a morphism in N, the
map ¢ (1) : A1) — B~(1) of (1.1.3) is not only a group homomorphism but
also a ring homomorphism. Thus, writing ¢” :=¢" (1), we see that 4 ~> 4~ is a
covariant functor from 9 to the category of rings. As indicated already in
(1.1.3), this functor is very important in non-Archimedean analysis. Namely,
the rings A", carrying only an algebraic structure, are easier to handle than
the rings 4, and the functor 4 ~> 4™ can be used to derive valuable informa-
tion about 4 if A~ is known. Only for some special questions must one look at
all the A™(r), r € |4 — {0}].

Finally, one should remark that the functor ~ depends heavily on the given
semi-norm. It may happen that one has two topologically equivalent norms on
a ring 4 such that the residue ring with respect to the first norm is a transcen-
dental extension of the residue ring with respect to the second one (cf. the
example given at the end of (1.4.2)).

1.2.4. Topologically nilpotent elements and eomplete normed rings. — Let
A e N.

Definition 1. An element a € A4 1is called topologically nilpotent if lim a™ = 0.
The set of all topologically nilpotent elements of A s denoted by A.
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Obviously, 4" — 4. Since 1 ¢ A (unless |[4| = {0}), we see that A4° is not,
in general, contained in A. The set A depends only on the topology of 4.

Proposition 2. The set A is a subgroup of A*, which is multiplicatively closed.
Furthermore, A is open and closed with respect to the topology of A.

Proof. Let a,b € A. Obviously, ab € A. To prove a — b € 4, let ¢ > 0 be
arbitrary. Choose M > 0 such that |@’| < M, [b’| = M for all ». There is an
integer m € IN such that |a"] < eM~1 and [b"%] < eM ! for n = m. Hence for
n = 2m, we get

l(@ — b)*| < max {|a’] [b*~*|} <&; ie, a—becA.

0sv=n
Since A” — A and since 4 is a subgroup of the topological group 4, we see
that A is open and closed in 4. O

Corollary 3. If A is complete, then A is complete.

In complete normed rings, the geometric series is a powerful tool.
Proposition 4. If A is complete, each element of the forme =1 — y, y € A,
[e o]
saunitin A. We have e* = 3 y® = 1 + z, where z € A.
0

Proof. The ring 4 being complete, we can set
vi=1+42, z:=Jy".
1

Since 4 is closed and since y* € 4 foralln > 1, we get z € 4. We have
ev=1—y)y"=1; ie., v=e. ]
0

Note that Proposition 4 remains true if one replaces 4 by 4".

Corollary 6. In a complete normed ring A, the multiplicative group E(A) of
unats 18 open. Consequently, all maximal ideals of A are closed.

Proof. For each u € E(A), we have u + ud — E(4) by Proposition 4.
Now ud is a neighborhood of 0 € 4, since the homothety z > uz is topolog-
ical. Hence E(A) is open.

Let m be a maximal ideal in 4. From m— A — E(4), we conclude
— A — E(A),since A — E(A) is closed. Since i is an ideal, we get m = . []

Another important consequence of Proposition 4 is the following ‘““Nara-
vAMA Lemma”, which allows us to derive equations from congruences modulo
topologically nilpotent elements.

Lemma 6. Let A be complete and let M be an A-module. Let N be a sub-
module of M such that there are elements xy,...,x, 1n M with the property:

M(:N—}—Z'flx,,.ThenN:M.

u=1
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Proof. By assumption there are elements c,, € A and y, € N such that
n
xV:yv+chpxy, 'V:]-,...,’n.
p=1

If we denote by x (resp. y) the column vector with entries , (resp. y,) and by
I (resp. C) the nX m-unit matrix (resp. the n X n-matrix with entries c,,), we
have

y=UI—0C)=.

If we can show that the matrix I — C is invertible, we get x = (I — C)~1 4.
Thus, z, ..., x, € N,and M — N.

Using CRAMER’s rule, it is enough to show that det(I — C) is a unit in 4.
But clearly det(I — C) is of the form 1 — ¢ with ¢ € A (since A4 is closed
under the algebraic operations performed in computing the determinant).
Hence Proposition 4 gives det(I — C) € E(A). J

Remark. An analogue of Lemma 6 is the point of departure of TATE’s
approach to non-Archimedean function theory ([37], Proposition 3.1).

1.2.5. Power-bounded elements. — The set A is not, in general, an ideal
in A. However, it is easy to introduce a subring of 4 containing 1 and having

A as an ideal.
Definition 1. An element a € A s called power-bounded f the set
{la®]; n € N} = IR, is bounded.
We denote by A tke set of all power-bounded elements of A.
Obviously A E: A, unless 4| = {0}. If | 4] is bounded, we have 4 = A. The
inclusion 4° — A is proper, in general.

Proposition 2. The set A is a subring of A and A is an ideal in A. The sub-
ring A is open and closed in A.

Proof. Let a, b € A. Choose M > 0 such that, for all n € N,
la® < M, [b" =M.

We conclude

and
(@ — by"| = max (|| [} = M.
0=v=n

Since 1 € A, we see that 4 is a subring of 4.

Hacd, bed, then |(ab)?| < |a” |b"] < la® M —+0 — ie., abe 4. So
A is an ideal in A.

A is a subgroup of 4 and contains A, which is open in 4. Hence 4 is open
and closed in 4. O
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Corollary 3. If A 7s complete, A is also complete.
The ring 4 and its ideal 4 give rise to another residue ring of 4, namely,
= A/A.

The inclusions 4° — 4, A” = 4 induce a ring homomorphism 4~ — 4, which,
in general, is not a bijection.

Proposition 4. Let ¢: A — B be a bounded ring homomorphism; <.e. ., there
exists a constant M > O such that |px)| < M |x| for all x € A. Then p(d)— B
and p(d) = B. Hence ¢ induces a ring homomorphism &: A — B.

Proof. Let a be an element of 4, and choose L > 0 such that |a®| < L for
all n € N. If M > 0 is a bound for ¢, it follows that |p(a)?| = |p(a®™)| = M |a®|
< LM;i.e., ¢(a) € B.

Let a € A. The continuity of ¢ implies

0 = ¢(0) = g(lim a") = lim (p(a)"), ie. ¢(a)€ B. |

Now it easily follows that
A > A, A € N, is a covariant functor of N tnto the category of rings.

Furthermore, we see by Proposition 4 that this is a functor even if one
allows as morphisms of N all bounded (and not only contractive) ring homo-
morphisms.

The rings A4~ and A are not topological invariants of 4. (The ring 4" is
invariant with respect to isometric automorphisms of 4; whereas, 4 is even
invariant with respect to automorphisms of 4 which are bounded in both
directions.) In order to attach a topologically invariant residue ring to each
A € N, we consider the set

={acd;ad=Ad}.

This set is a subring of 4 containing 1 and 4, which depends only on the topol-
ogy, but not on the semi-norm of 4. Obviously, 4 is the largest subring of A
containing A as an ideal. Therefore A— A. In important cases we have
equality.

_ Proposition 5. Assume that A = A" and that A contains a unit u of A. Then
A = Aj;ie., Ais the largest subring of A containing A as an ideal.

Proof. We must show 4 — A. Let a be an element of 4. As a™u € 4 for all
n € N, we conclude

la®| = |amuul| < |a™u| [u~Y < |ul|; ie., ac€ A. m

Remark. The assumption 4 = 4" is always satisfied if | | is power-
multiplicative (cf. (1.3.1)). The assumption ““4 contains a unit of 4 is ful-
filled, for example, if 4 is an algebra over a field with a non-trivial valuation

(cf. (3.1.1)).
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Detinition 6. The ring ~A := A|A is called the invariant residue ring of A.

Since 4 and A depend only on the topology and not on the semi-norm of 4,
the ring ~A4 is indeed a topological invariant of 4. The inclusion 4 — A4 induces
a ring monomorphismﬁ < A4, which, in general, is not a bijection. Proposi-
tion 5 gives a condition for 4 = ~A.

Now we shall prove some simple algebraic statements.

Proposition 7. The rings A and ~A are reduced; i.e., they have no nilpotent
elements == 0.

Proof. Let b be an element of 4. It is enough to prove that if b% € 4 for
some n = 1, then b € 4. Now b* € 4 means lim |p™| = 0. Choose M > 0 such

that |bi| < M for 0 <j < n. Each m € N can be written in the form
m=mny + j, 0 <j < mn This implies |[b™ < |b"| M, and hence [b™| — 0 as
m —>o0;ie.,be 4. O

Proposition 8. Let A € N be complete. Then an element a € A (resp. A,
resp. A°) is a unit in A (resp. A, resp. A°)~if and only if its residue class @ € A
(resp. “a € “A, resp. a~ € A”) ts a unit in A (resp. ~A, resp. A7).

Proof. If a is a unit, then @, “a and a™ are obviously units. To show the con-

verse, consider an element b € 4 with @b = 1. This means ab — 1 — x, where
x € A. From Proposition 1.2.4/4, we conclude that ab and hence a is a unit in
A. The case, wherea € A or a € A°, can be attacked in a similar way. ]

1.3. Power-multiplicative semi-norms

1.3.1. Definition and elementary properties. — Let (4,| |) € N be given.

Definition 1. The semi-norm | | is called power-multvplicative or a pm-
semi-norm tf all elements of A are power-multiplicatrve. If in additionker | | =0,
we call | | a pm-norm.

It follows immediately from Proposition 1.2.2/2 that rad 4 — ker | | for
pm-semi-norms. In particular, all rings 4 with a pm-norm are reduced; i.e.,

rad 4 = 0.

Proposition 2. Let (A, | |) and (A',] |') be given, and let | |’ be power-
multiplicative. Then every bounded ring homomorphism @: A — A’ vs a con-
traction:

lp(@)]” = la|, ac€Ad.

Proof. There exists a positive real number K with |p(a)|’ =< K |a|, a € A.
For all n € N, we have |p(a”)|’ < K |a®| < K |a|*. The pm-propertyof | |"im-
plies lp(a™)|” = (j¢(a)|')*. Hence |p(a)|'” =< K |a|® for all n € N; ie., |p(a)|
< VK |a]. Since lim JE = 1, we get ()|’ < |al. O

n—>00
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Corollary 3. Let | |, | | be pm-semi-norms on A such that there are real
numbers 9, 0’ > 0 with
| I'=el |=el TV
Then these semi-norms are equal: | | =| .

Proof. The identity map id: (4, | |) —(d4,]| |’)is an isometry by Propo-
sition 2. =

For pm-semi-normed rings 4, the associated rings 4 and their ideals 4 have
a simple characterization.

Proposition 4. If | | vs a pm-semi-norm on A, then A={acd;la <1},
A=1la€ed;la| <1} In particular, A = A°and 4 = A4".

The proof is straightforward.

Remark. If | | is a pm-semi-norm on A4 and if |4] is finite, then |4| = {0}
or |4 ={0,1},and 4 = A/ker | |.

The following proposition shows how, within the context of pm-semi-
norms, the usual triangle inequality |x + y| =< |z| + |y| is related to the non-
Archimedean triangle inequality |z — y| < max {|z|, |y|}.

Proposition 5. 4 function | |: A — R, ts a pm-semi-norm if and only if
the following conditions are satisfied for all x, y € A:
(a) [0] =0,

(b) lzy| = lz| - lyl, |2 = [z|* Jorall n=1,
(c) |z + y| = max {|z|, |y]}.

Furthermore, if | | satisfies (b), then condition (c) vs equivalent to
)z +yl = x| + |y, and |n| = 1 for all n € IN.

Proof. If | | is a semi-norm on 4, then |—z| = |z| for all x € 4 (cf. Propo-
sition 1.1.1/3). Therefore, any pm-semi-norm | | satisfies conditions (a), (b)
and (c). Conversely, assume that | | satisfies these conditions. Then |1] = [1]2
= |—1|2 by condition (b), hence [1| =<1 and |—1| = |1| =< 1. In particular,
we have x| < |—z| |—1| = |—«| and, similarly, | —z] =< || so that |x| = | —x]
for all z € 4. Thus, from (c), one deduces |x — y| < max {|z|, |y|}, and it is
clear that | | is a pm-semi-norm. It remains only to show that condition (c’)

n

implies (c) if (b) holds for | |. Using (z + y)* = 3}, (Z’) x’y" ", we get

()

=< 1. Assume |z| =< |y|. Then

n

e +y* =@+ 9 = X

CE

@yt = (4 1)y ie, oty =T+ 1yl

@] [yh | < ;O j]” |y[n

since (n) € N and therefore
»
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As lim 'i/n 4+ 1 =1, we see that

|z + yl = [yl = max {|x|, [y|}. O

1.3.2. Smoothing procedures for semi-norms. — First we describe a proce-
dure that allows us to derive a power-multiplicative semi-norm from an arbi-
trarily given semi-norm.

If | | is any semi-norm on 4, we define a new function | |': 4 — R, by
setting
|x|” : = inf |x®|1/n, x€A.
nzl

First we claim
le|” = lim |[z"|Y*  forall xz€ A.
n—-o0
Proof. Fix x € A and set g := inf |x"|V/#, Clearly, 0 < o < |z|. For each
n=1
e > 0, we can find an integer m such that |xm[U/m < o 4 ¢. Each n € N can
be written in the form n = ¢gm + r, q, r €¢ N, 0 =< r << m. This implies

T

o = (e o) = (g + W) e

Now |x"|'# tends to 1 or O forallr, 0 < r << m. Since r. 0, we get
n

o =< |xnln < o 4 2¢  for large m; ie., lim |x?V? = . -

n—o0

Now we prove

Proposition 1. The function | |': A >R, is a power-multiplicative sema-
norm on A. We have | |" = | |. The equation |a|" = |a| holds whenever a ts
power-multvplicative with respect to | |. If ¢ is multiplicative with respect to
| |, then ¢ 1s also multiplicative with respect to | |'.

Proof. The equations |0]" = 0 and |1|" =< 1 are trivial. Furthermore, we
have

lzy|" = lim |(zy)"[V* < lim (|27Y") (ly"|"") = (lim [27[/%) (lim [y ") = |x]" |y|’

n—00 n—>0c n—>o0 n—>00

for all z, y € A. Next we verify the triangle inequality (this is the only non-
trivial point in the proof). Let z, y € 4 be given. Then

l# — yl" = |(x — )" = max {Ja#] [y]}!/".
utv=n

For each n, we choose u(n) and »(n) such that
ur) +rn) =n and |[(@ — y)? < [«*™] |y*'™)|.

n
Since 0 g'“—(—) =1, we can choose a sequence (n;) — IN such that
n
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o :=lim 2 exists, where u; stands for u(n;). The limit g:= lim ﬁ, where
i—o0 T i—o0 T

v; :=v(n;), also exists, and we have o« 4+ f = 1. Now it is enough to show that

lim |g#Un < @)’ and  lim gV < |y|'5.

1—00 —>00

Namely, if ¢ > 0 is given, this yields for 7 € N big enough
(@ — y)m|tm < faftine fyntine < o] |y]"? + & = max {[2]', [y]'} + &

To verify the stated estimates, first assume « == 0. Then lim y; = oo and

1—>00
lim lxmlll'm = lim (Ja#e|LBysedm —= |g|’*,
i—00 i—00
If x = 0, we have
lim |a#lm < lim |a*i™ < 1 = |,
—00 §—>00

Hence lim |o#+|Um < |x|"* in all cases. The analogous inequality for y is proved
i—00
in the same way. Thus, | |’ isasemi-norm. The inequality | |" < | |isclear
by definition of | |.
For each z € A and each exponent m, we have

jam]! = Tim [me[1/n — Tim (jame[timeym — [o]'n;
n—o00 mn—>00 5
i.e., | |’ is power-multiplicative. |
If |a®| = |a|® for all n = 1, clearly |a*|!/® = |a|, and hence |a|’ = |a.
If ¢ is multiplicative with respect to | |, we have |(cx)?| = |c|® |2"| for all
x € A. Therefore
lex|” = lim |(cx)®*[*® = lim |c| |x*]/* = |c| lim [2*|V/? = |c¢|’ - |2|’. O
n—>00 n—>o0 n—>00
Remark. The topology induced by | | is finer (and in most cases strictly
finer) than the topology induced by | |’. The power-multiplicative semi-norm

| |"is sometimes referred to as the spectral semi-norm on 4 induced by | |.
Next we describe a device that enables us to produce multiplicative ele-

ments.

Proposition 2. Let | | be a pm-semz-norm on A and let ¢ be an element of A
such that |c| == 0. Then, for each x € A, the limit

|2c”|

||, 1= lim exists.
n—oo |C
The function | |,: A — IR, ts a power-multiplicative semi-norm on A. We
have | |, =| |. If avs multiplicative with respectto | |, then |a| = |al|., and a ts
multiplicative with respect to | |,. Moreover, ¢ s multvplicative with respect to

| | and we have |c| = |c|,.



34 Charter 1. Norms and valuations

Proof. Since |xc?| - |c|™ = |xc™tY| - je|=(»*D =0 for all n = 0, the limit
in question exists and we have ||, =< |x|. The equations [0|, =0 and |1/, = 1
are trivial. Furthermore

lzy|, = lim

Nn—>00 IC‘z

iy _ (Ixc"l e
oo \ €] el

) = |z|, |yl forall =x,yc¢€ A.

The triangle inequality follows in the same way:
— n n n|
lxr — yl, = lim [_(a:___gM = lim (max ]x_c_], W—C— ) = max {|x|., ¥l -
n e|™ n el® le|™

For each m = 1, we have

n\m nim mamn
wpm = (1im ZN" =g 2 i B
n—>00 |C|n n—00 [CJnm mn—>00 Ic]mn
All further assertions follow in the same way by direct verification. ]

1.3.3. Standard examples of norms and semi-norms. — In this section we
describe some classical examples of norms. Let 4 be an arbitrary ring We

denote by A[X] the (commutative) 4-algebra of formal power series Z' a, X’
over A inoneindeterminate X. Recall that, for f = Z a,X’, g= Z b X" ¢ A[[X 1

one has

figzoz’(a,j;b,)X", fg—Z(;( Zla’#

The polynomials Z’ a,X” form an A-subalgebra A[X] of A[XT]).
Example (a) For each polynomial p = 2 a,X* == 0, the degree

deg p := max {»; a, &= 0}

of p is a non-negative integer. If we set deg 0 := — oo, the following rules are
clear:
(i) deg p = Oif and only if p € A — {0},

(ii) deg (pg) = deg p + deg g,

(iii) deg (p — ¢) = max {deg p, deg q}.
From this we deduce that the function —deg is a filtration of the ring A[X].
Thus for any real «, « > 1, the function | |:= x9° is a norm on A[X]. We
have |p| = 1if and only if p € 4 — {0}. Furthermore, A[X]° = 4, A[X] =0,
and hence A[X]™ = 4. It is easy to see that | | is power-multiplicative vf and
only vf A is reduced.

Example (b) For each formal power series f = 3} a,X* 5= 0, the order
0

ord f:= min {»; a, = 0}
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of f is a non-negative integer. If we set ord 0:= oo, it is clear that ord is a
filtration of the ring A[[X]. Thus, for each real ¢ 0 < & << 1, the function
| |:= ¢ is a norm on A[X]. We have |f| =1 if f € 4 — {0}. Furthermore,

A[X]° =A[X], A[X] = {Z a,X"}, and hence A[X]~ = 4. As above, | |
1
18 power-multiplicative if and only if A is reduced.

The last example admits an important generalization.

Proposition 1 (a-adic semi-norm). Let A be a ring and a an ideal tn A. Define
forx € A

oo, ifx € at for all © € N,
va(x) 1= . . .
max {¢; x € at}, otherwrse.
Then v, ts a filtration of the ring A, and any assoctated semi-norm | |, = eva
(where 0 << ¢ << 1) satisfies ker | |, = N at.
i=1
Proof. We have v,(1) = 0, and », satisfies the inequalities
va(2y) = va(x) + vo(y), val® — y) = min {r,(x), v(¥)} -
Therefore | |, is a semi-norm on 4. Obviously,
ker| |q={r€ A;r(x) =00} =N at. O

i=1

Remark. The trivial semi-norm on 4 (associating the value 1 to every non-
zero element of A4) is obtained by taking a = (0).

The filtration »,, as well as the semi-norm | |, are called a-adic. In example
(b) we describe the (X)-adic norm on A[X], where (X) stands for the prin-
cipal ideal A[X] - X. '

In the next section we give an example of a norm which is basic for non-
Archimedean function theory.

1.4. Strietly eonvergent power series
Let a semi-normed ring (4, | |) be given.

1.4.1. Definition and structure of A(X). — In this section we want to look at
convergent powerseries. For our purposes the following definition isfundamental.

Definition 1. 4 formal power series Y a,X’ € A[X] s called strictly con-
vergent if 0
lim |a,| = 0.

v

We denote by A(X) the set of all strictly convergent power series over 4.
For each f = } a,X" € A(X) we set
0

lfI' :== max |a,]|.
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Proposition 2. The set A(X) is an A-subalgebra of A[X], and A = A[X]
— A(X). The function | |" is a semi-norm on A(X), which extends the semi-
norm | | on A. Furthermore, the polynomials are dense 1n A(X).

Proof. Obviously, 4 — A[X]= A(X) and |a|" = |a| for all a € 4. Let
f=2a,X* g= 3 bX"be elements of A(X). Then the inequalities |a, 4 b,]
0 0

=< max {|a,|, |b,|} = max {|f|’, |g]'} show that lim |a, +b,| =0, that f+ ¢
€ A(X) and that i
If + g|" = max |a, £ b,| = max ([, [g]').
Hence A{X) is an abelian group and | |’ is an ultrametric function on A(X).
Similarly, the inequalities
| X ab,| = max (ja,- b)) =If]"-lgI's’ 2=0,1,2,...,

u+v=1 u+v=1

show that lim | 3 a,b,| =0, that f. g € A(X) and that
A utv=21

/gl =max| X ab,| =[f"-lgl'.
A ut+rv=24

Hence 4(X) is closed under multiplication and | |’ is a semi-norm on 4(X).

m
From |f— } @,X*| =< max |a,| -0, we deduce that the polynomials are
uw>m

0
dense in 4(X). |

The semi-norm | | on A(X) is called the Gauss semi-norm on A(X) (in-
duced by | |). A motivation for this terminology will be given in (1.5.3). If
| | is trivial on 4 — i.e., if ja| = 1 for all @ &= 0 — then A(X) = A[X] and
| | is trivial on 4(X).

The kernel of the Gauss semi-norm | |’ consists of all power series of
A{X) whose coefficients are in the kernel of the semi-norm | | of 4. Hence

| |" is @ norm on A{X) if and only vf | | ?s a norm on A.
Furthermore, |[4| = |4(X)|’; i.e., no new values are added to the value set.

Proposition 3. If (4, | |[) vs complete, then (A(X), | |') is complete.

Proof. Let (f;) =| 2 a;,X“) be a Cauchy sequence in A4(X). Since
v==0 €N

|1,y — @i = |fisa — fi|” for fixed », each sequence (a;,);cy is a Cauchy se-
quence in 4. Let a, € 4 be a limit of this sequence, » =0,1,2,.... Set

f:= ) a,X” € A[X]. We have to prove that
0
f € A(X) and lim |[f — f;|" = 0.

1>

1 .. 1
We may assume |f; — f;|’ < —forallj =7, =1,2,.... From |a;, — a,,| = —
7 )
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for all j = 7, we deduce by the continuity of | | that |a, — a;,| < —1- for all
)
» =0 and all 7 € N. For » big enough, we have |a;,| < l— since f; € A(X).
)

Therefore |a,| = -l and we get f € A(X). Furthermore, we have
)

lf — fil' = max |a, — a;] = — 1 ie., f=1Ilm/f,. O

= ?

» 7

From now on we consider always the Gauss semi-norm on A(X), unless
specified otherwise. Instead of | |’, we simply write | | for this norm.

By induction we define the 4-algebra A(Xj, ..., X,) of strictly convergent
power series in n indeterminates X, ..., X,. Namely for n > 1, we set

AXy, oo X 1= A(Xy, ..y Xnit) (X,

Propositions 2 and 3 remain true mutatis mutandis.
P—
1.4.2. Strueture of A(X). — For any subset M of 4, we set
M(X):= {Z a,X* € A(X);a, € Mforally = 0},
0
If M is a subring of 4, obviously M(X) is a subring of A(X).
Proposition 1. A(X) = A(X); A(X) = A(X).

Proof. Let f = E’ a,X” be an element of 4(X), and assume that all coeffi-
cients a, are power-bounded in 4. Then, soince |(a,X*)i| = |a}|, all monomials
a,X"” are power-bounded in 4(X). Since @ is a closed subgr(zup of A(X) (cf.
Propoosition 1.2.5/2), it follows that the series f belongs t(z Z(—X\> Thus A(X)

— —_—
— A(X). Using Proposition 1.2.4/2, the inclusion 4(X)— A(X) is verified in the
same way.

Now assume that f is power-bounded in A(X). If f eI A(X), there emsts an

integer m such that a,, ¢ A. Choose m minimal. From 2 a, X’ € AX)y— A(X},
we get

m—1

g:=0apX™ + Ap X" oo =f — Za,X" € A(X>
Now g¢ is of the form a} Xmi 4 higher terms. Since |a{,| < |g?| and |gf| is
bounded, we obtain a,, € A4, which is in contradiction with the choice of m.

_ 0 —_
Thus we see that 4(X) = A(X). The inclusion 4(X)— A(X) is proved in the
same way. O
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oo

Let “: A — A denote the canonical residue epimorphism. If 3 @, X" is a
. 0o 0
series in A(X), then we have a, € 4 for almost all », and 3] @, X” may be viewed

as a polynomial in A[X]. Thus, the map 0
7. AX) -~ A[X], Y aX — YaX,
0 0

is a ring epimorphism having 4(X) as kernel. Due to Proposition 1, we can
interpret A(X) or A(X) as the set of power-bounded or topologically nilpo-
tent elements in A(X), respectively. Therefore we get

v

P e =
Proposition 2. The residue ring A(X) = A(X)/A(X) of the ring of strictly
convergent power series over A can be canonically vdentifred with the polynomial
]

~ ~ ~ ~
ring A[X] over the residue ring A of A. The residue eprmorphism A(X) — A(X)
corresponds to the extension A(X) — A[X) obtained from the residue epimorphism
A — A by mapping X to X.

As an application we prove

Proposition 3. Let A be complete. An element [ = f a, X € A(X) is a unit
in A(X) if and only if agis a unit in A and a, € A for a,lla? > 0.

Proof. According to Corollary 1.2.5/3 and Proposition 1.4.1/3, the rings 4
and A(X) = 2((%??) are complete. Hence by Proposition 1.2.5/8, we see that

<0

/= X a,X” is a unit in A(X) if and only if its residue class f = ¥ @,X” isa
0 0

unit in A[X], and likewise that a, is a unit in 4 if and only if @, is a unit in 4.
Therefore it is enough to show that any unit in A[X] is a constant polynomial
and hence a unit in 4. Let 7 be a unit in A[X] and denote by s its inverse so
that rs = 1. If 4 is an integral domain, we see from the equation deg r - deg s
— 0 that deg r — deg s = 0. Hence r is a unit in 4 in this case. Now let 4 be
arbitrary. If deg » > 0 or deg s > O, then r or s contains a (non-zero) mono-
mial xX” of degree » > 0. Choose a prime ideal p — A which does not con-
tain the coefficient x. This is possible since 4 is reduced; just take for p a
maximal element in the set of all ideals which do not contain any power of «.
Denoting by 7 and 3 the images of r and s in 4 /p[X], we have 73 = 1 and thus
deg 7 = deg 3 = 0 because A/p is an integral domain. However by our con-
struction, the monomial xX* gives rise to a (non-zero) monomial of degree
v > 0 in 7 or §; hence a contradiction. Thus we must have deg r = deg s = 0,
and r is a unit in 4. ™

Let us note that the proof of Proposition 2 also yields the result A{X)~
— A~[X] if one replaces the functor 4 ~>A4 by A ~>A~. We shall apply this
result to give an example which demonstrates that the functor 4 ~> 4~ discrim-
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inates rather strongly between two different norms on A4, even if they are
topologically equivalent. Let 4 be a normed ring such that thereisareal o > 1
with o7 ¢ |4|. Such rings do exist; for example, all discrete valuation rings
(cf. (1.6)) are of this type. On A(X) define | |; to be the usual Gauss norm
and |3 a,X’|, := max {|a,, |a;| 0, |@s| 0, -..}. Then it is not hard to check that

| o is also a ring norm on A(X) extending the norm on 4. Obviously one has
lfli = Ifla = olfl1, for all f € A(X). Therefore | |, and | |; induce the same
topology on A(X). For 7 = 1,2, set 4;:= (4(X), | |;). We want to show
that 47 is a transcendental extension of A3. In order to do so, we consider
the following statements concerning f = 3 'a, X* € A(X):

f€A; & (lag) < 1, a,] <@ lforr =1) and
FEAS & (ao < 1,1a) = o for v = 1) & (aol = 1, |a,] < g for »= 1)

(recall that o= ¢ |4|). Hence an element f = }  a,X* € A, lies in 4, if and only
if |@g] << 1. Therefore A; = A~. The identity map 4, — 4, induces an embed-
ding of 45 = A4~ into A7 = A"[X]. Thus 47 is indeed a transcendental exten-
sion of 43. |

1.4.3. Bounded homomorphisms of 4A(X). — For semi-normed rings 4
and B, let Hom,, (4, B) denote the set of all bounded ring homomorphisms
¢: A - B. For @ € Hom, (4(X), B), the restriction @|4 is an element of
Hom, (4, B),and, by Preposition 1.2.5/4, the image @(X) of the power-bounded
element X must also be power-bounded. The two objects @4 and &(X) suffice
to characterize @; more precisely, 4(X) has the following universal mapping
property:

Proposition 1. Let A and B be normed rings, where B is complete. For every
bounded ring homomorphism ¢: A — B and every power-bounded element b € B,
there is a unigque bounded ring homomorphism @: A(X) — B such that ®|A = ¢
and @®(X) =b. In other words, the map Hom, (4(X), B)—Hom, (4, B) X B
defined by @ +— (Q[A, <D(X)) s brjective.

Proof. If (a,),-, is a zero sequence in 4, then (qp(a,) b”) is a zero sequence in
B, because ¢ is bounded and b is power-bounded. Because B is complete, we
may define @3’ a,X*):= 3 ¢(a,) b*. Clearly @ is a map from A(X) to B such
that #|4 = ¢ and @(X) = b. Furthermore, for f = }, a,X?, we have

PN = (X a,.X")| = | X ¢(a) | = max {[p(a,)] [b"]}.

Choose ¢ € R, such that |p(a)] =< ¢ |a| for all a € A and such that |b*| < for
all » = 0. Then one has

|P(f)| = max {jp(a,)] [b"]} = ¢® max {ja,|} = @* /],

and hence @ is bounded. The restriction of @ to A[X] is a ring homomorphism.
" Thus, by continuity, @ must be a ring homomorphism on 4(X). If ¥is another
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element of Hom, (4(X), B) with Y|4 = ¢ and ¥(X) = b, then

P(f) = Y’(g'a,X”) = lP(lim Zn’a,X”)
v=0

n—00 v=0

—lim ¥ ( ZaX) —lim Y @)t — 3 pla)b —d(f). Ol
v=0

n—>-00 v=0 n—o0 v=0

If in addition B is an A-algebra and @ is an A-algebra homomorphism, then
one has (®|4) (@) =« -1 € B for all a € 4. So for this special case the propo-
sition may be reformulated as:

Corollary 2. Let A and B be normed rings, where B is complete. Assume that B
is an A-algebra. Then, for every power-bounded element b € B, there vs a unique
bounded A-algebra homomorphism @: A(X) — B such that ®(X) =b. In
particular, tf A s complete, the set of bounded A-algebra endomorphisms of A{X)
may be identified with A(X).

For the rest of this section, we want to study another class of bounded
A-module endomorphisms of 4(X), namely, the class of all continuous 4-deri-
vations of A(X). Recall that an 4-module endomorphism D of an 4-algebra B
is called an ‘“‘A-derivation” if D(b,b,) = D(b;) by + b,D(b,) for all b,, b, € B.
In particular, D(1) = 0 and hence D(a-1) = O for all a € A. Let Der, (B)
denote the set of all continuous 4-derivations of a normed A4-algebra B. In the
same way as the bounded A4-algebra endomorphisms of 4(X), the 4-deriva-
tions of 4(X) are already determined by their values at X. More precisely,
one can describe Der, (4(X)) as follows.

Proposition 3. The map 6: Der, (A(X)) — A(X) defined by (D) := D(X) us

bijective. All D € Der, (A(X)) are bounded with sup |D(f)|/|f| = |D(X)|.
f+0

Proof. For f = } a,X” € A(X) define 5%/ := 3 va,X*"1. One easily veri-
fies that aiX € Dery (A(X)). Nowlet D be an arbitrary derivation in Der, (4(X)).

By induction on », one gets D(X*) = vX*"1D(X) for all » = 0, and hence, by
[e. <] oo
A-linearity and continuity, D(f) = 3 a,D(X?) = } va, X" 1D(X) = (%f)D(X).
v=0 v=1 )

Thus ¢ is injective. Furthermore, we see that |D(f)| g,%/l [1D(X)]

= || |D(X)], and therefore ||D|| := sup |D(f)|/|f| =< |D(X)|. On the other hand,
740
choosing f:= X, one sees ||D||= |D(X)|; whence |D||= |D(X)|. Finally, in

order to show that J is surjective, choose g € A(X) arbitrarily and define

0
D(f):= (8_X f) g. Then D is a continuous A-derivation with D(X) = g. O
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1.5. Non-Archimedean valuations

Let A be a commutative ring with identity 1.

1.5.1. Valued rings. —

Definition 1. 4 map | |: A — R, where A== 0, vs called a (non-Archime-
dean) valuation on A if '

(@) 0] =0 and |x|>0 forall x =0,

(b) [z— y| = max {|z|, |y|},

(c) |wyl = x| - |yl

From (c) one gets |1|] < 1; hence, a valuation on A is a norm on A such that
all elements == 0 are multvplicative. The pair (4, | |) will be called a valued ring.
Condition (¢) immediately implies the following:

A valued ring is an integral domain. The ideal A is prime in A; hence A s
also an tntegral domain.

The sets |4]| and |4 — {0}| are semi-groups (with respect to multiplication).

Definition 2. 4 valuation | | is called bounded f | 4| is bounded. A valuation
| | is called degenerate if |A| — {0} u{r e R;r = 1}or|d|={reR,;r=1}. 4
valuation | | s called trivial of |A — {0} = {1}.

For fields these three notions are equivalent.

Proposition 3. Let (4, | |) be a valued ring. The valuation topology s linear
(i.e., there extists a fundamental system of nmeighborhoods of O consisting of vdeals)
if and only if | | vs degenerate.

Proof. If | | is degenerate, then | | is bounded by 1 or we have 4 = {0}.
If | | is bounded, we have 4 = 4, and each ball {zx € 4; x| < &}, e >0,
around the origin is an ideal in 4. If A = {0}, then {0} is open. Thus, in both
cases, there is a fundamental system of neighborhoods of 0 consisting of
ideals.

To show the converse, we first remark that there is an ideal a of 4 such
that a is a neighborhood of 0 and a — 4. If a = (0), there exists an ¢ > 0 such
that {x € 4; || < ¢} = {0}. Hence |x] = 1 for all x 5= 0, because otherwise
0 < |x" < & for some n. If a == (0), choose a € a, a== 0. From A -a—a —Ad,

we deduce that |4| =< |a|™!; i.e.,| |is bounded. Soin both cases,| |isdegen-
erate. 1
Proposition 4. Each valuation | | on A can be uniquely extended to a valua-

tion on the freld of fractions Q of A.

Proof. By definition, @ equals the ring of fractions 4 ,_, of 4 with respect
to the multiplicative system 4 — {0}. Since 4 — {0} is the set of multiplicative
elements of (4,| |), the assertion follows from Proposition 1.2.2/5. |

The completion (4, | |") of a valued ring (resp. valued field) is a valued ring
(resp. valued field). The proof is obvious.
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1.5.2. Examples. — If 4 is a finite integral domain, i.e., a finite field, there
exists only the trivial valuation on 4, as follows immediately from the remark
following Proposition 1.3.1/4.

If v is a filtration of a ring 4 and if | | = «*, where 0 < x < 1, is a corre-
sponding semi-norm, then | |is a valuation if and only if » satisfies the follow-
ing conditions:

(%) v(x) =c0ccx=0, x4,

(%) v(xy) = »(x) +2(y), =, ycd.

From this we deduce

Proposition 1. Let A be any commutative ring. Let | | denote the norm on
A[X] (resp. A[X]) defined by the degree function deg (resp. by the order function
ord), cf. (1.3.3). Then | | vs a valuation vf and only tf A 1s an integral domain.

Proof. One has only to realize that the function —deg (resp. ord) fulfills

equation (%) if and only if A has no zero divisors == 0. |
Remark. Let « € R, 0 < « < 1. The valuation | | = «9 on A[X] is
degenerate but not bounded. The valuation | | = «°™® on A[X] is bounded

but not trivial.
Further examples of valuations are obtained by looking at special a-adic
semi-norms, as introduced in Proposition 1.3.3/1.

Proposition 2. Let p be a principal prime ideal vn an integral domain A such

that N p* = 0. (Note that this condition is always fulfilled if A s factorial or
rv=1

Noctherian.) Then the p-adic filtration v, of A induces a bounded valuation.

Proof. We only have to verify (+*) for »,. Let p = Ap for some element p € 4.
Write x = zgp*»' @, y = yp*»?), where x,, yo ¢ 9. Then xy = (xyy,) p'»' @ T+p'»
and xoy, ¢ p. Hence vy(xy) = vy(x) + vy(y)- O

The following converse holds for principal ideal domains.

Proposition 3. Let A be a principal ideal domain. Then each bounded valuation
of A is a p-adic one.

Proof. Let | | be a bounded valuation. Then A— 4. Hence p:= 4 is a
prime ideal in 4. By assumption p is principal: p= Ap. Set ¢ := |p|. Obviously
0 <¢ < 1. Let x € A be arbitrary, x &= 0. Write x = xp*»"®, where z, ¢ p.
Then |xy| = 1 and |x|= &»®. Thus | | is p-adic. Note that | | is trivial if
e = |p] =0. 1

Looking at the ring Z of integers, the non-zero prime ideals are just the
ideals pZ, where p € N is a prime. We say p-adic instead of (pZ)-adic.

Corollary 4. The non-trivial (non-Archimedean) valuations on Z are exactly
the p-adic ones, where p runs through all prime numbers.
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Proof. Since |n| < 1 for each n € Z by Proposition 1.2.1/3, we may apply
Proposition 3. |

Corollary 5. Let k[X] be the polynomial ring tn one indeterminate over a
field k. The p-adic valuations on k[ X] are exactly those which are trivial on k and
assoctate a value < 1 to X.

Proof. Since k[ X] is a principal ideal domain, one only has to remark that a
valuation of k[X] is bounded if and only if its restriction to k is trivial and
if |1 X] < 1. 1

Remark. If k is algebraically closed, the non-zero prime ideals in k[ X] are
of the form (X — ¢), where ¢ varies over k. Therefore, we deduce from Corollary
5 that all non-trivial bounded valuations on the polynomial ring k[ X] are of
the form

| | = ovanishingorderate where 0 <<« <1 and where c € k.

Of course there are unbounded valuations on k[ X] which are trivial on £, e.g.,
0% for each p > 1. If k carries a valuation, the definition

|f| := max {|a,| 0¥}, where f= )} a,X",

gives rise to a valuation on k[ X] for each real p > 0, as we shall see later (this
norm is called the generalized Gauss norm). If |k| = {0, 1}, the valuation
equals 0%°€ or p°™ when o > 1 or g < 1, respectively.

1.5.3. The Gauss-Lemma. — First we write down a simple sufficient con-
dition for a norm to be a valuation.
Proposition 1. Let (4, | |) be a normed ring with the following properties:

(i) for each a € A, a == 0, there exuvsts a multvplicative element m € A and an
exponent s € N such that jma®] = |m| la|®* =1,
(il) A~ = A°|A" is an integral domain.

Then | | ts a valuation on A.

Proof. Assume there are elements a,, a; € A such that |a,a,| < |a,] |as].
Clearly a, == 0, a, = 0. By (i) we may choose m, € 4 and s, = 1 such that

|m,| |a,|®» = |ma®*| =1 and hence, ma® € A°— A7, v =1,2.
Assume s, = s,. Since m, is multiplicative, we get
[(mgasr) (mgags)| = [y - [my] - apag] < my] [ma] ayaq|® |ag]5=
< |my| - [my| - (lay| - ag])® - lag|™—*

= [my]| |a,[" - My |as]® = 1.

Thus, (m,a$) (mya) € A°. However, this is in contradiction with the fact
that, by condition (ii), the ideal A is prime in 4°. 1
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Corollary 2 (Gauss Lemma). If (4,] |) is a valued ring, the Gauss norm on
A(X) s a valuation.

Proof. Without loss of generality, we may assume that A4 is a field (use
Proposition 1.5.1/4). Then condition (i) of Proposition 1 (where 4 must be
replaced by 4(X)) is fulfilled because |4(X) — {0}| = |4%*| is a group. Since 4
is valued, we have (4(X))° = A%X) = A(X) and (A(X))" = A"(X) = A(X).
Furthermore, by Propositions 1.4.2/1 and 1.4.2/2, we have ( A<X> = m
= A[X]. Thus, condition (ii) of Proposition 1 is fulfilled, since A is a prime
ideal in 4 and, hence, A[X] is an integral domain. |

In order to explain the connection with the classical GAuss Lemma, first

we recall that a polynomial f with coefficients in a factorial domain A is called
primitive if the greatest common divisor of all coefficients of f is a unit in 4.

(Classical Gauss Lemma). If 4 s factorial, the product of primitive poly-
nomzials 1s primitive.

Proof (Reduction to Corollary 2). For each prime eleinent p € 4, we de-
note by | |, the Gauss norm on A[X] <= A(X) which extends the p-adic
valuation of 4 (Proposition 1.5.2/2). Then | |, is a valuation by the corollary.
Since f € A[X] is primitive if and only if |f|, = 1 for all prime elements p € A,
the assertion follows. O

For the convenience of the reader, we also include the direct argument used
in the classical proof of the Gauss Lemma. Let f = Z a, X*, g= E b, Xv
€ A(X); let 7 (resp. j) be the smallest index such that lf| = |l (resp g1

= |b]). If g - f= 3 ¢,X* we consider the coefficient ¢;,; and write
0

Civi = aib; + X a,b,,
putrv=i+j
where 3" means that the couple (7, j) is to be omitted. Since |a,b,| < |a;b;| for
all (u, ») == (7, ) with g 4+ » =7 -+ 7, it follows that

lf - gl = leisl = lail [bj] = /] - gl 0

Remark. If in Proposition 1 one weakens condition (ii) to “A~ is re-
duced”, the same type of proof shows that | | is a power-multiplicative norm.

1.5.4. Spectral value of monie polynomials. — Let (4,] |) be a semi-
normed ring. For each monic polynomial p = X™ 4 ¢, X™1 4 ... 4 a, € A[X]
of degree m = 1, we set

o(p) 1= max |a,|'*,
l=p=m
and call o(p) the spectral value of p. The use of the adjective ‘“‘spectral” will be
motivated later. Note that

o(p) = max {1, lay], ..., |a,|} = Gauss norm of p
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and that ¢(X™) = 0. The spectral function o has the following fundamental
property:
Proposition 1. Let p, g € A[X] be monic. Then o(pqg) = max {o(p), o(q)}. If

o(p) +=0(q) or if | | vs a valuation, the above inequality is, in fact, an
equality.
m n
Proof. (1) We set ag:=1, by:=1 and write p = 3 a,X™#, ¢ = 3 b X",
Then p=0 v=0
m+n
pg = Y ¢;X™%  where ¢; = Y aub,.
A=0 ptv=14
From |a,| = o(p)¥, |b,| =0(g), #=0,...,m; »=0,...,n, (where o(p)°
= 0(q)® = 1), we conclude

lc;l = max {|a,| |b,]} = max {o(p)* o(g)}, 42=1,...,m + n.
ut+v=121 utv=2

Suppose o(p) = o(g). Then
ezl = max {a(g)* o(q)’} = a(g)*.
ptv=1

Thus

o(pg) = max [¢;|'* = o(g) = max {a(p), 0(q)}.
1=ism+n

(2) Assume now o(p) < o(q9). We choose j, 1 < j = n, such that |b;| = o(q)
and consider the coefficient

C; = bf + alb,-_l + e + a]'—lbl + aj.
From |a,| =< o(p)* < o(q)* for all uy = 1 and |b,| = o(q) for all v = 1, we con-
clude that |a,b; .| = |a.| |bj_u| < o(g)* 6(q)i* = o(q)! for u = 1, and hence
lejl = 1bj] = a(q)’.
Since o(pq) = |¢;|'i, we see that o(pg) = ¢(q) = max {a(p), 6(q)}-

(3) Assume now that | | is a valuation. We only have to deal with the
case o(p) = o(q). Just as in the classical proof of the Gauss Lemma, let 7
(resp. j) be the smallest index = 1 such that |a;| = o(p)* (resp. |b;] = o(q)).
We consider

Civj =— a,;b,- + Z” a,‘b,
ptv=i+j
where 3’ means that the pair (7, j) is to be omitted. Now

lab,| < o(p)* o(q) = o(q)*? forall (u,») = (?,j) with u+» =74 7.
Since |a;b;| = |a;| |bj| = o(q)*1, we get |c;,;| = o(g)t™/, and therefore
o(pg) = |cini|V*) = o(q) = max {o(p), 5(q)} . O

Remark. To our knowledge the spectral function first occurred implicitly
in [15], p. 435. L. GrusoN introduced this function explicitly ([17], p. 56, 57).
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1.5.5. Formal power series in countably many indeterminates. — We
conclude section (1.5) with an example of a non-Noetherian valued ring,
which often can serve as counter-example. Let us start with an arbitrary ring
A; let Y,, Y,, ... be an infinite sequence of indeterminates. The ring
F:=A[Y,,7Y,,...] of “formal power seriesin Y, Y5, ... over 4" consists of all
countable formal series whose terms are pairwise distinct monomials over 4 in
finitely many Y ;’s. To be more precise, let p; << p, < ... be the sequence of

all prime numbers in IN. Let e: N — @ (IN u {0}) denote the map which attaches
1

to each natural number u = p{ - ... . pir the exponent system e(u) := (e, ...,
e, 0,...) of its prime decomposition. The map e is a bijection and we have
e(u-v) = e(u) + e(»). We write Y@ for Y% ..... Y so that, in particu-
lar, Y0 — Y,;. Now a formal power series f in Y;, Y,, ... over 4 is nothing

o0
more than an expression of the form } a,Y*®, a, € A. Two such series are
u=1
equal if and only if they have the same coefficients. Addition and multiplica-
tion are introduced in the obvious way. For

f=Za¥w, g ZhY0,
1 1

we set

f+g:=2(ay+by) Ya(“)’
1

(o]
f-9:= 3 YW, where c¢;:= 3 aub,.
1 uv=2

This multiplication is similar to CAucHY’s multiplication since e(u) + e(v)
= e(uv).

Thus the set F of all these formal power series becomes a ring. As usual we
identify the elements of 4 with the ‘“‘constant” power series (meaning here
that all a; = 0,7 = 2). Viewed as an A-module, F is isomorphic to the direct

product [T A.
1

The ring F is not Noetherian; e.g., the ideal a generated by all Y,, v = 1, is
not finitely generated.

Proof. Suppose the contrary. Then there is an index r = 1 such that
T

a = ' FY,;. In particular, we have an equation
i=1

r
Yoo =Y 1Y, [i€F.

i=1

oo
Writing f; = 3 a;, Y*®, ¢ =1, ..., r,and using Y, = Y*?) we conclude
n=1

) 1)
Ye(pr+l) — 2 al,‘ye(l’l!‘) + e _+_ 2 ar,u YE(I’;I‘) .
u=1 u=1
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However this is impossible, since the injectivity of e gives e(p,.1) = e(piu)
forallz =1,...,rand all p = 1. ]

From now on we assume that 4 carries a bounded (possibly trivial) valua-
tion | |- We extend this function from 4 to F by defining

1 ®
|| := max {— [a#]} =1 if f=}a,Ye®,
uz1 | M 1

Obviously this is an ultrametric function on F. Let f = 3} a,Y*® and
g = X, b,Y® be two series in F. Then, from the definition of the product
f-g =2 ¢; Y, we conclude

%—wﬂ;gnmx{i-mg-l-w{}élﬂ-mu
u v

uv=2

i.e., |fg] = |f] - lg|. To get equality, we proceed as in the classical proof of the
Gauss Lemma: let 7 (resp. §) be the smallest index such that

mzima(mpm=%w@.

(2

1
Then |[c;j| = |a;| - |b;] and hence |f-g| = —|c;j| =|f|-|g]. Thus we have
proved Y

| | ¥s a bounded valuation on F = A[Y,, Y,, ...]] which extends the valu-
ation on A.

[+
We have |Y,| = p;?; ie., lim ¥, = 0. Furthermore, each series } q,Y*®
» 1
is the limit of its partial sums in the topology induced by the valuation.

We have F = F and F = {E a, Y, |a,| < 1}. Therefore
1
F=4.
Moreover it can be shown (cf. Proposition 2.2.4/1)

If A is complete, F vs complete.

Not all ideals of F are closed (see, for example, Proposition 2.2.4/2).
If A4 is a field (necessarily with trivial valuation), each f € F, |f]| = 1, can

o0
be written in the form f = a(1 — ¢g), a € 4%, g € F. The element a1 X gieF
is the inverse of fin F'; i.e., f is a unit in F. Hence i=0

If A is a trivially valued field, F is a local ring with the maximal ideal F'.
The value semi-group |[F — {0} vs discrete in R, — {0} and vs not cyclic.

Furthermore, we have the following description of the elements of the
maximal ideal of this local ring:

Each g € F can be written as a convergent series g = Y, ¢;Y;, g; € F.
1
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Proof. The valuation being trivial on 4, we have
o0
g=2 aY®wWeckF ifandonlyif a, =0.
1

Set N,-::{‘ue{Z, 3,4, ...y pr X py P & p, s l,u},i:l,Z,.... This gives
a partition of the set {2, 3, 4, ...}. Since, for? =1, 2, ..,

gii= Y a, Yeluipo

HEN,

is a well-defined element in 7, it is easily seen that ¢ = 3 ¢;Y ;. O
1

1.6. Diserete valuation rings

We denote by 4 an integral domain; ¢ denotes the field of fractions of 4.

1.6.1. Definition. Elementary properties. — The most important class of
valued rings is given by the class of so-called valuation rings. These rings first
occurred in classical p-adic number theory as rings of ‘‘integers” of valued

fields.

Definition 1. A non-trivially valued ring (4,| |), is called a valuation ring
ifA =Q = {x € Q; x| =< 1} (where Q is provided with the extended valuation).

Thus 4 is just the ring of all power-bounded elements of Q. The elements of
A are often called the integers of the valued field ¢, and we always have
A == Q.

Each valuation ring A is a local ring; t.e., A contains a unique maximal
wdeal (which consists of all non-units of A). The units of A are all elements a € A
such that |a| = 1. The maxvmal vdeal is the set

A={red;x <1}.
In particular, the residue ring A = A|A is a field. It is called the residue field
of A.
Each ring A with a bounded valuation is contained in the valuation ring Q

of its field of fractions @; in general, we have 4 == Q.

Proposition 2. Let A be a valuation ring. Then each torsion-free, finitely
generated A-module M s free, and each minimal system of generators of M is a

basis.

Proof. Let {x,, ..., x,} be a system of generators of M such that n is mini-

n
mal. Suppose there exists a non-trivial linear relation } a,xz, = 0, a, € 4. We
1

may arrange the terms so that a; &= 0 and |a,| = la,], » = 2. Then b, :=

n
—ayta, € 4,y =2, and a, (xl -3 b,x,,) = 0. Since M is torsion-free, we deduce
2
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n
that #; = }, b,x,, in contradiction to the minimality of n. Thus {x,,...,x,} is a

2
basis of M and M is free. |

Corollary 3. Kach Noetherian valuation ring A is a principal ideal domain.

Proof. Since each ideal of 4 is torsion-free, all ideals of 4 are free by Propo-
sition 2. However, a free ideal must be principal. 1

A valuation ring A4 is called dvscrete if the value semi-group |4 — {0}] is
discrete in IR, — {0}: this is the case if and only if the value group |Q*| is a
discrete, and hence cyclic, subgroup of IR, — {0}. Then &:= max {x € |Q¥*|;
a < 1} generates |@Q*|, and we have |4 — {0}| = {¢"; » = 0}. Each = € 4 such
that |7#| = ¢ is called a uniformizing element of A. (There is a close connection
between this concept and the uniformization of a complex Riemann surface,
but we cannot elaborate on this here.)

Proposition 4. Let A be a discrete valuation ring, with maximal ideal m, and
let 7 € A be a uniformising element. Then m = Ax, and each vdeal &= 0 of A s
of the form m* = An™.

Proof. Let a 4= 0 be an ideal in 4. Choose a € a such that |a| = max |x|.

A

We have a 4= 0, and |a| = |#|® for a suitable n = 0. For each x € a, write
x = en”. Then e := za~" € @ belongs to 4, since |x| < |#"| and, hence, |¢| < 1.
If x = a, we see that e = an~" is a unit in 4. Therefore we have a — 4xn"®
= Aa = a; hence a = Aa*. In particular, A= is the maximal ideal of 4. 1

Discrete valuation rings can be characterized in a purely algebraic way.

Proposition 5. For a ring A the following two statements are equivalent:

(i) 4 7s a local vntegral domain such that the maximal ideal m of A ©s prin-

oo
crpal, non-zero, and satisfies N m* = O.
1
(ii) A can be provided with a valuation such that A becomes a discrete valua-

tion ring.
For such rings A each non-trivial bounded valuation | | on A is m-adic; 7.e.,
| | = evm, where 0 < & < 1.

Proof. As we have already seen, a discrete valuation ring possesses the
algebraic properties listed under (i). Conversely, assume that 4 fulfills condi-
tion (i). Then by Proposition 1.5.2/2 the function | |, := &¥m, where ¢ is fixed
and 0 << ¢ << 1, is a bounded non-trivial valuation on 4. We extend. this valua-
tion to Q and claim @ = 4. Let z be a generator of m. Each ¢ € 4 — {0}
can be uniquely written as ¢ = ez® where n := »,(2) and wheree € 4 —misa
unit, since 4 is local. From this we see that each ¢ € @* is of the form ¢ = ez®
where 7 € Z and where e is a unit in A. Thus Q = {0} u {g = ez"; ¢ unit in 4,
n = 0} = A. Since »,(Q*) = Z, the value group |Q*|,, is discrete; ie., (4, | |n)
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is a discrete valuation ring. Therefore 4 satisfies condition (ii). From Propo-
sition 4 we now deduce that all ideals == 0 of A are powers of m. Thus m is the
only prime ideal == 0 of 4. Therefore each bounded non-trivial valuation on 4
is m-adic by Proposition 1.5.2/3. ]

Remark. By KruLL’s Intersection Theorem, any local integral domain 4
which is a principal ideal domain fulfills the assumptions of Proposition 5.
Hence all these rings can be valued in such a way that they become discrete
valuation rings. In particular, we immediately get from Corollary 3:

Proposition 6. Every Noetherian valuation ring vs a discrete valuation ring.

1.6.2. The example of F. K. Schmidt. — We give an example due to F. K.
ScamMIDT (cf. [35]) of a discrete valuation ring 4 = @ which is not Japanese;
i.e., @ permits finite algebraic extension fields @’ such that the integral closure
A’ of A in Q' is not a finite 4-module (for the notion of Japaneseness and
general facts see Chapter 4). We start with a general technique to construct
valuations.

Each ring homomorphism @: R — B of a ring R into a valued ring (B, | |)
induces a valuation | | o @ on the residue ring R/ker @. We apply this remark
to the case where R is a polynomial ring k[ X, Y] in two indeterminates over a
field k and where B is the ring k[ 7']] of formal power series in oneindeterminate
over k provided with a valuation | | induced by the order function (cf. (1.3.3)
and Proposition 1.5.2/1). For the homomorphism @, we want to choose a k-al-
gebra substitution homomorphism which sends X into 7" and Y into a formal
power series f(7'). If f(T) is not algebraic over k[71], i.e., if there exists no non-
zero polynomial (7', W) € k[T] [W] such that q(T, f(T)) = 0, the homomor-
phism @: k[X, Y] — k7] is injective and we get a valuation on k[X, Y]. We
denote this valuation and its extension to the quotient field K:= k(X, ) of
rational functions in X, ¥ by | |, because it is uniquely determined by f. The
value group |K*|, is discrete; hence the ring K is a discrete valuation ring.
Note that

Xly<1 —and |Y[;=1,

since ord T =1 and ord f(T) = 0. In particular, k[X, Y]< K. However,
K = k[X, Y]. As a matter of fact, we have (if f = f c,T%)
0

Zp =Y — (¢ + 1 X' + +++ ++ ¢, X™)] - X~(m+D) ¢ K foreach m=1,
since
ord (f(T) — c,T”) =ord Y ¢,7" = m + 1.
0 m—rl

Since |Y — ¢yl << 1, the residue field K/li' equals the field k.
Next we state a sufficient condition for a formal power series f € k[7'] not
to be algebraic over the polynomial ring £[7'].
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Let f = 3 ¢,T" be a series in k[[T]) such that the subfield k' of k generated by
0

all coeffictents ¢y, ¢y, ...over the prime field of k has infinite transcendence degree.
Then f is not algebrazic over k[T].

Obviously it is enough to prove the following (contrapositive) statement:

Let f = 3 ¢,T" be a series in k[T]), and let (T, W) € k[T, W] be a non-zero

0

polynomial such that q(T, f(T)) = 0. Denote by k, the subfield of k generated by
all coeffrcients of q(T', W) over the prime field of k (this field is of finite transcend-
ence degree over the prime field). Then each coefficient c, of f is algebraic over
ko (and hence ky(cy, ¢1, ...) ts of finite transcendence degree over the prime field

of k).

Proof. We proceed by induction on n. First let n = 0. We may assume that
T does not divide ¢(7', W). Then ¢(0, W) € ko[ W] is not zero; however, q(O, f(O))
= ¢(0, ¢y) = 0. Hence ¢, is algebraic over k.

Now let n = 1. We consider the polynomial
¢ (T, W):=q(T,co + T + -+ + cu i T* 1 + WT") € ko(co, -+, Caa) [T, W].

The polynomial ¢’ is not the zero polynomial. In order to see this, write
r

q = X ai(T) W, where a,(T) == 0. Then

0

¢ =X aiT) (co + 1T + -+ + ¢y T" 1 4 W)t
(1]

contains the term a.(7') - 7™ W7, which does not cancel with any other term.
Let 7 be the highest power of 7' which divides ¢’, and write ¢' = T"%¢,,
where ¢; € ko(co, -+, ¢a_1) [T, W] and ¢,(0, W) == 0. We have

¢ (T, cn + cuunT + ---) = g(T, (T)) = 0,

and hence ¢,(7, ¢, + ¢,1T + --+) = 0. In particular, we see ¢,(0, ¢,) = 0. Thus
¢n is algebraic over ky(cg, ..., ¢,_1). Since ¢y, ..., ¢,_; are algebraic over k, by
the induction hypothesis, it follows that ¢, is algebraic over k,. |

We now come to the example of F. K. Scumipt. As field £ we choose a
field generated over Z/pZ (where p == 0 is prime) by an infinite sequence
to, t1, ... of indeterminates. We set

[(T):i=1t + 4T + - +8,T" + ---.

By the statement just proved, f is not algebraic over k[7'], and hence induces a
valuation | |, on the field K = k(X, Y). We consider the valued subfield
Q:= k(X, Y?) of K. Obviously [K : Q] = p and the elements 1, Y, ..., Y71
form a ()-basis of K. The ring 4 : = Q is the discrete valuation ring for which we
are looking. Namely,
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K s the integral closure of A in K. The A-module K is not finitely generated.

Proof. Since any z € K is a p-th root of some element in @, we see that all
elements of K are integral over Q. Furthermore, an integral equation

27 + alz’f—l + .o + a, = 0

with coefficients ay, ..., a, €  is impossible if |z| > 1. Thus K is the integral
closure of 4 in K. Now assume that K is generated as an 4-module by finitely
many elements ey, ..., e, € K. Write

p—1
e, = D ciYh ¢, €Q, v=1,..,mn.
i=0

Since |X| < 1, we can choose an exponent s = 1 such that |¢,;X?*| =< 1 for all
v, 1. Then X%,, ..., X%, € A + AY + --- + AY?P"1 and hence

K-Xt—A+AY + ... - AYP1,
Now consider the element
Zyi= (Y —ty—t,X — .- — £, X% - X6+ ¢ K,
We already saw that Z, ¢ K, and hence
ZX — (Y —t) Xt — (f - +4,XY) € A + AY + .. + AYP1,

Since t; + .-+ + t,X%1 is an element of A, we must have (¥ — {) X 1€ 4
+ AY + --. + AY?P"1, However this is impossible, since X-1 ¢ 4 and since
the elements 1, Y, ..., Y?-1 form a Q-basis of K. Therefore K is not finitely
generated over 4. 1

Remark. The valuation on the field @ is not complete. We shall see later
(Proposition 3.5.4/1) that the valuation ring 4 belonging to a field @ with a
complete and discrete valuation is always Japanese. This statement is false if
one drops the assumption of discreteness (cf. the remark following Proposition
6.3.4/1).

1.7. Bald and discrete B-rings

oo
Discrete valuation rings enjoy the nice property that a series }'a, is con-

0
vergent if, say, |a,| = 1 and |a,,;| < |a,|. Then |a,| =< ¢, where ¢ is the biggest
number << 1 in the value set. Such a criterion is necessary for the convergence
of certain iteration techniques. For example, the usual proof of HENSEL’s
Lemma (see [38], § 144) relies heavily on the fact that the valuation in question
is discrete. Unfortunately, in applications to k-affinoid geometry where one
wants to ““lift” theorems of k-affine geometry, we cannot restrict ourselves to
the discrete case. So the question comes up as to how strongly the discreteness
is really needed. The main point of the following considerations is to introduce
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certain ‘‘almost discrete’” subrings of arbitrary valuation rings £ which will be
as good as discrete valuation rings for the purposes mentioned above.

By K we always mean a (valued) field; 4 is a (valued) subring of K. We
write 04 for the multiplicatively closed subset of elements of value 1 in A4.

1.7.1. B-rings. — We start with the simple

Definition 1. 4 valued ring A is called a B-ring if

(i) |A]| ?s bounded, v.e., |2| = 1 for all x € A4,
(i1) each x € 0A 1s a unit wn A.

Each valuation ring is a B-ring. We have the trivial

Proposition 2. If the valuation of A is bounded, then the ring of fractions A ;4
18 the smallest B-ring containing A. The rings A and Ay, have the same value
SEMU-Groups.

For any B-ring A, we have A = A by (i). Due to (ii), the ideal A = {x € 4;
|| < 1} is the only maximal ideal in 4. Hence each B-ring us a local ring, and
we have a residue fzeldA — A/A. The residue homomorphism ~: 4 —> 4 maps
the group @4 onto A*.

Aring A with a bounded valuation is a B-ring if and only if 4 is a local ring
with maximal ideal 4. In particular, the ring ' =k[[Y;, Y,,...] of formal
power series in countably many indeterminates over a trivially valued field
k (cf. (1.5.5)) is a B-ring.

A B-subring of a B-ring 4 is a subring of 4 which is again a B-ring (with
respect to the induced valuation). The intersection of any family of B-subrings
of a B-ring is a B-subring. Hence for each subset M of a valuation ring 4, there
exists the smallest B-subring of A contatning M.

Proposition 3. The completion A of a B-ring A is a B-ring.
Proof. Since |A| = |A|, we only have to show that every x € 84 is a unit
in A. Choose a € A with |x — a| < 1. Then |a| = 1 and a is a unit in 4. Write

x = a(l — z) where z:= a'(a — x). Then |z] << 1 and Zz” € A is the inverse
of 1 — z. Hence x is a unit in A. |

The next technical lemma will turn out to be very héipful. Recall that K is
a valued field.

Lemma 4. Let A — K be a B-ring and let y be a fixed element of K. Then
there exists a polynomial g € A[X] with |g(y)| << 1 such that the following is
true:

Each polynomial f € A[ X ]| with |f(y)] < 1 admaits in A[X] a decomposition

f=q-9g+r

where all coefficients of r are in A.
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Proof. The residue field K of K is an extension of the residue field 4 of 4.
Let 3 be the image of y in K. If § is transcendental over 4, we set g:= 0,
q:=0, r:=f. Then the lemma holds trivially, because |f(y)| << 1 implies
7(§) = 0, i.e., 7 = 0, which exactly means that all coefficients of r belong to A.

If § is algebraic over 4, we choose

g:=X"+a, X"+ ... 4+ a, € A[X]

as an inverse image of the minimal polynomial § = X" 4+ @, X" 4 -.. + @,
€ A[X] of §j over A and choose ¢, r € A[X] according to EvcLIp’s division theo-
rem: f = qg + r. Then

J =gj + 7 for the image polynomials f, g, §,7 € A[X].

We have §(j) = 0 by definition; i.e., |g(y)| < 1. If |f(y)] < 1, we have f(7) = 0.
Therefore #(j7) = 0. From the fact that § is the minimal polynomial of j over A
and from deg 7 < deg r << deg g = deg § we conclude that # = 0, i.e.,r € A[X].

O
1.7.2. Bald rings. — Value semi-groups may contain numbers arbitrarily
close to 1.
Definition 1. A valued ring A s called bald if
sup |z| < 1.
zed

Each subring of a discrete valuation ring is bald. The completion A of a
bald ring 4 remains bald.

Proposition 2. Let A — K be a bald ring and let M be a subset of K such that
sup |y| << 1. Then the polynomial ring A[M] s bald; more precisely
yeEM
sup |z| = max {sup la], sup |y|}.
zeZ[-vM\l acd yeMt

/—V\
Proof. Take z € A[M], say z = a, + 2’, where a, € 4 and

2= a, ,yp...y»withy, ..., y, € M. We have
Vi kv, >0
[2'] = max |a,, ., | %] ... |ya" = max [y ... ly."" = sup lyl,
yE
since the case v; = .-« = », = 0 is excluded. From |z| < 1, we conclude that
lagl << 1; i.e.,
2] = max {sup |al, sup [y} 0
acd YyeEM

The preceding proposition remains true for arbitrary finite sets M — K.
Namely,
Proposition 3. I/ A — K is bald, each polynomial ring A[y), y € K, is bald.

Proof. Due to Proposition 1.7.1/2, we may assume without loss of generality
that A is a B-ring. Set ¢:= sup |x|. Choose g as in Lemma 1.7.1/4 and set
zed



1.8. Quasi-Noetherian B-rings 55

¢ = max {&, |g(y)|}. We have ¢ << 1. It is enough to show that |z| < ¢’ for
cach z € A[y], |2| &= 1. Write z = f(y) where f € A[X]. By Lemma 1.7.1/4 we
may write f = ¢qg + r, where ¢ € A[X] and all coefficients of r have absolute
value < e. Hence we get (since [¢(y)| = 1)

/@) = lg(¥) 9(y) + r(y)| = max {ig(y)| lg(¥)], [r(y)[}
= max {|g(y)], &} =&'. |
We now easily obtain

Theorem 4. Let K be complete and let M be a subset of K such that the set

M n 8K s finite and such that sup {ly|;y € M n k} < 1. Then the smallest
complete B-ring B = K containing M 7s bald.

Proof. Denote by I the intersection of all subrings of K. If char K = p > 0,
we have I ~ Z/pZ and the valuation on [ is trivial. If char K = 0, we have
I ~ Z and the valuation on I is either trivial or a p-adic one (cf. Corollary
1.5.2/4). Thus in any case I is a bald ring. From Propositions 2 and 3 we deduce
that I[M] is also bald. Proposition 1.7.1/2 gives the existence of a bald B-ring
containing M. Now Proposition 1.7.1/3 gives the desired result since baldness is
not destroyed by passing to a completion. O

The most important case for applications of Theorem 4 is the following

Corollary 5. Let {1, ¥, ...} be a zero sequence in K. Then the smallest com-
plete B-subring of K containing all y,,v = 1, s bald.
In (1.8.2) we shall see that much more than baldness holds for such a ring.

1.8. Quasi-Noetherian B-rings

Quasi-Noetherian rings were first introduced in [16]. They were used in
order to ensure the convergence of certain approximation techniques. (Later it
was discovered that the more general class of bald rings can do the same job.)
In this book we include this interesting class of rings for the sake of complete-
ness. However they will not be used in later applications (e.g., the Lifting
Theorem 2.7.3/2). It will always suffice to use the property of baldness.

1.8.1. Definition and charaeterization. — In general, B-rings are not
Noetherian; e.g., the B-ring F' =k[[Y,, Y,, ...]] of formal power series in count-
ably many indeterminates over a trivially valued field ¥ is not Noetherian
(cf. (1.5.5)). In many cases however all ideals of such rings are quasi-finitely
generated.

Definition 1. Let A be a B-ring and let a be an ideal tn A. A zero sequence
(@,),=1 of elements a, € a is called a quasi-finite system of generators of a if each
@ € a can be written vn the form

oo
a/:cha/v, CVEA-
1

In this case the ideal a is called quast-finite.



56 Chapter 1. Norms and valuations

A B-ring A 7s called quasi-Noetherian if each ideal in A is quasi-finite.

Each Noetherian B-ring is quasi-Noetherian.

Remark. If {a,, a,, ...} is a quasi-finite system of generators of a, we by no
-

means claim that each element x € 4 which can be written in the form J} ¢,a,
belongs to a. Of course this holds if a is closed. 1

Each quasi-Noetherian B-ring is bald. As a matter of fact the following is
true:

Let A be a B-ring such that the maximal ideal A of A possesses a quasi-finite
system {x,, x,, ...} of generators. Then

sup || = max |x,] < 1.
zed v=1

This is clear since each « € A4 is of the form 3 ¢,x, where |c,| < 1 for all ».
1

In order to characterize quasi-Noetherian rings, we associate to each bald
ring 4 a sequence of vector spaces in the following way:
We set o := sup |x| << 1 and consider the sequence
zed

A,:={x € 4; x| <o, y=0,1,...

of closed ideals in 4. We have Ay = A, 4, =4, A,> A4,,, 4,4, = A4,.,,
in particular A4, — A,.;. Therefore each A-residue module

oy i=A,]A, 1, y=20,1,2,...

may be viewed in a canonical way as an a-vector space where 1= xy = A/4
denotes the residue field of the B-ring 4. Let ¢,: 4, — «, be the canonical
residue epimorphism. The main result of this section will be

Theorem 2. For a bald B-ring A, the following statements are equivalent:

(1) A4 s quasi-Noetherian.
(2) The maximal ideal A of A vs quasi-finite.
(3) All x-vector spaces x,, v = 1, are of finite dimensrion.

Proof. The implication (1) — (2) is trivial. In order to derive (3) from (2), we
shall prove more ; namely,

Each vdeal A, possesses a quasi-finite system N, of generators, v = 1.

Obviously this will imply (3), because the x-space «x, is generated by the
image of N, in x, (with respect to the residue map ¢,: 4, — «,). Note that almost
all of these image vectors are zero since almost all elements of N, belong to
A,

We shall prove the existence of N, by induction on ». The existence of N,
is guaranteed by assumption (2); we write N; = {x;, &5, ...}. Assume that we
have already constructed a quasi-finite system of generators N, = {y;, ¥s, ...}
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for A,. Since lim y; = 0, we can choose an index s such that y; € 4,,, for all

i
j > s. This means that ¢,(y;) = 0 for all j > s.
The kernel ker y of the x-linear map y: «f —«, given by (&, ..., &)

8
> Y &ip(y;) is of finite dimension. Therefore we may select finitely many

j=1
vectors

(a’#l""’a/zs)EAey ,u=1,...,m,
euch that their images

((pO(a,ul)’ seey (po(a#@)) € of, M = 17 ey m,

in «¢ (with respect to the residue map ¢y: 4 — «) generate kery over «. We
consider the m elements

8
Zui= D auy;€d,, wpu=1,...m.
j=1
We have

8

©u(2)) = 3 @olay) @u(y;) =05 e, 21,..,2n € Ayiq.
=1
Now we claim

Nv+l = (Nv n Av+1) u {219 ey zm} U {xzy], v _2_ 1,7 = 1, LR S}
18 a quasi-finite system of generators of A,.,.

From 4,-A4,= A4,,,, we deduce xz;y; € 4,,, for all 7,j. Therefore N,,,
— A,,,. Because the set {x € N,,;; x ¢ A,} is finite for each n, we see that the
elements of N,,, form a zero sequence. ‘ oo

Now choose v € 4,,, arbitrarily. Since 4,,,— 4,, we may write v = 3/ c;y;.

8 j=1
Since 3/ c;y; € 4,11, we see that 3 c;y; € 4,,,. Hence it is enough to show that

j>s j=1
8

8
2 cjy; can be written as an infinite series in {z,,...,2,} uU (Ny;). From

=1 S
8
X ciy; € A,.q we get
j=1
(‘Po(cl), coes ‘Po(cs)) € kery.

Therefore we can find elements u,, ..., u,, € 4 such that

m
(‘Po(cl), cees ‘Po(Cs)) = Z‘Po(u;‘) (%(a,u),---,%(%s));
un=1
1.e.,
ciji=c; — > uua,; € ker g5 = A4,, i=1,...8.

p=1
Now

S 8 38 m
21 Cf-%‘ = 2 ¢y — 2 X wuuiyi;
i= j=1

j:]_ pw=1
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i.e.,
8

38 m
2 ey = X ey + X wuz.
j=1 j=1 u=1

Finally, each cj € 4, can be written as an infinite linear combination of ele-
ments from &N,;. Thus we see that N, ., has the desired property.

It remains to deduce (1) from (3). Let a be any ideal in 4 (we may assume
a— A4,). For » = 1, each set ¢,(a n 4,) = «, is an «x-vector space of finite di-
mension. Choose elements a,y, ..., a,,, € an 4, such that their ¢,-images
generate ¢,(a n 4,). Set

[o°]

N = U (@, ..., @}

v=1
Obviously this is a zero sequence. Moreover it is clear (by induction) that each
a € a can be written in the form

n
a = Y (Cuan + -+ + CinGin) + Qnyr, Where @y, €and,,.
i=1

Hence N is a quasi-finite system of generators of a. 1

The theorem just proved together with the observations made at the end of
(1.5.5) imply

The B-ring F =k[Y,, Y,, ...]] of formal power series over a trivially valued
field k is quasi- Noetherian.

We state a surprising corollary of Theorem 2.

Corollary 3. The value semi-group |A — {0}| of a quasi-Noetherian B-ring A
s discrete tn IR, — {O}.
Proof. Using the same notations as above, we claim

(*) Let 2y, ..., xyy € A, such that ¢* = |x;| > |xy| > -+ > |xp| > 0. Then
the m vectors @,(x;), ..., ¢,(xy) € «, are linearly independent.

If this were not the case, we could find (by lifting a non-trivial linear rela-
tion from «, to A4,) elements ¢, ..., ¢,, € 4 such that

m
c,u:O or lc,ul :1: [cll+"'+lcm| :*:O’ chxyEAv+1-
u=1
Denoting by ¢ the smallest index such that ¢; =& 0, we get the contradiction
m
41‘:’ Cuy

Hence () holds and implies (since all spaces «, are of finite dimension) that
eachset {|x] € |[4]; 0™ < |x| = 0"}, v =1, 2, ..., is finite. Hence |4 — {0} is

= leg || > 01

discrete in IR, — {O}. ]
Whenever we are given a B-ring with a discrete value set |4 — {0}|, we
can order the set |4 — {0} = {9g, 01, 05, ...} in & unique way such that

1=9g>0=0, >0 > "0, > -+
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We have g,0, = 0.+, and lim g, = 0. For such rings, it is natural to con-
sider all ideals

A,:={x€ A; x| <o}, »=0,1,...,

instead of only those where the radius g, is replaced by ¢ = g}. We shall call
the sequence {4,} the natural filtration of A ; as before we have

Ay=A, A, =4, A,5A4,, AA,=A,,.

Furthermore, all residue modules «, := 4,/4,,, are x-vector spaces. The ring 4
is quasi-Noetherian if and only if all x, are of finite dimension (use Theorem 2).

We say that a quasi-finite system N of generators of an ideal a— 4 is
filtered if for all v = 1 the set N n A4, is a quasi-finite system of generators of
the ideal a n 4,. Proceeding in the same way as in the proof of Theorem 2
(where we deduced (1) from (3)) one gets

Proposition 4. For each ideal a of a quasi-Noetherian ring A there exists a
filtered quasi-finite system of generators.

Proposition 5. Let a be an ideal tn a quasi-Noetherian ring A, and let N
= {ay, ay, ...} be a filtered quasi-finite system of generators of a such that

a z{x €A;x =Zc,a,,c,€A},
1
Then a 1s closed 1n A.
Proof. Take a sequence (x,)— a and set x:=lima,. Since x =z, +

(xy — xy1) and lim (x, — #,_;) = 0, it is enough to show

L

[e ]
For each zero sequence (z,) — a we have }] z, € a.
1

We may assume z, € a n 4,. We have equations
o0
2z, = 2 bya;, v=1,2,..., for suitable coefficients b,; € 4.
j=1

Since N is filtered, we may assume b,; = 0 whenever a; ¢ 4,. Thus for fixed 7,
almost all b,; vanish; hence the element

is well-defined. Moreover, for all ¢ > 0, one has |b,;a;| << & for almost all (», §).
Therefore (by Corollary 1.1.8/3) one gets

le, = Z’( lby,-a/,-) =2 (waj) a;j :-Z; bjaj,
y= )=

y=1 \j= ji=1 \r=1

and by assumption this series is in a. O
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Notice that there exist quasi-Noetherian rings having non-closed ideals,
e.g., thering F =k Y,, Y,, ...]] of formal power series over a trivially valued
field k.

1.8.2. Construection of quasi-Noetherian rings. — We start with the obvious
Proposition 1. The smallest B-subring A’ of a B-ring A is quast- Noetherian.

Proof. If char 4 = 0, then 4’ — Z. If Z carries the trivial valuation, one
sees that Q — 4’, and therefore A" = Q. If Z is not trivially valued, its
valuation is a p-adic one for some prime number p (cf. Corollary 1.5.2/4). Then
A’ is the localization of Z with respect to (p). If ¢:= char 4 &= O then 4’ =
Z|qZ,and A’ carries the trivial valuation. In all these cases A’ is quasi-Noethe-
rian for obvious reasons. A

Next we prove

Proposition 2. The completion A of a quasi-Noetherian B-ring A is quasi-
Noetherian. Each filtered quast-finite system N of generators of the maximal ideal
A, of A is a quasi-finite system of generators of the maximal ideal A, of A.

Proof. Each 5 € 4, can be written in the form

¥ =219, y €4,
v=1

Let N = {v, vy, ...}. Since N is filtered, we have equations:

o0
¥, = X byvj, v=1,2,...,
j=1

for suitable b,; € 4 such that b,; = 0 whenever v; ¢ 4,. In the same way as ih

the proof of Proposition 1.8.1/5, one sees that = 3’ ( 2 b,,-) vj, which proves
A ].Zl
that NV is a quasi-finite system of generators of A4;. This implies (by Theorem

1.8.1/2) that 4 is quasi-Noetherian. |

v=1

Proposition 3. Let A — K be quasi-Noetherian; let y € K be arbitrary. Then
the smallest B-ring containing A and y, 1. e., the ring

L:= A[?/]{xeA[yl;lxlzl}’
ts quast-Noethertan.

If {v,, vy, ...} ©s a quasi-finite system of generators of A, and if g € A[X]
denotes the polynomial belonging to y € K according to Lemma 1.7.1/4, then
the sequence

{vo:=9(y), v1, vo, ...}
18 a quast-finite system of generators of the maxvmal ideal Ly of L.

Proof. We have v, € L, since lg(y)| < 1, and vy, vy, ... € Ly, since 4, — L,.
Obviously {v, #1, ...} is a zero sequence. Choose an arbitrary element zin L,,
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say
z:i;—,a,beA[y], la| <1, |b| = 1.

Let f € A[X] such that f(y) = a. Since |f(y)| < 1 we can choose polynomials
q€A[X], r=1ro+ X 4+ - +r, X%, ro,1y, ..., 1€ Aq,
according to Lemma 1.7.1/4. We get
@ = q) v+ Zra.
Since {v;, vy, ...} is a quasi-finite system of generators of 4,, we have equations

ri =Y by, b,€4, v=0,1,2,..,,s.
v=1

We conclude that
zZQ(by)v0+ bOv""blvy_:"'_*_bs:;y v
v=1

e

All coefficients occurring here are in L. Hence L, is generated quasi-finitely
by {vg, 21, ...} and L is quasi-Noetherian. O]

We now easily obtain
Proposition 4. Let A — K be quasi-Noetherian, let {y,, ys, ...} be a zero se-
quence in K. Then the smallest B-ring containing A and all y,,v = 1, 1.e., the
ring
= A[yl’ Yo - "]{zeA[yl,y,,...];lxI:I},
18 quast-Noetherian.

Proof. Only finitely many of the y’s — say y;, ¥s, ..., ¥4 — have absolute
value 1. Applying Proposition 3 d-times, we see that the B-ring

L' := Alys, Yas «+» yd]{zeA[y,,...,ydl;|x|=1}

is quasi-Noetherian. Obviously

L = L'[Yas1s -] zertyaunilal=1} -

Hence it is sufficient to show

If N' = {v,, vy, ...} 28 a quasi-finite system of generators of the maximal
wdeal L] of L', the set

N := N’ u {all monomials in finitely many of the y;.1, y4.2, ...}

s a quasi-finite system of generators of the maximal vdeal L, of L.

Clearly N is a zero sequence (remember that |y;.;| < 1 for all 2 = 1 and
that |y;| — 0). Choose z € L, and write

Z:%—’ a9b€L,[yd+l9°'°]’ Ial<1’ ]bl:]'
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For sufficiently large n € IN, we have an equation

<0
— v v ’
a = Z avl...v"ydl+1 con ydﬁ—n’ avl...vn € L .
0

From |a| < 1, |ysui] < 1, we deduce that a, o € L. So we may write

[s <]

7
Q..o = 2 CiVj, ¢; € L.
1

This yields
oo <0
¢ a
— 7 Fun n
z=2 v+ X YR Yt
1 b vt trg>0 b

Since all the coefficients are in L, the proposition is proved.

|

As a corollary of Propositions 1, 2 and 4, we have the following significant

improvement of Corollary 1.7.2/5.

Corollary 5. Let {y,, y,, ...} be a zero sequence in K. Then the smallest com-

plete B-subring of K containing all y,, v = 1, vs quasi- Noetherian.



CHAPTER 2

Normed modules and normed vector spaces

The main subject of this chapter is the theory of normed vector spaces.
We begin by discussing some generalities for the wider class of normed mod-
ules. Particular attention is paid to the construction of complete tensor
products which are necessary for the investigation of affinoid subdomains in
(7.2).

The first section dealing with true vector space problems is (2.3). Among
other things, we show that normed vector spaces over complete non-Archi-
medean fields are weakly cartesian. This result implies the uniqueness of
valuation extensions in the complete case (see (3.2.4)). Weakly cartesian
vector spaces are then specialized to cartesian and strictly cartesian spaces.
We discuss questions of orthogonal and orthonormal bases which are funda-
mental for the theory of stable fields (see (3.6) and (5.3)).

In the subsequent section on weakly cartesian spaces of countable dimen-
sion, we prove the existence of weakly cartesian bases (cf. [9] or [29]). This
key result sometimes has to be used as a ‘‘last resort” in affinoid geometry,
namely in the particular case of ground fields k satisfying p:= char k > 0
and [kY?: k] = oco. See, for example, the proof of the Japaneseness of 7', in
(5.3.1). Having considered weakly cartesian bases of infinite length, it is
natural to look at ScHAUDER bases. This is done in (2.7). The main result of
this section is the Lifting Theorem which can be used as point of departure for
an alternative approach to affinoid geometry (cf. the introduction to Chap-
ter 1). However, the Lifting Theorem will not be referred to elsewhere in the
book.

The chapter is concluded by a short section on Banach spaces.

2.1. Normed and faithfully normed modules

ByA=(4,]| |) we always mean anormed ring. All modules L, M, N, ...,
are 4-modules.

2.1.1. Definition. — In classical analysis the notion of a normed vector
space is basic. In the following we introduce the corresponding notion for non-
Archimedean analysis.
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Definition 1. A pair (M, | |) is called a normed A-module if the following
hold:

(i) (M, | |) vs a normed group (with respect to additvon wn M),
(i1) |ax| < |a| |x| for alla € A, x € M.

If, in addition, A 1s a valued ring and if tn (i) we always have equality, we call
(M, | 1) a faithfully normed A-module. The function | | is called a (faithful)
A-module norm.

Remark. If M == 0 is a normed A-module satisfying the equality |ax|
= |a| |z| for all @ € A and x € M, then the norm on A4 automatically is a

valuation, because
laras| x| = [a1a9m| = |a4] |agx| = |aq| |as| (2|, a,a, €A, xeM.

Normed modules over normed rings which are not faithfully normed will not
often occur in our applications, because most algebras we are interested in
will turn out to be finite extensions of valued rings carrying a faithful norm.
Normed A4-modules with bounded A-linear maps (resp. contractions) as
morphisms form a category. If 4 is valued, the faithfully normed A-modules
with bounded A-linear maps as morphisms form a subcategory which is of
great importance. However, this subcategory need not be closed with respect
to the operation of forming quotient modules, whereas the bigger category is

(cf. (2.1.2)).

Lemma 2. Fach faithfully normed A-module M 1is torsvon-free; i.e., ax = 0,
a€ A, xeM— {0}, 7f and only if a = 0.

The ring A4 itself can be viewed as a normed A-module. This module is
faithfully normed if the norm on A4 is a valuation. Up to homeomorphism,
there are no other faithfully normed cyclic 4-modules; more precisely,

Proposition 3. If M == 0 is a faithfully normed A-module generated by one
element x, then @: A — M defined by a — ax vs a bounded homeomorphism,
whose tnverse is also bounded. Therefore, every surjective A-linear map from A to
M is a homeomorphism.

Proof. The map ¢ (resp. ¢~1) is bounded with |z| (resp. |z|~!) as bound:
pla)l = [l lal,  lp~Yax)| = le/t laal. 0

For normed cyclic 4-modules, Proposition 3 need not hold, even if the
module is torsion-free. We give a simple example. We provide the polynomial
ring A:=Z[X] with a valuation | |geg:= 579 induced by the degree
function, 0 < x << 1. Viewed as an A-module, we provide M := Z[X] with
the norm | |,q := a°™ induced, by the order function, same x as above. Since
orda = 0 = — deg a, we have

I“m]ord = Ialord |M|org = [a’ldeg Imlord forall acd, meM.
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Thus M is a normed 4-module. It is clear that M is not faithfully normed and
that the identity map 4 — M is not a homeomorphism (however it is a con-

traction).
In important cases 4-module norms are always faithful.

Proposition 4. If A vs a valued field, each A-module norm is faithful.
Proof. For each a € A*, x € M, we have
2] = a7 lax| =< |a7Y lax| = |a| ! |ax|, ie., |ax| = |a||z]|. O

Normed modules over valued fields are called normed vector spaces.
In the next sections, we describe some fundamental constructions in the
category of (faithfully) normed modules.

2.1.2. Submodules and quotient modules. — Each submodule N of a (faith-
fully) normed A-module M is a (faithfully) normed 4-module with respect to
the restricted norm. The distance function

z +> |z, N| = inf | 4+ y| (as introduced in (1.1.4))

YEN
satisfies the inequality
lax, N| < |a| |x, N| forall a€Ad, e M,

since

inf |ax + y| < inf |ax 4 ay| = inf |a| | 4 y| = |a| inf [z + y|.
yeEN

YEN yeEN YyEN

Hence using Proposition 1.1.6/1, we get

Proposition 1. If N s closed in M, the residue ultrametric function | |ps on
M|N s an A-module norm on M|N. If N us strictly closed in M (cf. 1.1.5), one
has |M|N|wes <= | M]|.

Definition 2. In the situation of the above proposition, the module M|N pro-
vided with the norm | |ies 28 called the normed quotient module of M by N.

Warning. If M is faithfully normed, M /N need not be so (due to torsion:
take M = A, N 3= 0 a closed ideal 5= 4 in A). However, if A4 is a valued field,
no complications arise (cf. Proposition 2.1.1/4).

From Proposition 1.1.7/3 we get
Proposition 3. If M is complete, M|N s complete.

2.1.3. Modules of fractions. Completions. — For each normed module
M over a valued ring 4, we introduce the set

S:={a€Ad— {0};|ax| =|a| |x|forallz ¢ M} = A

of M-multiplicative elements. Then S is a multiplicatively closed set containing
1; if M is faithfully normed, we have § = 4 — {0}.
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The tensor product

X

JMsI:M®AAS:{—;x€1M,aES}
a

is an 4As-module; by defining

X

a

. L

" al’

we obviously provide Mg with an As-module norm.

If M and M’ are normed A-modules and if § is a multiplicative set con-
tained in the set of multiplicative, M-multiplicative, and M’-multiplicative
elements of A, then each A-linear map ¢: M’ — M extends uniquely

to an Ag-linear map ¢@s: Mg — Ms by setting ¢g (—x—) 1= ACH) . The map ¢ is
a a

bounded if and only if ¢g is bounded (with the same bound). For faithfully
normed modules, these remarks imply (if we denote by @ := A ,_, the field of
fractions of 4):

—R®R4Q s a covartant functor from the category of faithfully mormed
A-modules with bounded linear maps (resp. contractions) as morphisms into the
category of normed Q-vector spaces with bounded linear maps (resp. contractions) as
morphisms.

For each normed 4-module M, the completion M of M is a well-defined
normed group (cf. (1.1.7)). A straightforward verification shows that M is a
normed A-module and even a normed A-module. If M is a faithfully normed
A-module, M isafaithfully normed A-module. Weleave the details to the reader.

2.1.4. Ramification index. — For a given normed 4-module M, it is natural
to compare the value set |M — {0}j= R, — {0} with the value set W :=
|4 — {0} = R, — {0} as follows: one calls two elements ry, r, € | M — {0}]
“related with respect to W’ if there exist elements w;, w, € W such that w,r,
= w,r,. This relation obviously is reflexive and symmetric. In addition, it is
transitive if W is multiplicatively closed (which is always the case if M is
faithfully normed). Then |M — {0}] decomposes into equivalence -classes
modulo W, and we may define"

Definition 1. Assume that W is multvplicatively closed. The number of equiv-
alence classes of | M — {0f| modulo W s called the ramification index of the
normed A-module M. We denote this number by e(M[|A) or ssmply by e(M) or e.
(If vt vs not finute, we just write e = o).

Remark. The letter e is chosen in analogy to classical valuation theory of
field extensions (see (3.6)). If W and |M — {0}| are multiplicative subgroups of
R, — {0} and if W= |M — {O}|, obviously e(M) is nothing more than the
order of the residue group (M — {0}|/W.
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For any module M over a commutative ring 4, the rank of M (written
rk, M or just rk M) is defined to be the maximal number of 4-free elements.
If A is an integral domain and if M is torsion-free, we have rk, M =
dimg M ®4 @, where @ is the field of fractions of 4.

Now we can prove

Proposition 2. Let M be a faithfully normed A-module of finite rank. Then
e(M|A) is finite and we have e(M[A) <rk, M.

Proof. Set n:=r1k, M. We have to show that among » 4 1 elements
¢y -oer Can1 € | M — {0}] at least two are W-equivalent. Choose wx, € M such
that |z,| = ¢, v =1,...,n 4+ 1. By assumption there is a non-trivial linear
relation

n+1

S ax, =0, a, € 4.
1

From Corollary 1.1.1/5 (the Principle of Domination), we deduce the existence

of two different indices 7, j such that |ax;| = |a;x;| = max |a,x,] &= 0. Hence
we have |a;| ¢; = |a;| ¢; with |a;], |a;| € W. Thus ¢; and ¢; are W-equiva-
lent. |

2.1.5. Direct sum. Bounded and restricted direet produet. — Let I be an
index set, and let (M;, | |;)ier be a family of normed (resp. faithfully normed)
A-modules. We provide the module @ M; with the function

i v

2] = max {|a;];} f =} u;, =z;€M,.

It is easy to check that (P M;, | |) is a normed (resp. faithfully normed)
A-module. :

Definition 1. The pair (P M;, | |) @8 called the (normed) direct sum of the
modules (M;, | |;). The completion of @ M ; is denoted by P M ;.

The direct product [] M; cannot be treated the same way because

[
sup {|x;|;} need not be finite. But
i

([T M) = {(xYier € [T M5 sup {|a}} < oo}

is obviously an A-submodule of [J M;. On this module we introduce an

13
A-module norm (resp. a faithful 4-module norm) by

[(&:)ier| := sup {lx;]}.
Definition 2. The pair (b( Il M), | ‘|) ©s called the (normed) bounded direct
product of the modules (M;, | ;).
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We denote by ¢(]] M;) the set of all elements (x;);c; such that x; converges

1
to zero with respect to the filter of complements of finite subsets of I; i.e.,
for any ¢ > 0, we have |x;| << ¢ for almost all 7 € I (we simply write lim z; = 0;

1—>00

note that the set of indices 7 € I where x; = 0 is at most countable). Then
o[l M;) = {(xi)iez e[l M;; limz; = 0}
i i i—~>00

is a normed A-submodule of b( H M.

Definition 3. The A-module c([] M;) is called the (normed) restricted direct
product of the modules (M;, | |;)-

For each j € I, we have canonical injections

which are isometries. Note also that the direct sum coincides with the restricted
and the bounded product of the M; if the index set I is finite.

Proposition 4. Each module M; is strictly closed in all modules @ M;,
c([I M), b(][ M;).

Proof. It is enough to show that M; is strictly closed in b(]J] M;). Choose
x = (;) € b(]] M;) arbitrarily. Then for each y € M;, we have

|z + y| = max {sup ||, |25 + yl} = sup |z = |z — x;]. |

i+] i*j
Proposition 5. The module c([] M;) is closed tn b([] M;). The direct sum
@ M; is dense in c([[ M;).

Proof. Let y, = (y,;)ier € ¢(]] M;) be a sequence which converges to an
element y = (¥;);er € B(J] M ;). In order to show y is an element of ¢(J] M),
let ¢ > 0 be given. Choose an index u such that [y — y,| < ¢; ie.,

lyi — yuil <& forall 7¢€l.
We conclude that

lyil = max {|ly; — yuil, [yuil} = max{e, |y.l} forall €.

Since y, is an element of ¢([] M;), we can find a finite set # — I such that
|yuil < e forall v ¢ F. Thus,

lyil < e forall 74 F; ie.,, yecc(]J]M).

Let z = (2;) be an element of ¢([] M;); let ¢ > 0 be given. Choose a finite set
F — I such that |z;| << ¢ for all 7 ¢ F. Define x:= (x;) € @ M; by
i

xi:=2; for 1€ F, ;=0 for 74 F.
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Then

e — 2| = max |x; — z;| < €;
i

i.e., @ M; is dense in c(J] M;). -
We now generalize Proposition 1.4.1/3.

Proposition 6. If all M; are complete, the modules b([[ M;) and c([] M;) are
complete. In particular, @ M ; is complete if the index set I is finite.

Proof. Since ¢([] M;) is closed in b(]J[ M), it is enough to show that b(]J] M)
is complete. Let y, = (y,;) € b(][ M;) be a Cauchy sequence. Let ¢ > 0 be
given. Choose », such that |y, — y,| =< ¢ for all u, v = »,; i.e.,

|Yus — yvil <& for u,»=w, and i€l.

Then the sequence (y,;) = M;, » = 1,2, ..., is a Cauchy sequence in M; and
hence has a limit y; € M;. We claim y:= (y;) € b(J] M;) and lim |y — y,| = 0.

The continuity of | | implies that lim |y,; — v,;| = |y; — y»i| = eforallv € I,
y = v,. Hence p—oo
ly —y,| = ¢ forall v =;
1.e.,
y=uy—y)+yecb[[ M) and lim|y —y|=0. T

Proposition 7. (][] M;) = O M.

Proof. By the preceding proposition, ¢(J] M;) is complete. Since @ M;
—=c(J] M;) = c(]] M;), we see that @ M; = ¢(]] M;). To show the opposite
inclusion, we prove that @ M; is dense in ¢([] ). Let x = (#;);1 € c(J] II,),
and let ¢ > 0 be given. Then |#;| << ¢ for 7 € I — F, where F is a finite subset
of I. For each v € F, there exists x; € M; such that |£; — x;| < e. If we define
2;:=0 for 7€ I — F and x:= (x;);c;, then we have x € ® M; and |& — x|
= sup & — z;| <e. O

2.1.6. The module # (L, M) of bounded A-linear maps. — If L, M are normed
A-modules, we denote by #(L, M) the A-module of bounded A-linear maps
¢: L — M. For each such ¢, we define the real number

0 if L=0
ol = sup ——I(pl(x)l = infimum of all bounds of ¢ if L 4= 0.
r+0 x

Then |@p(x)] = |¢] |x] for all x € L.
Proposition 1. The function | | rs an A-module norm on L (L, M). Itiseven a
faithful A-module norm, if M vs faithfully normed.

Proof. First, |p| = 0 if and only if ¢ = 0. Assuming L = 0, the ultrametric
inequality
o + ¢'| = max {lg|, l¢'l}, @, ¢ €L, M),
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follows easily from the fact that for all x € L we have

g + @) ()] = lp(x) + ¢’ (@) = max {{p(x)], [¢'(®)[}
= max {|g| [], |¢| |2} = |#| max {[g], |¢]}.

Furthermore, we have fora ¢ 4

jag| = sup 229 < gy {lal I"M} — lal lg,
z+0 || z+0 ||

and equality holds if M is faithfully normed. ]
Definition 2. 7'he module ¥ (L, M), provided with the norm just introduced,
18 called the (normed) A-module of bounded A-linear maps L —> M.

Obviously we have
¢l = sup |p(y)].

lyl=1
In important cases this is an equality (as is always the case in real and complex
analysis); e.g.,

Proposition 3. Let M be a faithfully normed A-module. Assume that |L| lies in
the closure of |A|. Then if |A — {0} s a group, we have |@| = sup |¢(y)| for all
p € L(L, M). lyi=1

Proof. Set r := sup |p(y)|. It is enough to show

lyl=1

lp@)] < r|x| forall xe€ L, x0.

By assumption for each such x € L, there exists a sequence a, € A — {0} such
that |a,|~! converges to |x|. Since |4 — {0}] is either discrete or dense in IR, — {0}
we can suppose |a,|”! = |x|. Then we have |a,x| = |a,| || = 1 and hence

[plax)| = 7.
Since M is faithfully normed, this implies
lpx) =7 la,|t forall »=1,2,....
Thus |p(x)| < r |x| in the limit, 1
Proposition 4. I/ M is complete, ¥ (L, M) is complete.

Proof. We may assume L == 0. Let ¢, € £ (L, M) be a Cauchy sequence, i.e.,
lpu — @] = efor u, v = ny(e), € > 0 given arbitrarily. From

(*) lpu(®) — @,(2)] = @ — @] - 2| < 2], u, v =mno(e), x€L,

we conclude that ¢,(x) is a Cauchy sequence in M and hence (by assumption)
has a well-defined limit. Define the map ¢: L — M by

p(x) := lim ¢,(x), x € L.

v
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By reasons of continuity, ¢ is 4-linear. From (x) we get (due to continuity of
the norm)

lp@) — @,(x)] = lim |pu(x) — @, (@) = & [x], v =mnee), x€L.
u

Hence ¢ — ¢, and therefore ¢ are elements of ¥ (L, M). Moreover we see

lp — @,| =sup {M} = sup {ﬂ} =g, ¥ = nle).

T+0 || z+0 | ||
Therefore ¢ is the limit of the sequence ¢,. |

If N is a third normed 4-module, the composition of homomorphisms yields
amap (L, M) X (M, N)— ZL(L, N), (g, p) = po¢. Namely, we have

lyoe) = |yl lp@)] = Iy ¢l x|, xe€lL,

and hence [y o ¢| < |y| |@| forall w € (M, N), ¢ € L (L, M). In particular, we
see
The set (M, M) vs a normed ‘‘ring” (in general, not commutative).

For each ¢ € Aut M (i.e, the group of units in #(M, M)), we have

1= |pog =< lg|lo7Y.
Therefore

Each contraction ¢ € Aut M whose vnverse is also a contraction vs an tsom-
etry.

2.1.7. Complete tensor produets. — As before let L and M denote normed
A-modules. Considering the (ordinary) tensor product L &4 M, we define a
function | |: L ®,4 M — R, in the following way. For g € L Q4 M let

lg| := inf (maX || lyil),

1<isr

where the infimum runs over all possible representations
r
9:23’&®yi, xieL, yiElW,
i=1 ,

of g. It is easily verified that | | is an ultrametric function on the additive
group of L ®4 M, which, in addition, satisfies condition (ii) of Definition
2.1.1/1. Hence L ® 4 M, together with | |, could be called a semi-normed
A-module. Applying Proposition 1.1.7/5, we construct the completionof L ) 4 M
(as a semi-normed group), and it is not hard to see that the resulting normed
group is canonically a normed A-module. We call this complete normed
A-module the complete tensor product of L and M over A and. use the notation

L @.4 M. Note that L @) 4+ M is also a normed A-module with A4 denoting the
completion of A (cf. the last paragraph of (2.1.3)).
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The bilinear map 7': LXxM —~L Q4 M, (x,y) ngkid ® y, induces by
composition Wlth the canOnlcal map L ®, M — L @ 4+ M a bilinear map
v: Lx M — L ®4 M, (%, y) — x ® y, where x @ y is defined as the image of
r®@y in L ® 4 M. Calling a bilinear map @: LXM — N into a normed (or
semi-normed) 4-module N bounded if there exists a constant ¢ > 0 such that
|DP(x, y)| < o |z| ly| for all x € L, y € M, it follows immediately from our
definitions that the maps v and 7’ are bounded by ¢ = 1. Note that also in the
case of bilinear maps boundedness implies continuity. We want to show that the

bilinear map tv: L X M — L @) 4 M factors bounded bilinear maps from L x M
into complete normed A-modules. (See (2.1.8) for situations, in which bounded-
ness is equivalent to continuity.)

Proposition 1. The bilinear map v: LX M — L @) 4 M satisfies the following
properties.
(i) Let @: LXM —~ N be a bounded bilinear map into a complete normed

A-module N. Then there is a unique bounded A-lvnear map ¢: L @ 4 M — N such
that ® = ¢ o 7.

(ii) If, wn the situation of (i), the map D vs bounded by o > 0, then also ¢ is
bounded by o so that |p| =< .

Proof. Due to the universality of the (ordinary) tensor product, there is a
unique A-linear map ¢": L ®4 M — N rendering commutative the diagram

XML M

'3 @’

N
Let ¢ > 0 be a bound for @; we want to show that also ¢’ is bounded byg For

an arbitrary element g = Z’ x; Qy; €L X4 M, we have ¢'(g) = 2 D(x;i, i),
and therefore

9" (g)| = max [DP(x;, y;)| = o max [z;| |yl .

lsi<r 1=isr

Then taking the infimum on the right-hand side over all possible represen-
tations of g, we get |¢’(g)] = o |g|; hence g is a bound for ¢’'.
Now we can apply Proposition 1.1.7/6 to the map ¢’ and hence get a

homomorphism ¢: L @) 4 M — N such that the diagram

L><M—>L®AM—»L@)A M

N

N
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commutes. The map ¢ is bounded by g and is easily checked to be A4-linear.
Thus it remains only to be shown that ¢ is the unique bounded A4-linear map

T ~

making the big triangle commutative. If g = 3 x; ® yi € LQ,4 M is an
i=1

element in the image of the map L®4M~—->LER,4M,then due to the linearity

of ¢ we must have ¢(g) = Z D(x;, y;). Hence ¢ is uniquely determined on a

dense submodule of L &, M wh1ch means by Proposition 1.1.7/6 that ¢ must
be unique. O

The A-module of bounded bilinear maps @: L X M — N can be interpreted
as the A-module of bounded linear maps Q(L, LM, N )) for an arbitrary
normed 4-module N. This goes in the usual way by identifying a bounded
bilinear map @ with the linear map L — ¥ (M, N), x +> D,, where D, denotes
the linear map M — N, y > D(z, y). It isnot hard to see that the norm of @
as an element of ¥ (L, #(M, N)) equals the infimum of all (positive) bounds
for @ as a bilinear map. Keeping this in mind, we define an 4A-module homo-
morphism

v: L(L ®4 M, N) > 2(L, (M, N))
pr>@oT

by composing bounded linear maps ¢: L @ 4 M — N with the bilinear map
:LxM—~L ®,4 M. As a consequence, we get from Proposition 1.

Corollary 2. If N s a complete normed A-module, then : ¥ (L @) +1M,N)
—- & (L, FM, N )) 18 an isometric 1.somorphism of normed A-modules.

Proof. The map ¢ is contractive, since T admits 1 as a bound. Furthermore,
¢ is bijective due to assertion (i) of Proposition 1 and ¢! is contractive due to
assertion (ii) of Proposition 1. Hence ¢ must be an isometric isomorphism. []

For many applications it is useful to know that the complete tensor product
L é) 4 M is characterized by the properties of the bilinear map v: L x M
— L @) 4 M mentioned in Proposition 1. We state this explicitly.

Corollary 3. Let P denote a complete normed A-module, and assume that
o: L X M — P 1s a bounded bilinear map satisfying assertion (i) of Proposition 1
with P substituting for L @\) 4 M and o substituting for t. In particular, denote by
p: P — L @ 4M and y': L Q4 M —> P the unique bounded linear maps such
that t = p o o and 6 = ' o 7. Then p and ' are tnverse to each other; hence they
are isomorphisms which are bounded in both directions. If additionally o is
bounded by 1 and satisfies assertion (ii) of Proposition 1, then yp and v’ are vsom-
etirves.

Proof. We have

idpoo=9p'or=9p ' oyoo and

idyg,moT=ypoo=ypoy or.
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Hence the uniqueness assertion of (i) in Proposition 1 implies
dp=9'oy, idgg,um=vovy,
and the first part of the corollary is clear. If ¢ is bounded by 1 and satifies

assertion (ii) of Proposition 1, it follows that y and ¢’ are contractive; thus
they must be isometries. O

Just as for ordinary tensor products, one can derive various properties,
including canonical isomorphisms, for complete tensor products. We state some
of them below.

Proposition 4. Let i: L — L and j: M — M denote the injections of the
normed A-modules L and M into their completions. Then there is a unique 1so-
metrve tsomorphism L (X Q ZM—>LR Q 4 M such that x ® y > 1(x) ® 1(y).

Proof. The canonical bilinear map L X M — L ® 4 M extends to a bilinear

map L x M — L C;Q 4 M, which is obviously A-bilinear, bounded by 1, and
which furthermore satisfies assertions (i) and (ii) of Proposition 1. Thus we
are done by Corollary 3. |

Proposition 5. Let w;: L; — M;, © = 1,2, be bounded A-linear maps be-
tween normed A-modules. Then there 1s a unique bounded A-linear map Ly X 4 L,
— M, Q4 My, denoted by p, X p,, such that x Q) y >y, (x) Q p.(y). Further-
more [y1 X po| = |y| 9ol

Proof. The bilinear map @: L, x Ly X%y M, x M, — M, ®4M, is bound-
ed by || |y.|. Hence according to Proposition 1, the map @ equals the com-
position of the canonical bilinear map L, X L, — L, ® 4 L, and of a unique
A-linear map L; @4 Ly — M, Q4 M, which is bounded by |y, | |y,|. |

Note that in the situation of Proposition 5 we have, in particular, a commu-
tative diagram

Ly @4 Ly 22 M, @, M,

| !

Ly @4 Ly 28 M, &, M,

of bounded maps; hence y, @ w, may also be interpreted as the unique exten-
sion of y; X y, in the sense of Proposition 1.1.7/6.

Proposition 6. Let L, M, N be normed A-modules. Then there are tsometric
wsomorphisms
(i) 4 @A) 1+ L — L where L denotes the completion of L,
(ii) L®4ﬂl—>ﬂl QAL
(iii) (L .4 M) OAN — L« 74 (M @4 N),
(iv) (LP M) K Q4 N — (L Q4N DM 04 N)
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which are uniquely determined by requiring that, respectively,
a @ xr = ax,
TRy >y,
@Ry @z 2@ B2,
(@9 @z @R 2y R2).

The proof goes exactly the same way as in the ordinary tensor product
case ; one has to rely on the universal property of the complete tensor product
and eventually has to apply Corollary 3. We leave the details to the reader.

Now let 6: 4 — B be a contractive homomorphism of normed rings. Then
B is a normed A-module via ¢; hence, for any normed 4-module L, the com-

plete tensor product L @) 4 B is defined and carries the structure of a normed

B-module such that b(x @) b') == ® bb’. We say that L @ 4B is derived
from L by “‘extension of scalars”.

Furthermore, if M is an arbitrary normed B-module, we get by ‘‘restriction
of scalars” on M the structure of a normed 4-module. In particular, the com-

plete tensor product L @ 4 M isdefined, and just as above, L @3 4 M is a normed
B-module. With these preparations we can state the following generalized
version of the associativity formula for complete tensor products:

Proposition 7. Let o: A —B be a contractive homomorphism of normed
rings, and let L be a normed A-module, M, N be normed B-modules. Then there is
a unique tsometric wsomorphism

(L @4 M) Qs N~ L Q4 (M &pN)
such that (x @ Y) é:) Z>x (;) (y @ z).
Proof. For an arbitrary z € N, we consider the B-linear map
Yo M —M @) s N
y—=>y @ z

which satisfies |y,| =< |z|. Tensoring over 4 with the identical map id: L — L
yields by Proposition 5 an 4-linear map

id @yt L Q4 M —L @4 (M D5 N)
2Ry r® Y2

with jid @WJ =< |z|, which is obviously also B-linear. Since id ® p, depends
linearly on z, we get a B-linear map

(LR4M) X N—L&, (M Qg N)

@€Ry,2) 2@ YD),
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which is bounded by 1, and hence a B-linear map
¢ (LR4M) Rp N — L @4 (M @5 N)
ERNRzr2® @y ®2)
with |@| =< 1. Similarly one constructs a contractive B-linear map
¢ L@ (M R@pN)—~ (L @4M) ®RsN
TR YD) > QY @z

Then it is clear that the contractive maps ¢ and ¢’ are inverse to each other;
hence they must be isometric isomorphisms. J

We conclude by the following generalized version of assertion (iv) in Prop-
osition 6.

Proposition 8. Let (L;);.; be a family of normed A-modules. Then for any
normed A-module M, there are unique isometric tsomorphisms

(D L) @4 M — o([T (Li ®4 M)  and

iel i€l
(11 L) Ru M — ¢ ez Q.4 M)
1€ E13

such that
@ier @ ¥ +> (@ @ Yier-
Proof. We begin by showing that the bilinear map

o (D Li) X M — ([T (Li @4 M))

i€l i€l
(@ier ¥) P> (@& @ Y)iers

which is bounded by 1, satisfies assertions (i) and (ii) of Proposition 1. For
this purpose let @: (P L;) X M — N be a bilinear map, bounded by ¢ > 0,
into a complete normed 4-module N. Then also the restrictions @;: L; X M
— N are bounded by p. Denoting by o;: L; X M — L; @ 4 M the canonical
bilinear map, we get according to Proposition 1for each 7 € I a unique bounded
A-linear map ¢;: L; @A M — N such that @; = @;00; and such that |¢;| < .
The ¢; yield an A-linear map

ot c([1(L; @4 M) — N
(@ier > 2 @ilgi)

i€l

which is bounded by g and obviously satisfies @ = ¢ o ¢. Furthermore, it is
easy to see that ¢ is unique since all ¢; are unique. Thus according to Corol-
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lary 3, the map

(B L) @4 M — ([T (Li @4 M))

i€l i€l
induced by o is an isometric isomorphism. This settles the first part of our
proposition. The second one can be verified in literally the same way with
@ L; replaced by its completion ¢( [] L;) or more simply by relying on Propo-
iel iel
sition 4. |

2.1.8. Continuity and boundedness. — Each bounded A4-module homo-

morphism ¢: L — M is continuous. To prove a converse, we need the follow-
ing observation (which is a substitute for the trivial fact that in a real (resp.
complex) normed vector space each vector == 0 can be ‘“‘normed to length 1 by
multiplying with a scalar’).

Proposition 1. Let the valuation of A be non-degenerate; let a, b be elements of
A such that 0 < |a| < 1 < |b|. Set o := max {|a|™1, |b|}.

Let M be a faithfully normed A-module. Then for each x € M, x == 0, there
exists a scalar ¢ € A such that 1 < |cx| < .

Proof. If |x| = 1, choose » € N u {0} such that |a|™" = |z| < |a|~®+D), and
definec:=a" If 0 < |z| < 1, taken € IN u {0} such that |b|-("+*D) < |x| < |b|~",
and define ¢ := b"*1. In both cases we get 1 = |cx| < o. |

Proposition 2. Assume that the valuation of A is non-degenerate, and let
L, M, N be faithfully normed A-modules. Then for any A-linear map ¢: L — M
and any A-bilinear map @: L X M — N, contvnuity is equivalent to boundedness.

Proof. It is only necessary to show that continuity implies boundedness.
Assume that ¢: L — M is not bounded. Then there exists a sequence z, € L
such that |p(x,)| > |a|~" |z,|] where a € 4, 0 < |a| < 1. Due to the preced-
ing proposition, we may assume 1 < |x,| < ¢. Set z:= a"r,. Then |p(z})|
— la®] |p(@n)| > |z = 1, but

25| = la|® |24] < |a|® ¢ — 0;

i.e., @ is not continuous.

If : L X M — N is not bounded, there exist sequences z, € L and y, € M
such that |D(x,, y,)| > |a|=2" |x,| |ya], and a computation similar to the one
above shows that @ cannot be continuous. J

Corollary 3. Let A be a normed ring which is an algebra over a field k — A.
Assume that the norm of A induces on k a mon-trivial valuation. Then for all
A-lvnear maps between normed A-modules, continuity is equivalent to boundedness.
The same holds for A-bilinear maps between normed A-modules.

Proof. By restriction of scalars, we can view A-modules as normed
k-modules which are even faithfully normed by Proposition 2.1.1/4. Since
A-linearity implies, in particular, k-linearity we are done by Proposition 2. ]
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Hence if Proposition 2 or Corollary 3 is applicable, the space #(L, M)
coincides with the space of continuous 4-linear maps L — M. Likewise, if 4
fulfills the condition of Corollary 3, the complete tensor product L @ 4 M of
the normed A-modules L and M is also characterized by the following uni-
versal property: For any continuous bilinear map @: L X M —+ N into a
complete normed 4-module N, there exists a unique continuous 4-linear map

¢: L 4 M — N such that

LXMDALR, M
¢ P

N
commutes.
Two A-module norms | |and| | onan A-module N are called equivalent
if they induce the same topology on N or, in other words, if the identity maps

N, D=W,1 17 W] =W, D

are continuous. As a consequence, we derive immediately from Proposition 2
and Corollary 3

Corollary 4. Let | |, | be A-module morms on an A-module N, and
assume that one of the following conditions is satisfied.

| ’

(i) The norm of A s a non-degenerate valuation, and | |, | | are farthful
A-module norms.
(ii) A contains a field k, and the norm of A tnduces on k a non-trivial valua-
tion.
Then | |, | | are equivalent norms on N if and only if there are constants
0, 0" > 0 such that
L '=ol | =eI I'.

It is natural to ask how the complete tensor product L Qi<\) 4 M changes
when the norms on L and M are replaced by equivalent ones. We can give an
answer in the special case where Corollary 3 is applicable.

Proposition 5. Let vy;: L; — M;, j =1, 2, be linear homeomorphisms of
normed A-modules, and, as vn Corollary 3, assume that A contains a field with a
non-trivial valuation. Then the map p, Qywe: Ly @4 Ly —~ M, @4 M,, as well

as @ wo: Iy (;?\)A L, > M, @ 4 My, ts a homeomorphism.

Proof. Due to Corollary 3 the maps y,,y, are isomorphisms which are
bounded in both directions. Then by Proposition 2.1.7/5 and the remark follow-
ing it, the maps y, X y, and ;! ® y; 1, as well as their ‘“‘completions’ y, X y,
and y;! @y, !, are bounded and inverse to each other. I:[

The assertion of Proposition 5 is, of course, also true if Proposition 2 is
applicable — i.e., when L;, M;, j = 1, 2, are faithfully normed A-modules and
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the norm of 4 is a non-degenerate valuation. However, here one is restricted to
faithful A-module norms, whereas under the assumption of Proposition 5, one
concludes that any equivalent A-module norms on 4-modules L; and L, lead
to equivalent norms on L, R4 Ly. We give an application of this fact, which is
a generalization of Proposition 5.

Proposition 6. Let y;: L; — M;, j = 1, 2, be strict epimorphisms of normed
A-modules, and assume that A contains a field with a non-trivial valuation. Then

alsoy; X ys and y, @\) W, are strict eprmorphisms.

Proof. According to Proposition 5, we may replace the norm on M; by an
equivalent one; hence, in particular, we may assume that M; carries the
residue norm viay;, j = 1, 2. Applying Corollary 1.1.9/6, we only have to show
that y; & ., which is clearly surjective, is also strict. More specifically, we will
see that M, ® 4 M, carries the residue norm via y; &) y,. Consider an element
g€ M, ®4M,, and let § be a real number with |g| << 6. Then there is a repre-

R
sentation g = 3’ x; ® y; with x; € M,, y; € M, such that max |z;| |y;| < 6.

i=1 1si<r
Furthermore, the elements x; and y; admit inverse images x; € L, and y; € L,,
1 =1, ..., r, such that max |z} |y;| < 6. The element

1si<r

,
g =22 Ry;€ Ly Ry Ly
i=1

is mapped onto g by y; & y, and satisfies |g’| < 6. Furthermore by Proposition
2.1.7/5, the mapy; & w, is contractive, and hence so isy; & p,. Thus, we have

lgl < 1g'| < 9.

Since this holds for all 6 > |g|, it follows that M, ®, M, carries the residue
norm via y; & ;. 1
We give an example which shows that, for rings 4 with degenerate valua-
tions, Proposition 2 and Corollary 4 are not true in general.
Let M;:= Ade;, 7 = 1,2, ..., be a sequence of free cyclic 4-modules and

set M := @ M;. Then, for each v € Z, we can define an 4-module norm | |,
i=1

on M by setting

Z’aiei = max {t7%|a;|}, a; € A.
1 v i
Obviously | |, = | |,_;; i.e., each identity map (M, | |,_;)—> (M,| |,)isa
contraction. The inverse map id,: (M,| |,)— (M,]| |,_;) is not bounded,
because
lejly_y =" =7 ¢y,, 1=1,2,....

However, id, is continuous if the valuation of A is bounded and v = 2 or if
la]| = 1 for all a € A — {0} and v < 0. To see this, first we consider the case
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where |A]| is bounded and where » = 2. Let ¢ > 0 be given. Set 6 := ¢, and
choose z = Zn'aiei € M such that |x]|, <4, ie., |a;] =% for 7 =1,...,n.
Since |a;] < 11, we have |a;] < |a;|"*, and hence

lai] < 7e < 7" te; e, lz|,.1 = ¢ for »=2.
Next we look at the second case: || = 1 for alla € 4 — {0} and » =< 0. Then
one has 7= = 1 for all ¢ = 1. Therefore, |z|, = 1 for all x ¢ M — {0}. Hence

| |, induces the discrete topology on M, and every map from (M,| |,) is
continuous.

2.1.9. Density eondition. — We give the following
Definition 1. 4 normed A-module M s said to fulfill the density condition if

| M| ©s contained in the closure of |[A| wn R.:
M| = 14].

Note that this condition, which already occurred in Proposition 2.1.6/3, is
automatically fulfilled if |4| is dense in R, — {0}. Thus if |4 — {0}| is a group,
the only interesting case is when |4 — {0}] is discrete in IR, — {0}.

One easily proves

Proposition 2. If the normed A-modules L, M ;, where i varies tn some index
set I, fulfill the density condition, so do the modules

@D M;, ([l My), b([[ M;).

i€l i€l i€l
If |A — {O}] vs a group, then L (L, M;) fulfills the density condution.

We are going to describe a natural device for passing from an A-module
norm on M to an equivalent one fulfilling the density condition. Let 4 be a
valued ring and assume that the valuation on 4 is non-degenerate. Then for
ach normed 4-module (M, | |)and for each x € M, the set

is non-empty. Hence the function | |": M — R, given by

(*) |z|" := inf R,
is well-defined.

Proposition 3. The pair (M, | |') is a normed A-module fulfilling the density
condition.

Proof. Clearly |z|" = 0 implies x =0, since | | =< | |’. In order to see
that | | is ultrametric, it is sufficient to prove (see Proposition 1.1.1/6) that

[#| = [yl  implies [|z|' <[y, x,yeM.

However, |x| =< |y| implies B, — R,, and hence |y|' = |z|".
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To verify |ax|” < |a| |x|",a € A,z € M, it isenough to show that R,, — |a| R,.
So take r € R,, i.e.,r € |[A| and r = |z|. Obviously, s:= |a|r € |[4]| and s =
la| | = |ax|; i.e., s € R4,. Thus | |’ is a norm on M which, by construction,
fulfills the density condition. O

Remark. To guarantee that no set E,, =0, is empty, it is actually enough
to assume that 4 contains elements a with |a| > 1. Then the function | |’ can
be defined as above, and the proposition remains true. If 4 has elements a with
0 < |a| < 1, one can introduce the sets S, := {s € |4]; s = |z|}, which are non-
empty, and consider the map « — sup S,. Again one gets an 4-module norm
on M fulfilling the density condition.

Next we improve the last proposition (notations as above):

Proposition 4. If the valuation on A is non-degenerate, the norms | | and
| |” are equivalent.

Proof. Since | | = | |, the equivalence of the norms will follow if we
show that the identity map (M,| |) — (M,| |’) is continuous — i.e., that
for each sequence z, € M with |x,| — 0, we also have |z,|’ — 0. Take £ > 0
arbitrarily. Choose r € | 4| such that O << r <C ¢; this is possible by the assumption
on |4|. Choose », such that |x,| < r for v = »,. Then r € R, for all v = »y, and

hence |z,|” =< r < e for » = v,. |
Finally, we state

Proposition 5. Let |4 — {0}| be a group == {1}. If (M,| |) is a faithfully
normed A-module so is (M, | |'). (Observe that the assumption on A implies
that A carries a non-degenerate valuation.)

Proof. Assume that |ax| = |a| |x| for all a € 4, x € M. We only have to
show that |ax|’" = |a| |z|’. For this it is enough to verify that R,, — |a| R, for
all @ 4= 0. So take s € R, i.e., s € |4| and s = |ax| = |a| |z|. Set r:= |a| L s.
Then r € | 4| (since |4 — {0}| is a group) and r = ||; i.e., r € R,. So s = |a| r
€ |a| R,. |

2.1.10. The functor M -~ M~. Residue degree. — To each normed
A-module M, we attach the 4°-modules

Me:={xeM;|lxl =1} and M :={xe€ M°;z] <1}.

The quotient module M~ := M°/M"~ is an A”-module in a canonical way. Each
A-linear contraction ¢: L — M between normed A4-modules induces an
A~-linear map ¢~: L™ — M~. Thus, we see that

M ~> M~ vs a covariant functor from the category of nmormed A-modules
with contractions as morphisms tnto the category of A™-modules.

Furthermore, recall that 4°=Ad, A=A and A~ = A4 if the norm on 4
is a valuation. In particular for faithfully normed 4-modules M, we can talk
about the 4-module M~.
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Proposition 1. If M s a faithfully normed A-module, then M~ is a torsion-

~

free A-module. (Observe that M is also torsion-free.)

Proof. Assume ax~ =0, a € A, 2~ e M~, x* == 0. Choose inverse images
a € A, x € M°. Then |a| |z| = |ax| < 1. But || = 1 and therefore || < 1;
ie., @ — 0. |

Definition 2. For each faithfully normed A-module M, we define the residue
degree of M over A by f(M]|A):=rk; M".

Remark. In classical valuation theory (where 4 and M are fields), f/(M/A4)
equals the degree of the field M over the field 4.

Proposition 3. Let |A — {0} be a group. Then for each faithfully normed
A-module M, we have f(M|A) = rky, M. More precisely,

If 24, ..., 2, € M° have A -linearly independent tmages in M~, then | Y a,x,|

v=1
= max |a,| for all a,, ...,a, € A. In particular, z,, ..., x, are A-linearly inde-
1=v=n
pendent.

n
Proof. Let m:= } a,x, be given. The inequality |m| < max |a,| is obvious.
v=1 1=v=n

In order to verify the opposite inequality, we may assume that |a,| = |a,| for
v = 1, ..., n and that a, &= 0. We can choose ¢ € 4 such that |¢| = |a,|~t. Then

lca,] =1 for all » = 1. Now we proceed indirectly: Assume |m| << max |a,|.
1=v=n

n
Then we would get | 3 ca,x,| < max |ca,|] = 1, from where we could pass to
y=1 1=v=n

n
Y ca,x; = 0. However, we have ¢@, == 0 in contradiction to the linear inde-
r=1
pendence of the z;. Thus, we must have |m| = max |a,|. |
1=v=n
The functor M --»> M~ is only useful under special assumptions on the
norm on M (cf. the case of strictly cartesian vector spaces (2.5)). In general,
M~ does not inherit much structure from M. Indeed, if M = Az is cyclic and
faithfully normed (A4 may even be a field) and if x|~ ¢ |A4|, we have M° = M~
and hence M~ = 0.

2.2. Examples of normed and faithfully normed 4-modules

2.2.1. The module A™. — As before, 4 denotes a normed ring. Viewing 4 as
a module over itself, we get a normed A-module. For each integer n = 1, we
can consider the normed n-fold direct sum of n copies of this module; i.e., the
A-module of all n-tuples {a = (a,, ..., a,); a, € A} provided with the maximum
norm

la| = max {|a,|}.
1=v=n
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The module A" is free; by {e,, ..., e,} we always mean the canonical basis of
A", i.e., e, has all coordinates O except 1 in the »-th place. We remark that
Ar is faithfully normed if A4 is a valued ring. Each A-linear map 4™ — 4" is
bounded ; more generally,

If M is any normed A-module, F(A™, M), 1 =< m << oo, consists of all
A-linear maps. For each such map ¢, we have |p| = max |p(e,)|.
1=v=m

The proof is obvious due to the definition of the norm on Am™.

Warning. Even if ¢: 4™ — M is bijective, ¢! may fail to be continuous.
The standard example which works even for valued fields is as follows:

Let K be a field with a non-complete valuation; let K be the completion of
K. If we provide K with the extended valuation, K is a normed K-vector space.
Choose z € K — K and consider the 2-dimensional normed K-subspace
U:= K + Kz of K. Since K is not closed in U, the map K2 — U given by
(ay, @3) H a; + a,x has no continuous inverse.

We state a sufficient condition for a normed 4-module M to be homeo-
morphic to 4%:

Proposition 1. An A-linear brjection y: M — A", 1 =< n << o0, 18 bounded (and
hence a homeomorphism) tf and only if each A-linear map M — A vs bounded.

Proof. First we show the if-part. For all @ € 4%, we have |a| = max |7;(a)|,
1=sisn

where 7;: A" — A denotes the projection onto the i-th coordinate. Since by
assumption all maps z; oy: M — A4 are bounded, we deduce that
lw(x)] = max |(7w; op) ()] = (max |m; op|) || forall xze M.
1=i=<n 1=i=n
To show the converse, take the A-basis m,, ..., m, of M such that y(m;)
—=e; € A", v = 1, ..., n. Then one has for each A4-linear map 1: M —> A the

estimates A(Zaimi) < max |a;] [A(m;)| = (max [A(m;)|) lzp(Za;mi) , and
i=1 1<isn 1sisn i=1
therefore 4 is bounded, if ¢ is bounded. |

It is a serious fault of the norm topology on A" that, in general, 4-sub-
modules of 4" are not closed in A", even if 4 is faithfully normed and complete
and quasi-Noetherian. We shall give an example in Proposition 2.2.4/2 showing
that this can even happen in the case of ideals (n = 1). For valued fields K,
all subspaces of K" are closed (Proposition 2.3.1/1). One of our important later
propositions (3.7.2/2) says that for normed Noetherian Banach algebras 4 (over
a complete valued field k) — so, in particular, for strictly convergent power
series algebras k(X,, ..., X,) over complete fields — all submodules of A",
1 < n << oo, are closed.

2.2.2. The modules A", A, ¢(A) and b(A). — Let I be a non-empty

index set. Define AP := @ M;, where M; = A for all 7 € I (for the definition
34
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of the (normed) direct sum @ M; see (2.1.5)). Then AD is the A-module of all
il
functions f: I — 4 which are zero for almost all 7 € I, provided with the norm
|[f/| = max |f(?)]. If e;, v € I, denotes the function defined by
i€l
ei(r) =1, e;(5) =0 for j =7,

each element f € A'D can be written uniquely in the form f = } f(?) ¢;. We call
{€i);e1 the canonical basis of AW, iel

If I is countable, we identify I with IN (or sometimes with IN u {0}). Up to a
canonical isometric isomorphism, 4P is the normed A-module 4 of all
sequences

8§ == (@, Ay, ...), where a; € A forall 7€ N and a; =0 for almost all 2.
For all n € N, the 4-module A" can be embedded isometrically into 4*) in an

obvious way. Thus, one has natural isometric injections

Al <5 A2 s oo 5 A" s A1)

Note that 4(®) —= (J A" and that A" is closed in 4®),

n=1

Proposition 1. 4 linear map ¢: AT — M wnto an arbitrary normed A-module
M 1is bounded if and only tf the set {|p(e;)|; T € I} is bounded. We have

lpl = sup lp(es)]

if @ is bounded.
Proof. Obvious. O

Still bigger normed A-modules than A" are the normed A-modules
CI(A)::G(HMi), b[(A)::b(HM,),

where M ;:= Alforall7 € I. In the case I = IN, we just write ¢(4), b(4) instead
of cy(A), by(A4). Thus

c(4) = {a = (ay, ay, ...); a, € 4,lima, = 0}, and

b(Ad) = {a = (ay, ay, ...); a, € 4, 8up |a,| < oo}

with the norm |a| = sup |a,|.

We have canonical isometric injections
AD s ¢ (A) < br(A).
If A is a valued ring, all modules considered here are faithfully normed
A-modules.

Remark. The A-algebra A[X] (resp. 4(X)) provided with the Gauss norm
is a normed 4-module which is isometrically isomorphic to A (resp. ¢(4)). In
these cases it is convenient to use IN u {0} instead of IN as index set.
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2.2.3. Structure of #(c;(4), M). — Let M be a normed 4-module. In
complete analogy to the definitions of the two preceding sections, we introduce
the normed 4-modules M*, M), ¢(M), b(M) and c;(M), bj(M): eg.,

M= éM,-, M) = é M;, cM):= c(HM,), b(M):= b(ﬁMi), and
so on, wilere always M; :; M. 1

Again M* = M) — ¢(M) = b(M) in a canonical way. From Proposition
2.1.5/6 we deduce

If M is complete, by (M), c;(M) and the modules M™, n = 0, are complete.

We are going to determine the structure of f(cI(A), M ), i.e. of the

A-module of bounded linear maps from c¢;(4) to M. Assigning to each
@ € K(CI(A), M) the element (tp(ei))m € b;(M), yields an 4-linear map

m: L(c(4), M) — by(M).
Since
|[7(p)] = sup [@(e:)| = |gl,

iel
we see that z is an isometry.

Proposition 1. If M s complete, 7 is an (vsometric) isomorphism. In partic-
ular, ¥ (c(A), A) 28 1sometrically isomorphic to b(A) if A vs complete.

Proof. It is enough to show that z is onto (because then z~! must also be
isometric). Take (x;) in b;(M). Since M is complete, for each (a;) € c,(A) the

element }'a;x; € M is well-defined, and we have
1133

|2 awi| = sup {|az;[} = (sup |xi]) (sup |a;]) = |=| - max |a|
iel
(note that the set of indices 7 € I where a; == 0 is at most countable). Hence
(@) > X az;
i€l
defines a linear map ¢: ¢;(4) — M with |p| =< |z|; ie., ¢ € °?(CI(A), M) Since
p(e;) = x;, we have n(p) = z; i.e., 7 is onto. O

2.2.4. Thering F = A[[Y,, Y,, ...]] of formal power series. — In this section
we assume that 4 has a bounded valuation. In (1.5.5) we provided the ring
F = A[Y,, Y,,...] with a bounded valuation extending the valuation on A4.
Thus, F is a faithfully normed A-module. In order to describe this faithful
A-module norm on ¥ in a convenient way, we introduce the faithfully normed
A-modules M,,» = 1,2, ..., where M, equals 4 as A-module and where the
norm | |, on M, is related to the valuation | | on 4 by the equation
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Then obviously
F—c(H )—b(H ):HMv
1 1 1
as normed A-modules, since | | is bounded. If 4 is complete, all M, are com-
plete. We derive from Proposition 2.1.5/6
Proposition 1. If A ©s complete, so is F.

This was already announced in (1.5.5). Furthermore, we stated without
proof that not all ideals of F are closed.

Proposition 2. T'he vdeal a of F' generated by Y,, Y,, Y3, ... 18 not closed in F'.
For example,

=Y, eqa, but f4a.
1

Proof. We have f,:= 2 Y, € a. From |Y,| = p;? (where P < Py < -

is the sequence of prime numbers) we conclude |f — f,| = | Z Y,| < max {p;}
n+1 v>n

= pyi,—0; i.e., f € . In order to prove f ¢ a, it is convenient to write the

o0
elements of F in their canonical unique way } a,Y*® (notation as in (1.5.5):
u=1

e.g., Y; = Y*P)), Now assume f € a; say f = Z' 9, Y, 1 =r <oo. If

Z’ a,,Y*®, this means, since Y**Y*» = Y‘“‘"’ that
u=1

o0 oo T
f=3 Yew — 3 (Z“ue ye(upe)).
i=1 u=1 \p=1
However, due to the bijectivity of e and the uniqueness of the power series
expansion, this is impossible, since, on the right-hand side, the exponent
e(pr+1) nEver occurs. ]

2.2.5. b-separable modules. — The following notion will turn out to be
extremely useful.

Definition 1. A normed A-module M is called separable with respect to bounded
linear maps or simply b-separable if for each x 4= 0 tn M there exists a bounded
A-linear map A: M — A such that A(x) == O.

Normed submodules of b-separable modules are b-separable.
Proposition 2. Let {M;};.; be a family of b-separable A-modules. Then the
modules
O[] M) S e([ M) =D M;

are b-separable.
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Proof. Let x = (x;) € b(]] M;), x == 0. Choose j such that x; 4= 0, and choose
a bounded linear map A: M; — A such that A(x;) &= 0. Define A: b([] M;) —~ A
by (y:) = A(y;). Then A is A-linear and A(x) = A(x;) #= 0. Moreover [4| = |4];
i.e., A is bounded. |

Corollary 3. All the A-modules b(A), c(4), A, A", AD are b-separable.
The module F = A[[Y,, Y,, ...] ©s b-separable.

As another corollary to Proposition 2, we get

Corollary 4. Let {M;; 7 € I} be a family of normed A-modules such that each
finately generated submodule of M ; vs b-separable. Then each finitely generated

submodule of @ M ; is b-separable.
iel

Proof. Let N = 3 An, be a finitely generated submodule of @ M;. Then

o=1 iel
there are elements m, € M; for ¢ = 1,...,r and v € I such that n, = 3 'm,.
T i€l
Define N; := 3’ Am,. Then N, is a finitely generated 4-submodule of 2; and

e=1
hence b-separable. According to Proposition 2, we know that @ N; is b-sepa-
iel
rable. Because N is obviously contained in @ N;, N is b-separable. |
i€l

2.2.6. The functor M - T'(M). — Let n = O be a given fixed integer. We
write T, (4) or just T'(A) for the normed ring 4(X;, ..., X,,) provided with the
Gauss norm as introduced in (1.4). (7(4) is to be interpreted as A4.)

For each normed 4-module M, we denote by 7'(M), or more explicitly by
T,(M), the set of ‘““strictly convergent power series” with coefficients in M :

| oo
T, M) = {Z’x, D. LI, G
0

oo ¥ 1 Viees¥Vn

€ M,limz, , — 0},

Again, T(M) stands for the module M itself. Obviously 7'(M) is ar. A-module
if addition and scalar multiplication are introduced in the usual way. By
defining

val...anII see X:," = max Ix

v,...vnl ’
0

we introduce an ultrametric function on 7'(M) which again will be called the
Gauss norm. Then we easily see

Lemma 1. 7'(M) is a normed A-module (isometrically wsomorphic to c(M)).

Obviously there is a canonical isometric 4-isomorphism
T,,,(T,,(M)) = Tpin(M) forallm,n;

hence, it will often suffice to consider 7', (M).
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Now we are going to provide 7'(M) with the structure of a 7'(4)-module. If

f=2 aX*, x =) xX’
uw=0

v=0
is the shorthand notation for elements f € 7'(4), x € T (M) (where u stands for
(M1, - pp) and X# for X4 ... X%»), we define their “Cauchy product” f.x
by

o0

frxi=2( X amx) X
A=0 u+v=42
As in the case of 7'(4), one checks that f - x € T(M) and proves that
/-2 = [f] - |2l
Thus, we have

Proposition 2, For each normed A-module M, the set T (M) of strictly conver-
gent power series over M s a normed T (A)-module.

Next we prove a statement closely related to Proposition 1.4.3/1:
Proposition 3. Let L, M be normed A-modules; let ¢ € L (L, M). Then the
map To: T(L) — T (M) defined by
o0 o0
2 X Y py,) X
0 0
18 a T'(A)-linear bounded homomorphism with |Te| = |¢|. The map T: L (L, M)
— 2(T(L), T(M)), ¢ = T, is an A-linear isometry.

Proof. We have |p(y,)| = |¢| ly,| = 0; i.e., the power series on the right-
hand side above actually is in 7(M). Obviously 7'p is additive. Moreover for

f= Zo_:oa/,‘X" eETA), y= Zc’oy,X” € T(L), we get
0 0
@9) (f-0) = T9) 5 ( T o) X' = Zg( 3 ag) X3

=0 p+v=32 =0 u+v=2

—3( X aw) X'=f-(Tp) (4);

A=0 p+v=1

i.e., T'p is a T(A)-module homomorphism. Finally

|(Tp) (y) = max |p(y,)] = lp| max |y,| = || - |y],

whence |T¢| =< |p|. Since M — T(M), we also have |T¢| = |@| and therefore
[Tg| = |@|. Because the relations 7T'(ap) = aT¢ for all a € 4 and T(p + p)
= T'¢ + Ty are obvious, all assertions of the proposition are clear. 1

The map 7'p is called the canonical extension of ¢. An obvious consequence is
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Proposition 4. 7': M —> T (M) s a covarrvant additive functor from the category
of normed A-modules into the category of mormed T'(A)-modules (with bounded
linear maps as morphisms vn both cases).

We state an important corollary of Proposition 3:

Corollary 5. If M us a b-separable A-module, then T (M) vs a b-separable
T(A)-module.

Proof. Take x = } x,X* &= 0 in T (M), say z; &= 0. By assumption there

0
existsa A € #(M, A) such that A(z;) & 0. Then T4 € #(T(M), T(4)) by Propo-
sition 3, and (7'1) (z) == O by definition of T'4.

Proposition 6. If M s a faithfully normed A-module, then T(M) is a faith-
fully normed T'(A)-module.

The proof is the same as the classical proof of the GAuss Lemma in (1.3.3).

We conclude this section by listing some properties of 7' which will be used
later.

Proposition 7. Let ¢ € £ (L, M) be given. Then
ker T'p = T'(ker ¢).

In particular, Te is injectrve if and only +f ¢ is tnjective. If ¢ is open and surjec-
tive, T'p 1s surjective.

The proof is left to the reader.
The functor 7' preserves finite direct sums. More precisely,

Proposition 8. Let M,, ..., M, be normed A-modules. There is a canonical
1sometric T(A)-module vsomorphism

8 8
T (@ M) ~ @ T(M,)
1 1
The proof is straightforward. (Alternatively, one can use the fact that 7 is

additive. Hint: consider the 1nJect10ns TM;) —T (@M ) and projections
8

T ((—B M ) — T (M ;) induced by M; — @ M, and@ M, — M;, respectively.) []
1

We remark that Proposition 8 fails to hold for infinite direct sums.

2.3. Weakly cartesian spaces

In the following, we always work over a field K with a non-trivial valua-
tion. Let V denote a normed (hence faithfully normed, cf. Proposition 2.1.1/4)
K-vector space. We often write ‘““space’ instead of “normed K-vector space”.
From Proposition 2.1.8/2, we get that, for K-linear maps between spaces,
continuity and boundedness are equivalent properties.
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2.3.1. Elementary properties of normed spaces. — In this section, we list
important topological properties of K* (the (normed) direct sum of n copies
of K) which depend heavily on the fact that K is a field.

Proposition 1. Let U be a subspace of K*. Then U s closed, and there exists
a linear homeomorphism U — K™ where r := dimg U.

Proof. An automorphism of K* is always a homeomorphism (cf. (2.2.1)).
Because each subspace U may be transformed by an automorphism into the
subspace {(¢;,..., ¢, 0,...,0); ¢; € K}, where r:= dimg U, the assertion is
evident. O

Recall, however, that a (bounded) K-linear bijection K” — V need not be a
homeomorphism (cf. (2.2.1)), whereas each bounded K-linear bijection V' — K*
is a homeomorphism.

The space V obviously is b-separable if each K-linear map V — K is
bounded. We have the following converse for finite-dimensional spaces.

Proposition 2. If a finite-dvmensional normed space U s b-separable, then
each K-linear map U — K s bounded.

Proof. It is enough to construct n := dimg U linearly independent bounded
K-linear maps 4y, ..., 4, of U into K, since each K-linear map is a linear com-
bination of these and hence bounded. Choose at random a bounded K-linear
map A 0. Let 2;,...,An_1, m — 1 <n, already be constructed. Choose

m—1
u %= 0 in N ker 4,, and take a bounded K-linear map A,: U — K such that

1 m
An(u) = 1. Since A;(u) = +++ = A_1(u) = 0, each linear relation 3 a,1, =0,
1
a, € K, implies a,, = 0 and hence a; = --- = a,,_; = 0, since 1;, ..., 1,_, are
independent by assumption. m

Corollary 3. 4 finite-dimensional normed space U s b-separable if and only
if Homg (U, K) = (U, K).

For each bounded K-linear map 4: V — K, the kernel space ker 4 is closed
in V. We shall need the following converse.

Proposition 4. Each K-linear map A: V — K with a closed kernel 1s bounded.

Proof. Assume A == 0. Since ker 4 is closed in ¥, the residue space ¥V /ker A
provided with the residue norm is a 1-dimensional normed K-vector space.
Therefore, it follows from Proposition 2.1.1/3 that the K-linear bijection
2: V/ker 2 — K induced by 1 is bounded (V/ker 2 is a faithfully normed
K-module since K is a field). Now the boundedness of 1 follows since A is the
composition of the canonical contraction map ¥V — V/ker 1 with 1. O

2.3.2. Weakly cartesian spaces. — For each K-vector space V, we denote
by & (V) the family of all finite-dimensional K-subspaces. We have the following
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Theorem 1. The following statements over a normed K-vector space V are
equivalent:

(1) For each U € F(V), there exists a linear homeomorphism U => K",
n:=dimg U.

(2) Each U € F(V) vs closed in V.

(3) Each U € F(V) is b-separable.

Proof. (1) — (2): Take U € F(V) and x € U. Then U’ := U + Kz € F(V).
Hence by assumption U’ is homeomorphic to a space K® Therefore U — U’
~ K" is closed in U’ by Proposition 2.3.1/1. Since € U’ is in the U’-closure of
U, we deduce that x € U. Thus U = U.

(2) = (3): Take U € (V) and u € U — {0}. Then there exists a K-linear
map A: U — K such that A(u) == 0. By assumption ker 1 € (V) is closed in V'
and hence also closed in U. Thus, by Proposition 2.3.1/4, 4 is bounded.

(3) > (1): Take U € F (V). Choose n:= dimgU linearly independent maps
A:U—K, 1 <v <n. By Proposition 2.3.1/2 these maps are continuous.
Therefore the product map 4,X.--X4,: U — K" is continuous. Since it is
bijective, it is a homeomorphism. |

Definition 2. 4 normed K-vector space V s called weakly cartesian (more
precisely weakly K-cartesian) if the conditions of Theorem 1 are fulfilled.

We say that a finite-dimensional K-vector space carries the product topology
if there exists a linear homeomorphism U — K?#, n: = dimgU. Note that, in
terms of topological spaces, the (normed) direct sum K* is in fact the n-fold
direct product of K with itself (provided with the product topology). There-
fore,

Lemma 3. V vs weakly cartesian if and only if each finite-dimensional sub-
space of V carries the product topology.

An immediate consequence of Proposition 2.3.1/1 is
Proposition 4. An n-dimensional space V is weakly cartesian if and only +f

there exists a linear homeomorphism @:V — K" (Observe that ¢ need not be
tsometric.)

Next we state some facts which are obvious from the definition of weakly
cartesian spaces.

Lemma 5. Each space V which can be exhausted by weakly cartesian spaces
18 weakly cartestan. Each subspace of a weakly cartesian space is weakly cartestan.

Lemma 6. If each finite-dvmensional subspace of V s weakly cartesian, V
wtself is weakly cartesian.

Proposition 7. Fach b-separable space V vs weakly cartesian.

So, in particular, the spaces K*, K(®), KD ¢(K)and b(K)are weakly cartesian.
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2.3.3. Properties of weakly cartesian spaces. — First we prove

Proposition 1. The direct sum of weakly cartesian spaces vs weakly cartesian.

Proof. Since each finite-dimensional subspace of a direct sum @ V; is
i€l

contained in a finite direct sum of finite-dimensional subspaces of the I, it is

enough to consider the direct sum of two finite-dimensional weakly cartesian

spaces V,, V,. However, if V; is homeomorphic to K™, 7+ = 1, 2, the sum

V, @ V, is homeomorphic to K™+, ]

The following application of Propositiori 1 shows that weakly cartesian
spaces behave well if one passes to smaller fields of coefficients.

Proposition 2. Let K be a subfield of a valued freld K’ such that K' vs weakly
K-cartesian. Then each weakly K'-cartesian K'-vector space V 1is weakly
K-cartesran.

Proof. Let U = 3} Ke, be a finite-dimensional K-subspace of V. Then
m 1
U':= )} K'e, is a finite-dimensional K’-subspace, and hence by assumption
1

homeomorphic to a space K'°. Since K’ is weakly K-cartesian, the direct
sum K'¢ is also weakly K-cartesian by Proposition 1. Thus the K-space U’ is
weakly K-cartesian. Hence the K-subspace U — U’ is also weakly K-car-
tesian. |

The following criterion will be useful in later applications.

Lemma 3. Let A be a valued vntegral domain and K its valued field of frac-
tions. Let M be a faithfully normed A-module such that each finitely generated
A-submodule of M s b-separable.

Then the K-vector space V := M X4 K (provided with the canonical norm
extension) s weakly K-cartesian.

m
Proof. Let U = 3 Ke,— V be afinite-dimensional K-vector space. We may
1
assume e, € M, since each e, is of the form ﬂ, x, €M, a, € A — {0}. By
a

m u
assumption the 4-module N := 3’ de,— M is b-separable. Take u =0 in U.
1

Choose ¢ #= 0 in A such that cu € N. Since cu == 0, there is a bounded
A-linear map 1': N —.A with ’(cu) &= 0. Now 4’ extends uniquely to a bounded
K-linear map A: U — K (cf. (2.1.3), use that U =N ®4 K). From ci(u)
= A'(cu) == 0, we conclude A(u) == 0. Hence U is a b-separable K-space. Thus V'
is weakly K-cartesian. O]

In important cases, normed vector spaces are always weakly cartesian.

Proposition 4. If K is complete, each normed K-space V is weakly cartesian.
Im particular, V is complete of dimg V << oo.
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Proof. We only have to show that each finite-dimensional K-space V is
weakly cartesian. That such a space is complete follows then from Proposition
2.1.5/6. We proceed by induction on n:= dimg V. The case » = 0 is clear.
Suppose n > 0; let U = V be a subspace. We want to show that U is closed
in V. This is clear if U = V. Therefore, assume that U == V. By the induction
hypothesis, U is weakly cartesian and hence complete. Asa complete space, U
is closed in V. |

Remark. Proposition 4 characterizes complete valued fields. Namely, if the
completion Rof K is weakly cartesian, K is closed in R,ie., K = K.
A trivial consequence of Proposition 4 is

Corollary 5. If K is complete, any two norms | |;,| |, on a finite-dimensional
K-vector space are equivalent, t.e., there exist real comstants o, 0, such that
| h =0l L=al

Taking into account that the completion of a valued field is again a valued
field, we have the following rank estimate:

Proposition 6. Let V be a finite-dimensional normed K-vector space and V its
completion. Then dimg V = dimy V, and equality holds if and only if V is
weakly K-cartesian. More precisely, every K-generating system of V s also a
K-generating system of V. A K-basis of V is a R-basis of V if and only vf V 1is
weakly K-cartesian.

n

Proof. Choose a K-generating system {v,, ..., v,} of V. Define U: = }/ R,
i=1

— V. According to Proposition 4, we know that U is complete. Since V

n n R .

— > Kv;= Y Rv; = U, we conclide V—=U = U=V and furthermore
i=1 i=1

V = U. Therefore {v,,...,v,} is a generating system for ¥ over K, whence

dimg V = dimg V.

Now let {vy, ..., v,} be a K-basis of V. Consider the isomorphism ¢: K*» — V
mapping the canonical basis of K” onto {vy, ..., v,}. Then ¢ is continuous and
extends to a continuous K-linear map ¢: K» -V which is surjective by what
we have seen before. The K-space K™ is complete by Proposition 2.1.5/6, and
K" is dense in K", Therefore K" can be interpreted as the completion of K*.
From this we see that ¢ is a homeomorphism if and only if ¢ is a homeo-
morphism. Using (2.2.1) and Proposition 4, we see that ¢ is a homeomorphism
if and only if V is weakly K-cartesian and that ¢ is a homeomorphism if and

only if ¢ is bijective. Thus, V is weakly K-cartesian if and only if {v,, ..., v,} isa
K-basis of V. |
2.3.4. Weakly cartesian spaces and tame modules. — We start with a

simple remark:

If V is weakly K-cartesian, each K-submodule M of V° of finite rank is
b-separable.



94 Chapter 2. Normed modules and normed vector spaces

In order to see this, take x € M — {0}. Since rk M < oo, the K-vector
space U := K - M — V is finite-dimensional; hence, there exists a bounded
K-linear map A: U — K such that A(x) &= 0. Choose ¢ € K* such that [A(U°)|
< |¢| and set A := ¢~'A. Since M — U°, the map A induces a bounded K-linear
map A|M: M — K with A(z) == 0. |

Next we prove

Proposition 1. I/ V° is a tame K-module (i.e., if each K-submodule M — V°
of finite rank is finitely generated), then V is weakly K-cartesian.

Proof. Assume there is a finite-dimensional K-vector space U — V ad-
mitting an unbounded K-linear map A: U — K. Then we can choose an infinite

sequence 1, Uy, ... in U° such that |A(u,.,) | > max |i(u,)| for all n. The
1=v=n

K-submodule M of V° generated by all u, hasfinite rank since M — U. Thus, M
is finitely generated over K, since V° is K-tame. Let u,, ..., u, be generators.

m
Then each x € M is of the form » = 3}/ a,u,, a, € K, whence
1

|A(z)] =< max [A(u,)| forall xz¢€ M,

lsu=m
which is in contradiction to the choice of the sequence u;, u,, ... . Hence all
finite-dimensional subspaces of V are b-separable. O

From the results of this section, we get in particular (since discrete valuation
rings are Noetherian (Proposition 1.6.1/4) and since b-separable modules over
such rings are tame (Corollary 4.1/5)):

Proposition 2. If K s a discrete valuation ring, a normed K-vector space V
is weakly K-cartesian if and only if V° is a tame K-module.

2.4. Cartesian spaces

As alwayslet K be a field with a non-trivial valuation. We want to consider
a subclass of the class of weakly K-cartesian vector spaces defined by the
following additional requirement: that every finite-dimensional subspace not
only carries the product topology but also admits an orthogonal basis (in the
sense made precise in the following Definition 1). We shall proceed in a manner
analogous to that used in (2.3) and study the finite-dimensional case first.

2.4.1. Cartesian spaces of finite dimension. —

Definition 1. A finite-dimensional normed K-vector space V s called
K-cartesian if there s a K-basis {vy, ..., v,} of V such that, for all ¢y, ..., c, € K,
one has

= max |¢;| |vjl.
1=iZn

n
2 Civ;
i=1

A set {vy, ..., v,} with this property s called K-orthogonal or K-cartesian.
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Remark. Some results for weakly K-cartesian spaces might be derived from
the corresponding results for K-cartesian spaces in the following way: the
norm on a weakly K-cartesian space V of finite dimension can be modified
(without affecting the vector space topology) in such a way that ¥V becomes
K-cartesian. Therefore all results which can be expressed in the language of
topological vector spaces carry over.

The main result of this section is the assertion that every subspace of a
finite-dimensional K-cartesian space is again K-cartesian. To show this, we
need some technical lemmas and the following notion:

Definition 2. Let V,, ..., V, be subspaces of a normed space V (the dimensions

n
need not be finite). We say that the subspace V' := 3 V ; us the norm-direct sum of
i=1 n
the spaces V ; if the canonical map from the (normed) direct sum @V ; onto V' is an
1someltry. i=1

n
Thus, V' us the norm-direct sum of the V; if and only if | 3 v;] = max |v;| for

i=1 1<iZn
all v; € Vi, © =1, ..., n. The connection to the notion ‘““K-cartesian’’ is clear:
V is K-cartesian if and only if there are a finite number of lines Kz;,7 = 1, ..., n,

in ¥V such that V is the norm-direct sum of these lines. This implies that the
norm-direct sum of two K-cartesian spaces V;, V, is again K-cartesian. More
explicitly, if {v,, ..., v,} (resp. {vp41, ..., ¥;}) is a K-orthogonal basis of V; (resp.
V), then {v, ..., vy, V11, ..., 3} i8 & K-orthogonal basis for the norm-direct

sum V, @ V..
For simplicity we shall use the following definition:

Definition 3. A subspace U of a normed K-vector space V admits a norm-
direct supplement in V if there vs a subspace Ut suchthat V =U + Ut isa
norm-direct sum.

Lemma 4. If V s a finite-dimensional normed K-cartestan vector space and
U a subspace of V of dimension 1, then U admits a K-cartesian norm-direct
supplement. More precisely, vf {vy, ..., vy} s a K-orthogonal basis of V and
u € U — {0}, then (after a suitable renumbering of the v;) {u, v,, ..., v,} 28 a
K-orthogonal basis for V.

n

Proof. There are coefficients ¢, ..., ¢, € K such that v = 3 c;v; and |u|
i=1
= max |[c;v;] > 0. Renumber the v; in such a way that |c;v;| = max |c;v;].
1<i<n 1=i<n

n

Replacing u by c¢7'u, we may assume ¢, = 1 and get u = v; + 3 ¢;v; and
i=2

leivil = |vy| = |u| for © = 2, ..., n. Because {v,, ..., v,} is a K-orthogonal set,

n
we only have to show that V' := 3’ Kv; is a norm-direct supplement of U = Ku
i=2
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m
in V. In order to verify this, take " = 3} a;v; € V' and au € U with arbitrary

1=2 n
coefficients a, a,, ..., @, € K. Define v := au -+ v'. The relation u =v, + 3 ¢;v;
n =2
implies v = av; + 3 b;v;, where the b; are suitable elements of K. The ortho-
i=2
gonality of {v,,...,v,} yields |au| = |av,| = |v| and hence [v'| = |[v — au| =
max {|v|, lau|} = |v|. ]

Now it israther straightforward to extend this orthogonal Steinitz exchange
procedure for one-dimensional subspaces to an orthogonalization process for
subspaces of arbitrary dimension. Thus we get the main result of this section.

Proposition 5. If V is a finite-dimensional K-cartesian vector space, then
every subspace U of V is K-cartesian and admits a norm-direct supplement. In
particular, every orthogonal basis of U can be extended to an orthogonal basis

of V.

Proof. The last statement follows from the two previous ones. In order to
prove these, we proceed by induction on »:= dim V. The cases n =0 or
n = 1 are clear. Therefore, assume n = 2. Let U’ = Ku, be a one-dimensional
subspace of U. (If U = 0, there is nothing to show.) According to Lemma 4, we

n

may assume that ¥ is the norm-direct sum of U’ and V':= 3’ Kwv;, where
i=2

{vgs ..., ¥y} is an orthogonal basis of V’. Then it is clear that U is the norm-

direct sum of U’ and V' n U. Applying the induction hypothesis to the
(n — 1)-dimensional space V', we see that V' n U admits a K-orthogonal

basis {u,, ..., 4,} and a norm-direct supplement W in V'. Clearly {u,,..., u,;}
is a K-orthogonal basis of U, and W is a norm-direct supplement of U
inV. ]

The property that every subspace admits a norm-direct supplement is
characteristic of K-cartesian spaces. Indeed, it is rather easy to show the
following converse to Lemma 4 and Proposition 5:

Proposition 6. If V s a finite-dimensional normed K-vector space such that
every subspace of divmension 1 admits a norm-direct supplement, then V is
K-cartesian.

Proof. By induction on n:= dim V. For n = 1, the assertion is true. For
n > 1,choose u € V — {0} and set U := Ku. There is a norm-direct supplement
U*' to U. Since every one-dimensional subspace W of Ut admits a norm-direct
supplement in V', hence a fortiori in U+, we may apply the induction hypothesis
to U*' and see that U* is K-cartesian. Now V, being the norm-direct sum of
the two K-cartesian spaces U and U*, is K-cartesian itself. 1

2.4.2. Finite-dimensional cartesian spaces and strietly closed subspaces. —
In the last section, we have shown that a normed K-vector space is K-carte-
sian if and only if all its subspaces admit norm-direct supplements. In this
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section we want to derive another characterization of a K-cartesian space in
terms of a more intrinsic property of its subspaces. In Definition 1.1.5/1, we
introduced the concept of a strictly closed subspace. In striking analogy to the
fact that a normed K-vector space is weakly K-cartesian if and only if every
finite-dimensional subspace is closed, we have

Proposition 1. A finite-dimensional normed K-vector space is K-cartestan
if and only if every subspace s strictly closed.

Let us make a rather trivial remark before we prove the proposition.

Observation 2. Let V be a normed K-vector space and let U be a strictly closed
subspace of V. For all v € V, there is an element uy € U such that U + Kv
= U + K(v — ug), where the right-hand sum is norm-durect.

Proof. Since U is strictly closed, we can find u, € U such that |v — |
< |v — u| for all w € U. This element u, will do the job. We have to show that,
foralle € Kandallu € U, theequality |u + c(v — u,y)] = max {|u], [c] |[v — u,|}
holds. For ¢ = 0, there is nothing to prove. If ¢ == 0, we set 4’ := ¢~ lu. It is
enough to show that |u’ 4 (v — wuy)| = max {|u/[, |v — u,|}. By the triangle

inequality, we have |u’ 4+ (v — u,)| =< max {|u’|, [v — %|}. This is an equality

if [u'| == [v — ug|. Furthermore if |u’'| = |v — u,|, we have
[u" 4 (v — )| = [v — (ug — W) = |[v — uo| = max {[u'], |v — upl}
by the choice of u,. |

Now we are able to prove Proposition 1. By induction on n:= dim V, we
want to show first that V is K-cartesian if all subspaces are strictly closed.
For n = 1, there is nothing to show. Assume n > 1 and choose U to be an
(n — 1)-dimensional subspace of V. Since every subspace of U is strictly
closed in ¥V, and hence a fortiori in U, it follows from the induction hypothesis
that U is K-cartesian. We only have to exhibit an element v, € V — U such
that V is the norm-direct sum of U and Kwv,. Choose an arbitrary v € V' — U,
and, for that v, choose u, according to the preceding observation. Then it is
clear that v, := v — wu, has the required properties. (This direction of the proof
consisted basically of the construction of an orthogonal basis by an orthogonali-
zation process). The converse is a rather obvious consequence of Proposition
2.4.1/5. Indeed, every subspace U of V admits a supplement U+' such that
V=U + U* is a norm-direct sum, and this, of course, implies that U is
strictly closed. O

For the important special case of a discretely valued ground field K, the
notions of weakly K-cartesian and K-cartesian spaces coincide. Namely,

Proposition 3. Let K be a discretely valued field and let V be a normed finite-
dimensional K-vector space. If V 1s weakly K-cartesian, then V is also K-carte-
stan. In particular, |V — {0} is discrete.

Proof. By induction on n:= dim V. For n = 1, there is nothing to show.
For n > 1, let U be an arbitrary proper subspace of V. Of course, U is weakly
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K-cartesian and of dimension <C », and therefore by the induction hypothesis,
U is K-cartesian. Hence |U — {0}] is discrete. Because U is closed in V', Propo-
sition 1.1.5/4 tells us that U is strictly closed in V. From Proposition 1, we see
that V is K-cartesian. ]

Finally we need the following criterion:

Proposition 4. A4 finite-dvmensional normed K-vector space is K-cartesian
if and only if it is weakly K-cartesian and its completion is K-cartesian.

Proof. Let V be a K-cartesian space, and let {v,, ..., v,} be an orthogonal
basis of V. Then, by Proposition 2.3.3/6, we know that {v,, ..., v,} is also a
basis of ¥ over K. All we have to show is that {z, ..., v,} 18 K—orthogonal. Let

n
b = )} éw; be an element in V, where &, ..., é, € K. We have to show that
i=1
|#| = max {|é;] |v;]}. Choose coefficients c¢; in K such that ¢; = 0 if §; = 0 and
1=i<n

such that |¢; — &;] << min {|?] |v;|7%, |&;]} if é; == O (in particular, == O if the

latter case occurs). Set v:= } c¢;v;; Then we have |¢;] = |¢;| and |[v — |
n i=1
=2 (c; — &) v;] < |9|. Hence [9| = |v] = max {|¢;] |v;]}. This proves the
=1 1=5i<n

“only if’’ part of the proposition.

To show the converse, assume V to be K-cartesian, and let {,, ..., D,} be a
K-orthogonal basis of V. Since all 9; == 0, there are »; € V such that |v; — 9;|
< |9 for © =1, ..., n. We claim that {v, ..., v,} is a K-orthogonal set. For
arbitrary coefficients ¢, ...,c, € K, we want to show that |} ¢y =
max {|¢;| |v;]}. Assuming that not all ¢; are zero, we get

|2 ¢i(v; — 9;)| = max {|¢| [v; — 9;]} < max {|¢;] [9;]} = |3 ¢id;] ..

and hence
| X ewil = | X ci(vi — &) +} X eidi] = | X ¢ibi| = max {[e;] [9;]} = max {|¢;] ]}

Since V is weakly K-cartesian, we know dimg V = dimy V. Therefore {v,, ..., O}
is an orthogonal K-basisof V. ]

Let us remark that the computations in the two halves of this proof are
very similar. The difference is this: in the first half one works with a little
perturbation of the scalar coefficients, and in the second half with a perturba-
tion of the basis vectors.

2.4.3. Cartesian spaces of arbitrary dimension. — In this section we no
longer require the dimension of the given normed K-vector space to be finite.
As in (2.3.2), let F (V) denote the family of all finite-dimensional subspaces of
V. Then we have
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Proposition 1. For a normed K-vector space V, the following conditions are
equivalent:

(1) Every U € F(V) s strictly closed in V.

(2) Every U € F(V) vs K-cartesian.

(3) Forall U, W € F(V) with W = U and dim W = 1, there is a norm-direct
supplement of W in U.

We give a cyclic proof. To derive (2) from (1), we only have to observe that
all subspaces of U € (V) are strictly closed in V', hence a fortiori in U. Then
U is K-cartesian by Proposition 2.4.2/1. That (2) implies (3) is an immediate
consequence of Lemma 2.4.1/4. To go from (3) to (1) (via (2)), we just have to
use Proposition 2.4.1/6 and Proposition 2.4.2/1. |

According to Proposition 2.4.1/5, a finite-dimensional K-cartesian vector
space satisfies condition (2) of the preceding statement. Therefore the follow-
ing definition is an extension of Definition 2.4.1/1.

Definition 2. 4 normed K-vector space V (of arbitrary dvmension) is called
K-cartesian if it satisfies the (equivalent) conditions of Proposition 1.

Examples of K-cartesian spaces are provided by the class of normed
K-vectorspacesadmitting an orthonormal Schauder basis (cf. Proposition 2.7.5/1
in a later section). In particular, 7'(K) is K-cartesian. Furthermore, its field of
fractions Q(T(K )) is K-cartesian due to the following

Lemma 3. Let A be a normed K-algebra, and let S be a multiplicative system
in A consisting only of multiplicative elements (cf. (2.1.3)). If A is K-cartesian,
then Ag (provided with the canonical extension of the norm of A) is also K-car-
tesian.

Proof. Let U be a finite-dimensional subspace of Ag. Then there are

elements a; € A, ;€8 (+ =1,...,n) such that all s; &0 and such that
n

U=3K
i=1 8 -

= 8, =:s. Define

a; : .
—. Without loss of generality, we may assume s, = 8, = ---

Vi=sU =} Ka;= A.

i=1

According to the assumption, V' has an orthogonal basis z,, ..., x,. Define

Yii= e U for i = 1, ..., m. Then obviously {y, ..., y,} is a K-generating
s

system for U, but it is also an orthogonal basis, for if ¢y, ..., ¢,, € K, one has

:2'" ciil = [sI71| 3 eilsys) = [sI* max {lei] |2} = max {lei] [yil). |

i=1 1=i<m 1=i<m

Another procedure to build up K-cartesian spaces is given by
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Lemma 4. Let E be an extension field of K, where E carries a valuation such
that E is a K-cartestan K-vector space. Then every E-cartesian space V s
K-cartesian.

Proof. Let U be a K-subspace of V such that dimyz U < co. There exist
n n
Ugy ooy Uy € U such that U = 3 Ku;. Define U’ := 3} Eu;— V. Then U’ is

i=1 i=1
a finite-dimensional E-subspace of the E-cartesian space V, and therefore U’

m
is a norm-direct sum of finitely many ‘“‘copies” of ¥, say U’ = @ E; where

j=1
E; = Ex; for suitable elements z,...,2, € U We have U= U’. Since
dimg U < oo, there exist finite-dimensional K-subspaces E; — E; such that

m
U < @ E;. Now E and hence all spaces &} and Ej; are K-cartesian. Therefore

m j=1

@ E; is K-cartesian (see (2.4.1)), since this is a finite norm-direct sum of
j=1
finite-dimensional K-cartesian spaces. In particular, we see that U, as a sub-

m
space of (P Ej;, is K-cartesian. 1
i=1

Furthermore, the argument used in the above proof shows that

Proposition 5. 7he norm-direct sum of K-cartestan spaces (of arbitrary dvmen-
ston) 18 K-cartesian.

Of course, K-cartesian spaces are weakly K-cartesian. Furthermore, if
V can be exhausted by a countable ascending family {V;} of K-cartesian
spaces, V itself is K-cartesian. The field K itself is K-cartesian, whereas R can
be K-cartesian only if K coincides with K. For later reference we need

Proposition 6. IfV is a normed K-vector space such that every one-dimensional
subspace admits a norm-direct supplement tn V, then V 1s K-cartesian and every
finite-dimensional subspace admits a norm-direct supplement wn V.

Proof. Let U, W € F(V) with W= U and assume dim W = 1. Then W
admits a norm-direct supplement W+ in ¥ by assumption. The intersection
U n W+ is then a norm-direct supplement of Win U, whence condition (3) of
Proposition 1 is fulfilled and V is K-cartesian. In order to show that any
U € ¥F(V) admits a norm-direct supplement in ¥, we proceed by induction on
n:= dim U. For n =< 1, there is nothing to show. If n > 1, choose a one-dimen-
sional subspace W — U and, as before, denote by W+ the norm-direct supple-
ment of W in V. Every one-dimensional subspace of W+t admits a norm-direct
supplement in ¥ and a fortiori in W+!. Hence we may apply the induction hy-
pothesis to the (n — 1)-dimensional subspace U n W+t of the space W+ and get
a norm-direct supplement Sof U n W+t in W*. Clearly, § is also a norm-direct
supplement of U in V. |
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We want to derive further criteria for testing whether a given weakly
K-cartesian space is K-cartesian and to establish connections between the
notions of K-cartesian, weakly K-cartesian, and K-cartesian spaces.

Proposition 7. A4 normed K-vector space V is K-cartestan if and only if V
1s weakly K-cartesian and contains a dense K-cartesian subspace.

Proof. We only have to show that if V is weakly K-cartesian and admits a
dense K-cartesian subspace W, then every finite-dimensional subspace U of
V is K-cartesian. In order to do so, it suffices to find a subspace U’ of W which
is isometric to U. Let {u,, ..., u,} be an arbitrary basis of U. Since V is weakly
K-cartesian, U carries the product topology, i.e., one can find a positive real

n
constant « such that | 3 c;u;] = « max |¢;| foralle,, ...,c, € K. Forv =1, ..., n,
i=1 1<iza n
choose w; € W such that |u; — w;] < « and define U’ := 3 Kw;. If at least

i=1

n
one of the coefficients ¢; is non-zero, we have | 3 c;(u; — w;)| < « max |¢;|.
i=1 1<i=n

n n n
Since | 3 ¢;u;] = « max |¢;|, we can conclude | 3 c;w;| = max {] D) cilu; — w;)|,
i=1 1Sisn i=1 i=1

n n
| 2 ciu; [} = |3 c;u;| foralley,...,c, € K. Therefore the map ¢: U — U’ defined
i=1 i=1
n n
by ¢ ( PN ciui) = )} c;w; is an isometric isomorphism. 1
i=1 i=1
For complete fields the preceding proposition can be sharpened in the
following direction:

Proposition 8. A normed K-vector space V' is K-cartesian if it contains a
dense K-cartesian K-vector space.

Proof. Let W be a dense K-cartesian K-subspace of V’'. We want to show
that the K-space W’:= KW (which isdense in V') is K-cartesian. Then Prop-
osition 7 can be applied. For every U’ € F(W'), we can find a U € F(W) such
that U’ — RU. Then dimgz KU < co and KU is complete (use Proposition
2.3.3/4). Since U is dense in KU, we may view KU as the completion of U.
Thus from Proposition 2.4.2/4, we see that KU is K-cartesian, since U is
K-cartesian. Therefore, U’ € }(KU) is K-cartesian and hence W’ is K-car-
tesian. |

The two preceding propositions allow us to conclude that a space is car-
tesian if we know that the property holds for a suitable subspace. Now
we want to go the other way around.

Proposition 9. 4 normed K-vector space V is K-cartesian if V s weakly
K-cartesian and if V is contained in some K-cartesian space V'.

Proof. Let U € F(V). We have to show that U is K-cartesian. As in the
preceding proof, we can conclude that KU equals the completion U of U.
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Furthermore, U = KU € F(V’) is K-cartesian, and, since U is weakly
K-cartesian, Proposition 2.4.2/4 yields that U is K-cartesian. O

As an immediate corollary to Propositions 8 and 9, we get the following
generalization of Proposition 2.4.2/4:

Corollary 10. A normed K-vector space V 1s K-cartesian vf and only if V is
weakly K-cartesian and V is K-cartesian.

Also Proposition 2.4.2/3 may be easily carried over to the infinite-dimen-
sional case to yield

Corollary 11. If the valuation on K is discrete, then a normed weakly K-car-
testan vector space is K-cartesian. In particular, if K s discretely valued and
complete, then every normed K-vector space is K-cartesian.

2.4.4. Normed vector spaces over a spherically complete field. — In this
section we shall consider a class of ground fields K with the property that all
normed vector spaces over K are K-cartesian.

Definition 1. A normed K-vector space V 1is called spherically complete if
every descending sequence of balls B*(v,,r,) ={x €V, |x —v,| =1}, where
v, € Vandr, > 0,v = 1,2, ..., has non-empty intersection.

Of course ‘‘spherically complete’ implies ‘‘complete’’, and the two notions
are equivalent if |V — {0}| is discrete.
Our goal for this section is the following

Proposition 2. If K vs spherically complete, then every normed K-vector space
18 K-cartesian.

For its proof we need two lemmas.

Lemma 3. If U us a spherically complete subspace of a normed K-vector space
V, then U 1s strictly closed in V.

Proof. For v € V — U, define d := |v, U|, and, for » € IN, choose (by induc-
tion on v) w, € U such that d,:=|v — u,| =d + »1and d,,; = d,. Define
B,:={u€cU;|u—u| =<d,}. Then B, is a non-empty ball in U. We claim
that B, > B,,;. In order to prove this claim, consider u,,; — u,. From
Uy — w,| = max {|u,, — o], |v —u,|} = max {d,,,d,} =d,, we deduce
U,+1 € B,, and, because d,,; < d,, this implies B,,; — B,. Since U is spherically

complete by assumption, we can find an element u € N B,. Then one has
veN

lu — v = max {lu — u,|, [u, —v|} =d, =<d -+ vifor all » ¢ N, and thus
lu — v|] =d = |v, U|. Hence U is strictly closed in V. ]
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Lemma 4. If K 1is spherically complete and V 1is a finite-dimensional
K-cartestan space, then V is spherically complete.

Proof. Let {vy, ..., v,} be a K-orthogonal basis of V. First we show that all
balls in V can be written as n-fold norm-direct sums of suitable balls in K.

n
More precisely, let v = 3 ¢cv; € V with ¢y, ..., ¢, € K, andlet » > 0. Then the
i=1 n
following statements for x = 3 a;v; € V are equivalent:
i=1

lx—v]|=remaxia; —cl v Erela;—cl Zr|ylL, v=1,..,n
1i<n

Sa; € B, r|vy™),t =1,...,n

n

Hence B*(v,r) = 3 B*(c;, r |v;]7!) v;. This equality allows us to transfer the
i=1

property “spherically complete” from K to V; namely, let B, = B*(w,, r,)

(where w, = Z' c,w; € Vand r, >0, v =1,2,...) be an arbitrary descending
sequence of balls in V. Define B,;:= B*(c,;, r,|v;]"!) < K for » ¢ N and
t=1,...,n Then B, = ):' B,; - v;. Therefore, for fixed z, (B ,;),,N is a descend-
ing sequence of balls 1nK Take a; € N\ B,;. Then w:= Za,v, € ZB,, v; =B,

veN =1 i=1

forally € IN. Thus V is spherically complete. |

Proof of Proposition 2. We may assume that V is of finite dimension and
proceed by induction on n:= dim V. For n = 0 or 1, there is nothing to show.
Let U be a proper subspace of V and apply the induction hypothesis to U.
Then U is K-cartesian and furthermore, due to Lemma 4, spherically com-
plete. By Lemma 3, the subspace U is strictly closed in V. Since this holds for
all proper subspaces U, Proposition 2.4.2/1 tells us that V is K-cartesian. []

The proposition and its proof strongly resemble Proposition 2.3.3/4, which
asserts that the completeness of K implies that all normed K-vector spaces are
weakly K-cartesian. Furthermore, the proposition characterizes spherically
complete fields: i.e., if K is not spherically complete, there is always a normed
vector space over K which is not K-cartesian. Indeed, if K is not spherically
complete, it is not maximally complete, i.e., it admits a proper field extension L
having the same residue field and the same value group (for the equivalence of
spherical completeness and maximal completeness see, e.g., I. KAPLANSKY
[22]). Takel € L — K and set V := K + [K. We claim that V does not admit
an orthogonal basis. Assume the contrary, and let {v, v,} be a K-orthogonal
basis of V. Because |K*| = |L*|, we may assume |v;| = |v,] = 1. Since [ = &,
we know that @, = &5, for a suitable ¢ € K. Therefore |cv; — v,| < 1, a contra-
diction to the orthogonality of {v,, v,}. Hence V is not K-cartesian.
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2.5. Strictly cartesian spaces

In (2.4), we studied normed K-vector spaces admitting orthogonal bases.
Now we want to restrict our attention to the existence of orthonormal bases. As
always, let K be a field with a non-trivial valuation, and let V' be a normed
K-vector space.

Definition 1. 4 system {v;; v € I} of elements of V s called orthonormal if, for
every system {c;; v € I} of elements vn K such that c; = O for almost all © € I, one
has

| X civs] = max ley).
i€l i€l

Obviously, an orthonormal system is linearly independent over K and all
its elements must have a norm equal to 1.

As in (2.3) and (2.4), let us consider the finite-dimensional case first.

2.5.1. Finite-dimensional strietly cartesian spaces. — Throughout this
section, we assume dimg V < co. We introduce the concept of a strictly
K-cartesian vector space by

Definition 1. V s called strictly K-cartesvan if there is an orthonormal basis
of V.

Clearly V is strictly K-cartesian if and only if there is a generating system
{v1 ..., v,} of V such that

n
() ‘ | 3 civ;] = max|c;] forall ¢,...,c, € K.
i=1 1<i=n
The concepts ‘‘cartesian’ and “‘strictly cartesian’’ are closely connected, as the
following statement shows.

Observation 2. V 4s strictly K-cartesian tf and only of V is K-cartesian and
Vi< K.

Proof. Obviously a strictly K-cartesian space V is K-cartesian and fulfills
V| <= |K| due to the equality (*). On the other hand, if V' is K-cartesian, then
there is an orthogonal basis {wy, ..., w,} of ¥V, and since |V| < | K|, there exist

a; € K — {0} such that |a;] = |w;|, © = 1, ..., n. Define v;:= aj'w;. Clearly
{v1, ..., v;} is a basis of V over K, and, for all ¢;, ..., ¢, € K, onegets |3 c;v;|
= | X cia; 'wi| = max [c;a7!| [wi| = max |e;] |a;[ ! [w;| = max |¢;]. 1

We could use this observation in order to specialize our results on K-carte-
sian spaces to the strictly K-cartesian case. However strictly K-cartesian
spaces enjoy particular properties which behave well with respect to the
functor ~ defined in (2.1.10). Therefore we will give direct proofs for the main
results on strictly K-cartesian spaces. As we will see, there is substantial simpli-
fication due to the functor ™.

A surprisingly simple remark regulates the going up and down between
Vand V™:
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Lemma 3. Let v, ..., v, € V°. Then {vy, ..., v,} @s orthonormal tf and only
if {7, ..., ¥y} ts linearly independent over K.

Proof. First we assume that {¢7, ..., v;} is linearly independent. We have
to show that [} c¢,v;] = max |¢;| for all (¢, ..., c,) € K®. Assuming that |¢|

= max |¢;] > 0, we define d;:= c7'; € K. Then one knows |d;] <1 and
1=isn

|d;| = 1. Therefore di, ..., d, € K are well-defined, and d, == 0. Since {07, ..., U3}
is linearly independent, we conclude that (3 dw;)~ = 3 dw; == 0; i.e., | X d;v;)

= 1. Hence |} c;v;| = l¢;| | dw;| = |e1] = max |¢;]. To show the converse,
assume that {v, ..., v,} is orthonormal. Let d,, ..., d, be coefficients in K such
that Y dw; = 0. Then we get max |d;| = | Y dw;] < 1, whence d; = 0 for
1 =1,...,n O

Now we can derive the following criterion:

Proposition 4. Let V be strictly K-cartesian, and let S = {vy, ..., v,} be
contained tn V°. Then 8 is an orthonormal basis of V over K if and only of 8™ s a
basis of V™ over K.

Proof. First we assume that S is an orthonormal basis of V. Then S~ is
linearly independent according to Lemma 3; it remains to be shown that S~ isa
generating system. For all x € V7, there is a v € V° such that v~ = «. One can

n
find ¢, ...,¢, € K with v = 3} ¢v;. From 1 = |[v] = |} ¢c;v;] = max |¢;|, we
i=1 ,
get ¢; € K and hence x = v~ = } ¢&»;, which proves the contention. In partic-
i=1
ular, we see that dimy V' = dimgz V™. Now assume that S~ is a basis. Then § is

orthonormal and a fortiorilinearly independent over K. Since dimx ¥V =dimz V",
it follows that S is a basis. 1

The assumption that V is strictly K-cartesian cannot be dropped. The prop-
erty ‘‘strictly K-cartesian’’ is inherited by subspaces according to

Proposition 5. Let V be a strictly K-cartestan space and U a subspace. Then
U 1is strictly K-cartesian and every orthonormal basis of U can be enlarged to an
orthonormal basis of V.

Proof. To show the first assertion, we proceed asfollows: choose u,, ..., u,;
€ U° such that {u], ..., u;} is a K-basis of U"~. Enlarge this set (by the usual
procedure) to a basis of V™ by adding u;,, ..., «~, where u;,,...,u, are suitable
elements in V°. Then due to the preceding proposition {u,, ..., u,} is an ortho-
normal basis of V, and therefore {u,, ..., u;} is an orthonormal basis of W :=

t
Y Ku;—= U. It remains to be shown that W = U. Take u € U; then there are

i=1 n

1y €K withu = ) c;u;. We are done if we canshowce; =0 for i =1¢-+41,...,n.
i=1
Otherwise, we may assume max |¢;] = |¢,| = 1. Applying the functor 7,

st1=Zi<n
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n t ~
we get ' Cu; = (u - ciui) € U~ and é, +=0, a contradiction to the
i=t+1 i=1
constructit)n of {uy, 4, ..., uy}. Hence W = U and {u,, ..., u,} is an orthonormal
basis of U. To convince ourselves of the truth of the second assertion, we only
have to start with an orthonormal basis of U, push it down to a basis of U~,
enlarge this basis to a basis of 7~ and lift the enlarged basis to an orthonormal
basis of V. O

Corollary 6. V 7s strictly K-cartesian if and only if dimg V = dimg V"~

Proof. It follows immediately from Proposition 4 that dimy; V =dimg V"~ for
a strictly K-cartesian space V. To show the converse, assume that n = dimyg V'
= dimgz V" and that {v,, ..., v,} = V° is such that {7, ..., v}} isa basis of V".
Then, by Lemma 3, {v,, ..., v,} is orthonormal over K and, since » = dimg V,
an orthonormal basis of V. 1

2.5.2. Strictly cartesian spaces of arbitrary dimension. — Similar to the case
of weakly K-cartesian spaces and of K-cartesian spaces, Proposition 2.5.1/5
allows us to define:

Definition 1. A normed K-vector space V s called strictly K-cartesian if
every finite-dimensional subspace s strictly K-cartesian.

We see that K(®) is an example of a strictly K-cartesian space, because
every finite-dimensional subspace is contained in K” for n large enough. Also
the space ¢(K) of all zero sequences in K is strictly K-cartesian. This is asserted
by Proposition 2.7.5/1 in a later section or can be verified already at this stage
as follows: since |¢(K)| = | K|, we only have to show that ¢(K) is K-cartesian.
According to Proposition 2.3.2/7, the space ¢(K) is at least weakly K-cartesian.
Because K is dense in ¢(K), we may apply Proposition 2.4.3/7 to see that
¢(K) is K-cartesian and so strictly K-cartesian.

One sees immediately that Observation 2.5.1/2 carries over verbatim to the
infinite-dimensional case. According to Definition 2.5/1, a system {v;; 7 € I}
is orthonormal if and only if every finite subsystem is orthonormal. Therefore,
Lemma 2.5.1/3 carries over mutatis mutandis; i.e., one has

Lemma 2. Let {v;; 7 € I} be a system of elements wn V°. Then {v;;v € I} is
orthonormal if and only if (v ;7 € I} is linearly independent over K.

We want to tackle the question of whether or not Propositions 2.5.1/4 and
2.5.1/5 can be generalized to the infinite-dimensional case. Let us first look at
our standard examples. One verifies immediately that (K(®))~ = ¢(K)~ = K,
since K(* ig dense in ¢(K), and since the canonical orthonormal basis of K
induces a K-linearly independent system of elements in (K‘*)~ which generates
this vector space. However, the canonical basis of K®) does not generate ¢(K).
Furthermore, it can be shown that there are no orthogonal systems in ¢(K)
which generate ¢(K) as K-vector space. If K is complete, this can be seen as
follows. The length of such a basis would be countably infinite due to Lemma 2.
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Hence ¢(K) would be isometric to K®). However ¢(K) is complete, whereas
K is not. In particular, we see that any lifting of a K-basis of K is an
orthonormal system in ¢(K) which does not generate ¢(K). Therefore, Propo-
sition 2.5.1/4 does not carry over to the infinite-dimensional case. Again, be-
cause c¢(K) has no orthogonal basis, in spite of being strictly K-cartesian,
Proposition 2.5.1/5 cannot be extended to the infinite-dimensional case. The
picture changes completely if one considers Schauder bases, as shall be done
in (2.7).
2.6. Weakly cartesian spaces of countable dimension

As always, let K denote a field with a non-trivial valuation. All vector
spaces which occur are K-normed. For an arbitrary index set I, let e; : = (d;;)jer,
1 € I, denote the canonical K-basis of K). A vector space V is said to have
countable dimension if there exists a K-linear bijection KIWN) — V7,

2.6.1. Weakly cartesian bases. — Each K-basis {y;};c; of a vector space
V induces a K-linear bijection @: K') ¥V given by > ae; = 3 a;y; (of

i€l i€l
course, a; = 0 for almost all ¢ € I). If sup |y;| < oo, then @ is bounded with
i

|®@| = sup |y;| (cf. Proposition 2.2.2/1).
i

Fixing an element ¢ € |K|, o > 1, we see by Proposition 2.1.8/1 that for
each vector v € V,» &= 0, there existsan element ¢ € K* such that 1 < [cv| < .
Thus, from any basis of V', we can pass (just multiply each basis vector by an
appropriate constant ¢ € K*) to a basis {y;};,; such that 1 < |y;] < ¢ for all
1 € I. If we call such sets of V bounded (more precirely, o-bounded), we have
proved.

Proposition 1. Each space V admits a o-bounded basis. Each such basis gives
rise to « bounded K-linear bijection ®: KV —V with 1 < |D| < 0.

As in the finite-dimensional case, the @’s occurring in Proposition 1 need
not be homeomorphisms (e.g., assume that K is not complete and take for V
the completion K of K). Next we derive a sufficient condition for @1 to be
bounded.

Proposition 2. Let {y;};.; be a o-bounded basis of V, and let x > 0 be a real

number such that

max {la;y;|} = & |3 aiy;l
i€l i€l

for all vectors 3] a;y; of V. Then (@1 < .

i€l
Proof. Since |y;| = 1 for all 7 € I, we have

271 (Y aw)| = [ X ae;] = max |a;] = max {|a;] lyil} =« | Y @iyl

iel i€l il iel icl
for all vectors of V. ]

The following definition is motivated by the last proposition.
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Definition 3. Let x be a positive real number. A o-bounded family {y;;7 € I} of
V with y; == 0 is called x-cartesian f
max {la;yil} =« |3 aiyil
i€l i€l
for every vector v = ) ay; € V, where a; = O for almost all © € 1.
A g-bounded family {y;; © € I} is called weakly K-cartesian (or stmply weakly
cartesian) if there exists a real number x > 0 such that it is x-cartesian.

If the family {y;; 7 € I} is x-cartesian, then « = 1. Proposition 2 and Defi-
nition 3 imply

Proposition 4. For each normed vector space V admitting a weakly K-cartesian
basts, there is a linear homeomorphism onto the space K. In particular, all
these spaces are b-separable and weakly K-cartesvan.

2.6.2. Existence of weakly cartesian bases. Fundamental theorem. — The
question is whether each weakly cartesian space possesses a weakly cartesian
basis (and hence is b-separable). The answer is no, as we will point out at the
end of this section. However, we shall prove that each weakly cartesian space
of countable dimension has weakly cartesian bases. The proof depends on the
following two rather technical observations, the first one being a criterion for a
basis of V' to be weakly cartesian. As before, we denote by ¢ a fixed element in
|K| such that ¢ > 1.

Observation 1. Let x > 1. A p-bounded family {y,, ¥, ...} of V is a-cartesian
if there exists a strictly wncreasing sequence 1=:x; << xy << ++- of real numbers
converging to « such that, for n = 1,2, ..., we have

n
(%) oy - max {|ul, |[aynul} = dpry |4 + AYpa] forall a€ K, u€ ZKyv-
1
Proof. It is enough to show by induction on n that

(0) max {la,y,} = x,
1=sv=n

n
2 ay,
1

This is clear for » = 1, since x; = 1. If we already know (o) for n, we conclude
from (x)

n+1 n
Xp+1 Z%Z/v‘ 2 Xy max { Zavyv ’ |a’n+1 ?/n+1’}
1 1
= max {|ay1l; -« |@aYal, X |Op1Ynal)
which gives (o) for n + 1 since «, = 1. O

The next observation describes the crucial step for the construction of
weakly cartesian bases.

Observation 2. Let V be any K-space (not necessarily weakly cartesian and
not mecessarily of countable dimension). Let U =V be a K-subspace, and let
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x € V be not vn the closure of U. Then for each real number § > 1, there exusts a
vector y € U’ := U + Kz such that U' = U + Ky and such that

max {|u|, lay|} = B |lu 4+ ay| forall weU, ackK.

Proof. Since z ¢ U, we have |x, U| = inf |z + u| > 0. Choose u, € U such
uey

that |x 4+ uo| =< g |z, U|. We claim that y := x + u, has the required proper-
ties. Since y ¢ U, we have U’ = U + Ky. If |u| = |ay|, we have (since f§ > 1)
Blu + ay| = |u + ay| = max {|ul, layl}.

So assume |u| = |ay|. It remains to show that |ay| = f|u + ay|. We may
assume a == 0. The condition |y| < § |z, U| implies (since uy € U)

B 1w+ u + a™lu| = [yl
Multiplying by |a| and using x 4 u, = y, we get 8 |lay + u| = |ay|. 1

Now the proof of the following proposition which may be regarded as a
non-Archimedean analogue of the classical ‘““Orthogonalisierungsprozess’ of
E. ScamIpr is fairly simple:

Proposition 3. Let V be weakly cartesian of at most countable dimension. Let
{vi; 1 =7 <<d} be any basis of V (where d = oo of V 1is infinite-dimensional).
Then for each x > 1, there is an x-cartesian basis {y;; 1 =<7 << d} of V such
that

n n
2 Kv; =3 Ky; foralln, 1=n<d.
1 1

n
Proof. Set U, := } Kv;, and choose a strictly increasing sequence 1 =:
1
< &y < --- of real numbers converging to «. Due to Observation 1, it is enough

to construct a system {y;; 1 < 7 << d} of vectors in V' with the following prop-
erties:

(1) 1< |y, <o and U, = nyi for all n,
1

(2) Xn Max {!ul’ Ia’yn+l|} é Kn+1 Iu + a’?/m—lly a € K, u € Un for all n.

We proceed. by induction on n: choose y, :== ¢,v;, ¢; € K*, such that 1 < |y,]

= o. Let ¥y, ..., y, be already constructed, » = 1. Then U, = } Ky;. Since
1

V is weakly cartesian, U, is closed in V, and hence v,,; is not in the closure
of U,. Thus, we may apply Observation 2 (with U:=U,,z:=v,,; and

Bi= 'x:“). We get a vector y € U, such that U,,;, = U, + Ky and
Xn

max {|u|, lay|} < “(:H |u 4+ ay| forall a€c K, ue€ U, =) Ky;.
1

n
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Choose ¢ € K* such that 1 < |cy| =< o, and set y,., := cy. Then (1) and (2)
are fulfilled for vy, ..., Yu, Yn1- 1

As the main conclusion of the results of this section, we can now state

Theorem 4. For each weakly K-cartesian vector space V of countable (non-
finite) dimension, there exists a linear homeomorphism onto K'™,

In fact, we proved slightly more: For each ¢ € |K|, 0 > 1, and each x > 1,
there vs a linear homeomorphism @: K® — V such that || < o, |®71| < «.

We explicitly state an easy but very important consequence of Theorem 4

Corollary 5. Each weakly cartesian vector space of countable dimension is
b-separable.

The question arises whether this statement is true for each weakly carte-
sian vector space without any assumption on the dimension. The answer is
no; more precisely,

There exists a complete valued freld K and a weakly cartestan vector space
V == 0 such that each contvnuous K-linear map A: V — K 1is triveal.

For the proof see [31].

2.7. Normed vector spaces of countable type. The Lifting Theorem

In this section we always assume that K is complete and that its valuation
is non-trivial.

2.7.1. Spaces of countable type. — By Proposition 2.3.3/4 all normed
K-vector spaces are weakly cartesian (K is complete, as we said). For such spaces
we now introduce a concept generalizing the notion of “weakly cartesian spaces
of countable dimension”’.

Definition 1. A normed K-vector space V s said to be of countable type of V
contains a dense linear subspace of at most countable dimensron.

The space ¢(K) of all zero sequences over K is of countable type, since
K jg dense in ¢(K). This is, in fact, the most general example of a space of
countable type, as can be seen from

Proposition 2. Hach mormed K-vector space V of countable type admits a
linear homeomorphism onto some space K™ or onto a dense subspace of ¢(K). In
particular, V is b-separable.

Because ¢(K) is b-separable (see Corollary 2.2.5/3), we only have to prove the
first assertion. If dimg V' << oo, the assertion follows from Proposition 2.3.3/4.
If dimy ¥V = oo, we can apply Theorem 2.6.2/4 and the fact that ¢(K) is the
completion of K>, A

However, we want to deal with the infinite-dimensional case more explicitly.
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Proposition 3. Let W be a dense linear subspace of V of countable dimension,
and let {w;; T € N} be an x-cartesian (and p-bounded) basts of W (cf. Proposition
2.6.2/3). Then the map p: W — K™, given by

Y cw; > (¢;), where ¢; =0 foralmostall 1€ N,
extends uniquely to a strict K-linear injection ¥: V — c¢(K). We have
(0) HPE) = ] =0 |PWE) forall vel.
The map ¥ is an epvmorphism if and only if V s complete so that V =

{ X eawisei€ K, ¢; — O} on this case.
jeN

Proof. The map y is a homeomorphism. Namely, for each w = 3 c;w; € W,
where ¢; = 0 for almost all 7 € IN, we have ieN

x~l max [¢;| lwi| = |w| = max [¢;] |wi].

ieN ieN
Since 1 < |w;| = p for all 7 € N and since max |¢;] = |p(w)|, we conclude that
€N

a7 lypw)| < |w| Zolpw)| forall we W.

Because W is dense in V and ¢(K) is complete and contains K‘®), the map yp
can be extended to a K-linear homeomorphism V — ¢(K). Let ¥: V — ¢(K)
be its restriction to V. By continuity arguments, (o) holds. Hence ¥ is injective
and bounded, and ¥-1: ¥ (V) — V is bounded. The last assertion is obvious. []

Proposition 4. Let V' be a complete space of countable type. Then every closed
subspace U of V s also of countable type and admits a direct supplement U+ in V
such that the canonical map U @ U+ — V s a homeomorphism.

Proof. We can exclude the trivial case U = V. Because U is closed, we may
thus assume that U == V. Then V /U provided with | |, is @ normed vector
space. Let w: V' — V /U denote the canonical residue epimorphism. The space V'
contains a dense subspace W of at most countable dimension. Then #(W) is
dense in V /U and also of at most countable dimension. By Proposition 2.6.2/3,
for all x > 1, we can find a (o-bounded) x-cartesian basis {x(v;); 7 € I} of n(W),
where I is at most countable and »; is a suitable element of ¥V for all 7 € I.
Furthermore, we may assume that |v;] < 2 |7(v;)|es. Define Ut := 3 Kv; = V.

i€l
We have to show that U* is a supplement of U in V. First we prove that
UnU' = {0}. In order to do so, take a sequence x, = Y 1,v; € 3 Kv;, v € N,
iel iel
/i € K, such that wx, converges to some element w € U n U*. Then n(x,) =
2 A7t(v;) tends to zero, whence the elements 4,;,» € IN, 7€ I, form a zero sequence.
i€l

Therefore also (,),cy is a zero sequence, and we have proved that U n U+ = {0}.
It remains to be shown that V = U -+ U*L. Let v € V. Then there are 1; € K,
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1 € I, such that |1;| tends to zero and n(v) = 3}’ 4;(v;) (use the fact that
iel

a(W)isdensein V/U). Since V is complete, u* := }, 4v; exists and is clearly an
iel

element of UL. Furthermore, v := v — u't € ker wx = U. Hence V is the direct

sum of U and U* in the ordinary sense. Moreover, we have the estimates:

lut] = |} Adwi| = max |4;] |[v;] = 2 max |4 [72(v;)]res = 200
iel iel iel

2 Ai(v;)

i€l

= 20 [7L(V)]res = 2 [7].

Since u =v —ut*, we get |u| < max {|v], |ut|} = (2«) |v|, and therefore
lv] =< max {|ul, |lut|} = (2x) |v|, which shows that the canonical map U @ U+
— ¥V is a homeomorphism. Hence the canonical isomorphism ¢: V/U+ — U is
in fact a homeomorphism. According to what we showed in the very beginning
of the proof, the quotient space of V' modulo a closed subspace is of countable
type, and thus V/U* and U are of countable type. 1

Proposition 5. The space b(K) is not of countable type. In particular, there is
no lynear homeomorphism of b(K) onto c¢(K).

Before we can prove this, we need a few auxiliary statements.

Lemma 6. Let L be a field. Then the dimension of the direct product H L over
L vs uncountable.

Proof. First we assume that the cardinality of L is at most countable.

Since L contains at least two elements, Cantor’s diagonal procedure shows
(e )

that J] L is uncountable. Therefore, its dimension over L must be uncountable,
1

because a space of countable dimension over a countable field is still countable.

Next we consider the general case where L may be uncountable. Let P be the
prime field of L. Then P is finite or equals Q. In any case, the cardinality of
P is at most countable. According to what we have proved already, we know

that dimp H P is uncountable. By tensoring with L, we find dim, ( Il P) Xp L

=dimp H P. If we canshow that ( Il P) @ p L maybe embedded into H L, then

the proof of the lemma is complete By defining @((p;)icn» c) (s c)lév, for

all p; € Pand c € L, we get a P- blhnear map D: (H P) X L — H L. Tt induces a

P- hnear map ¢: (]] P) RpL — H L. We have to show that <p isinjective. Let

x = ) q, X ¢, be an element of ker @, where ¢, € L and ¢, = (Pyi)iey € ]gP.
1

v=

We may assume that (cy, ..., ¢,) is linearly independent over P (otherwise one
can eliminate one of the ¢, and shorten the representation of x). Then ¢(x) = 0
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n

implies Y p,ic, = 0 for all 7 € IN. Since (cy, ..., ¢,) are linearly independent,

v=1
p,; must vanish for » =1,...,n and all 7 € 1. Hence ¢, =0 for » =1, ..., n,
and therefore x = 0. ]

Lemma 7. The space b(K) contains an uncountable orthonormal system.

Proof. There is a well-defined K-homomorphism ¢: (b(K ))~ — [I K such
1

that <p((ci)f€N) = (&;)ien- Let 7: (b(K ))° — (b(K ))N denote the canonical residue
epimorphism, and set ¢ := @ o 7. Then we have the following diagram

():

(b(K))™ = ]1] K.

Both ¢ and y are surjective, but ¢ is not, in general, injective. By Lemma 6,
there exists an uncountable subset {g;; j € J} of J[] K which islinearly independ-

. 1
ent over K. Let v; € (b(K))° be a pre-image of ¢;. The set {z(v;);j € J} is
linearly independent over K, since its image under ¢ has this property. By
Lemma 2.5.2/2, the set {y;; j € J} is orthonormal and, of course, uncountable. []

By Lemma 7, we know already that b(K) cannot be isometrically isomorphic
to ¢(K), since (b(K))~ has uncountable dimension over K, whereas the dimension
of (c(K ))~ = K@ is countable. But, in order to prove the stronger statement
of Proposition 5, we need one more lemma.

Lemma 8. Let {w;;j € J} be a weakly K-cartesian system of c¢(K). Then it
must be of at most countable cardinality.

Proof. For every j € J, there is an element ¢; € K* such that |c;| = |w;].
By multiplying w; by ¢;*, we may assume |w;| = 1 for all j € J. Then the new
set {w;;j € J} is still weakly K-cartesian; in fact, it is x-cartesian with the
same real constant « = 1 for which the original set was x-cartesian. Since K>
is dense in ¢(K), we can approximate the w; by elements v; € K(*). Assume that
w; — v;] < x”1 for all j € J. Then {v;;j € J} is «x-cartesian. Namely, let ¢;
be elements in K such that ¢; = 0 for almost all j € J. Then

| X cj(w; — v;)| < a7t max [¢;] = | Y cw;l
(provided, not all ¢; are zero), and we have
x| 3 el = o max {| 3 cyw;l, | 3 cj(w; — v;)|} = max [c;l.

In particular, {v;;j € J} is a linearly independent system in K. Since the
dimension of K* is countable, the cardinality of J is at most countable. []
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Now we can prove Proposition 5. We shall proceed indirectly and assume
that b(K) is of countable type. Then by Proposition 2, there is a strict mono-
morphism ¢: b(K) — ¢(K). Lemma 7 guarantees the existence of an uncount-
able orthonormal system {v;;j € J} in b(K). Define w; := ¢(v;) € ¢(K) for all
j€J. Let yp: <p(b(K)) — b(K) be the inverse of ¢. The map p is a continuous
K-homomorphism and therefore bounded. It isstraightforward to check that
{w;; j € J} is x-cartesian, where « is the product of the norms || and |y|. Thus,
we have found an uncountable weakly cartesian system in ¢(K), in contradic-
tion to the preceding lemma. Hence our assumption was erroneous, and b(K) is
not of countable type nor, a fortiori, can there exist a linear homeomorphism
onto ¢(K). O

Remark. Even if there is no strict embedding of b(K) into ¢(K), we can
at least exhibit a continuous embedding: choose a € K such that 0 < |a| < 1
and define
D:b(K) — c(K)

by @((ci)imr) 1= (d'c;);en- (Since (c;) is bounded, the sequence (a‘c;) is in fact
an element of ¢(K).) Clearly @ is a K-monomorphism. Furthermore @ is bounded,
with bound 1, and hence continuous.

2.7.2. Schauder bases. Orthogonality and orthonormality. — Let I be an
index set of at most countable cardinality. A system {v;;7 € I} of vectors
v; € V is said to be a topological generating system of V if each v € V' can be
written as a convergent series
(*) U:ZC{U;, C;EK.

i€l

If {v;; 7 € I} is any family of topological generators of V', we obviously may
assume v; == 0 for all 7 € I. Moreover, if p € | K*| denotes one of the real num-
bers o > 1 introduced by Proposition 2.1.8/1, we can always arrange that the
given family is g-bounded, i.e., 1 < |v;] = ¢ for all 7 € I. From now on, this
will always be (tacitly) assumed for systems of topological generators. Then the
sequence (c;) occurring in (*) must be a zero sequence, because (c;v;) is a zero
sequence.

Definition 1. 4 system {v;;+ € I} of topological generators of V s called a
Schauder basis of V if, for each v € V, the sequence {c;};c; of coefficients c; in
() us uniquely determined by v.

Example. The set {w;; 7 € N} occurring in Proposition 2.7.1/3 is a Schauder
basis of V. The canonical basis {e; = (;,),en; ¢ € N} of K is a Schauder
basis of ¢(K).

In particular, there is a difference between bases in the ordinary sense and
Schauder bases (unless we are working in the finite-dimensional case). Note
that, for a Schauder basis {v;; 7 € IN} of V, not all infinite sums } c;v;, where
(¢;) is a zero sequence in K, need converge in V.
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Next we derive a sufficient condition for a system of topological generators
to be a Schauder basis.

Proposition 2. Let {v;; 7 € I} be a famaly of topological generators of V. Assume
that this family is x-cartesian for a suitable x = 1. Then {v;; 7 € I} vs a Schauder
basis of V, and, for each vector v = 3] cv; € V, we have

i€l
() max [¢;] [v;] = « |v].
i€l

Proof. We may assume I = {1, 2,. } Let v = chv, Let ¢ > 0. Choose

m so large that, for each vector w, : 2 cv;, m = m, one has |w,| =< & + |v|.
i=1
Since the family {v;; 7 € I} is x-cartesian, we now derive

max [¢;| |v;| S axlw, Ex-e+ o] forall n=m.
1Zi<n

Therefore max |¢;| |v;] = « |v| + x¢, and hence (#*) holds.
i€l
For v:= 0, we get ¢; = 0 for all 7, which proves the uniqueness of the
coefficients. ]

Remark. Let {v;; 7 € I} be a p-bounded set of V. According to Definition
2.6.1/3, the set {v;;7 € I} is (x-ca,rtesuan if and only if the inequality (*x*) holds
for finite sums, i.e., for all sums such that ¢; = 0 for almost all 7 € I. An impor-
tant aspect of Proposition 2 is that the inequality (**) extends automatically
to infinite convergent sums. To say it in other words, the inequality (*#*) holds
for all infinite convergent sums if and only if every finite subset of {v;; ¢ € I} is
x-cartesian.

Each space V admitting a Schauder basis {v;; 7 € I} is of countable type,
since the space W generated (in the ordinary sense) by all v; is of at most
countable dimension and is dense in V. The following converse holds:

Proposition 3. Hach mnormed vector space V of countable type admits an
x-cartestan Schauder basis for each « > 1.

If W s a dense (lvnear) subspace of V' of at most countable dimension and if
{w;i; ¢ € I} 18 an x-cartestan basis of W for some «x = 1, then {w;; 7 € I} ©s an
x-cartestan Schauder basis of V.

Proof. Due to Proposition 2.6.2/3, we have only to verify the second asser-
tion. By Proposition 2, it is enough to show that each v € V can be written as a
convergent series J'c,w;. We may assume I =— IN. By Proposition 2.7.1/3,
there exists a strict injection ¥: V —¢(K) such that ¥(J3 c;w;) = (c;) holds for
all finite sums Y c;w; € W.

Take v € V and set (¢;) := ¥(v) € ¢(K). We have

n
Y () = lim ¥Y(v,) if vy t= Y cw; € W.
n 1
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Since ¥-1: ¥(V) — V is continuous, we conclude

(o)
v = limv, = } cw;. OJ
n—>00 1
The topological structure of vector spaces admitting weakly K-cartesian
Schauder bases is fairly simple due to the following:

Proposition 4. Let {x;; 7 € I} be an x-cartesian Schauder basis of V, x > 1.

Let {y, := Y a;x;;v € ]N} be a sequence in V converging to a vector y € V. Then
i€l
all limits a;: = lim a,,, © € I, exist tn K, and we have y = 3, ax;.
y—>00 i€l

Proof. We adopt the same notations as in the proof of the preceding prop-
osition. Then ¥(y,) = (a;,);c; for all » € N. Since ¥ is continuous, we get
P(y) = P(lim y,) =lim P(y,) = lim (@;,);c; = (lim @;,);e; = (@3)ies € ¢(K). There-

fore y = } a;x;. (By means of the strict monomorphism ¥, we have thus

iel
transferred the convergence problem from V to ¢(K). The convergence in ¢(K)
is characterized by Proposition 2.1.5/6 and its proof.) ]

In some applications one must consider series 3 a;v; where the coefficients
take values only in some restricted subset R of K. Proposition 4 yields a useful
result for this case. More precisely, for each subring R of K and each bounded
family {v;; v € I} of vectors of V', we consider the set

Vet €)= {v =2 aw;€V;a;€ R, lima; = O}.
i€l
Obviously this is an R-module. We have the following

Corollary 5. If R s closed vn K and if the family {v;; 7 € I} is x-cartesian,
the R-module V g(v;; v € I) 1s the topological closure in V of the R-module generated
(over R) by {v;; v € I}. )

Proof. Since each seriesv = 3 a;v; € V g(v;; 7 € I) is the limit of the sequence

i€l
of its partial sums, we only have to show that the set V p(v;; 7 € I) is closed in V.
This follows immmediately from Proposition 4 since the limit of each sequence
(a;,) = R converging in K belongs to R. |

Now we want to restrict ourselves to the case of an x-cartesian Schauder
basis {v;; 7 € I}, where x = 1. Then for all zero sequences (c;);.;; of K such that
vi= } c¢;v; exists in V' (note that ' need not be complete), one has max |¢;| |v;|

i€l i€l
=< lv| and, as always, {v| = max |¢;| |v;|. Thus, one gets |} c,v;| = max [¢;| |v;].
iel iel iel

Thus, specializing from x-cartesian Schauder bases to 1-cartesian ones corre-
sponds in the finite-dimensional case to going over from weakly cartesian bases
to orthogonal ones. Hence it is reasonable to make the following definition:
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Definition 6. A set {v;; v € I} of vectors of V s called orthogonal if |} cv;l
= max |¢;| |v;] for all convergent sums Y cv; € V. iel
i€l iel
According to the remark following Proposition 2, the set {v;} is orthogonal
if and only if every finite subset is orthogonal. '
The following is an infinite-dimensional extension of Proposition 2.4.1/5.

Proposition 7. Let V' be a normed K-vector space admatting an orthogonal
Schauder basvs {v;; © € I}. Then V vs K-cartestan, and every orthogonal basis of
every finite-dimensional subspace can be extended to an orthogonal Schauder basis

of V.

Proof. First we claim that every one-dimensional subspace W of V admits
a norm-direct supplement WL in V which has an orthogonal Schauder basis.
Take w = 3 cyw; € W — {0}. Then |w| = max |¢;| |v;]. Choose j € I such that

i€l i€l
lw| = |¢;| |v;]. Exactly as in the proof of Lemma 2.4.1/4, one proves that
fw} u {v,-; vel — {j}} is an orthogonal basis of V. Thus our claim is justified.
Using Proposition 2.4.3/6, we see that V is K-cartesian.

In order to verify the remaining assertion of the proposition, we have to
show that each finite-dimensional subspace U — V admits a norm-direct
supplement U+ which has an orthogonal Schauder basis. We use induction on
n:= dim U. The case where n = 1 is settled above. If n > 1, choose a one-
dimensional subspace W — U, and denote by W+ a norm-direct supplement of
W in V which has an orthogonal Schauder basis. Applying the induction hy-
pothesisto the (n — 1)-dimensional subspace U n W+t of W+, we get a norm-direct
supplement § of Un W' in W! which has an orthogonal Schauder basis.
Clearly, S is a norm-direct supplement of U in V. |

Remark. If one is only interested in the result that ¥ is K-cartesian under

the assumptions of Proposition 7, then one can argue as follows: V' := P Kv;
i€l

is a dense subspace of ¥, and V"’ is K-cartesian according to Proposition 2.4.3/5.

Since V is of countable type and therefore weakly K-cartesian, Proposition

2.4.3/7 gives the desired result.

An orthogonal set {v;; 7 € I} is orthonormal in the sense of Definition 2.5/1 if
and only if |[v;] = 1 for all ¢ € I. We want to show that after a suitable change
of norms — not affecting the topology — every space of countable type admits
an orthonormal Schauder basis.

Proposition 8. Each normed vector space V of countable type carries a K-norm
equivalent to the given one such that V provided with this new norm admits an
orthonormal Schauder basts.

Proof. Choose « > 1 and a (¢-bounded) «-cartesian Schauder basis
{w;; 7 € I} (e.g., by Proposition 3). Define a new norm | |’ by

|2 cawi|” 1= max [¢;].
iel
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Then obviously «1|v|” < |[v| < g |v|’ for all v € V, which shows that | | is
equivalent to | |. Clearly {w;; ¢ € I} is orthonormal with respect to | |’. [

Proposition 8 enables us to use orthonormal Schauder bases instead of
weakly cartesian Schauder bases whenever we are dealing with topological
properties of the space V. For applications in affinoid geometry, we need a
criterion allowing us to decide when a given subset {x;;7 € I} of a normed
vector space is an orthonormal Schauder basis. In [2] the first author gave
such a criterion, and we shall discuss and prove that fundamental theorem in
the next sections.

2.7.3. The Lifting Theorem. — Again K is complete. Let V' be a normed
K-vector space. Let us repeat for the particular case at hand the definitions of
(2.1.10). There we considered the set V°:= {v € V'; |v]| = 1} which is a faith-
fully normed K-module; V™ := {v € V°; |v| < 1} is a K-submodule of V°. The
residue module V~:= V°/V" is a K-vector space. The canonical residue epi-
morphism V° — V" is denoted by ~.

The following remark is a partial generalization of Proposition 2.5.1/4.

Remark 1. If {v;; v € I} is an orthonormal Schauder basts of V, the family
{v;i;7€ I} 1s a K-basis of V™.

We already know that the family {#}; ¢ € I} is linearly independent over K
(cf. Lemma 2.5.1/3). In order to show that each ¢~ € V™ is a (finite) linear
combination of the v, take an inverse image v € V of v~ and write v = } cv;.
Then max |¢;] = |v| = 1, since we are working with an orthonormal Schauder
basis. Decompose v = }'c,v, + 3 czv; such that the first sum contains all
summands with |¢,| = 1. Then |} ¢zv;| < 1, the first sum contains at most a
finite number of terms, and therefore v~ = }' ¢ v}. O

A family {v;; 7 € I} in V° such that {v;;7 € I} is a R-basis of V"~ is always
orthonormal (cf. again Lemma 2.5.1/3); however it is not, in general, a Schauder
basis of V. This is shown by the following

Example. Let the valuation on K be non-discrete, and let {x;, x,, ...} be an
orthonormal Schauder basis of V' := ¢(K). Choose a sequence {1,, 43, ...} in K
such that 0 < |4;] << 1 and lim 4;4;_; --- 4, == 0. Set

inin—'liﬂ Tit1, 7’:1,2,"'°

Then 3] = o forall + = 1; ie., {y7;7 = 1} is a K-basis of V™. However x,

oo
cannot be written as a series x, = }, a,y,, because this would imply
1

M8

o0
= 2 a,(x, — A1) = a1 + (@, — ayady) 20,
1

i
™©

v
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which means

a, =1 and Ay = Aty_1 = Ahy_1++* Aa.

Thus, we would have lim a, == 0.
‘We now come to the crucial theorem of this section.

Theorem 2 (Lifting Theorem). Let K be complete, and let V be a normed
K-vector space admatting an orthonormal Schauder basvs {v;; 1 € I}. Let

{’U)j:ZCi]"Ui;jEJ}(:VD, CijEK,

be a famaly of vectors such that the following two conditions are fulfilled:
(B 1) the family (w}; j € J} = V" is a K-basis of V",
(B 2) there exists a bald subring B of K containing all scalars ¢;;, 1 € I,j € J.

Then {wj;j € J} is an orthonormal Schauder basis of V. There exuist elements
b;; € B such that
’U,':Zbijw]', 'L.GI.
jeJ

Remark. We do not suppose that V' is complete, or equivalently, we do not

suppose that all series 3, c;v;, where (c;);c; is a zero sequence in K, converge
el

in V. The condition (B 2), whichis trivially fulfilled for discrete valuations (just
take B:= K), is the essential point of the theorem; the example just given
above shows that such a condition cannot be avoided.

2.7.4. Proof of the Lifting Theorem. — Due to (B 1), the sets I and J have
the same cardinality which implies that J is at most countable. Moreover, the
family {w;;j € J} is orthonormal by (B 1). We have to show that each v € V
can be written as a convergent series 3’ a;w; or, using the notation of (2.7.2),

jeJ
that V = Vg(w;;7 € J). Since V = V(v;;7 € I) by assumption, it will be
sufficient to prove that each v;, 7 € I, is of the form } a;w;, because then
jeJ
Corollary 2.7.2/5 yields V = Vg(vi; v € I) = V g(w;; j € J).

The proof that v; is an element of V x(w;; j € J), © € I, will rely heavily on
(B 2). We may assume that the bald ring B occurring in (B 2) is a complete
B-ring. (If not, just replace B by the completion of its localization with respect
to the family {b € B; |b| = 1}; this new ring is again bald (see (1.7.1)). Then B
is closed in K. We shall write V 5 (resp. V%) for the B-module V z(v;; 7 € I)
(resp. Vg(w;;j € J)). By Corollary 2.7.2/5, the module V  (resp. V%) is the
closure in V' of the B-module generated (over B) by {y;; ¢ € I} (resp. {w;; j € J}).
By assumption, we have w; € Vg for all j € J, and therefore Vi = V 5. If we
can show that V3 =V, we will have v; € V= Vg(w;;j € J) for all 7€ 1,
and the proof will be finished. In order to prove the equation V% = V5, we
consider the situation in V™. We know that {v;’;7 € I} and {w];j € J} are
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K-bases of the vector space V™. Since B K is a B-ring, B is a subfield of
K. Thus
"y =X Buwy and Vi =Y Bv}
jeJ iel
are B-vector spaces. We have wij € Vzforallje J;ie, Vi= V7% Asa first
step in the direction of proving V; = Vg, we shall show V'3’ = V'3 by using the
following lemma for vector spaces.

Lemma 1. Let F be a subfield of a field Q, and let U be a G-vector space. Let
{w;;7 € I} and {y;; 7 € J} be G-bases of U. Define
Up:= ) Fx; and Up:= ) Fy;.
i€l jeJ
Then Uy = Uy tmplies Uy = Up.

The lemma can be verified without difficulty by using tensor products
(note that we have Uy Q7 @ = U and Uy ®p G = U). For completeness we
give the following elementary proof. The lemma being trivial for finite-dimen-
sional spaces, we want to reduce the problem to this case. It suffices to show
that x; € Uy for all 7€ I. Fix an element x; € {x;;7 € I}. Since {y;;j € J}

generates U over G, we can choose elements y; , ..., y;. € {y;;j € J} such that
m
X, € 2 Gyju'
u=1
Since all y; belong to Uy, we can pick finitely many vectors z;, ..., x;, €

n
{z;; © € I} such that the F-vector space Wy:= }’ Fux; contains all vectors y;,,
v=1

u=1,...,m. Since y;, ..., y;, are linearly independent over F (in fact over
G), we can choose vectors z,, ..., 2, € Wy such that {y;, ..., y;., 2, ..., 2} isan

n
F-basis of W. These vectors also generate the G--vector space W := 3 Gu; .
v=1

They are, in fact, a G-basis of this space, since m + s = dimy Wy =n =
dim; W . From

m m 8
z;, € 3 Gy, and x, € 3 Fy;, + 3 Fz,
u=1 p=1 o=1

and the linear independence of all vectors y; , ..., y;,., 21, ..., 2; over G, we now
conclude
x; € 3 Fy; — Ug,
u=1
which finishes the proof of the lemma. ]
Let us resume the proof of the Lifting Theorem. By setting F:— B,

Q:=K, U:=V~, x;:=v] and y;:= wj, we derive V3 = V% from thelemma.
Therefore, for each ¢ € I, there exist elements b;; € B, j € J, such that

zii= Y byw; € Vy and 27 = —o]; e, |z+ v <l

jeJ
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Set ¢:=sup {|b|; b € B, |b| << 1}. Since B is bald, we have ¢ << 1. Obviously
e =sup {|v|;v € Vi, |v] < 1}. From z; + v; € V5, we now conclude

2 + vl = ¢ for all vel.
Next we claim
For each x € V g, there exists an element y € Vg such that |x + y| =< ¢ |z|.
In order to see this, write = } bv;. Choose a finite subset I* of I such

iel

that |[x — 3 bw;| =< ¢|x|. Now set y:= 3 b;z;. We have y € V. From = + y

icI* iel*
= (v — 2 bwi) + X bi(v; + 2;), we derive
iel* ier*

|# 4 y| = max {|z — 3 bw;|, max |b;| |v; + 2]}

ier* ier*
=< max {¢|x|, max |b;| &} = ¢ |2|.
iel*
Thus V3 is “‘e-dense” in V g in the sense of Proposition 1.1.4/2. Since Vj is also
closed in V, we get V3 = Vy from Proposition 1.1.4/2, which concludes the
proof of the Lifting Theorem. 1

2.7.5. Applications. — We state some immediate consequences of the
Lifting Theorem. First we have in complete analogy to Proposition 2.7.2/7

Proposition 1. If V admats an orthonormal Schauder basis, then V s strictly
K-cartesian.

Each orthonormal basis of a finite-dimensional subspace can be extended to an
orthonormal Schauder basvs of V.

Proof. Let {v;;7 € I} be an orthonormal Schauder basis of V, and let
U=V be a subspace of finite dimension. Set n:= dim U~ and choose u;
= Y € U° j=1,...,n, such that {u7, ..., u}} is a EK-basis of U~. Since

i€l
(¢ji)ier» 7 = 1, ..., n, comprise only finitely many zero sequences, there exists a
bald subring B of K containing all c;; by Corollary 1.7.2/5.

We can choose a subset I’ — I such that the family

{Uys eeey Uy} U {0737 € 1)
is a K-basis of V™. Then the family
{1y ooy e} U {0552 € I'},

together with the bald ring B chosen above, fulfills conditions (B 1) and (B 2)
of the Lifting Theorem and therefore is an orthonormal Schauder basis of V.
We claim that {u, ..., u,} is an orthonormal basis of U. We need only show

n n

that U = )} Ku;. Take u € U and write u = } c,u, + 2, where z is of the
i=1 1

form z = 3’ d;v;. Then z € U. If z == 0, we can normalize |z| to 1, which leads
el
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to the contradiction
0=%2"=YdpT U
iel’
It remains to be shown that each orthonormal basis {yy, ..., y,} of U can be
extended. We have |y,| = 1; moreover, {7, ..., y,} is a K-basis of U~. There-
fore, we can proceed exactly in the same way we did above with the vectors

Uy ..., Uy. In this way, we get an orthonormal Schauder basis of V' extending
the given basis of U. O

For spaces of countable type, one has the following improvement of Propo-
sition 1:

Proposition 2. The following statements concerning a normed K-vector space
V of countable type are equivalent:

(1) V admats an orthonormal Schauder basis.
(2) V us strictly K-cartesian.
(3) dimg U™ = dimg U whenever U s a finite-dvmensional subspace of V.

Proof. The equivalence of (2) and (3) is clear (use Corollary 2.5.1/6). The
implication (1) — (2) is shown in Proposition 1. In order to deduce (1) from (2),
we choose a dense subspace W — ¥ of countable dimension and exhaust W
by a sequence W,, n € N, of vector spaces such that

Wo= Wy, W=UW,, dimgW,=n.
neN
Using Proposition 2.5.1/5, we can extend each orthonormal basis {w;, ..., w,}
of W, to an orthonormal basis {wy, ..., Wy, Wy} of W,.;. Proceeding in this
way, we get an orthonormal K-basis {w,; » € N} for W and therefore, by Propo-
sition 2.7.2/3, an orthonormal Schauder basis for V. 1

2.8. Banach spaces

In this section, the valuation on the base field K is always complete and
non-trivial.

2.8.1. Definition. Fundamental theorem. — We define the concept of a
K-Banach space as in real and complex analysis:

Definition 1. 4 complete normed K-vector space V is called a Banach space.

Each finite-dimensional normed K-space is a Banach space. Each closed
subspace of a Banach space is a Banach space. The direct sum of finitely many

Banach spaces is a Banach space; more generally, it follows from Proposition
2.1.5/6

If {Vi}ier Us an arbitrary family of K-Banach spaces, their bounded direct
product b([[ V) and their restricted direct product c([] V;) are K-Banach spaces.
i i
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Thus, the simplest examples of Banach spaces which are not of finite
dimension are the spaces

b(K):=b(ﬁK1) and c(K):zc(ﬁKl),
1 1

where one takes countably many copies of the line K. Recall that b(K) (resp.
¢(K)) consists of all bounded sequences (resp. all zero sequences) a = (a,,a,,...),
a, € K, provided with norm

la| = sup |a,] (resp.|a| = max |a,|).

v v

We state without proof a fundamental theorem, which we shall use fre-
quently later on.

Theorem of Banach (Open Mapping Theorem). Let V, W be Banach spaces,
and let D: V — W be a bounded and surjective K-linear map. Then @ s open,
and W carries the quotient topology with respect to @. (In particular, D is a homeo-
morphism vf @ 8 bijective.)

For a proof see [5].

An important corollary is the

Closed Graph Theorem. Let @: V — W be a K-linear map between Banach
spaces. The map ® is bounded if and only if Graph @ := {(v, D(v)) € V X W}is
closed with respect to the product topology on V X W.

As an illustration of the type of reasoning used in dealing with Banach
spaces, we deduce this statement from Baxacr’s Theorem. Obviously, the con-

tinuity of @ implies the closedness of Graph @. So assume Graph @ = Graph .
Then Graph @V X W is itself a Banach space. Hence the K-linear pro-
jection z: Graph @ — V given by (v, (D(v)) > v is open (since it is continuous).
As the projection #’: Graph @ — W given by (v, di(v)) > D(v) is also continuous,
the continuity of @ follows from the commutative diagram

Graph @

Vy—W-

Often the ‘“Closed Graph Theorem’’ is used in the following version:
D: V — W 7s contvnuous f, for each sequence v, € V with
limyv, =0 and lim®@,) =:weW,

we have w = 0.

2.8.2. Banach spaces of countable type. — Here we specialize the results of
(2.7) to the case of Banach spaces. We start by recalling Definition 2.7.1/1.
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Definition 1. 4 Banach space V is said to be of countable type vf V contains
a dense subspace V' of at most countable dimension.

The space ¢(K) of zero sequences isof countable type, since K‘*is obviously
dense in ¢(K). In fact, ¢(K) is the only infinite-dimensional example of such a
space: namely,

Theorem 2. Each Banach space V of countable type admits a K-linear homeo-
morphism onto K" if n:= dimg V << oo and onto ¢(K) ¢f dimyg V = oo.

Proof. Due to Proposition 2.3.3/4 we may assume that V is infinite-dimen-
sional. Choose a dense subspace V' of countable dimension in V. By Theorem
2.6.2/4, there exists a K-linear homeomorphism K = V', Thus ¥V may be
viewed as the completion of K. Since ¢(K) is also a completion of K, the
theorem follows. ' |

Corollary 3. Each Banach space of countable type vs b-separable.



CHAPTER 3

Extensions of norms and valuations

In this chapter, valuation theory — in its widest sense — is at the center
of our interest. We start with some general facts on normed algebras. These
include auxiliary results from commutative algebra as well as a further discus-
sion of spectral values (continuation of (1.5.4)). The spectral value is used in
(3.2) in order to extend power-multiplicative norms on fields. The procedure is
totally elementary; it only requires the smoothing techniques of (1.3.2). With-
out investing the power of HENSEL’s Lemma, we establish the extension theo-
rem for valuations on fields in the complete case. In fact, HENSEL’s Lemma is
an easy consequence of our extension theorems which are generalized to the
non-complete case in (3.3).

In (3.4), we prove the lemma on continuity of roots. One of its consequences
is the fact that the completion of an algebraically closed field remains alge-
braically closed. Thus each valued field has a smallest extension which is both
complete and algebraically closed. For HENSEL’s field of p-adic numbers @,,
this extension is denoted by C,; its Archimedean analogue is the field C of
complex numbers. Using KRASNER’S Lemma, we show that the extension
C,/@Q, is much more complicated than the extension C/IR.

In the remaining sections we deal with some special topics. First there is
the discussion of stable and weakly stable fields; we derive certain criteria
which are necessary for the proof of the Stability Theorem for Q(7',) in (5.3).
Then there are two sections on Banach algebras and function algebras; these
sections should be seen from the viewpoint of affinoid algebras. They antic-
ipate some technicalities which otherwise would have been dealt with in
Chapter 6. (Note that integral torsion-free monomorphisms of the type con-
sidered throughout section (3.8) are furnished by NoETHER’s Normalization
Lemma 6.1.2/2.) The main result is Proposition 3.8.1/7 which relates the
supremum norm on Banach algebras to the spectral norm with respect to
integral extensions.

3.1. Normed and faithfully normed algebras

Let A = (4,| |) be a normed ring. If | | is a valuation, we denote by
)(A4) the valued field of fractions of 4 (provided with the extended valuation).
The symbol B always denotes an A4-algebra; i.e., there is given a ring homo-
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morphism ¢: A4 — B which by the definition a-b:= ¢(a)b, a € 4,b € B,
equips B with the structure of an 4-module.

3.1.1. A-algebra norms. — We want to look at A-module norms on B for
which the multiplication in B is continuous. If 4 carries a non-degenerate
valuation, then one knows due to Proposition 2.1.8/2 that

The ring multiplication in a faithfully normed A-module (B,| |") ?s con-
tinuous if and only if there exists a real constant o > 0 such that (xy|” < o |x|" |y|”
forall x,y € B.

Applying Proposition 1.2.1/2 if B &= 0, we can derive from | |" an equiv-
alent 4-module norm | | (which is again a faithful 4-module norm) such
that |zy| =< |z| |y| and |1] = 1. Hence the following definition which combines
the two concepts of ““module norm’ and ‘‘ring norm” is reasonable. It will
actually cover all interesting cases.

Definition 1. 4 ring norm | | on an A-algebra B s called a (faithful)
A-algebra norm if | | is a (faithful) A-module norm on B.
Let B = (B,|| ||) be a normed ring, and consider a ring homomorphism
¢: A — B making B into an 4-algebra. Then || | is an 4-algebra norm on B
if and only if ¢ is contractive. Namely, any 4-algebra norm || | on B must
satisfy
lp@)ll = llg(@) - 1| = lal [[1]] = |a]

for alla € A. Conversely if ¢ is contractive, we have
lab] = [lp(a) bl| = [lp(@)]| bl = |al (b

foralla € 4, b € B. In particular, if 4 is a normed subring of B (i.e., provided
with the ring norm inherited from B) and if ¢ = id, then B is a normed

A-algebra.
Let B, and B, denote normed A-algebras. Then the complete tensor prod-

uct B:= B, E\@A B, is a well-defined 4-module. We want to show that B is
even a normed A-algebra with a unique multiplication such that

(b @ bs) (b @ b)) = bid} © by
In order to verify this, we consider for b, € B,, b, € B, the A-linear maps
ip,: B; — B;, b, 1 =1, 2.
By Proposition 2.1.7/5, we get an A-linear map
2y, @ A: B— B
such that b, ® by > biby ® byby and satisfying |4, ® Ay,| = |4,] 14, = [Ba] bal-
Obviously 4, & 4, depends A-linearly on b, and b, so that we get an

A-bilinear map
By X B, — Z(B, B), (by, bs) > 4, @ 4,
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which is bounded by 1. Since £ (B, B) is complete (see Proposition 2.1.6/4),
this map corresponds by Proposition 2.1.7/1 to a contractive 4-linear map
B — ¥#(B, B) such that b, @) by > Ay, (Q) Ap,- This map, in turn, can be inter-
preted as an A-bilinear map u: BX B — B, which is bounded by 1. Thus B is
a normed A4-algebra with multiplication x, and it is true that x(b, (;5 b, b1 @) b3)
= byb} @ bybs. Furthermore it is clear that u, as a continuous map, is
uniquely determined by this property, since by linearity it is determined on a

dense subset of BX B. N
It follows from the definition of the multiplication on B; &, B, that the
maps

—~

w:B,—~B, Q4 B,, brb®1,
Ty: B, — B, @A B,, bz*"l@)bz,

are contractive 4-algebra homomorphisms. These maps characterize B, @) 4 B
as an A4-algebra in the following way.

Proposition 2. The canonical maps ©;: B; — B, é) 4 By, © =1, 2, satisfy the
following universal property:

If ¢;:B;— D, ©=1,2, are bounded A-algebra homomorphisms into a
complete A-algebra D, then there is a unique bounded A-algebra homomorphism

p: By ®4 By — D such that the diagram

B,

commutes. One has |p| = @] |@2l. .
Furthermore, if o;: B; —~B’', 1 = 1,2, are bounded A-algebra homomor-

phisms tnto a complete normed A-algebra B’ satisfying the above universal prop-
erty with T,, T, replaced by oy, 0,5, then the unique homomorphism o: B; X4 B,
— B’ satisfying o; = o o 7; for © = 1, 2, is an tsomorphism and bounded in both
dvrections.

Proof. In order to verify the universal property for B, (;<j 4 By, let@;: B; — D,
? =1, 2, denote two bounded A-algebra homomorphisms into a complete
normed A-algebra D. The A-bilinear map @: B, X By, —> D, (b, by) > ¢1(b;) 2(bs),
which is bounded by |¢;| |@,], corresponds by Proposition 2.1.7/1 to an

A-linear map y: B, @ 4 B; — D such that |yp| < |¢,] |@.] and such that the
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diagram
B, X B, —— B, R, B,
@ v
D
commutes. For b, € B,, b, € B,, the following holds:

p(11(b1) Ta(be)) = p(by @ by) = B(by, by) = 1(by) galb).

In particular, this equation is true for b, = 1 and for b, = 1, and one con-

cludes that ¢ is multiplicative on the dense image of B, ®,4 B, in B, @ 4 Bs.
Hence y is an A-algebra homomorphism which obviously satisfies ¢; =y o 7;
for © = 1, 2. Furthermore one easily derives from the uniqueness assertion in
Proposition 2.1.7/1 that ¢ is the unique algebra homomorphism with this
property.

Thus we proved the universal property for B, (;<j 4 Bs, and it is now a formal
argument to verify that any complete A-algebra with the same universal

property is canonically isomorphic to B, (;5‘4 B,. O

If B is any A-algebra, the group G(B/A) of all A-algebra automorphisms
of B is of great interest. For later reference we prove

Proposition 3. Let B be a normed A-algebra, and let H be a subgroup of
Q(B|A) such that all h € H are contractions. Then there 1s a canonical group
homomorphism ~:H — G(B~[A~) such that R~ (b~) = h(b)~ for all h € H,
b€ B°.

Proof. Each k € H maps B° (resp. B”) into itself and hence gives rise to a
ring homomorphism A~: B~ — B~ such that A™(b”) = (h(b))~ for all b € B°.
Because h is an 4-algebra homomorphism, we have for all a € 4° the equalities:
BY(@™b™) = k>((ab)”) = (h(ab))” = (ah(d))" = a~(h(b))” = a"h~(b~). There-
fore, b~ is an A~-homomorphism. It is straightforward to check (hg)” = h™g"
for all h,g € H and idy = idg~. Therefore (A1)~ = (h~)"! for all h € H,
and hence k™ is indeed an 4~-automorphism of B".

Thus we proved that ~: H — G(B~[A") is a group homomorphism. 1

A subgroup H of G(B/A) consisting only of contractions is actually a sub-
group of isometries. If, more generally, one looks at bounded 4-automorphisms
of B, one can prove a result very similar to Proposition 3.

Proposition 4. Let B be a normed A-algebra, and let H be a subgroup of G(B/A)
such that all h € H are bounded. Then there vs a canonical group homomorphism
o~ ~ -~ - ’-d
~: H — G(B/A) such that h(b) = h(b) for allh € H, b € B.
Proof. In the proof of Proposition 3, one has to replace everywhere the

objects B~, B°, B, etc., by the invariant objects B, B, B, etc. Then literally
the same proof yields the proposition. ]
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If B is a non-zero faithfully normed A4-algebra, the given homomorphism
A — B is an isometry and hence injective. Thus B becomes a normed overring
of (4,] |), and the set 4 — {0} is contained in the set of multiplicative ele-

ments of (B, | |). Conversely, if (4, | |)is a normed subring of a normed ring
(B, | |) &= 0 such that all elements of A — {0} are multiplicative (in B), then
(4,] |) is a valued integral domain and (B,| |) is a faithfully normed

A-algebra. For example, each valuation on an overring B of 4 extending the
valuation on A4 provides B with the structure of a faithfully normed A4-algebra.
Note, however, that a faithful 4-algebra norm on B is by no means necessarily
a valuation on B.

If 4 isa valued field, cach A-algebra norm is faithful (cf. Proposition 2.1.1/4).
Hence for every overring B of 4 with a ring norm | |, we have that | |isan
extension of the valuation on A4 if and only if | | is an A-algebra norm.

3.1.2. Spectral values and power-multiplicative norms. — In this section we
do not suppose that B is faithfully normed or that 4 is valued. In (1.5.4) we
introduced for each monic polynomial p = X™ 4 a, X™"1 + ... 4 a, € A[X]

its spectral value o(p) = max |a,|'*. The following proposition indicates the
1=pu=m

importance of this concept.
Proposition 1. Let B be a normed A-algebra with a power-multiplicative norm
| |. Let q = X™ + a; X™ ! 4 -.. 4 a,, € A[X]. Then we have
Ib] = a(q)
for each root b € B of q.
If in addition A vs a normed subring of B (more precisely, if ¢: A — B 1s
an isometry) and if q € A[X] splits into linear factors X — b; over B (i.e., if
m
g =1] (X —b;), b; € B), then we have
i=1
max [b;| = a(g).
1=i<m
Proof. (1) Let b € B be any root of q. Assume |b| > ¢(q) = max |a,['/* so
that |a,| < |b|* for all g = 1, ..., m. We conclude that 1=p=m

lad™#| = |ay| [b|™~# < |b|* [b|m"* = [b|™ = |b™], u =1,...,m.
(The last equality is the only place in the whole proof where the assumption
m
that | | is power-multiplicative is used.) Thus | 3 a,b™ #| < [b™|, in contra-

m u=1
diction to q(b) = b™ + 3 a,b™# = 0. Hence |b| < o(g).
p=1

(2) Now assume that 4 is a normed subring of B. Since a, =4 3’ b; ...b

1<i<-<ip=m

in
we get

la,| = max |b; ...b;,| =max ([by]... [b;,]) = (max [b;])~.
T1seenstps T1peees iu 1<i<m

Therefore o(q) = max |b;|, which together with (1) yields o(¢) = max |b;|. []

1=i=m 1=ism
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3.1.3. Residue degree and ramification index. — In (2.1.4) and (2.1.10) we
introduced the notions of ramification index e(M/4) and residue degree f(M/A4)
for faithfully normed 4-modules M. These notions are especially meaningful
in the case of faithfully normed A4-algebras B. The inequalities e(B/4) =< rk, B,
f(BJA) < rk, B (Propositions 2.1.4/2 and 2.1.10/3) can then be improved con-
siderably. We start with a simple lemma that combines the arguments of the
proofs of the propositions just mentioned.

Lemma 1. Let B be a faithfully normed A-algebra. Assume that |[A — {0}] is
a group. Let x,, ..., x, € B° be elements such that x7,...,x; € B™ are linearly
independent over A. Let y,, ..., ys be elements in B — {0} such that

(1) |zy;| = |z ly;l forall x€ 3 Ax;,j=1,...,s,
i=1
(ii) the values |y1, ..., |ys| € |B — {O}| represent different equivalence classes
of | B — {0}| modulo |4 — {0}].

Then for all a;; € A,i=1,...,7r and j=1,...,8, one has | 3 a;x;y;l
1=isr
1=j<s

=max |a;;| |2;y;]. In particular, the rs elements x;y; € B,1 <7 <=r,1=j <,

1=isr
1<j<s

are linearly independent over A, and hence rs < rk, B.
Proof. For the given a;; € 4, consider the element

b:= Z'aijxiy,- € B.

l=si=r

1=j<s
Write it in the form
(*) b=2 (@1 + -+ 4 ar,) y;-

1<j=<s
Because |4 — {0}| is a group, we have |ajz; + -+ + a2, = max |a;;| by
1<isr

Proposition 2.1.10/3. Thus |a,;2; 4 - + a,,| € |4] for each j. Since
@y, + -+ + ay2,) yj| = |ag @0 + - - + a2, |y;|, the absolute values of two
non-zero terms in the sum (*) can never be equal, because otherwise |y, ], ..., |¥s|

€ |B — {0}] would not represent different equivalence classes of |B — {0}]
modulo |4 — {0}].
The Principle of Domination yields

|b| = max Ialjxl + e+ arjxr[ Iy]'|'
15j<s
Because [x;y;| = |xi| |y;] = |y;|, we have
b| = max {max |ay| |y;|} = max |a;| |z;y;]. [
15jss  1=i=r 1<isr
1=j<s

If r:=1, x,:=1, the lemma implies e(B/4) < rky B. Similarly, for
s:=1,y,:=1 we get f(B/A) < rk, B. A further consequence of the lemma is
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Proposition 2. For each valued ring B containing a valued subring A such
that |A — {0}] ©s a group, we have

e(B/A) f(B/4) =< rk, B.

Let us finish this section with some general remarks concerning the residue
degree. For any faithfully normed A4-algebra B (where, by definition, 4 must
be a valued ring), the ring 4 is an integral domain and the A-algebra B™ is
torsion-free as an 4-module. Hence

f(B/A) == I'kj' B” = dimo(z) (‘B~)Z-—{O} .
The Q(A)-vector space (B~)z_ (0} 18 contained in the fullring of fractions Q(B~);

therefore f(B/A4) = dimgz,@(B~). In important cases we have equality;
namely,

Proposition 3. If B is a faithfully normed A-algebra and vf B° s integral over
A, then

This proposition is a direct consequence of the following purely algebraic
statement:

If R’ 7s an overring of an integral domain R such that each r' € R’ vs integral
over R and such that no element of R — {0} is a zero divisor 'n R’, then Ry_ o}
= Q (R') and therefore rkg R’ = dimg g, Q(R’).

The ring Q(R') vs8 an integral extension of the field Q(R).

Proof. Let ¢ = cd™1 € Q(R’), ¢,d € R, be given. By assumption, there isan
" equation

ar» +bd*t+ ... +0b,=0, b,...0,¢€R, n=1.
Since d is not a zero divisor in R’, we can assume that b, &= 0. Then
dl = —bd"t + byd™ 2+ oo+ byy),

and hence ¢ =cd™! is an element of R%_,. This proves Q(R’) = R3_y,. The
element 7 := b,g belongs to R’ and satisfies an integral equation over R, say

rm+ ar™ 1l ... +oa,, =0.
Then
" + (a’lb;l) g™t 4 - +aph,™ =0,

and we see that Q(R’) is an integral extension of Q(R). : ™

3.1.4. Dedekind’s Lemma and a Finiteness Lemma. — In this section we
shall supply some auxiliary results about reduced algebras which are of par-
ticular interest for valuation theory (see the following sections) as well as for the
theory of k-affinoid algebras. First we prove a classical lemma by DEDEKIND
describing the structure of finite-dimensional reduced algebras.
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Proposition 1 (DEpERIND'S Lemma). EKvery reduced finite-dimensional
algebra L over a freld K s the (ring-theoretic) direct sum of finitely many field
extensions of K.

Proof. First we claim that every prime ideal p of L is maximal. Consider
the integral domain L/p. For each y € L/p, y 4= 0, the K-algebra endomorphism
@, of L[p defined by ¢,(x):= xy is injective. Moreover, it is surjective, be-
cause L/p has finite dimension over K. Hence, for every y’ € L/p, the equation
xy = y’ has a solution x € L[p; i.e., L[p is a field, or equivalently p is maximal,
as claimed. Let p, ..., p, be different prime ideals in L. Since all p; are maximal,
one has

n
() 'mpiq:p]- for j=1,...,n.
i
The relation (%) implies that the chain p,>p, NP, >--->p;n---np,
is strictly decreasing, whence n =< dimy L. Thus L admits only a finite number
of prime ideals, say p,, ..., p;. Let m;: L — L/p; denote the residue epimor-
t
phism. Because L is reduced, one knows that N p; = 0. (Namely for any
i=1
a == 0 in L, there exists an ideal p — L which does not contain any power a”®
of @. Choosing p maximal with this property, one gets a prime ideal not contain-

t
ing a.) Therefore the K-algebra homomorphism 7 := (7, ..., %;): L — @ L/[p;
i=1

is injective. Since all L/p; are fields, only the surjectivity of # remains to be
shown. Define L;:= n(L) n L/p; for v = 1, ..., ¢, where n(L) and the fields
t

L/p; are viewed as L-submodules of @ L/p;. Then each L; is an L-submodule

i=1
of L/p; or, in other terms, an ideal in the field L/p;. Using relation (%) again,
we see that L; &= 0. Therefore L; = L/p; for all 7, and # is surjective. O

Recall that a ring homomorphism y: R — R’ is called finite if R’ is a finite
R-module via . Furthermore, y is called integral if each element in R’ satisfies
an integral equation over B (more precisely, over y(R)). Each finite homo-
morphism is integral. However the converse is not true. We use DEDEKIND’s
Lemma in order to give sufficient conditions for an integral ring homomor-
phism to be finite. (See Chapter 4 for the notion of Japaneseness.)

Lemma 2 (Finiteness Lemma). Let R be a Noetherian and Japanese integral
domain, and let y: R — R’ be an integral ring homomorphism such that the
following conditions are fulfilled:

(1) the ring R’ vs reduced; the R-module R’ vs torsion-free,

(ii) rkg R' << oo.

Then yp s finate.

Proof. Because y is injective by (i), we may assume R — R’ and p = id.

The ring R%_, (which coincides with Q(R’)) is a finite-dimensional reduced
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Q(R)-algebra. Hence by DEDEKIND’s Lemma, R%_(, is the ring-theoretic direct
sum of a finite number of finite field extensions of Q(R):

R/R——{O} = K, (‘B @Kt-

Since R is Japanese, the integral closure R; of R in K; is a finite RE-module,
t=1,...,¢t Because R’ is integral over R, we have

RcR P---PR,.
Since R is Noetherian, R’ is a finite R-module. O

3.1.5. Power-multiplicative and faithful A-algebra norms. — In some
situations we shall have to deal with power-multiplicative 4-algebra normson B
which are faithful as 4-module norms, but which are, in general, not valuations.
We list some useful properties of such norms.

Proposition 1. Let the valuation on A be non-degenerate. Let | |;,7 = 1,2,
be power-multiplicative favthful A-algebra norms on B which are equivalent on
each subring Aly), y € B. Then | |, =| |

The proof follows immediately from Proposition 2.1.8/2 and Corollary
1.3.1/3. L]

Next we show

Proposition 2. Let | | be a power-multvplicative faithful A-algebra norm
on B. Assume that there exists an integer n € N such that each element of B
annihilates a polynomial == 0 over A of degree = m (for example, this s the
case if B 1s a finite A-module). Then, for each b € B, there exists an tnteger m,
1 < m < n, such that |b|™ € |Q(4)|.

Proof. Let b € B. By assumption we can find elements ay, a4, ..., a, € 4,
not all zero, such that
agh® + a1 + ... + a, =0.

We can choose indices 7,7,0 < ¢ < j = n, such that 0 < |a,_;b'| = |a,_;bl|.

Since |a,_,b*| = |a,_,| |b|* for all » by the assumption on | |, we get
6|7t = |a,_;| |a,_j|~* € |Q(A)|. This verifies the assertion because j— ¢
€{1,...,n}. O

Corollary 3. Under the assumptions of Proposition 2, we have |B|™ — |Q(A4)|.

In particular, we get e(B/A4) = 1 if the (multiplicative) value group |Q(4)*)
is divisible, i.e., closed under the operation of taking roots.
As an application of the Finiteness Lemma 3.1.4/2, we can prove

Proposition 4. Let A be a valued integral domain, and assume that A s
Noethervan and Japanese and that |A — {0}| s a group. Let B be a faithfully
normed A-algebra such that

(i) The norm on B vs power-multvplicative,
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(ii) rky B < oo,
(iii) B us wntegral over A.
Then B is a finite A-module.

Proof. We want to apply Lemma 3.1.4/2 with R:= A4, R := B, and

y: A — B the canonical injection map. Since B is integral over 4, the mapyp

is integral. It remains to verify conditions (i) and (ii) of Lemma 3.1.4/2. The

first one is fulfilled, since the norm on B is power-multiplicative and faithful

(cf. Propositions 1.2.5/7 and 2.1.10/1). The second one follows from Proposition
2.1.10/3, which gives

rk;flgrkAB<oo. ™

3.2. Algebraie field extensions. Speetral norm and valuations

We denote by K a field with a power-multiplicative norm. It is not assumed
that K is complete nor that K is valued. Let L be a K-algebra. Without loss
of generality, we may assume that K — L (unless L = 0). By @ = G(L/K) we
mean the group of all K-algebra automorphisms of L.

3.2.1. Speetral norm on algebraic field extensions. — Let L be an algebraic
extension of K. We are dealing with the problem of extending the norm on K
to a power-multiplicative K-algebra norm and later on even to a valuation
on L. (Of course, the latter is feasible only if the given norm on K is a valuation.)
The following definition and theorem are important for our considerations.

Definition 1. Let L be an algebraic extension of K. For each element y € L,
we set
[y|sp : = spectral value o(q) of the minvmal polynomial q € K[X] of y over K

and call the function | |sp: L — R, the spectral mnorm on L (induced by the
norm on K).

This definition is motivated by

Theorem 2. The function | g, 18 a power-multiplicative K-algebra norm on L
extending the given norm on K. All K-algebra automorphisms of L are isometries
with respect to the spectral norm. For any power-multiplicative K-algebra norm | |
on L, we have | | = | |gp.

If L 7s a finite quasi-Galois (= normal) extension of K, the spectral norm
| |sp %8 the only power-multiplicative K-algebra norm on L extending the norm
on K for which all g € G(L/K) are wsomelries. If | | is an arbitrary power-multi-
plicative K-algebra norm on L extending the norm on K, we have

|ylsp = max |g(y)| forall ye€ L.
9EG(L/K)

The proof will be based on

Lemma 3. Each finite extension L of K carries at least one power-multi-
plicative K-algebra norm extending the given norm on K.
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Proof. Choose a basis {¢;, = 1, e,, ..., e,} of the K-vector space L, and denote
n
by | | the normgiven by | 3, a,e,| := max |a,|. In this way we get a K-module
=1 1<v<n
norm on L, extending the norm on K. Set M := max |e,e,|. Then it follows
1=5uv<n

immediately that
lyy'| = M ly| ly’| forall y,y'€L.

Therefore we can ‘““smooth’ this norm to a ring norm on L according to Prop-
osition 1.2.1/2, and by assertion (iii) of that proposition, the new norm is an
extension of the given norm on K. From Proposition 1.3.2/1, we now deduce
the existence of a power-multiplicative semi-norm on L which must, in fact, be
a norm (L being a field). Since the norms of power-multiplicative elements
remain unchanged throughout this last procedure, we see that L carries a
power-multiplicative K-algebra norm extending the norm on K. O

Remark. In the proof just given, the norm | | with which we started
defines the product topology on L. So does the K-algebra norm we derived
from this norm. However, the final norm we get by applying Proposition 1.3.2/1
may fail to provide L with the product topology.

Now we come to the proof of Theorem 2. Let y be an element in L and let
g € K[X] be its minimal polynomial. We have |y, = 0 if and only if o(g9) = 0,
i.e., if and only if ¢ = X™, i.e., if and only if y = 0.

For each automorphism ¢ € G := G(L/K), the element g(y) is a root of ¢;
hence the polynomial ¢ is also the minimal polynomial of g(y). Therefore
[9(¥)sp = |Ylsp; 1.e., each map g € G leaves the spectral function invariant.

From Proposition 3.1.2/1, we get | | < | |5, for each power-multiplicative
K-algebra norm on L.
In order to show that | |, is really a power-multiplicative K-algebra

norm on L extending the norm on K, we have to verify the inequalities |yy’|sp,
= |ylsp 1¥'lsps 1Y + ¥'lsp = max {|ylsp, [¥'lsp} and the equations |aly = lal,
[9¥lsp = |ylzp for y, y" € L, a € K, v € IN. We may restrict all considerations to
the field K(y, y') — L, which is finite over K. From K(y, y’), we can pass to
a smallest quasi-Galois extension K’ over K (not necessarily contained
in L) and work in this field which is still finite over K. Thus we may assume
from the beginning that L itself is a finite quasi-Galois extension of K.

Let | | be a power-multiplicative K-algebra norm on L extending the
norm on K. By Lemma 3, we know that such norms exist. For each ¢g € G, we
set

Ylg:= g, yeL.

Obviously | |, is a power-multiplicative K-algebra norm on L for each g € G,
and it extends the given norm on K. Since L is finite over K, the group @ is
finite; therefore, we can apply a further smoothing procedure:

lylg := max {[y|,}.
geG
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It is clear that | | is also a power-multiplicative K-algebra norm on L and
that it extends the given norm. By construction, all g € G are isometries with
respect to this norm. Since L is quasi-Galois over K, the minimal polynomial of
y € L is of the form

q=1I (X —g@)",

geG

where the product is taken over certain g € G, where p:= char K and where
¢ = 0 is the exponent of inseparability of y. Since |g(y)l¢ = |ylg, We conclude
from Proposition 3.1.2/1 that

lyle = 0(q) = |Ylsp-

Therefore, | |, is actually a power-multiplicative K-algebra norm extending

the norm on K. Moreover, for any other such norm | |, we found

lylsp =max |g(y)] forall y € L. ]
geEG(L/K)

From Proposition 3.1.1/3 and the preceding theorem, we immediately
deduce

Proposition 4. If L carries the spectral norm, there exists a canonical group

~ ~ _d
homomorphism ~: G(L|/K) — G(L/K) such that g(y) = §(§) for all g € G(L/K),
y € L.

By definition of the spectral norm, the set |L*| is contained in the smallest
divisible subgroup of IR, — {0} containing |K*|. Hence one gets

Proposition 5. If K is a valued field, then for every y € L* there exist an
exponent s = 1 and an element ¢ € K* such that |cy®|, = 1.

In our preceding considerations, we may take for L an algebraic closure
of K. Thus we may talk without any ambiguity about the spectral norm on
an algebraic closure of K. For later reference we note the following corollary
of Theorem 2, which improves Proposition 1.5.4/1.

Corollary 6. If u and v are monic polynomials tn K[ X], then one has
o(uv) = max {o(u), o(v)}.

Proof. Let L be a finite extension of K such that u(resp. v) splits into linear
factors X — b;, b; € L,for 7 =1, ..., r (resp. forv =r 4 1, ..., r + s). By the
theorem we can provide L with the spectral norm | |4, induced by the given

norm on K. Then we can apply Proposition 3.1.2/1 to see that o(u) = max |b;l;,
1=isr

o(v) = max |b;|sp, and o(uv) = max |b;|s,, whence the assertion follows. ]
r+1=i<r+s 1<isr+s

3.2.2. Spectral norm on reduced integral K-algebras. — The concept of the

spectral norm shall be used not only for algebraic field extensions, but also for

reduced integral K-algebras L. Recall that a K-algebra L is called integral if

each y € L is a zero of a monic polynomial ¢ € K[X]. Since the ideal {f ¢ K[X];
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f(y) = 0} is principal in K[X] (K is a field), there must exist a unique monic
polynomial ¢ € K[X] of minimal degree such that ¢(y) = 0. This polynomial is
called the minimal polynomial of y over K. It divides any other polynomial
in K[X] annihilating y. (Of course, if L is not a field, ¢ may be reducible.) We
want to extend Definition 3.2.1/1 to the case of reduced integral K-algebras.

Definition 1. Let L be a reduced tntegral K-algebra. For each element y € L, we
set |ylsp := o(q) = max |a;|'/t, where ¢ = X* + a; X" 1 + ... + a, € K[X]vs the

1=i<n
mintmal polynomial of y. The function | |p: L — IR, 1s called the spectral norm
on L (induced by the norm on K).

Similarly as in (3.2.1), we want to show that the spectral norm is, in fact, a
norm.

Theorem 2. Let L be a reduced integral K-algebra.

(i) The function | |, 18 a power-multiplicative K-algebra norm on L extending
the norm on K.

(ii) If MM denotes the set of all prime ideals p — L and tf m,: L — L|p 1s the
restdue map, then one has for all y € L

lylsp = max [np(y)lsp-
pel

t
If L us of finite dimension over K and vf L = @ L; vs a decomposition of L into a
i=1

ring-theoretic direct sum of fields (Dedekind’s Lemma) then, for all y € L, one
has |y|sp = max |7w;(y)|sp, where 7t;: L — L; is the projection onto L;.

1<i<t
(iii) | |sp dominates every other power-multiplicative K-algebra norm on L.
(iv) | |sp 28 tnvariant under all K-algebra automorphisms of L.

Proof. Without loss of generality, we may assume in proving (i) that L is of
finite dimension over K (cf. the considerations in the proof of Theorem 3.2.1/2).
Then according to Proposition 3.1.4/1, there are finite field extensions L,, ..., L,

t
of K such that L =@ L;.
i=1
Since we already know the behavior of the spectral norm on the compo-
nents L; and since we want information about | |, on the direct sum, we
must try to describe norms on L in terms of norms on the components and vice
versa. Here the following proposition is useful:

t
Proposition 3. Let L = P L; be the ring-theoretvc direct sum of K-sub-
i=1
algebras Ly, ..., Ly, and, for © =1, ..., ¢, let 7;: L — L; denote the residue epi-
morphism. Then one has

(i) If | | ?s a power-multiplicative K-algebra norm on L, then its restriction

to L; 1s also a power-multvplicative K-algebra norm and |y| = max |z;(y)| for all
y € L. 1=i<t
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(ii) Conversely, of, for © = 1, ..., t, there is a power-multvplicative norm | |;
on L;, then |y|:= max |n;(y)|; defines a power-multiplicative K-algebra norm
1sist
on L, whose restriction to L; cotncides with | |;.

Proof of Proposition 3. Ad (i): Forz = 1, ..., ¢, let ¢; denote the unit element
of L;. Then e = ¢; &= 0, and hence |¢;| = 1. Therefore the restriction of | |
to L; is a power-multiplicative K-algebra norm. Because y = m,(y) + ---

~+ 7,(y), we deduce immediately that |y| < max |z;(y)|. On the other hand, we
1=ist

know m;(y) = ye;, and therefore |m;(y)| = |yeil = |y| |eil = |y|, whence

max |7;(y)| = |y|. Thus we have proved (i). The proof of (ii) consists of a
1=ist

straightforward checking of the axioms. Thus Proposition 3 is proved. |

Continuation of the proof of Theorem 2. Using assertion (ii) of Proposition 3,
we see that statement (i) of Theorem 2 is an immediate consequence of state-
ment (ii) of the theorem. In order to prove (ii), we proceed as follows: for
p € M, let g, € K[X] be the minimal polynomial of 7,(y) over K. Then g, is a
prime polynomial. Furthermore, let ¢ € K[ X] be the minimal polynomial of y
over K. Then q(np (y)) = np(q(y)) = 0, and therefore g, divides ¢ for all p € M.
Hence there are only finitely many different polynomials, SAY @1y -ees Ors

amongst the polynomials g,, p € IR. Define ¢’ —H g; € K[X]. Then one has

the following equivalences for a polynomial f € K [X]

fly) =0 np(/(y) =0 for all pe M (:)f(np( ))—-Oforallp eEM
& f is a common multiple of ¢, ..., ¢, & f is a multiple of ¢'.

Hence the monic polynomial ¢’ must coincide with the minimal polynomial ¢
of y over K. Due to Corollary 3.2.1/6, we have
|Ylsp = 0(q) = o(q1 ... ¢r) = max a(g;) = max o(qy) = max |7y (y)lsp,
1<isr pel peM
which finishes the proof of the first assertion of (ii). If L is finite over K and if

t
L =@ L;, then p;:= P L, is a prime ideal in L for 7 = 1, ..., ¢ and there are
i=1 1=v=t
v
no others. Since L/p; = L; for v = 1, ..., t, the second part of (ii) follows from

the first part. Assertion (iii) follows immediately from Proposition 3.1.2/1.
Since the minimal polynomial ¢ of y is invariant under K-algebra automor-
phisms, assertion (iv) is obvious. Thus Theorem 2 is proved. O

For later reference we need the following transitivity statement for spectral
norms.

Proposition 4. Let K’ be an algebraic extension of K and let L be a reduced
integral K'-algebra. Denote by | |k i the spectral normon K’ induced by the norm
onK,and by | | g the spectral norm on L induced by the norm | |g x on K’ and
by | |L x the spectral norm on L induced by the norm on K. Then we have

| g =1 loge-
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Proof.| |k isa K'-algebranormand | |[gx isa K-algebra norm;hence a
fortiori | [ k- is a K-algebra norm. Therefore, by Theorem 3.2.2/2 (iii), the
norm | |; k- is dominated by | |;x. The opposite inequality can be shown
quite similarly: | |z x is an extension of | |- x, because, for elements of K’,
both norms are defined via the same minimal polynomials. If we apply Theorem
3.2.2/2 (iii) again (this time to the extension L over K'), we see that | [ k-
dominates | | k. O

3.2.3. Speectral norm and field polynomials. — We describe another way of
computing the spectral norm.

Let L be a finite field extension of K. For each y € L, the field polynomial
of y over K is defined to be the characteristic polynomial of the K-linear map
L — L defined by « + yx, « € L. This polynomial, which is monic, depends not
only on y but also on the field L. Nevertheless, we have

Proposition 1. Let L be a finite extension of K. Then for each y € L, the spectral
norm |y|s, equals the spectral value o(&) of the field polynomial & of y over K.

Proof. As is well known, the field polynomial & of y is a power of the mini-
mal polynomial ¢ of y, say & = ¢™. Hence ¢(&) = o(g) by Corollary 3.2.1/6. []
If &£=X"+a, X%+ ... + a, € K[X] is the field polynomial of y € L
over K, the element —a, € K is called the trace of y € L over K:
. TI'L/K Yy = —a,.
The map Tryx: L — K is K-linear.

Corollary 2. The K-linear trace map Tryx: L — K is a contraction (and
hence continuous) vf L 18 provided with the spectral norm.

Proof. We have
ITrr eyl = lay] < max V]a,]| = 0(€) = [ylsp- O]

1=sv=n

3.2.4. Spectral norm and valuations. — In important cases the spectral norm
is not only a K-algebra norm, but also a valuation on L so that we can talk
about the spectral valuation on L over K.

Proposition 1. The spectral norm on L is a valuation on L if L~ = L°|L" is an
integral domain.

Proof. The assertion follows immediately from Proposition 1.5.3/1, since,
for each y € L*, there exist an s = 1 and an element ¢ € K* such that [cy®| = 1.

O

Next we prove the important

Theorem 2. Let K be complete with respect to the given valuation | |, and let L
be an algebraic extension of K. Then the spectral norm on L s a valuation, and
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each power-multiplicative K-algebra norm on L covncides with this valuation. In
particular, the spectral valuation s the unique valuation on L extending the
valuation | | from K. Furthermore, L 1s complete if [L: K] < oc.

Proof. By Proposition 2.3.3/4, each normed K-vector space V over a com-
plete field K is weakly cartesian (and complete if dimy V' << oo). Therefore it is
clear (see Proposition 3.1.5/1) that each power-multiplicative K-algebra norm on
L coincides with the spectral norm | | on L. It remains to be shown that each
y = 0in L is multiplicative for | |. By Proposition 1.3.2/2, we can smooth | |
to a power-multiplicative semi-norm | |, such that y is multiplicative for
| |, Since L is a field, | |,is a norm. The proposition just mentioned tells us
furthermore that | |, is a K-algebra norm. Hence | |, = | |[;ie., yis
multiplicative for | |. ]

Since the question of extending a valuation on a field K to a valuation on
a finite algebraic extension L is of great interest in classical valuation theory,
let us repeat here briefly how it was done for K complete. We applied four
smoothing procedures: we started with any K-vector space norm on L and
first smoothed it to a K-algebra norm. In a second step, we passed to a power-
multiplicative K-algebra norm | | which then was smoothed to the spectral
norm by taking the maximum over all power-multiplicative norms | | oy,
g € G(L/K). This norm turned out to be a valuation due to a fourth smoothing
device which made a given element = 0 multiplicative. As an important
consequence of Theorem 2, we get

Proposition 3. Let K be complete and let ¢ = X™ + a; X™ 1 + --. + ap,
€ K[X] be vrreducible. Then

o(q) = |an|t™; e, la = |apti™ forall p=1,...,m.

Proof. Let L be a splitting field of g over K. We have an equation
m
g=]] (X —20,), where 6,,...,0,¢L.
p=1

Since ¢ is the minimal polynomial of 6, ..., 6,, over K, we have |6,|] = o(q) for
ally = 1, ..., m by definition of the spectral norm. Since the spectral norm is a

m
valuation on L by Theorem 2, the equation a, = (—1)™ []0, yields

u=1
‘afml - n W;A{ = U(q)'"‘ D
u=1
The equation just proved o(g) = |a,|™ is often used in classical valuation

theory as the definition for the extension of the given valuation. Then it is
rather obvious that one gets for free the multiplicativity of this function.
However it is not clear at all that the triangle inequality is fulfilled. In order
to show this, one needs the inequalities |a,|'/* < la,|Y™, u =1, ..., m, which
one usually proves by applying the classical Lemma of HENSEL. In (3.3.4) we
shall show how HENSEL’s Lemma can easily be deduced from Theorem 2 and
Proposition 3.
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3.3. Classical valuation theory

As before, let K be a field with a (not necessarily complete) valuation. Let
L be a finite extension of K. In the following sections, we will deal with the
problem of extending the valuation | | on K to a power-multiplicative
K-algebra norm on L. We will see that, besides the spectral norm, there are at
most finitely many other such norms on L,

3.3.1. Spectral norm and ecompletions. — We provide L with the spectral
norm and consider the completion L with respect to this norm on L. For sim-
plicity, we write | | for the norm on L as well as for its canonical extension to
L. Then | |isa power-multiplicative K-algebra norm on L, and £ is a reduced
K-algebra (however not, in general, a field). Since L is complete and contains
K, it must contain the completion K of K. Note that | | is a valuation on K
and that, due to the continuity of the map K* — K*, x > 21 (K is a valued
field), K is again a field. In particular, | | is a power-multiplicative faithful
K-algebra norm on L. Since dimg £ < dimg L < co (see Proposition 2.3.3/6),
we get

Proposition 1. The R-algebra L is a finite ring-theoretic direct sum of finite
extensions Ly, ..., L, of K:

L=L,® - @ L.
If | |; denotes the spectral norm on L; over K (which is a valuation by Theorem
3.2.4/2) and if n;: L — L, is the projection onto the i-th component, we have
[#] = max |7;(x);, %€ L.
1=i<t

Proof. The first assertion follows from DEDEKIND’S Lemma (Proposition

3.1.4/1). To verify the second one, consider the function |x|" := max |m;(%)|; for
1=sist

%€ L. By constrﬁction, | |’ is a power-multiplicative K-algebra norm on L.
Thus by Corollaries 1.3.1/3 and 2.3.3/5, we see that | | =| | J

3.3.2. Construction of inequivalent valuations. — In the situation of the
preceding proposition, it is easy to construct valuations on the field L which
extend the given valuation on K. The maps m;|.: L — L; are contractive
K-algebra homomorphisms. Each =;/; is injective, because otherwise (since
L isafield) we would have 7;(L) = 0, and hence m(fz) = 0. Thusforz =1, ..., ¢,
the function | |}, defined by

)} i = |m:(x)];, x €L,

is a valuation on L which extends the given valuation on K. Since 7;(L) is
dense in £; with respect to the valuation | |;, the field L; equals the comple-
tion of L ~ n;(L) with respect to the valuation | |,. For simplicity, we will
write | |; instead of | [. Then we have the following
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Approximation Theorem. Let x,,...,x, be elements in L. Then, for any
real ¢ > 0, there extsts an element x € L such that

e — x;]; < e for 1=1,...,1¢.

t
Proof. Consider the element z:= (nl (@1)5 «eos n,(xg)) S L, = L. Since L is
i=1

dense in L, we can find an element x € L such that | — 3| < &. But |x — %]

= max |7;(x) — 7;(x;)|; = max [z — x;i;. O

1=ist 1=ist

The Approximation Theorem has the following consequence:

The valuations | |y, ...,| |; are tnequivalent.

Proof. Suppose two valuations are equivalent, say | |; and | |,. Then the
t elements 1,0,...,0 € L cannot simultaneously be approximated if ¢ < 1,
because the inequalities |[x — 1|; < ¢ and |z|, < ¢ say that z is topologically
nilpotent with respect to | |,, however not with respect to| |;. O

3.3.3. Construction of power-multiplicative algebra norms. — Using the valu-
ations | |;,...,| |son L, we now construct power-multiplicative K-algebra
norms on L as follows: denote by ¥ the index set {1,...,¢. For each non-
empty subset @ = T, the function

| lg:=max| |[;
€€
is a power-multiplicative K-algebra norm on L. If &, &’ are different subsets
of T, these norms are tnequivalent, as is easily seen by the following argument:
if j belongs to & — &', the Approximation Theorem yields the existence of
an element z € L such that |#|; = 1 and |«|; < 1 for all 7 & j. Hence || =1
and |x|g < 1;i.e.,| |gand| |g areinequivalent.

Altogether we found 2! — 1 power-multiplicative K-algebra norms on L.
Among them are ¢ valuations. We shall prove now that there are no further
power-multiplicative K-algebra norms or valuations on L extending the given
valuation on K.

Proposition 1. If || || 28 any power-multvplicative K-algebra morm on L,
then there exists a non-empty subset S of T such that | || =| |g. For & =%
we get the spectral norm. The norm || || s a valuation if and only if S = {j},
r.e, if and only if || || =| |; for some j € Z.

Proof. Denote by L’ the completion of L with respect to || |. We know by
Theorem 3.2.2/2 (iii) that | || =< | |. Hence the identity map (L,| |[)—
(L, || |])is a contraction. Since L is dense in L, this map extends uniquely to a
contraction y: L — L’. Tt is easily verified that y is a K-algebra homomor-
phism. Since L’ is a finite-dimensional K-vector space, (L) is a closed subspace.
Since L — (L) is dense in L’, we conclude y(L) = L’. Then L’ is isomorphic to
L/kery as K-algebra. Now kery is necessarily a sum of certain of the compo-
nents L; occurring in the decomposition £ = L; @ --- @ L,. Denote by S the
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subset of all j € T such that ﬁjq:kerw. We have & ==, because otherwise
L' = 0. It follows that

L'=@L,
je&
and hence |jz'|| = max [7;(2’)|; for all 2’ € L’ by Corollaries 1.3.1/3 and 2.3.3/5.
je©
Thus| [[=]| le.
If || | isa valuation, L’ is a field — i.e., & can contain only one index. []

The preceding proposition may be extended to reduced finite-dimensional
K-algebras L if one uses the results of (3.2.2). Roughly speaking, every power-
multiplicative K-algebra norm on such an algebra L is the maximum of a
finite number of valuations; more precisely,

n
Corollary 2. Let L = @ L; be a finite-dimensional reduced K-algebra, where
i=1
Ly, ..., L, are finite extensions of K and where 7t;: L — L; denotes the projection
onto the i-th component. Let | |;1,...,| |;, be the different valuations on L;
extending the valuation on K.
Then for every power-multiplicative K-algebra norm | | on L, there are subsets
8, =%i:= {1, ..., t;} such that |x| = max max |7;(x)|;,; for all x € L.
1=isn je§
Proof. Let | |; denote the restriction of | | to L;. By Proposition 3.2.2/3,

we know that |#| = max |7;(z)|; for x € L and that | |; is a power-multipli-
1<i<n
cative K-algebra norm on L;. Now Proposition 1 yields the existence of subsets

©; of T; such that |y|; = max |y|; ; for y € L;. ' O
j€&,

3.3.4. Hensel's Lemma. — We start with a simple

Observation. Let f = X" 4 ¢, X" 1 4 ... 4 ¢,, n = 1, be a monic poly-
nomial over a (not necessarily valued) field K, and let L be an extension of K such
that f splits into linear factors over L:

F=(X—6)...(X—6,), 6y....6,¢L.

Assume that the group G(L[/K) of K-algebra automorphisms of L operates transi-
tively on the set of roots {0,, ..., 0,}. Then f 1s a power of an irreducible poly-
nomzal over K.

Proof. Denote by g the minimal (irreducible) polynomial of 6, over K.
Since f(6;) = 0, we have an equation f = ¢* - h, where h € K[X] is monic and
not divisible by ¢. Hence k(0,) == 0. If h had a positive degree, we would have
h(0;) = 0 for some 7, 1 < ¢ =< n. Choose g € G(L/K) such that ¢(6;) = 6,. We
get the contradiction

0 = g(R(6:)) = h(g(6:)) = h(6y).

Hence h = 1; i.e., f = ¢°. |
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From now on let K be provided with a complete valuation | |. We extend
| | tothe Gauss norm on K[X]and consider the residue map ~: K[X] — K[X].

Proposition 1. Let f € K[X] be monic and irreducible such that |f| = 1.
Then | € K[X] is a power of a monic irreducible polynomial x € K[X].

Proof. Choose a splitting field L of K and write f = (X — 6,) ... (X — 0,),
where 6, ..., 0, € L. Provide L with the spectral valuation | | (cf. Theorem
3.2.4/2). We have

0, =o() =lfi=1, »=1,..,n.

Consider the image elements 6, ..., 0, in the residue field L = L/j} and the
image polynomial f in K[X]. We have the splitting
F=&X—6)...(X —8,).
Now we apply the group homomorphism ~: G(L/K) — Q(L/K) (cf. Proposition
e °
3.1.1/4), where §(§) = g(y) for all y € L. Since G(L/K) operates transitively on
the set {6, ..., 0,} (because L is a splitting field of f over K), we conclude that
G(L/K) operates transitively on the set {61, ..., B,} of all roots of f. Hence f is

a power of an irreducible polynomial o € K[X] by the observation made
above. ]

Proposition 2. Let f=a X"+ o, X" 1+ .-+ 4-a, € K[X], ay+0, be
vrreductble, n = 1. Assume |f| = 1. Then

(i) deg f: =deg f if and only if layg| =1,

(ii) f € K* if and only if |a,| < 1.

Proof. Tt is clear that deg f = deg f if and only if |ay] = 1. Furthermore it is
clear that f ¢ K* implies |a,] < 1.
Now assume |ay| << 1. By applying Proposition 3.2.4/3 to f* := ay'f, we
get
0,05 = lanag ", e, a,| = |anl!" |agtm.

From |ay| < 1, we conclude that |ao|t*/" << 1 for all » < n, and hence |a,|
< la,!™ < 1forally < n. Thus f =a, € K, and in fact f € K*, since == 0. |

Propositions 1 and 2 now easily give

Proposition 3 (HeExsEL’s Lemma). Let K be a complete valued field. Let f be
a polynomial in K[X], |f| = 1, such that f € K[X] is the product f =y - x of
two coprime polynomials y, y € K[X] (i.e., the greatest common divisor of y and x
is 1). Then there exist polynomials g, h € K[X] with the following properties:

f=g-h, =7, h=yx and degg —=degy.

Proof. Let f = p, ... p, be a factorization of f into irreducible polynomials.
We may assume |p,| = 1 for all ». Furthermore, we can label the polynomials
P15 .-+, Pn in such a way that the leading coefficients of the first m polynomials
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P15 --+» P have norm 1, while the leading coefficients of 14, ..., p, have norm
< 1. (Then 0 = m =< n.) Multiplying by suitable constants of norm 1 in K, we
can assume that p,, ..., p, are monic. By Proposition 1, we have equations
Pu = m#, where m, € K[X] is irreducible and where s, =1, u =1, ..., m.

By Proposition 2, the elements H.4, ..., P, are units in K[X]. Since y and x
are coprime in the factorial ring K[X], we may assume y = énjt - - - mir where
¢ € K has norm 1 and where r < m. Then g:=cp, ...p, and h:= ¢,y ... Py
have the desired properties. I}

3.4. Properties of the spectral valuation

By K, we always mean the algebraic closure of K provided with the spectral
norm | |. All roots of polynomials f € K[X] are elements of K,. For each
f € K[X], we denote by [f| its Gauss norm. If f is monic, we have o(f) < |f| for
the spectral value o(f) of f. Hence, in particular, [x| =< |f| for each root x € K,
of f due to Proposition 3.1.2/1.

3.4.1. Continuity of roots. — Let f, g € K[K] be monic polynomials of the
same degree n. Let « € K, be a root of f. We have the crucial inequality:

(*) lg)l = If — gl - 1/1*2.

n n
Proof. Write f = X"+ 3 f,X**, g= X"+ } g, X"**. Then
v=1 =

v=1

n

gx) = gl) — fle) = 2 (g, — 1) a7, |

=1
and hence
Ig(“)l é max lf, — gvl . [“[n—v.
1=v=n
Since |f, — g.| =< |f — g, || =< |f| and |f| = 1, we deduce the desired inequal-
ity. -

Proposition 1 (Continuity of roots). Let K be complete; let f, g € K[X] be
monic polynomials of the same degree n. Then for each root x € K, of f, there
exists a root B € K, of g such that

o — Bl < VIF — ol - 1.
Proof. Write g = (X — B;) ... (X — Ba), where B4, ..., B, € K, are all roots

of g. Assume |x — f,] > ,i/lf — gl |f| for all ». Then we get (since the spec-
tral norm is a valuation)

lg)] = |lo — Bi] «oo | — Bal > |f — g1 - A",
which contradicts (x) since |f| = 1. |

Corollary 2. Let K be complete, and let f; € K[X], v = 1,2, ..., be a sequence
of monic polynomzals of the same degree n which converge (with respect to the

e e
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Gauss norm) to a polynomial g € K[X)]. Let x; € K, be a root of f;, © = 1. Then
the sequence (x;);>1 contains a subsequence which converges to a root of g.

Proof. The polynomial ¢ is monic of degree n. Hence, by applying Proposi-

tion 1 for each «;, there exists a root g; of g such that |x; — ;] < ]/|f; — gl Ifil.
Since there are at most n different roots of g, there exist a root g of g and an
infinite subset § of IN such that

i — Bl = i —gl-1fil, ie€S.

Since |f;] = |g| for large 7, the sequence («;);.s converges to j. O

For the convenience of the reader, we rephrase Proposition 1 to show that
it implies the classical lemma on continuity of roots.

Let K be complete, let f € K[X] be monic of degree n, and let x be a root of f
of multvplicity t. Choose ¢y > O such that all roots == x of f have distance = &,
from «. Then for each e, 0 << ¢ << &,, there exists a 8 > 0 such that each monic
polynomial g € K[X] of degree m with |g — f| << 6 has exactly t roots (counted
with multiplicities) in the ball B~ (x, &) = {x € K,; |x — «| < ¢€}.

Proof. If the assertion were not true, there would exist an ¢, 0 < &, < ¢,
and a sequence g; € K[X], 7 = 1, of monic polynomials of degree n converging
to f such that no g; has exactly ¢ roots in B~ (x, ¢). Write ¢; = (X — By;) ...
(X — Bai), by € K,. By Corollary 2, we can choose a subset S; < IN such that
the sequence (f,;);cs, converges to a root «; of f. From 8, we extract a subset
S, such that (B,;);cs, converges to a root x, of f. After n steps we thus get a

subset § — N such that, for each » = 1, ..., n, the sequence (,;);cs has a limit
«,, which is a root of f. Since f =limg; = (X — «;) ... (X — «,), we see that
€S
the elements «,, ..., «, are, in fact, all roots of f, counted with their multiplici-
ties. Choose 7, € S such that
1Brvi — x| <& forall »=1,...,n andall 7€.8,7= 1.

We label the roots of f (and the roots of the polynomials ¢;) in such a way that
& = &, = -+ = ;. Then we have

1Bvi — x| <& forall »=1,..,¢t andall 7€ 8,7 =1,
and (since «, & « and therefore |x, — x| = ¢, for all » > 1)
1Bri — x| = [(Bri — ) + () — &) = &g > &
forall » >¢ andall 7€ 8,7 =7,.

Hence each g;, 7 € S, © = 7, has exactly ¢ roots in the ball B~(«, &), in contra-
diction to our assumption. O

We now draw some conclusions from Proposition 1.

Proposition 3. If K s algebraically closed, the completion K of K 1is alge-
brazcally closed.
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Proof. Let f = X® 4+ 4, X* ! + ... + d, be a polynomial in K[X], n = 1.
‘We have to find a root & of f in K. Since K is dense in K, there are n sequences
(@vi);eny In K with lim a,; = d,, v =1, ..., n. The field K is algebraically closed.

$
Therefore each polynomial f; = X® +4 a,;X** + --. 4+ a,; € K[X] has a root
x; in K, © € N. Denote by K, the algebraic closure of K. Since K — K, and
since the sequence f; converges to f (with respect to the Gauss norm on K[X]), a
subsequence of the sequence («;);.y converges in K, (with respect to the
spectral norm) to a root & of f (cf. Corollary 2). However «; € K implies & € K. []

The proposition just proved enables us to construct for each valued field
K a smallest algebraically closed extension K’ which is complete with respect to
a valuation extending the valuation on K. First we pass to a completion K of
K and provide K with the extended valuation. In general, K will not be
algebraically closed. So next we take an algebraic closure K, of K and provide
K, with the spectral valuation. In general, K, will not be complete, so we take
a completion K’ = (Ka)“ of K, and extend the valuation from K, to K'. By
Proposition 3, the field K’ is algebraically closed and complete. It is obvious
that up to (non-canonical) isometric K-algebra isomorphisms the field K’ is
the smallest extension of K with the mentioned properties. This implies that
the algebraic closure of K in K’ is dense in K'. Namely, the completion of this
field (i.e., its topological closure in K’) is a complete algebraically closed exten-
sion of K contained in K'. -

As a by-product of these considerations, we want to determine the residue
field of K’ in terms of the residue field of K. First we show

Lemma 4. If K is complete, then E = (K)a (whére K, is provided with the
spectral valuation, i.e., with the unique extension of the valuation on K).

Proof. The field K, is algebraically closed. In order to verify this, let p €

E[X ] be a monic polynomial; we have to find a zero of p in K.. Since K, is

algebraically closed, we can find a zero ¢ of p in K,, where ¢ € z’; by Proposi-
tion 3.1.2/1. Then ¢ is the desired zero of p in K., and hence K, is algebraically
closed. In order to show tha.tflz:al is indeed the algebraic closure of K, it remains
to prove that K, is algebraic over K. For every ¢ € E, we have to find a monic
polynomial p € K[X] such that p(€) =0. Let p be the minimal polynomial of
¢ over K. Then o(p) = |c| = 1. Hence we have p € K[X] so that p(c) = 0 im-
plies p(¢) = 0. M

Remark. If K is not complete, this proof nevertheless makes sense if K, is
provided with the spectral norm. One gets that the reduced K-algebra K, is

integral over K and “‘algebraically closed”. However, K, is not, in general, a
field.
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Using the lemma, we easily get the desired description of K'.

Proposition 5. Let K be a valued field, and let K' = (Ka)‘ be the smallest
complete algebraically closed extension of K. Then K' = (K),; v.e., the residue
field of K' equals the algebraic closure of the residue field of K.

Proof. The residue field of K, equals the algebraic closure of the residue

field of K by the preceding lemma, i.e., ?ﬁi — (K)a. Since the residue field of
any valued field L remains unchanged if L is replaced by its completion, the
assertion is obvious. |

Proposition 6. Let K, be the algebraic closure of the complete field K. Then
the subfield K., of K, consisting of all elements which are separable over K ts
dense in K,. More precisely,

If x € K, is of degree n over K, then, for each ¢ > 0, there exists a separable
element B € K, of degree = m such that | — x| < e.

Proof. Let f = X* + ;X" ! + ... 4+ a, € K[X] be the minimal polyno-
mial of x over K. Set 6 := (¢ |f|~!)". According to Proposition 1, it suffices to
construct a polynomial ¢ = X” + 2 X" 1 4 ...+ 2, € K[X] which satisfies
|f — g| < 6 and which has only simple roots in K, i.e., a polynomial whose dis-
criminant 4 € K is different from zero. If z,, ..., 2, are considered as indeter-
minates, the discriminant 4 of g is a non-zero polynomial in 2,, ..., 2,. The zero
set Z — K" of any such polynomial is closed in K” and nowhere dense if we
consider the product topology on K*. (A subset of a topological space is called
nowhere dense if its closure has no interior points.) Thusin our case, we see that
the polynomial is not identically zero on any open ball in K*. In particular,
we can choose a point (z,...,2,) € K* with |2, — a,| < d,» =1, ..., n, such
that A(z;, ..., 2,) == 0. ||

3.4.2. Krasner’s Lemma. — In this section the field K is always complete.
For elements « € K, such that the minimal polynomial p of x over K has at
least two different roots, we define r(x) := min |x — y|, where y ranges over

Y
all roots &= « of p. We have r(x) > 0. The following proposition describes an
important property of the elements g € K, which lie in the ‘“‘open’ ball
B~(x,7(x)) of radius r(x) around «.

Proposition 1. For each f € B~(x, r(x)), the minimal polynomial b of & with
respect to the field K(B) has no roots == .

Proof. Let y € K, be a root of h. Then y — f and x« — B are conjugate over
K (p). Therefore, |y — B| = |x — B|, and hence |x — y| = |(x — ) — (y — B)|
= |6 — B| <r(x). Since h is a factor (in K(8) [X]) of the minimal polynomial f
of x over K, we have f(y) = 0. Since « is the only root of f in the ball B‘(oc, r(x))
(by the choice of r(x)), we conclude y = «. O

Corollary 2 (KrRASNER’s Lemma). If x is separable of degree > 1 over K,
we have K(x) — K(B) for each B € B“(zx, 'r(fx)).
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Proof. The element « is also separable over K(8). Hence h has only simple
roots; i.e., h = X — x € K(f) [X] due to Proposition 1. Thus x € K(B). |

If « is of degree n over K, KRASNER’s Lemma tells us, in particular, that
each f € B-(x, r(«)) is of degree = n over K. If the degree of g is n, we must
have K(x) = K(f). The next proposition shows that there are plenty of ele-
ments in B~(x, r(x)) with this property.

Proposition 3. Let « be separable over K of degree n > 1, and let f € K[X] be
the minimal polynomial of x over K. Set e(x):= ( |f]~1 r(oc))". Then each monic
polynomial g € K[X]of degreen suchthat |f — g| < &(x)hasarootf € B~(x, r(x)).
Furthermore, each such root 8 satisfres K () = K(x).

Proof. Proposition 3.4.1/1 yields the existence of a root 8 of g such that

8= ol = Vi =gl 1Al < Ve) 17l = r(@).
Hence g € B~(«x, 7(x)). For any such 8, we have K(x) = K(B) by KRASNER’s
Lemma. Now dimyg K(8) =< n, and dimyg K(x) = n. Therefore K(x) = K(B). [

Corollary 4. Let f be a polynomial in K[X] of degree n > 1, which is monic,
trreducible and separable. Then any monic polynomial g € K[X] of the same degree
n which is sufficiently close to f vs also irreducible and separable.

For later application we state another consequence of Proposition 3:
Proposition 5. Let K’ be a dense subfield of K, and let x € K, be separable

of degree n > 1 over K. Then there exist elements o' € K(x) arbitrarily close to «x
and algebraic over K' such that K(x) = K(&').

Proof. Let f € K[X] be the minimal polynomial of x. Since K’ is dense in
K, there exists a sequence f; € K'[ X] of monic polynomials of degree n converg-
ing to f (with respect to the Gauss norm on K[X]). Then each f; has a root

x; € K, such that |a; — &| =< V]f — /il Ifl. For large ¢ we have «; € B(x, r(x))
and thus K(x;) = K(x) by Proposition 3. Now «; is algebraic over K’, and

i — o < V/If — fil 17| 0. =

3.4.3. Example. p-adic numbers. — Let p be a fixed prime number. We
consider the p-adic valuation on Z (cf. (1.3.3) and (1.5.2)) and extend it to a
valuation on the field of fractions @ (use Proposition 1.2.2/5). Thereby we get
the so-called p-adic valuation on @, which is denoted by | |,. Usually | |, is
normalized in such a way that |p|, = p~! (i.e., one sets £ := p~! in Proposition
1.3.3/1). Then the p-adic value of an element z € @ is given by

0 if =0,
lZlpi=1q _, . o oaa Oy .
P if z=»p > with integers n,a,b € Z, p t ab.

For simplicity, one may view this as a definition for | |,. (The properties of a
valuation follow easily by direct computation.)
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In order to determine the residue field of @ (with respect to | |[,), one
has to realize that the valuation ring (Q equals the localization of Z with

respect to the prime ideal (p), i.e., that Q Zy. The maximal ideal of Q is,
of course, the ideal pZ,, and one obtams

Q = Zp/rZy = ZIpZ.
Thus, the residue field of @ (and that of its completion) is the finite field

¥, =Z/pZ.
The completion of @ with respect to | |, is referred to as Hensel’s field of
p-adic numbers @Q,. It corresponds to the field R of real numbers if | |, is

replaced by the ordinary absolute value on Q. Using (3.4.1), we can construct
an extension C, of @, which is analogous to the field € of complex numbers
Namely, let C, be the completion of the algebraic closure of @,. This is the
smallest complete extension of @, which is algebraically closed. By abuse of
language, €, is often referred to as the (algebraically closed) field of p-adic
numbers.

We will see that the extension €, over @, is much more complicated than
the extension € over IR. Let @3'¢ denote the algebraic closure of @, in C,. First
we want to show that Q3¢ (hence also C,) is of infinite degree over Q,. Using
Proposition 2.1.10/3 we have only to verify that the residue degree of the
extension Q3'¢/@Q, is infinite. However this is clear, since the residue field of Q,
is the finite field IF;, and since the residue field of Q3" equals the algebraic
closure of IF, (Lemma 3.4.1/4).

Next we claim that the field Q3'® is not complete. (Note that @2'® would be
complete if [Q3'¢: Q,] were finite.) Namely, we show that the following general
fact is true.

Lemma 1. Let K be a freld with a complete non-trivial valuation. Assume that
the algebraic closure K, of K vs of infinite degree over K. Then K, (provided with
the unique valuation extending the valuation on K) is not complete.

Proof. First we want to show that [K, : K] = oo implies [K, : K] = oo for
the separable algebraic closure K., of K. Namely if [K.,: K] << o0, then K,
is complete (Proposition 2.3.3/4) and K., = K, (since K, is dense in K,, see
Proposition 3.4.1/6). Therefore [K,: K] = oo can only be true if [K.,: K]
== OQ.

Now choose a sequence xy = 1, x;, z,, ... of elements in K., which are
linearly independent over K. Then one can find a sequence ¢,, ¢,, ... of non-
zero constants in K such that, for all 7 € IN,

) lcz+lx1+ll Icler’ hm !C le - O

(i) lesn@il < 7 (2 x)
y=1

where the function r is defined as in (3.4.2). Notice that any non-trivial linear
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i
combination y = 3 d,x, € K, with coefficients d, € K is not contained in K
v=1
so that r(y) is well-defined.
We want to show that the infinite series 2:' ¢;z; hasno limit in K,. Assuming
i=1
the contrary, let € K, be the limit of this series. Since

o0
D ¢,

v=4-+1

i i
x— ) cx,|= < leaxing] <r ( D) c,x,),
v=1 v=1

we see that x € B~ ( Z:' ¢\ %y, r( Z" c,x,)) for all 7 € N. Then KrRASNER’s Lemma
v=1 =
(Corollary 3.4.2/2) says that
i
2 cx, € K(x)

r=1
for all © € IN. All coefficients c¢; are non-zero. Hence we get x;, x,, ... € K(x) and,
in particular, [K(x): K] = co. However this is impossible, because « is alge-

oo
braic over K. Consequently, the series 3, ¢;z; has no limit in K,, and K, isnot
complete. i=1 O

The above lemma implies that the construction of the smallest complete
and algebraically closed extension of a valued field K is a complicated process
which is comparable to the construction of the classical extension € over IR
only if [K, : K] < oco. The general construction method given in (3.4.1) cannot
be simplified as the example of p-adic numbers shows.

3.5. Weakly stable fields

We want to combine the notions of weakly cartesian vector space and
spectral norm. As always, K denotes a valued field and K, the algebraic closure
of K. Let L be an algebraic extension of K provided with a K-algebra norm
(usually the spectral norm).

3.5.1. Weakly cartesian fields. — We start with a general lemma concerning
the connection between the product topology and the spectral norm.

Lemma 1. Let L be a finite extension of K with a K-algebra norm | | such
that L vs weakly K-cartesian. Then the semi-norm | |’ defined by |x|’ := inf |2*|1/»

18 the spectral norm. In particular, if the product topology on L can be induced by
a power-multiplicative K-algebra morm, then this morm must be the spectral
norm.

Proof. Because L provided with | | carries the product topology, the
identity map (L, | |) = (L, | |sp) is continuous. Therefore, there isa constant
0 > 0 such that |z|s, =< o|x| for all x € L, whence |x|,, = |x|" for all x € L.
Thus we see by Proposition 1.3.2/1 that | | is a power-multiplicative
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K-algebra norm dominating the spectralnorm. According to Proposition 3.1.2/1,
the two norms | | and | |, coincide. The second assertion of the lemma is
obvious. |

In this section we shall study extensions of K whose product topology can
be given by the spectral norm. We start with the simple

Observation 2. The K-vector space L is weakly K-cartesian (resp. K-cartesian)
tf each finite extension L' — L of K is weakly K-cartesian (resp. K-cartesian).

Proof. Let W be any K-subspace of L of finite dimension. Since L is algebraic
over K, the field L' := K[W] generated over K by all elements of W is a finite
extension of K. By assumption L’ is weakly K-cartesian (resp. K-cartesian).
Hence W — L’ is weakly K-cartesian (resp. K-cartesian) as well, cf. Lemma
2.3.2/5 (resp. Proposition 2.4.1/5). |

Next we prove

Proposition 3. Let L be a finite separable extension of K such that the trace
function T := Try i : L — K 1s continuous. Then L is weakly K-cartesian.

Proof. By assumption the K-bilinear map L X L — K defined by (z, y)
> T'(zy) is continuous. Since L is a separable extension, 7'(xy) is non-degen-
erate, i.e., for given z, =0 in L, there always exists a y, € L such that
T(xoy,) == 0. Hence z > T'(xy,) is a continuous K-linear map A: L — K such
that A(xz,) &= 0. Thus L is a b-separable K-vector space and therefore weakly
K-cartesian (Proposition 2.3.2/7). |

From Proposition 3 we easily deduce

Proposition 4. If K s perfect (in particular, ©f K is of characteristic 0) the
algebraic closure K, of K provided with the spectral norm is weakly K-cartesian.

Proof. The field K being perfect, each finite extension L — K, is separable.
The trace function 7': L — K is a contraction with respect to the spectral
norm on L (see Corollary 3.2.3/2). Hence L is weakly K-cartesian by Proposi-
tion 3. The observation made above concludes the proof. OJ

3.5.2. Weakly stable fields. — The proposition just proved is not true in
general if K is not perfect. Namely if M is a complete non-perfect field, Prop-
osition 3.4.1/6 says that the algebraic closure M, of M cannot be weakly
cartesian over the separable algebraic closure K := M., of M in M,, since this
field is dense in M,. That there exist complete non-perfect fields can be seen
as follows. Start with a field & of characteristic p > 0. Consider on the poly-
nomial ring k[ X]a valuation defined by the degree function (see (1.3.3)). Let M
be the completion of the field of fractions of k[ X]. Then M does not contain a
p-th root of the element X, because | X|'/? ¢ |M|. Thus M is not perfect, and we
have seen that

There exist valued fields K admitting purely inseparable extensions L =+ K
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such that K vs dense in L if L carries the spectral valuation. (For purely insep-
arable extensions, the spectral norm is always a valuation.)

In order to give a slightly more explicit example, we fix a field k of char-
acteristic p > 0 with a complete non-trivial valuation such that the field
kP™ of p-th roots is of infinite degree over k. One can take for k the completion
of the field of fractions of the formal power series ring F,[Y,, Y,,...] (as
defined in (1.5.5)) where IF,, is the (trivially valued) prime field of characteristic
p. We consider the valued k-algebra R := k? (X) of strictly convergent power
series over kP in one indeterminate X (where k”’"l carries the spectral valua-

tion). Let 4 — R be the subset of all series f = Z /,X? such that the coefflclents
/» generate a finite extension of k. Obviously 4 i 1s a k-algebra Since each Z a,X”
€ R is the limit of the sequence of its partial polynomials Z a, X" €4, the ring

0
A is dense in E. Hence the field of fractions K of 4 is dense in the field of
fractions L of R (with respect to the extended valuations).

It remains to be shown that L & K. Since dim, k¥~ = oo, we can choose a
sequence h, € k™ converging to O and generating an extension of infinite

o
degree over k. Set h:= } h,X” € R and suppose k is an element of K. Then

0

there exist series f = 3 '/, X% g = 3'g,X# in 4, g & 0, such that gh = /. By
the definition of 4, there exists a finite extension L’ — k™ of k containing all
/i and all g,. Let ¢ be the smallest index such that k; ¢ L’, and assume that
go == 0. Then in the equation

fi = golvi + gihiq + -+ + gihe,

the left-hand side and all terms of the right-hand side except for the first one
are in L’. Hence we conclude ggh; € L', and therefore h; € L’, since g, == 0 and
L’ is a field. However, this is in contradiction to the choice of the index 7 so
that we must have L 4 K. d

We now introduce the following

Definition 1. A valued field K is called weakly stable if each finite extension L
of K provided with the spectral norm is weakly K-cartesian.

The example just given shows the existence of fields which are not weakly
stable (for further examples, see (3.5.4)). Obviously our definition can be
rephrased as follows:

The freld K s weakly stable if and only if K, 1s weakly K-cartesian with
respect to the spectral norm.

By Proposition 3.5.1/4, each perfect field is weakly stable. Furthermore, it
follows from Proposition 2.3.3/4 that each complete field K is weakly stable.
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Remark. Another way of expressing the fact that K is weakly stable is to
say that the completion K of K isa separable extension of K, i.e., that K @y K?™
is reduced (if p := char K == 0). However we shall never use this characteri-
zation.

3.5.3. Criterion for weak stability. — We only have to consider the case where
p:=char K == 0. The essential role is played by the field K" = {x € K,;
a? € K} of all p-th roots. The spectral norm on K?' is a valuation.

Theorem 1. A valued field K is weakly stable if and only vf KP™' (provided
with the spectral valuation) is weakly K-cartesian.

Proof. We only have to show that K, is weakly K-cartesian with respect to
the spectral norm if K7™ is weakly K-cartesian. First we show by induction
onn

Each field K, := {x € K,; 2P" € K} vs weakly K-cartesian, n = 1.

Assume K, is weakly K-cartesian (true by assumption for n = 1). In
order to prove that K,,,, is weakly K-cartesian, it is enough to prove (use Prop-
osition 2.3.3/2 with V := K,,; and K':= K, and the fact that the spectral
norm on K, is a valuation extending the valuation on K)

Each finite-dimensional K ,-vector space U — K, ., s closed in K, ;.

The Frobenius homomorphism z > z?" is a homeomorphism mapping the
K,-algebra K,,; onto the K-algebra K,. Thereby U is mapped onto a finite-
dimensional K-subspace of K, which is closed in K; by assumption. Hence,
U must be closed in K. o

Next we consider the ‘““perfect closure” K := (U K, which is a valued sub-

n=1
field of K,. From what we just proved, we conclude that K _, is weakly
K-cartesian. Thus, again by Proposition 2.3.3/2, all that remains to be shown is
that K, is weakly K -cartesian. This follows from Proposition 3.5.1/4, since
K, is perfect and since the spectral norm on K, over K coincides with the

spectral norm over K, (see Proposition 3.2.2/4). O
In applications K is often given as the field of fractions of a valued ring 4.
Then
A, = AP ={x e K,; 2P € A}
is a valued ring having K, as field of fractions. More precisely, K; = 4; Q4 K;
i.e., each z € K, is of the form 2z = —Z—, x€ A, a € A — {0}. (In order to see

b
this, just write 2P = = beA, ac A — {0}, and set x:= az. Then z = %

and x? = aP7b € 4;ie., x € A,.)
Now Lemma 2.3.3/3 (with M = A4,, V = K,) and Theorem 1 directly
imply
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Lemma 2. Let K be the field of fractions of the ring A. Assume that each
Jinitely generated A-submodule of AP is b-separable. Then K s weakly stable.

For later reference and as an illustration of Lemma 2, we want to show

Proposition 3. Let K = k(X,, ..., X,) be the field of rational functions over
some freld k. Provide K with the valuation induced by the total degree, 1i.e.,

£ := exp (deg f — deg g) for all polynomials f, g € k[X,, ..., X,], g &= 0. Then
g

K is weakly stable.

Proof. Let 4 :=k[X,, ..., X,] be provided with the valuation induced by
the total degree. Then K is the field of fractions of 4, and the valuation on K
extends the valuation on 4. In order to apply the preceding lemma, we
must show that AP is a b-separable 4-module. Viewing k[X},...,X,] as a

k[X?,..., XP]-module, we have a canonical decomposition as a norm-direct sum
kX, ..., X, = @ KXP, ..., XP] X3 ... X0n,
0=y,<<p

Then we can use the Frobenius homomorphism f + f? (or more precisely, its
inverse) to see that 47 is a norm-direct sum of finitely many 4-submodules
linearly homeomorphic to ¥ '[X,, ..., X,]. Thus by Proposition 2.2.5/2, we
have only to show that k?7'[X,, ..., X,] is a b-separable 4-module. However
this is clear, since k™' (carrying the trivial valuation) is b-separable over k. []

3.5.4. Weak stability and Japaneseness. — In this section we assume the
reader is familiar with the notions and results of the appendix ‘‘Tame modules
and Japanese rings’. Lemma 3.5.3/2 and Proposition 4.4/3 indicate a close
connection between the notions of Japaneseness and weak stability. Here we
prove :

Proposition 1. 4 discrete valuation ring A s Japanese if and only if its field
of fractions K s weakly stable.

Proof. Set p:=char A. If p = 0, our statement is true due to Propo-
sitions 3.5.1/4 and 4.3/2, since 4 = K is a principal ideal domain by Propo-
sition 1.6.1/4 and, in particular, both Noetherian and normal.

Assume p == 0. Then it follows from Theorem 3.5.3/1 and Proposition

2.3.4/2 that K is weakly stable if and only if (K*™) is a tame K-module. Now

—_—

AP? = (K?), and Proposition 4.4/2 says that A (being Noetherian and
normal) is Japanese if and only if 47”" is a tame A-module. Hence the assertion
follows. 1

In (1.6.2) we gave an example of a discrete valuation ring which is not
Japanese. Thus we conclude

Proposition 2. There exist fields K with a discrete valuation which are not
weakly stable.
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3.6. Stable fields

We want to combine the notions of cartesian vector space and spectral
norm. As in (3.5), let K be a valued field and let L be an algebraic extension
of K. As always, we denote by K, the algebraic closure of K and by K the
completion of K.

3.6.1. Definition. — We strengthen Definition 3.5.2/1 in the following
way.

Definition 1. K s said to be stable if each finite extension L of K provided
with the spectral norm s a K-cartesian vector space.

By Observation 3.5.1/2, a field K is stable if and only if K, is a K-cartesian
vector space with respect to the spectral norm; in particular, algebraically
closed fields are stable. Naturally, stable fields are weakly stable. However,
there exist weakly stable fields, even fields of characteristic 0 with a complete
valuation, which are not stable. We give the following

Example. Consider the field @, of 2-adic numbers, and let x, = 2, &y, s, ...
be a sequence of elements algebraic over @, such that «;,, is always a square
root of x;. Writing k; := Qa(x;) = Qq(xg; - .., &;), We get a sequence of exten-
sions of @, as follows:

ko =Q2C kICk2C e,

Let K be the completion of the field U k;. We claim that K is not stable. In
i=0

order to verify this, we have to realize that, by construction, [k;.,:k;] = 2

and e(k;,;/k;) = 2. This implies e(k;,/k;) =2 and f(k;,/k;) =1 by Propo-

sition 3.1.3/2. Therefore if the valuation on @, is normalized in the usual way,

we get

2%, \7Z o
w=(32)" k= 0w
1=0
and _
K = k; = Qz == I“z.

In particular, the value group |K*| is closed under the process of taking
square roots, and any quadratic extension L of K must satisfy e(L/K) = 1.
Let n be one of the numbers —3, —1, 3. We want to show that K does

not contain a square root of n. Assuming the contrary, let x € K satisfy a? = n.
oo

Then there are elements in U k;, which are arbitrarily close to «. Hence
i=0

KrasNER’S Lemma (Corollary 3.4.2/2) implies « € k; for some 7 = 0. From this

we can derive x € k;_; if 7 > 0. Namely, write x = a + bx; with coefficients

a,b € k;_,. We have |x| = max {|al|, |bx;|}, since |x;| ¢ |k;_;| implies |a] == |bx;|.

Furthermore, |bx;| < |a| = 1 since |x| = [»|'2 =1 and |bx;] &= 1. Now the
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equation
n = (a + bx;)? = a® + 2abox; + b2x;_,

shows that we must have b = 0 (because otherwise «; € k;_,). Therefore « € k;_;.
Repeating this process gives « € ky = Q.. We want to derive a contradiction
by showing that the polynomial X2 — n is irreducible over @,. Replacing X
by X + 1, we have to consider the polynomial p = X% + 2X — (n — 1).
If n = —1, 3, the spectral value o(p) equals |2|1/2 80 that o(p) ¢ |Q.|. Conse-
quently, p is irreducible in this case (use a direct argument or apply Propo-

1
sition 3.1.2/1). If n = —3, we can consider the polynomial Z—p(2X) = X2

+ X -+ 1, which isirreducible over the residue field I, of @,. Therefore X2 — n
is irreducible also if n = —3, and we see that K does not contain a square root
of n.

Next we claim that the quadratic extension L:=K (]/3) of K satisfies
f(L/K) = 1. Again, we assume the contrary. Then f(L/K) = 2 and the only
possibility for the residue field of L is

L= Iy = ]Fz[X]/(X2 + X +1).

Since X2 4+ X 4 1 splits into different linear factors over L, the same must be
true over L by HENSEL’s Lemma (Proposition 3.3.4/3). Therefore the roots

1 1 — 1 —
Y + EV—‘3, 3 V-3,

and hence ]/—_3 must belong to L. We can write | —3 =z + y V§ with coeffi-
cients z, y € K so that —3 = 2% 4 2zy V§ + 3y%. However this is impossible,
since zy == 0 implies ]/§ € K, since x = 0 implies ]/——1 € K, and since y =0
implies ]/:‘:’; € K.

Thus it is clear that L = K (]/g) is a quadratic extension of K which satisfies
e(L/K) =1 = f(L/K). Then L cannot be K-cartesian, since otherwise L would
be strictly cartesian (due to e(L/K) = 1, see Observation 2.5.1/2), and we
would have f(L/K) = [L:K] = 2 (Corollary 2.5.1/6). Consequently, K is a
complete field of characteristic 0, which is not stable.

3.6.2. Criteria for stability. — We start with some simple criteria which
are obtained by specializing some of our results on cartesian vector spaces.

Proposition 1. Let the valuation on K be discrete. Then K is stable if and
only if K is weakly stable. In particular, any field with a complete dvscrete valua-
tion s stable.

- Proof. Apply Corollary 2.4.3/11. ]

Proposition 2. 4 complete field K is stable if and only tf every finite separable
extension of K vs K-cartesian.
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Proof. Due to Proposition 3.4.1/6, the separable algebraic closure K., of K
is dense in the algebraic closure K, of K if one provides K, with the spectral
valuation. Applying Proposition 2.4.3/8, we see that K is stable if and only if
K.p is K-cartesian, whence the assertion follows. |

Next we want to reduce the question of stability to the case of complete
fields, where it is easier to handle since here all spectral norms are valuations.

Proposition 3. The field K is stable if and only of the following two conditions
are fulfilled:

(i) K zs weakly stable,
(ii) K s stable.

Proof. Let K be stable. Then K is weakly stable, and we have to show that
K is stable. In order to do this, consider a finite extension F of K (provided
with the spectral valuation, see Theorem 3.2.4/2). We may assume by Propo-
sition 2 (and by Proposition 2.3.3/4) that F is separable over K, say F = K(x)
with a separable element x € F. Using Proposition 3.4.2/5 we may even assume
that «x is algebraic over K. Then L := K(x) is a dense subfield of /' which is
finite algebraic over K. Because K is stable we know that L is K-cartesian if
provided with the spectral norm of L over K (this norm may be different
from the valuation induced from F on L). Let L denote the completion of L
with respect to the spectral norm. Then L is the norm-direct sum

L=L®--- L

of finite extensions L; of K (see Proposition 3.3.1/1). We may view L as a sub-
field of each L;. If | |; denotes the spectral valuation on L; over K, we know
by Proposition 3.3.3/1 that any valuation on L extending the given valuation
on K coincides with one of the valuations | |;,...,| |; on L. In particular,
there exists an index 7, say ¢ = 1, such that the valuation induced from F
on L equals | |; on L. Since L is dense in L, as well as in F, we see that F is
isometrically isomorphic to L,. Therefore we can view F as a K-subspace of L.
Now K is stable; hence L is K-cartesian and, by Proposition 2.4.3/8, its com-
pletion L is K—cartesmn So F, as a subspace of L, must be K- cartesian. This.
verifies the only if part of the assertion.

To verify the if part, assume that K is weakly stable and that K is stable.
Let L be a finite extension of K (provided with the spectral norm). As above,
L is a norm-direct sum

L=L@ oL
of finite extensions L; of K. Each L; is K-cartesian; hence L is K-cartesian.
Thus we see by Proposition 2.4.3/9 that L is K-cartesian. J

In order to determine whether or not a field K is stable, it is sometimes.
useful to look at the ramification index and the residue degree of finite ex-
tensions of K. We want to use the remainder of this section to show how these
concepts are related to the stability of K.
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Proposition 4. Let L be a finite extension of K (provided with a valuation
extending the valuation on K). Write n:= [L: K], e:= e(L[K), f := f(L/K), and
choose %y, ..., x; € L and Y15 -+ vs Yo € L* such that &,, ..., %; 13 a E-basis of L
and such that |y,|, ..., |y.| represent all equivalence classes of |L*| modulo |K*|.
Then the following conditions are equrvalent:

(i) The family F:= {x;y;;1 = v = f,1 =< j = e} 1s an orthogonal K-basis
of L.
(ii)e-f=m.

(1ii) L vs K-cartestan.

If the above conditions are fulfilled, the valuation on L is the only extension to L
of the given valuation on K and therefore cotncides with the spectral norm.

Proof. By Lemma 3.1.3/1, the set F is orthogonal. This shows that (i) is
equivalent to (ii). Clearly (i) implies (iii). It remains to be shown that (iii)
implies (ii). Assume that F is K-cartesian and that ef == n, i.e., that ef < n.
Then by Proposition 2.4.1/5, we can enlarge F' to an orthogonal basis of L.
In particular, there exists an element z € L* such that F u {2} is K-orthogonal.
Arrange y,, ..., y, such that |z| and |y,| are in the same |K*|-equivalence class
of |L*|. Choose a € K* such that |z| = |a| |y,|. The vector

w:=a Yy e L

has absolute value 1. We have an equation
/ -
@:ngfti, d;GK.
1
Let a; € K denote an inverse image of @;, and consider the element
J
vi=w— Y aw; € L.
1
We have |v| < 1 since & = 0. Multiplying v by ay,, we get
S
ayv =z — Y aaixy,) and |ayv| < |ay].
1

But the orthogonality of the family {z, z;y,; ¢ = 1, ..., f} yields
layv] = max {[z], |aa;| [zig|} = |2] = |ay,].

This is a contradiction; hence e¢-f = n. In order to verify the remaining
assertion, consider condition (iii), which implies that the given valuation in-
duces the product topology on L. By Lemma 3.5.1/1, the valuation must be
the spectral norm. |

If there is more than one extension to L of the valuation on K, the single
term ef in the formula ‘‘¢f = n’> has to be replaced by the sum of the rami-
fication indices times residue degrees of the different valuation extensions. More
precisely, as in (3.3), let us denote by | |;, © =1, ..., ¢, the ¢ different valua-
tions on L extending the valuation on K and by L; the normed space one gets
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if one provides L with the norm | |[;. Define ¢; := e(L;/K) and f; := f(L;/K).
As always let n = [L:K]. Then we can formulate the following criterion:

t
Proposition 5. We have 3] e;f; = n, and L vs K-cartesian if and only if this is
an equality. i=1

Proof. As in (3.3), denote by L (resp. L;) the completion of L with respect
to the spectral norm (resp. the valuation | |;for? =1, ...,¢). From (3.3.2) and
Proposition 3.3.1/1, we know

(1) L is the norm-direct sum L; @ --- @ L.
Using Proposition 2.3.3/6, we get

t
(2) n = [L:K] = [L:K] :__21 [L;:K].

(In spite of the fact that L is not in general a field, nevertheless we use the
symbol [L:K] as an abbreviation for dim £.) In order to be able to apply
Proposition 4 to K and L;, we compute

(3) e(L;/R) = card (|L¥|/|R*|) = e(L;/K) = e;, for i = 1, ... ¢, and

(4) J(LifR) = [£:: K] = [L;: R] = f(Li/K) = fi, for i = 1,..., ¢,
Then from Proposition 3.1.3/2 we get

B3) [L;i: K] = e(Li/R) ((Li/R) = e;f; for v =1, ..., ¢.
If one combines (2) and (5), one sees
t

t ¢
6) n = [L:K] = [L: K] = Y [Li:R] = 3 eo(Li/R) (LK) = X eifs,

where equality holds if and only if
(A) [L:K] =[L:K] and
(B) [L;:R] = e(L;/R) f(Li/R) for ¢ =1, ...,
Using the equivalence of conditions (ii) and (iii) in Proposition 4, we see

that (B) is equivalent to the condition “L; is K-cartesian for ¢ =1, ..., £”,
which in turn is equivalent by (1) to

(B’) L is R-cartesian.
Due to Proposition 2.3.3/6, condition (A) can be reformulated as
(A’) L is weakly K-cartesian.

Hence it remains to be verified that L is K-cartesian if and only if L is weakly
K-cartesian and L is K-cartesian. But this follows from Corollary 2.4.3/10. []

Now the desired criterion for stability is an easy corollary.

Proposition 6. K us stable if and only f for every finite extension L of K the
t

formula 3] e;f; = n holds.

i=1
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t
The proposition shows that the classical formula } e;f; = n (valid, e.g.,

i=1

for local fields) characterizes a wider class of fields. This class of stable fields
will be of special interest in (5.3) where we show that the field of fractions of
the power series ring K(X,, ..., X,) is stable if K is stable. Furthermere,
stability is inherited under the following circumstances: ,

Corollary 7. If K is complete and stable, then every finite extension L us
stable (and complete).

Proof. Let E be a finite extension of L. Then there is exactly one
extension of the valuation on K to L and to E. Proposition 6 gives us
[L:K] = e(L/K)f(L/K) and [E:K] = e(l/K) - f(E/K). Then we know
(e(E/L) - e(L|K)) ({(E|L)-{(L/K)) = e(E|K)-{(E|K) = [E:K] = [E:L]-[L: K]
=[H£:L] (e(L/K) . f(L/K)). By cancelling, we see e(¥/L) - f(E|L) = [E: L] which,
by Proposition 6, yields the assertion. (For the completeness of L see
Proposition 2.3.3/4.) -

In the special case where the value set of the spectral norm on L is contained

in | K|, we can easily see that there is no ramification, i.e., that ¢; = 1 for
t t

1 =1,...,t. The formula } e;/; = n then reduces to 3 f; = n. Since, on the
i=1 i=1

> = t o~ t t
other hand, [L:K] =[L:R] =} [Li:R]= X {(L;/K) = X };, we get as a
i=1 i=1 i=1
consequence of Proposition 5

Proposition 8. Let L be a finite extension of K. Then the following two con-
ditions are equrvalent:

(i) L 2s K-cartestan and |L| = |K|; v.e., L 1s strictly K-cartestan.

(ii) [L: K] = [L:K].

Proof. Instead of deducing this corollary from Proposition 5 as indicated
above, one can use Corollary 2.5.1/6. |

Now we look for a criterion which will guarantee that the equivalent con-
ditions of the preceding proposition are fulfilled for all finite extensions of K.
We need an additional condition on the value group of K.

Definition 9. A multiplicative subgroup G of R, — {0} ©s sard to be divisible tf,
for all o € G and all n € N, the number o'/ € IR, — {0} belongs to G.

Observation 10. The value group |K*| s dvvisible vf and only of it equals the
value set |K}| of the algebraic closure K, (provided with the spectral norm).

Proof. First we assume that |[K*| = |K3|. Let p € |[K*| and » € IN be given.
Then there are an element a € K* with |a| = ¢ and an x € K, with " = a.
Then o'/" = |x| € |[K% = |K*|, and therefore |K*| is divisible. In order to
show the converse, we assume that |K*| is divisible. Because the spectral

o el BB

AR EE
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norm on K, is computed by taking roots of elements in |K|, we know |K,|
— |K| and hence |K%| = |K*|. |

This enables us to state the desired criterion.

Proposition 11. The following three conditions on K are equivalent:
(i) K, s strictly K-cartesian.
(ii) For all finite extensions L of K (provided with the spectral norm), one has
[L:K] = [L:K).
(iii) K us stable and |K*| is dvvisible.

Proof. Apply Proposition 8 and Observation 10. |

Using Proposition 11, we can show how, within the context of stable
fields, the algebraic closedness of K is related to the algebraic closedness of
the residue field K.

Proposition 12. Let K be complete. Then K s algebraically closed if and only
f
(i) K s stable,
(ii) | K*| us dvvistble,
(iii) K s algebraically closed.
Proof. First we show that an algebraically closed field K fulfills conditions
(1) to (iii). Condition (i) is clear; (ii) follows from Observation 10, and (iii) from
Lemma 3.4.1/4. Next we suppose that conditions (i) to (iii) are satisfied. Let L
be a finite extension of K. We have to show that L = K. By Proposition 11, we
get [L:K] = [L:K] from conditions (i) and (ii). Because K is complete, the
spectral norm on L is a valuation, and hence L is a field. By condition (iii),
this implies that [L: K] = 1, whence [L: K] = 1. 1
Remark. Instead of assuming the completeness of K, it suffices to suppose
that for all finite extensions L of K there is exactly one valuation extension
(namely, the spectral norm).

We conclude this section by listing some sufficient conditions for K to be
stable.

Proposition 13. K is stable if char K = 0.
Proof. Use the remark following the proof of Theorem 19 in section VI.11
of Zarrsk1 SAMUEL [39] and the corollary to Theorem 24 in section VI.12 of
t

the same volume. One gets } e;f; = n for all finite extensions of K. Then
i=1

Proposition 6 yields the assertion. O
If we combine the two preceding propositions, we get the following result:

Corollary 14. Let K be complete and assume char K = 0. Then K 7s algebrai-
cally closed vf and only f

(1) | K*| ©s divisible,

(ii) K 1s algebraically closed.
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An immediate consequence of Proposition 2.4.4/2 is
Proposition 15. K s stable (and complete) vf K vs spherically complete.

As already mentioned in (2.4.4), a field K is spherically complete if and only
if it is maximally complete. Thus maximal completeness is another sufficient
condition for stability.

3.7. Banach algebras

3.7.1. Definition and examples. — For every field £ with a complete non-
Archimedean non-trivial valuation, we define as in the complex case

Definition 1. 4 k-algebra with a complete k-algebra norm vs called a k-Banach
algebra.

Any homomorphism of k-Banach algebras ¢: B —> A4 is, in particular,
k-linear. Therefore by Proposition 2.1.8/2, such a map ¢ is continuous if and
only if it is bounded. If a is a closed ideal in a k-Banach algebra 4, it is easy
to see that the residue algebra 4/a provided with the residue norm is again a
k-Banach algebra (cf. Proposition 1.1.6/1, Remark 2 of (1.2.1) and Proposition
2.1.2/3). A

Obviously k itself is a k-Banach algebra. Applying Propositions 1.4.1/2
and 1.4.1/3, we see that, for every k-Banach algebra A4, the algebra A(X) of
strictly convergent power series with coefficients in 4 is a k-Banach algebra.
Therefore the algebra k(X,, ..., X,) (the main object in the beginning of the
following part B) is a Banach algebra. Further simple examples are provided
by finite extensions of k provided with the spectral valuation. We already
know that these extensions carry always the product topology and that all
subspaces are closed. In the next sections, we shall get similar results for in-
finite-dimensional algebras under certain conditions.

3.7.2. Finiteness and completeness of modules over a Banach algebra. — The
underlying vector space of a k-Banach algebra is a k-Banach space and the
underlying ring is a complete normed ring. Therefore we may apply the results
of (1.2.4) and of (2.8). This leads to the following proposition.

Proposition 1. Let A be a k-Banach algebra and let M be a normed A-module
such that the completion M of M is a finite A-module. Then M is complete.

Proof. There are elements xy, ..., x, € M such that the homomorphism
n

7: A" — M defined by n(ay, ..., a,):= Y awx; is surjective. By BaNAcH’s
i=1

n

Theorem, 7 is open, and therefore Y’ Ax; — m(4") is a neighborhood of 0
i=1
in M. Since M is dense in M, we have

x, €M+ Y Az, forv=1,...,n.

p=1

Now Nakavama’s Lemma 1.2.4/6 yields M = M. O
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As an immediate consequence of this proposition, we have that all sub-
modules of a Noetherian complete normed module over a Banach algebra 4
are closed. This property characterizes the Noetherian complete normed
modules over 4 ; more precisely

Proposition 2. Let A be a k-Banach algebra and M a complete normed
A-module. Then M is Noethervan if and only if all submodules of M are closed.
In particular, the ring A is Noetherian if and only if all ideals tn A are closed.

Proof. We only have to show that M is Noetherian if all submodules are
closed. Let M, =M, ... be an ascending chain of submodules. Let

M’ := \J M;. Then M’ being a closed submodule of the complete module M is
i=1

a Baire space. Since all M; are closed, we have by BAIRE’s Theorem (cf.

Boursaki [6], Ch 9, § 5, Théoréme 1) the existence of an index 7 such that M;

contains a neighborhood of 0 in M’. This implies M; = M’; hence the chain

becomes stationary. 1

3.7.3 The category M 4. — In this section, 4 always denotes a Noetherian
k-Banach algebra. We denote by I, the category of all finite complete normed
A-modules with continuous A4-linear maps as morphisms. Note that, by
Corollary 2.1.8/3, such an 4-linear map is continuous if and only if it is bounded.
Since each M € I, is a Noetherian A-module, we conclude from Proposition
3.7.2/2

Proposition 1. Every submodule M’ of a module M € W4 vs closed. Therefore
M € My and MM’ € My 2of M’ carries the induced norm and M|M’ the residue
norm. Furthermore My P M, € M4 of My, M, € My.

Next we claim that the category 9, is essentially the same as the category
of all finite A-modules with A-linear maps as morphisms. This is made more
precise by the following two statements.

Proposition 2. If M, M’ are objects of M 4, each A-linear map ¢: M — M’ is
continuous.

Proof. Choose an epimorphism n: A® — M for a suitable n € IN. Define
¢ : A" - M' by ¢’ :=¢@on. Since addition and scalar multiplication are
continuous operations in normed modules, both maps = and ¢’ are continuous.
Furthermore 7 is open (by BaxacH’s Theorem). Hence ¢ is continuous. I

If we consider the special case where ¢ is bijective, we get from Propo-
sition 2 the uniqueness part of the following proposition.

Proposition 3. Each finite A-module M can be provided with a complete
A-module norm. All such norms are equivalent.

Proof. We only have to prove the existence of such a norm. Take any
A-linear epimorphism z: A® — M. Since A™ € M, the kernel ker = is closed.
The residue norm on 4%/ker = givesrise to a complete 4-module normon M. ]
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Recall that a continuous map &: X — Y between topological spaces X, Y
is called strict if the topology of the subspace &(X) = Y (i.e., the topology on
&(X) induced from Y) equals the quotient topology with respect to the map

X £ £(X). In particular, & is strict if £ is open. Therefore one easily verifies
(using BavacH’s Theorem and Proposition 2.1.2/3)

Proposition 4. A continuous k-linear map ¢: X — Y between k-Banach
spaces 1s strict if and only if p(X) vs closed vn Y.

From this we immediately conclude

Corollary 5. Each A-module homomorphism ¢: M — M’, where M, M’ € I,

18 strict.

We want to give an application of the preceding results to complete tensor
products (which were defined in (2.1.7)). In the following let B denote a normed
A-algebra via a homomorphism 4 — B, and assume that B itself is a Noetherian
Banach algebra over k.

Proposition 6. For finite A-modules M, N € I, the canonical maps
i:M®AN—>Mé<\)AN, x®y}—->x®y
j:M@AB—>M®AB, zXRb > x(;)b

are bijective. In particular, M @\) AN eWMy and M C;) 4B € Mp.
Proof. If M = A" is a free A-module, the assertion follows directly from
Proposition 2.1.7/6 by using the isomorphisms (i) and (iv), as well as their

counterparts for ordinary tensor products. In the general case, we choose a free
resolution of M, i.e., an exact sequence

Am 2y A» 2y M — 0.

Tensoring with the identity map id: N — N, we get a commutative diagram
of continuous maps

A, N 224, gnx, N &% ¥, N —— 0

[ iy 5

Am R N 22y g Q N ¥ ¥ Q,N——0

with 7 and 7"/, as well as 7, denoting the canonical maps from the finite
A-modules in the first row (provided with a semi-norm as in (2.1.7)) into their
completions. The first row is exact due to the right exactness of the ordinary
tensor product, and it follows from what we have proved already that 2" and
v"’ are bijective. Therefore the map ¢ & id is strict, since ¢ ® id is strict by
Corollary 5. Furthermore, the map y, which is surjective, is strict by Corol-
lary 5; hence, Proposition 2.1.8/6 applies and y & id is strict. Thus, the first
row in the above diagram is an exact sequence of strict homomorphisms.
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But then according to Corollary 1.1.9/6, also the second row must be exact,
and the bijectivity of ¢" and ¢’’ implies the bijectivity of .

The bijectivity of j: M ©4 B—>M @ 4 B is proved in literally the same way
with ¥ belng replaced by B. The only crucial thing is to see that the correspond-
ing map ¢ ® id: 4™ ® at B — A~ ® 4 B is strict. But as above, this is settled
by Corollary 5 since ¢ Q id is a B-linear map between finite B-modules. []

3.7.4. Finite homomorphisms. — In this section we study A-algebras B
which — when viewed as 4-modules — are finite. More precisely, we consider
finite k-algebra homomorphisms ¢: A — B. If 4 is a Noetherian k-Banach
algebra as in the last section, we can provide B with a complete A-module
norm. Actually, more is true:

Proposition 1. Let A be a Noetherian k-Banach algebra, and let ¢: A — B
be a fimite k-algebra homomorphism from A into a k-algebra B. Then B is Noethe-
rian and can be provided with a complete A-algebra norm (which by Definition
3.7.1/1 makes B a k-Banach algebra) such that ¢ s continuous and strici. All
complete k-algebra norms on B such that ¢ is continuous are equivalent.

Proof. Since ¢ is finite, B is a finite 4-module. By Proposition 3.7.3/3, we

can provide B with a complete 4A-module norm | |’. Then the map ¢ is con-
tractive. In general | |’ will fail to be a ring norm on B. However, thefollowing
is true:

There exists a constant o > 0 such that |xy|" < o |x|’ |y|’ for all x, y € B.

In order to see this, let {b,, ..., b,} = B be a system of A-generators of B.
Set C':= max |b,b,|’, and choose 77 = 1 such that, for each x € B, there is an

1=ur<En

equation z = Z ¢(a,) b, with max |a,| = 7 |x|” (such n exists since th norm
1=v=n

| | is equlvalent to the residue norm defined by the map 4* — B, (a4, ..., @)

n
— 3 ¢(a,) b,, see Proposition 3.7.3/3). Setting g := 72C, we have for all vectors
1
n
T = 2 (p(a“iv) bv € B
1

21| = Z @(a,) Plag,) b,b,| = max |p(ai,) p(as) bb,!’

lsuvsn

g( Max |ay,a)) ( max [bb,]") = (max |a]) (max |a,)) - C
1=u,v=n 1=u,v=n 1=u=n 1=v=n

=nlml nlxs - C =gz |2 .

Now we define for x € B
lg] : = sup —— | yl
veB—{o} |yl’

Applying Proposition 1.2.1/2, we see that | | is a ring norm on B inducing
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the same topology as | |’. It is easy to verify that | | is also an 4-module

norm. In particular, ¢ is continuous and hence strict by the results of (3.7.3).
It remains to be shown that each complete k-algebra norm | |* on B such

that @ is continuous is equivalent to | |. The k-linear map =: 4® — B given

n
by (a3, ..., a;) = 3 ¢(a,) b, is continuous with respect to any such norm | |*.
1

Therefore, due to Banaca’s Theorem, we see that | |* must induce the
quotient topology with respect to z on B. |

Corollary 2. Each finite continuous k-algebra homomorphism between N oethe-
rian k-Banach algebras s strict. ’

3.7.6. Continuity of homomorphisms. — In this section we consider a class
of k-Banach algebras with the property that all k-algebra homomorphisms are
automatically continuous.

Proposition 1. Let A, B be k-Banach algebras, and let &: A — B be a k-algebra
homomorphism. Assume that there is a family B of ideals in B such that

(1) each b € B us closed in B and each tnverse image D~1(b) vs closed vn A4,
(ii) for each b € B one has dim; B/b < oo,

(iii) N b = (0).
beB

Then @ 18 continuous.

Proof. Fix b € ¥ and denote by S the residue epimorphism B — B/b.
Define y: 4 - B/b by p:=p0®. Let : A/ker y — B/b be the injection
induced by y. Then we have the commutative diagram

A-2 4B

I
Alker vy > B/b.

Obviously ker p = @~1(b). According to (i) and (ii), the residue spaces A /ker y
and B/b provided with the residue norms are finite-dimensional weakly
cartesian k-vector spaces (see Proposition 2.3.3/4). Therefore % and hence y are
continuous. Now we get the continuity of @ from the Closed Graph Theorem;
namely, assume there is given a sequence a, € 4 with lim a, = 0 and lim &(a,)
= b. Using the continuity of y and 8, we get §(b) = ﬂ(lim (D(a,,)) =1lim (8o D) (a,)
= lim y(a,) = yp(im a,) = (0) = 0, i.e., b € b. Since this holds for all b € B,
we deduce b = O from (iii). This implies the continuity of ®. O

From Propositions 1 and 3.7.2/2, we easily derive

Proposition 2. Let B be a Noetherian k-Banach algebra with a family B of
wdeals of B such that

(i) dimy B/b < oo for all b € B,

(i) N b = (0).
beB
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Then each k-algebra homomorphism of a Noetherian k-Banach algebra A into B is
continuous.

Proposition 3. All complete k-algebra norms (¢f there exist any) on a Noetherian
k-algebra B with a family B of ideals satisfying conditions (i) and (ii) of the
preceding proposition are equivalent, 1.e., all Banach algebra structures on B have
the same underlying topological space. In particular, B admits at most one power-
multvplicative complete norm.

The above results are somewhat amazing, insofar as purely algebraic
conditions have topological implications. A special case of Proposition 3 is of
course the earlier result that a finite extension of k£ has at most one valuation
extending the valuation on k.

3.8. Funetion algebras

Let k be a (not necessarily complete) valued field and let X be a set. Then
the set of all bounded functions f: X —k forms a k-algebra. Defining
|f|:= sup |f(z)|, one gets a k-algebra semi-norm on this algebra, the so-called

zeX
supremum semi-norm. In the next section we shall construct for a wide class of

k-algebras 4 spaces X such that 4 may be interpreted as an algebra of bounded
functions from X to the algebraic closure of k. In later sections, we shall con-
sider the following questions: When is the supremum semi-norm a complete
norm on A? If 4 is not only a k-algebra, but in fact a k-Banach algebra, how
are the given Banach norm and the supremum semi-norm related?

We assume that the reader is familiar with the notion of integral depend-

ence.

3.8.1 The supremum semi-norm on k-algebras. — For the purposes of this
section, we do not suppose that our ground field k is complete. Let 4 be a
k-algebra. We want to derive a semi-norm on 4 from the given valuationon . In
order to do so, we use the following

Definition 1. Spectrum of k-algebraic maximal ideals of A :
Max; A := {x; x maximal ideal in 4 and 4/x algebraic over k}.

Of course, Max; A may be empty; e.g., this is the case if 4 is a field which
is transcendent over k. But in many cases, the spectrum of k-algebraic maxi-
mal ideals of 4 yields substantial information about 4.

For x € Max; 4 and f € 4, denote by f(x) the image of f under the canonical
residue epimorphism z,: 4 — A4/x. Since 4/x is an algebraic extension of k, it
can be provided with the spectral norm derived from the given valuation on
k (cf. (3.2)). Writing |f(x)| for the spectral norm of the element f(x) € 4/x, we
are able to introduce
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Definition 2. Semi-norm of uniform convergence on Max; A or supremum
semi-norm on Max; A:

0 if Max, 4 = 0O,
[flsup := { sup {|f(x)|; € Max; 4} if Max; 4 &= U and f(Max; 4) bounded,

fo') : otherwise.

This definition generalizes the concept of the spectral norm. Namely, if 4
is an algebraic extension of k, this definition obviously yields the spectral
norm on A. Furthermore, we will show (Proposition 7) that under suitable
circumstances | |5, may be interpreted as a spectral norm, of course, over
some bigger ground field. However, although we have used the term semi-
norm, it is not in general true that the function | |,,, defines a semi-norm on
A. Namely, the third case occurring in Definition 2 is possible: e.g., take
A = k[X]. Then Max; 4 > {(X — ¢) k[X];c € k}. If one takes f:= X € 4,
then f(Max; 4) D k, which is clearly not bounded (unless k carries the trivial
valuation). We shall say that the supremum semi-norm on 4 isfinite if f(Max; 4)
is bounded for all f € A. For the special applications we have in mind, it will be
easy to verify that | |, is finite. First let us collect some rather obvious
properties of | |gyp.

Lemma 3. If | |sup 8 fimite, it is a power-multiplicative ‘‘k-algebra sem:i-
norm’ on A; i.e., one has for all f,g € A,c € k,n € N

(@) |flsup € R, |flsup = 0, |0lsup = O,
(b) 1f 4 glsup = max {|f|sup, |Flsup} >
(€) leflsup = lel |flsup»

(d) [fglsup = |flsup 19lsup>

(€) llswp =1,

) 1/™sup = |/|5up-

All these formulas remain true also in the non-finite case if one extends

the usual operations on IR to R u {oo} in an obvious way.
The supremum semi-norm is compatible with k-algebra homomorphisms in

the following sense.

Lemma 4. Let ¢: B — A be a k-algebra homomorphism between two k-algebras
A and B. Then ¢ vs a contraction with respect to | |sup, 2.€., |@(g)|sup = |glsup for
allg € B.

Proof. If Max; A = J, there is nothing to show. If x € Max; 4, then ¢
induces a k-algebra monomorphism B/¢~1(x) — A/x. Because A/x is an alge-
braic extension of k, its subring B/¢~1(x) must also be an algebraic extension
of k. Hence ¢~1(x) € Max; B. Then one has
(%) 19@)lsup = sup |gp(g) @) = sup |g(p7'(x))| = sup lg(¥)| = Iglswp. O

reMax; A reMax, A yeMax; B
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We apply this lemma to show that the supremum semi-norm of 4 can
easily be derived from the supremum semi-norm on its prime components.

Lemma 5. Let I be the set of all minimal prime ideals in A, and let
7y : A — A[p denote the canonical residue map for all p € M. Then we have

]flsup = sup lnp(f)\sup fO?‘ all fe A.
pe

Remark. The above lemma can be used to show that | |, coincides with
the function | |y, as defined in (3.2.2) if 4 is reduced and integral over k.
Namely, then all prime ideals of 4 are minimal (as well as maximal), and the
assertion follows from Theorem 3.2.2/2.

Proof of Lemma 5. From Lemma 4, we know sup [7,(f)lsup = |flsup- In
pelt

order to show the opposite inequality, take = € Max; 4. Then one can find
p € M such that v > p. From 4/x = (4/p)/(x/p), we get z,(x) = x/p €
Max, A/p and |f(@)] = |(7,(f)) (7p())], whence |f(2)] = [7y(f)]sup = Sugzlnp(f)lsup-
pe
Since this holds for all # € Max; 4, we have found that |f|s,, = sup |7, (f)|sup. [
peMm
For the case of integral monomorphisms, Lemma 4 can be improved con-

siderably.

Lemma 6. Let ¢: B — A be an vniegral k-algebra monomorphism. Then one
has

(a) @ 18 an isometry with respect to | |sup,
(b) |flsup = max [b;|3f, for f € A, where f* 4 @(by) "~ + -+ + @(b,) =0 s
1=i<n

an equation of integral dependence for f over ¢(B),
(€) | |sup 28 fimite on A if and only if it vs finite on B.

Proof. Ad(a): If Max;, B = U, then by Lemma 4 we have |¢(g)|sup = |¢]sup
= 0 for all ¢ € B. Therefore we may assume Max; B &= J. Take y € Max; B.
Since @ is integral and injective, there is a maximal ideal x of 4 lying over y,
ie.,, ¢ Yx) =y. Now ¢ induces an integral monomorphism from B/y into
A[x. The field Bly is an algebraic extension of ¥ by our assumption, and
A/x is integral over B/y. Therefore A/x is an algebraic extension of k. In
other words, the map z > ¢~1(x) from Max; 4 to Max; B is surjective. There-
fore, one has equality in the formula (%) occurring in the proof of lemma 4,

and so @ is an isometry.
Ad(b): For all x € Max; A, one has 0 = f(x)" 4 ((p(bl))(yc)f(ac)”"1 + ...
+ p(Bn)(@) = @) + bi(¢ (@) @)™ + -+ + by(p~ (). Due to Proposi-

tion 3.1.2/1, this equation implies |f(x)] = max |b;(p~*(x))|'! < max |b;|Lls,.
1<i<n 1<i<n

Since this holds for all x € Max; A, we have |f|s,, < max |b;|L}

sup*
1=i<n
Ad(c): If g(Max; B) is bounded for all g € B, then f(Max; A4) is also bounded
for all f € 4 due to (b). The converse is true due to (a). ]
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In order to be able to transform inequality (b) into an equality — which
would allow us to compute | |y, on4 intermsof | |, on the smaller algebra
B — we must impose some additional assumptions on 4 and B. We say that the
Maxvmum Modulus Principle holds for a k-algebra A4 if, for all f € 4, there
exists an € Max; 4 such that |f(z)| = |f|sup.

Proposition 7. Let ¢: B — A be an iniegral torsion-free k-algebra monomor-
phism between two k-algebras A and B, where B is an tntegrally closed (integral)
domain. Then one has

@) |flsup = max b3, for f € A, where [+ @(by) f*1 + -+ + @(b,) =0 1s

1<i<n
the (unique) integral equation of minimal degree for f over @(B).
(b) The Maximum Modulus Principle holds for A if and only ¥f +t holds for B.
(€) | lsup 28 @ morm on A if and only if | |suptS @ norm on B and A isreduced.

(d) We have |@(d) flsup = |blsup |f|sup for all b € B and all f€ A vf and only
if |bb |sup = |blsup |0 |sup for all b, b" € B.

Before proving the proposition, let us recall briefly how, for a given element
f € A, its integral equation of minimal degree over ¢(B) is obtained. We may
assume that B is a subalgebra of 4 and that 4 = B[f]. Let Q(B) be the field
of fractions of B and define Q(4):=A45_,. Since 4 is torsion-free over B, we
have a commutative diagram of inclusions

B = 4
N N
QB)=Q4).

The canonical epimorphism z: B[X]— A4, X > f, extends to an epimorphism
7. Q(B)[X] = @(4), and since Q(B) is a field, there is a unique monic poly-
nomial ¢ € Q(B) [X] generating the ideal ker 7’. We claim that ¢ has, in fact,
coefficients in B. Assuming this for the moment, we can easily see that g(f) = 0
is the unique integral equation of minimal degree for f over B. Namely, we
show that the ideal ker v = B[X] nker t* isgenerated by g. Let p be any poly-
nomial in ker . Using EvcrLip’s division for ¢ € B[X], we have p = ¢,¢ + r,
where ¢, r € B[X] and deg r << deg ¢ unless r = 0. Since ¢ € ker 7, we must
have r € ker 7 < ker ©’. However this is only possible if » = 0. Thus we see
that ker 7 is generated by ¢ and that v induces an isomorphism B[X]/(g) => 4.

It remains to be shown that the polynomial ¢ has coefficients in B. Since
q generates the kernel of the epimorphism 7": Q(B) [X] - Q(4), X — f, we have
an isomorphism Q(B)[X]/(g) = Q(A4). Let us first consider the case where ¢ is
irreducible in Q(B) [X]. Then Q(4) is a field, namely the field generated by f
over (B), and ¢ is the corresponding minimal polynomial. Let K be the split-
ting field of ¢ over Q(B) (where Q(B)=@Q(4)= K). Then K contains all conju-
gates of f over Q(B). Since f is integral over B so are its conjugates. Thus the
coefficients of ¢ (being the elementary symmetric polynomials in the conju-
gates of f) must be integral over B so that ¢ € B[X] because B is integrally
closed in its field of fractions Q(B).



172 Chapter 3. Extensions of norms and valuations

If ¢ is not irreducible, we consider a decomposition into prime factors in
Q(B)[X], say ¢ = p, ... p,. Then, for each 7, one can consider Q(B) [X]/(p;)asa
finite extension of Q(B). Concluding as before, one sees that p; € B[X] for all <.
Thus we have ¢ € B[X] also in this case.

Now we come to the proof of Proposition 7. Ad(a): We may assume that B
is a subalgebra of A and that 4 = B[f]. Let ¢(f) = O be the integral equation
of minimal degree for f over B, where ¢ = X" 4 b, X"! + ... 4+ b, € B[X].
Then we have 4 = B[f] = B[X]/(q) by the above considerations (where f
corresponds to the residue class of X in B[X]/(q)). For y € Max; B, denote by
f, the residue class of f in A/yA and by f, its residue class in red 4/yA4 (the
quotient of 4/y4A modulo its nilradical). Similarly, let ¢, be the residue class
of ¢ in (B/y) [X]. Since each y € Max; B iscontained in some ideal x € Max; 4,
we see that

Vlsup = Ssup ’fylsup = 8sup |fy|sup-
yEMax, B yEMax; B
For a fixed y € Max; B, let ¢, = ¢} ... ¢' be the decomposition of ¢, into
prime factors, where ¢, ..., ¢, are pairwise different monic polynomials in
(B/y) [X]. Then

AlyA = (Bly)[X]/(g,)

and
r

red (4/y4) = (Bly) [X]/(q: --- ¢r) = @ (Bly) [X]/(g,)-

v=1

Provide B/y with the spectral norm over k¥ and denote by | |, the spectral
norm on (Bly)[X]/(g,) over By (which equals the spectral norm over k£ by
Proposition 3.2.2/4). Then if f, is the residue class of f, in (B/y) [X]/(¢g.), we
have by Corollary 3.2.1/6 (cf. also the remark following Lemma 3.8.1/5)

]fy'sup = max lf-vlv — max G(Qv) — G(Qy)-

1=v<sr 1=v<r
Therefore
If’sup = 8up G(Qy) = 8sup max ‘bi(y)llli = max Ibzlétllzpa
yeMax; B yeMax,B 1<i<n 1=isn

which verifies assertion (a).

Ad(b): If the Maximum Modulus Principle holds for B, then (using the same
notations as before) there is a y € Max; B such that |f |, = 0(g,) = |flsup-
Since 4/yA contains only finitely many maximal ideals, there must exist an
x € Max; A such that |f,|sp = |f(x)]. Hence the Maximum Modulus Principle
holds for 4. The converse follows from Lemma 6 (a).

Ad(c): Assume that 4 is reduced and that | |y, isa normon B, ie., | Ilgp
isfinite and |bly,, = O impliesb = Oforallb € B. We have to show that | |y, is
a norm on 4. Take f € A with f == 0, and let f* 4 b,f/** + ... - b, = 0 be the
integral equation of minimal degree for f over B. Because A is reduced, there
exists an index m with 1 < m < n such that b, == 0. By assumption we have
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|bmlsup =+ O; hence
|flsup = max [b;|1, = [balllp > 0.
1=si<n ‘
Using assertion (c) of Lemma 6, we conclude that | |4, is a norm on 4. Since
any ring with a power-multiplicative norm is reduced, the converse follows
from (a) and (c) of Lemma 6.

Ad(d): Consider an element f € 4, and let f* + b,/** 4+ .-- + b, = 0 be
the corresponding integral equation of minimal degree over B. Then f is of
degree n over the fraction field Q(B), and so is any product bf whereb € B — {0}.
Therefore

(bf)™ + bby ()"t + -+ + b, =0

is the integral equation of minimal degree for any such product bf. Now assume
that | |g,p is multiplicative on B, i.e., that [bb’|s,p = |b|sup |0'|sup for all b, b’ € B.
Then we can compute |bf|,, according to (a):

lbflsup = max lb’b,,léll'p = ‘blsup max |bi él/:p = Iblsup If[sup-
1<i<n . 1<isn
Since this equation is trivially true for b — 0, we have verified the if part of
assertion (d). The only if part follows immediately from assertion (a) of

Lemma 6. |

Corollary 8. In addition to the assumptions of Proposition 7, assume that the
Maximum Modulus Principle holds for B. Then for every f € A with |f| == 0,
there exist ¢ € k and m € N such that |cf™|s,p, = 1.

Proof. For all b € B, there exists y € Max, B such that |b|s,, = |b(¥)].
Hence |B|gyp < |ka|- The set |k,| is invariant under the operation of taking
roots. Therefore {|b|}i ;b € B — {0} and ¢ € N} < |k,|. According to assertion
(a) of the preceding proposition, |f|s,p € |ka| for all f € A. Hence there are an
element d € k and an integer m such that |d|V™ = |f|s,,. Define c:=d 1€ k.
Then1 = |cf™|syp- O

For later reference we state the following trivial fact:

Lemma9. If| | 28 anormona k-algebra A,then (N m = (0). In parti-
meMax; A

cular, A is reduced, and the Jacobson radical (\ m wvanishes.
meMax 4
Remark. Assume that | |, is a valuation on B. Then it can be extended

to a valuation on the field of fractions Q(B). If we assume furthermore that
4 is reduced, then Q(4) := 4,5, is a reduced integral Q(B)-algebra. Accord-
ing to assertion (d) of Proposition 7, the function | |;,, defines a faithful
B-module norm on 4; hence it can be extended to a Q(B)-algebra norm on
Q(A). According to assertion (a) of Proposition 7, this norm is nothing more
than the spectral norm on the integral Q(B)-algebra Q(A4), as defined in (3.2.2).
To put it in another way: The spectral norm on Q(A) considered as a
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Q(B)-algebra yrtelds — if restricted to A — the supremum norm on A considered
as a k-algebra.

This remark is used in showing that, under certain assumptions (including
the stability of k), the algebras 4 and Q(4) are k-cartesian vector spaces — a
result which shall be needed in (5.3) for proving the stability of the fields of
fractions Q(T',).

Proposition 10. If k is stable, then every k-algebra A such that | |sp s @
norm on A fulfilling the Maximum Modulus Principle vs k-cartesian.

Proof. By Proposition 2.4.3/6, we only have to show that every one-dimen-
sional subspace k- f, f € A, of a finite-dimensional subspace U of 4 admits a
norm-direct supplement in U. We can find x € Max;, 4 such that |f(x)] = |f|sup-
Now U/z n U is a finite-dimensional subspace of 4/x, which in turn is a finite
extension of k. Because k is stable, we know that 4/x provided with the spectral
norm is k-cartesian. Hence the one-dimensional space k - f(x) has a norm-direct
supplement W in U/xn U by Lemma 2.4.1/4. Let V = a (W), where
m: U — Ulx n U denotes the quotient map. The proposition is proved if we can
show that V is a norm-direct supplement to &k - f in U. In order to verify this
claim, take u € U ; then one has n(u) = ¢f(x) - w for suitablec € kand w € W.
Defining v := u — ¢f, we obtain that v = ¢f 4+ v and that v € V. Furthermore,

we have |z(u)| = max {|¢| |f(2)], |[w(v)|}. Then one gets the equalities |cf|sup
= le| |flsup = le| |/(®@)] = |m(u)| = [u|sup, Which imply that |vls,, = [u|sup. There-
fore }ulsup = max {]Oﬂsup, Iv‘sup}- D

Remark. The assumption “‘k is stable’ cannot be omitted. Indeed, choose
A = k,. Then | |, coincides with the spectral norm on 4, since Max; k,
= {(0)}. But k, can be cartesian only if k is stable.

Proposition 11. Assume that k is stable. Let B be an vntegrally closed domain
such that | |g,p 18 a valuation on B fulfilling the Maximum M odulus Principle,
and let ¢: B — A be an vntegral torsion-free k-algebra monomorphism, where 4 is
reduced. Then Q(A):= Ay, g _o) 1S k-cartesian under the spectral norm relative
to the freld of fractions Q(B).

Proof. We see by Proposition 7 (b) and (c) that | |, is a norm on 4 ful-
filling the Maximum Modulus Principle. Hence 4 is k-cartesian under | |[gyup.
Let | |5 be the spectral norm on the reduced integral Q(B)-algebra @(A4).

According to the remark following Lemma 9, we know that | |, equals the
restriction of | |;, to A. By Lemma 2.4.3/3, we conclude that Q(A) is k-car-
tesian under | |gp. i)

3.8.2. The supremum semi-norm on k-Banach algebras. — So far we have
studied k-algebras as purely algebraic objects. The norm or semi-norm we
constructed on such an algebra 4 was only a paraphrasing of the structure of
the set of all k-algebraic maximal ideals of 4. From now on we assume that we
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are given a norm | | on A4 and ask how are | |and | |, interrelated. For
simplicity, we restrict ourselves to the case where the ground field k is com-
plete and A4 is a k-Banach algebra. Even in this case, the maximal ideals m of
A need not be algebraic over k (i.e., 4/m need not be algebraic over k). For
example, just take 4 to be the completion of the field of fractions of £(X) pro-
vided with the Gauss valuation. One has the following preliminary result.

Lemma 1. Let A be a k-Banach algebra with norm | | and let x € Max; A
be a k-algebraic maximal ideal. Then x vs closed in A and A|x provided with the
residue norm | |, 18 @ k-Banach algebra. Moreover, one has

|f(@)] = inf |f@){1 = [f(@)lres = |11
ieN

Proof. Assume that x is not closed in 4. Then its completion z is an ideal in
A such that x & 2. Therefore x = 4; ie., z is dense in A. In particular, z
contains elements which are arbitrarily close to the unit element 1 € 4. Hence
by Proposition 1.2.4/4, the ideal # must contain units itself. However this is
impossible so that  must be closed in 4. Therefore the function | |, given
by

|[/(x)|res = inf [g| for fe 4,
fx)=g(z)

is a norm on 4/x (cf. (1.1.6)). Using Proposition 1.1.7/3, we see that | | is
actually a complete k-algebra norm on A/x with |f(x)|rs = |f|.

We want to define another norm | |’ on 4/x by |f(x)|’ := inf |f(x)i|lL. Due
ieN

to Proposition 1.3.2/1, the map | |’ is a power-multiplicative ‘‘k-algebra semi-
norm” on A/x such that |f(z)|" =< |f(x)|res for all f € A. Because 4/z is a field,
| |"isin fact a norm. The field k is complete, and 4/z is an algebraic extension
of k. Hence the spectral norm is the only power-multiplicative k-algebra norm

on A/xz, and therefore it coincides with | |’. Thus we have |f(x)| = inf |f(x)i|LL.

ieN |
Applying this lemma to all € Max; 4, we get

Corollary 2. If A vs a k-Banach algebra with norm | |, then for all f € A one
has

flsup = 171

If 4 is not complete, this statement may fail to be true. For example, take
A = k[X] provided with the Gauss norm and f:= X ; then |X| = 1, whereas
|flsup = 00, as we have seen already in (3.8.1).

The following result is closely related to Proposition 3.7.5/2.

Proposition 3. Let A be a k-Banach algebra. Assume that | |s, 18 a norm on
A. Then every k-algebra homomorphism ¢ from an arbitrary k-Banach algebra B
wnto A 1s continuous.
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Proof. For all x € Max; A, consider the commutative diagram
B—— A4
ﬁl \ l“
Blp(z) > A/

where x and g are the canonical epimorphisms. Because 4/« is algebraic over
k, so is Blp~1(x). Hence ¢p~1(x) € Max; B. Provide 4/x and B/g~1(x) with the
spectral norm. The map % is then an isometry. The epimorphisms « and g are
contractions according to Lemma 1. Thus we know that ¢y = % o f is contin-
uous. Then by Lemma 3.8.1/9, we may finish the proof by using the Closed
Graph Theorem (in almost literally the same way as in the proof of Proposition
3.7.5/1). |

Corollary 4. If A is a k-Banach algebra such that | |g,p ts a norm on A, then
all complete k-algebra norms on A are equivalent.

In Corollary 2 we only have an estimate for | |4,,. Now we want to com-
pute | |gyp in terms of | |. This can be done if we add topological conditions
to the assumptions of Proposition 3.8.1/7.

Proposition 5. Let ¢: B — A be an integral torsion-free k-algebra monomor-
phism between two k-algebras A and B, where B is an integrally closed domain.
Assume furthermore that A ©s a k-Banach algebra with norm | | and that ¢ s
conttnuous if B 18 provided with the topology tnduced by | |sup. Then one has for
allf € A

inf l/illli - lflsup = max [b; ;l/l’;)’

ieN 1<i<n
where f* 4 @(b,) 1 + +-- 4+ @(b,) = 0 s the wntegral equation of minimal
degree for f over ¢(B).

Proof. We only have to show that |f|, = |f|sup, Where [f|,:= inf |f{1/,

ieN
From Corollary 2 one deduces immediately that [f|s,p; = |f|,. In order to show
the opposite inequality, we shall use Proposition 3.8.1/7. Since | |, is a power-
multiplicative semi-norm on 4, one can apply Proposition 3.1.2/1 to 4/ker | |,
(viewed as a normed algebra over itself), and one gets
|flr = max |p(b;)}"* = max |p(b;)M".
1<i<n 1=sis=n

Because ¢ is continuous, there is a real constant C > 1 such that |p(b)| = C|b|sy,
for all b € B, and a fortiori |p(b)|}/¢ < O|b|L/i, for all © € N. Thus by Proposition
3.8.1/7, we have shown that |f|, < C max |b;|}i = C|f|sup- This implies |f|,

1<i<n
=< |flsup» since both | |, and | |s,, are power-multiplicative. O

Remark 1. In spite of the fact that | |,, depends only on the algebraic
structure of the k-algebra A4 (and, of course, on the valuation on k), | |ep
nevertheless coincides with the norm | |, which is derived from the given
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Banach norm on 4. Thisis a result similar to Corollary 4, asserting that (roughly
speaking) the topological structure of the k-Banach algebra A4 is already deter-
mined by the underlying algebraic structure.

Remark 2. The assumption “p is continuous” of Proposition 5 is automat-
ically fulfilled if 4 is reduced and if | |, is a complete norm on B. Namely,
B provided with | |gp is then a k-Banach algebra and | |, is & norm on 4
by Proposition 3.8,1/7 (c). Applying Proposition 3, we see that ¢ is continuous.

We want to conclude this section by looking at topologically nilpotent and
power-bounded elements of a k-Banach algebra 4. Since
inf |fi[1¢ = lim | i
ieN i—00

for any semi-norm (cf. (1.3.2)), it is easily seen that an element f is topologically

nilpotent in 4 if and only if inf | f{|1/¢ < 1. Furthermore, we have inf |f{|1/i < 1if f
ieN ieN

is power-bounded. In the special situation described in Proposition 5, the

latter implication is, in fact, an equivalence. Namely,

Corollary 6. Under the hypotheses of Proposition 5, the following statements
are equivalent for all f € A:

(@) f 7s topologically milpotent,

(b) inf [f1F <1,

ieN

) |flsup < 1.
If the Maximum Modulus Principle holds for A or B, then (a), (b) and (c) are
equivalent to

(d) |f(@)] < 1forallx € Max; A.
Furthermore, the following statements are equivalent for all f € A:

(a’) f is power-bounded,
(b") inf [fMf <1,

ieN
(©) |flsup = 1.

Proof. It has already been mentioned that (a) and (b) are equivalent. The
preceding proposition yields the equivalence of (b) and (c). Clearly (c) and
(d) are equivalent if the Maximum Modulus Principle holds for 4. Further-
more by Proposition 3.8.1/7 (b), if the Maximum Modulus Principle holds for
B, it holds also for 4.

As already indicated, (a’) implies (b’). The equivalence of (b’) and (c’)
follows from Proposition 5. Hence it suffices to show that (c¢’) implies (a’). Use
the notations of Proposition 5. Then from (¢’) we get |b;|qup < 1forz =1, ..., n,
and therefore |b|s,p = 1 for all b € P[by, ..., b,], where P is the prime ring of

B, i.e., the smallest subring of B containing 1. Since ¢ is continuous, R :=
@(P) [¢(]y), ..., ¢(by)]isbounded under | |. From the integral equation for f, one



178 Chapter 3. Extensions of norms and valuations

n—1

easily derives fi € } Rft for all j € IN (use induction on j). Hence f is power-
i=0
bounded with respect to | |. |

3.8.3. Banach funection algebras. — The main result of the preceding
section (Proposition 3.8.2/5) allows us to compute | |, on 4 in terms of the
given complete norm on A4, but it does not answer the question of whether or
not | [¢p also induces the Banach topology on 4. We shall attack this prob-
lem from a somewhat more general point of view and start with the following
definition:

Definition 1. 4 k-algebra A s called a Banach function algebra if | |wp ts @
complete norm on A.

For any k-algebra A, we may interpret the elements of 4 as functions on
Max; 4 with values in the algebraic closure k, of k. The special case where the
semi-norm of uniform convergence on Max; A4 is, in fact, a norm making 4 a
k-Banach algebra is singled out by the above definition. The question of
whether or not A4 is a Banach function algebra depends only on the algebraic
structure of A. If 4 is a k-Banach algebra with some given norm, we may ask:

Does the fact that 4 is also a Banach function algebra influence the given
norm?

Lemma 2. 4 k-Banach algebra A is a Banach function algebra if and only if
| lsup %S equivalent to the given norm on A.

Proof. The if part is obvious. The only if part follows from Corollary 3.8.2/4.
1

Lemma 3. If A 7s a Banach function algebra, then | |gp 18 the only power-
multvplicative complete k-algebra norm on A.

Proof. Since any two power-multiplicative k-algebra. norms inducing the
same topology must coincide (cf. Proposition 3.1.5/1), there is at most one
power-multiplicative complete k-algebra norm on 4 by Lemma 2. On the
other hand, | |[g, is power-multiplicative and complete if 4 is a Banach func-
tion algebra. O

Given a k-algebra homomorphism B — A4, we are interested as before in
deriving information about | |, on 4 from properties of | |, on B, and
vice versa. Here, where we are concerned with Banach function algebras, it is
natural to ask: If B is a Banach function algebra, does 4 inherit this property
from B, and vice versa? As one would expect, ‘“‘going down” is easier than
“going up”’. Thus we treat the easy case first.

Lemma 4. Let ¢: B — A be a k-algebra monomorphism between two k-algebras
A and B. Assume that A vs a Banach function algebra. Then B vs a Banach
function algebra if ¢(B) is closed in A. In particular, a closed subalgebra of a
Banach function algebra is again a Banach function algebra.
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Proof. Let | |$5) (resp. | |{8)) denote the supremum semi-norm on 4 (resp.

B). The algebra ¢(B), provided with the restriction of | |{4) is a k-Banach
subalgebra of 4, because A4 is a Banach function algebra and because ¢(B) is
closed in 4. Lifting this Banach algebra structure back to B by means of ¢
(i.e., by defining |b] := |p(b)|d) for b € B), we get a k-Banach algebra structure

sup

on B. Applying Corollary 3.8.2/2, we see that the new norm dominates the

supremum semi-norm on B — i.e., [b|{8) < |b| for all b € B. On the other hand,

by Lemma 3.8.1/4, the monomorphism ¢ is a contraction with respect to the

supremum semi-norms, i.e., |b] = |p(b)|$) < |b|(8) for all b € B. Putting these
inequalities together, we see that | |{8) coincides with the complete norm
E O

Remark. If, in addition to the assumptions of Lemma 4, the monomorphism
@ is supposed to be integral, then the closedness of ¢(B) is also necessary for B
to be a Banach function algebra. This follows from Lemma 3.8.1/6 (a).

We want to replace the condition “‘p(B) is closed’ by other assumptions
which are easier to handle.

Corollary 5. Let ¢: B — A be a finite k-algebra monomorphism, where B 1s a
Noetherian k-Banach algebra and A is a Banach function algebra. Then B is a
Banach function algebra.

Proof. Provide 4 with the norm | |s,,. By Proposition 3.8.2/3, the map ¢ is
continuous. For all b € B, we have |@()|sp = |b|sup by Lemma 3.8.1/4 and
|blsup = |b] by Corollary 3.8.2/2. Therefore we can view 4 as a finite normed
B-module. Since B isa Noetherian k-Banach algebra, all B-submodulesof 4 are
closed (see Proposition 3.7.2/2); in particular, ¢(B) is closed in A. Now the
assertion follows from the preceding lemma. 1

In the remainder of this section, we consider a k-algebra homomorphism
¢: B — A; we want to look at conditions which imply that 4 is a Banach func-
tion algebra. We start with a criterion which can be used if char £ = 0.

Proposition 6. Let char k = 0, and let ¢: B — A be a finite torsion-free
k-algebra monomorphism, where B is a Noetherian integrally closed domain and
where A is reduced. Then A vs a Banach function algebra tf B is a Banach function
algebra.

Proof. First we want to show that B = {b € B; |blsyp, = 1) is integrally
closed in its field of fractions. Let f, ¢ be elements in B with g 3= 0 such that

U= L is integral over B. Since B and B have the same field of fractions

@(B) and since B is integrally closed in Q(B), we know that, in fact, u € B. Let
u™ + bu™ 1+ ... 4 b, =0 be an integral equation for u over B. Then we
have by Proposition 3.1.2/1

[u]qup < max |b;|2i < 1.

ilsup =
Hence » € B, and B is integrally closed. Similarly, using Proposition 3.8.1/7 (a),
we see that A is integral over B.
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Let us now look at the ring of fractions@(4) := 4, p,_(;, Which is a finite
Q(B)-algebra. We want to show that there exists a Q(B)-basis vy, ..., v, of

T

Q(A) over Q(B) such that A= 2/ Bw,. First we consider the case, where 4 is an
i=1

integral domain, or equivalently, where Q(4) is a field. Since we are working in

characteristic 0, we know that @(A4) is a separable extension of Q(B) of degree
r < oo, say generated by an element a € Q(4). We may assume that the mini-
mal polynomial of @ has coefficients in B so that a is integral over B. Let
a = ay, ..., a, be the conjugates of a over Q(B) and set K := Q(B) (ay, ..., ).

r—1

Then any f € Q(4) can be written as f = 3 ba* with coefficients b; € Q(B).
i=0

Using Galois automorphisms over @(B) on K, we get equations

r—1 . .
/]':Zbia/;" 7:_19'--77',
i=0

where f; is the image of f under the automorphism mapping a to a;. If one
views these as a system of linear equations in the unknown b;, the determinant
of the coefficient matrix is VANDERMONDE’S determinant
d = det (a}) = [[ (@, — @,).
v>u

Since d? (the discriminant of the minimal polynomial of a) is invariant under
Galois automorphisms, we have d2 € Q(B). (In fact, d2 € B since all a; and
hence d? are integral over B.) If f is integral over B, then all /; are integral over
B. Therefore CRAMER’s rule shows that in this case all elements d2b; are integral
over B; hence they are contained in B, because, as we saw, B is integrally
closed. Thus we have verified that the integral closure of B in Q(4) (and, in

r—1
particular, 4) is contained in Y’ B(d—2a?).

i=0

If Q(4) is not a field, it is a finite direct sum of finite extensions L, ..., L;

of Q(B) (use DEDEKIND’s Lemma 3.1.4/1). Then the above consideration can be
carried out for each extension L; separately, and the desired result follows.

T
Let v, ..., v, be a Q(B)-basis of Q(A4) such that A= Y’ Bv;, and choose an
i=1 r
element b 4= 0 in B such that all products v;v;, are contained in 3 Bb-lv;.
Then i=1
A= X Bv,= Y Bbl,
. . i=1 i=1
and, in particular,

r T
A=} By;= F:= }] Bb~1v,.
i=1 i=1
We assume that B is a k-Banach algebra under | [y, and consider a norm
on the finite B-module ¥, which is given by

r v;
2 b; —'| := max |b;|sup -
i-1 b

1=sisr
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Then F is a complete Noetherian B-module. By Proposition 3.7.2/2, all sub-
modules of F ars closed. In particular, 4 is closed in F and therefore a k-Banach

space under | |. An easy verification shows that the multiplication is con-
tinuous in 4 (due to the choice of the element b € B). Hence by Proposition
1.2.1/2, we can define a k-algebra norm || || on 4 by
If):= sup 221,
ged 0} 191

which is equivalent to | |.

We want to conclude the proof by showing that | |y, is equivalent to
|| |land henceto| |on A.Then itfollowsthat 4 isa Banach function algebra.
We have | |qp = || || by Corollary 3.8.2/2. Thus it is enough to find a

constant C > 0 such that |f| < C|f|s, for all f € A. Choose an element ¢ € k&
with [¢|] > 1. We claim that [f| < |c| |f|sup for all f € A. In order to verify this,
consider a fixed element f == 0 in 4. Then |f|s,, == 0 by Proposition 3.8.1/7 (c).
Hence there exists an m € Z such that

e|™ 2t < [fleup = le|™.
Then |c™f|wp = 1 and |¢|™ < |¢| |/lsup- Set g:=c™/ so that g € 4. Since
4dc= Y Bb-1;, one can find elements b,, ..., b, € B such that g = 3 b;(b~1v;).

=1 i=1

Then one has

Ifl = lemgl =| X (™b;) (b~1v;)| = max [¢™b;lsup = l¢|™ = l¢] |/lsup,
i=1 1=isr
which finishes our proof. J

For char £ = p > 0, we do not know whether or not Proposition 6 holds
without additional assumptions. At any rate, it remains true for char k = p if
A isfinite over the kP-algebra A?. Instead of pursuing this further, we shall give
another criterion for 4 to be a Banach function algebra, which is valid in all
characteristics and which is quite adequate for the applications to k-affinoid
algebras in (6.2.2). '

Theorem 7. Let ¢: B — A be a finite torsion-free k-algebra monomorphism,
where A 1s reduced and where B is a valued integrally closed N oetherian k-Banach
algebra such that the freld of fractions Q(B) 1s weakly stable (cf. (3.5)). Then A is a
Banach function algebra, and |f|sp = |flsp for all f € A, where | |, denotes the
spectral norm on the finite-dvmensional reduced Q(B)-algebra Q(A) := A, p)— (o}

Proof. Clearly Q(4) is a finite-dimensional reduced @(B)-algebra and hence
a ring-theoretic direct sum of finitely many finite extensions of Q(B) (see
DEDEKIND’s Lemma 3.1.4/1). Since Q(B) is weakly stable, all these extensions
are weakly Q(B)-cartesian under their spectral norm. Then Q(4), provided
with its spectral norm, is weakly Q(B)-cartesian (use Theorem 3.2.2/2). Let
@y« .., A, be a Q(B)-basis of Q(A4). Because ¢ is finite, there is a universal de-
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nominator b€ B — {0} suchthat A—=A4’':= }'B % — Q(A). Since | |sp induces
i=1

the Q(B)-product topology on Q@(A4), and since B is complete, we get a complete
finite (and hence Noetherian) B-module if we restrict | |, to 4’. By Proposi-
tion 3.7.2/2, the B-submodule 4 of A’ is closed with respect to the restriction
of | |s. Because A’ is complete, A is complete and hence a k-Banach algebra.
From Proposition 3.8.1/7 (a), we derive |f|qp = |flsp for all f € 4. Hence | |qyp
is a complete norm on A4, and therefore 4 is a Banach function algebra. |

Remark. If 4 is assumed to be a k-Banach algebra with given norm | |,
then by Corollary 3.8.2/4 and Proposition 3.8.2/5, | |, is equivalent to | |

and lf|sup = inf |fi|1/i'
ieN



Appendix to Part A

CHAPTER 4

Tame modules and Japanese rings

The purpose of this chapter is to establish some auxiliary results from
commutative algebra. By 4 we always mean an integral domain (no norm or
valuation is required). Let K = Q(4) be the field of fractions of 4. For any
A-module M, we denote by Q(M) the K-vector space M &, K. This is the
localization of M with respect to the multiplicative system 4 — {0}. By rk, M
we always mean the rank of M, i.e., the maximal number of A-linearly inde-
pendent elements of M. We have rk, M = dimy Q(M).

4.1. Tame modules

The results of this section are needed with others to derive certain criteria
for Japaneseness of Noetherian integral domains.

Each finitely generated 4-module M is of finite rank. The converse is not
in general true if 4 4= K ; namely in this case, K itself is an A-module of rank 1
which is not finitely generated.

Definition 1. An A-module M s called tame if each A-submodule N — M
of finite rank s finitely generated.

Obviously, each such submodule & is then Noetherian (i.e., all submodules
of N are finitely generated). Thus M s tame if and only if each submodule
N = M with rky N << oo 18 Noetherian.

Submodules of tame modules are again tame. Furthermore,

Proposition 2. The direct sum of finitely many tame A-modules vs a tame
A-module.

Proof. Let M,, M, be tame 4-modules, and let N = M, @ M, be a sub-
module of finite rank. We have N — 7;(N) @ n,(N), where z; denotes the pro-
jection from M; @ M, to M;, + =1, 2. Clearly, rk, =;(N)=rk, N, 1=1,2.
Hence =;(N) = M; is Noetherian, * = 1, 2. Therefore, 7;(N) P 7,(N) and so
N are Noetherian. 1

Proposition 3. Let A — A’ be a pair of tntegral domains such that A’ is a tame
A-module. Then each torsion-free tame A'-module M’ (viewed as an A-module) is
a tame A-module.
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Proof. Let N be an A-submodule of M’ of finite rank. Denote by N’ the
A’-submodule of M’ generated by N. Obviously, rk N’ <rk, N. Hence N’
is a finitely generated A’-module. Since M’ is torsion-free, we can embed N’

8
into a finitely generated free A’-module F’, say F' = @ A’. Then F’ is a tame
1

A-module, because 4’ is a tame A-module. Thus N, being an A-submodule of
finite rank in F’, is finitely generated. 1

Proposition 4. Let A be Noetherian. Lét M be an A-module such that, for
each submodule N == 0 of finite rank, there exists an A-linear map @: N — A
with ker @ == N (t.e., @ == 0). Then M 7s tame.

Proof. First, M has no torsion. Let N — M be a submodule of finite rank.
We set ¢ := rk, N, and we shall prove by induction on ¢ that N is Noetherian.
For t = 0, we have N = 0 (since M is torsion-free), and the assertion is trivial.
Let ¢t > 0. Then N == 0, and there exists an A4-linear map @: N — 4 with
ker @ = N. We extend @ to a Q(4)-homomorphism &@*: Q(N) — @Q(A4). Since
@* 4= 0, we have

rk, ker @ < dimy,, ker &* < dimy, Q(N) =1k, N = ¢.

By the induction hypothesis, ker @ is Noetherian. Because 4 is Noetherian, the
ideal @(N)= A4 is also a Noetherian A-module. From the exact sequence
0 —ker @ - N — ®(N) — 0, we now conclude that N itself is a Noetherian
A-module. |

An A-module M is called lvnearly separable if, for each element x 4= 0 in M,
there is an A4-linear map @: M — A4 such that @(x) == 0. Since all submodules
of a linearly separable module are again linearly separable, we can deduce from
Proposition 4 the following result:

Corollary 5. Let A be Noethervan. Then each linearly separable A-module —
in particular each free A-module — s tame.

4.2. A Theorem of Dedekind

Let K’ be an algebraic extension of K = @(A4). The integral closure A’ of
A in K’ consists of all elements of K’ which are infegral over A, i.e., which
satisfy an integral equation with coefficients in 4. It is well known that 4’ is
an A4-algebra with K’ as field of fractions; more precisely, K’ = A’ . The
integral domain A4 is called normal or integrally closed if A is integrally
closed in its field of fractions K. We are interested in the following question:

If K’ is a finite K-module (i.e., if dimgz K’ << o0), is it true that 4’ is a
finite 4-module?

First, we state (and repeat the proof of) a well-known theorem which goes
back to DEDEKIND.
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Theorem 1. Let A be a normal Noetherian integral domain; let K' be a finite
and separable extension of K. Then A’ vs a finite A-module (and, tn particular, a
Noetherian ring).

Proof. Since K' is separable over K, the bilinear form K'X K' — K,
(x, y) > T(xy), is non-degenerate (T' := Trg/ x: K’ — K denotes the trace
function). Hence, for each basis {z,, ..., ,} of the K-vector space K’, there
exists a K-basis {y, ..., ¥} of K’ such that

T(x.y,) = 0u; p,v=1,...,n (d,: = KRONECKER’s delta).

We may assume z;, ..., , € A’. Then we claim
n
(%) A'= 3 Ay,,
=1

from which the assertion follows, because A4 is Noetherian. In order to verify (x),

n
take a’ € A’, and write @’ = } a,y, where a, ¢ K. We derive
1

T(xua') = 3 a,T(x.y,) = a,, u=1,..,n.

y=1
Since z,a’ € A’ is integral over 4, it follows that a, € K is integral over 4.
Because 4 is normal, we conclude a, € 4, u =1, ..., n. ]

4.3. Japanese rings. First criterion for Japaneseness

The Theorem of DEDEKIND is not, in general, true for inseparable exten-
sions. Therefore, we introduce

Definition 1. An integral domain A s called Japanese if the integral closure
of A tn any finite extension of K s always a finite A-module.

Remark. A Noetherian integral domain A4 is Japanese if the integral closure -
of A in each finite quasi-Galois (= normal) extension of K is a finite 4-module.
This is clear, since an arbitrary finite extension of K can always be embedded,
into its quasi-Galois closure, which is also finite over K.

Since each algebraic extension of a perfect field is separable, we immediately
deduce from the result of DEDERIND (Theorem 4.2/1)

Proposition 2. Each normal Noetherian integral domain A, whose field of
fractions s perfect, 1s Japanese.

The last proposition fails if we drop the assumption of perfectness. A counter-
example is given by the discrete valuation ring of F. K. ScamipT (cf. (1.6.2)).
In this example the condition of the following criterion is violated:

Proposition 3 (First criterion for Japaneseness). 4 normal Noetherian
integral domarn A is Japanese tf and only if the integral closure of A in each
finate purely inseparable extension of K is a finite A-module.
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Proof. By Proposition 2, we only have to show that the condition of this
criterion is sufficient for 4 to be Japanese when char 4 =:p == 0. Let L be
an arbitrary finite quasi-Galois extension of K. Then there exists a field L;
between K and L such that L; is purely inseparable over K and L is separable
over L;. By assumption, the integral closure 4; of 4 in L; is a finite A-module.
Since the integral closure A’ of 4 in L equals the integral closure of 4; in L,
it is enough to show that 4’ is a finite 4;-module. Because 4; is normal and
Noetherian, this follows from DEDEKIND’S Theorem 4.2/1. O

4.4. Tameness and Japaneseness

Let K, be an algebraic closure of the field K. We denote by A4, the
integral closure of 4 in K,. The A4-algebra A4, (which contains A4) will be
called a (universal) integral closure of 4; this algebra 4, is uniquely deter-
mined up to (non-canonical) A-algebra isomorphisms.

If K’ is any finite extension of K, we may always assume K’ — K,. Then
A’ := A, n K' is the integral closure of 4 in K’.

Proposition 1 (Second criterion for Japaneseness). 4 Noetherian integral
domain A vs Japanese if and only if A, is a tame A-module.

Proof. (1) Let A be Japanese. Take any 4A-module N — 4, of finite rank.
Then Q(N)—= K, is a finite K-vector space. Therefore the field K'—= K,
generated by Q(XNV) is a finite extension of K. Thus 4, n K’ is a finite 4-module
by assumption. Hence N — 4, n K’ is a finite 4-module, since 4 is Noetherian.

(2) Let A4, be a tame 4-module. Take any finite extension K’ of K. Since

rky (4, n K') =[K":K] < o0,
the integral closure 4, n K’ of A in K’ is a finite A-module. m
The proposition just proved can be strengthened considerably if, in ad-
dition, A4 is assumed to be normal. Set p:= char 4. If p = 0, the ring 4 is
always Japanese by Proposition 4.3/2. So assume p == 0. Then an important
role is played by the subring
AP i= (w € A,; aP € A}

of 4,, which we may view as an 4-submodule of 4,.

Proposition 2 (Third criterion for Japaneseness). A Noetherian normal
integral domain A of characteristic p == 0 1s Japanese tf and only if AP is a tame
A-module.

Proof. (1) If A4 is Japanese, 4, is a tame 4-module by Proposition 1. Hence
AP is also tame, as a submodule of 4,.
(2) Let A?™ be a tame A-module. Asa first step, we prove by induction on n:

Each A-module A, :— {x € A,; xP" € A} istame, n = 1,2, ....

Assume 4, is tame (true by assumption for n = 1). In order to see that
A, is a tame 4-module, it is enough to prove (due to Proposition 4.1/3 with
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A :=A, and M':= A,,,) that 4,,, D A, is a tame A4,-module. But this is
clear, since the Frobenius homomorphism z +> x?" maps the 4,-module 4,
bijectively onto the 4-module 4,.

Now it can be easily seen by using Proposition 4.3/3 that 4 is Japanese.
Let L — K be a finite purely inseparable extension of K. Choose » = 1 such
that L = K, := {x € K,; 2P" € K}. The integral closure L n 4, of 4 in L is an
A-submodule of K, n 4, of finite rank (namely, rk (L n 4,) = dimy L). If
we can prove K, n 4, = A4,, the tameness of 4, will imply the finiteness of the
A-module L n 4,.

The inclusion 4, = K, n 4, is obvious. Now take ¢ € K, n 4,. Then
g€ KnA, and KnA, = A, since 4 is normal. Thus we have g € 4, and
hence K, n A, — A4,. 1

We get directly from Proposition 2 and Corollary 4.1/5

Proposition 3. 4 Noetherian normal integral domain A of characteristic p == 0
18 Japanese if A" 1s a linearly separable A-module.

We apply this last proposition in order to obtain the (well-known) fact
that polynomial rings and rings of formal power series are Japanese.

Proposition 4. For each field k, the polynomial ring k[X,, ..., X,], as well as
the ring k[ X,, ..., X, ]| of formal power series in n indeterminates, is Japanese.

Proof. We discuss the case 4 := k[ X,, ..., X,;]] and use the fact that 4 is
Noetherian and factorial, and hence normal. Therefore, it is enough to show
(by Proposition 3) that, for p:= char k &= 0, the A-module 4?7 ig linearly
separable. We have

AP = kP XY, L., XUP],
and this last ring is, as an 4-module, isomorphic to the direct sum of finitely
many copies of the 4-module

A= k[ Xy, ..y Xo]

(the monomials X%/7 ... X#/P, 0 < pu; < p, form a basis). Hence it is sufficient
to prove that A’ is linearly separable. Take h € 4’, h &= 0, say

h = Z a‘vl...v,,X:l cee X:'n’ a’v,_...v,, € kp-l,
0
where (7, ...,7,) is an index tuple such that a;_; = 0. Since kP is linearly

separable as a k-vector space, we can choose a k-linear map A’: k™ — k such
that 4'(a,, ;) = 0. By

) ( b, X X) = X V(b ) X Xne A
0 0

we extend 1’ to an A-linear map 1: 4" — A. Since A(k) == 0 by the choice of
A', we see that 4’ is linearly separable.

It is clear that the proof just given works for polynomial rings A[ X, ..., X, ]
as well. O
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CHAPTER 5

Strictly convergent power series

In classical function theory of several complex variables, a function
f:U — €, where U is open in C*", is called analytic if it hasa convergent power
series expansion around every point z € U. The same definition makes sense
for arbitrary complete fields k substituting for €. Due to OSTROWSKI, one
knows that a complete field k is either isomorphic to IR or € or the valuation on
k is non-Archimedean. Here we are only concerned with the second case. Since
all non-Archimedean fields are totally disconnected, it is clear that functions,
which are analytic on k£ in the sense mentioned above (or in any other local
sense), cannot satisfy the classical Identity Theorem. For example, the func-
tion f: k — k defined by

[0 for <1
f(z)'"{1 for |2 > 1

has a convergent power series representation (either = 0 or = 1) around each
z € k, since the sets {z; |z] =< 1} and {z; [2| > 1} are open in k. However f is not
identically O or identically 1.

In order to exclude this phenomenon, we require an analytic function to
have a globally convergent power series representation if it is defined on a
polyeylinder. In the following chapters, we will show how to extend this defi- -
nition to more general domains. Before this can be done, we have to study in
detail analytic functions on polycylinders and, in particular, on the unit ball
in k" (polycylinder of polyradius 1). It is easily seen that a power series converg-
es on the (“‘closed”) unit ball if and only if it is a strictly convergent power
series (characterized by the fact that its coefficients form a zero sequence).
Therefore this chapter is devoted to the investigation of strictly convergent
power series. Such series have already been considered in (1.4) and (2.2.6). We
start by repeating some properties of strictly convergent power series.

The heart of the present chapter is section (5.2). It contains a presentation
of the WEIERSTRASS techniques which allow the application of RUCKERT’s
fundamental method. Thereby we obtain important results on the TATE algebra
T, of strictly convergent power series in n variables. Also, the WEIERSTRASS
Finiteness Theorem smoothes the way for the proof of the NorETHER Normali-
zation Lemma in (6.1.2).

Section (5.3) is devoted to the Stability Theorem for the field of fractions
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Q(T,). We give a proof which is a simplified version of GRUusoN’s approach in
[17]. Together with the results of (5.2.7), we need the stability of Q(7',) as a key
ingredient for the proof of the GRAUERT REMMERT GRUSON theorem on the
finiteness of the functor 4 —~> A; see (6.4).

5.1. Definition and elementary properties of T, and T,

5.1.1. Description of T',. — Let k be a commutative field with a complete
non-trivial non-Archimedean valuation. For n =1, 2, ..., define the following
subalgebra of the k-algebra k[X;, ..., X, ] of formal power series in »n indeter-
minates over k (cf. (1.4.1)):

Tok):= KXy, ..., Xp):= { DI AP, LD, 6. H

1reees V=0

a €k and |a,_ ,|—0 for v, 4 --- 49, —>oo}

We call T, (k) the (free) Tate algebra in n indeterminates over k. The elements of
T, (k) are called strictly convergent power series. It is easily checked that the
inductive definition of strictly convergent power series in several variables, as
given in (1.4.1), is equivalent to the one given here. In particular, we have
Tyn(k) = Ty_1(k) (X,). If the ground field is clear from the context, we write 7',
instead of 7',(k); furthermore, we write 7'y(k) := k. For simplicity we adopt
the following notation:

X =X, X,), v=(01,.00,7), X* =Xp...X» and |p|:=» + -+ + »,.
For f = Y a,X’ € T,, the real number

|fl := max |a,|

v

is well-defined. Similarly as in (1.4.1), we call | | the Gauss norm on 7',. The
results of (1.4.1) immediately give us the following

Proposition 1. 7,(k) vs a k-subalgebra of the algebra of formal power series
k[ Xy, ..., X,]- The Gauss norm s a k-algebra norm on T,(k) making vt into a
k-Banach algebra containing the polynomial algebra k[X,, ..., X,] as a dense
k-subalgebra.

Using the fact that |7',| = |k|, we see that every non-zero series can be
normed to length 1 by multiplication with a scalar from k:

Observation 2. For every f € T, — {0}, there exists ¢ € k such that |cf| = 1.
For later reference we add two more remarks.
Remark 3. 7', @s a field if and only if n = 0.

Remark 4. 4s a k-vector space, each T,(k), n = 1, vs vsometrically wsomorphic
to the space c(k) of all zero sequences over k.
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The first remark follows simply from the fact that X, is not a unit. To
prove the second one, just convert the multiple zero sequences a, , into
simple zero sequences by CANTOR’s diagonal procedure. (Remark 4 is a special
case of the general fact that every complete k-vector space of countable type
and of infinite dimension admits a linear homeomorphism onto ¢(k); cf. Prop-
osition 2.7.1/2.)

5.1.2. The Gauss norm is a valuation and f’,, is a polynomial ring over k. —
As in (1.2.4) and (1.2.5) we set

T,:= {f € Ty; f topologically nilpotent},
i, = { f € Ty; f power-bounded}.

r{‘hen Tn is a subring of 77, and ’.lv’,, is a T',-ideal. The residue ring ’j’,,/f’,, is a
k-algebra; it is denoted by 7T',.

Proposition 1. 7he Gauss norm s a valuation on T),.
Proposition 2. 7, = k[ X].

We give a combined proof for both assertions. Following (1.2.3), we use the
Gauss norm in order to define the objects

T, :={feTulfl =1},
Ty:={feTwlfl <1},
T:=T,|T,.
We can extend the canonical epimorphism ~: i — & (where k is the valuation
ring of k and £ is the residue field of k) to a map ~: 7', — k[X] by setting
X a, X" := X a,X’ € k[ X].

Obviously the kernel of this map is T,, and the map is surjective. Therefore
we get 7", = k[ X]. In particular, the residue algebra 77, is an integral domain.
Since the Gauss norm of any non-zero element in 7, can be adjusted to 1 by

scalar multiplication, it is easily verified that | | is a valuation (see Proposi-
tion 1.5.3/1). But then we must have 7, = Ty, T, = T, and hence T, = T,
= k[ X]. |

Alternatively, the above results can be deduced from Corollary 1.5.3/2 and
Proposition 1.4.2/2; use induction on n.

5.1.3. Going up and down between T, and T,. — By reducing mod f’,,,
we move from power series to polynomials, thereby simplifying the problems
at hand in many cases, as the following results will show.

Proposition 1. 4 series f € T, with |f| = 1 vs a unit wn T, of and only if
I7(0)] = 1 and |f — f(0)] < 1. Thus f is a unit if and only if f is @ unit (te., a
constant) i T,
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Proof. Since | | is a valuation, f = } a,X” € T, with |f| = 1 is a unit in
T, if and only if it is a unit in 7',. Due to Proposition 1.4.2/3 (use induction on
n and the fact that 7', is complete), this is equivalent to a, ¢ being a unit in
k and a, belonging to k for all », [v| > 0. This is the assertion. m

Using the above characterization of units, we get the following technical
lemma:

Lemma 2. For each f € T, with |f| = 1, there s an element ¢ € k with |c| = 1
such that ¢ + f vs not a unit in T,

Proof. We shall treat the two cases [f(0)] < 1 and [f(0)] = 1 separately.
If |[f(0)| < 1, then |f| = 1 implies |f — f(0)] = 1. Forg:=1 + f € T,, we have
lgl =1 and |g — ¢(0)| = |f — f(0)] = 1. According to the preceding proposi-
tion, g is not a unit in 7,. If |f(0)] = 1, define g:= f — f(0). Then ¢(0) = O,
and hence g cannot be a unit in 7°,. O

This lemma has two important consequences.

Proposition 3. N m = (0), where Max T, denotes the set of all maximal
ideals of Th,. meMaxT,

Proof. Assume that there is a non-zero series f contained in all maximal
ideals of 7',. We may assume that |f| = 1. Choose ¢ € k with |¢| = 1 such that
¢ + fis a non-unit. Then we can find a maximal ideal m such that ¢ 4+ f € m.
By assumption, f also is an element of m. This implies ¢ € m, which is impossible
since ¢ € k*. ' O

Theorem 4. Every k-algebra homomorphism ¢: 7T, — T, ts a contraction,
ve., |9(f)l = |f] for all f € T

Proof. Again we proceed indirectly. Assume that there is an f € 7', such
that |¢(f)] > |f]. Without loss of generality, we may assume that |¢(f)| = 1.
Choose ¢ € k with |¢c] = 1 such that ¢ + ¢(f) is not a unit in 7', (Lemma 2). On
the other hand, g:=c¢ -+ f is a unit in 7, according to Proposition 1, since
lgl =1 and |g —g(0)] = |f — f(0)] <1 (because |f| <1). Hence ¢(g9) =c
+ ¢(f) must be a unit in 7',, which is a contradiction. O

The proof just given is similar to the proof that a k-algebra homomorphism
between analytical local algebras is local.
We draw some conclusions from the above theorem.

Corollary 5. Every k-algebra homomorphism ¢: T, — T,, is a continuous sub-
stitution homomorphism; i.e., for any such map ¢, there are fy, ..., fn € T such
that

¢(Z a/va) = Zavl...vn 11'1 s f:;"

for all series 3 a,X” € T,. More precisely, the map ¢ > ($(X,), ..., $(Xy))
defines a brjection between Hom (T, T,,) and (T,,)".



5.1. Definition and elementary properties of 7', and T, 195

Proof. Let ¢: T, — T,, be a k-algebra homomorphism. Define f;:= ¢(X,)
for 7 =1, ..., n. According to the theorem, we have |f;| < |X;| = 1, whence
fi € T',.. For D a, X" € k[X], one clearly has ¢(} a,X’) = 3 a.f}* ... fir. Due
to the theorem, ¢ is continuous, and therefore ¢(3'a,X*) = 3 a,f}* ... fi» for
all 3 a,X” € T,. Thus ¢ is uniquely determined by the tuple (¢(X1), coo d)(X,,))
€ (T Nowletf, ..., [, € 1., be given. Then it iseasy to verify that ¢: 7, — T,
defined by ¢(3 ' a,X*) = Y a.fir...fir is a k-algebra homomorphism with
¢(X;) = f;- Therefore it is clear that the map Hom (7',, T,) — (T)" given by

¢ — (qb(Xl), cens d)(X,,)) is bijective. ]
Corollary 6. Every k-algebra tsomorphism ¢: T, — T, is an tsometry.
This result follows immediately from Theorem 4. It can be improved as

follows:

Corollary 7. If ¢: T, — T,, vs a k-algebra isomorphism, then n = m and ¢
18 an tsometric automorphism of T,,.

Proof. The k-algebra homomorphisms ¢ and ¢ induce k-algebra homomor-
phisms ¢: KXy, ..., Xu] = ¥[X,, ..., Xn] and ¢ 1: B[ Xy, ..., Xu] > H[X,, ...,
X,]. Obviously, ¢ and &Yl are inverse to each other. Hence ¢ is a l::-algebra iso-
morphism. Then ¢ extends to an isomorphism k(X,, ..., X,) — (X, ..., X,,)
between the fields of fractions, and by looking at transcendence degrees over
k, we get n = m. O

The proof of Corollary 7 depends on the fact that the bijectivity of ¢ implies
the bijectivity of ¢. The converse of this fact is also true.

Corollary 8. A k-algebra endomorphism ¢ of T, is bijective if and only if ¢
18 bijective. :

Proof. We only have to show that “¢ bijective’ implies ‘¢ bijective”. It is
easily seen that ¢ is an isometry if ¢ is injective. It remains to show that ¢ is

surjective. Therefore assume that ¢ is bijective. There are elements f, ..., f,
€ T, such that ¢:= max [X; — ¢(f;)| < 1. An easy computation shows that,
1=isn

for any ¢ = 3} a,X* € T,, one can find an h € T, such that |g — ¢(h)] = ¢|g|.
Namely, using the standard estimate

r
Uy coethy — Oy eea 0] = 3 Uy e Uiy e U — Uq e UV .l D,
i=1
= (max [u; — v;]) (max |y, |v;|)1,
1sisr 1<isr

we see that theseriesh:= }'a,f}*...f/» isas desired. Thus ¢(7,)is ‘‘e-dense” in
T,, and Proposition 1.1.4/2 shows that ¢(7',) is, in fact, dense in 7,. But ¢ is an
isometry, and hence ¢(7',) is closed in 7,. So we must have ¢(7T,) = T,. [

Alternatively, the above result can be obtained by applying the Lifting
Theorem 2.7.3/2. — We conclude this section by considering a special class of
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automorphisms of 7', which will play an important role in the applications of
the WEIERSTRASS Preparation Theorem.

Example. Let ¢, ...,c,_, € N be given. Define ¢: T, — T, by $(X,):=
X, + X forv=1,...,n—1and $(X,) := X,. Then ¢ is an isometric automor-
phism of T,.

Proof. Let y: T, — T, be defined by y(X,):= X, — X? forv=1,...,n — 1
and ¢(X,) := X,. One easily checks that y isaninverse of ¢. Applying Corol-
lary 6, we see that ¢ is an isometric automorphism of 7,. 1

5.1.4. T, as a funetion algebra. — As before, we consider strictly convergent
power series with coefficients in the complete valued field k. Let k, be the
algebraic closure of k provided with the spectral valuation (which is the unique
valuation extending the valuation from k; see Theorem 3.2.4/2). For any
valued field K, we denote by

B"K):= {(xl, veny ) € K™; max |o,] = 1}
1=v<n
the n-dimensional unit ball (or polydisc) around the origin.
We want to show that each power series f = 3 a,X” € T, defines a map

Br(k,) — k,,
x> f2):= ) a,. , 2.0,

which also shall be denoted by f. Namely, consider a point « € B*(k,), and let
L — k, be a finite field extension of £ containing all coordinates z, ..., z, of z.
Then L is complete by Theorem 3.2.4/2. Since a,2” is a zero-sequence in L, the
series Y a,2” must converge to some element in L. Thus we see that, for all
x € B*(k,), the element f(x) is well-defined in k,. In particular, f(x) € k for all
x € B*(k).

Conversely, every k,-valued function f: B*(k,) — k, admitting a power
series expansion (with coefficients in k,) converging for all € B"(k,) and satis-
fying the additional requirement f(B"(k)) — k comes from a strictly convergent
power series in the manner described above. Namely, if one starts with a. power
seriesf = 3 ¢,X* € k[ X,, ..., X,,], the requirement that it must converge for
x = (1,..., 1) immediately yields |¢,| — O for »; + --- + », — co. It remains
to show that the second condition “f(B"(k)) — &k implies ¢, € k for all ».
Unfortunately, since £ may have characteristic p == 0, the argument that
¢y = % 233{ (0) € kisnot conclusive. However, we can get the desired implication
by a direct computation. First write f = f, + f,, where all non-zero coefficients
of f, do not lie in k, whereas those of f, do. It is clear that fl(B"(k))c: k. There-
fore, we may assume that no non-zero coefficient of f lies in k, and we have to

show f = 0. Assuming the contrary, we can write f = X3, 3 ¢,(X,,..., X, ;) X7®

v=28
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for some s € N u {0}, where ¢, € T,_;(k.) and ¢, == 0. Obviously no non-zero
coefficient of g, is in k. Since f(B"(k)) = k, we derive for all @, ..., 2, € k
that g.(xy, ..., 1) = lim  f(xy, ..., x,) 2, ° € k. Therefore, g, is a series in
Tn—>0, T,€k—{0}
n — 1 indeterminates having the same properties as f. Applying this reduction
n times, we end up with a non-zero constant in k£ which, on the other hand, is a
coefficient of f and therefore cannot lie in k. This contradiction gives the desired
result: a series f € 7T,(k,) which maps B"(k) into k is already an element of
T,.(k).
We summarize the preceding considerations in the following

Proposition 1. The serves of T,(k) give rise to exactly those functions
f: B*(k,) — k, which

(i) have a power series expansion over k, converging on the whole unit ball
B*(k,) and
(ii) map B*(k) into k.

If L < k, Us any finite algebraic extension of k, then f(B*(L)) — L for all f € Ty (k).

Later on (cf. Corollary 5), we shall see that two power series of 7', (k) induce
the same function B"(k,) — k, if and only if they coincide. To prove this fact,
we have to look at the norm of uniform convergence on B"(k,).

Proposition 2. Let f be a seriesinT,. Then sup |f(x)| < |f|, and f gives rise to
a continuous function on B"(k,). #€B"(ka)

Proof. For all x € B"(k,) and all », we have |a,2*| < |a,| < |f| if f=2 a,X".
Therefore, |f(x)] < max |a,2*| < |f|, whence the first assertion follows. Further-
more, f is a uniform limit of polynomials and hence continuous. O

Let ~: Bn(k,) = k" — k" denote the obvious extension of the residue map
~: k — k. It is easy to see that the following diagram

ke —L— /lc
PT 4
[ a—

is commutative for all f € T,. (In the diagram, f stands for the map induced by
the polynomial f € k,[X,, ..., X,].) We shall use this connection between the
functions in 7', and the polynomials over k associated to them to show that the
inequality in Proposition 2 is actually an equality.

Proposition 3 (Maximum Modulus Principle). For all f € T,, there is an
x € B™(k,) such that |f(x)| = |f|. If |f(x)| = |f|] for some x € Ivcg, then |f(x)| = |/
forall x € 70’{ These assertions remain valid if k, vs replaced by any field extension
L — k, of k, provided L is infinite.
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Proof. We may assume [f| = 1. Since the residue field k, of k, equals the
algebraic closure of £ (see Lemma 3.4.1/4), it has infinitely many elements.
Then there must be a point x = (xy,...,x,) € B*k,) such that f(#,...,#,) =0,

ie., f(?c/) == 0, which is equivalent to [f(x)] = 1. So the first assertion is proved.
From [f(x)] = 1 for some z € k*, we can conclude f(0, ..., 0) &= 0, which

again is equivalent to f(x) == 0 or |f(x)| = 1for all z € k*. The only property of
k, (besides being valued) needed for the proof was the fact that &, had to be
infinite. Hence the last remark of the proposition is also justified. O

The preceding proposition can be strengthened in the following way:

Proposition 4. The maxvmum of the values taken by a strictly convergent power
series [ 1s assumed on the subset {(xy, ..., x,) € B*(k,); || = -+ = |x,| = 1} of
the unit ball B*(k,).

Proof. Use the fact that the Gauss norm is a valuation on 7', (Proposition
5.1.2/1), and apply Proposition 3 to the series X; ... X,f. J

Corollary 5 (Identity Theorem). If f € T, vanishes for all x € B*(k,), then
/ = 0. Therefore the map associating to a series f € T, vts corresponding function
from B*(k,) to k, 1s an vnjection.

Proof. If f induces the zero function, then |f| = sup |f(x)] = 0 and hence
f=0. z€B"(k,) ]

This is a rather weak version of the Identity Theorem. Using elementary
methods, one can show the following much better statement: The zero set of a
strictly convergent series f == 0 is nowhere dense in B"*(k,). In the one variable
case, the WEIERSTRASS Preparation Theorem will tell us that a non-zero series
has only a finite number of zeros.

Corollary 6. 7', ©s a Banach function algebra satisfying the Maximum Modulus
Principle. The Gauss norm | | and the supremum norm | |s, cotncide on T,

Proof. For the definition of | |, and of Banach function algebras see (3.8).
Since | |yp = | | by Corollary 3.8.2/2, we have only to show that, for each
f € T, there exists a k-algebraic maximal ideal m < 7', such that |f(m)| = |f|.
In order to do this, consider a point z = (x,, ..., x,;) € B*(k,) such that |f(z)|
= |f| (Proposition 3). Denote by L := k(z, ..., x,) the extension of k generated
by the components of . Then L is finite over k, and due to the last assertion of
Proposition 1, there is an evaluation homomorphism

hey: Ty — L, g+ hyg):=gx).

Since the image of h, contains k and the elements z, ..., z,, it follows that h,
is surjective. Thus m,:= ker h, is a k-algebraic maximal ideal in 7T,, and
T,/m, is isomorphic to L over k. Corresponding elements in 7',/m, and L must
have the same spectral norm over k so that |g(m,)| = |g(x)| for all g € T,. In
particular, we have |f(m,)| = |f(z)] = |f|. O
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The proof relies on the fact that the sets B*(k,), Hom;, (7', k,), and Max; T,
are essentially the same. This point of view shall be elaborated onin more detail
in (7.1.1).

We now give a geometric interpretation of algebra homomorphisms
Ty, — Ty. Let ¢: T\, — T, be such a homomorphism, and consider the elements
fi:=¢(X;) for 7 =1, ..., n. By Proposition 2 and Theorem 5.1.3/4, we have
lfi@)] = |fil = |X;| =1 for all x € B™(k,), © = 1, ..., n. Therefore by defining
(X1, eeey Xp) 1= (f1 (@1s eves )y eoes [al@1y o ees x,,,)), one gets a map ¢': B™(k,)
— B™k,). If we call a mapping y: B™(k,) — B"(k,) affinoid whenever its
coordinate mappings y;: B™(k,) — k, are given by elements of 7', then ¢ t~> ¢’
is a contravariant functor from the category {7',; n» € IN} with k-algebra homo-
morphisms as morphisms into the category {B®"(k,); n € IN} with affinoid map-
pings as morphisms.

Using the Identity Theorem, one easily deduces the following

Proposition 7. Let ¢ be a k-algebra endomorphism of T,. Then ¢ is brjective vf
and only if the corresponding map ¢': Bh(k,) — B"(k,) ts bi-affinoid (i.e., ¢’ is
bijective, and ¢’ as well as ¢'~1 are affinord).

When considering automorphisms of 7', it is convenient to look at special
topological generating systems of 7',.

Definition 8. A system {f,, ..., f.} = T, s called an affinoid chart of T, f
there 18 a k-algebra automorphism ¢ of T, with $(X;) = f; for i =1, ..., n, t.e.,
tf every f € T, can be written uniquely as f = 3 a, _ , [y ... f;r with a, € k and
la,] — 0.

Remark. It can be shown that {f,,...,f,} = T, is already a chart if the map
defined by X; + f;, © = 1,...,n, is surjective. Loosely speaking, we could
rephrase this in the following way: if a generating system has minimal length,
the representation of any series by it is uniquely determined.

Using Corollary 5.1.3/8, we find the following characterization of charts:

Proposition 9. The system {f,, ..., fa} = T\ is an affinoid chart of T, if and
only if {f1, ..., fn} generates T, as a k-algebra.

Proof. Define ¢: T, — T, by ¢(X;) =/f;, ©=1,...,n. The map ¢ is an
automorphism if and only if ¢ is an automorphism of 7',. The latter is equiva-
lent to ¢ being surjective. Namely if ¢ is surjective, consider the isomorphism
T,/ker § — T, and extend it to an isomorphism Q(T',/ker §) — Q(T,) between
the fields of fractions. By looking at transcendence degrees over k, we see that
Q(T',/ker $) must have transcendence degree n. However this can only be true
if ker § = 0. O

Specializing to the case of one variable, we get the following description of
the ¢“group of automorphisms of the unit disc”.



200 Chapter 5. Strictly convergent power series

(o]
Corollary 10. The series f = 3 a,X € T, defines a bi-affinoid map of the
v=0
unit disc onto utself if and only if |ag] = 1, |a;| = 1 and |a,| < 1 forally > 1.

Proof. The system {f} is a chart of 7', if and only if |/ = 1 and f = Y @,X*
generates k[ X]. This is equivalent to |a,| = 1 for all », @, == 0 and &, = 0 for
» > 1. ]

A remark one should add is that, contrary to the classical complex case, the
automorphism group of the unit disc has infinitely many parameters.

5.2. Weierstrass-Riickert theory for 7',

There are basically two ways to get further information on 7', and on
finite 7',-modules. One can prove the WEIERSTRASS Preparation Theorem and
then follow rather closely the classical method of RUCKERT, or one can use the
Lifting Theorem 2.7.3/2 and derive the desired results from well-known facts
about the polynomial algebra 7,. Here we shall follow the first approach; for
the second one, refer to [2].

5.2.1. Weierstrass Division Theorem. — Let us start with

o
Definition 1. A strictly convergent power series g = 3 q,(Xy, ..., X,_;) X s
X, -dvstinguished of degree s tf v=0

(1) g is a unit in T,_; and
2) lgol = Igl and g, > |g,| for all v>s.

It is easy to see that a power series g € T, with |g| = 1 is X,-distinguished
of degree s if and only if § € T, is a unitary polynomial of degree s in the poly-
nomial ring k[ X, ..., X,_;] [X,]. (Recall that a polynomial is called unitary if
its highest coefficient is a unit, and use Proposition 5.1.3/1.) This remark already
gives an idea of how to proceed if one wishes to carry out a division by a dis-
tinguished element ¢ with |g] = 1. Namely, just use Evcrip’s division in
IE[XI, eooy X,_1][X,] and then pull back the results to 77,. To describe this proce-
dure precisely, let us state the so-called WEIERsTRASS Division Theorem.

Theorem 2. Let g € T, be X, -distinguished of degree s. Then for each f € T,
there exist uniquely determined elements q € T\, and r € T\, _i[X,] with degr < s
such that

f=a9+r.

One has the following estimates

|fl = max {lq| lg], [7]}; .e.,
gl = lgItIfl and ] = |[f].

If, in addition, f and g are polynomials in T,_,[X,] and if g has degree s, then
also q is a polynomial in T, _i[X,].
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Proof. Without loss of generality, we may assume [g| = 1. First we show
that the existence of a representation

(%) f=a9+7r, reT,4[X,], degr<s, q€T,

implies the estimates |¢| < |f| and |r| < |f|. This can be seen as follows. By
multiplying (x) with a scalar from %, we may assume

(%) max {|g}, [r]} =1,

which implies |f| = 1. We have to show |f| = 1. Assume the contrary. Then
we would have 0 = f = §§ + 7. Since deg § = s > deg r = deg 7, this would
imply § = 7 = 0, in contradiction to (xx). So we have verified the estimates.
Now it is trivial to show uniqueness. Namely if one has a representation
O=qg+r, reT,4[X,], degr << s, q € T, the estimates just verified yield
g=1r=0.

Next we want to show the existence of the representation (x). Define
B:={qg + r;r € T,1[X,], degr < s,q € T,}. It follows from what we have
shown above that B is a closed subgroup of 7,. We claim B = 7',. Writing

»>8

more, set k,:= {x € k; || < ¢} and k= k/k.. Then there is a natural ring
epimorphism 7,: T, — k[X,, ..., X,] with kerz, = {f € T,;|f| < ¢}, and
7.(g) i8 a unitary polynomial in X, of degree s. Therefore, EvcLID’s division
with respect to 7,(g) is possible in the ring (k[X,, ..., Xu_1]) [X.]- So for all
je T, we can find g € T, and r € T,,_l[Xn] with degr << s such that z.(f)
= 1.(q) 1(9) + 7.(r), or equivalently |f — (g9 + )| = e. Hence, forall f € T,
there is an element b € B such that |f — b| =< ¢]f|. Thercfore B is e-dense in
T,, and Proposition 1.1.4/2 says that B, in fact, is dense in 7',. Since B is closed
in T,, we get B = T,. Hence every f € T, admits a representation (x).

Only the last statement of the theorem remains to be shown. If g € 7, ;[ X,,]
and degg = s, then ¢ is a unitary polynomial, and Evcrip’s division with
respect to g can be applied in 7', _,[X,]. For every f € 7,_1[X,], one can find
polynomials ¢, r € T, [ X,] with deg r < s such that f = gg + r. Due to the
uniqueness of ¢ and 7, the last assertion is clear. M

g=2 g.(Xy, ..., Xpn_1) X%, we define ¢:= max {|g,|}, where ¢ << 1. Further-
»=0

5.2.2. Weierstrass Preparation Theorem. — As an easy application we
deduce the Preparation Theorem.

Theorem 1. Let g € T, be X,-distinguished of degree s. Then there are a
unique monic polynomial w € T, _[X,] of degree s and a unique unit e € T, such
that g = e - w. One has: |w| = 1 so that o vs X,-distinguished of degree s. If
g € T,_1[X,], then also e € T, _1[X,]-

Proof. By the WEIERSTRASS Division Theorem, there exist ¢ € T, and
r'" € T,_1[X,] with deg " < s such that X} = e'g + r’. Define v := X5 — »'.
Then o is a monic polynomial in 7', ;[ X, ] of degree s and w = e’g. To complete
the existence part of the theorem, we only have to show that ¢’ is a unit. Since

3
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[r'| < |X%] = 1, we see that |w| = 1 and that o is X,-distinguished of degree s.
We may assume |g| = 1. From & = &'§, we conclude that & is a unit in 7,_,,
because @ and § are unitary polynomials of the same degree. Then &’ is a for-
tiori a unit in 7', and therefore ¢’ is a unit in 7', (see Proposition 5.1.3/1). This
proves the existence part of the theorem. Now let w € 7',_,[X,] be a monic
polynomial of degree s and e be a unit in 7, such that g =e - w. Define
r:= X3 — w. Then one has X3 = e lg + r. The series g being given, this
relation uniquely determines e and r, and therefore also w. If g € 7', _;[X,], then
according to the last assertion of the Division Theorem, also ¢ must be a poly-
nomial in 7,_,[X,]. d

5.2.3. Weierstrass polynomials and Weierstrass Finiteness Theorem. —
The polynomials w € T, _,[X,] appearing in the preceding theorem will play an
important role later on. Therefore we introduce a special name for them.

Definition 1. 4 Weierstrass polynomial (in X,) 28 a monic polynomial
® € Ty [ X ] with |o] = 1.

For later reference we mention the following simple fact:

Lemma 2. Let w, and w, be monic polynomials wn T, _[X,]. If o, - w, 180
Wezerstrass polynomzal, then w, and w, are Weierstrass polynomials.

Proof. Since w; and w, are monic, we have |w;] = 1 for 7 = 1, 2. On the
other hand, |w,| |w,] = |w; - w,] = 1, and therefore we get |w;| = 1. O

The importance of the concept of Weierstrass polynomials is shown by the
fact that, for every X,-distinguished power series ¢, there is a Weierstrass
polynomial o with w7, = gT,. Moreover, we have the following

Proposition 3. Let w be a Weierstrass polynomial of degree s in X,,. Then
(1) Ty/wT, is a finite free T'y,-module;
(i) Twal Xl Toa[X,] 22 TofeoT,
More explicitly, the sequence
Ty L Tua[Xa] = T,
where T _ | 1s the s-fold normed direct sum of copies of T, _;, where j is given by
FlEoy s bs_q) i = E:t,X‘;, and where © is the natural injection, induces a sequence

of 1isometrvc T, _;-module isomorphisms

T5_y Ly Ty ([ X, 0T [Xn) —— TyloT,.

The map i is the k-algebra isomorphism mentioned in (ii).
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Proof. We consider the following commutative diagram of 7',_;-module
homomorphisms:
Tua[Xp] ———— T,
j
Tor ¥ i

J T
Tn—l[Xn]/CUTn—l[Xn] — T,,/wT,,

where p and 7 are the canonical residue epimorphismsand ¢ and § are induced
by 7 and 4, respectively. The existence statement of the WEIERSTRASS Division
Theorem tells us that 7 o 70 j and o § are surjective. Hence ¢ and § must be
surjective. Furthermore, the uniqueness part of the Division Theorem shows
that 7 o 7 o § is injective, whence the injectivity of j and 7 follows. Thus, ¢ and
j are bijections. Obviously, 7 is not only a 7',_;-module isomorphism, but also a
k-algebra isomorphism, because 7, p and z are k-algebra homomorphisms. It re-
mains to be shown that ¢ and  are isometries if one provides 7', [ X,]/0oT,_1[X,]
and 7,/wT, with the residue norm derived from the Gauss norm on 7',. Since
oT,_1[X,] is dense in wT,, we see that ¢ is an isometry. Furthermore, the map
9_' is contractive. If 5 is not an isometry, there must exist a tuple (¢,...,%_)

8—1
€ 1% _, and a polynomial ¢ € 7', _;[X,] such that f:= qw + } X, satisfies
r=0
$—1
lf] < max ¢] = |3 t,X}].
0=r=<s—1 v=0

However this is impossible by the WEIERSTRASS Division Theorem. Thus also
7 must be an isometry. O

The essence of the preceding proposition is rephrased in the following
theorem which will turn out to be a useful tool for proofs by induction on the
number of indeterminates.

Theorem 4 (WETERSTRASS Finiteness Theorem). Let A be a k-Banachalgebra,
let $: T, — A be a finite k-algebra homomorphism and let w € T,_,[X,] be a
Weierstrass polynomial contained tn ker ¢. Then the map ¢': T,_; — A defined
by ¢':=¢ | T,_, ts also finite. In particular, the k-algebra monomorphism
T,1 < T,/oT, induced by the natural injection T, _, < T, s finite for every
Wezerstrass polynomial w.

Proof. Let us consider the following commutative diagram
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where ¢ denotes the natural embedding of 7',_; into 7', and = the canonical
residue epimorphism. The maps £ and ¢ are induced by & and ¢, respectively, in
an obvious manner. Since ¢ is finite, so is ¢. By the preceding proposition,
T,|/oT, is a finite T',_;-module via z; i.e., the map & is finite. Then ¢ o  is also
finite. Since ¢’ = ¢ 0 ¢ = ¢ o E, the proof is finished. O

At this point we would like to mention without proof a stronger WEIER-
STRASS Finiteness Theorem, which is not needed now and which will be a later
consequence of more general facts about affinoid algebras. Namely,

If g € T, is X,-dvstinguished of degree s > 0, then the endomorphism ¢ of T,
defined by ¢(X,):=¢g and ¢(X;):=X; for 1 =1,...,n — 1 s finite with
1, X,, ..., X571 as a free generating system.

5.2.4. Generation of distinguished power series. — The two preceding results
show that Weierstrass polynomials are extremely useful in reducing prob-
lems to similar problems in a lower dimension. But, in order to exploit this
fact for 7, one has to make sure that there are ““enough’ of these Weierstrass
polynomials. For the applications we have in mind, ‘“‘enough” means that
every f € T, — {0} can be transformed by a suitable automorphism ¢ into
an X,-distinguished series o(f) which then is associated to some Weierstrass
polynomial. That this is feasible is asserted by the following

Proposition 1. For every f € T, f == 0, there is a k-algebra automorphism o of
T, such that o(f) vs X,-distinquished.

Proof. We may assume |f| = 1. Let f = 3} a,X*. Let m = (m,,...,m,) be
I3

the maximal n-tuple (with respect to lexicographical ordering) such that

lam| = 1. Let ¢ be a natural number such that { = max y; for all indices
1=i<n

u = (W, ..., uy) with @, + 0; e.g., take ¢ equal to the total degree of f. The
automorphism ¢ for which we are looking will be one of the class we considered
at the end of (5.1.3). Namely, set ¢(X;):= X; + X&for7i=1,...,n — 1 and
o(X,) := X, where, starting with an additional number ¢, := 1, the exponents
Cn_1s - -+ €1 are defined recursively by

j—1

Coji=141t3csq for j=1,...,m — 1.

d=0

(The formula remains true for j = 0; it reproduces the definition of ¢,.) We

n
claim that then o(f) is X,-distinguished of order s := 3 ¢;m;. First we observe
i=1 n
that, for all u = (uq, ..., u,) With @, &= 0 and u == m, we have } ciu; < s.
i=1
Namely, there is an index p, 1 =< p < n, such that y, = m,, ..., Up_1 = My 4
and u, << m,. Then

n p—1 n ¥4 n
e = Yemy + cplmp — 1) + et =Y em; — 1< Y em; = s,

i=1 =1 t=p-+1 =1 =1
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whence our claim is justified. Now let us compute o‘?f/). We have

o(f) = 6(F)= X @u(X;y + X" ... (Xpq + Xon)#ns Xt

I

—_— Z d,u Z' (‘Zl) . ('Z"'—l) Xi‘x—-ll . X:z—:il“‘ln—le"lll‘l""+cu—1ﬂn—1+f‘n = ZPIX:H
1 n—1

_H Atyeeesdp_y
a,+0 0=y,

where the p; are suitable elements of IE[XI, ..., X,_1]. Using the above obser-
vation, we see that o(f) is a polynomial in X, of degree = s. Furthermore, a

—~—

power X¢httenalaatin gecurring in the above representation for ¢(f) equals

X34 if and only if u, =m, and 4; = u; =m;for v =1,...,n — 1. Thus we have

Ps = m € k — {0}). In particular, o(f) is a unitary polynomial of degree s in

(K[ Xy, - .-, Xya]) [X4]), and hence o(f) is X,-distinguished of that degree. O
For later reference we state what we have actually proved.

Proposition 2. Let f = Y a,X* ¢ T,, f =0, and let t € N u {0} such that

u

¢ = max u; for all indices u = (uy, ..., u,) with |a,| = |f|. Define an automor-
1<i<n

phism o: Ty - T, by o(X,):= X, and o(X;):= X; + Xl fori =1, ...,n — 1,

where, starting with c,:= 1, the coefficients c¢; are determined recursively by

i—1
Coji= 14+t ¢ogj=1, ..., n— 1. Theno(f) vs X,-distinguished of order

n d=0
8 := X cym; where m = (my,...,m,) is the maximal index (with respect to
i=1

lexicographical ordering) such that |a,,| = |f|.

5.2.5. Riickert’s theory. — Following the classical method of RUCKERT
in the complex case, we want to establish some results about the ring structure
of the algebra 7,. For clarity, we axiomatize the situation by introducing the
following concept.

Definition 1. Let I be a ring (commutative with identity element). An overring
I’ of I[ X] s called Riickert over I if there is a family W of monic polynomials in
I[X] such that the following three axioms are fulfilled:

(1) If the product of two monic polynomzials lies in W, so do the factors.

(2) Forall w € W ,there is an isomorphism of I-algebras I' |wl’ ~ I[ X]/wI[X].
In particular, the canonical map I — I'|wl’ is finite.

(3) For all f € I' — {0}, there vs an automorphism o of 1' and a unit e of I’
such that e - o(f) € W.

According to the results of (5.2.2), (5.2.3) and (5.2.4), the algebra 7, is
Riickert over 7',_, if one takes W to be the family of Weierstrass polynomials
in X,. If one replaces the strictly convergent power series by the formal, or
simply the convergent series, the same statement holds mutatis mutandis.
With respect to many aspects, a Riickert overring of I behaves as I[X] does. In
particular, some ring properties of I are inherited by I’, as the following three
propositions show.
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Proposition 2. 4 Riickert overring I’ of a Noetherian ring I is Noetherian.

Proof. We have to show that every ideal a &= (0) in I’ is finitely generated.
According to axiom (3), we may assume that a contains a polynomial w € W.
Since I is Noetherian by assumption, so is I[X] by HiLBERT’s Basis Theorem.
Because I'/wl’ is isomorphic to I[X]/wI[X] due to axiom (2), the image of
a in I'/wl’ has a finite generating system. Pulling back that system to a and
adding w, we get a finite generating system for a. O

Recall that a ring I is said to be a Jacobson ring if for every ideal a — I the
nilradical rad a equals the Jacobson radical j(a) (which is the intersection of all
maximal idealsin I containing a). Obviously any field is a Jacobson ring, where-
as a local ring I is not Jacobson unless I/rad I is a field. So one cannot expect
that every ring I’ which is Riickert over a Jacobson ring I is itself a Jacobson
ring, because I := k and I’ := k[[X] provide a counterexample. But at least
one can show the following

Proposition 3. Let I be a Jacobson ring, and let I’ be a Riickert overring of 1.
Then rad a = j(a) for any non-zero ideal a — I'.

Proof. Since the nilradical of any ideal a — I’ equals the intersection of all
prime ideals containing a (see the argument used in the proof of DEDEKIND’S
Lemma 3.1.4/1), we have only to show j(p’) = p’ for any non-zero prime ideal
p’ — I'. This will be done by showing that the Jacobson radical j(I'/p’) of (the
zero ideal in) I’/p’ vanishes for all such p’. Therefore let p’ be a non-zero prime
ideal in I’, and set p := p’ n I. We may assume that p’ contains an element
w € W so that by axiom (2) the canonical injection I/p < I'/p’ is finite. For
each b € j(I'/p’) we consider an integral equation

b* + ab* 14 oo +a, =0

of b over I/p of minimal degree n. Then

Ay = _(b" + alb”_l + + a/n—lb) € ](Il/pl) n I/p

Since for each maximal ideal mc I/p there exists a maximal ideal m’—I'[p’
lying over m, we see that

i’ p) nllp =j[p) = 0.

Then a, = 0, and due to the minimality of n, we must have n = 1 and there-
fore b = 0. This shows that j(I'/p’) = 0. O

Recall that a factorial ring is an integral domain I such that each non-unit
f € I — {0} can be written as a finite product of prime elements in I. (An ele-
ment p € I — {0} is called a prime element if it generates a prime ideal in I.)
Any such product decomposition of f is unique up to units.

Proposition 4. Every integral domain I', which vs Riickert over a factorial
ring I, 1s factorial itself.
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Proof. The assertion is an easy consequence of the fact that I[X] is factorial
if I is factorial. However, since this result is not needed in full generality, we
include here a direct proof which is based on the Classical Gauss Lemma
(1.5.3).

We have to factor every non-unit f € I' — {0} into prime elements. Since
automorphisms and units do not matter for that task, we may assume f € W
— I[X]. The polynomial ring Q(I) [X] over the field of fractions Q(I) is facto-
rial. Hence there is a factorization f = p, ... p, into monic polynomials py, ..., p,
€ Q(I) [X]. We can choose elements ¢y, ..., c, € I such that the polynomials
C1Py5 - - -» CePy are primitive in I[X]. (A polynomial p € I[X] is called primitive
if there is no prime element in I dividing all coefficients of p.) Then we see by
the Classical GAuss Lemma (1.5.3) that

(Ijl Ci)f :__]__?(Cipi)

r
is a primitive polynomial in I[X]. But this can only be true if [ c; and hence
i=1
all ¢; are units in 1. Consequently, / = p, ... p, is a factorization of f in I[X]. It
remains to be shown that all p; are prime elements in I'. Since p,, ..., p, € W
(axiom (1)), and since I[X]/p;I[X] = I'/p;I’ for all ¢ (axiom (2)), it is enough to
show that each p; is a prime element in I[X]. However this follows from the
equations

I[X]ﬂp,Q(I) [X]:plI[X]’ 7’-:1:-'-:7"

which are easily obtained from the Classical GAUss Lemma by an argument
similar to the one used above. O

5.2.6. Applications of Riickert’s theory for 7T,. — As we have already
observed, Theorem 5.2.2/1, Lemma 5.2.3/2 and Propositions 5.2.3/3 and
5.2.4/1 guarantee that 7', is Riickert over 7',_,. Furthermore 7y =k is a

Noetherian factorial ring. Thus using induction on n, we get from Propositions
5.2.5/2 and 5.2.5/4

Theorem 1. 7The ring T',, is Noethervan and factorial.

It is a well-known fact that any factorial ring I is normal (i.e., integrally
closed in its field of fractions Q(Z)). Namely if

r r—1
(%) + ¢ (%—) et =0

is an integral equation of some element % € Q(I) over I, we may assume that

a and b have no common prime factor. However since

a”+ ca™ b + - +¢,b" =0,
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we see that any prime factor p of b must divide a™ and hence a. Thus b can

only be a unit in 7/, and hence % belongs to I. In particular, we see that

Theorem 2. 7', is normal.
Finally, we get
Theorem 3. 7', s a Jacobson ring.

Proof. Proposition 5.1.3/3 tells us that j(7',) = 0. Therefore we can conclude
from Proposition 5.2.5/3 that 7', is a Jacobson ring if 7', _, is. Since 7y = kisa
Jacobson ring, the assertion follows by induction on n. O

5.2.7. Finite 7T ,-modules. — Because 7', is Noetherian, all finite
T,.-modules are Noetherian. In particular, all submodules of the s-fold normed
direct sum 7% are finitely generated over 7',. We want to improve this result
and derive finiteness theorems with estimates, comparable to CaArTaN’s Theo-
rem in the classical case.

Proposition 1. Let M be a submodule of a finite complete T ,-module. Then M
itself is a finite complete T ,-module. Furthermore for every T ,-generating system
{my, ..., ms} of M, there exists a real constant ¢ such that every m € M admats a

8
representation m = ), t;m; with max |t;| =< o |m|.
1=1 1=i<s

Proof. The first assertion follows from Proposition 3.7.3/1. In order to
verify the second assertion, consider the 7',-epimorphism ¢: 7% — M defined

s
by ¢, ..., &) := 3 t;m;. Due to Proposition 3.7.3/1, we know that 7% /ker ¢
i=1 .
provided with the residue norm is a finite complete 7",-module. Therefore the

induced 7',-isomorphism @: 7% /ker ¢ => M and its inverse are both continuous
(see Proposition 3.7.3/2) and hence bounded (see Proposition 2.1.8/2). Let o’
be a bound for g1, and set ¢ := p’ + 1. Then the inverse image § 1(m) of any

element m € M has norm = ¢’ |m| and can be represented by a tuple (¢, ..., t,)
38

€ T% satisfying max [¢;| < o |m|. Since m = ¢({y, ..., t;) = X, t;m;, the second
1=i=s =1

assertion follows. O

Corollary 2. All ideals of T, are closed.

We want to improve Proposition 1 by looking for generating systems admit-
ting the bound ¢ = 1. For vector spaces (instead of modules), we have studied
in detail such questions as the existence of orthonormal bases (cf. Chapter 2).
Now we are going to handle analogous questions for 4-modules, where 4 is a
normed, ring (thought to be equal to 7', for some n). We want to make precise
what we mean by ‘‘generating system admitting the bound p = 1.

Definition 3. A finite generating system {m,, ..., ms} of a normed A-module M
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8

18 called pseudo-cartesian if every m € M admits a representation m = J a;m;
i=1

with a,, ..., as € A and |/m| = max |a;| |m;|. If thus equation s true for all possible
1=i<s
representations of each m € M, the system {my, ..., ms} s called cartesian. If

such generating systems exist for M, we say that M is a pseudo-cartesian or a
cartesian A-module, respectively.

This is a generalization of Definition 2.4.1/1, where we defined finite
k-cartesian spaces and bases. A pseudo-cartesian generating system is cartesian
if and only if it is free:

Remark. A finite-dimensional normed k-vector space V is pseudo-cartesian

if and only if it is cartesian.

Namely, let {v,, ..., v;} be a pseudo-cartesian generating system of V', where
8

v; == 0 for all +. Consider the epimorphism ¢: k* — V, (cy, ..., ¢;) — 3, ¢;v;, and

=1

provide k* with the norm given by |(cy, ..., ¢;)| := max |¢;| |v;|. Then k®is a
1=iss

cartesian space, and the norm on ¥V equals the residue norm with respect to
the map ¢. The subspace ker ¢ admits a norm-direct supplement U in ¥V, and
U is cartesian (see Proposition 2.4.1/5). Since ¢ induces an isometricisomorphism
U=V, we see that V is cartesian. ]

The above remark is not true for general 4A-modules, since one can easily
find pseudo-cartesian modules which are not free. For example, let m denote
the maximal ideal in 7', which is generated by the indeterminates. Then
k =T,/ m is a pseudo-cartesian 7',-module which is not cartesian (unless
n = 0). We state some elementary properties of pseudo-cartesian and cartesian
modules. ' '

. Lemma 4. (a) The normed direct sum of finitely many pseudo-cartesian
A-modules vs pseudo-cartesian. The same vs true if pseudo-cartesian is replaced by
cartesran.

(b) Let M be a pseudo-cartesian A-module, and let N be a strictly closed sub-
module of M. Then M|N (provided with the restdue norm) is a pseudo-cartesian
A-module.

Lemma 5. Let M be a normed A-module over a normed k-algebra A. Suppose
that | M| = |k|. Then M is a pseudo-cartesian A-module if and only vf M° is a
finite A°-module.

The assumption | M| = |k| occurring in Lemma 5 cannot in general be avoid-
ed. However it can be weakened (as far as the only if part of Lemma 5 is
concerned) if the valuation on k is discrete.

-Lemma 6. Let M be a normed A-module over a normed k-algebra A. Suppose
that |A| = |k| and that the valuation on k s discrete. Then M° is a finute
A°-module ©f M is a pseudo-cartesian A-module.
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Proof. Let {m,, ..., m;} be a pseudo-cartesian generating system for M,
where m; &= O for all 7, and define # := max {x € |k|; « << 1}. Then n < 1. By
multiplying m,, ..., m, with suitable coefficients from k, we may assume that
n < |m;] £ 1 for all 2. Given m € M°, m == 0, we can find a,, ..., a; € 4 such

8
that m = 3 aym; and |m| = max |[a;| |m;|. Then we get

i=1 1=i<s
iy 1
max |ail =< w w < —.
min [om;| 7 n
Since |a;| € |A| = |k|, this is only possible if max |a;] = 1. Hence {m,, ..., my}
1I=i<s
is a finite generating system for M° over 4°. |

For the remainder of this section, we restrict ourselves to the case 4 — T,.
We want to show that submodules of cartesian 7',-modules are always pseudo-
cartesian.

Theorem 7. Let M be a submodule of a cartesian T,-module F. Then M s
pseudo-cartestan and strictly closed in F. In particular if | M| = |k|, then M° is a
finite T ,-module.

We can apply the theorem in the special case, where F' equals 7', and where
M is an ideal in 7',. Thereby we obtain

Corollary 8. Each ideal a < T, s strictly closed vn T, and the residue norm
on T,/a satisfies |T,/a] = |T,| = |k|.

For the proof of Theorem 7, we need some preparations. We denote by
Q := Q(T,) the field of fractions of 7,. If F is a normed 7',-module, the norm
on F induces a (semi-) norm on the @-vector space F @ Q (see (2.1.7) for
general facts). The process is very simple if /' is a cartesian 7',-module. Namely,
we may view F' as a T,-submodule of F ®7 @, and any cartesian generating
system of F' gives rise to an orthogonal basis of F @ @, all norms being pre-
served. In particular, F ®r @ is a cartesian @-vector space.

Lemma 9. Let F be a cartesian T,-module and let « be a non-zero element in
T,. Then oF is a strictly closed submodule of F. Furthermore, F is strictly closed

mF Qp Q. .

Proof. First we show that w7, is strictly closed in 7,. Applying a suitable
automorphism of 7',, we may assume that o is a Weierstrass polynomial in 7',

of some degree s = 0. Then the WEIERSTRASS Division Theorem 5.2.1/2 says
s—1

that T, (viewed as a 7', _;-module) is the norm-direct sum of 7', and 3 7', _; X?.
v=0

In particular, o7, is strictly closed in 7',. That oF is strictly closed in F' is an

easy consequence of this fact.

Viewing F as a T',-submodule of F @5 @, we can also say that F isstrictly
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1
closed in 1 F. Since F @p @ is the union of all 7,-submodules — F,
w w

w € T, — {0}, we see that F is strictly closed in FRr, Q. ]

Lemma 10, Let M be a submodule of a cartesian T,-module F. Then there
exist an element w € T, — {0} and a cartesian Ty-submodule F' — F Q) _Q such
that oF' — M — F'.

Proof. We consider V' := M Q@ @ as a @-subspace of V :=F @ Q. Then
V'’ is cartesian, since V is cartesian (see Proposition 2.4.1/5). Let {v, ..., v,}
denote an orthogonal basis for V’. We may assume vy, ..., v, € M. Namely if

v; = % with elements m; € M, ¢t; € T, — {0}, then {m,, ..., m,} is an orthog-
i

onal basis of the desired type. Since M is finitely generated, there is a univer-

sal denominator w € 7', — {0} such that

1
M=— ZT”’I);.

W =

r . )
Define F' : = } T,,E”-. Then F’ is a cartesian 7,-submodule of V satisfying

i=1 @

oF" M c F'. ' O

Proof of Theorem 7. Due to Lemma 5, we have only to show that M is
pseudo-cartesian and strietly closed in F. We use induction on n. For n = 0,
the assertion follows from Propositions 2.4.1/5 and 2.4.2/1. Therefore, let
n = 1. Choose a non-zero element w € 7, and a cartesian 7,-submodule
F'— F ®p, Q such that wF'— M — F’' (Lemma 10). There is a chart
{Xq, ..., X} @ T, such that o is X,-distinguished of some degree s = 0 (use
Proposition 5.2.4/1). Hence, by the WEIERSTRASS Preparation Theorem
5.2.2/1, we may assume that o is a Weierstrass polynomial in X,. Writing
Tpo1:= kKX, ..., Xuy), we see that F'/wF’ is a cartesian 7',_;-module.
Namely, an easy computation verifies that F'/oF’ is a cartesian 7,/wT,-
module; furthermore, 7', /w7, is a cartesian T',_;-module by Proposition 5.2.3/3.
If we view M |wF' as a T,_j-submodule of F’/wF’, we can apply the induction
hypothesis and see that M/wF"’ is pseudo-cartesian and strictly closed in F'/wF".

In order to construct a pseudo-cartesian generating system for M, we
consider a pseudo-cartesian generating system for the 7',_;-module M/wF’.
Since wF"” is strictly closed in F’ (Lemma 9) and hence strictly closed in M,
this system can be lifted to M without changing norms. Adding a cartesian
generating system for w#"’, we get a pseudo-cartesian generating system for the
T,-module M. It remains to show that M is strictly closed in F. Since M[wF"’
is strictly closed in F'/wF’ and since wF' is strictly closed in F’ (Lemma 9),
we can apply Lemma 1.1.6/4 and thereby see that M is strictly closed in F".
Now F’ is strictly closed in F' Xy @ (Lemma 9), and F’' @, @ is strictly
closed in F ®r_ @ because any subspace of a finite-dimensional cartesian vector
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space is strictly closed (Proposition 2.4.2/1). Thus M is strictly closed in
F ®r,Q by Lemma 1.1.5/5, and hence strictly closed in F. O

We derive some consequences from Theorem 7.

Corollary 11. Every submodule N of a pseudo-cartesian T,-module M is
pseudo-cartesian.

Proof. There exists an epimorphism ¢: ' — M from a cartesian 7',-module
F onto M such that the norm on M equals the residue norm with respect to
¢. Namely, choose a pseudo-cartesian generating system {m,, ..., m,} for M and
consider the canonical epimorphism F —>M where F is the ‘“free cartesian
T,module generated by m,,...,m;’; ie., F:= T, the norm being
defined by |(¢, ..., t;)| := max [¢;] |m;| for all tuples (¢, ..., %) € T%. It follows

1<Si<s
easily from our construction that ker ¢ is strictly closed in F (for general ¢,
this follows from Theorem 7). In particular for any m € M, one can find an
inverse image m’ € F such that |m| = |m’|. Keeping this in mind, we see that
the ¢-image of any pseudo-cartesian generating system for ¢—1(V) is a pseudo-
cartesian generating system for N. Thus it follows that N is pseudo-cartesian
because ¢~1(XN) is pseudo-cartesian by Theorem 7. O

Applying Lemma 5, we get

Corollary 12. Let M be a normed T ,-module, and suppose that | M| = |k|. Let
N be a submodule of M. Then N° is a finite T,,-module if M° is a finite T ,-module.

5.3. Stability of Q(T)

5.3.1. Weak stability. — In the following sections we will show that the field
of fractions Q(7',) is stable if the ground field k is stable. As a first step towards
this result, we show in this section for arbitrary ground field k£ that

Theorem 1. The field of fractions Q(T',) is weakly stable.

Proof. All valued fields of characteristic O are weakly stable (see Proposi-
tion 3.5.1/4). Therefore we have only to consider the case where char k = p > 0.
In this case, we apply the criterion given in Lemma 3.5.3/2 which says that
Q(T,) is weakly stable if each finitely generated 7',-submodule of 77" is b-sep-
arable. We invest a little bit of extra work and show that

Lemma 2. Each T,-submodule of finite rank tn T2 is b-separable.

Proof. To give an interpretation of the pair of integral domains 7', — 77",
consider the injection

KXY = KXy, ..., XY & BPNYY = kP NY,, ..., ¥,)

extending the inclusion map k£ < k?” by mappingeach X;onto Y2,7 =1, ..., n.
Note that kP is complete because k is complete. The p-th power of any series
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in kP"(Y) is a series in k(X), and conversely, any series in k(X) has a p-th root
in k77(Y). Thus we have (K(X))?"" = kP (Y).

Now let M be a k(X)-submodule of k?7(Y), and let {m,, ..., m,} be a maxi-
mal set of k(X)-linearly independent elements of M. Writing

my, = 3 ¢uY?, e=1,...,r,
v

we denote by k’ the smallest complete subfield of k7™ containing all coefficients
¢e» and k. Then k' is a k-vector space of countable type. Any such vector
space is b-separable by Proposition 2.7.1/2. Therefore k’(Y) is a b-separable
k(Y )-module by Corollary 2.2.6/5. Since the direct sum decomposition

KY) — @ k(X) Y
0§:‘<p

is norm-direct, we see that k(Y) is a b-separable k(X )-module (use Proposition
2.2.5/2). Thus k’(Y) can be viewed as a b-separable k(X)-module, and we know
that M is a b-separable k(X)-module if we can show M — k'(Y).

In order to achieve this, consider an element m € M. Then m? € k(X)
— k'(Y). By our construction, we have

M = k(YY) Rxy QUIKX)) = QK (Y)).

Thus m is an element of the field of fractions of #'(Y), and m is integral over
k'(Y). Since k'(Y) is normal (Theorem 5.2.6/2), we have m € k'(Y) and hence
M — k'(Y). This concludes the proof of Lemma 2 and thereby also the proof
of Theorem 1. O

The 7T,-modules considered in the above lemma are, in fact, finite
T,-modules. Namely, each such M isa tame 7',-module by Proposition 4.1/4 so
that 77" is a tame 7',-module. In particular, we get the following additional
result:

Theorem 3. 7', vs Japanese.

Proof. T, is a normal Noetherian integral domain (see (5.2.6)). Therefore
the assertion follows from Proposition 4.3/2 if char k¥ = 0 and from Proposition
4.4/2 if char k = p > 0. O

5.3.2. The Stability Theorem. Reductions. — As indicated before, we want
to prove the following Stability Theorem.

Theorem 1. The field of fractrons Q(T',) vs stable if k is stable.

In the next chapter, we will apply this result to affinoid algebras. We will
look at finite homomorphisms ¢: 4 — B between affinoid algebras and discuss
the cases in which the induced homomorphism ¢: A — B between the subrings
of power-bounded elements is finite also. As we will see, this question is closely
related to the stability of Q(77,).
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Before starting with the proof of the Stability Theorem, we want to show
the following converse.

Proposition 2. If there is an n = 0 such that Q(T',) vs stable, then k is stable.

Proof. Let (Q(T,,))a denote the algebraic closure of Q(7',), and assume that
Q(T,) is stable for some n € N. Then (Q(T,)). is Q(T,)-cartesian. Since the
algebraic closure of k is contained in (Q(T',)),, it is enough to show that (Q(7',))a
is k-cartesian. Using Lemma 2.4.3/4, this amounts to showing that Q(7',) is
k-cartesian. However the latter follows from Lemma 2.4.3/3 because T, == ¢(k)
is k-cartesian (Proposition 2.7.2/7). O

Thus we can conclude from Theorem 1 and Proposition 2 that Q(7,) is
stable for all n = 0 if the stability is known for at least one n = 0. In order to
attack the assertion of the Stability Theorem, we view the field of rational
functions k(X) = k(X4, ..., X,) as a valued subfield of Q(7',). Then k(X) is
dense in Q(7,), and the stability of Q(7',) can be derived from the stability of
k(X).

Proposition 3. The field Q(T,) vs stable if its subfield of rational functions
k(X) is stable.

Proof. If k(X) is stable, its completion k/(:Y) is stable (Proposition 3.6.2/3).
Since k(X) can also be interpreted as the completion of Q(7',) and since Q(7",) is

weakly stable (Theorem 5.3.1/1), we see (again by Proposition 3.6.2/3) that
Q(T,) is stable. O

5.3.3. Stability of (X)) if |[k*| is divisible. — Due to the preceding proposition,
the burden in the proof of the Stability Theorem lies in showing that k(X)
(provided with the valuation induced by the Gauss norm) is stable. Things
become easier if we consider the valuation induced by the total degree, which

is defined by Ll :=exp (deg f — deg g) for all f, g € k[X], g == 0.
gt

Proposition 1. If k(X) is provided with the valuation induced by the total
degree, then k(X) is stable.

Proof. The valuation induced by the total degree is discrete, and k(X) is
weakly stable by Proposition 3.5.3/3. Hence k(X) is stable by Proposition
3.6.2/1. O

This is only an auxiliary result, which does not take into account the given
valuation on k. Nevertheless, together with the following proposition it will
play a central role in the final proof of the Stability Theorem. Instead of
showing that all finite extensions L of k(X) are k(X)-cartesian with respect to
the Gauss norm on k(X) (if k is stable), we shall check first that they are at
least k-cartesian.

Proposition 2. Suppose that k is stable. Let L be a finute extension of k(X), and
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provide L with the spectral norm derived from the Gauss norm on k(X). Then L 13
k-cartesian.

Proof. Let 1y, ..., 1, € L be elements generating the extension L over k(X).
We may assume that [, ..., [, are integral over the polynomial ring [ X]. Let
L be the completion of L with respect to the spectral norm on L, and let Q be
the completion of Q := Q(7',). Then Q is also the completion of k(X), and we
have the following commutative diagram of inclusions

k(X) >

L M:= Q[l,,%..,1] ——L

— O
o
=~
T —
=
= A

We claim that the spectral norm | |, on M over @ restricts to the spectral
norm | |;rx) on L over k(X). Namely, the norm | |, o induces a power-
multiplicative k(X)-algebra norm on L, and therefore we have [I|y,0 = |!|1rx)
for alll € L (Theorem 3.2.1/2). On the other hand, the norm on L (which is the
canonical extension of | |; ;) induces a power-multiplicative @-algebra
norm | | on M so that |I| < |l|y o for all I € M (Theorem 3.2.2/2) and hence
[2zex) = |I| = |l yu,gforalll € L. Thus we see that | | grestrictsto| [ i)
on L, and in order to show that L is k-cartesian with respect to | |z i) it
18 enough to show that M is k-cartesian with respect to | |y . However
this follows from Proposition 3.8.1/11 applied to the inclusion map T, <
Tully, ..., l,]. Namely, 7', is normal (Theorem 5.2.6/2), and the Maximum
Modulus Principle holds for 7', and the supremum norm | [y, on 7", (Corol-
lary 5.1.4/6). Furthermore, the Gauss norm equals the supremum norm on
T, (Corollary 5.1.4/6), and, by our construction, we have M = Q[,, ..., ;]
= (Tn[lli cee lr])T,,-—{O}' -

As indicated before, the Stability Theorem is settlad by the following prop-
osition (for the special case where |k*| is divisible).

Proposition 3. Suppose that k is stable and that |k*| vs divisible. Then k(X) s
stable.

In order to verify this, it suffices to show (according to Proposition 3.6.2/8)
that [L: k(X)] = [L : k(X)) for every finite-dimensional extension L of k(X)
where L is provided with the spectral norm. What we know already from Prop-
osition 2 is that at least dim; ¥ = dimg ¥ for all finite-dimensional k-vector
spaces V in L. Therefore, we have to establish a connection between k-dimen-
sions and k(X)-dimensions of vector spaces in L and between k-dimensions and
k(X)-dimensions of vector spaces in L. We shall do this by considering the
following abstract situation:
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Lemma 4. Let F be a field, and provide F(X):= F(Xy, ..., X,) with the
valuation defined by |f/g|,:= exp (deg f — degg) for all f,g € F[X], g =0,
where deg denotes the total degree. Let M be a finite-dimensional reduced algebra
over F(X). Denote by | |, the spectral norm on M derived from the valuation
| |4 on F(X). Furthermore, let Ay denote the integral closure of F[X]in M. For
v € IN, define

Ay )= {a € Ay; |al, = exp v}.
Then
dimpxyy M = n!lim v dimp 44 (»).

Before proving Lemma 4, we shall show how to derive Proposition 3 from
it. Apply the lemma to two different situations: first with #:= kand M := L
and second with F := k and M := I, where the ~-functor is constructed with
respect to the spectral norm on L derived from the Gauss norm on k(X). In
order to avoid confusion, this spectral norm shall be denoted by | |gauss (for
the purposes of this proof only). We then get

(1) [L:k(X)] =n!limy*dim; A;(») and,

since [L: k(X)) < [L: k(X)] < oo (see, e.g., Proposition 2.1.10/3) and L is
reduced,

2) [L:%(X)] =n!limvy"dimg A;(»).

According to Proposition 2, the field L is k-cartesian. Since |k*| is divisible, it
follows that L is, in fact, strictly k-cartesian. Namely, we have |L*|gauss
= |k(X)*|gauss because |k(X)*|gauss = |k*| is divisible. Thus considering A (»)
as a k-subspace of L, we see by Corollary 2.5.1/6 that

(3) dim; A;(v) = dimyg (AL(v))~.
We claim
(4) (AL0))" = 4z 0).

In order to prove this, let  be an element in 4; with |I|; < exp v and |I|gauss = 1.
We must show that [ is integral over #[X] and that |I|, < exp ». Because [ is
integral over k[ X], there isa polynomialp = Y™ + p, Y™ 1 ... - p. € k[ X][Y]
such that p(l) =I™ + p,I™ !+ ... + p, = 0. Furthermore, we may assume that
p is the minimal polynomial of I over k(X), because k[X] is integrally
closed in k(X)) (see the considerations preceding the proof of Proposition 3.8.1/7).
From max |p;|¥ e = lcauss = 1, we derive |p;|gauss = 1, and therefore p(I) = 0
1<is=m

for the polynomial % = ¥™ - p, Y™ 1 + ... 4 B, € f[X][Y]. Hence [ is
integral over 4[X]. It remains to be shown that |I|, < exp ». We know that
max |p;|{"* = |l < exp». Since |pi|, = exp deg p; = exp deg p; = |pil;, We
1=i<m

get o(p) — max [Hi[1 = max |py

1<i=m 1=i<m

Vi — 1], < expw for the spectral value of
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the polynomial $. Applying Proposition 3.1.2/1, we find |I|, < o(p), and there-
fore |I|,< exp ». Thus the inclusion relation (4) is true as claimed. The relations
(3) and (4) together yield dim; A;(») < dimjz 4z(»). Combining this with (1)
and (2), we get [L:k(X)] < [L: %(X)]. Since [L: %(X)] < [L: k(X)] always
holds, we finally get the desired equality [L: k(X)] = [L : k(X)]. This shows
that Proposition 3 can be derived from the assertion of Lemma 4. ]

Proof of Lemma 4. First we want to reduce the problem to the case where

M is a field. In general, M is a finite sum of finite field extensions M;, ..., M,

of F(X) (DEpErIND’S Lemma 3.1.4/1). An easy computation shows that
8

Ay = @ Ay,; i.e., the integral closure of F[X]in M equals the direct sum of the
i=1
integral closures of F[X]in the components M;. If | |, ; denotes the spectral

norm on M; with respect to | |, on F(X), then |(m,, ..., my)|; = max |m;; ;.
1<i<s

8
Therefore Ay (v) = @ A y,(v). If we had already proved the lemma for the
i=1

case where M is a field, we could also handle the general case, because

dimp 4y (v) = 3 dimgp 4 7, (v)
i=1
and

8
dimpx) M = 3/ dimpx) M;.
i=1

Therefore we may assume that M is a field. Choose a basis a, ..., a, of M over
F(X) such that a; € Ay forv =1, ...,r, where r := [M : F(X)]. Choose v, € N
such that max |a;], < exp v,. We claim ‘

l=si<r

(1) dimp Ay (») = rN(¥ — vy) forall » € N with » > »,,
where N(s) denotes the number of monomials X* = X}*... X’» of degree < s.
In order to justify this claim, we take a monomial m € F[X] with deg m
= » — v, and estimate |ma;|; in the following way:

Ima;ly = |ml, |a;|, = exp (deg m) - |a;|, = exp (v — v,) €Xp vy = exp ».
Hence ma; € Ay (v) for 7 = 1, ..., r. Define

B:={ma;;7=1,...,7r and m € F[X] is a monomial with deg m < v — »,}.

We just proved that B 4y (v). As one can easily check, B islinearly independ-
ent over F and B contains 7N (v — »,) elements, whence (1) is proved.

Due to Proposition 1, we know that M admits an F(X)-orthogonal basis if
M is provided with | |,. Since 4, is finite over F[X] (indeed, F[X] is Japa-
nese; see Proposition 4.4/4), we may choose an orthogonal basis m,, ..., m, of

r
M such that 4, = 3 F[X] m;. Choose »; € N large enough so that exp (—w,)
i=1

)
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=< min |m;|,. In order to get a bound for dim A4, (») in the other direction, we
1<izr

want to show that
(2) dimp Ay (v) < rN(» + »,) forall » € N.

Namely, let a be an arbitrary element in 4,,(») (so that |a|, =< exp »). Then there

r
are fy, ..., fr € F[X] such that a = }’ fim; and |a|, = max |f;], |m;|,. From
lal, < exp », we derive i=1 l1sizr
exp (deg /i) = |fily = |al, |mil;* = expvexpw =exp (v + »),

whence deg f; < v + »,. If we denote by S the set of all polynomials in F[X] of

T r
total degree < v + »;, then we just proved 4, (v) = 3’ Sm;. Since dimp }, Sm;
= rN(» 4+ »,), also (2) has been verified. =1 i=1

Now we want to determine N(s) for s € N. To each monomial X% ... X%
with %, + -.- + 72, =< s, we associate a sequence of s ones and n zeros in the
following way :

Xil...Xf,M—-) 1...101...10...01...10 1...1.

e, e’ [ E— [ — e, e’
% g in 8— (Tt +1p)

Obviously this is a bijection. On the other hand, it is clear that there are exactly
!
(S ™ n) = (8—_'-*——:2—)' such sequences. Combining this with (1) and (2), we
n s!in!
see

@) r(”“ ””‘") < dimp Ay () gr(”“‘*") forall veN, »>%.

n n

n
Since the two binomial coefficients are both asymptotically equal to v_'_ as
n!

» —> 00, inequality (3) implies r = lim -7%! dimy Ay (v), which finishes the proof

i’-—)OOv

of Lemma 4 and also of Proposition 3. O

5.3.4. Completion of the proof for arbitrary |k*|. — Let us return to the
general situation; i.e., we no longer assume that |k*| is divisible. Define &’ to
be the completion of the algebraic closure k, of k. According to Proposition
3.4.1/3, we know that &’ is algebraically closed. In particular, £’ is stable, and
|k'*| is divisible (Observation 3.6.2/10). Therefore we are allowed to apply
Proposition 5.3.3/3 to k', and we get ¥’ (X) = k'(X,, ..., X,,) is stable. What we
really want to show is that k(X) = k(X,, ..., X,,) is stable. Therefore, suppose
we are given a finite extension L of k(X). Then one can construct a finite
extension L’ of k’'(X) containing L. If we provide L’ with the spectral norm
derived from the Gauss norm on %'(X), we know that L’ is k'(X)-cartesian
because k'(X) is stable. We want to show that L’ is also k(X)-cartesian. In
order to do so, we need the following
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Lemma 1. If k ©s complete and stable, then k'(X) 18 k(X)-cartesian.

Proof. Let U be a k(X)-subspace of £'(X) of dimension m < co. We have to
show that U is k(X)-cartesian. There are elements u,, ..., u,, © € k'[X] such

m s
that U = 3] k(X )16-’ . If we can find a k(X)-orthogonal basis for .U
m i=1 u
= 2} k(X) u;, we immediately get one for U. Therefore we may assume u = 1.
i=1
Let V be the k-subspace of k' generated by the finitely many coefficients of
the polynomials u,, ..., u,. Then V is a finite-dimensional k-cartesian subspace
of k’. Namely, k, is k-cartesian and dense in &’ so that %’ is k-cartesian by Corol-

lary 2.4.3/10. Hence V admits a k-orthogonal basis vy, ..., v,. We claim that

(1) {v1, ..., v} isalso orthogonal over k(X)
and that

l
(2) U= 3 k(X) v;.

A=1

!

If both (1) and (2) are verified, then }’ k(X) v; is a k(X)-cartesian space and
1=1

therefore also U is k(X)-cartesian. Because k(X) is the field of fractions of

k[X], in order to show the validity of (1), it suffices to prove

!
2 fiva = max |fi |va] forall f,..., [ € k[X].
A=1

1=isl
To prove this equality, we write f; = 3 f;,X” with f;, € kfor 1 =1, ..., L.
We know |f;| = max |f;,|. Furthermore, we have
!

2 (Z fz.vX”) s

A=1

l
Z fl,vvl

A=1

—= max

v

Z(Aé; fl,vv).) X

14

l
2 fiva
i=1

Using the fact that {v;} is k-orthogonal, we may continue as follows:

l

Z f/l,vvl

A=1

max

v

= maXx (max |f;,] |v;]) = max (max |f;,|) [va] = max |f;| |v;].
v A A v y

So we have verified assertion (1). To justify also the second claim, we only have

l m
to show u; € 3 k(X) vy for 7 =1, ..., m, because U = 3, k(X) u;. According to
A=1 t=1
our construction, we know that

u; € V[X] :121' K[ X] v c:lzl; k(X) v;.
=1 =

Thus assertion (2) and consequently Lemma 1 are proved. i
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Now we can continue the proof of the Stability Theorem. First we claim
that L’is k(X)-cartesian. Namely, k’(X) is k(X)-cartesian due to Lemma 1, and L’
is k’'(X)-cartesian according to our considerations preceding that lemma. Lemma
2.4.3/4 tells us that L’ is k(X)-cartesian. Because L is a k(X)-subspace of L,
we see that L is also k(X)-cartesian, but only if L is provided with the restric-
tion | |’ of the spectral norm on L’ belonging to the Gauss norm on k’(X).
Since L provided with this norm is k(X)-cartesian, this norm induces the prod-
uct topology on L. But then Lemma 3.5.1/1 gives us that | | must coincide
with the spectral norm on L belonging to the Gauss norm on k(X). Thus we
finally have shown that an arbitrary finite extension L of k(X) provided with
the ‘right” spectral norm is k(X)-cartesian. This implies that k(X) is
stable. Together with Proposition 5.3.2/3 this finishes the proof of the Stability
Theorem. O



CHAPTER 6

Affinoid algebras and Finiteness Theorems

In this chapter we study a more general type of TATE algebras, namely
affinoid algebras. First we establish the NoeTHER Normalization Lemma which
is fundamental for almost all further investigations in this chapter. It says
that each affinoid algebra 4 contains a subalgebra isomorphic to some algebra
of strictly convergent power series 7'; such that 4 is a finite 7';-module. This
result makes it possible to reduce certain problems on affinoid algebras to
problems on algebras of strictly convergent power series. For example, the
procedure works well for the discussion of the supremum norm and for the
proof of the Maximum Modulus Principle; the technical details have already
been dealt with in (3.8).

In the second part of this chapter, we consider homomorphisms of affinoid
algebras. We show that the reduction functor 4 ~> 4 preserves finite homo-
morphisms. The same question for the functor 4 ~> 4 is fairly complicated.
It was first solved by GRAUERT and the third author of this book in [16] and
by GRUSON in [17]. Our discussion of the problem uses the results of (5.2.7) on
finite 7',-modules and the Stability Theorem of (5.3).

We denote by k a field with a complete valuation | |. All homomorphisms
are k-algebra homomorphisms.

6.1. Elementary properties of atfinoid algebras

6.1.1. The category U of k-affinoid algebras. — Each residue algebra 7',/a
of T, by a (closed) ideal a — 7', becomes a k-Banach algebra if one defines the
residue norm of the residue class f of an element f € 7', by

[fl:=1f, al :=inf {[h]; h € f}.

The residue epimorphism 7', — 7',/a is contractive (hence continuous) and
open. In particular, the residue norm induces the quotient topology on 7',/a.
Notice that the residue norm is not in general power-multiplicative. For exam-
ple, T,/a can have nilpotent elements == 0.

Definition 1. 4 k-Banach algebra A s called affinoid (more precisely,
k-affinord) if there exists an integer n = 0 and a continuous epimorphism o : T, — A.
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By BaxacH’s Theorem, « is open; hence 4 is isomorphic as a k-Banach
algebra to the residue algebra 7',/ker «. In particular, the residue norm, which
from now on will be denoted by | |,, induces the given Banach topology on 4.

The residue norm | |, depends heavily on the choice of the epimorphism
x. However all norms | |, are equivalent, since they induce the given Banach
topology on 4.

Proposition 2. Let 4 be k-affinoid and let | |, be a residue norm on A. Then
Ao = |kl

In particular, each vector == 0 in A can be normed to length 1 by multiplication
with a scalar.

The assertion follows directly from Corollary 5.2.7/8.

Remark. We shall see later that a reduced affinoid algebra can be provided in
a natural way with a complete power-multiplicative norm, the so-called spec-
tral norm. For this norm, all values are roots of elements of |k|.

Proposition 3. Let A be a k-affinord algebra. Then A is a Noetherian Jacobson
ring. Each ideal a = A s closed, and each quotient A|a (provided with the residue
norm) s k-affinoud.

Proof. Let «: T, — A be a continuous epimorphism. Then 4 == 7', /ker « is
a Noetherian Jacobson ring since 7', is such a ring (Theorems 5.2.6/1 and
5.2.6/3). The closedness of any ideal a — 4 follows from Proposition 3.7.2/2
(or simply from the closedness of ideals in 7',), and 4/a is k-affinoid, since
T, <+ A — Ala is a continuous epimorphism. O

The k-affinoid algebras form the objects of a category 2; the morphisms
of this category are the continuous k-algebra homomorphisms. (We shall see
later that every k-algebra homomorphism between k-affinoid algebras is
continuous.) For our purposes, the category U will play the same fundamental
role as does the category of affine algebras in algebraic geometry.

As in (1.2.5), we use the notation 4 for the subring of power-bounded ele-
ments in a k-affinoid algebra 4. Morphisms of Y map power-bounded elements
into power-bounded elements. ‘

Proposition 4. Let ¢: B — A be a contvnuous homomorphism between k-Banach
algebras A, B. Let f, ..., f, be power-bounded elements in A; let X, ..., X,
be indeterminates. Then there exists a wunique conttnuous homomorphism
®: B(X,,..., X,) — A such that

@!B-:(P, ¢(Xi):fi’ : ’L.Zl,...,n-

Xp... X e B(Xy, ..., X,), we set

VieeVp

Proof. For h = } ' a
0

D(h) 1= %’ P(@y...v,) [ oo o
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Since f; € 4 and lim a,,. ., = 0, the series on the right-hand side represents a
well-defined element of 4. It is clear that this is the only way to extend ¢ to
the polynomial algebra B[X,,..., X,] and that @ is a homomorphism of
B[X,, ..., X,] into 4. As B[X,, ..., X,] is dense in B(X,, ..., X,), it follows
that @ is the unique continuous extension of ¢ to a homomorphism of

B(X,, ..., X,)into 4. O

In the case B = k, Proposition 4 says that, for each set fi, ..., f, € 4 and
each chart {X,, ..., X,} of T, there exists exactly one continuous homomor-
phism @: T, — A such that &(X;) =f;, 7 = 1, ..., n. If @ issurjective, we call
the elements f,, ..., f, a system of affinoid generators of A. In particular, 4 is a
k-affinoid algebra, and we write suggestively 4 = k(f;, ..., f,).

We shall prove now that the category U is closed under finite extensions,
i.e., that 9 contains all finite overalgebras of a given k-affinoid algebra. Recall
that a ring homomorphism g: R — § is called finite if S provided with the
induced R-module structure (i.e., 7 - s := p(r) 8) is a finite R-module. Recall
further that the composition of two finite ring homomorphisms is finite. Each
epimorphism isfinite; hence each 4 € A admits finite homomorphisms 7', — 4.

Proposition 5. Let B be an object of W, and let ¢: B — A be a contvnuous
finite homomorphism into a k-Banach algebra A. Then A € .

Proof. We may assume B = 7, for some n. By assumption there are ele-

m
ments a,, ..., a, € A such that 4 = ¥ ¢(T,) a;. We may assume a; € 4. By
i=1
Proposition 4, the map ¢ extends to a continuous homomorphism @: 7,(Y,, ...,
Y,) — A such that &(Y;) = a;. Then @ is surjective, and hence 4 € . O

If @ is not assumed to be continuous and 4 is not assumed to be a Banach
algebra, we still have

Proposition 6. Let B be an object of U, and let ¢: B — A be a finite homomor-
phism into a k-algebra A. Then A can be provided with a topology such that ¢ is
contrnuous and strict and such that A € A.

Proof. By Proposition 3.7.4/1, we can provide 4 with a topology such that
A becomes a k-Banach algebra and ¢ becomes continuous and strict. We have
A € A by Proposition 5. O

Later we shall see that the topology on 4 is uniquely determined.

The category U is closed with respect to the operation of forming direct
sums; i.e., 1f 4, B are objects of N, then the ring-theoretic direct sum A @ B be-
longsto A. :

Proof. Let «: T, - A and g:T,, — B be continuous epimorphisms. We

may assume m = n. Define x P g: T, P Ty > AP B by (xP ) (fPg):=
= «(f) @ B(g). Then « @ p is a continuous k-algebra epimorphism. Therefore
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we only have to show that the k-Banach algebra 7', @ 7', (viewed as the
normed direct sum of 7', with itself) belongs to %A. Themapge: 7, -1, P T,
given by z > (z, z) is a continuous finite homomorphism. Hence 7', @ 7', € ™A
by Proposition 5. |

The statement 7', @ 7', € A can also be verified by checking directly that
themap @:7(Y)—>T,PT,given by ® ( JaY ") = (ao, 2, a,) is a continuous
epimorphism, 0 °

We want to see that ¥ is also closed with respect to complete tensor prod-
ucts. Beginning with a slightly more general situation, we let 4 and B denote

k-Banach algebras. Then 4 @)k B is a complete normed k-algebra (cf. (3.1.1)),
hence a k-Banach algebra. If in particular B = k(X,, ..., X,), there exists
by Proposition 4 a unique continuous homomorphism o: 4A(X,,..., X,) —

A &y kX, ..., X,) such that
X, »10X;,, i=1,..,n,

al—»a@)l, a€Ad.

More generally, Proposition 4 says that the inclusions ¢,: 4 & 4(X;, ..., X,)
and o,: KX,,..., X,) & A(X,,..., X,) satisfy the universal property stated
in Proposition 3.1.1/2 which characterizes the complete tensor product

A@)k k(X,, ..., X,). Thus one concludes that ¢ is an isomorphism. Furthermore,
¢ is obviously contractive. Also o1 is contractive by Proposition 3.1.1/2, since
o, and o, are contractive. Hence we get

Proposition 7. Let A denote a k-Banach algebra. Then the canonical k-algebra
homomorphism o: A(X,,..., X,) > A Q) KX,, ..., X,) 18 an isomelric tso-
morphism.

The proposition applies in particular to the cases where 4 is a TATE algebra
T,(k) or where A is an extension field £’ of k¥ with a complete valuation on &’
extending the valuation on k. Thus, we have

Corollary 8. There are canonical isometric isomorphisms T, @k T, = Thin
and k' @y Ta(k) = To(k').

Corollary 9. Let A and B denote k-affinoid algebras, and as above let k' be
a complete valued extension field of k. Then A X B 18 k-affinoid and k'’ @k B s
k'-affinoid. The canonical homomorphism B — k' ékB 18 a strict monomor-
phism.

Proof. Let ¢: kX,, ..., X,) - B denote a continuous epimorphism. By
Bawacw’s Theorem, ¢ is open and hence strict by Proposition 1.1.9/3. Applying
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Proposition 2.1.8/6, we get continuous epimorphisms
id, ® ¢: 4 KXy, ..., X} > AR B
idy ® ¢: ¥ Qp KXy, ..., X,y > kK Qi B

showing that 4 @k B is k-affinoid and that %’ @k B is k’-affinoid, since the
corresponding facts obviously hold for the algebras 4 @k kX, ..., X,) and
k' @k kX, ..., X,) by Proposition 7. To verify the remaining assertion, we
view B as a k-Banach space. If {f, ..., f,} is a system of affinoid generators of
B, then B contains k[fi, ..., f,] as a dense subspace. Thus we see that B is a
Banach space of countable type and that there is a linear homeomorphism of
B onto c(k) or onto k7 if r:= dim; B << oo (Theorem 2.8.2/2). Since the in-
clusion map k < k' is strict and since the restricted direct product of normed
vector spaces commutes with the complete tensor product (Proposition 2.1.7/8),
it follows that the canonical homomorphism B — B @k k' is a strict mono-
morphism. 03

The category A admits also complete tensor products of a more general
type; namely the following holds:
Proposition 10. Let B,, B, € A be normed algebras over some algebra A € A

via contractive homomorphisms A — B;, 1 = 1, 2. Then also B, (;5 4 Bs, viewed as
a k-algebra, belongs to A. If A’ — A vs a contractive homomorphzsm of k-affinord

algebras, the canonical homomorphism B, ® 4 By — By ® 4 Bs ts surjective.

Proof. We start with the second assertion. According to Proposition 3.1.1/2,

the canonical maps from B, and B, into B, (;) 4 By, respectively B, @) 4 Bs,
induce a commutative diagram of contractive homomorphisms

A —— B,

//\

’ BIOA B—‘»Bl\XA_B2

N

A _— B2
and furthermore a commutative diagram of contractive homomorphisms

B,

v
A— 4 (B, ® 4 B,)/kerp+B, R, B

T

B,
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where B, @ 4 By/kery is provided with the canonical residue norm (kery is
a closed ideal in B, (;j 1 Bs). It is a straightforward verification to see that the
maps B; — (B, @A, By)/kery, © = 1, 2, satisfy the universal property stated in
Proposition 3.1.1/2 which characterizes the complete tensor product B, é 4 Bs.
Hence (B, (;j 4 By)/kery — B, (;) 4 By isan isomorphism showing that B, C;)A, B,
— B, ®,4 B, is surjective. In particular, if 4’ equals k and if 4’ — 4 is the
canonical map k — A4, it follows from Proposition 3 that B, @ 4 Bs is k-affinoid
since B; Q) B, is k-affinoid. O

Proposition 11. In the sttuation of Proposition 10, let b; = B;, v = 1, 2, be
ideals, and denote by (b,, by) — B; ®4 B, the ideal generated by the images of
b, and b, in B, ® 4 B,. Then the canonical map n: By Q4 By — B[b; &4 By/b,
s surjective and satisfies ker m = (by, by); hence, n induces a strict vsomorphism
B, @4 By[(b1, by) => B, /b1 @4 By/bs.

Proof. The map = is surjective by Proposition 2.1.8/6, and obviously (b;, b,)
— ker #. Hence 7 induces a continuous homomorphism

' (By ®4 By)(by, b5) — By/by ® 4 By/b,.

Furthermore, the canonical maps B; — B, @) 4 By induce maps B;/b; —
B, @)A B,/(b4, by), © =1, 2. Just as in the preceding proof, it is not hard to see
that these induced maps satisfy the universal property characterizing the
complete tensor product B,/b, @ 4 B2/by. Thus (B, @ 4 Bs)/(by, by) is k-affinoid
and #’ is a strict isomorphism by Proposition 3.1.1/2. O

As a consequence, we now have an explicit description of the coinplete
tensor product over k in 9. Namely for 7,,/a, T,/6 € 9, it follows that

T'nja @k Tafb = Trenl (@, B).

Using the same technique as in Proposition 11, one shows that

Proposition 12. Let A be a k-affinoid algebra, and let a be an vdeal in A. If k'
18 a complete freld extending k, the canonical homomorphism of k'-affinoid algebras
w: A Qp k' — (Aa) Qi k' ©s surjective, and ker st equals the ideal a’ generated by
aim A Ry k'. Hence 7 induces a strict isomorphism (A Qi k')/a’ => Aja Qi k'.

The category U is not closed with respect to the operation of passing to
rings of fractions. Set 4 := 7, = KX), S:= {1, X, X2, ...}, and consider the
ring

Ag = {k = ) a,X";lima, = 0}
> —00

of strictly convergent Laurent serves with finite principal part. Then A provided
with the norm || := max {|a,|} is not complete. In (6.1.4), we shall see that the
completion of 4 is again k-affinoid.
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Remark. A closed k-Banach subalgebra of a k-affinoid algebra is notneces-
sarily Noetherian and hence not necessarily k-affinoid.

To give an example, we take T, = k(X,, X,) and set
A= {f € T; /0, X;) € k}.

Obviously A4 is a closed k-Banach subalgebra of 7',. We consider the ideal ain 4
generated by the elements X, - X} € 4, ¢ = 0. If a could be finitely generated,
some of the elements X, - Xi, say X;, X; - X,, ..., X; - X%, would do it. How-
ever, an equation

8
X, X3 =3 [,.X,X;, fied,
i=0
is impossible because it would imply the equation
8
X;+1 = Zf,(O, Xz) X;: fi(O, Xz) € k,
i=0

of linear dependence over k.

For each 4 € U, we denote by 9, the category of all finite complete normed
A-modules with continuous 4-module homomorphisms as morphisms. Since
A4 is Noetherian, all results of (3.7.3) hold for this category. Thus, we know that
each submodule of a module M € M, is closed, that up to equivalence each
finite A-module can be uniquely provided with a complete 4-module norm,
and that each A-linear homomorphism ¢: M — M', M, M’ € M, is automat-
ically continuous and strict.

6.1.2. Noether normalization. — By definition each 4 € U is the residue
algebra of a free algebra 7,. In this section, we prove that, on the other hand,
each 4 € % contains a free algebra 7'; as subalgebra — more precisely, that
each 4 € 9 is a finite overalgebra of a free algebra 7';.

Recall that a ring homomorphism g: R — § is called integral if S is integral
over the subring o(R). We will see later that all integral homomorphisms of
k-affinoid algebras are already finite, but for the time being we are not yet able
to use this result.

Theorem 1. (i) Let 4 be a non-zero k-affinoid algebra. For every finite (resp.
wntegral) homomorphism o: T, — A, there exist a chart {X,, ..., X,} of T, and an
wnteger d = 0 such that « | (X, ..., X;) s findte (resp. tntegral) and tnjective.

(ii) Let ¢: B — A be a finite (resp. integral) homomorphism between nmon-zero
k-affinoid algebras. Then there exists a homomorphism w: Ty — B for some
d = 0 such that p op: Ty — B — A s finute (resp. integral) and tnjective.

Proof. First let us reduce the second statement to the first one. By choosing
an epimorphism «:7', — B and applying the first statement to the map
pown: T, — A, one gets a subalgebra 7;— T, such that (po«x) | Ty: Ty — A
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is finite (resp. integral) and injective. Then y:= « |T; has the required
properties.

Now let us prove the first assertion. We proceed by induction on n. The
case n = 0 is trivial. Let n = 1. If ker « = 0, there is nothing to prove. Other-
wise we can find a chart {X,, ..., X,} of T, and a Weierstrass polynomial

w € Tn—l[Xn]’ Tha = k<X1, ceey Xn—l>’

such that w € ker x. Then x induces a finite (resp. integral) homomorphism
x:T,/oT, — A. By the WEIERSTRASS Finiteness Theorem 5.2.3/4, the natural
injection 7T,_, — T, induces a finite monomorphism g:7,_; = T,/0wT,.
Obviously, x o 8 is finite (resp. integral), and one has & o f = « | K(X,, ...,
X,-1). Applying the induction hypothesis to 7', _; and x o 8, we get the theorem.

g

As a special consequence of the theorem, one obtains the so-called NoETHER
Normalization Lemma (in analogy to the corresponding theorem for finitely
generated k-algebras).

Corollary 2. For every k-affinoid algebra A == 0, there exists a finite mono-
morphism ¢: Ty — A for some d = 0.

Remark. Using some facts about Krull dimensions of rings, one can show
that the integer d above is uniquely determined by the algebra 4. Namely,
dim 4 = dim 7'; (for example, use Nacara [28] Corollary 10.10), and dim 7',
= d. The latter assertion is easily verified. Namely, the chain of prime ideals

O X)X, Xy)ce..a (X, .o Xp)

shows that dim 7'; = d. Since each maximal ideal in 7'; can be generated by d
elements (Proposition 7.1.1/3), we must have dim 7; = d.

Corollary 3. Let A be a k-affinoid algebra; let q be an ideal tn A such that vts
nilradical rad g s a maximal ideal in A. Then A|q is finite over k.

Proof. By the theorem, there exists a finite monomorphism ¢: 7'; — 4/q
for some d = 0. We claim d = 0, i.e., Ty = k. The composition of ¢ with the
canonical epimorphism g: 4/q — A/rad q is finite and injective (because 7' is
reduced). The ideal rad q being maximal, we see that 7'; has a finite extension
which is a field. But then 7'y must itself be a field so thatd = 0and 7'y = k. [

Another consequence of Theorem 1 is

Proposition 4. Every k-affinoid algebra A which is an integral domain vs
Japanese.

Proof. Let A’ be an integral extension of A4 such that its field of fractions
Q(4’) is a finite extension of (4). We have to show 4’ is a finite 4-module. By
the theorem, there is a normalization map ¢: 7T; — A4 for a suitable d = 0.
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Then A’ is an integral extension of 7';, and Q(4’) is finite over Q(7;). Since
T; is Japanese by Theorem 5.3.1/3, we see that A4’ is a finite 7';-module and a
fortiori a finite A-module. |

6.1.3. Continuity of homomorphisms. — We now apply the general results
on k-Banach algebras of (3.7.5) to k-affinoid algebras. The following remark is
crucial:

For each k-affinoid algebra B € U, the set
B := {m*; m maximal ideal in B, » € N}
fulfills conditrons (i) and (ii) of Proposition 3.7.5/2. Namely,
(i) dimy B/b << oo for each b € B,

(i) N6 = (0).
beB
Proof. We have dim; B/b << oo for all b € B by Corollary 6.1.2/3. In order

to show N b = (0), take any f € B such that f € N\ m” for all maximal ideals
beB v=1

m c B. Krurr’s Intersection Theorem implies that for each m there is an
element m € m such that (1 — m)f = 0. Hence the annihilator of f is con-
tained in no maximal ideal in B. Therefore, f = 0 and (ii) holds. O

Since each B € U is Noetherian, we derive from Proposition 3.7.5/2

Theorem 1. Each k-algebra homomorphism of a Noetherian k-Banach algebra
mto a k-affinoid algebra is continuous.

This theorem tells us for the category U of k-affinoid algebras that (simi-
larly as in the category of finite modules over a k-affinoid algebra A4) one need
not bother about questions of continuity. Each morphism is automatically
continuous. Furthermore, a k-algebra can carry at most one k-affinoid struc-
ture, since the identity map must be continuous in both directions. Actually a
stronger result holds:

Proposition 2. If A s k-affvnoid, then any k-Banach algebra topology on the
k-algebra A cotncides with the k-affinoid topology of A.

Proof. The assertion is a direct consequence of Proposition 3.7.5/3. ™
We can strengthen Theorem 1 also in the following way.

Proposition 3. Let ¢: B — A be a homomorphism of k-affinoid algebras. Then
the algebra norm on A can be replaced by an equivalent one such that ¢ becomes
contractive, and thus A becomes a normed B-algebra.

Proof. Let a,, ..., a, € A denote affinoid generators of A. Then according
to Proposition 6.1.1/4, the map ¢ extends uniquely to a continuous homomor-
phism y: B(X,, ..., X,) —> 4 such that y(X;) =a;, ¢ =1, ...,n. The map p
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is obviously surjective and hence open by Baxaca’s Theorem. Therefore, the
residue norm viay is equivalent to the original norm on 4 ; thusy and, in par-
ticular, ¢ are contractive with respect to this norm on 4. O

Consequently, for arbitrary homomorphisms B — A4, and B — 4, of
k-affinoid algebras, the complete tensor product 4, X5z 4, can be constructed

by taking suitable norms on 4, and A,. The B-algebra 4, @ g A, is then
k-affinoid by Proposition 6.1.1/10. Moreover, according to Proposition 2.1.8/5,
equivalent norms on 4, and 4, (and even on B as a simple computation shows)

lead to equivalent norms on 4, @ 8 A,. Thus, in our situation, 4, C;)B A, isa
well-defined k-affinoid algebra, uniquely determined up to isomorphism.

Proposition 4. Let ¢: B — A be a finite homomorphism of a k-affinoid algebra
B into a k-Banach algebra A. Then @ 1s strict and A s k-affinord.

Proof. According to Proposition 6.1.1/6 the k-algebra A4 can be provided
with a complete k-algebra norm such that ¢ is strict and 4 is k-affinoid with
respect to this new norm. From Proposition 2, we conclude that the correspond-
ing k-affinoid topology of A coincides with the given Banach topology. J

Remark. We see that the category U could also have been defined as the
category of all k-Banach algebras 4 permitting a finite (not necessarily sur-
jective and continuous) homomorphism from some 7', into A. Furthermore,
this category is equivalent to the (purely algebraic) category of all k-algebras
which are finite over some 7',,.

6.1.4. Examples. Generalized rings of fractions. — If 4 is a k-affinoid
algebra with norm | | and if X = (X,, ..., X,;) denotes a system of indeter-
minates, then the ring A(X) of strictly convergent power series over 4 is
k-affinoid. Similarly one can consider strictly convergent Laurent series;
define

AX, X1y := {Z a,. ., Xp...Xma,€ A4 and]a,| —0
vi€Z
for |v| + -+ + |Vl —>oo}

If 3 a,X” and } b,X* are elements of 4(X, X~1),thenc; := 3} a,b, converges
vtu=24
for all A€ Z and ] ¢;X* is again an element of A(X, X~1). Thus, it is easily
1

verified that A(X, X-1) is a k-Banach algebra with the norm given by
|} a,X?| := max |a,|.

Furthermore, 4(X, X~1) is even k-affinoid. Namely, let ¥ = (Y,,..., Y,,)
denote a second system of indeterminates. Then, according to Proposition
6.1.1/4, the injection 4(X) — 4(X, X~1) extends to a homomorphism 4(X, ¥)
— A(X, X°1), Y > X1, which is obviously surjective.
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The k-affinoid algebra 4(X, X~1) contains, in particular, the ring A(X) [X~1]
which stands for the localization of 4(X) by X, and it is clear that A(X) [X~1]
is dense in A(X, X~1). Hence, in some sense, A(X, X~1) is the ‘“‘smallest”
k-affinoid algebra over A(X) such that X,, ..., X,, become units. We want to
carry out similar constructions in a more general situation.

As before, let 4 denote a k-affinoid algebra, and let f = (f;, ..., f,) and
g = (1, ..., ga) be systems of elements in 4. We are looking for a k-Banach
algebra A’ over A such that the g; become units and the f;, g;! are power-
bounded in A’. In order to give a construction for 4’, we start with the ring of
fractions A[g~']. Any element a € A[g~!] can be written as a finite sum

a =) a,ftq", a,, €4,

Ue¥; 20

and we define a semi-norm on A4[g~!] by

ja] = inf (max |a,,)),
u.y

where the infimum runs over all possible representations of a. Note that this
semi-norm on A[g~1] depends not only on the system ¢ but also on the system f.
It is a natural semi-norm such that the elements of f and g~ become power-
bounded. Hence A(f, g~1), the completion of A[¢g~1], is a k-Banach algebra over
A, which has the properties we are looking for. We will see below that A(f, g=1)
is even k-affinoid; however, first note that, by construction, the canonical
map 4 — A(f, g~1) satisfies the following universal property.

Proposition 1. Let ¢: A — B denote a conttnuous homomorphism from the
k-affinoid algebra A into a k-Banach algebra B such that the elements ¢(g;) are
units and the elements @(f;), ¢(g;)1 are power-bounded. Then there is a unique
continuous homomorphism ¢': A(f, g~y — B such that the diagram

A——> Alf, g7
[ 4 ¥

B

commutes.

In particular, if 4 is replaced by the algebra A(X) of strictly convergent
power series in X = (X, ..., X,;), and if f:= 0 and ¢ := X, we see that the
algebra A(X)(X~1) is canonically isomorphic to the algebra A4(X, X-1) of
strictly convergent Laurent series in X. Namely, both algebras satisfy the
same universal property. (The isomorphism can also be obtained by a direct
argument.) We always use the notation 4(X, X~1) instead of 4(X) (X~1).

Returning to the general case, there is another possible way to construct
a k-Banach algebra 4’ over 4 satisfying the required properties. Let X
= (X, ..., Xp)and Y = (Y, ..., ,) denote systems of indeterminates. Then
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A = AX, Y)/(X — f, gY — 1) is obviously a k-Banach and even a k-affinoid
algebra over 4 such that the g; become units and the f;, g;* are power-bounded
in 4’. Furthermore, the canonical map 4 — 4A(X, Y)/(X — f, g¥Y — 1) also
satisfies the universal property stated in Proposition 1. Namely, let ¢: 4 — B
be a continuous homomorphism as in Proposition 1. Then ¢ extends to a
continuous homomorphism ¢'': 4(X, Y) - B, X > ¢(f), Y > ¢(g)~1, with

(X —f, gY — 1) ker ¢”.

Thus ¢’ gives rise to a continuous homomorphism ¢': 4A(X, Y)/(X — f,
gY — 1) — B such that the diagram

A— AX, V)[(X — f,g¥ — 1)

’
@ (4

B

commutes, and ¢’ is uniquely determined by this diagram since the residue
classes of X and Y must be mapped by ¢’ onto ¢(f) and ¢(g)~! respectively. In
particular, taking B := A(f, g~1), we get

Proposition 2. The continuous homomorphism A(X, Y) — A{f, g7 1),
X = f, Y > g1, is surjective and gives rise to a strict isomorphism
AX, Y)/(X — f,gY — 1) = A{f, g7%).

Providing 4(X, Y)/(X —f, g¥ — 1) with the canonical residue norm, it is
not hard to see that the above isomorphism is in fact isometric. In particular,
it is now clear that A(f, g~') is k-affinoid.

A few remarks concerning the notation A(f, g7 = A{f1, ..o fur g1 ts - s L)
seem to be necessary. In the case where g = 0, we simply write A(f)instead
of A(f,g7'); likewise we write A(g~?) if f = J. Note also that A(h~1) is defined
in two ways when k € 4 is a unit. However, no difficulties will arise from that,
since both definitions coincide in this special case. Finally it follows from
Proposition 2 that we have associativity in the following sense:

A<f1’ ce fm—l’ gl_l’ e g;ll> <fm’ g.n_1> = A<f1’ ] fm’ gl_l’ M g;1>'

There is another procedure which partially generalizes the above one. Let
9 f15 -+ fm € A be elements generating the unit ideal in 4 ; i.e., there are ele-
ments a, a4, ..., a, € A such that

m
ag + 3 aif; = 1.
i=1
We are looking for a k-Banach algebra 4’ over 4 such that ¢ becomes a unit

and such that the fractions L are power-bounded in A4’. Since, in the ring of

fractions 4[g~1], we have
no T
glt=a+ Y a—,
i=1 qg



6.1. Elementary properties of affinoid algebras 233
it is clear that any element b € A[g~!] can be written as a finite sum

b =2b,(i)", b€ A,
g

where l stands for the system (f—l, ey f—'") Similarly as before, one defines a
g 9 g
semi-norm on A[g~'] by

|b| = inf (max |b,]),
where the infimum runs over all possible representations of b. The completion

of A[g~'] is denoted by 4 L ; it is a k-Banach algebra having the properties

)
we are looking for. Furthermore, the canonical map 4 — A4 (—f—> satisfies the
following universal property: g

Proposition 3. Let ¢: A — B denote a continuous homomorphism from the
k-affinoid algebra A into the k-Banach algebra B such that ¢(g) is a unit and the

@(f3)

elements T) are power-bounded. Then there 1s a unique conttnuous homo-
p\g

morphism ¢': 4 < i> —> B such that
g

A——r4 L)
g

,

® @
B
commules.

Also in this case, we want to have an explicit description of A<L> which
g

shows that it is k-affinoid. Let X = (X,, ..., X,,) be a system of indeterminates,
and consider the k-affinoid algebra 4’ = A(X)/(gX — f). With X; denoting
the residue class of X; in 4’, we get

(a +_Zai)_(.-)g =ag + Yaifi=1
i=1 i=1
/i

which shows that ¢ is a unit in A’. Moreover, X; = = in A4’; hence, the ele-

. g

ments Li must be power-bounded in A’. It is now a straightforward verifica-
tion to see that also A’ = A(X)/(gX — f) satisfies the universal property

stated in Proposition 3. Thus we get
Proposition 4. The continuous homomorphism A(X) — A <—f—>, X > L, 18
9 g
surjective and gives rise to a strict isomorphism A(X)/(gX — f) - A4 L
g
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Again, providing A{X)/(gX — f) with the canonical residue norm, one shows
that the above isomorphism is isometric. Note also that our definition of

A <i> is compatible with the one given before, if the f; or g are units.
g

6.1.5. Further examples. Convergent power series on general polydises. — If
the ground field ¥ were equal to IR or C, then all polydiscs P,(k):= P,
={x €k; |x;]| Zp;forv=1,...,n}, with radiig,, ...,0, > 0 would be essentially
the same, because (zy, ..., ;) —> (011, .., 0,%;) Would map the unit polydisc
bijectively (and bi-analytically) onto P,. In our case, i.e., with a non-Archi-
medean k, such a mapping is by no means always available, and in fact the
polydiscs P, (and the algebras of power series convergent on P,) behave rather
differently depending on g. This shall be elaborated on in the present section.

Let X = (X4, ..., X,) be a set of indeterminates, and let ¢ be an n-tuple of
positive real numbers. It is clear that a formal power series f = 3 a,X” € k[ X]
is convergent on the polydisc P, if lim |a,| 0* = 0. Conversely, if the compo-
nents of g belong to |k*|, any series converging on P, must satisfy this condi-
tion. Therefore we define

Ty = {X 0, X7 € k[ X]; lim |a,| ¢* = O}.

In particular, 7,, = T, if o = (1, ..., 1). Generalizing the Gauss norm on 7,
we set for any f = 3 a,X* € T,

}f]e := max |a,| 0.

Then, similarly as in the case p = (1, ..., 1), one shows that

Proposition 1. The series in T', , form a k-subalgebra of k[ X]. The map | |,
18 a k-algebra norm on T, ,, making it a k-Banach algebra, which contains k[ X] as
a dense subalgebra.

Furthermore, an argument similar to the one used in the classical proof of
the Gauss Lemma (see (1.5.3)) shows that, in fact,

Proposition 2. The norm | |, 18 a valuation on T'y,,.

If o consists of a tuple of numbers in |k*|, then by definition, 7', , consists of
precisely those power series f € k[X] which converge on the polydisc P,(k).
This assertion cannot be maintained if not all components of ¢ belong to |k*|.
For example if n = 1 and ¢ ¢ |k*|, then convergence on P,(k) = B*(0, g) is the
same as convergence on B~(0, o). However there are power series f = } a,X”
converging on B~(0, g), which do not satisfy the condition lim |a,| ¢* = 0, so
that f ¢ 7', in this case.

As a by-product of Proposition 2, it follows that there are valued fields k’
extending k such that |k’| contains arbitrary prescribed values gy, ..., 0, > O.
Just take for &’ the field of fractions of 7', ,. Thereby we see that
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Proposition 3. The algebra T,, consists of precisely those series f € k[X]
such that f converges on P,(k') for all complete fields k' extending k.

We want to characterize the tuples g, for which 7', , is k-affinoid. Of course
if o = (le1], ---» |Ca]), Where ¢y, ..., ¢, € k¥, then T, — T, ,, X; — ¢;'X;, defines
an isometric isomorphism between 7', and 7', , so that 7', , is k-affinoid in this
case. In order to deal with the general case, let k, be the algebraic closure of k.
Then a positive real & belongs to |k}| if and only if «® € |k*| for some s € IN.

Theorem 4. The algebra T,,, s k-affinoid if and only if all components o; of
o belong to |k¥|.

Proof. First assume that there are sy, ..., s, € Nand ¢y, ..., ¢, € k* such that
o = |¢jt| for e = 1, ..., n. Then |¢;X}¥|, = 1, and we can define a monomor-
phism ¢: T, —T,,, by setting ¢(X;):=¢; X3, © = 1,...,n (see Proposition

6.1.1/4). We claim that ¢ is finite. Take f = 3 a,X* € T, , and write

f= X XX auuc X)),
i u

0<i<8 O=u

where 2 = (A5, ..., 40)s 0 = (Uy, «oes B0)s 8 = (815 ..+, 8), and ¢ = (¢, ..., Cp).
For each 1 with 0< 4; < s;, define

gy = 2 (a,”+1c"‘) X* € kﬂ:X:ﬂ

"

Then g; € T,, since
la”3+,16—/"l - laf,u.H-lI st = la’,u.SH-ll QMH_lQ—l —0

as |u| — oco. We have
f= 2 plg) X*
0§Zf<8¢

so that 7, is a finite 7',-module via ¢; the monomials X4 0 =< 1; < s;,
1 =1, ..., n, are generators. Thus, T,, is k-affinoid by Proposition 6.1.1/5,
and half of the theorem is proved.

To show the other half, assume that 7, , is k-affinoid. Choose a finite nor-
malization monomorphism ¢: 73> T,, Then ¢ is strict by Proposition
6.1.3/4. Furthermore, ¢ must be an isometry, because both norms | | (on
T;) and | |, (on 7T,,,) are power-multiplicative (use Proposition 3.1.5/1). Thus
we can apply Proposition 3.1.5/2 and thereby find integers sy, ..., s, € N satis-
fying oft = [X;|® € |Q(Ty)] = k| forv =1, ..., n. O

Remark. If one uses the results of (6.2), the above ad hoc proof for the
second part of the theorem can be replaced by the following consideration. If
T, is k-affinoid, the power-multiplicative norm | |, must coincide with the
supremum norm | |, on 7', ,; the supremum norm takes values only in the
value group of the algebraic closure of k.
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Proposition 5. If all components o; of o belong to kY|, then the norm | |,
cotncides with the supremum norm | |sup on T, ,, and T, ts a Banach function
algebra.

Proof. Choose a finite algebraic extension k' of k such that g, ..., 0, € |¥|
and consider 7', ,(k) as a k-subalgebra of T, ,(k’) (we add k, respectively k', in
brackets in order to specify the ground field). Then 7, ,(k’), considered as a
k’-algebra, is a Banach function algebra, because there is an isometric k’-iso-
morphism 7,(k') — T,,,(k’), and because 7',(k’) is a Banach function algebra
(Corollary 5.1.4/6). Since the k-algebraic and the k’-algebraic maximal ideals
coincide in 7', (k") (k' is finite over k), we see that 7', ,(k’) is also a Banach func-
tion algebra over k. Since 7', ,(k) is closed in 7', ,(k’), it follows from Lemma
3.8.3/4 that 7', ,(k) is a Banach function algebra. O

Actually, the assumption of Proposition 5 is superflous. This relies on the
fact that one has
|fle = sup {[/(@)]; x € Py(ka)}

for all f € T',,, (where k, is the algebraic closure of k). Knowing this, one can
conclude along the lines of the proof of Corollary 5.1.4/6 in order to see that
Ty, is a Banach function algebra. Fruthermore, 7', , satisfies the Maximum
Modulus Principle if and only if the above supremum is always assumed. This
is equivalent to the fact that 7, , is k-affinoid.

See vAN DER PuT [30] and GUNTZER [18] for further results on the algebras
T

6.2. The spectrum of a k-affinoid algebra
and the supremum semi-norm

6.2.1. The supremum semi-norm. — Let A denote an arbitrary k-affinoid
algebra. We want to introduce an intrinsic semi-norm on every such algebra 4,
not depending on the incidental representation of 4 as a residue algebra of
some algebra 7,. Such an intrinsic semi-norm is already at our disposal: we
take the supremum semi-norm | |y, as defined and studied in (3.8). For the
convenience of the reader, we repeat some of the relevant material given there
and adapt it to our special situation.

According to Corollary 6.1.2/3, all maximal ideals in a k-affinoid algebra 4
are k-algebraic. Therefore the supremum semi-norm is computed using the
whole spectrum of maximal ideals Max 4. Furthermore, because A is a
k-Banach algebra, Corollary 3.8.2/2 yields that | [, is finite; more precisely,
[flsup = |f]« for all f € A and all epimorphisms «: 7, — 4. Thus using Lemma
3.8.1/3, we see that

Lemma 1. The function | |wp: A — R, defined by
]f[sup 1= Sup ‘f(x)ly f €4,

reMax 4

s a power-multvplicative k-algebra semi-norm.
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Definition 2. This semiz-norm s called the supremum (or the spectral) sema-
norm on A. It is also referred to as the semi-norm of uniform convergence on Max 4.

Let red 4 = A/rad A denote the nilreduction of 4, and let red: 4 —red 4
be the canonical residue map. Since 4 is Noetherian, there are only finitely
many minimal prime ideals p;, ..., 9, in 4. Let ;: 4 - A4/p;, v =1, ...,7,
denote the canonical residue maps. With these notations we state the following
lemma which allows us to reduce problems concerning affinoid algebras with
zero divisors to integral domains.

Lemma 3. For each f € A, one has

[flsup = max |ni(f)[sup and !flsup - Ired f,sup-
1=i<r
Proof. The first equation is the assertion of Lemma 3.8.1/5. The second one
follows from the fact that the nilradical rad 4 is contained in each maximal

ideal of 4. O

According to Corollary 5.1.4/6, the spectral semi-norm coincides with the
Gauss norm on 7',. This fact allows us — by means of Proposition 3.8.1/7 —
to extend some of our results on free Tate algebras to general affinoid algebras.
Let k, be the algebraic closure of k.

Proposition 4. (i) The Maxvmum Modulus Principle holds for | |sup on each
k-affinoid algebra A.

(ii) For all f € A such that |f|sp == O, there are ¢ € k and m € N such that
[¢f™|sup = 1. Consequently, |A|sp, = |kal.

(iii) An element f € A is nilpotent if and only vf | |wp = 0. In particular,
| |sup 28 @ morm on A if and only vf A vs reduced.

Proof. Let us first consider the special case, where A4 is an integral domain.
Applying the NoeTHER Normalization Lemma (Corollary 6.1.2/2), we find a
finite monomorphism ¢: Ty — A for some d = 0. Since 7'; is integrally closed
(Theorem 5.2.6/2) and since the Maximum Modulus Principle holds for 7';
(Corollary 5.1.4/6), assertions (i) and (ii) follow from Proposition 3.8.1/7.
Furthermore, this proposition shows that | |, i8S a norm on 4 (since | |5, i8
a norm on 7). ,

Now let 4 be arbitrary. Denote by p;, ..., p, the minimal prime ideals in 4.
By what we have just seen, assertions (i) and (ii) are true for the algebras
Alp;, 7 =1, ..., r. Thus by Lemma 3, they must also be true for 4. Further-

T

more it follows that | |y, is a norm onred 4 = A/rad 4, sincerad 4 = N p;.
i=1

Therefore assertion (iii) is clear by Lemma 3. |

Combining assertion (iii) of the above proposition with the assertion of
Proposition 3.8.2/3, we get the following improvement of Theorem 6.1.3/1 for
reduced k-affinoid algebras.
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Corollary 5. If A vs a reduced k-affinord algebra, then each homomorphism of a
(not mecessarily Noetherian) k-Banach algebra tnto 4 vs continuous.

Remark. The assertion (iii) of Proposition 4 simply says that

rad 4 = N m.

meMax A

If A = T,/a, where a is an ideal in the free TATE algebra 7', this is equivalent

to

rada= N m.
meMaxT,
acm

Thus assertion (iii) of Proposition 4 is equivalent to the fact that each 7', is a
Jacobson ring. (The latter has already been obtained in Theorem 5.2.6/3. The
proof of this theorem can be viewed as a refinement of the detailed considera-
tions in (3.8) which led to the proof of Proposition 4.)

6.2.2. Integral homomorphisms. — Some facts from (3.8) about integral
homomorphisms have already implicitly been used in the preceding section.
Here we want to write down explicitly some properties of such homomorphisms.
First, Lemmata 3.8.1/4 and 3.8.1/6 yield

Proposition 1. Every homomorphism of k-affinoid algebras ¢: B — A s a
contraction with respect to the supremum semi-norm. If ¢ is an integral mono-
morphism, 1t 1s an rsometry.

Since 7'; is a valued integrally closed domain, we can derive from Proposi-
tion 3.8.1/7 (a) and (d) the following result.

Proposition 2. Let ¢: Ty — A be an tntegral torsion-free monomorphism into
some k-affinoid algebra A. Then | |y ¥s a farthful T ;-algebra norm on A (i.e.,
l@(®) floup =[] |flsup for all f € A and all ¢ € Ty). If

o) 4+ plt) =0
18 the wntegral equation of minimal degree for f over Ty, then one has

|flsup = max ltill/i-
1=i=n

We want to extend the equation [f|w, = max [¢;|1/% to the case where
1sisn
¢: B— A is an arbitrary integral homomorphism of k-affinoid algebras. We

need a simple lemma, which is closely related to Proposition 3.1.2/1.

Lemma 3. Let ¢: B— A be a homomorphism of k-affinoid algebras. Let
feAd, by,...,b, € B such that

4 b)) 77+ - + @) = 0.
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Then

|flsup = max lbi|;gp'
1=1<n

Proof. There exists an index 7, 1 < j =< n, such that

lf[:up == If"'sup = l‘P(bj) f”—j|sup Ib ilsup Iflsup

Then |flup < [b;13- O
Now we are able to extend Proposition 2.

Proposition 4. Let ¢: B — A be an integral homomorphism of affinoid alge-
bras. Then for each f € A, there exists a monic polynomial ¢ = X" + b X*1 4
- + b, € B[X] such that ¢(f) = 0 and
|flsup = o(g) = max |b; g{lip'
1=i<n

Proof. According to the preceding lemma, it suffices to show |f|syp = 0(g) in
order to get equality. First we treat the special case where 4 is an integral
domain. Theorem 6.1.2/1 provides us with a homomorphism y: 7'y — B such
that g oy: 7y — B —-> A4 is an integral monomorphism. The map ¢ oy is
torsion-free. Hence we may apply Proposition 2 to find that, for all f € 4, we
have |f|sup = o(p), where p € T3[X] is the minimal polynomial of f over T,
with respect to ¢ oy. This means in particular that p(f) = 0. Consider the poly-
nomial ¢ € B[X], which is obtained from p by replacing all its coefficients by
their y-images in B. Clearly, ¢(f) = p(f) = 0, and |f|swp = o(p) = o(q). Thus we
have proved the proposition in the case where 4 is an integral domain.

In order to take care of the general case, let p,, ..., », be the minimal
prime ideals in 4 and, for 7 = 1, ..., r, denote by =x; the residue epimorphism
A — A[p;. According to what we already proved, there are monic polynomials
i € B[X], i =1, ..., r, such that ¢;(m;(f)) = 0 and |7;(f)|sup = 0(gi)- The first

r

relation can be rephrased as ¢;(f) € p;for7 = 1, ..., r. If one defines ¢* : = [ [ ¢,,
one gets a monic polynomial in B[X] such that i=

() € M ps —rad A.

Then there is an exponent e € IN such that ( *(f))” = 0. Setting ¢ := ¢*¢, we
get a monic polynomial in B[X] such that q(f) = 0. Furthermore, Proposition
1.5.4/1 gives us ‘

U(Q) = m&'l,x o'(Qi) = max I”i(f)[sup = lﬂsupa
1=i=r ) 1=i1=r

where the last equality follows from Lemma 6.2.1/3. Thus the proof is finished.
Ll
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6.2.3. Power-bounded and topologically nilpotent elements. — Let A be a
k-affinoid algebra. Then each norm | |, inducing the given Banach topology
on A, satisfies | |qp = | | (Corollary 3.8.2/2). In particular, all power-
bounded elements f € 4 must satisfy |fl.p = 1, since | |qp I8 power-multi-
plicative. The converse is also true.

Proposition 1. For each f € A, the following statements are equivalent:

(i) f vs power-bounded.
(ii) [flsup = 1.

Proof. We have only to show that f is power-bounded if |f|.,, = 1. Choose a
finite homomorphism ¢: 7; — 4 (for example, an epimorphism). Then due
to Proposition 6.2.2/4, there is an integral equation

o+ tlfn—-l + e+ 8, =0
of f over T; such that

Iﬂsup = max lti‘lli-
1<i=n

We have t,, ..., t, € T, if |flsup = 1. Induction on » gives then

n—1

e YTy, »v=0,1,2,....
i=0
n—1
Since @(T,) is bounded in 4, we see that 3, ¢(T';) ¢ is bounded. O
i=0

From this proposition we may derive the following characterization of
topologically nilpotent elements.

Proposition 2. For each f € A, the following statements are equivalent:
(i) f 7s topologically nilpotent,

(ii) |f(@)] < 1 for all x € Max A,

(iii) [flsup < 1.

Proof. Statements (ii) and (iii) are equivalent due to the Maximum Modulus
Principle (Proposition 6.2.1/4). Furthermore, statement (i) implies statement
(iii), since any Banach norm on 4 dominates | |y, and since | | is power-
multiplicative. In order to verify the opposite direction, assume |f|,p, << 1. Then
there exist a constant ¢ € k, |¢| > 1, and an integer m > Osuch that |[cf™|,, < 1.
This follows from Proposition 6.2.1/4 (ii) if |f|sp == O and is trivial if |f|s, =O.
We have cf™ € A by Proposition 1. Therefore f™ € ¢c-1 A A, and we see that f™
and hence also f are topologically nilpotent. ]

Furthermore, Proposition 1 allows to compute | |, in terms of an arbi-
trary complete k-algebra norm on 4.
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Proposition 3. Let | | be a complete k-algebra norm on A. Then |f| up= inf|f¢1/¢
forall f € A. ieN

Proof. Define |f|’ := inf |f{|1/* for all f € A. Then | |’ is a power-multi-
1eN

plicative k-algebra semi-norm according to Proposition 1.3.2/1, and it follows
from Corollary 3.8.2/2 that [f|.,, < |f|’ for all f € 4. The opposite inequality
shall be shown indirectly. Assume that |f|.,, << |f|’ for some f € 4. Proposition
6.2.1/4 (ii) allows us to assume [f|sy, = 1, and hence |f|” > 1. This implies
|[fil = If|'* — oo, and therefore f cannot be power-bounded, in contradiction
to Proposition 1. ]

Remark. For affinoid algebras without zero divisors, the preceding propo-
sitions are direct consequences of Proposition 3.8.2/5 and Corollary 3.8.2/6.

Using Propositions 1 and 2, we can give the following description of the
residue algebra 4 = A/A (as defined in (1.2.5)).

Proposition 4. A = {f € 4; |flsup = LH/{f € 4; [flowp < 1}

We want to finish this section by giving a criterion for | |, to be a valua-
tion on 4. Namely, using Propositions 1.5.3/1, 6.2.1/4, and the above Proposi-
tion 4, we conclude that

Proposition 5. The supremum semi-norm s a valuation on A of and only 1f A
18 reduced and A is an tntegral domain.

Even if 4 is an integral domain, the supremum semi-norm | |y, is not in
general a valuation on 4. This can be seen from the following example.

Consider the k-algebra k(X , X~1) of strictly convergent Laurent series in one
variable X over k and look at the subalgebra A4 of all series which converge on
the annulus {z € k; [¢| =< || =< 1}, where ¢ € k, 0 << |¢| << 1, is fixed. Then

00
A = {/ = ) a,X”; lim a, =0, lim Cvav:O},

V=—00 y—>00 y—>—00

and 4 is an integral domain, since k(X, X~1) is an integral domain. A direct
computation shows that there is a canonical isomorphism

A~ KX, V(XY — ¢).

Identifying 4 with A(X, Y)/(XY — ¢), the algebra A becomes k-affinoid.
Let f,,f, € A denote the residue classes of X, Y € KX, Y). The ideals
(X —1,Y —¢) and (X — ¢, Y — 1) are maximal ideals in #(X, ¥) containing
the ideal (XY — c), because

XY —e=X—1)Y + (Y —¢)=X(¥Y — 1) + (X — o).

Therefore
=X —-1,Y —¢)/(XY —¢),
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and
Xp:= (X —¢, ¥ — 1)/ XY —¢)

are maximal ideals in 4. Since fi(x;) = 1 = fy(x,), we see that |fi|.p =1
= |fo]sup- HoWever |f1folsup = |Clsup = |¢| << 1. Consequently, | |.p cannot be a
valuation on A.

6.2.4. Reduced FK-affinoid algebras are Banach function algebras. — In
this section we study the relationship between the supremum semi-norm | |s,
and the Banach topology on a k-affinoid algebra 4.

Theorem 1. Every reduced k-affinoid algebra A is a Banach function algebra;
T, | |sup '8 @ complete norm on A. It is equivalent to every other complete
k-algebra norm on A.

Proof. Let us first consider the case, where 4 is an integral domain. Choose
a finite normalization monomorphism ¢: 7’; — A4 for a suitable d = 0. Then
@ is torsion-free, and the assertion follows immediately from Theorem 3.8.3/7,
because the field of fractions Q(7;) is weakly stable (Theorem 5.3.1/1).

Now consider an arbitrary reduced k-affinoid algebra A. Let p,, ..., p,
denote the minimal prime ideals in 4. Then the canonical homomorphism

n:Ad—>A =P A/p;
i=1

is injective, and | |sp 18 a complete norm on each algebra A/p;. Provide A’

with the maximum norm, i.e. |[(a, ..., @) := max |a;|syp- Then A’ is complete
’ 1<i<r

under | |, and due to Lemma 6.2.1/3, the norm | | induces the supremum
norm on 4. Viewing A as a submodule of the finite 4-module 4’, we see by
Proposition 3.7.3/1 that A is closed in 4’. Hence | |qp is complete on 4, and A4
is a Banach function algebra. That all complete k-algebra norms on 4 are
equivalent to | |, follows from Proposition 6.1.3/2. ]

It should be noted that the characterization of power-bounded elements
and of topologically nilpotent elements as given in Propositions 6.2.3/1 and
6.2.3/2 is an easy consequence of the above theorem, at least in the case where
A is reduced. However, the direct proofs given in (6.2.3) do not need the weak
stability of Q(7';). This fact had to be used in the proof of Theorem 1.

6.3. The reduction functor 4 - A

In the following sections we consider homomorphisms ¢: B — A between
k-affinoid algebras 4 and B. As we already saw in (1.2.5), each such ¢ maps
power-bounded elements into power-bounded elements and topologically
nilpotent elements into topologically nilpotent elements. Thus ¢ gives rise to a
homomorphism ¢: B — 4 and furthermore, by reducing modulo topologically
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nilpotent elements, to a homomorphism §: B = B/B -~ 4 = AJA. This is
described by the following commutative diagram

B4

L,

B2y 4

i
v

-

B2~ 4,

where 7, and vz denote the canonical reduction epimorphisms modulo topo-
logically nilpotent elements. If there is no confusion possible, we just write =
instead of 7, or .

We are interested in studying properties of the map ¢ which are inherited by
¢ or @ and vice versa. Of particular interest will be the case of integral, respec-
tively finite homomorphisms. The characterization of power-bounded elements
and of topologically nilpotent elements by means of the supremum semi-norm
| |sup (see Propositions 6.2.3/1 and 6.2.3/2) is important for our considerations.
We will make use of the mentioned results without giving a further reference.

6.3.1. Monomorphisms, isometries and epimorphisms. — We begin with
injectivity properties.

Lemma 1. The homomorphism ¢: B — A 1s an isometry with respect to | |sup
of and only of |@(f)|sup = 1 for all f € B satisfying |f|sup = 1.

Proof. We have only to verify the if part of the assertion. Therefore assume
|@(f)lsup = 1 for all f € B with |f|y,, = 1. Consider an arbitrary element ¢ € B.
If |glsup = 0, we conclude |@(g)|sup = O from [@(g)lsup = |glsup- I Iglsup + O,

choose ¢ € k* and m € N such that |cg™|s,p, = 1 (Proposition 6.2.1/4). Then
lel [9(@)lsup = |P(cg™)lsup = 1 = |eg™|sup = l¢| |95up>
and hence [@(g)|sup = [9]sup- O
An immediate consequence of the lemma is

Proposition 2. The map §: B — A is injective if and only if p: B — A isan
rsomelry.

~

Corollary 3. If @: B — A 7s injective, then ker ¢ s contavned in the nilradical
rad B.

Proof. We have rad B = {g € B; |g|sup = 0} by Proposition 6.2.1/4. Conse-
quently, the kernel of any isometry ¢: B — A is contained in rad B. ]

Under the additional hypothesis that ¢ is strict, the converse of Corollary 3
is true. In order to prove this, we look more closely at the ideal t~(ker §)
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= qb‘l(/I) in B, which is reduced (i.e., equal to its nilradical), since A isreduced.
Obviously, we have B + ker ¢ — 7~!(ker ) and therefore also

rad (B + ker ¢) — v~ (ker §).

If ¢ is strict, this inclusion relation is just an equality ; namely,

Observation 4. If ¢ s strict, then we have
r-l(ker ) = rad (B + ker ¢) and ker § = rad (t(ker q°9)).

Proof. In order to verify the first equation, assume that ¢ is strict. Then
@(B) is open in @(B). Consider an arbitrary element g € v~1(ker §) = ¢~1(4).
From lim ¢(g)* = 0, we conclude ¢(g)" € ¢(B) and hence g" ¢ B + ker ¢ for n

n—>o0

big enough. This verifies the first equation. The second equation is a conse-
quence of the first one, since the formation of the nilradical commutes with the
map 7: B — B for those ideals in B which contain B = ker 7. O

Now we can give the converse to Corollary 3.
Proposition 5. If ¢: B — A usstrictand ker ¢ — rad B, then § is tnjective.

~ Proof. If ker p — rad B, then a fortiori ker ¢ — rad B. Since B is a reduced
ideal, one has rad (B + ker ¢) = B. Now the preceding observation implies
ker § = 0. O

Summarizing the above results, we obtain
Theorem 6. Let B be reduced. Then the following statements are equivalent:

(i) @: B — A is vnjective and strict.
(i1) @: B — A is an isometry with respect to | |sup.
(iii) §: B — A is mjective.
Proof. The equivalence of statements (ii) and (iii) is asserted by Proposition
2. Furthermore, statement (i) implies (iii) by Proposition 5. So far we did not
use the fact that B is reduced. However this assumption is necessary in order to
verify the remaining implication, say from (ii) to (i). We know from Theorem
6.2.4/1 that B is a Banach function algebra, i.e., that | |5, is a complete
norm on B. Therefore, any isometry ¢: B — 4 with respect to | [, is injec-
tive. It remains to verify that ¢ is also strict. Fix a Banach norm | | on 4.
Then | | dominates | |wp on 4 and gl = |9(@)lsup =< lg(g)| for all g € B.
Since the supremum norm | |s,, induces the given Banach topology on B and
since ¢ is continuous anyway, we see that ¢ is strict. ]

There are no good criteria relating the surjectivity of ¢ and §. We give two
examples. The first one shows that § may be surjective, even bijective, without
@ being surjective. The second one shows that ¢ may be surjective without @
being surjective.
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Example 1. Consider a ground field k£, which admits a finite extension K of
degree n > 1 such that e(K/k) = n. (The field @, of 2-adic numbers is such a
field; one can set K := @Q,(}/2).) Then f(K/k) = 1 by Proposition 3.1.3/2. Thus,
viewing k and K as k-affinoid algebras, the injection ¢: k <~ K is a homo-
morphism of k-affinoid algebras which is not surjective. However, the residue
homomorphism &: k£ — K is bijective, since f(K/k) = 1.

Remark. As we will see later, in the case of a stable ground field k£ with
divisible value group |k*|, the surjectivity of @ implies the surjectivity of
p: B — A if A isreduced. Therefore, for reduced k-affinoid algebras over such a
field (e.g., over an algebraically closed field), ¢ is bijective if and only if & is
bijective, see Corollary 6.4.2/2.

Example 2. Set B:= 17T, = k(X) and 4 :=k @ k (ring-theoretic normed
direct sum of two copies of k). Choose a constant ¢ € k£, 0 < |¢| < 1, and con-
sider the homomorphism

p:B—> A4, X — (c, 0).

It is easily verified that ¢ is surjective. However §: k[ X] — k& @ k cannot be
surjective, since |p(X)|wp = |¢| < 1 and hence §(X) = 0.

6.3.2. Finiteness of homomorphisms. — In this section we derive a criterion
for the finiteness of a homomorphism of k-affinoid algebras ¢: B — 4.

Proposition 1. If &: B — A is integral, then ¢: B — A s finite.
Obviously the proposition is a special case of the following
Theorem 2. Let ¢: B — A be a homomorphism of k-affinoid algebras. Assume

that there exist affinoid generators fi, ..., f, € A of A such that f,, ..., f, € 4 are
integral over B (with respect to §: B — A). Then ¢ is finite.

Proof. First we reduce the assertion to the case, where B is a free TATE
algebra. By assumption, there exist integers s, > 0 and elements b,, € B,
uw=1,..., s, such that

Br @) I 4o 4+ 3b) =0, v =1,..m.

n
We set s:= }s, and consider the homomorphism y: 7'y — B defined by

r=1

p(X,u) 1= by, y=1,...,n, =1,..,s,

where {X,,; »=1,...,m, u=1,...,,s} is a chart of 7T := T,. Obviously

Fis+-er Jn € A are integral over T with respect to the map ;E;): T — 4. There-
fore if the theorem is known in the case where B is a free TATE algebra, we know
that ¢ oy: T' — A is finite. This implies the finiteness of ¢.

We now assume B =7. We extend ¢: T"—> A4 to an epimorphism
¢ :T(Y,,..., Y, —A by setting ¢'(¥,):=f,,» =1,...,n, where Yy,..., Y, are
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! -
new indeterminates. By assumption, ¢'(Y,) is integral over 7. Hence it is
enough to prove the following

Lemma 3. Let T be a free Tate algebra, and let ¢: T(Y,, ..., Y,) > A be a

I —_— . ~
finite homomorphism such that @(Y,), ..., @(Y,) are integral over T. Then
plr: T — A s finate.

Proof. We proceed by induction on n. The case n = 0 is trivial. Let n = 1.
We set T":= T(Y,, ..., Y,). By assumption there is a Weierstrass polynomial

wi=Y" L g, Y"1 Lo fa, € T[Y,]=T(Y, ..., Vo) [Y,]

such that & € ker @. Since ¢ is strict (Proposition 6.1.3/4), Observation 6.3.1/4

shows w? € 7" —+ ker ¢ for some ¢ € N. In particular, there is a series r € il
such that g:= w? — r € ker ¢. Furthermore, g is Y ,-distinguished of order
mq, because § is equal to @9. Hence ¢ is associated to a Weierstrass polynomial
in Y, (WEIERSTRASS Preparation Theorem 5.2.2/1), and the WEIERSTRASS
Finiteness Theorem 5.2.3/4 implies that the restriction of ¢ to 7Y, ..., Y, _;)
isfinite. Then the restriction of ¢ to 7' is finite by the induction hypothesis. []

In order to get the conclusion of Theorem 2, it does not suffice to assume
that all elements of an affinoid generating system of 4 are integral over B.
Indeed, choose 4 = B = T = k(X) and define ¢: B—+> 4 by ¢(X):=cX,
where ¢ € k, 0 << |¢| << 1. Then {X} is an affinoid generating system of 4, and
X € 4 is obviously integral over B with respect to ¢. Nevertheless, 4 is not
integral over B. Assume the contrary. Then the inverse image 1 — X € B of
the unit 1 — ¢X € 4 must be a unit in B, which is absurd. In particular, there
cannot exist affinoid generators f, ..., f, € A of A such that fi, ..., f, are
integral over B. On the other hand, if all elements of A4 are integral over B,
then all elements of 4 are integral over B (cf. Proposition 6.3.4/1 in a later
section).

6.3.3. Applications to group operations. — In the proof of Theorem 6.3.2/2,
we never used the fact that B is k-affinoid. The construction of the map
w: T's — B only needs a k-Banach algebra B. This is why we can obtain the
following criterion for k-affinoid algebras, which is a counterpart to Prop-
osition 6.1.3/4.

Proposition 1. Let B be a k-Banach algebra, and let A be k-affinoid. Let
@: B.— A be a k-algebra homomorphism such that §: B — A is integral. Then ¢ is
finite, and ¢(B) ts a closed subalgebra of A which is k-affinoid.

Proof. If f1, ..., fn € A are affinoid generators of 4, then f,,..., f, € 4 are
integral over B. As in the proof of Theorem 6.3.2/2, choose a k-algebra homo-
morphismy: 7', — B such that f,, ..., f, are integral over 7', with respect to the
map @ o P. Then Theorem 6.3.2/2 implies that 4 is a finite 7';-module via
@ oy (and hence a finite B-module via ¢). Viewing ¢(B) as a finite 7';-submodule
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of 4, we see by Proposition 3.7.3/1 that ¢(B) is closed in 4. Furthermore,
¢(B) is k-affinoid by Proposition 6.1.1/5. O

The proposition has the following immediate consequence:

Corollary 2. Let B be a closed k-subalgebra of a k-affinoid algebra A such that
A is integral over B. Then B is k-affinoid, and A 1is finite over B.

Using the corollary, one can construct k-affinoid algebras as follows. Let 4
be a given k-affinoid algebra, and consider a group G of k-algebra automor-
phisms of 4. Since all automorphisms of 4 are continuous, it follows that

AG:={fe A;y(f) =fforally € G}

is a closed k-subalgebra of 4.
We want to show that the algebra is even k-affinoid if the group @ is finite.
Namely, for each f € A, we can consider the monic polynomial

pri= I (¥ — 9(f)) € 4[Y]
y€G
which is annihilated by f. Obviously p, is invariant under G so that p, € A°[Y].
Furthermore, each » maps 4 into 4 (due to continuity); hence py has coeffi-
cients in A% n A if f € A. Tt follows that A is integral over 4% n 4, and we
deduce from Corollary 2 that

Proposition 3. If G is a finite group of automorphisms of the k-affinoid algebra
A, then AC s a closed subalgebra of A, which is k-affinovd. Furthermore, A is
finite over AC.

6.3.4. Finiteness of the reduction functor A -> A. — In this section we
prove a converse of Proposition 6.3.2/1. First we state

Proposition 1. If ¢: B — A is an integral homomorphism of k-affinoid
algebras, then ¢: B — A and hence §: B — A are integral.

Proof. We know by Proposition 6.2.2/4 that, for each f € A, there exists an
integral equation
"4 b)) 2+ - p(by) =0
of f over B such that |f|s, = max |b;|}i. If f€ 4, ie., if [flp =<1, then

1=i=n

|bilsup = 1 and hence b; € Bfori=1,..., n. O

Remark. Applying Lemma 6.2.2/3, one can improve the above result: not
only is 4 integral over ¢(B) if ¢ is integral, but in fact, 4 equals the integral
closure of ¢(B) in 4.

Theorem 2. If ¢: B — A is finite, then &: B — A is finite.

Proof. First we consider the special case where 4 is an integral domain.
By Theorem 6.1.2/1, there exists a homomorphism y: 7; — B for some d = 0
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such that ¢ oy: T; — 4 is finite and injective. If we know that m =gop
is finite, then @ must be finite. Hence we may assume B = 7'; and ker ¢ = 0.
We want to show that Proposition 3.1.5/4 can be applied to 4, viewed as a
T;-algebra. Namely, 4 (provided with | |,;) is a faithfully normed 7';-algebra
by Proposition 6.2.2/2. Furthermore, 4 is of finite rank over 7';, since ¢ is
finite. The map ¢: T; — A is integral by Proposition 1. The polynomial ring
T, =kX,, ..., X;] is Noetherian and Japanese (Proposition 4.4/4). Thus
Proposition 3 1 5/4 implies that A is finite over 7',.

Next we consider the general case. Similarly as before, we may assume that
B is a free TATE algebra 7';. Denote by p;, ..., p, the minimal prime ideals in 4
and by m;: 4 —>A/p;, ©=1,...,r, the canonical residue epimorphisms.
Furthermore, consider the composed map

Ty 2+ 42> DAy,
i=1

where z(f) := (nl )y vves n,(/)) for all f € 4. Since = is an isometry with respect

r
to | Jsup (see Lemma 6.2.1/3; view (P 4/p; as a normed direct sum), the
corresponding residue map i=1

%C’BA/pn f = (ﬁl(f)s-"’-ﬁ'r(f))
i=1
. — . . .
is injective. Sinceall maps #;0 ¢ = #; 0,7 = 1, ..., r, are finite by what has
T e ~
been proved above, it follows that (P 4/p; is a finite 7T';-module with respect to
i=1
7o @. Then A, as a submodule of a finite module over the Noetherian ring
T, is finite too. Thus § is finite. ]

Corollary 3. For each k-affinoid algebra A, the residue algebra A s a finitely
generated k-algebra (i.e., a quotient of some polynomral algebra k[X,, ..., X,]).

Proof. Choose a finite monomorphism ¢: 7; < 4 (Corollary 6.1.2/2). The
theorem tells us that @: 7; — A4 is finite too. Hence 4 is a finitely generated

k-algebra ]

Remark. In the situation of the above proof, the map §: T, — 4 is injective
by Proposition 6.2.2/1. Thus, by general facts of dimension theory (for example,
use Nacara [28], Corollary 10.10), we see that dim 4 = dim 7'; for the Krull
dimensions of 4 and 7T';. Similarly, dim 4 = dim 7. Since dim 7, = d, and
since dim 7'; =<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>