
1

Chapter 10:
Peer-to-Peer Systems

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4 © Addison-Wesley 2005Edition 4, © Addison-Wesley 2005

Introduction

To enable the sharing of data and resources on a
very large scale without any separately-managed y g y p y g
servers and infrastructure
P2P applications

Applications that exploit resources available at the edges
of Internet – storage, cycles, content, human presence

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

2

Characteristics

Their design ensures that each user contributes resources to
the system
Although they may differ in the resources that they contributeAlthough they may differ in the resources that they contribute,
all the nodes in a P2P system have the same functional
capability and responsibilities
Their correct operation does not depend on the existence of
any centrally-administered systems
They can be designed to offer a limited degree of anonymity
to the providers and users of resources
A key issue for their efficient operation is the choice of an

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

A key issue for their efficient operation is the choice of an
algorithm for the placement of data across many hosts and
subsequent access to it in a manner that balances the
workload and ensures availability without adding undue
overloads

It is the time

Powerful personal computer
Always-on broadband connectionsAlways on, broadband connections

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

3

Three generations

1st
Napster music exchange service

2nd

Offering greater scalability, anonymity and fault tolerance
⌧Freenet, Gnutella, Kazaa, BitTorrent

3st
P2P middleware
⌧Pastry, Tapestry, CAN, Chord, Kademlia

D i d t l t f t id l di t ib t d

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Designed to place resources on a set of computers widely distributed
throughout the Internet and to route messages to them on behalf of
clients
⌧Relive clients of decisions about placing resources and holding information
⌧Provide guarantees of delivery for requests in a bounded number of hops

Globally Unique Identifiers (GUIDs)

Resources are identified by GUIDs that are derived
as a secure hash from resource’s state
Hash makes a resource “self certifying”

Client can check the validity of resources
Good for immutable objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

4

Figure 10.1: Distinctions between IP and overlay routing for peer-to-peer
applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable nodes. The
IPv6 name space is much more generous (2128),

Peer-to-peer systems can address more objects.
The GUID name space is very large and flat

128but addresses in both versions are hierarchically
structured and much of the space is pre-
allocated according to administrative
requirements.

(>2128), allowing it to be much more fully
occupied.

Load balancing Loads on routers are determined by network
topology and associated traffic patterns.

Object locations can be randomized and hence
traffic patterns are divorced from the network
topology.

Network dynamics
(addition/deletion of
objects/nodes)

IP routing tables are updated asynchronously on
a best-efforts basis with time constants on the
order of 1 hour.

Routing tables can be updated synchronously or
asynchronously with fractions of a second
delays.

Fault tolerance Redundancy is designed into the IP network by
its managers ensuring tolerance of a single

Routes and object references can be replicated
n fold ensuring tolerance of n failures of nodes

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

its managers, ensuring tolerance of a single
router or network connectivity failure. n-fold
replication is costly.

n-fold, ensuring tolerance of n failures of nodes
or connections.

Target identification Each IP address maps to exactly one target
node.

Messages can be routed to the nearest replica of
a target object.

Security and anonymity Addressing is only secure when all nodes are
trusted. Anonymity for the owners of addresses
is not achievable.

Security can be achieved even in environments
with limited trust. A limited degree of
anonymity can be provided.

Napster

Centralized indexes but users supplied the files
Clients are expected to add their own music files toClients are expected to add their own music files to
the pool of shared resources by transmitting a link to
the Napster indexing service for each available file

Fulfill “shared resources at the edges of the Internet”
Shut down as a result of legal proceedings

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

5

Figure 10.2: Napster: peer-to-peer file sharing with a centralized,
replicated index

peers

Napster server
Index1. File location

2. List of peers

request

offering the file

3. File request

5. Index update

Napster server
Index

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

4. File delivered

Resource Location Problem

A key problem is to provide a mechanism to enable
clients to access data resources quickly and q y
dependably

Napster maintained a unified index of available files
2nd P2P file systems employ partitioned and distributed
indexes, but the algorithm used are specific to each
system

Thi l ti bl i t d i l i

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

This location problem existed in several services
that predate the P2P paradigm

E.g. NFS addresses this need with the aid of VFS

6

P2P Middleware

P2P middleware is designed to meet the need for the
automatic placement and subsequent location of distributed
objects
Functional requirements

To simplify the construction of services that are implemented across
many hosts in a widely distributed network
⌧It must enable clients to locate and communicate with any individual resource made

available to a service

Add and remove resources, and add and remove hosts to services

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

,
Offer a simple programming interface to application programmers that
is independent of the types of distributed resource that the application
manipulates

P2P Middleware, cont.

Non-functional requirements
Global scalabilityGlobal scalability
Load balancing
Optimization for local interactions between neighboring
peers
Accommodating to highly dynamic host availability
Security of data in an environment with heterogeneous
t t

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

trust
Anonymity, deniability and resistance to censorship

7

Routing Overlays

A distributed algorithm takes responsibility for
locating nodes and objectsg j
The name denotes the fact that the middleware
takes the form of a layer that is responsible for
routing requests from any client to a host
The objects may be placed and subsequently
relocated to any node in the network without client

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

e ocated to a y ode t e et o t out c e t
involvement
It is termed an overlay since it implements a routing
mechanisms in the application layer

Figure 10.3: Distribution of information in a routing overlay

DÕs routing knowledgeAÕs routing knowledge

D

C

A

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Object:

Node: CÕs routing knowledgeBÕs routing knowledge

B

8

Main Task

A client wishing to invoke an operation on an object
submits a request including the object’s GUID to the q g j
routing overlay, which routes the request to a node
at which a replica of the object resides.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Other Tasks

A node wishing to make a new object available to a P2P
service computes a GUID for the object and announces it to
the routing overlay, which then ensures that the object is
reachable by all other clients
When clients request the removal of objects from the service
the routing overlay must make them unavailable
Nodes may join and leave the service

When joining, the routing overlay arranges for it to assume some of

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

the responsibilities of the other nodes
When leaving, its responsibilities are distributed amongst the other
nodes

9

Programming Interfaces

Distributed hash table (DHT)
GUID is used to determine the placement of objects and
retrieve them
Via put(), DHT takes responsibility for choosing a location
for it, storing it and providing access to it via get()

Distributed object location and routing (DOLR)
Objects may be replicated and stored with the same GUID
at different hosts

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

DOLR is responsible for maintaining a mapping between
GUIDs and the addresses of the nodes having the replicas
Routing overlay takes responsibility for routing requests to
the nearest available replica

Figure 10.4: Basic programming interface for a distributed hash table (DHT)
as implemented by the PAST API over Pastry

put(GUID, data)
Th d t i t d i li t ll d ibl f thThe data is stored in replicas at all nodes responsible for the
object identified by GUID.
remove(GUID)
Deletes all references to GUID and the associated data.
value = get(GUID)
The data associated with GUID is retrieved from one of the
nodes responsible it

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

nodes responsible it.

10

Figure 10.5: Basic programming interface for distributed object location and
routing (DOLR) as implemented by Tapestry

publish(GUID)
GUID can be computed from the object (or some part of it, e.g. itsGUID can be computed from the object (or some part of it, e.g. its
name). This function makes the node performing a publish
operation the host for the object corresponding to GUID.
unpublish(GUID)
Makes the object corresponding to GUID inaccessible.
sendToObj(msg, GUID, [n])
Following the object-oriented paradigm, an invocation message is

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

sent to an object in order to access it. This might be a request to
open a TCP connection for data transfer or to return a message
containing all or part of the object’s state. The final optional
parameter [n], if present, requests the delivery of the same
message to n replicas of the object.

Pastry

Nodes and objects are assigned 128-bit GUIDs
Nodes are computed by applying a secure hash functionNodes are computed by applying a secure hash function
to the public key with each node is provided
Objects like files are computed applying a secure hash
function to the object’s name or some part the object’s
stored state
The resulting GUID are randomly distributed in the range
0 to 2128-1

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

0 to 2 1

11

Pastry, cont.

Pastry routing algorithm will correctly route msg
addressed to any GUID in O(log N) steps for Ny (g) p
participating nodes

If the node is not active, the msg will be delivered to the
active whose numerically closet to it
Active nodes take responsibility for processing requests
addressed to all objects in their numerical neighborhood

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Pastry routing algorithm stage 1: leaf set

Each node has a leaf set
A vector L of 2l nodes whose GUIDs are l above and lA vector L of 2l nodes whose GUIDs are l above and l
below of its own

Any node that receives a message M with
destination D routes M by comparing D with its own
and leaf nodes’ GUIDs and forwarding M to the node
amongst them that is closet to D

Easy to conclude at each step M is forwarded to a node
that is closer to D than the current node
Requires ~N/2 hops to deliver M in a network with N
nodes

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

12

Figure 10.6: Circular routing alone is correct but inefficient
Based on Rowstron and Druschel [2001]

The dots depict live nodes.
The space is considered as
circular: node 0 is adjacent to

0 FFFFF....F (2128-1)

circular: node 0 is adjacent to
node (2128-1). The diagram
illustrates the routing of a
message from node 65A1FC
to D46A1C using leaf set
information alone, assuming
leaf sets of size 8 (l = 4). This
is a degenerate type of

D471F1

D467C4
D46A1C

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

routing that would scale very
poorly; it is not used in
practice.

65A1FC

D13DA3

Pastry routing algorithm stage 2: tree structured routing table

Each node maintains a tree-structured routing table
for nodes spread throughout the entire range of 2128p g g
GUIDs, with increased density of coverage for
GUIDs closet to its own.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

13

Figure 10.7: First four rows of a Pastry routing table

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 10.8: Pastry routing example Based on Rowstron and Druschel [2001]

0 FFFFF....F (2128-1)

Routing a message from node 65A1FC to D46A1C.
With the aid of a well-populated routing table the
message can be delivered in ~ log16(N) hops.

D4213F

D462BA

D471F1

D467C4
D46A1C

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

65A1FC

D13DA3

14

Figure 10.9: Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,
row p of the routing table):

1 If (L < D < L) { // the destination is within the leaf set or is the current node1. If (L-l < D < Ll) { // the destination is within the leaf set or is the current node.
2. Forward M to the element Li of the leaf set with GUID closest to D or the current

node A.
3. } else { // use the routing table to despatch M to a node with a closer GUID
4. find p, the length of the longest common prefix of D and A. and i, the (p+1)th

hexadecimal digit of D .
5. If (R[p,i] ? null) forward M to R[p,i] // route M to a node with a longer common

prefix.
6 l { // th i t i th ti t bl

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

6. else { // there is no entry in the routing table
7. Forward M to any node in L or R with a common prefix of length i, but a

GUID that is numerically closer.
}

}

Tapestry

Tapestry implements a distributed hash table (DHT) and
routes message using prefix routing similar to Pastry.
Tapestry’s API conceals the DHT from applicationsTapestry’s API conceals the DHT from applications
behind service interfaces
Nodes that hold resources use publish(GUID) primitive
to make them known to Tapestry
Replicated resources are published with the same GUID
by each node that holds a replica, resulting in multiple
entries in the Tapestry routing structure.p y g

Thus, Tapestry can place replicas close to frequent users of
resources.
Note that Pastry can achieve similar flexibility by making the
objects with GUIDs close to frequent users

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

15

Tapestry, cont.

For each resource G, there is a unique root node RG
that is closest to G.
Host H holding replicas of G periodically invoke
publish(G) to ensure that newly arrived hosts
become aware of the existence of G.
On each invocation of publish(G), a publish
message is routed from the invoker towards RG.essage s outed o t e o e to a ds G

On receipt of a publish message, RG store (G, IPH) in
its routing table

Each node along the publication path caches (G, IPH) too

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Tapestry, cont.

When nodes hold multiple (G, IPH), they are sorted
by the network distance to the IP address.y

This results in the selection of the nearest available
replica

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

16

Figure 10.10: Tapestry routing From [Zhao et al. 2004]

4377 (Root for 4378)

Tapestry routings
for 4377

4228

437A

4361

43FE

4664

4B4F 4A6D

4378
PhilÕs
Books

publish path

for 4377

Location mapping
for 4378

R t t ll

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

E791
AA9357EC

4378
PhilÕs
Books

Routes actually
taken by send(4378)

Replicas of the file PhilÕs Books (G=4378) are hosted at nodes 4228 and AA93. Node 4377 is the root node
for object 4378. The Tapestry routings shown are some of the entries in routing tables. The publish paths show
routes followed by the publish messages laying down cached location mappings for object 4378. The location
mappings are subsequently used to route messages sent to 4378.

Figure 10.11: Storage organization of OceanStore objects

certificate VGUID of current
version

AGUID

root block

d2

version i+1

d1 d3

version

VGUID of
version i

G
U

ID
 (c

op
y

on
 w

rit
e)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

d1 d2 d3 d5d4

root block

version i indirection blocks

VGUID of version i-1

data blocks

BG

Version i+1 has been updated in blocks d1,
d2 and d3. The certificate and the root
blocks include some metadata not shown.
All unlabelled arrows are BGUIDs.

17

Figure 10.12: Types of identifier used in OceanStore

Name Meaning Description

BGUID block GUID Secure hash of a data block

VGUID version GUID BGUID of the root block of a version

AGUID active GUID Uniquely identifies all the versions of an object

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 10.13: Performance evaluation of the Pond prototype emulating NFS

LAN WAN Predominant
i ioperations in

benchmarkPhase Linux NFS Pond Linux NFS Pond

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read

4 0.5 1.5 6.9 1.5 Read

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

5 2.6 21.0 21.5 32.0 Read and write

Total 4.5 37.2 47.0 54.9

18

Figure 10.14: Ivy system architecture

DHash server

Ivy node

DHash server

Ivy server DHash server

Application

DHash server

DHash server

Application

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Modifled
NFS Client

module
Kernel

DHash server

