PROBLEM 1.45

KNOWN: Rod of prescribed diameter experiencing electrical dissipation from passage of electrical
current and convection under different air velocity conditions. See Example 1.3.
FIND: Rod temperature as a function of the electrical current£or©10 A with convection

coefficients of 50, 100 and 250 V\ﬁfﬁ[. Will variations in the surface emissivity have a significant
effect on the rod temperature?

SCHEMATIC:
Teo = 300 K
h = 100 W/m2-K
— Jeonv Qrad T,D=1mm
—> \ / €=0.8, R, =0.4 Q/m
|=52A === ===—-----------ooo —=-

ASSUMPTIONS: (1) Steady-state conditions, (2) Uniform rod temperature, (3) Radiation exchange
between the outer surface of the rod and the surroundings is between a small surface and large
enclosure.

ANALYSIS: The energy balance on the rod for steady-state conditions has the form,
deonv * drad= E'gen
nDh(T- Too)+nD£a(T4 - TSA[") = 1R,

Using this equation in the Workspace of IHT, the rod temperature is calculated and plotted as a
function of current for selected convection coefficients.
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COMMENTS: (1) For forced convection over the cylinder, the convection heat transfer coefficient is
dependent upon air velocity approximately as hO@.VHence, to achieve a 5-fold change in the
convection coefficient (from 50 to 250 V\ﬁﬂi{), the air velocity must be changed by a factor of

nearly 15.

Continued .....



PROBLEM 1.66

KNOWN: Hot-wall oven, in lieu of infrared lamps, with temperatugg, ¥ 200C for heating a
coated plate to the cure temperature. See Example 1.6.

FIND: (a) The plate temperaturg fbr prescribed convection conditions and coating emissivity, and

(b) Calculate and plotglas a function of g, for the range 158 Tg,r< 250°C for ambient air

temperatures of 20, 40 and°&) identify conditions for which acceptable curing temperatures
between 100 and 110 may be maintained.

SCHEMATIC:
SRR s
T = 20°C pesesesissst
@ 2 o R
h=15W/m"-K Oven walls, Tgyr = 200°C B
s D] ” »
q Arad .
— conv Coating, Tg
- > / =05
| o Plate

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible heat loss from back surface of plate, (3)
Plate is small object in large isothermal surroundings (hot oven walls).

ANALYSIS: (a) The temperature of the plate can be determined from an energy balance on the plate,
considering radiation exchange with the hot oven walls and convection with the ambient air.

=in ~Eout =0 or dad= Geonv= O

ea(Tg‘ur—Tg‘)—h(Ts—Tw):o

0.5% 5.67 10° W/rEDK‘([ 208 274 - S‘f) R- 15w/f0 K[ 20 2jB X ©
Tg=357 K=8£4C <

(b) Using the energy balance relation in the Workspace of IHT, the plate temperature can be calculated
and plotted as a function of oven wall temperature for selected ambient air temperatures.
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COMMENTS: From the graph, acceptable cure temperatures between 100 &6ccahe
maintained for these conditions: with, F 20°C when 22K T, < 240°C; with T, = 40°C when 205
< Teur< 220°C; and with T, = 60°C when 175X Tg,< 195°C.



PROBLEM 2.1
KNOWN: Steady-state, one-dimensional heat conduction through an axiSymmetric shape.
FIND: Sketch temperature distribution and explain shape of curve.

SCHEMATIC:
_____ o —T,
E\;WM‘/ T>T;
—_ T Tix)
Ein .L_ ——————— E Eour
X ! dT
L e, S r
% T o x C:.)lPl"eV:
T ‘
A — -

ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS: Performing an energy balance on the object according to Eq. 1.11a, E;,, —Eq =0, it
follows that

Ein —Eout =dx
andthat qy # gy (X). That is, the heat rate within the object is everywhere constant. From Fourier’s
law,
dT

=-kA, —,
Ox X dx

and since gy and k are both constants, it follows that
T
Ay ar _ Constant.
dx

That is, the product of the cross-sectional area normal to the heat rate and temperature gradient

remains a constant and independent of distance x. It follows that since Ay increases with x, then
dT/dx must decrease with increasing X. Hence, the temperature distribution appears as shown above.

COMMENTS: (1) Be sureto recognize that dT/dx isthe slope of the temperature distribution. (2)
What would the distribution be when T2 > T1? (3) How doesthe heat flux, Qy, vary with distance?



PROBLEM 2.17 (CONT.)

m0.030m)°  150°C

iron = Yheater ~Uss =100V x0.601A -150W/ m K x

4 0.015m
Ciron = (601-106)W =49.5W
where
Oss = KA ATy / AXs.
Applying Fourier’s law to theiron sample,
_ QunX, _ 495Wx0015m  _ oo <

" AMT,  1(0.030m)*/4x150°C

Thetotal drop across theiron sample is 15°C(60/15) = 60°C; the heater temperatureis (77 + 60)°C =
137°C. Hencethe average temperature of the iron sampleis

T=(137 + 77)°C/2=107°C=380K. <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samplesis the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples. With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat |eakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material. Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materias.

For any combination of materialsin the upper and lower position, we expect ATq = ATo. However, if
the insulation were improperly applied along the lateral surfaces, it is possible that heat |eakage will

occur, causing ATq # AT».



PROBLEM 2.18

KNOWN: Comparative method for measuring thermal conductivity involving two identical samples
stacked with areference material.

FIND: (a) Therma conductivity of test material and associated temperature, (b) Conditions for
which ATt,l * ATt,Z

SCHEMATIC:
T,=400K ax=10mm
al, ,=3.32°C
Test sample (I)— 1.1
Reference maferia/)— A—,; -249°C
Armco irom
Test sample (Z) —= AT: ,=3.3 2°C

T.=300K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer through samples
and reference material, (3) Negligible thermal contact resistance between materials.

PROPERTIES: TableA.2, Armcoiron (T =350 K): k, =69.2 W/ mK.

ANALYSIS: (a) Recognizing that the heat rate through the samples and reference material, all of the
same diameter, is the same, it follows from Fourier’ s law that

AT, AT,
AX AX AX
kt:krATr =692 W/mK 222 C - 510w/ miK. <
AT, 3.32°
We should assign this value a temperature of 350 K. <

(b) If the test samples are identical in every respect, ATy 1 # ATy 2 if the thermal conductivity is highly
dependent upon temperature. Also, if there is heat leakage out the lateral surface, we can expect

AT p <ATy 1. Leakage could be influentia, if the thermal conductivity of the test material were less
than an order of magnitude larger than that of the insulating material.



PROBLEM 2.19
KNOWN: Identical samples of prescribed diameter, length and density initially at a uniform
temperature Tj, sandwich an electric heater which provides a uniform heat flux q¢ for aperiod of

time Atg. Conditions shortly after energizing and a long time after de-energizing heater are
prescribed.

FIND: Specific heat and thermal conductivity of the test sample material. From these properties,
identify type of material using Table A.1 or A.2.

SCHEMATIC:
RPN - ro w2 v <«—=Insulation about the
L=10mm\.& <—D 60mm >|§ entire block
p - Samp/e 1,p= 3965kg/m3
Y
0 ! - Heaf'er') P(W)
0 > .
-".-;,_.-'“‘,v.; e "3-9.'7}‘\‘:\__ \;Samp/e 2,,11=23.00 C

ASSUMPTIONS: (1) Onedimensional heat transfer in samples, (2) Constant properties, (3)
Negligible heat loss through insulation, (4) Negligible heater mass.

ANALYSIS: Consider acontrol volume about the samples

and heater, and apply conservation of energy over the time T(0)=-T;=23.00°C
interval fromt =0to o Tr0)=-33.50°C

| po————

Ein —Eout =AE=E; —E; _’:_X__:

Ein ! i

PAt, =0 =Mcp[T() = Ti]

where energy inflow is prescribed by the Case A power condition and the final temperature T¢ by

Case B. Solving for cp,

PAt, 15Wx120's

[0]

c. = =
" M[T(0)-T,] 2x3965kg/m’(rrx0.060°/ 4)m* x0,010 m[33.50- 23.00]°C

cp = 7653/ kg K <

whereM =pV = 2p(T[D2/4)L is the mass of both samples. For Case A, the transient thermal response
of the heater is given by

Continued .....



PROBLEM 2.19 (Cont.)

¢ 12
-t ]

T,
2
ot [ 2q; }
k =
Xy To(t)-T,
2 2
‘= 325 2x2653W/m* [ _ o\
%3965 kg/ m® x 765 J/ kg [K | (24.57 - 23.00)°C
where
qy = P._P . W = 2653 W/ m?.

A5 2(nD?14) 2 1mx0.0607 / 4)m?
With the following properties now known,

p = 3965 kg/m° Cp = 765 JkgK k = 36 W/mIK

entriesin Table A.1 are scanned to determine whether these values are typical of ametallic material.

Consider the following,
« metallicswith low p generally have higher thermal conductivities,

» gpecific heats of both types of materials are of similar magnitude,

» thelow k value of the sampleistypical of poor metallic conductors which generally have

much higher specific heats,
« morethan likely, the material is nonmetallic.

From Table A.2, the second entry, polycrystalline aluminum oxide, has properties at 300 K

corresponding to those found for the samples.



PROBLEM 2.20

KNOWN: Temperature distribution, T(X,y,z), within an infinite, homogeneous body at agiven
instant of time.

FIND: Regionswhere the temperature changes with time.
SCHEMATIC:

+— T(x,y,z)= x2-2y2 +z2?-xy +2YZ

Zz Infinite medium
Y

X

ASSUMPTIONS: (1) Constant properties of infinite medium and (2) No internal heat generation.

ANALYSIS: Thetemperature distribution throughout the medium, at any instant of time, must
satisfy the heat equation. For the three-dimensional cartesian coordinate system, with constant
properties and no internal heat generation, the heat equation, Eq. 2.15, has the form

9°T , 0°T 9°T _107T

ax2 9y? 972 a ot
If T(X,y,2) satisfiesthis relation, conservation of energy is satisfied at every point in the medium.
Substituting T(x,y,2) into the Eq. (1), first find the gradients, 0T/0x, 0T/dy, and dT/0z.

17} 17} 0 10T
—(2X-y)+—(-4y-x+22)+—(22+2y) =— —,
(2x-y) dy( y-x+22) dz( z+2y)

D

0 X a ot

Performing the differentiations,

2-442=19T
a ot
Hence,
9T _,
ot

which implies that, at the prescribed instant, the temperature is everywhere independent of time.

COMMENTS: Since we do not know the initial and boundary conditions, we cannot determine the
temperature distribution, T(X,y,z), at any futuretime. We can only determine that, for this special
instant of time, the temperature will not change.



PROBLEM 2.21

KNOWN: Diameter D, thickness L and initial temperature T; of pan. Heat rate from stove to bottom

of pan. Convection coefficient h and variation of water temperature T (t) during Stage 1.
Temperature T of pan surface in contact with water during Stage 2.

FIND: Form of heat equation and boundary conditions associated with the two stages.
SCHEMATIC:

Stage 1

e 1 1Pttt e

ASSUMPTIONS: (1) One-dimensional conduction in pan bottom, (2) Heat transfer from stove is
uniformly distributed over surface of pan in contact with the stove, (3) Constant properties.

ANALYSIS:
Sagel

2
Heat Equation: % = l —
ox< «a
Boundary Conditions: —k Z—T %
X

oT

+ T =hE (L) T (0

Initial Condition: T(x,0)=T;
Sage 2

Heat Equation: —F=0

T
Boundary Conditions. -k d— =5
dx |y =0

T(L)=TL

COMMENTS: Stage 1lisatransient process for which T (t) must be determined separately. Asa
first approximation, it could be estimated by neglecting changes in thermal energy storage by the pan
bottom and assuming that all of the heat transferred from the stove acted to increase thermal energy

storage within the water. Hence, with g =Mcy d To/dt, where M and ¢, are the mass and specific
heat of the water in the pan, Te(t) = (0/Mcp) t.



PROBLEM 2.36

KNOWN: Three-dimensional system — described by cylindrical coordinates (r,,0) — experiences
transient conduction and internal heat generation.

FIND: Heat diffusion equation.
SCHEMATIC: SeeFigure 2.10.
ASSUMPTIONS: (1) Homogeneous medium.

ANALYSIS: Thedifferential control volumeisV = drlrisinBdglrdd, and the conduction terms are
identified in Figure 2.10. Conservation of energy requires

dr —Gr+dr +p ~Gg+dp +do ~Yo+de +Eq =Esg- 1)

The generation and storage terms, both representing volumetric phenomena, are
Eg =V =¢[dr Bsinbdeidf]  Eg = p/c‘;—I = p[dr Esinédemd Q]c(;—-{. (2,3)
Using a Taylor series expansion, we can write

d d d
Oredr =0r *——(Ar)dr,  Agidp =dg +§0(q(p)d¢, dg+do =o +55(dp)d0.  (456)

or
From Fourier's law, the conduction heat rates have the following forms.
dr = —kA,dT/dr = —K[rsinbde d ] JT/ or (7)
Ay = KA P T/rsindp=—k[dr I1d 6] IT /1 sin B¢ (8)
g = ~kAgd T/ 196 = —k[dr [MsinBdg|d T/ rdb. 9)
Substituting Egs. (2), (3) and (4), (5), (6) into Eg. (1), the energy balance becomes
0 0 7 . : . oT
—E(qr)dr —d—¢(q¢)d¢—%(q9)d9+q[dr [F sinBdg dA] = p[dr Msin6de Eble]cﬁ (10)
Substituting Egs. (7), (8) and (9) for the conduction rates, find
7] . oT 0 oT
-—| -k 6de id0|— |dr ——| —k|dr id6 d
09{ [rsm ¢ ](9r}r 0(p{ [r ]rsined(p}(p
—i[—k[dr T sinedqﬂa—qqu[dr 7 sinédglid 6 = ddr [ sin @ ¢ind &2 (11)
00 roé ot
Dividing Eq. (11) by the volume of the control volume, V, Eqg. 2.23 is obtained.
izi[krzﬁ—q+ e i{kﬂ}+ - i[k sinea—T}+q =pc 2T <
rcor or résinc0 0p| J0@| r4sng o 20 ot

COMMENTS: Note how the temperature gradientsin Egs. (7) - (9) are formulated. The numerator
isaways dT while the denominator is the dimension of the control volume in the specified coordinate
direction.



PROBLEM 2.37
KNOWN: Temperature distribution in steam pipe insulation.

FIND: Whether conditions are steady-state or transient. Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

Insu/a‘/‘ion,

Tr)=C, /77,,4;-# C

ASSUMPTIONS: (1) One-dimensional conductioninr, (2) Constant properties.
ANALYSIS: From Equation 2.20, the heat equation reduces to
Ei(r 9_T) ~19T
ror\ or

a ot
Substituting for T(r),
10T 10 (rcljzo.

aodt ror r

Hence, steady-state conditions exist. <
From Equation 2.19, the radial component of the heat flux is

oT C
"= —k—— =k,
ar or r
Hence, 0y decreaseswith increasing r(qyal/r). <

At any radial location, the heat rateis
qr =2mrLqgy = —27KC4L

Hence, gy isindependent of r. <

COMMENTS: The requirement that gy isinvariant with r is consistent with the energy conservation

requirement. If gy is constant, the flux must vary inversely with the area perpendicular to the direction
of heat flow. Hence, gy variesinversely withr.



PROBLEM 2.48

KNOWN: Planewall, initially at a uniform temperature T, has one surface (x = L) suddenly

exposed to a convection process (T., > To,h), while the other surface (x = 0) is maintained at T,.
Also, wall experiences uniform volumetric heating ¢ such that the maximum steady-state temperature

will exceed T.

FIND: (a) Sketch temperature distribution (T vs. X) for following conditions: initial (t < 0), steady-
state (t —» o), and two intermediate times; also show distribution when there is no heat flow at the x =

L boundary, (b) Sketch the hest flux (g Vs. t) at the boundaries x = 0 and L.
SCHEMATIC:

2(+=0) T(,4)

<701 RREY
L>x A

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Uniform volumetric
generation, (4) T, <T,, and g large enough that T(x,c) > T.

ANALYSIS: (@) Theinitial and boundary conditions for the wall can be written as

Initial (t <0): T(x,0)=Tg Uniform temperature
Boundary: x=0 TO=Tg Constant temperature
oT .
x=L —k—) =h[T(L,t)~Ts] Convection process.
IX x=L

The temperature distributions are shown on the T-x coordinates below. Note the special condition
when the heat flux at (x = L) is zero.

(b) The heat flux as afunction of time at the boundaries, g% (0,t) and dfy(L,t), can beinferred from
the temperature distributions using Fourier’s law.

Tix,) +—T(x.c0) A (L
! u q;'(x, f) /—T ”
T I[QX(L;I'):O 0 i >t
. L
A %0 9w o-nrT, 7
0 A X X ) ( .).V ¢9)’(’(0} f)

COMMENTS: Since T(x,)>T, and T, >T,, heat transfer at both boundaries must be out of the
wall. Hence, it follows from an overall energy balance on the wall that +gj, (0, ) -d (L,)+dL =0.



PROBLEM 2.49

KNOWN: Planewadl, initidly at a uniform temperature T, has one surface (x = L) suddenly exposed

to a convection process (T, < T, h), while the other surface (x = 0) ismaintained at T,. Also, wall
experiences uniform volumetric heating ¢ such that the maximum steady-state temperature will

exceed Te.

FIND: (a) Sketch temperature distribution (T vs. x) for following conditions: initia (t < 0), steady-
state (t — o), and two intermediate times; identify key features of the distributions, (b) Sketch the heat

flux (g vs. t) at the boundaries x = 0 and L; identify key features of the distributions.
SCHEMATIC:

q(t=0) T(L,Y)

T(0,t) =T,
SR
|—>x L=0.1m

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Uniform volumetric
generation, (4) T, < Ty and ¢ large enough that T(x,) > T,

ANALYSIS: (a) Theinitial and boundary conditions for the wall can be written as

Initial (t <0): T(x,0) =Ty Uniform temperature
Boundary: x=0 T =T, Constant temperature
x=L -k 0—T) =h[T(L,t)~To] Convection process.
Ix x=L

The temperature distributions are shown on the T-x coordinates below. Note that the maximum
temperature occurs under steady-state conditions not at the midplane, but to the right toward the
surface experiencing convection. The temperature gradientsat x = L increasefor t > 0 since the
convection heat rate from the surface increases as the surface temperature increases.

(b) The heat flux as afunction of time at the boundaries, qy(0,t) and oy (L,t), can beinferred from

the temperature distributions using Fourier’slaw. At the surface x = L, the convection heat flux at t =
0is ay (L,0)=h(T, - T, ). Because the surface temperature dips dightly at early times, the

convection heat flux decreases slightly, and then increases until the steady-state condition is reached.
For the steady-state condition, heat transfer at both boundaries must be out of thewall. It followsfrom

an overall energy balance on the wall that +dj (0,00) - (L, ) +¢L =0.

CR Steady-state + A KO =RTO) Tl gy Lt

T(X,CD)
t . I

! 0

! t
To  Initial, T(x,0)
To p------ S -V

0 L X q5(0.1)




PROBLEM 2.50
KNOWN: Interfacial heat flux and outer surface temperature of adjoining, equivalent plane walls.

FIND: (a) Form of temperature distribution at representative times during the heating process, (b)
Variation of heat flux with time at the interface and outer surface.

SCHEMATIC:

qo

I — I
-L X +L

ASSUMPTIONS: (1) One-dimensiona conduction, (2) Constant properties.

ANALYSIS: (a) With symmetry about the T
interface, consideration of the temperature

distribution may berestrictedtoO<x<L.

During early stages of the process, heat transfer

isinto the material from the outer surface, as

well asfrom the interface. During later stages T,
and the eventual steady state, heat is transferred

fromthe materia at the outer surface. At 0

steady-state, dT/dx = —(qg/2)/k = const . and
TOY) =To+ (dp/2)L /K.

A

9" (x.t) q"(0.9)
(b) At the outer surface, the heat flux isinitially B
negative, but increases with time, approaching ' /2
Go/2. Itiszerowhen dT/dx| _, =0. . /_ .

q" (LY




PROBLEM 2.51

KNOWN: Temperature distribution in a plane wall of thickness L experiencing uniform volumetric
heating ¢ having one surface (x = 0) insulated and the other exposed to a convection process

characterized by T, and h. Suddenly the volumetric heat generation is deactivated while convection
continues to occur.

FIND: (@) Determine the magnitude of the volumetric energy generation rate associated with the
initial condition, (b) On T-x coordinates, sketch the temperature distributions for the initial condition

(T < 0), the steady-state condition (t — o), and two intermediate times; (c) On g -t coordinates,
sketch the variation with time of the heat flux at the boundary exposed to the convection process,
ay (L, t); calculate the corresponding value of the heat flux at t = 0; and (d) Determine the amount of

energy removed from the wall per unit area (J/m2) by the fluid stream as the wall coolsfrom itsinitial
to steady-state condition.

SCHEMATIC:
% T(x,0)=a+bx2 x(m) p = 7000 kg/m3
Insulated é a=300°C b=-1.0x104°C/m2  Cp= 450 Jlkg-K
boundary\; d¢0fort<0- g=0fort=0 k=90 W/m-K
%
Z
%
% | Too 20°C
= 2.
|—>x L=04m =1000 W/m2-K

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, and (3) Uniform internal
volumetric heat generation for t < 0.

ANALYSIS: (@) The volumetric heating rate can be determined by substituting the temperature
distribution for the initial condition into the appropriate form of the heat diffusion equation.

d [dT D 2
B_ h [ =
™ de where (x,O) a +bx

9 0+2bx)+d 0420 +9 =
dx K k

¢ =—-2kb = 2 x90W /m K ( 1.0 x10% T/ m2) =1.8 05w /m3 <
(b) The temperature distributions are shown in the sketch below.

" N
A Initial ay(L,0) = h[T(L,0) - Teo]

300 \< T(x,0) = a + bx2
t 1

200 F 1 q‘;((L!t)

100 _—\: Steady-state
Pl T
N

1 N
L L

0 L X 0 t

T(x,t), (°C)

Continued .....



PROBLEM 251 (Cont.)

(c) The heat flux at the exposed surface x = L, gy (L,O), isinitially a maximum value and decreases

with increasing time as shown in the sketch above. The heat flux at t = 0 isequal to the convection
heat flux with the surface temperature T(L,0). See the surface energy balance represented in the
schematic.

oy (L,0) = deony (t =0) =h(T(L,0) -T,, ) =1000W/m? & (200 —20) T =1.80 x10° W /m? <
where T(L,0)=a+bL? =300°C -1.0 x10*T/m? (0.1m)? =200 C.

T(L,0) = a + bx2
:—> Qeonv(t=0)
L Jan>
|
(d) The energy removed from the wall to the fluid asit cools fromitsinitial to steady-state condition
can be determined from an energy balance on atime interval basis, Eg. 1.11b. For theinitid state, the

wall has the temperature distribution T(x,0) =a + bx2; for thefinal state, thewall is at the temperature
of thefluid, Tf = T. We have used T, asthe reference condition for the energy terms.

n :L
~Eout = PCpL [Tt ~T] =pCp [ (x,0) ~TeoAix

. _ x=L 2 _ a0 34 _ L
Eout =PCp [, _, %+bx Toogjx = pepgex +bx>/3 MEO
* it = 7000kg/ m® x450J/ kg K %Ooxo.l—l.o x10%(0.1)*/3 -20 XO.IEK i}

f ot = 7.77x107 3/ m? <

COMMENTS: (1) Inthe temperature distributions of part (a), note these features: initial condition
has quadratic form with zero gradient at the adiabatic boundary; for the steady-state condition, the wall
has reached the temperature of the fluid; for al distributions, the gradient at the adiabatic boundary is
zero; and, the gradient at the exposed boundary decreases with increasing time.

(2) In this thermodynamic analysis, we were able to determine the energy transferred during the
cooling process. However, we cannot determine the rate at which cooling of the wall occurs without
solving the heat diffusion equation.



PROBLEM 2.52

KNOWN: Temperature as afunction of position and time in a plane wall suddenly subjected to a
change in surface temperature, while the other surface isinsulated.

FIND: (a) Validate the temperature distribution, (b) Heat fluxesat x =0 and x = L, (c) Sketch of
temperature distribution at selected times and surface heat flux variation with time, (d) Effect of
thermal diffusivity on system response.

SCHEMATIC:
4 o<, T(x,0)=
Z T <Ts
Z
g I w o exp(4 7— cos(—>- )
A s

ASSUMPTIONS: (1) One-dimensiona conduction in x, (2) Constant properties.

ANALYSIS: (a) To bevalid, the temperature distribution must satisfy the appropriate forms of the
heat equation and boundary conditions. Substituting the distribution into Equation 2.15, it follows
that

9°T _ 197
x> a at
o) 2 X
—C(Ti = Tg)exp| ——= | — | co§ ——
1% T p{ ez )ar) {3t)
C(T T)nza pnza {"ﬁj_ <
a 4 |2 4 |2 2L
Hence, the heat equation is satisfied. Applying boundary conditionsat x = 0and x = L, it follows that
oT Cymt ?od). (nxj
— =—-———(T, = Tg)exp| —— |Sinf —— = <
(?X'xO 2L(I S) p[ 4L2} 2L|x0
and
m ot X
T(L,t) :TS +Cl(Ti —Ts)exp( _TF CO{EE)lsz :TS' <

Hence, the boundary conditions are also satisfied.
(b) The heat flux has the form

0T _ kCymr 7 a). ( nx
n=—k—— =+ (T, —Tg)exp| ——— |sinl —— |.
=Ko =L (0 p( 4 LZ} (2 L)

Continued .....



PROBLEM 2.52 (Cont.)

Hence, ay(0) =0, <
. kC]_T[ 7'12 a
()= +S5 Te] - <

(c) The temperature distribution and surface heat flux variations are:

7; ¢—+—>oo
T 9L
t+=0
T '
i 1
0 X L

(d) For materials A and B of different a,

[Tt -Tg], e
W = exp[——(aA —a B)t}

2
B 4L

Hence, if ap >ag, T (X,t) - Tg morerapidly for Material A. If ap <apg, T (X,t) - Tg more

rapidly for Material B. <

COMMENTS: Note that the prescribed function for T(x,t) does not reduceto T; fort — 0. For

times at or close to zero, the function is not avalid solution of the problem. At such times, the
solution for T(x,t) must include additional terms. The solution is consideed in Section 5.5.1 of the
text.



PROBLEM 2.53

KNOWN: Thin electrical heater dissipating 4000 W/m2 sandwiched between two 25-mm thick plates
whose surfaces experience convection.

FIND: (@) On T-x coordinates, sketch the steady-state temperature distribution for -L < x < +L;
calculate values for the surfaces x = L and the mid-point, x = O; label this distribution as Case 1 and
explain key features; (b) Case 2: sudden loss of coolant causing existence of adiabatic condition on
the x = +L surface; sketch temperature distribution on same T-x coordinates as part (a) and calculate
valuesfor x =0, + L; explain key features; (c) Case 3: further loss of coolant and existence of
adiabatic condition on the x = - L surface; situation goes undetected for 15 minutes at which time
power to the heater is deactivated; determine the eventual (t — o) uniform, steady-state temperature
distribution; sketch temperature distribution on same T-x coordinates as parts (a,b); and (d) On T-t
coordinates, sketch the temperature-time history at the plate locations x = 0, + L during the transient
period between the steady-state distributions for Case 2 and Case 3; at what location and when will the
temperature in the system achieve a maximum value?

SCHEMATIC:
Electric heater
q;, = 4000 W/m?
T = 20°C
h = 400 W/m2-K Plates p = 2500 kg/m3

cp = 700 J/kg-K

zrzr | | zrzr k=5 W/m-K

> x +L =25 mm

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal
volumetric generation in plates, and (3) Negligible thermal resistance between the heater surfaces and

the plates.
ANALYSIS: (a) Since the systemis symmetrical, the heater power resultsin equal conduction fluxes

through the plates. By applying a surface energy balance on the surface x = +L as shown in the
schematic, determine the temperatures at the mid-point, X = 0, and the exposed surface, x + L.

e T(L)
1|1 dconv
—» | —>
Qx(*+L) 1fs
1
Ein —Eout =0
d (+L) ~deonv =0 where dx (+L) =G0/2
Uo/2-hE (+L) -TeH=0
T1(+L) =05 /2h +T, :4OOOW/m2/(2 x400W / m? uz() +20C =25T <

From Fourier’slaw for the conduction flux through the plate, find T(0).
Oy =do/2=k T (0)-T(+L)B/L
T1(0) =Ty (+L) +pL / 2k =25°C +4000W /m? K x0.025m/(2 x5W/m K) =35 T <

The temperature distribution is shown on the T-x coordinates below and labeled Case 1. The key
features of the distribution are its symmetry about the heater plane and its linear dependence with
distance.

Continued .....



PROBLEM 2.53 (Cont.)

Case 3, T3(x)

®
®
BN

1
i
Case 2, Ty(x)

Case 1, T4(x)
T4(0) = 35°C

HERN
7 X

(b) Case 2: sudden loss of coolant with the existence of an adiabatic condition on surface x = +L. For
this situation, al the heater power will be conducted to the coolant through the left-hand plate. Froma
surface energy balance and application of Fourier’slaw as done for part (a), find

To(-L) =0 /h +To, =4000W/m?/400W/m? [K +20C =30C <

T5(0) =Ty (-L) +gbL /k =30°C +4000W /m? x0.025 m/5W/m K =50C <

The temperature distribution is shown on the T-x coordinates above and labeled Case 2. The
digtributionislinear in the left-hand plate, with the maximum value at the mid-point. Since no heat
flows through the right-hand plate, the gradient must zero and this plate is at the maximum
temperature as well. The maximum temperature is higher than for Case 1 because the heat flux
through the left-hand plate has increased two-fold.

(c) Case 3: sudden loss of coolant occurs at the x = -L surface also. For this situation, there is no heat

transfer out of either plate, so that for a 15-minute period, At,, the heater dissipates 4000 W/ m? and
then is deactivated. To determine the eventual, uniform steady-state temperature distribution, apply
the conservation of energy requirement on atime-interval basis, Eq. 1.11b. Theinitial condition
corresponds to the temperature distribution of Case 2, and the final condition will be a uniform,

elevated temperature T; = T3 representing Case 3. We have used T, as the reference condition for the
energy terms.

Ein —Eout +Egen = 0Eg =Ef —E; (1)
Notethat Ej, - E,, =0, and the dissipated electrical energy is
ten = Aol =4000W /m? (15%60)s =3.600 x10° J/ m? @)

For the final condition,
E} = pc(2L)[T; - Te] =2500kg/ m® x700/ kg [K (2 x0.025m)[T; -20] T
Ef =8.75x10%[T; -20] 3/ m?
where Tf =Ty, thefinal uniform temperature, Case 3. For theinitial condition,
ch’ [T2 (x) = TeoJax = pc{I?L [T2(x) —Te] dx +J’O+L [T2(0) - oo]dx} (4)

where T, (x) islinear for L < x < 0 and constant at T, (0) for 0< x < +L.

©)

To(x)=T2(0)+H2(0) -T2 (L)Ex/L - <x <0

T, (x) =50°C +[50 —30] °Cx/0.025m

Tp (x) =50°C +800x )
Substituting for T, (x), Eq. (5), into Eq. (4)

Continued .....



PROBLEM 2.53 (Cont.)

Ef =pc [J?L [50 +800x — T, ] dx +H>2 (0) —ngL@

Ef = pC%GX +400x? —waaOL +H2(0) ‘Tooﬁ'-lg

- 2

Ef = pc{—5—50L +400L +T00L5 +H2(0) - ng}

Ej = pcL{+50 -400L ~To, +T2(0) ~Too}

E{ = 2500kg/ mS>x700J/ kg (K x0.025 m{ +50 —400 x0.025 -20 +50 20 K

E! =2.188x10% 3/ m? 6)
Returning to the energy balance, Eq. (1), and substituting Egs. (2), (3) and (6), find Ts = T3.

3.600x10°% J/m? =8.75x10%[ T3 -20] —2.188 x10° 3/ m?

T3 =(66.1+20)°C =86.1°C <

The temperature distribution is shown on the T-x coordinates above and labeled Case 3. The
distribution is uniform, and considerably higher than the maximum value for Case 2.

(d) The temperature-time history at the plate locations x = 0, + L during the transient period between
the distributions for Case 2 and Case 3 are shown on the T-t coordinates bel ow.

Maximum point

T(x,t) 4
T3

T2(0) = To(+L)

T(+L.Y) E

T2l T(LY)
To
15 >
0 Time (min)
Case 2 Heater deactivated

Note the temperatures for the locations at time t = 0 corresponding to the instant when the surface
X = - L becomes adiabatic. These temperatures correspond to the distribution for Case 2. The heater
remains energized for yet another 15 minutes and then is deactivated. The midpoint temperature,

T(0,1), is dways the hottest location and the maximum value slightly exceeds the final temperature Ts.



PROBLEM 2.54

KNOWN: Radius and length of coiled wirein hair dryer. Electric power dissipation in the wire, and
temperature and convection coefficient associated with air flow over the wire.

FIND: (a) Form of heat equation and conditions governing transient, thermal behavior of wire during
start-up, (b) Volumetric rate of thermal energy generation in the wire, (c) Sketch of temperature
distribution at selected times during start-up, (d) Variation with time of heat flux atr=0andr = r,.

SCHEMATIC: .
S .
$ I Egen

L=05m

i |l )

lHI— o =1mm
ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties, (3) Uniform
volumetric heating, (4) Negligible radiation from surface of wire.

ANALYSIS: (@) The general form of the heat equation for cylindrical coordinatesis given by Eq.
2.20. For one-dimensional, radial conduction and constant properties, the equation reduces to

C
rorl] or k ot a ot
Theinitial condition is T(r,0)=T, <
The boundary conditions are: 6T/6r|r:O =0 <
T
IVLAL h[T (t5,t) = Teo] <
r=r,
(b) The volumetric rate of thermal energy generation is
E
g=—32 = Fetec _ S0 W =318 x10°W/m° <

O mZL  m(0.001m)? (05m)

Under steady-state conditions, all of the thermal energy generated within the wire is transferred to the
air by convection. Performing an energy balance for a control surface about the wire, —-E; + Eg =0,

it followsthat -2mmoL ' (rg,t - ) +Pye. =0. Hence,

0 (101t = ) = Patec _ 500 W
2rm L 271(0.001m)0.5m

=159 x10° W/ m? <

Tirt) A . LA ;

(50 | Steady-state, T(roo) O [ =~ —/—5' 9"(ro, )
\< Iy
——

. a“(0.t)
T; Initial, T(r,0)
| N .
Ll 7
0 o T 0 t

COMMENTS: The symmetry condition at r = 0 imposes the requirement that aT/ar||r=0 =0, and

hence ' (0, t) =0 throughout the process. The temperature at rq, and hence the convection heat flux,

increases steadily during the start-up, and since conduction to the surface must be balanced by
convection from the surface at all times, 9T/ ar|r_r also increases during the start-up.
—'o



PROBLEM 3.1
KNOWN: One-dimensional, plane wall separating hot and cold fluids at T, 1 and Ty, 2,
respectively.
FIND: Temperature distribution, T(x), and heat flux, gy, intermsof Ty 1, T, 2, by, hy, K
andL.
SCHEMATIC:

Co/a’ fluid
TOO,Z /72«

Hot fluid
7;, 1, h]

cond I qconv

“
%

ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant
properties, (4) Negligible radiation, (5) No generatlon

ANALYSIS: For theforegm ng conditions, the general solution to the heat diffusion equation
isof the form, Equation 3

T(x)=Cyx +Co. )
The constants of mtegratlon C1 and Co, are determined by using surface energy balance

conditionsat x =0 and x = L, Equation 2.23, and as illustrated above,
dT O dTQ

—kd— :O:hlgl'oo,l—T(O)E _k_EL =hoHT (L) ~Teo H- (2,3

For the BC at x = 0, Equation (2), use Equation (1) to find

—k (Cp +0) = Heo 1 =(C1 D +Cp H (4)
and for theBC at x = L to find
—k(Cl +0 :h2 aC]_L +C2) —Teo ZE' (5)

Multiply Eq. (4) by hy and Eq. (5) by hq, and add the equations to obtain Cq. Then substitute
C1 into Eq. (4) to obtain Cy. Theresultsare

C = — (Too,l Too,2) Co=— (Too,l_Too,Z) +T
g le +i+ED ’ h Di+i +Iﬂ ot
 hy kA Hhy " hy
~ (Too,l Too,Z) x 10 <
T==0 1 o g Ty e

From Fourier’ slaw, the heat flux is a constant and of the form

g =*kI = ke, = (T°°’1_T°°’2).
o 110

%Tﬁa




PROBLEM 3.20 (Cont.)
and with o'= (kg /Lg )(Te2 - Ts2),

0.02mx 34,600 W/m?
25.4 W/mK

=134.6°C.

Ts2=Te2 ——qu =162°C -
B

The temperature distribution is therefore of the following form:

Teo,1=2600 . T, , =162 °C

1;,1=1908°C‘/ / / /_7;1:134.6‘(
R I e T

COMMENTS: (1) The caculations may be checked by recomputing g* from

0'=hz (Ts 2 ~ Teo 2) =1000W/m? [K (134.6-100)° C=34,600W/m?

(2) Theinitia estimates of the mean material temperatures are in error, particularly for the
stainless steel. For improved accuracy the cal culations should be repeated using k values

corresponding to T = 1900°C for the oxide and T = 115°C for the stedl.

(3) The mgjor contributions to the total resistance are made by the combustion gas boundary

layer and the contact, where the temperature drops are largest.



PROBLEM 3.21

KNOWN: Thickness, overall temperature difference, and pressure for two stainless steel

plates.
FIND: (@) Heat flux and (b) Contact plane temperature drop.
SCHEMATIC:
0.0Ilm—t=———+-0.0Im
T 4 Contact
s1 pressure 1 bar
T
L1 ecvvv— v — T..-T..=100°C
[ R”fc L_ 9 T s1 Isa
k ’ k 52

Stainless steel

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3)

Constant properties.

PROPERTIES: Table A-1, Stainless Steel (T =400K): k =16.6 W/mK.

ANALYSIS: (a) With R} ¢ =15x10% m? (K/W from Table 3.1 and

L_  00im
k 16.6 W/mK

it follows that

=6.02x10

~“4m2 ’/W,

Riot = 2(L/K) +Ry ¢ =27 %10~ 4m? B/W;

hence

AT 100°C

q = 7 =
Riot 27x10*m?2 /W

(b) From the thermal circuit,

AT, _ Ric _15x10*m? K/W

=3.70x10%W/m?2. <

Ts1-Ts2 Riot  27x10%m2 K/W

Hence,

=0.556.

AT =0.556(Tg 1 ~Tg2) =0.556 (1oo° c) =55.6°C. <

COMMENTS: The contact resistance is significant relative to the conduction resistances.
Thevalue of Rt would diminish, however, with increasing pressure.



PROBLEM 3.22

KNOWN: Temperatures and convection coefficients associated with fluids at inner and outer
surfaces of acomposite wall. Contact resistance, dimensions, and thermal conductivities
associated with wall materials.

FIND: (a) Rate of heat transfer through the wall, (b) Temperature distribution.
SCHEMATIC:

FLA—Ls— —ks=004W/m-K

7;’1 =200°C T T T

o | L Wi
kA: 01 W/mK_Jj — I 40°C /1,A kAA tc EA h,A

H:2m, W=2.5m, A= 5m? o2 ® . Ric= 0.30m2-K/W

LA:’()).OIM, Z;o.ozm -5 hy=20 Wimz-K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3)
Negligible radiation, (4) Constant properties.

ANALYSIS: (a) Cdculatethetotal resistanceto find the heat rate,
1 La N N Lg N 1

Riot =——+ R —

tot hlA kAA te kBA h2A

01 001 0.3 0.02 1 OK
= + +—= + +

"HOx5 01x5 5 0.04x5 20x5HW

Rtot =[0.02+0.02 +0.06 +0.10 +0.01] % :0.21%

Rtot

T 1-To2 _ (200-40)°C
Riot 0.21 K/W

=762 W. <

(b) It follows that

o T62W i
Ts1=Teo 1‘i=200 C- =184.8 C T
: T A 50 W/K o1 3
aa . . 762Wx0.01m . Tss
Tp =Tgp—— =1848°C—————— =169.6 C s 7
KaA 0.1 x 5mM?2 A
m [K TB
o K .
Tg =Ta —QR¢ ¢ =169.6°C -762W x0.06— =123.8°C
1 W T
s,2
qLg o 762W x0.02m o T
Tgp=Tg ——— =1238' C-———————— =476°C o2
kgA 0.04 X 5M2
m[K

. Te2W
Too = Ts2 —hi =476°C - =40°C
oA 100W/K




PROBLEM 3.23

KNOWN: Outer and inner surface convection conditions associated with zirconia-coated, Inconel
turbine blade. Thicknesses, thermal conductivities, and interfacial resistance of the blade materials.
Maximum allowable temperature of Inconel.

FIND: Whether blade operates below maximum temperature. Temperature distribution in blade, with
and without the TBC.

SCHEMATIC:
L7,=0.5mm Lip=5mm
zr AHt’X—’F In
E%%% T°°’ 0 0/\/\/\/0/\/\/\r0’\/\/\i3\/\/\fof\l/\/\,o T°°, /
(hoyt (WLhze Ry (WK (ny
ho = 1000 Wm2-K i hj = 500 W/m2-K
Loz 100K | T,j= 400K
i i Inconel
" _ _4 2 k = 25 W/m'K
Zirconia ~ R't,e =107 maK/W Trmax = 1250 K
k= 1.3 Wim-K

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in a composite plane wall, (2) Constant
properties, (3) Negligible radiation.

ANALYSIS: For aunit area, the total thermal resistance with the TBC is
' _ .1 -1
RtOt,W - I’.]O +(L/k)Zr +R’t,C +(L/k)|n +hi

Riot,w = (10‘3 +385x107% +107% +2x107* +2 >¢o‘3)m2 K/W =3.69 40 °m? K/W

With a heat flux of
Towo,0 = Tw)i 1300K
Oy =20 - = =3,52x10° W/ m?
Rtotw  3.69%x10™° m“ (K/W

the inner and outer surface temperatures of the Inconel are
Tsiw) = T *+(Ciy /hi ) =400K +(3.52 x10° W/ m?2 /500w m? [K) =1104K

Tsow) = Teoi + H1/N; ) +(L/K), By =400K +(2 X103 +2 ><10'4)m2 K/W (3.52 x10° W/mz) =1174K

Without the TBC, Rig o = hg +(L/K),, +hi* =320 x10°m? ®/W, and dlyo =(Teo o =T )/Rict.wo =

(1300 K)/3.20x10°® m*K/W = 4.06x10° W/m”. The inner and outer surface temperatures of the Inconel
arethen

Tsitwo) = Tew i *+(Giwo/hi ) =400K +(4.06 x10° W/ m2 /500w m? [K) =1212K

Toowo) = Tooi +[(@/0) +(L/K),,,] diuo =400K +(2 X107 +2 ><10_4)m2 K/W (4.06 x0° W/mz) =1293K

Continued...



PROBLEM 3.23 (Cont.)

1300
5\
< 1260 —
X
= A
g 1220 —
=}
g \
<3
g 1180
& —
S
1140
—
1100 —
0 0.001 0.002 0.003 0.004 0.005

Inconel location, x(m)

—6— With TBC
—=&— Without TBC

Use of the TBC facilitates operation of the Inconel below T = 1250 K.

COMMENTS: Since the durability of the TBC decreases with increasing temperature, which increases
with increasing thickness, limits to the thickness are associated with reliability considerations.



PROBLEM 3.24

KNOWN: Size and surface temperatures of a cubical freezer. Materials, thicknesses and interface
resistances of freezer wall.

FIND: Cooling load.
SCHEMATIC:

Freezer Ly =6.35 mm ad-ousdm Lst =6.35 mm

q” I-aI/kaI I-ins/kins I-st/kst

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction, (3) Constant properties.

PROPERTIES: Table A-1, Aluminum 2024 (~267K): kg = 173 W/mK. Table A-1, Carbon steel
AISI 1010 (~295K): kg = 64 W/mK. Table A-3 (~300K): king = 0.039 W/mK.

ANALYSIS: For aunit wall surface area, the total thermal resistance of the composite wall is

L L. L
Riot = A +Ry ¢+ 115 4R o+

Kal Kins Kgt
2 2
R = 200635M 5 5qoam- K, 0100m 55 p-4 M K, 000635m
173 W/ mIK W 0.039 W/mIK W BaW/mK

Riot = (3.7><10‘5 +25x107% +2.56 +2.5 x10~* +9.9 >¢o‘5)m2 K/W

Hence, the heat flux is
Tep—Tai 2—-(-6)H°C
o _Tso Tsi _ P (-6)8 109 V.

Riot 256 m2 K / W m?

q

and the cooling load is
q=Asq =6W?d =54m? x10.9 W/m? =590W <

COMMENTS: Thermal resistances associated with the cladding and the adhesive joints are
negligible compared to that of the insulation.



PROBLEM 3.25

KNOWN: Thicknesses and thermal conductivity of window glass and insulation. Contact resistance.
Environmental temperatures and convection coefficients. Furnace efficiency and fuel cost.

FIND: (a) Reduction in hesat loss associated with the insulation, (b) Heat losses for prescribed
conditions, () Savingsin fuel costs for 12 hour period.

SCHEMATIC:
LW =0.006 M e3¢ s Lins =0.025 m T
=12 m2 @®,0 Rend,w R'nd,ins Too,i
% TT TT .= 200C q Renv,o Ric Reny,i
- 2_
Wlndow Insulation, kjns = 0.027 W/m-K

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional heat transfer, (3) Constant properties.
ANALYSIS: (@) The percentage reduction in heat lossis
W — i (] i [ 0 R D
Rq — qWO : q'WIth x100% = |j- _dWIth Dxloo% :[1 _ tot,wo x100%
dwo 0 dwo O 5 R tot,withg
where the total thermal resistances without and with the insulation, respectively, are

] 1 L 1
Riot,wo =Renv,0 *Rend,w +Renv,j “he Jrk_W +F
0] w |

Riot.wo = (0.050+0.004 +0.200)m? (K /W =0.254 m? K / W

t 1 L L; 1
Rtot,with = Renv,0 +Rendw *Rt,c +Rend,ins *Renv,f “ho +k_W Ric +k.'ns i
o "w ins M

Riot.with = (0.050 +0.004 +0.002 +0.926 +0.500)m? K /W =1.482 m? K /W

Rq = (1-0.254/1.482) x100% =82.9% <

(b) With Ag=12 m2, the heat losses without and with the insulation are
Awo =As(Tewi ~Teo,0)/ Riotwo =12m% x32°C/0.254m? K /W =1512W <

Awith =As(Teoi ~Teo,0 )/ Riot,with =12m? x32°C/1.482m? K /W =259 W = <

(c) With the windows covered for 12 hours per day, the daily savings are

(1512 - 259) W

S= Mm Cq x10~ 6MIsa= 12h x3600s/ h x$0.01/ MJ x10 °MJ/J =$0.677

Ns

COMMENTS: (1) The savings may beinsufficient to justify the cost of the insulation, as well as the
daily tedium of applying and removing the insulation. However, the losses are significant and
unacceptable. The owner of the building should install double pane windows. (2) The dominant
contributions to the total thermal resistance are made by the insulation and convection at the inner
surface.



PROBLEM 3.26

KNOWN: Surface area and maximum temperature of a chip. Thickness of aluminum cover
and chip/cover contact resistance. Fluid convection conditions.

FIND: Maximum chip power.
SCHEMATIC:

CConlant> — w25
—— 4= 1000W[m2-K

L=27ﬂ_£7- qC
Y
T

A=1000mm2=10 "m2

<—R.,l.:c=0.5x10—4m2-/</w
F% ’ 7;, max- 85°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat transfer, (3)
Negligible heat loss from sides and bottom, (4) Chip isisothermal.

PROPERTIES: Table A1, Aluminum (T = 325 K): k=238 W/mIK.
ANALYSIS: For acontrol surface about the chip, conservation of energy yields
or
.- (Te-Tow )A _
HL/K)+Ric+(1/h)g
(85-25)° C(10'4m2)

P =
. 40.002/238) + 0.5x10™* +(1/1000)dm? EK/W

g
60x10™4 °C 2
8.4x10°° +0.5x1074 +1o‘3)m2 K/W

F’c,max = (

Fe,max =97 W. <

COMMENTS: The dominant resistance is that due to convection (Rconv >Ry >> Rcond).



PROBLEM 3.27

KNOWN: Operating conditions for a board mounted chip.

FIND: (a) Equivalent thermal circuit, (b) Chip temperature, () Maximum allowable heat dissipation for
dielectric liquid (h, = 1000 W/m’[K) and air (h, = 100 W/m’K). Effect of changesin circuit board
temperature and contact resistance.

SCHEMATIC:

L hy
q”o\ T Tw=20°C

_ x = .
Lb-o.oo5_n£f \9 . \}\ .

Ky~ —> hj= 40 Wim2K
> T_;=20°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible chip
thermal resistance, (4) Negligible radiation, (5) Constant properties.

PROPERTIES: Table A-3, Aluminum oxide (polycrystalline, 358 K): k, = 32.4 W/mIK.
ANALYSIS: (a)

oo, | c 00,0

q" 1/h; (LIK), R"tC T "1”70 q",
qc
(b) Applying conservation of energy to a control surface about the chip (Ein - Eout = O) :
dc —di —do =0
' Te ‘Too,i Tc ‘Too,o
Oc = P
]/hi +(|—/k)b +Ric  Vho

With g7 = 3x10* W/m?, h, = 1000 W/n?K, ky = 1 W/mIK and R} ; =10"*m? (K/W

T.—-20°C . Te-20°C

3x104W/m? = s
(J/ 4o+o.005/1+1o‘4)m2 K/W  (1/2000)m? (K /W

3x10% W/ m? = (33.2T, ~664 +1000T, ~20,000)W/m? K
1003T, = 50,664

T.=49°C. <
(c) For T.=85°C and h, = 1000 W/m’[K, the foregoing energy balance yields

q. = 67,160W/m? <
with gg = 65,000 W/n? and qf = 2160 W/m’. Replacing the dielectric with air (h, = 100 W/n?[K), the
following results are obtained for different combinations of k, and Rt ¢.

Continued...



PROBLEM 3.27 (Cont.)

Ky (W/mK) Ric g (Wi’ do (W/m?) g (W/m?)
(MK /W)
<
1 10* 2159 6500 8659
324 10* 2574 6500 9074
1 10° 2166 6500 8666
324 10° 2583 6500 9083

COMMENTS: 1. For the conditions of part (b), the total internal resistance is 0.0301 m?K/W, while
the outer resistance is 0.001 m*K/W. Hence

o _ (TeTw,0)/Ro _0.0301 4

o (Te-Tej)/R 0001

and only approximately 3% of the heat is dissipated through the board.

2. With h, = 100 W/m?[K, the outer resistance increases to 0.01 m*IK/W, in which case dy /d; = R; /R,

=0.0302/0.01 = 3.1 and now amost 25% of the heat is dissipated through the board. Hence, although
measures to reduce R; would have a negligible effect on g, for the liquid coolant, some improvement

may be gained for air-cooled conditions. As shown in thetable of part (b), use of an aluminum oxide
board increase ¢ by 19% (from 2159 to 2574 W/m?) by reducing R; from 0.0301 to 0.0253 m*K/W.

Because the initial contact resistance (R; ¢ =10"*m? (K/W ) isaready much lessthan R; , any reduction

in its value would have a negligible effect on q; . The largest gain would be realized by increasing h;,
since the inside convection resistance makes the dominant contribution to the total internal resistance.



PROBLEM 3.28

KNOWN: Dimensions, thermal conductivity and emissivity of base plate. Temperature and
convection coefficient of adjoining air. Temperature of surroundings. Maximum allowable
temperature of transistor case. Case-plate interface conditions.

FIND: (a) Maximum allowable power dissipation for an air-filled interface, (b) Effect of convection
coefficient on maximum allowable power dissipation.

SCHEMATIC:
k =240 W/m-K

TscS 85°C
|:>elec

Ac=2x10% m2, Ry

L =0.006 m

G
K>t

m :.
N1 <208k fir

—— T, €=0.90

To =298 K
h =4 W/m2-K

W=0.02m

1
i

ASSUMPTIONS: (1) Steady-state, (2) Negligible heat transfer from the enclosure, to the
surroundings. (3) One-dimensional conduction in the base plate, (4) Radiation exchange at surface of
base plate is with large surroundings, (5) Constant thermal conductivity.

PROPERTIES: Aluminum-aluminum interface,
pressure (Table 3.1): R} ¢ =2.75x10 4 m? K

air-filled, 10 pum roughness, 10° N/m? contact
/W.

ANALYSIS: (a) With all of the heat dissipation transferred through the base plate,

Tee—Too
Pelec :q =_2
Riot

where Rigt =Rt ¢ +Rend +HL/ Reny ) (1 Ryag )H

R _Rt,c L N 1% 1 S
tot —
Ac kw2 w2h+heq

To obtain T, the following energy balance must be performed on the plate surface,

q= Tsc—Tsp
Rt,c+Rend

=0cnv tOrad =hw?

@
-1
2
®3)
(Ts,p _Too) +h, W2 (Ts,p ‘Tsur) (4)

With Re ¢ = 2.75 x 10™ mPIK/MW/2x10™ m” = 1.375 K/W, Reng = 0.006 m/(240 W/mIK x 4 x 10° m?)

=0.0625 K/W, and the prescribed values of h, W,

Tw = Tgrand g, Eq. (4) yields asurface

temperature of Tsp = 357.6 K = 84.6°C and a power dissipation of

Continued .....



PROBLEM 3.28 (Cont.)
Pyec =0 =0.268 W <

The convection and radiation resistances are R¢ny = 625 mIK/W and Ry = 345 mIK/W, where h, =
7.25 Wim’KK.

(b) With the major contribution to the total resistance made by convection, significant benefit may be
derived by increasing the value of h.

4.5

3.5

2.5

1.5 -

Power dissipation, Pelec (W)

d

0.5

0 20 40 60 80 100 120 140 160 180 200
Convection coefficient, h (W/m~2.K)

For h =200 W/mz[[(, Reny = 12.5 mK/W and Tsp = 351.6 K, yielding Rryg = 355 mIK/W. The effect
of radiation is then negligible.
COMMENTS: (1) The plate conduction resistance is negligible, and even for h = 200 W/mZEB(, the

contact resistance is small relative to the convection resistance. However, R; ¢ could be rendered
negligible by using indium foil, instead of an air gap, at the interface. From Table 3.1,

R} ¢ =0.07x10*m? (K /W, inwhich case Ry = 0.035 mK/W.

(2) Because A¢ < Wz, heat transfer by conduction in the plate is actually two-dimensional, rendering
the conduction resistance even smaller.



PROBLEM 3.29

KNOWN: Conduction in aconical section with prescribed diameter, D, as afunction of x in
theform D = ax1/2.

FIND: (a) Temperature distribution, T(x), (b) Heat transfer rate, gy.

SCHEMATIC:
B T,=400K
T.-600K Fure aluminum shape
! k D=ax# where a=05m% T \
X > Xy=25 mm 7;.|
e xe=125mm X

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-
direction, (3) No internal heat generation, (4) Constant properties.

PROPERTIES: Table A-2, Pure Aluminum (500K): k=236 W/mIK.
ANALYSIS: (a) Based upon the assumptions, and following the same methodol ogy of
Example 3.3, gy is a constant independent of x. Accordingly,

dT 0 2 OdT
qx=—kAd—--kgT( )/45 (1)

usingA = nD2/4 where D = ax : Separati ng variables and identifying limits,

X dx
A 2
T a2k IXl X ITl 2
Integrating and solving for T(x) and then for To,
T(x)=T - 4q>2< I 4q>2< Inx2 (3.4)
ma‘k X1 ma‘k X1
Solving Eq. (4) for gy and then substituting into EQ. (3) gives the results,
m
Ox = —Z 2k(T1 —T2)/ln (X1/X2) )
In (x/
T(x) =Ty (7 1) M 02) <

In (x1/x2)

From Eq. (1) note that (dT/dx)[X = Constant. It follows that T(x) has the distribution shown
above.
(b) The heat rate follows from Eg. (5),

Oy = T 052mx236- (600 —400)K/In 2 _5 76kW. <
4 m K 125



PROBLEM 3.30
KNOWN: Geometry and surface conditions of a truncated solid cone.

FIND: (a) Temperature distribution, (b) Rate of heat transfer across the cone.
SCHEMATIC:

A Fx=007%5m | ©
T=100C—F
Aluminum P X, = 0.225m
D=axi a=Im=
=20°C v

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conductionin X, (3)
Constant properties.

PROPERTIES: Table A-1, Aluminum (333K): k =238 W/mIK.
ANALYSIS: (a) From Fourier’slaw, Eqg. (2.1), with A=nD2/4=(na2/4)x3, it follows that

A g

T 8.2X3

Hence, since gy isi ndependent of X,
4qX x dx

IX]_X __kITl dT

or

Ul
% =—k(T -Tq).
Hence
04 1 0
o
(b) From the foregoing expression, it also follows that
&k  To-Ty
2 ijz -1/ xlE
n(lm'l) 238 W/imK

ax =

5 (20-100)"C

2 $0.225) % - (0.075) *gm?

Oy =189 W. <

ax =

COMMENTS: The foregoing results are approximate due to use of a one-dimensional model
in treating what is inherently atwo-dimensional problem.



PROBLEM 3.31
KNOWN: Temperature dependence of the thermal conductivity, k.
FIND: Heat flux and form of temperature distribution for a plane wall.
SCHEMATIC:

. k= /<o +aT T >0
o T>T; A a=0
(srbitrary a< O
— selection)
7x 41, T
Cx L 0 L

ASSUMPTIONS: (1) One-dimensiona conduction through a plane wall, (2) Steady-state
conditions, (3) No internal heat generation.

ANALYSIS: For the assumed conditions, gy and A(x) are constant and Eq. 3.21 gives
L T
Y[, dx=- ko +al )dT
o . ITO( o +aryd
ro_ al.2 2\d
ax = m %o (To-T1) +§(To -1y )E
From Fourier’s law,
ay = —(ko +aT) dT/dx.

Hence, since the product of (ko+al) and dT/dx) is constant, decreasing T with increasing x
implies,

a>0: decreasing (kg+aTl) and increasing |dT/dx| with increasing x
a=0: k=kg=>constant (dT/dx)

a<0: increasing (kgt+aTl) and decreasing |[dT/dx| with increasing x.

The temperature distributions appear as shown in the above sketch.



PROBLEM 3.32
KNOWN: Temperature dependence of tube wall thermal conductivity.

FIND: Expressionsfor heat transfer per unit length and tube wall thermal (conduction)
resistance.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
No internal heat generation.

ANALYSIS: From Eq. 3.24, the appropriate form of Fourier'slaw is

daT daT
=-kA, — = k(2 rL)—
Gr " dr ( ) dr

dT
= =21 kr—
qr = dr

Or = -2 rko (1+al)— dr
ar’
Separating variables,

SO Oy (@eaT)dT

21T
and integrating across the wall, find

~ar rodr kOJ’ (1+aT)dT

2115 )
' U Ul
S| AL PN
2 v H 2. g|T
_dr Inro—k aT -T)+2(18 -T2
o ofTo~Ti) 2 N &
D(To TI) <

o :—2nko§ 2(To +Ty )E—In(ro )

It follows that the overall thermal resistance per unit length is

R! _ AT In(rolri)
i
I 2mg %"’2(1—0 i )D

H

COMMENTS: Note the necessity of the stated assumptionsto treating ¢, asindependent of r.



PROBLEM 3.33

KNOWN: Steady-state temperature distribution of convex shape for material with k = k(1 +
oT) where a is a constant and the mid-point temperature is AT higher than expected for a
linear temperature distribution.

FIND: Relationship to evaluate a interms of ATy and T1, T2 (the temperatures at the
boundaries).

SCHEMATIC:
Tix/}
A
1 R 2N
T—I
al, i I
Lyx L

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensiona conduction, (3) No
internal heat generation, (4) a is positive and constant.

ANALYSIS: Atany location in thewall, Fourier’slaw has the form

. dT
Since gy isaconstant, we can separate Eq. (1), identify appropriate integration limits, and

integrate to obtain
L, _ To
Jo 9kax=~[;"ko (1 +a T)dT 2

_o By, @ 2507, .20 €

L 2 2 OO0
e HE ™ 207
We could perform the same integration, but with the upper limitsat x = L/2, to obtain

dx =

. __2Ko L/i20] 1M
Oy = - L2 + -0n + (4)
M 0
L 3 2 3B 22 H
where
T2 =T(L/2) :—TlJ;TZ + AT, (5)

Setting Eq. (3) equal to Eq. (4), substituting from Eq. (5) for T\ 2, and solving for a, it
follows that
2AT,

a= .
(T22 +T12)/2— {1 +To)/ 2+ Ao




PROBLEM 3.34

KNOWN: Hollow cylinder of thermal conductivity k, inner and outer radii, r; and rg,
respectively, and length L.

FIND: Thermal resistance using the alternative conduction analysis method.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
No internal volumetric generation, (4) Constant properties.

ANALYSIS: For the differential control volume, energy conservation requiresthat gy = Qr+qr
for steady-state, one-dimensional conditions with no heat generation. With Fourier’s law,
dT dT
=—-kA— =k (2 rL)— 1
ar ar ( ) ar 1)

where A = 21rL isthe areanormal to the direction of heat transfer. Since gy is constant, EQ.

(1) may be separated and expressed in integral form,
Gr (o dr_ _rToy (rygr
2mLJg r ITi (T)dr.

Assuming k is constant, the heat rate is

2 Lk (T; = To)
Or = .
In(ro/1;)

Remembering that the thermal resistance is defined as

Rt = AT/q
it follows that for the hollow cylinder,

R :In(rolri). <

2 LK

COMMENTS: Compare the alternative method used in this analysis with the standard
method employed in Section 3.3.1 to obtain the same resullt.



PROBLEM 3.35

KNOWN: Thickness and inner surface temperature of calcium silicate insulation on a steam pipe.
Convection and radiation conditions at outer surface.

FIND: (a) Heat loss per unit pipe length for prescribed insulation thickness and outer surface
temperature. (b) Heat loss and radial temperature distribution as a function of insulation thickness.

SCHEMATIC:

T. =250C — 55 O
h = 25 Wim2-K Tsur=25°¢
p——— i
r4{=006m 3  \ec============
Tg 4 = 800 K

Insulation ———
....... /“ -—-c ’\
9'conv 9rad
1
h2ﬂ:f'2
TOO
. Ts Ts,2
q —>
In (r2/r1)
2nk TSUf'
1
hr27tf2

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties.
PROPERTIES: Table A-3, Calcium Silicate (T = 645 K): k =0.089 W/mK.
ANALYSIS: (a) From Eq. 3.27 with Ts, = 490 K, the heat rate per unit length is

2k (Ts1-Ts2)

' = L=
T T )
, _ 2m(0.089W/m K ) (800 - 490)K
In(0.08m/0.06m)
q =603W/m. <

(b) Performing an energy for a control surface around the outer surface of the insulation, it follows that

deond = Yeonv * drad

Ts,l_Ts,Z — Ts,2 ~Too + Ts,2 ~Tsur
In(ry/n)/2mk  Y(2moh)  Y(2mhy)

where h, =eo (Ts,2 +Taur ) (T§2 +T52ur ) . Solving this equation for Ts, the heat rate may be
determined from

q =2 Fh(Ts.2 ~Too ) +hy (Ts 2 ~Tour B
Continued...



PROBLEM 3.35 (Cont.)

and from Eq. 3.26 the temperature distribution is

Teq1-T. Or O
T =2 32105 4,
In(r/r2) 0
As shown below, the outer surface temperature of the insulation T, and the heat loss ' decay
precipitously with increasing insulation thickness from values of Ts, = Ts; =800K and ' = 11,600
W/m, respectively, at r, = r; (no insulation).

800

10000

700
g E
N
¥ e00 %
o £
£ \ 5 1000
g 500 > 1
[} 1]
aQ \ 2
£ o
= \ S

400 T

\\
300 100 T T T
0 0.04 0.08 0.12 0 0.04 0.08 0.12
Insulation thickness, (r2-r1) (m) Insulation thickness, (r2-r1) (m)

— Outer surface temperature

Heat loss, gprime

When plotted as afunction of adimensionlessradius, (r - r1)/(r» - ry), the temperature decay becomes
more pronounced with increasing r».

800

700

600

500

Temperature, T(r) (K)

400

NS

300

\é\
0 0.2 0.4 0.6 0.8 1

Dimensionless radius, (r-r1)/(r2-rl)

—©— r2=0.20m
r2=0.14m
—#— r2=0.10m

Note that T(r,) = T2 increases with decreasing r, and alinear temperature distribution is approached asr»
approaches ;.

COMMENTS: Aninsulation layer thickness of 20 mm is sufficient to maintain the outer surface
temperature and heat rate below 350 K and 1000 W/m, respectively.



PROBLEM 3.36

KNOWN: Temperature and volume of hot water heater. Nature of heater insulating material. Ambient
air temperature and convection coefficient. Unit cost of electric power.

FIND: Heater dimensions and insulation thickness for which annual cost of heat lossis less than $50.
SCHEMATIC:

D

o S Ts 1 Urethane

Toh | P et B
air v/ St

’

n

1

1

1

1 1
Mo

1 e

1 e

1 -:_‘;

1 AP

1

1

| )
rp
TOO
ANNL—" NN T —
Reond Reonv

ASSUMPTIONS: (1) One-dimensional, steady-state conduction through side and end walls, (2)
Conduction resistance dominated by insulation, (3) Inner surface temperature is approximately that of the
water (Ts; = 55°C), (4) Constant properties, (5) Negligible radiation.

PROPERTIES: Table A.3, Urethane Foam (T =300 K): k = 0.026 W/mIK.
ANALYSIS: To minimize heat loss, tank dimensions which minimize the total surface area, As;, should
be selected. With L = 40/mD? Agq = DL +2( rD2/4) =40/D+ 1D2/2, and the tank diameter for
which Ag; is an extremum is determined from the requirement

dAg/dD = ~40/ D% D= 0
It follows that

)l/ 3 1/3

D=(40/m and L= (4 /n)

With dzAs,t /dD2 = 8D/D3+ > 0, the foregoing conditions yield the desired minimum in Ag;.
Hence, for 0 = 100 gal x 0.00379 m*gal = 0.379 m’,

Dop = Lop =0.784m <
Thetotal heat loss through the side and end wallsis
4= In(rz/;zssl_Too 1 52(TS,1_T00)1
+

+
2nkLop 2oLl gp k(ITDgp/4) h(anp/4)

We begin by estimating the heat |0ss associated with a 25 mm thick layer of insulation. With r; = Dgy/2 =
0.392mandr, =1+ 0=0.417 m, it follows that
Continued...



PROBLEM 3.36 (Cont.)

(55-20)°C
In(0.417/0.392) . 1
27(0.026W/m(K)0.784m (2W/ m? [K ) 2r1(0.417m)0.784m

q:

2(55-20)°C
0.025m 1

(0.026W/mK )71/4(0.784m)> ' (2W/ m? EK)n/4(O.784 m)?

+

+

= =(482+231)W =71.3W
q (0.483+0.243)K/W  (1.992+1.036)K/W ( )

The annual energy lossistherefore
Qannual = 71.3W (365days) (24 h/olay)(lo‘3 kW/W) =625kWh

With a unit electric power cost of $0.08/kWh, the annual cost of the heat lossis
C = ($0.08/kWh)625 kWh = $50.00

Hence, an insulation thickness of
0=25mm <
will satisfy the prescribed cost requirement.

COMMENTS: Cylindrical containers of aspect ratio L/D = 1 are seldom used because of floor space
constraints. Choosing L/D =2, 0 = iD%2 and D = (20/m)** = 0.623 m. Hence, L =1.245m, 1, =
0.312mandr, = 0.337 m. It followsthat q=76.1 W and C = $53.37. The 6.7% increase in the annual
cost of the heat lossis small, providing little justification for using the optimal heater dimensions.



PROBLEM 3.37
KNOWN: Inner and outer radii of atube wall which is heated electrically at its outer surface

and is exposed to afluid of prescribed h and To,. Thermal contact resistance between heater
and tube wall and wall inner surface temperature.

FIND: Heater power per unit length required to maintain a heater temperature of 25°C.
SCHEMATIC:

ro To=25°C Elecfrical heater (2°)
to=75mm i /1 100W).
2.
PR e O\ T e

k=10W/[m-K= *—Rzc=0.01m- K/W

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensiona conduction, (3) Constant
properties, (4) Negligible temperature drop across heater.

ANALYSIS: Thetherma circuit has the form

T Teo
+—F o—/\/W\,——-o——/V\/\A,—.—MM—O —_—
2 Lr(rolri). (/nDy) %
21k T?

Applying an energy balance to a control surface about the heater,

0 =0da +dp

q=

io/1) , WD)

2k !

- (255) C . P5-(-10H C

In (75mm/25mm) +00L™M K %_/ (100 W/m?2 K x nxO.lSm)D

2rx10 W/m K W .
q =(728+1649) W/m
q'=2377 W/m. <

COMMENTS: The conduction, contact and convection resistances are 0.0175, 0.01 and
0.021 m [K/W, respectively,



PROBLEM 3.38

KNOWN: Inner and outer radii of atube wall which isheated electrically at its outer surface. Inner and
outer wall temperatures. Temperature of fluid adjoining outer wall.

FIND: Effect of wall thermal conductivity, thermal contact resistance, and convection coefficient on
total heater power and heat rates to outer fluid and inner surface.

SCHEMATIC:

T5=25°C7 _ Electrical heater, q
)
fo=75mm - T T 10_éhé1000W/m K
r:=25mm i~ Too—-1OC

1< k<200 W/meK 0£R't £0.1 m-K/W

9% Un(rolr) R'te A(12nrgh) 9o
27Tk q’

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties,
(4) Negligible temperature drop across heater, (5) Negligible radiation.

ANALYSIS: Applying an energy balance to a control surface about the heater,
q =dj +do
= +
in(io/%), . (2mgh)
t,c
21k '

Selecting nominal values of k = 10 W/miK, R't,c =0.01 mEK/W and h = 100 W/m’K,, the following
parametric variations are obtained

3500

] 3000
3000
2500
2500 \A\
= —~ 2000
S 2000 £ S R S
= | s =
o e T 1500
S 1500 IS
IS T
£ 1000 ¢ 1000
500 500 \FL —
R
/ [ a1 4
0 0
0 50 100 150 200 0 0.02 0.04 0.06 0.08 0.1
Thermal conductivity, k(W/m.K) Contact resistance, Rtc(m.K/W)
—8— qi G
s g q
—0— qo —o— qgo

Continued...



PROBLEM 3.38 (Cont.)

20000

16000

12000

8000

Heat rate(W/m)

4000
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Convection coefficient, h(W/m”"2.K)

—8—qi
& q
—— qo

For aprescribed value of h, g isfixed, while g, and hence ', increase and decrease, respectively,
withincreasingk and Rt ¢. These trends are attributable to the effects of k and Rt ¢ on the total
(conduction plus contact) resistance separating the heater from the inner surface. For fixed k and R't,c’
q; isfixed, while g, and hence q', increase with increasing h due to a reduction in the convection
resistance.

COMMENTS: For the prescribed nominal values of k, Rt ¢ and h, the electric power requirement is

g =2377 W/m. To maintain the prescribed heater temperature, ' would increase with any changes
which reduce the conduction, contact and/or convection resistances.



PROBLEM 3.76

KNOWN: Planewall of thickness 2L, thermal conductivity k with uniform energy generation (.

For case 1, boundary at x = -L is perfectly insulated, while boundary at x = +L ismaintained at T =
50°C. For case 2, the boundary conditions are the same, but a thin dielectric strip with thermal

resistance R} =0.0005 m? K /W isinserted at the mid-plane.

FIND: (a) Sketch the temperature distribution for case 1 on T-x coordinates and describe key
features; identify and cal culate the maximum temperature in the wall, (b) Sketch the temperature
distribution for case 2 on the same T-x coordinates and describe the key features; (c) What isthe
temperature difference between the two walls at x = 0 for case 2? And (d) What is the location of the
maximum temperature of the composite wall in case 2; calculate this temperature.

SCHEMATIC:
: R} = 0.0005 m?-K/W

To d = 5x108 W/m3
k =50 W/m-K
L=20 mm £

-L lbx +L Case1 -L lsx +L Case2

T, = 50°C

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in the plane and
composite walls, and (3) Constant properties.

ANALYSIS: (@) For case 1, the temperature distribution, T1(X) vs. X, is parabolic as shown in the
schematic below and the gradient is zero at the insulated boundary, x = -L. From Eq. 3.43,

: 2 6 3 2
q(2L 5x10°W/m>(2x0.020 m
n(-0)-n() <48 - o )
2k 2x50 W/ mK
and since T1(+L) = T = 50°C, the maximum temperature occursat x = -L,
Ty(-L) =Ty (+L) +80°C =130C
(b) For case 2, the temperature distribution, T2(x) vs. X, is piece-wise parabolic, with zero gradient at

x = -L and adrop across the dielectric strip, ATag. The temperature gradients at either side of the
dielectric strip are equal.

=80C

Parts (a,b
Températ&re distributions A ;; BATAB
_»II
%) !
k 1 k
x=0
> x Part (d) Surface energy balance

(c) For case 2, the temperature drop across the thin dielectric strip follows from the surface energy
balance shown above.

dx (0) =ATag /Ry dx (0) =L
ATag =R} gL =0.0005 m? (K / W x5 x108W /m2 x0.020 m =50 .

(d) For case 2, the maximum temperature in the composite wall occurs at x = -L, with the value,
To(-L)=Ty(-L) +ATpg =130°C +50 T =180 T <



PROBLEM 3.77
KNOWN: Geometry and boundary conditions of a nuclear fuel element.

FIND: (a) Expression for the temperature distribution in the fuel, (b) Form of temperature
distribution for the entire system.

SCHEMATIC:

Sfeel—ae | ‘

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state conditions, (3)
Uniform generation, (4) Constant properties, (5) Negligible contact resistance between fuel
and cladding.

ANALYSIS: (a) The general solution to the heat equation, Eq. 3.39,
d°T . g

—+—= (-L <x <+L)
dx? K
is T= —ix2 +Cix+Co.
2Ky

Theinsulated wall at x = - (L+b) dictates that the heat flux at x = - L is zero (for an energy
balance applied to a control volume about thewall, Ej,, = Eqyt =0). Hence

q _
S =—_——" (- = C =—
., K (-L)+C, =0 or

T=-1 2 . x+Co.
2K Kt

The value of Ts 1 may be determined from the energy conservation requirement that

Eg = dcond =dcony: OF ON aunit areabasis.

ks

g(aL)= F(Ts,l _Ts,z) =h (Ts,z ~To )

Hence,

(2 Lb)
S

(2 Lb) +q(2L) o

0

sl-

1574 H

Continued .....



PROBLEM 3.77 (Cont.)
Hence from Eq. (1),

| 2
T(L):Tslzq(2 Lb) +q(2L) +To, =3 +Co
’ ks h 2 k¢
which yields
(Pb 2 3 LO
Co =Ty, +qL —+= —
2 o +t(Q H§+h+2 kf%

Hence, the temperature distribution for (-L <x <+L) is
2

T:—ixz—qu C E2b+

2Ks Kg % '

|
ki O

(b) For the temperature distribution shown below,

(-L -b)sx <-L: dT/dx=0, T=Tynax
-L<x<+L: |dT/dx | + with 1 X
+L < x < L+Db: (dT/dx) isconst.




PROBLEM 3.78

KNOWN: Thermal conductivity, heat generation and thickness of fuel element. Thickness and

thermal conductivity of cladding. Surface convection conditions.

FIND: (a) Temperature distribution in fuel element with one surface insulated and the other cooled
by convection. Largest and smallest temperatures and corresponding locations. (b) Same as part (a)
but with equivalent convection conditions at both surfaces, (c) Plot of temperature distributions.

SCHEMATIC:
L=0.15m
Insulated ~
surface \g .
(part a) Z
7
Z
7

|<— b= 0003m

ks = 15 W/m-K

Too = 200°C
h = 10,000 W/m2-K

| it

Fuel, § = 2x10” W/m3, k; = 60 W/m-K

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Steady-state, (3) Uniform generation, (4)

Constant properties, (5) Negligible contact resistance.

ANALYSIS: (a) FromEg. C.1,

qLZD x?0 Tsz Tslx st Ts2

2 0 20

With an insulated surface at x = -L, Eq. C.10 yields

212
2L
Ts1-Tg2 = —kf

and with convectionat x =L + b, Eq. C.13 yields

U(Ts,z—T) qL—kL(Tsz Tsl)

o1 2
2LU 2qL
Te1-Tgo=——(Tg2 T | ———
sl !s2 kf (s,2 oo) kf
Substracting Eq. (2) from Eg. (3),
vy 2
2LU 4qL
Toao =T | ————
( s27 ) ks
29L
T52 = Teo +%

(1)

)

©)

(4)

Continued .....



PROBLEM 3.78 (Cont.)

and substituting into Eqg. (2)

0 0
To1= T +26L G +--) ©
ki UQ
Substituting Egs. (4) and (5) into Eq. (1),
C 0 0
T(x)=- B VI ngE +§L[]+Too
2K [ YV 2Ks [
or,with U™ = b + bks,
. . B
T(x)= -3 x-Sy g2 +2.3 L fur, ©® <
2K [ Ks h 2kf
The maximum temperature occursat x =- L and is
0 0
T(-L) =20l 2+ + b g+,
ks h kig
0 0.003m 1 0o015m U <
- - +200 C =530 T

T(-L) =2x2x10" W/m> x0.015m : !
5W/mK 10 000W/m2K 60W/miK

The lowest temperatureisat x =+ L and is

a2
T(+L):—§£+ L%!Lb E+§LS+T =380 C <
2 kg Ks h 2kf[

(b) If aconvection conditionismaintained at x = - L, Eq. C.12 reducesto
Kt
U(Teo = Ts1) = 0L - (Téz ~Ts1)

20L2

2LU
( > )

Ts17Ts2 == —(Ts1 _Too) -

Subtracting Eq. (7) from Eq. (3),
2 LU
(Ts 2T ~Ts1 +Too) or Ts1 =Ts2

Hence, from Eq. (7)

Continued .....



PROBLEM 3.78 (Cont.)

oL 1 b0
Ts1=Ts2 :qU +Te =0L Eﬁ +k_E +Too €S)
S

Substituting into Eq. (1), the temperature distribution is

20 20
L X (1 bd
T(x)= gkf @ qLD_+k_D+Too 9 <

The maximum temperatureisat x =0and is

2x10" W/ m3 (0.015m)? 0 1 0.003m U
T(0)= +2x10' W/m® ><0015mﬁl + ﬁ +200C
2x60W /mK OOOOW/m Kk 15W/mIK
T(0) =37.5°C+90°C +200°C =327.5°C <

The minimum temperatureat x =+ L is

0
Te1=Ts2 =2x107 W/m?(0.015m) @1 1 4 0008m = S0 —ag0C <
0,000

W/m2K 15W/mK
(c) The temperature distributions are as shown.

550

9-0-9-0-0-¢
500 "“L«i‘“‘
450 L.‘%
400 N“-

350

Temperature, T(C)

250

200
-0.015 -0.009 -0.003 0.003 0.009 0.015

Fuel elementlocation, x(m)

—8— |nsulated surface
—>— Symm etrical convection conditions

The amount of heat generation is the same for both cases, but the ability to transfer heat from both
surfaces for case (b) resultsin lower temperatures throughout the fuel element.

COMMENTS: Notethat for case (a), the temperature in the insulated cladding is constant and
equivalent to Ts 1 = 530°C.



PROBLEM 3.79
KNOWN: Wall of thermal conductivity k and thickness L with uniform generation Q; strip heater
with uniform heat flux gg; prescribed inside and outside air conditions (hj, Teo i, ho, Teo 0)-

FIND: (a) Sketch temperature distribution in wall if none of the heat generated within the wall islost
to the outside air, (b) Temperatures at the wall boundaries T(0) and T(L) for the prescribed condition,
(c) Valueof qg required to maintain this condition, (d) Temperature of the outer surface, T(L), if

¢=0 but g, corresponds to the value calculated in (c).

SCHEMATIC:
@ 2 Wall, 9=1000W/m?,
Strip heater, 9: a k=4W[m-K
Outside chamber s Inside chamber
5 Toi=50°C

herd |

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform
volumetric generation, (4) Constant properties.

ANALYSIS: (@) If none of the heat generated within the wall is
lost to the outside of the chamber, the gradient at x = 0 must be zero.
Since ¢ isuniform, the temperature distribution is parabolic, with

T(L) > Too -

Lx £:200mm T T Th,-zow/mZK

(b) To find temperatures at the boundaries of wall, begin with the
general solution to the appropriate form of the heat equation (Eq.3.40).

T(X) -4 +Cx+Cop 1)
2k
From the first boundary condition,
dT _
d_x‘x=0 = - ¢cp=0. )

Two approaches are possible using different forms for the second boundary condition.

Approach No. 1: With boundary condition — T(0)=T

T(x)——%x +Ty (3

To find T1, perform an overall energy balance on the wall
Ein ~Eout tEg =0

(L) ~TeojB+6L=0  T(L)=Tp =Too, +% @)

Continued .....



PROBLEM 3.79 (Cont.)
and fromEq. (3) withx =L and T(L) =T,

. . . 2
q,2 q,2 aL .qL
T(L)=——L+Ty o Ty =To +—L° =Ty j +— +— 5,6
(L)=-5 L+ 1=T2 +o wi Tt (5.6)
Substituting numerical valuesinto Egs. (4) and (6), find
T, =50°C+1000 W/ mS x0.200 m/20 W/m? [K=50"C+10°C=60°C <
Ty = 60° C+1000 W/m® x(0.200 m)? / 2 x4 W/m (K=65°C. <

Approach No. 2: Using the boundary condition
K dT

ot TNF (L) -To i

yields the following temperature distribution which can be evaluated at x = O,L for the required
temperatures,

. "
T(x)= —%(x2 —L2) +qT T

7a.—:, o 770) =7;
(e AVAVaVaVa e/

(c) Thevaueof gy when T(0) =T =65°C =
0 1/, 9%,

follows from the circuit
, Ihi—T
do = =0
1/hg
g =5 W/m? [K (65-25)° C=200 W/m?. <

(d) With g=0, the situation is represented
by the thermal circuit shown. Hence,

q'o = da +qb o

7;.0 9°¢ 7;0,1'
o = N1 -Teo +T1—Too,i 93 I, % Lk 1hi 9,
o=

1/hg L/k+1/h;
which yields

Ty =55"C. <



PROBLEM 3.80

KNOWN: Wall of thermal conductivity k and thickness L with uniform generation and strip heater
with uniform heat flux qg, ; prescribed inside and outside air conditions (Toois Niy Teo 05 o). Strip heater

actsto guard against heat |osses from the wall to the outside.
FIND: Compute and plot g, and T(0) asafunction of ¢ for 200< ¢ < 2000 W/m® and Tw j =30, 50
and 70°C.

SCHEMATIC:
Strip heater, g ’ Wall, g
P % I k= 4Wim-K
|
. | i
ousaey | e
chamber L .
X L=200mm o

Tooo = 25°C I j=50°C
ho =5 W/m2+K hi= 20 W/im2-K

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Uniform volumetric
generation, (4) Constant properties.

\
ANALYSIS: If no heat generated within the T(0) L Gradient is
wall will be lost to the outside of the chamber, N‘:
the gradient at the position x = 0 must be zero. :
Since ¢ is uniform, the temperature distribution LL(0 2 T T
must be parabolic as shown in the sketch. Two | 1 .

0 L x

To determine the required heater flux gy asafunction of the operation conditions ¢ and Tw i, the

analysis begins by considering the temperature distribution in the wall and then surface energy balances
at the two wall surfaces. The analysisis organized for easy treatment with equation-solving software.

Temperature distribution in the wall, T(x): The general solution for the temperature distribution in the
wall is, Eq. 3.40,

q .2
T(x) =——x" +Cx +C
() == X7 +Cx +Ca

and the guard condition at the outer wall, x = 0, requires that the conduction heat flux be zero. Using
Fourier's law,

. dT
0)=-k— =—kC,; =0 C; =0 1
G (0) =~k =@ (C1=0) @

At the outer wall, x =0,
T(0)=C, 2

Surface energy balance, x = 0:

I.Ein - I.Eout =0
U —dov.0 —dx (0) =0 3)
Aov0 =N (T(0) ~Teo o).y (0) =0 (4ab)

Continued...



PROBLEM 3.80 (Cont.)

Surface energy balance, x = L:

I.Ein _Eout =0 q;(L)
dx (L) —dgy,i =0 (5
. dT .
G (L) = —k—ﬁx = 4L (6)
dx =L
dovi =N E (L) -Tw i
D q 2 O
L9 2, 7(0)-1, . 7
Mt O T @

Solving Egs. (1) through (7) simultaneously with appropriate numerical values and performing the
parametric analysis, the results are plotted below.

& e

£ 400 S 120

s =

Y — s 00 o

o = 5 80

= 200 | — 2 a— —

3 100 | g 00 I e— —

= — g 40 —

£ 0 2 20

T 0 500 1000 1500 2000 § 0 500 1000 1500 2000

Volumetric generation rate, qdot (W/m”3) Volumetric generation rate, gdot (W/m”3)

—— Tinfi=30C — Tinfi=30C
—>— Tinfi=50 C —>— Tinfi=50C
—6— Tinfi=70C —6— Tinfi=70C

From thefirst plot, the heater flux gg isalinear function of the volumetric generation rate ¢. As
expected, the higher g and T, j, the higher the heat flux required to maintain the guard condition
(dy (0) = 0). Noticethat for any ¢ condition, equal changesin Teo j resultin equal changesin the

required gg . The outer wall temperature T(0) is also linearly dependent upon ¢. From our knowledge
of the temperature distribution, it follows that for any ¢ condition, the outer wall temperature T(0) will
track changesin Ty j -



PROBLEM 3.81

KNOWN: Plane wall with prescribed nonuniform volumetric generation having one
boundary insulated and the other isothermal.

FIND: Temperature distribution, T(x), intermsof x, L, k, g and Tj,.
SCHEMATIC:

q.(x)=éo(l'f & Lnsulation

o
L> x L

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in x-
direction, (3) Constant properties.

ANALYSIS: The appropriate form the heat diffusion equation is
d @©TO, q
_ +==0.
dx HixH k
Noting that 4=¢(x)=qo (1-x/L), substitutefor ¢(x) into the above equation, separate
variables and then integrate,

WO Gl X0
gETO_ _dol; X0, ar _ % 5 X"q.c,,
H kEEY K B 2L§+1

Separate variables and integrate again to obtain the general form of the temperature
distribution in the wall,

dT = -9 [x - ={Jdx+Cdx T(x) = —20~ - +Cx+Cp.
k B ZLQ k 5 2 6L§

Identify the boundary conditionsat x = 0 and x = L to evaluate C1 and Co. Atx =0,
T(0)=Ty = _%(0 ~0)+C, D+C,  hence C, =T,
Atx =L,
ao 0=-Yop —L—D +C hence, Cq =Gob
X B kg 2Lg 2k
The temperature distribution is
, 2 30 .
T(x):—q—O&—X—D+EX+TO. <
k & 2 6"@ 2k
COMMENTS: Itisgood practice to test the final result for satisfying BCs. The heat flux at
x = 0 can be found using Fourier’s law or from an overall energy balance

: : L .



PROBLEM 3.82

KNOWN: Distribution of volumetric heating and surface conditions associated with a quartz
window.

FIND: Temperature distribution in the quartz.

SCHEMATIC:
Quar'fz window (k)

—
9; :—: 9(X) TTT

Lex L

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3)
Negligible radiation emission and convection at inner surface (x = 0) and negligible emission
from outer surface, (4) Constant properties.

ANALYSIS: The appropriate form of the heat equation for the quartz is obtained by
substituting the prescribed form of ¢ into Eq. 3.39.

dT La (1-B8)d o0X

9(x) (1-B)Q oxe™™

=0
dx2 k
Integrating,
1- A 1-
d_T:+( B)qoe'ax +C1 T:_( ’B)q‘b - X +C X+C2
dx Kk ka
g —K dT/dX)y—q = B
Boundary Conditions: K dT/dxgizﬁ _ h%?’(L) T
(1B) , . ~O_
Hence, at x = O: _kE’k—qOJ'ClE_B%
C1=-0o/k
Atx=L:
1-B8) , . D 1-8 W
K E(B—k )qoe W rop= hD-—(k )d'oem‘ +GL+C2 T
0 H a 0
Substituting for C1 and solving for Co,
_% oL Cfo (1/3)
C 1- + +—= +Tg.
2- h % ( B) ka
_(1=8)% at _ axg, % _y) L Jory (1 _pyeal <
Hence, T(X)_T% e D+T(L X) +T51 (1-B)e 5 *Too.

COMMENTS: The temperature distribution depends strongly on the radiative coefficients, a
and 3. Fora — o« or 3 = 1, the heating occurs entirely at x = 0 (no volumetric heating).



PROBLEM 3.83

KNOWN: Radial distribution of heat dissipation in acylindrical container of radioactive
wastes. Surface convection conditions.

FIND: Radial temperature distribution.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensiona conduction, (3) Constant
properties, (4) Negligible temperature drop across container wall.

ANALYSIS: The appropriate form of the heat equation is

1d0dro__q__geH r?H
rarHard kK El rg@
L2 .4 .2 .4
rd—T = ~o" +—qr > +C T = _Gof +q0—r2 +C1 Inr+Co.
dr 2K Akrs 4k 16krs
From the boundary conditions,
dT dT
ar =0=0-C, =0 ‘k— Ir=r, —hﬁr(ro) _Too)ﬁ

. . 2 2
+ 900 _Y0'o :hD Yoo Yo' . —TOOE

2 4 H 4k 16k

. . 2
_ Y0 , 3400 .
4h 16k

Hence

COMMENTS: Applying the above result at rq yields
Ts=T(rp) =Too +(dolo )/ 4h

The same result may be obtained by applying an energy balance to a control surface about the
container, where Eg =Qcony- Themaximum temperature existsat r = 0.



PROBLEM 3.84

KNOWN: Cylindrical shell with uniform volumetric generation isinsulated at inner surface
and exposed to convection on the outer surface.

FIND: (a) Temperature distribution in the shell intermsof r;, ry, ¢, h, T, andk, (b)
Expression for the heat rate per unit length at the outer radius, g (r ).

SCHEMATIC:

—T/ =0, insulated boundary
Iy

i

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radia (cylindrical)
conduction in shell, (3) Uniform generation, (4) Constant properties.

ANALYSIS: (a) The general form of the temperature distribution and boundary conditions
are

T(r)= —% r2 +Cq Inr+Cy

dT O q 1 q 2
ar=r —n =0=—1, +C —+O C =—r.
! ar k't 17
] dT O
ar=rq: —kd— =hJ () -Twg  surfaceenergy balance
r

Jq, 0 210 0 qg 2 09 20
K+—r, + I =h———r5 + r“Ainr, +C
52k Bk T H a4k © THk i H e 2T H

tl 20 2 0
C2: qro %iD2D+£D1 D Nry +Te
2h D Fob [ 22

[
Hence,
2
T(r)'%(rg rz) qz;<| E;E gh Ei%r% §+T°°' <
(b) From an overall energy balance on the shell,D -
ar (ro) = E’g :('m(rg —riz). <
Alternatively, the heat rate may be found using Fourier’s law and the temperature distribution,

0

: 0
' dr O q 1 .
q (r)=—k(2m ro)aa = -27kr, D‘Z—C:(ro +_2L = +0 +00 = r(rg _riz)



PROBLEM 3.85

KNOWN: The solid tube of Example 3.7 with inner and outer radii, 50 and 100 mm, and a thermal
conductivity of 5 W/mIK. Theinner surfaceis cooled by afluid at 30°C with a convection coefficient
of 1000 W/m’K.

FIND: Calculate and plot the temperature distributions for volumetric generation rates of 1 x 105, 5
X 105, and 1 x 106 W/m3. Use Eq. (7) with Eqg. (10) of the Example 3.7 in the IHT Workspace.

SCHEMATIC:

T, = 30°C
h = 1000 W/m2-K
ri =50 mm

ro =100 mm

§ = 1x105, 5x10%, 1x10% W/m3
Tsﬂ\é k = 5 W/m-K

Ts,2
Insulation
r

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3) Constant
properties and (4) Uniform volumetric generation.

ANALYSIS: From Example 3.7, the temperature distribution in the tube is given by Eq. (7),

_ q ( 2 2) q .2, 020
T(r)=Tgo +— == |——-r5/n M <r<r 1
(r)=Ts2 2 \2 oK 2 H?H 1 2 ()
The temperature at the inner boundary, Ts 1, follows from the surface energy balance, Eq. (10),
nq( 2- rf) =h2m; (Ts1 ~ T ) )

For the conditions prescribed in the schematic with ¢ = 1x10°W / m° , Egs. (1) and (2), withr =14

and T(r) = T 1, are solved simultaneoudly to find Ts 2 = 69.3°C. Eq. (1), with Ts2 now aknown
parameter, can be used to determine the temperature distribution, T(r). The results for different
values of the generation rate are shown in the graph.

Effect of generation rate on temperature distributions
500

400 —

300

200 L |

Temperature, T(C)

100
—
0

50 60 70 80 90 100

Radial location, r (mm)

— qdot = 1e5 W/m”3
—&— gdot = 5e5 W/m”3
—&— qgdot = 1e6 W/m"3

COMMENTS: (1) Thetemperature distributions are parabolic with a zero gradient at the insulated
outer boundary, r =rp. The effect of increasing ¢ isto increase the maximum temperature in the
tube, which always occurs at the outer boundary.

(2) The equations used to generate the graphical result in the IHT Workspace are shown below.

/I The temperature distribution, from Eq. 7, Example 3.7

T_r =Ts2 + qdot/(4*k) * (r22 — r"2) — qgot / (2*k) * r2~2*In (r2/r)

/I The temperature at the inner surface, from Eq. 7

Tsl =Ts2 + qdot / (4*k) * (r2”2 — r172) — qdot / (2*k) * r2"2 * In (r2/r1)
/l The energy balance on the surface, from Eq. 10

pi * qdot * (r2"2 —r1”2) = h * 2 * pi * r1 * (Ts1 — Tinf)



PROBLEM 3.86

KNOWN: Diameter, resistivity, thermal conductivity, emissivity, voltage, and maximum temperature
of heater wire. Convection coefficient and air exit temperature. Temperature of surroundings.

FIND: Maximum operating current, heater length and power rating.
SCHEMATIC:

<t+—— Ty = 50°C
. . <t+— w h = 250 W/m2-K
Nichrome wire
D=1mm,L

Pe = 106 O-m V=110V () - Ts=1200°C
k=%52\gV/m-K T — To = Trmax
€=0.

Tmax = 1200°C

ASSUMPTIONS: (1) Steady-state, (2) Uniform wire temperature, (3) Constant properties, (4)
Radiation exchange with large surroundings.

ANALYSIS: Assuming auniform wire temperature, Tmax = T(r = 0) = Tg = T, the maximum
volumetric heat generation may be obtained from Eq. (3.55), but with the total heat transfer
coefficient, hy = h + hy, used in lieu of the convection coefficient h. With

_ 2 2\ _ -8 2 4 2 2 2 2
hy = e0 (Tq + Ty )| Te + Ty ] =020 x5.67 x10 W /m” K" (1473 +323) K (1473 +323] K“ =463W/m° K

hy = (250+46.3)W/m? [K =296.3W /m? K

. _2h¢
Umax =——

2(296.3W/ m? [IK)
o (Ts =Teo) == o008m
_12Rg _1%(Pel/Ac) _12pe _ 1%pg
O LAc A2 (er2/4)2

(1150°C) =1.36 x10° W /m>

Hence, with q

=29.0A <

12
O 2702 _C136x10%W ym30 7(0.001m)?
I max —E H I
e

0 10780 mn

Also, with AE =1 Re=1 (peL/Ag),

110V Hr(0.001m)° /42

= BE[Ac _ E:2.98m <

L

Imax Pe 29.0A (10‘69 Dm)

and the power rating is

Poec = AE Oyax =110V (29A) =3190W =3.19kW <

COMMENTS: To assess the validity of assuming a uniform wire temperature, Eq. (3.53) may be
used to compute the centerline temperature corresponding to ¢, and a surface temperature of

_1.36x10° w/m> (0.0005m)?
4(25W/miK)

. 2
1200°C. It followsthat T, = % T,
4

+1200°C =1203°C. Withonly a



3°C temperature difference between the centerline and surface of the wire, the assumption is
excellent.



PROBLEM 3.87

KNOWN: Energy generation in an aluminum-clad, thorium fuel rod under specified operating
conditions.

FIND: (a) Whether prescribed operating conditions are acceptable, (b) Effect of ¢ and h on acceptable
operating conditions.

SCHEMATIC:

Aluminum
cladding

D=0.025m

Thorium
fuel rod, g

e
Coolant

h,T = 95°C

ASSUMPTIONS: (1) One-dimensional conduction in r-direction, (2) Steady-state conditions, (3)
Constant properties, (4) Negligible temperature gradients in aluminum and contact resistance between
aluminum and thorium.

PROPERTIES: Table A-1, Aluminum, pure: M.P. =933 K; Table A-1, Thorium: M.P.=2023 K, k =
60 W/mIK.

ANALYSIS: (a) System failure would occur if the melting point of either the thorium or the aluminum
were exceeded. From Eq. 3.53, the maximum thorium temperature, which existsat r =0, is
2

_ g _
TO)=——+Ts =T
0) 4 18 = TTh,max

where, from the energy balance equation, Eq. 3.55, the surface temperature, which is also the aluminum
temperature, is

ar,
o=, + 28 =1y

Hence,
8/ 3
o~ IX10°W x0.0125 o
Tp =Tg=95"C+ /m > m =720 C =993K
14,000W/ m? (K
7x10° W/ m® (0.0125m)? <
Trh max = +993K =1449K
! 4x60W/m [K

Although Trhmex < M.P.1, and the thorium would not melt, T4 > M.P., and the cladding would melt
under the proposed operating conditions. The problem could be eliminated by decreasing ¢, increasing

h or using a cladding material with a higher melting point.

(b) Using the one-dimensional, steady-state conduction model (solid cylinder) of the IHT software, the
following radial temperature distributions were obtained for parametric variationsin ¢ and h.

Continued...



PROBLEM 3.87 (Cont.)

1600

1200
1500 —
A o P— 4
< 1400 4| %3
< 1] Ny = 1000
[ -
g 13007 RN g —
= ——| =
3 1200 2 800 e—
o 5 A
8 1100 g
£ 5 600 ——+—— —
€ 1000 o e —
e N
900
400
800 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
. Radius, r(m)
Radius, r(m)
—o— qgdot = 2E8, h = 2000 W/mA2.K
—o— h = 10000 W/mA2.K, gdot = 7E8 W/mA3 —— qdot = 2E8. h = 3000 W/m"2.K
—— h=10000 W/mA2.K. gdot = 8E8 W/m~3 —+— qdot = 2E8, h = 5000 W/m*2.K
—a— h = 10000 W/mA2.K. gdot = 9E9 W/m~3 —+— gdot = 2E8, h = 10000 W/m~2.K

For h = 10,000 W/m?K, which represents a reasonable upper limit with water cooling, the temperature of
the aluminum would be well below its melting point for ¢ = 7 x 10° W/m?®, but would be close to the

melting point for ¢ = 8 x 10® W/m?® and would exceed it for ¢ = 9 x 10° W/m®. Hence, under the best of
conditions, ¢ = 7 x 10® W/m?® corresponds to the maximum allowable energy generation. However, if

coolant flow conditions are constrained to provide values of h < 10,000 W/m?IK , volumetric heati ng
would have to be reduced. Evenfor ¢ aslow as2 x 10° W/m?®, operation could not be sustained for h =

2000 W/n?lK.

The effects of ¢ and h on the centerline and surface temperatures are shown below.

2000
o 2000 3
< w1600
S 1600 '
. / | 4 g
; 1200
S 1200 g |
= o —
g g 800 1 | L s
=3 Q A
g 800 2 ]
2 S 400
Q g
£ 400 S
5 @ 0
=
8 0 1E8 2.8E8 46E8 6.4E8 8.2E8 1E9
1E8 2.8E8 4.6E8 6.4E8 8.2E8 1E9 Energy generation, gdot (W/m~3)
Energy generation, gdot (W/m”3) h = 2000 WimA2.K
—©—h= m”2.
—6— h =2000 W/m"2.K — h =5000 W/m"2.K
— h =5000 W/m"2.K —— h =10000 W/m"2.K

—— h =10000 W/m"2.K

For h = 2000 and 5000 W/m’K, the melting point of thorium would be approached for ¢ = 4.4 x 10® and
8.5 x 10° W/m?®, respectively. For h = 2000, 5000 and 10,000 W/m’[K, the melting point of aluminum
would be approached for ¢ = 1.6 x 10°, 4.3 x 10° and 8.7 x 108 W/m®. Hence, the envelope of
acceptable operating conditions must call for areduction in ¢ with decreasing h, from a maximum of
= 7 x 10° W/m® for h = 10,000 W/m’K.

COMMENTS: Note the prablem which would arise in the event of aloss of coolant, for which case h
would decrease drastically.



PROBLEM 3.88

KNOWN: Radii and thermal conductivities of reactor fuel element and cladding. Fuel heat generation
rate. Temperature and convection coefficient of coolant.

FIND: (a) Expressions for temperature distributions in fuel and cladding, (b) Maximum fuel element
temperature for prescribed conditions, (c) Effect of h on temperature distribution.

SCHEMATIC:

Co%

Q=9mm

r1=6mm

Cladding

Fuel (kg = 25 W/m-K)

element -
(ke= 2 Wim-K, § = 2x108 W/m3)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible contact
resistance, (4) Constant properties.

ANALYSIS: (a) From Egs. 3.49 and 3.23, the heat equations for the fuel (f) and cladding (c) are
1ddisO_ ¢

1 a 1dgdich
rdr B?B Kt

0<r< -
( ' rl) rdrH dr

=0 (n<rsn)

Hence, integrating both equations twice,

. . 2
dl:—i +& Tf :_L +ﬂ|nr +C2 (1,2)
dr 2kf kf r 4kf kf
di:& Tczglnr+C4 (314)
dr  ker Ke
The corresponding boundary conditions are:
dTs /olr)r:0 =0 Tt (n) =Tc () (5,6)
dTy O dT. O dT.0
kL =—ke—C K¢ _CH =h[T¢ (r2) ~Teo] (7.8)
dr =n dr =n dr =r,

Note that Egs. (7) and (8) are obtained from surface energy balances at r, and r», respectively. Applying
Eqg. (5) to Eq. (2), it followsthat C, = 0. Hence,

. 2
qr
T =———+C 9
f 2k 2 (9)
From Eq. (6), it follows that
qr12 Czlnp
— +C2 =2 = +C4 (10)

Continued...



PROBLEM 3.88 (Cont.)
Also, from Eq. (7),

. . 2
a__Cs or cy=-1 (11)
2 n 2
, C (C U - .
Finally, from Eg. (8), -8 = 31n rp +Cy4 — T Or, substituting for C; and solving for C,
fz ?c O
af o
Cqp=—2 i Inry +To (12)
Substituting Egs. (11) and (12) into (10), it follows that
L2 .2 .
c, =i % Inn ot ql Nty +T,
4kf 2kC rl 2r2h
Substituting Eqg. (13) into (9),
T =i(r12 —r ) ai |, o T, 1<
e 2ke n 2r2h
Substituting Eqs (11) and (12) into (4),
qu L 1 <
T, In +T, 15
¢ 2K T 2r2h e 15
(b) Applying Eq. (14) at r = 0, the maximum fuel temperature for h = 2000 W/m’K is
. (0)= 2x10°W/m? x(0.006m)* 2x10°w/m?® x(0.006m)? ,0009m
f 4% 2W/m K 2x25W/m K 0.006m
. 2x10° w/m® (0.006m)?
+300K
2x(o 09m)2000W/ m? (K
T; (0) = (900 +58.4 +200 +300) K =1458K . <
(c) Temperature distributions for the prescribed values of h are as follows:
1500 f——r 600
1300 = R
< e e, < T |
F 1100 - P 500 .
% N g
g 900 A s § —
& 700 N & 400 e R R —
500 3 P i
300 300
0 0.001 0.002 0.004 0.005 0.006 0.006 0.007 0.008

0.009

Radius in fuel element, r(m)

—6— h =2000 W/m"2.K
— h =5000 W/m"2.K
—&— h = 10000 W/m"2.K

Radius in cladding, r(m)

—6— h =2000 W/m"2.K
— h=5000 W/m"2.K
—&— h =10000 W/m"2.K

Continued...



PROBLEM 3.88 (Cont.)

Clearly, the ability to control the maximum fuel temperature by increasing hislimited, and even for h -
oo, T¢(0) exceeds 1000 K. The overall temperature drop, T#(0) - T, isinfluenced principally by the low
thermal conductivity of the fuel material.

COMMENTS: For the prescribed conditions, Eq. (14) yields, T¢(0) - T«(ry) = quz / 4ks = (2x10°

W/m?®)(0.006 m)*/8 W/mIK = 900 K, in which case, with no cladding and h — , T;(0) = 1200 K. To
reduce T+(0) below 1000 K for the prescribed material, it is necessary to reduce (.



PROBLEM 3.89

KNOWN: Dimensions and properties of tubular heater and external insulation. Internal and external
convection conditions. Maximum allowable tube temperature.

FIND: (a) Maximum allowable heater current for adiabatic outer surface, (3) Effect of internal
convection coefficient on heater temperature distribution, (¢) Extent of heat loss at outer surface.

SCHEMATIC:

Stainless steel Refractory

k=15 W/m-K ki=1.0 W/mK
Pe=07x108.m 5 = 25, 50 mm
Trnax = 1400 K TH T, 5=300K
//,« h2 25 W/m? K
CAir r3=ry+3, Tg3
[ 1‘400K / rp =35 mm, TsZ

100 < hq 21000 W/m? r1 =25mm, Tg 4

ASSUMPTIONS: (1) One-dimensional, steady-state conditions, (2) Constant properties, (3) Uniform
heat generation, (4) Negligible radiation at outer surface, (5) Negligible contact resistance.

ANALYSIS: (a) From Egs. 7 and 10, respectively, of Example 3.7, we know that

L B Q(z 2)
Tso—Tg1=—r5 In&——|r5 —r 1
27 Ts1=7, 12 _—— 2 —n 1

and

2 2

Q(fz‘fl) @
Te1 =T 1+
st .1 2h1r1

Hence, eliminating Ts1, we obtain

2
Ts,z‘Too,1=ﬂa rri 1(1 fl/f2)+—(1 fl/fz)H

2k

Substituting the prescribed conditions (h; = 100 W/m’K),
To 2~ Teoq =1.237x1074 (m3 [B(/W)q (W/ m3)

Hence, with Ta corresponding to Ts,, the maximum allowable value of ¢ is

= w =8.084x10° W/m3
1.237x10”
with
_12Re _1%poL/Ac . pel?

b BlER

/2
32 6 3t
084x10% W
| max —n(r22 —rf )Dim n(o.oss2 —0.0252)m2 084 06 /m =6406A <
(P[] 0.7x107°Q fin

Continued .....



PROBLEM 3.89 (Cont.)

(b) Using the one-dimensional, steady-state conduction model of IHT (hollow cylinder; convection at
inner surface and adiabatic outer surface), the following temperature distributions were obtained.

1500

1300

1100

900

Temperature, T(K)

700

500 2 S

300

0.025 0.027 0.029 0.031 0.033 0.035
Radius, r(m)
—6— h =100 W/m"2.K

— h =500 W/m"2.K
—2— h=1000 W/m"2.K

The results are consistent with key implications of Egs. (1) and (2), namely that the value of h; has no
effect on the temperature drop across the tube (Ts» - Ts1 = 30 K, irrespective of hy), while Ts; decreases
with increasing h;. For hy = 100, 500 and 1000 W/MK, respectively, the ratio of the temperature drop
between the inner surface and the air to the temperature drop across the tube, (Ts1 - Tew 1)/(Ts2 - Ts1),
decreases from 970/30 = 32.3 to 194/30 = 6.5 and 97/30 = 3.2. Because the outer surface isinsulated, the
heat rate to the airflow is fixed by the value of ¢ and, irrespective of hy,

q(n)= n(r22 —rlz)q = -15,240W <

(c) Heat loss from the outer surface of the tube to the surroundings depends on the total thermal
resistance

_In(g/r) 1
U7 omki  2maLhy
or, for aunit area on surface 2,

! raIn(rg/r r
Riot,2 = (2rmoL ) Rygt = 2 (k3/ 2) + ﬁ
i 32

Again using the capabilities of IHT (hollow cylinder; convection at inner surface and heat transfer from
outer surface through Riot,z)’ the following temperature distributions were determined for the tube and

insulation.

1200 - 1200
= N
g 1160 ':; 1100 N
= 5 1000 N
5 A—1 =
2 1120 == g 900 e
) >—F c‘E) Ic —
Q
800 <
§ 1080 = ~3
° 2
k- 8 700 "G
>
= 1040 é’ 600 ¢ y
1000 500
0.025 0.027 0.029 0.031 0.033 0.035 0 0.2 0.4 0.6 0.8 1
Radius, r(m) Dimensionless radius, (r-r2)/(r3-r2)
—6— delta =0.025 m —— r3=0.060 m
—&— delta =0.050 m —© 13=0.085m

Continued...



PROBLEM 3.89 (Cont.)

Heat losses through the insulation, g’ (r, ), are 4250 and 3890 W/m for & = 25 and 50 mm, respectively,

with corresponding values of q' (1) equal to -10,990 and -11,350 W/m. Comparing the tube temperature
distributions with those predicted for an adiabatic outer surface, it is evident that the losses reduce tube
wall temperatures predicted for the adiabatic surface and also shift the maximum temperature fromr =

0.035 mtor =0.033 m. Although the tube outer and insulation inner surface temperatures, Ts, = T(r2),
increase with increasing insulation thickness, Fig. (¢), the insulation outer surface temperature decreases.

COMMENTS: If theintent isto maximize heat transfer to the airflow, heat losses to the ambient should
be reduced by selecting an insulation material with a significantly smaller thermal conductivity.



PROBLEM 3.90

KNOWN: Electric current | is passed through a pipe of resistance Rg to melt ice under
steady-state conditions.

FIND: (a) Temperature distribution in the pipe wall, (b) Time to completely melt theice.
SCHEMATIC:

////////lll/”b"—_Insu/aﬁon
————— > Pipe wall
Rk
- =/ T-100A
ry=50mm, Rle =0.30Q)/m

(7;,,=O°C) s

th gcond, ry

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
Constant properties, (4) Uniform heat generation in the pipe wall, (5) Outer surface of the pipe

isadiabatic, (6) Inner surfaceis at a constant temperature, Ty,

PROPERTIES: Table A-3, Ice (273K): p =920 kg/ms; Handbook Chem. & Physics, Ice:
Latent heat of fusion, hg = 3.34x10° Jkg.

ANALYSIS: (a) The appropriate form of the heat equation is Eq. 3.49, and the genera
solution, Eq. 3.51is

T(r)= —% r2 +Cylnr+Cy

6 1°Ry,
- [2 2\

Applying the boundary condition (dT/dr) - 0, it follows that

qui*_&
2k )
2
r
Hence Clzq—z
2k
. qr2
and T(r)= ~9,2 +—2 |nr+C,.
4k 2k

Continued .....



PROBLEM 3.90 (Cont.)
Applying the second boundary condition, T (1) =Ty, it follows that

q 2 05
Tm=———1 +=%Inn +Co.
M= a1 " 172

Solving for Co and substituting into the expression for T(r), find

T0=T+ B -8 )
r)= —4In——-—(r°-r°).
M 2k ' 4k 1

(b) Conservation of energy dictates that the energy required to completely melt theice, Ep,
must equal the energy which reaches the inner surface of the pipe by conduction through the
wall during the melt period. Hence from Eqg. 1.11b

AEg = Ejn ~Eout +Egen
AEg =Em =tm EiIcond,rl

or, for aunit length of pipe,

[ [
p(n rlz)hsf =tm E—k(Z ) T

S

2
% g
HZkI’l ZKE
p(nrlz)hsf = -ty n(r22 —rlz).

Dropping the minus sign, which simply results from the fact that conduction isin the negative
r direction, it follows that

p(rr rlz)hsf = -2kt

phg rl2 _ Phg rrr12

m= q(réz—rlz) ) I2R'e
Withry =0.05m, | =100 A and Rg =0.30 Q/m, it follows that
_ 920kg/m° x3,34x10° kg x 77 x(0.05m)?
i (100A)?x0.30Q/m

m

or tm =804s. <

COMMENTS: Theforegoing expression for ty,, could also be obtained by recognizing that
all of the energy which is generated by electrical heating in the pipe wall must be transferred
to theice. Hence,

IZR’etm =phg i2.



PROBLEM 3.91
KNOWN: Materials, dimensions, properties and operating conditions of a gas-cooled nuclear reactor.

FIND: (a) Inner and outer surface temperatures of fuel element, (b) Temperature distributions for
different heat generation rates and maximum allowable generation rate.

SCHEMATIC: Cool
= oolant
r4=8mm h = 2000 W/m2-K
=600 K
rp =11 mm
Graphite
r3_14 mm kg=3W/m-K
T1 )
Thorium (q)
k¢ =57 W/m-K
T2

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties,
(4) Negligible contact resistance, (5) Negligible radiation.

PROPERTIES: Table A.1, Thoriun: Ty, = 2000 K; Table A.2, Graphite: T, = 2300 K.

ANALYSIS: (@) The outer surface temperature of the fuel, T,, may be determined from the rate
equation

ql - T2 TTOO
Riot
where
. In(r3/rp) N In (14/11) 1
tot —

= + =0.0185m K /W
2mky  2mzh  2n(3W/mIK) 2n(0.014m)(2000W/m2EIK)

and the heat rate per unit length may be determined by applying an energy balance to a control surface
about the fuel element. Since the interior surface of the element is essentially adiabatic, it follows that

q = C|n(r22 —r12) =108 w/m3 77(0.0112 —0.0082)m2 =17,907W/m
Hence,
To ='Riot + T =17,907W/m(0.0185m K/W) +600K =931K <

With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields

qr22 O rfD_ﬁInDrZD

Tp=Ty+—= - 00
4kt El sH 2k On0

10® w/m?(0.011m)? 0 _poosfd 10° w/m?3(0.008m)? ooy
4x57W/m K 5 B0.0llB E 2x57W/m K 0.00
Continued...

Ty = 931K +




PROBLEM 3.91 (Cont.)

Ty = 931K +25K —18K =938K <

(b) The temperature distributions may be obtained by using the IHT model for one-dimensional, steady-
state conduction in ahollow tube. For the fuel element (§ > 0), an adiabatic surface conditionis
prescribed at r;, while heat transfer from the outer surface at r to the coolant is governed by the thermal
resistance Rigt 2 = 2mMpRgr = 2m(0.011 m)0.0185 mK/W = 0.00128 m’[K/W. For the graphite (¢ =
0), the value of T, obtained from the foregoing solution is prescribed as an inner boundary condition at r»,
while a convection condition is prescribed at the outer surface (rs). For 1 x 10°< ¢ <5 x 10° W/m®, the
following distributions are obtained.

2500 2500
g 2100 < 2100
= [
- - %
< 1700 o 1700 P~
p=} 3 =
g g —
o 1300 Q 1300
= 900 -f £ £ = 900 —f——
I i m—
500 500 1
0.008 0.009 0.01 0.011 0.011 0.012 0.013 0.014
Radial location in fuel, r(m) Radial location in graphite, r(m)
—6— qdot = 5E8 —6— qdot = 5E8
—&— qdot = 3E8 —A— qdot = 3E8
—8&— qgdot = 1E8 —H&— qdot = 1E8

The comparatively large value of k; yields small temperature variations across the fuel element,
while the small value of k4 results in large temperature variations across the graphite. Operation
at ¢ =5 x 10° W/m® is clearly unacceptable, since the melting points of thorium and graphite are

exceeded and approached, respectively. To prevent softening of the materials, which would occur below
their melting points, the reactor should not be operated much above ¢ = 3 x 10° W/m’.

COMMENTS: A contact resistance at the thorium/graphite interface would increase temperatures in the
fuel element, thereby reducing the maximum allowable value of .



PROBLEM 3.92

KNOWN: Long rod experiencing uniform volumetric generation encapsulated by a circular
sleeve exposed to convection.

FIND: (a) Temperature at the interface between rod and sleeve and on the outer surface, (b)
Temperature at center of rod.

SCHEMATIC:
Sleeve, kg=4W/m-K
Rod, T
k=05 WfmK, T T T7;,=27"C
§=24000W/m* f h=25W[m2-K
f‘zﬁ/

ASSUMPTIONS: (1) One-dimensional radial conduction in rod and sleeve, (2) Steady-state
conditions, (3) Uniform volumetric generation in rod, (4) Negligible contact resistance
between rod and sleeve.

ANALYSIS: (a) Construct athermal circuit for the Sleeve,

where

0/=Egen =77 D2/ 4=24,000 W/m?® x 17x(0.20 m)* / 4 =754.0 W/m

In(ro/r In(400/200 =
RE = (r2/n) _ In ) = 2758 x10"2m CK/W
2imkg  2mx4 WimK
Roony = —— 1 =3.183x107%m [K/W

hm Dy 25 W/m? (K x 7rx0.400 m
The rate equation can be written as
T-Tew _To-Tw

- I \
Rs+Reonv  Reonv

!

T1 = Teo +0 (Rs + Roony ) = 27° C+754 W/m (2.758 x1072 +3.183 ><10_2) K/W =71.8"C <

Ty =Te +q'Rony =27°C+754 W/m x3.183 x102m [K/W=51.0°C. <
(b) The temperature at the center of therod is

12 3 2
_O o 24,000 Wm (0.100 m)

1 +71.8°C=192°C. <
4k, 4x0.5W/m[K

T(0)=To

COMMENTS: Thethermal resistances due to conduction in the sleeve and convection are

comparable. Will increasing the sleeve outer diameter cause the surface temperature To to
increase or decrease?



PROBLEM 3.93

KNOWN: Radius, thermal conductivity, heat generation and convection conditions
associated with a solid sphere.

FIND: Temperature distribution.
SCHEMATIC:

“h

(20)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial conduction, (3)
Constant properties, (4) Uniform heat generation.

ANALYSIS: Integrating the appropriate form of the heat diffusion equation,

r2
1 dOg »dTO . do szD _qr
— —krc*—r+¢=0 or e
(2 dra< a4 ol 9Bk
2dT__qr3+ ar _ _or
a3k t a3k (2
(r)= a’ G C
6k r
" _ dr o
The boundary conditions are: g H = hence C, =0, and
r 5=

—kz—:D =h [T (o) ~Twfd

Substituting into the second boundary condition (r = rg), find

. O . .2
oo _, 5% +Cy-To0  Cp=Jo 9o i1
3 E 6k E 3h 6k
The temperature distribution has the form
T(r):i(rg—r2)+% +T,. <
6k 3h
COMMENTS: To verify the above result, obtain T(rg) = Ty,
_ 0%
Te =20 +T,
T3 ”

Applying energy balance to the control volume about the sphere,

q%nrOE_Mnro (Ts-T)  find  Tg :%’ +To.



PROBLEM 3.94

KNOWN: Radial distribution of heat dissipation of a spherical container of radioactive
wastes. Surface convection conditions.

FIND: Radial temperature distribution.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensiona conduction, (3) Constant
properties, (4) Negligible temperature drop across container wall.

ANALYSIS: The appropriate form of the heat equation is

Hence r<-—-=-— ——E+C1

From the boundary conditions,

it follows that Cq = 0 and

0 2 2 0
6o Jofo0_ppdo 76 16 ,c, 7,1
3 50 g kpe 207 0
_ 200 +7%ro AT
15h 60k
: 204 B3 40
0 0 rQ
Hence T(r):To<,+2qu0 a0l _ 1DLD iD—D E <
[

15h k EBO 6000 2001q]
COMMENTS: Applying the aboveresult at rq yields
Ts=T(rp) =Too +(2ro00 /15h).

The same result may be obtained by applying an energy balance to a control surface about the
container, where Eg =Qcony- Themaximum temperature existsat r = 0.



PROBLEM 3.95

KNOWN: Dimensions and thermal conductivity of a spherical container. Thermal conductivity and
volumetric energy generation within the container. Outer convection conditions.

FIND: (a) Outer surface temperature, (b) Container inner surface temperature, (c) Temperature
distribution within and center temperature of the wastes, (d) Feasibility of operating at twice the energy
generation rate.

SCHEMATIC:

Stainless steel
kss = 15 W/im-K

S,0
Ts,i
\
T.=250C 1
el 2. Rad|oact|ve wastes
h'=1000 Wim=-K = =20 WimK, ¢ = 10% Wim3

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant propertleﬁ (3) One-dimensional radial
conduction.

ANALYSIS: (&) For acontrol volume which includes the container, conservation of energy yields
. 2
q(4/3)(mi3) =h471E (Tso ~Teo )
and with ¢ = 10° W/n?’,
5 2 3
o 100 W/ m~(0.5m
Teo = Te +q'2_2sc+ /2( ) >
ahr 3000W/m? K (0.6m)

(b) Performing a surface energy balance at the outer surface, Ej; —Eqyt =0 0r deond — Aeonv =0-
Hence

=36.6°C. <

Ak s (Ts,i - Ts,o)

Vnr)-(r)
1000w/ m? (K

=T, +— T, ) =366°C +——————(0.2)0.6 (11.6°c) —1204°C . <
Tsi =Tso H_ ]Hro s0 ~ lSW/mEIK ( ) m

(c) The heat equation in spherical coordinatesis

=h4mg (Tso ~Teo )

do d_TD+ i
Krw ar H B
Solving,
>dT o o’
rc—-=- +C; and T(r)=- -—= +C,
dr 3Krw 6k T
Applying the boundary conditions,
a - 0 ad T(5)=Ts,
dr r=0
_ _ .2

Continued...



PROBLEM 3.95 (Cont.)

Hence
_+ .. (,2_ 2) -
T(r)=T.
(r) s,|"'6krW e -r
Atr=0,
) 5 3 )
T(O):Tsi s =129.4°C +10 W/m (O.5m) _3377°C <
T Bk 6(20W/m|:|K)

(d) The feasibility assessment may be performed by using the IHT model for one-dimensional, steady-
state conduction in a solid sphere, with the surface boundary condition prescribed in terms of the total
thermal resistance

2
' i1 (V) - (W 105 F
Riot,i =(4mi2)Rtot =Rend,i *Renv,i = : [( Ik) ( O)] +FE1VI_E
SS 0

where, for r, = 0.6 mand h = 1000 W/m?[K,, Rgngj = 5.56 x 10° mPK/W, Rgp, j = 6.94 x 10 mK/W,

and Rigt =6.25x 10° m’[K/W. Results for the center temperature are shown below.

c 675
g
e 4
9_35 625 = —— 2
©
3
g 575
5
— e
[
§ 525 I —— S

475

0 2000 4000 6000 8000 10000

Convection coefficient, h(W/m"2.K)

—©— r0=054m
—A— r0=0.60m

Clearly, even with r, = 0.54 m = r, in and h = 10,000 W/m?IK (apractical upper limit), T(0) > 475°C and
the desired condition can not be met. The corresponding resistances are Repgj = 2.47 X 10° mPK/W,

Rgnyi =857 x 10° mK/W, and Riq j = 2.56 x 10°° m’IK/W. The conduction resistance remains

dominant, and the effect of reducing R'Cm,,i by increasing his small. The proposed extension is not
feasible.

COMMENTS: A valueof ¢ = 1.79 x 10° W/m> would allow for operation at T(0) = 475°C withr, =
0.54 m and h = 10,000 W/m’K.



PROBLEM 3.96

KNOWN: Carton of apples, modeled as 80-mm diameter spheres, ventilated with air at 5°C and
experiencing internal volumetric heat generation at arate of 4000 Jkglday.

FIND: (a) The apple center and surface temperatures when the convection coefficient is 7.5 W/m?[K,
and (b) Compute and plot the apple temperatures as afunction of air velocity, V, for therange0.1<V <
1 m/s, when the convection coefficient has the form h = C,V®*®, where C; = 10.1 W/m?[K [{m/s)* .

SCHEMATIC:

Apple, D =80 mm

g = 4000 J/kg-day

p = 840 kg/m3, k = 0.5 W/m+K

l l l l To=5°C V=0.5m/s
h=7.5 W/m2.K
ASSUMPTIONS: (1) Applescan be modeled as spheres, (2) Each apple experiences flow of

ventilation air at T_ =5°C, (3) One-dimensional radial conduction, (4) Constant properties and (5)
Uniform heat generation.

ANALYSIS: (a) From Eg. C.24, the temperature distribution in a solid sphere (apple) with uniform
generation is

20 20
_Uo r
T(r) =2 -—0+T, 1

To determine T, perform an energy balance on the apple as shown in the sketch above, with volume V =
4/371:r§,
Ein —Eout +Eg =0 ~Ocv *qLF 0
—h(4m02)(TS—Too)+q(4/3 nrg) =0 @
~75W/m? K (4n><0.0402m2) (TS -5 c) +389W/m3 (4/3 7T><0.0403m3) =0

where the volumetric generation rateis
d = 4000 J/kg [diay

= 4000J/ kg [day x840kg/ mS x(1day/24hr) x(Lhr/36005)

q=389W/m3
and solving for T, find
T4 =514°C <
From Eq. (1), atr =0, with T, find
389W/m3x0.040%m2 . . .
T(0) = +5.14°C =0.12°C +5.14°C =5.26°C <
6x0.5W/m K

Continued...



PROBLEM 3.96 (Cont.)
(b) With the convection coefficient depending upon velocity,
h= ClV0.425

with C; = 10.1 W/m?IK [{im/s)>*?*, and using the energy balance of Eq. (2), calculate and plot Tsasa
function of ventilation air velocity V. With very low velocities, the center temperature is nearly 0.5°C

higher than the air. From our earlier calculation we know that T(0) - Ts= 0.12°C and is independent of
V.

5.4

53

Center temperature, T(0) (C)

5.2

0 0.2 0.4 0.6 0.8 1

Ventilation air velocity, V (m/s)

COMMENTS: (1) While the temperature within the apple is nearly isothermal, the center temperature
will track the ventilation air temperature which will increase as it passes through stacks of cartons.

(2) The IHT Workspace used to determine T for the base condition and generate the above plot is shown
below.

/I The temperature distribution, Eq (1),
T_r=qdot*ro"2/(4*k)*(1-r2/ro"2) + Ts

/I Energy balance on the apple, Eq (2)
- qcv + gqdot * Vol =0

Vol=4/3*pi* ro”"3

/I Convection rate equation:

gcv =h*As * (Ts - Tinf)

As =4 * pi * ro"2

/I Generation rate:

gdot = gdotm * (1/24) * (1/3600) * rho /I Generation rate, W/m”"3; Conversions: days/h and h/sec
/I Assigned variables:

ro = 0.080 /I Radius of apple, m

k=0.5 /I Thermal conductivity, W/m.K

gdotm = 4000 /I Generation rate, J/kg.K

rho = 840 /I Specific heat, J/kg.K

r=0 /I Center, m; location for T(0)

h=75 /I Convection coefficient, W/m”2.K; base case, V = 0.5 m/s
/Ih = C1*V"0.425 /I Correlation

/IC1=10.1

IV =0.5 Il Air velocity, m/s; range 0.1 to 1 m/s

Tinf=5 /I Air temperature, C



PROBLEM 3.97

KNOWN: Planewall, long cylinder and sphere, each with characteristic length a, thermal
conductivity k and uniform volumetric energy generation rate g.

FIND: () On the same graph, plot the dimensionless temperature, [ T (x or r)—T(a)]/[qaZ/Zk], Vs.

the dimensionless characteristic length, x/a or r/a, for each shape; (b) Which shape has the smallest
temperature difference between the center and the surface? Explain this behavior by comparing the
ratio of the volume-to-surface area; and (c) Which shape would be preferred for use as a nuclear fuel
element? Explain why?

SCHEMATIC:
Plane wall Long cylinder Sphere
!
I
a.k (@)=Ts =Ts T(@a)=Ts

I

. r= a
e

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant
properties and (4) Uniform volumetric generation.

ANALYSIS: (@) For each of the shapes, with T(a) = Ty, the dimensionless temperature distributions
can be written by inspection from results in Appendix C.3.

Planewall, Eq. C.22 T(X)_TS

T(x)-Ts _, xCf
ga2 / 2k HaH
T() TS_1D DrDZD
ga2 / 2k 25 %HE
T() Ts ED wguid
qa / 2k N gBE

The dimensionless temperature distributions usi ng the foregoing expressions are shown in the graph
below.

Long cylinder, Eq. C.23

Sohere, Eq. C.24

Dimensionless temperature distribution

3 T
N
N 0.8
<
£
S 0.6
A=A
~ \\
i 0.4
|‘/_I> T
= I
ol 0.2 A
) B
0
0 0.2 0.4 0.6 0.8 1

Dimensionless length, x/a or r/a
— Plane wall, 2a
—&— Long cylinder, a
—4&— Sphere, a

Continued .....



PROBLEM 3.97 (Cont.)

(b) The sphere shape has the smallest temperature difference between the center and surface, T(0) —
T(a). Theratio of volume-to-surface-area, /A, for each of the shapesis

Plane wall

Long cylinder

Sphere

O

a(1x1)
_ g
()
_ma%1_a
2max1l 2
_4ma/3_a
4ma® 3

The smaller the O/Agratio, the smaller the temperature difference, T(0) — T(a).

(c) The sphere would be the preferred element shape since, for a given O/Ag ratio, which controls the
generation and transfer rates, the sphere will operate at the lowest temperature.



PROBLEM 4.38

KNOWN: Conduction in aone-dimensiond (radial) cylindrical coordinate system with volumetric
generation.

FIND: Finite-difference equation for (a) Interior node, m, and (b) Surface node, n, with convection.
SCHEMATIC: )
(\‘//“/AI‘ Note: control volumes \‘)(_ arj2

\ are cylindrical shells
m-1 VYm \m+l
e 1o o | 7y

\I o ) [ S——
95\« /; ’\,E‘II‘"Q? \%{/ £ ’1 onv TTT
r =mAr:;/~ 3 r=ndry’
(@) Interior node, m (b) Surface node with convection, n

ASSUMPTIONS: (1) Steady-state, one-dimensional (radial) conduction in cylindrical coordinates,
(2) Constant properties.

ANALYSIS: (a) The network has nodes spaced at equal Dr increments with m = O at the center;
hence, r = mDr (or nDx). The control volumeis V =2p r>Dr x/ =2p (mDr) Dr .. The energy

balanceis E|n +Eg :qa +qb +qV :0
€, & DrouTmg-T, eDruuT+1T o 2 .
ka L o 4 mDr) Dr/g=0.
P00 o ezg* 28 or Gg2p (mor)Dreg
Recognizing that r = mDr, canceling like terms, and regrouping find

. N . N . 2
1 1 mDr
m- —ng_1+ ?m+—li'Tm+1- 2mTy + g

g 24 g 2f

(b) The control volume for the surface nodeis V =2p r >( Dr/2) x/. The energy balanceis

=0. <

Ein +Eg =qqg *Ycony +9V=0. Use Fourier'slaw to express qq and Newton's law of cooling for

qconvtOObtdn
€. €& DrouTh1-Th - Dr u
k& —+h r)(Ty - T)+ ? nDr)— ¢4 =0.
Let r = nDr, cancel Ilketerms and regroup to find

. iy 2

€ €& 1u, hnDru anr hnDr
~ T - axn- —+— T,

Sn LR - T e TR A

COMMENTS: (1) Note that when m or n becomes very large compared to %2, the finite-difference
equation becomes independent of m or n. Then the cylindrical system approximates a rectangular one.

(2) Thefinite-difference equation for the center node (m = 0) needs to be treated as a special case.

The control volumeis
V=p (Dr/2)2£ and the energy balanceis
arf2
@ / /
[:|:O_ \— ‘_f‘
| ‘59/ ’ 96

f—

& N
eDruuTl To € éDr i
E, +E +qQV = k P 4

2
Regrouping, the finite-difference equation is - T, +T; +

=0.
4k



PROBLEM 4.39

KNOWN: Two-dimensiona cylindrical configuration with prescribed radid (Dr) and angular (Df )
spacings of nodes.

FIND: Finite-difference equations for nodes 2, 3 and 1.

SCHEMATIC:
ga .7.’-5-'
A N
7 \ ok | T ke &9—6
s N 7R L ¢ g
Wl S AT
. ) K o b /'\_,—‘
N AL I?e P % R I
[ A¢

L / . . p; .

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensiona conduction in cylindrica
coordinates (rf ), (3) Constant properties.

ANALYSIS: The method of solution isto define the appropriate control volume for each node, to
identify relevant processes and then to perform an energy baance.

(@) Node 2. Thisisan interior node with control volume as shown above. The energy balanceis
Ein =0% +0off +of +qfj =0. Using Fourier's law for each process, find

(& 3y u(Ts - T2)+k(D) (T3-T2) .
®' 270 Y Dr (v; +Dr) Df

¢ 10 oTi-Tp) (T-T2) _

+k$ﬁ+2DrHDfH 5 +k(Dr)( =0.
Cancdling terms and regrouping yields,

2 N 2
(o) 1 (T, + er+3DrT (o) (Tg+Ty)+ Ar+1DrT =0.

(or)2 (i +D)g ° €' 2 8° (raDr)(or) e 271

(b) Node 3. The adiabatic surface behaves as a symmetry surface. We can utilize the result of Part
(8 to write the finite-difference equati on by inspection as

€
-qui +D)+

& 2 2
2§, +Dr)+ (o) ! 3+g += Dr T &ﬁzﬁel +1Dr , =0.
& (of )2 (1 +Dr) (1 +Dr)( 2

(c) Node 1. Theenergy balanceis q& +af + o +of =0. Substltutlng,

3. 0D 0(Ta-Ta) | k(D) (T2- T1)

éé
kg@“ 2762 (ri + Dr)Df

+
2 Hz“ Dr

S L DEDf “,,—( DT)+h(Dr)(T¥ T)=0 <

This expression could now be rearranged.



PROBLEM 4.40
KNOWN: Hesat generation and thermal boundary conditions of bus bar. Finite-difference grid.
FIND: Finite-difference equations for selected nodes.
SCHEMATIC:
¢ - 7;9: ha
’ A2
N

ASSUMPTIONS: (1) Steady-dtate conditions, (2) Two-dimensiona conduction, (3) Constant
properties.

ANALYSIS: (a) Performing an energy balance on the control volume, (Dx/2)(Dy/2)4, find the FDE
for node 1,

_To-T @ o oy, K(DY24)
ngc/(Dy/z)f hug > ><lB(T¥ Ty)+

, k(D2x)

(T2- 1)
(Te- W)+ ag Dx/2)(Dy/2)1§=0
(DXKRE) To +(hyDKIK) Ty +T2 +Tg
+4(Dx)?/ 2k - § DwkREG) + (hy D/K) + 20T =0. <

(b) Performing an energy balance on the control volume, (Dx)(Dy/2)4, find the FDE for node 13,

hy (Dx ) (Ty - Ty3) +(k/Dx) (Dy/22) (T12 - Th3) .
+(k/Dy) (Dx2)(Tg - Ty3) +(k/Dx)(Dy/2:8)(Tiq - Ta3)+¢(Dx>Dy/2:0) =0

(hiDx/k) Ty +1/2(Typ +2Tg+T14)+4 (D<)2/2k - (h Dx/k +2) T3 =0. <

COMMENTS: For fixed Tg and Ty, the relative amounts of heat transfer to the air and heat sink
are determined by the values of hand R



PROBLEM 4.41

KNOWN: Nodd point configurations corresponding to a diagonal surface boundary subjected to a
convection process and to the tip of a machine tool subjected to constant hesat flux and convection
cooling.

FIND: Finite-difference equations for the node m,n in the two stuations shown.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-state, 2-D conduction, (2) Constant properties.

ANALYSIS: (8 The control volume about node m,n has triangular shape with sides Dx and Dy while
the diagond (surface) length is «/5 Dx. The heat rates associated with the control volume are due to
conduction, o and gp, and to convection, gc. Performing an energy baance, find

Ein- EOl_,II:[ZO T CM"‘QZ"‘QC:TO T
m,n-1- 'm,n m+l,n~ 'mn _
k(Dx&)T+k(Dy>§_) = +h(v2 Dxoa)(Ty - Ty =0.

Note that we have considered the tool to have unit depth normal to the page. Recognizing that Dx =
Dy, dividing each term by k and regrouping, find

Tm,n_1+Tm+1’n +\/§ XI‘%-B‘ - %+-\/— Xr%ETmn =0. <

(b) The control volume about node m,n has triangular shape with sides Dx/2 and Dy/2 while the lower
diagonal surface length is «/5 (Dxlz) The heat rates associated with the control volume are due to

the constant heat flux, gg, to conduction, gy, and to the convection process, gc. Perform an energy
balance,

Ein- I;:out 0 Qa+Qb+QC—0

eDy u Tman - mn+
QQSZ’QH 82 H Dk th\/_ (T¥ Tmn) 0.

Recognizing that Dx = Dy, dividing each term by k/2 and regrouping, find

Tm+1n +~/§><r%><T¥ +q@ "% ?—"‘\E"h%— mn =0. <
a

COMMENTS: Note the appearance of the term hDx/k in both results, which is a dimensionless
parameter (the Biot number) characterizing the relative effects of convection and conduction.



PROBLEM 4.42
KNOWN: Noda point on boundary between two materials.
FIND: Finite-difference equation for steady-state conditions.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-date conditions, (2) Two-dimensiona conduction, (3) Constant
properties, (4) No internal heat generation, (5) Negligible thermal contact resistance at interface.

ANALYSIS: The control volume is defined about noda point O as shown above. The conservation of
energy requirement has the form

6
A=+ +g+q+g+g=0
i=1

since all heat rates are shown asinto the CV. Each heat rate can be written using Fourier’s law,

2 Dx Dy 2 Dx
+kg 13710 4o 54710 4y YT To -
2 Dx Dy 2 Dx
Recognizing that Dx = Dy and regrouping gives the relation,
1 k 1 k
-To+—T1+—AT2+—T3 —BT4:O. <

+
4 2(kA +kB) 4 2(kA+kB)
COMMENTS: Note that when ka = kg, the result agrees with Eq. 4.33 which is appropriate for an

interior node in amedium of fixed therma conductivity.



PROBLEM 4.43
KNOWN: Two-dimensond grid for asystem with no internd volumetric generation.
FIND: Expresson for hest rate per unit length normal to page crossing the isothermal boundary.
SCHEMATIC:

ASSUMPTIONS: (1) Steady-dtate conditions, (2) Two-dimensional heeat transfer, (3) Constant
properties.

ANALYSIS: Identify the surface nodes (Ts) and draw control volumes about these nodes. Since
thereis no heat transfer in the direction pardld to the isotherma surfaces, the heet rate out of the
constant temperature surface boundary is

Q0= G+ o+ b+ b+ o+ o

For each qff, use Fourier’slaw and pay particular attention to the manner in which the cross-
sectiond area and gradients are pecified.

q¢:k(w/2)%+k(py)%+k(oy)'_

+ k(Dx)_T5[')yTS +k( Dx)—TBE;yTS +Kk(Dx/2) —T7[;yTS

Regrouping with Dx = Dy, find
q¢=k[0.5Ty + To+ T3+ Tg+ T +0.5T7 - 5Tg]. <

COMMENTS: Looking at the corner node, it isimportant to recognize the areas associated with
q¢ and qf§ (Dy and Dx, respectively).



PROBLEM 4.44

KNOWN: One-dimensiona fin of uniform cross section insulated at one end with prescribed base
temperature, convection process on surface, and thermal conductivity.

FIND: Finite-difference equation for these nodes. (a) Interior node, m and (b) Node at end of fin, n,
wherex = L.

SCHEMATIC:

: \7;’94

Fn kA, PL T2
@<>
2_—|<—>|
ax/ Fin end node, n

—
e )
73 \-% c
72,’ ® : ! TTI7+1
leax > Interior nodem

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction.

ANALYSIS: (a) The control volume about node m is shown in the schematic; the node spacing and
control volume length in the x direction are both Dx. The uniform cross-sectiona area and fin

perimeter are A¢ and P, respectively. The heat transfer process on the control surfaces, g and op,
represent conduction while g is the convection heat transfer rate between the fin and ambient fluid.
Performing an energy balance, find
Ein 'TEout :TO Q1_I_+ g2+ _Cll_c =0
kAo —ML™ M 4 yp LT My hppy (Ty - Ty ) =0.
C Dx c Dx ( ¥ m)

Multiply the expression by Dx/kA ¢ and regroup to obtain

hP é hP
Tt Tmert 50X T¥ e2+—DX uTm =0 1<m<n <
kA kAc o

Considering now the specia node m = 1, then the m-1 node is T, the base temperature. The finite-
difference equation would be

hP o € hP
Th+To+ —— IX°T. +— px?2 T 0 m=1 <
b* T2 ae ¥ - e2 KA Hl

(b) The control volume of length Dx/2 about node n is shown in the schematic. Performing an energy
balance,

Ein 'TEout _ZI_O QBSXCM“LQC =0
kAg—L— N 40 +hP—(Ty - T,) =0.
c Dx 2 ( ¥ n)
Note that g4 = 0 sincetheend (x = L) isinsulated. Multiplying by Dx/kA ¢ and regrouping,
2 é 2 1
hP Dx hP Dx
Tp1+——>%—Ty - &—x—— +101T, =0. <

COMMENTS: The value of Dx will be determined by the selection of n; that is, Dx = L/n. Note that
the grouping, hP/KA ¢, appears in the finite-difference and differential forms of the energy balance.



PROBLEM 4.45

KNOWN: Two-dimensional network with prescribed nodal temperatures and therma conductivity of
the material.

FIND: Heat rate per unit length normal to page, q¢
SCHEMATIC:

)

Ti(°C)
12055
120.64
121.29
12389
13457
150.49
147.14

‘l‘?‘v TN TV TV G

[}
1
!
¢

a"léa bIéZ = CI-QZ = 'dlé;'

|
"--'II/‘I///I/I.

T

ASSUMPTIONS: (1) Steady-state conditions, (2) Two-dimensional hesat transfer, (3) No interna
volumetric generation, (4) Constant properties.

\ICDU'I-bOQI\)HS_

ANALYSIS: Construct control volumes around the nodes on the surface maintained at the uniform
temperature Tg and indicate the hest rates. The heat rate per unit lengthis q¢= g+ q¢+ q¢ + q§ + q¢
or in terms of conduction terms between nodes,

q¢= oft+ g+ a§+ ak+a§ +q9.
Each of these rates can be written in terms of noda temperatures and control volume dimensions using
Fourier's law,

T1-Ts

o= kX I Ts 4 pospy <12
2 by

27 Ts o 137 Ts

+hox 14 Ts

Dy
oDk 15 T8 4, T7° Ts
Dy 2 Dx

and since Dx =Dy,

o$=HD)(n - ) {1 ) (15T}

Substituting numerical vaues, find
q¢=50 W/m K[ (1/2)(120.55 - 100) +(120.64 - 100) +(121.29- 100)
+(123.89- 100) +(134.57 - 100) +(1/2)(147.14- 100)]
q¢=6711 W/m. <

COMMENTS: For nodes athrough d, there is no hegt transfer into the control volumesin the x-
direction. Look carefully at the energy balance for node e, q¢ =g +q%, and how g andq$ are
evaluated.



PROBLEM 5.22
KNOWN: Droplet properties, diameter, velocity and initid and find temperatures.
FIND: Travd distance and rgjected therma energy.

SCHEMATIC:
L. >~i:
'../'7;=500K V= 0.2ms !
Injecfor- : Droplet _ _/‘1 Collector
| Droplef, _
7s_ur-= O-K — D-05mm E—SOOK #

ASSUMPTIONS: (1) Constant properties, (2) Negligible radiation from space.
PROPERTIES: Droplet (given): r =885 kg/m3, ¢ = 1900 JkgX, k =0.145 W/mX, e = 0.95.
ANALYSIS: To assessthe suitability of gpplying the lumped capacitance method, use Equation 1.9
to obtain the maximum radiation coefficient, which correspondsto T = Ti;.

hy =es T3 =095" 567 10" Bw/m?xK*(500 K )? =6.73 W/im? K.
Hence

h (r0/3) (673 Wim? % )(0.25" 1073 ms)
Bi, = r('0/3) _ =0.0039
k 0.145 W/mxK

and the lumped capacitance method can be used. From Equation 5.19,

rc(p D3/6)ae1 1 0
(; = =

L
V' olp0?s g7 T5

t=
2

- (0.1 mis) 885 kg/m>(1900 Jkg*< )0.5" 10" 3 mae 1 1 61

18" 0.95" 5.67° 108 Wim?2 x* €300° 500 ok3
L=252m. <
The amount of energy regjected by each droplet is equd to the change initsinterna energy.
3
(5' 107 4m)
E; - Ef =r Vc(T; - Ty ) =885 kg/mp 1900 J/kg K (200 K)
Ei- Ef =0.022J. <

COMMENTS: Because some of the radiation emitted by adroplet will be intercepted by other
dropletsin the stream, the foregoing andysis overestimates the amount of heat disspated by radiation
to space.



PROBLEM 5.23

KNOWN: Initial and final temperatures of a niobium sphere. Diameter and properties of the sphere.
Temperature of surroundings and/or gas flow, and convection coefficient associated with the flow.

FIND: (a) Timerequired to cool the sphere exclusively by radiation, (b) Time required to cool the
sphere exclusively by convection, (c) Combined effects of radiation and convection.

SCHEMATIC:

e

T;=900°C Teur = 25°C
Ty=300°C Niobium
p = 8600 kg/m3
- — ¢ = 290 J/kg-K
k =63 W/m-K
T = 250C €=0.10r0.6
h'= 200 W/m2-K e N D =10 mm

ASSUMPTIONS: (1) Uniform temperature at any time, (2) Negligible effect of holding mechanism
on heat transfer, (3) Constant properties, (4) Radiation exchange is between asmall surface and large
surroundings.

ANALYSIS: (a) If coollng isexcl usuvely by radiation, the required time is determined from Eq.
(5.18). WithV = T[D/6 Asr = T[D and e =0.1,

8600 kg/m? (290J/kg K )0.01m Hn
O

298+573| _ ‘ 298+1173|

© 24(0.1)5.67x1078W/m2 (K4 (298K )3 O 1298-573 |298-1173
42 ﬁ 12730 -1 1173]DD
SosH " HzeeH-
t = 6926s{1.153-0.519 +2(1.091-1.322} =1190s (¢ =0.1) <

If € = 0.6, cooling is six times faster, in which case,
t =199s (g = 0_6) <
(b) If cooling is exclusively by convection, Eqg. (5.5) yields

peD, 0T, T, 0_8600 kg/m?3 (290J/kg[|K)0010m 87501

= D:

6h  Off T 1200W / m? [K 52755

t=24.1s <

(c) With both radiation and convection, the temperature history may be obtained from Eq. (5.15).
p(er3/6)cd—T = -1D? (T -To) + go(T4 —Tg{Jr)D
dt g
Integrating numerically fromT; = 1173K att=0to T = 573K, we obtain
t=21.0s <

Continued .....



PROBLEM 5.23 (Cont.)

Cooling times corresponding to representative changesin € and h are tabulated as follows

h(W/m?K) | 200 200 20 500
£ | 06 10 06 06
t(s) | 210 194 1028 9.1

For values of h representative of forced convection, the influence of radiation is secondary, even for a
maximum possible emissivity of 1.0. Hence, to accelerate cooling, it is necessary to increase h.
However, if cooling is by natural convection, radiation is significant. For a representative natural
convection coefficient of h =20 W/mZEK, the radiation flux exceeds the convection flux at the surface
of the sphere during early to intermediate stages of the transient.

70000

60000 \
50000 \
40000

30000

20000

N\
AN
- \A\;s\

Heatfluxes (W/m "2 K)

10000

0 20 40 60 | 80 100
Cooling time (s)

—8— Convection flux (h=20 W/m "2 K)

—A— Radiation flux (eps=0.6)
COMMENTS: (1) Even for h aslarge as 500 W/mZEE(, Bi = h (D/6)/k = 500 W/m2[K (0.01m/6)/63
W/mIK = 0.013 < 0.1 and the lumped capacitance model is appropriate. (2) The largest value of hy
correspondsto T; =1173 K, and for € = 0.6 Eq. (1.9) yields hs = 0.6 x 5.67 x 10'8 W/mZEE(4 (1173 +
298)K (1173° + 2989)K? = 73.3 W/im’IK.



PROBLEM 5.24

KNOWN: Diameter and thermophysical properties of alumina particles. Convection conditions
associated with a two-step heating process.

FIND: (&) Time-in-flight (tr) required for complete melting, (b) Validity of assuming negligible
radiation.

SCHEMATIC:

Al,O4 sphere, Dp =50 um,

T;= 300K, ky=10.5 W/m-K,

pp = 3970 kg/m3, ¢, = 1560 Jikg K,

T = 2318 K, hep= 3577 kl/kg
h = 3x10% Wim2K
Too= 10,000 K

ASSUMPTIONS: (1) Particle behaves as alumped capacitance, (2) Negligible radiation, (3) Constant

properties.

ANALYSIS: (@) Thetwo-step processinvolves (i) the timet; to heat the particle to its melting point and
(ii) the time t, required to achieve complete melting. Hence, tis = t; + t,, where from Eq. (5.5),
Vc ) D.C . _
ty = PP 6 - Pty Ti~Ten

3970kg/m’ (50><10_6 m)15603/ kg[K (300-10,000)
| ’ =

n =4x107%s
6(30, 000W,/ m? E[K) (2318-10,000)

Performing an energy balance for the second step, we obtain

t1=

t1+to
,[t Qeonvdt = AEg
1

3 -6
60 (Teo ~Trp) 6(30, 000W/m? [IK) (10,000-2318)K

to =5x10"%s
Hence tj_f =9 x10 s =1ms <
(b) Contrasting the smallest value of the convection heat flux, qeony min =h (Too - Tmp) =23x10° W/ m?
to the largest radiation flux, Ofag max = €0 (T#]p —T;r) = 6.5 x 10> W/m’, we conclude that radiation
is, in fact, negligible.

COMMENTS: (1) Since Bi = (hry/3)/k = 0.05, the lumped capacitance assumption is good. (2) Inan

actual application, the droplet should impact the substrate in a superheated condition (T > Ty,,), which
would require aslightly larger t;.



PROBLEM 5.25

KNOWN: Diameters, initial temperature and thermophysical properties of WC and Co in composite
particle. Convection coefficient and freestream temperature of plasmagas. Melting point and latent
heat of fusion of Co.

FIND: Times required to reach melting and to achieve complete melting of Co.

SCHEMATIC:
Do =20 um Tungsten carbide

D; = 16 um pc = 16,000 kg/m3
Co = 300 J/kg-K

—>
Plasma gas Cobalt
ps = 8900 kg/m3

T = 10,000 K cs = 750 J/kg-K
h = 20,000 W/m2-K Tmp = 1770K

het = 2.59x105 J/kg
ASSUMPTIONS: (1) Particleisisothermal at any instant, (2) Radiation exchange with surroundings
isnegligible, (3) Negligible contact resistance at interface between WC and Co, (4) Constant
properties.

ANALYSIS: From Eq. (5.5), the time required to reach the melting point is
(PVC)igt,  Ti ~Ten

hrmr D% Tmp —Too
where the total heat capacity of the composite particleis

t1=

3
pVe), . =(pVc). +(pVe :16,000kg/m3511.6><10_5m /GSSOOJ/kg[E(
tot C S B 0

3 3
+8900kg/ m3 %1/ 6 §2.0x10‘5 m) —(1.6 x10‘5m) % 7503/ kg [K
g @

= (1.03x10‘8 +1.36 xlo‘S)J/ K =2.39 X108 J/K

-8 300-10,000)K
ty = 2:39x10 J/K In( ,000) =156x10%s <

-5 \2 (1770-1 K
(20,000W/m2[H<)n(2_0x10 5m) (1770-10,000)

Thetime required to melt the Co may be obtained by applying the first law, Eqg. (1.11b) to a control
surface about the particle. It follows that

Ein = h7TD(2) (Too _Tmp)tZ :AESt = %(H/G)(Dg —D?)hsf

5 \3 5 \3O
8900kg/ m® (/6) aleo 5m) —(1.6 x10 5m) Ez.sg x10° 3/ kg
ty = . =228x107%s <
(20,000W/m2D<)n(2x10'5m) (10,000 -1770) K

COMMENTS: (1) The largest value of the radiation coefficient corresponds to hy = €0 (Tmp + Tsur)

(Tr%p + Tszur). For the maximum possible value of € = 1 and Tg,r = 300K, hy = 378 W/m?K << h =

20,000 W/mZEE(. Hence, the assumption of negligible radiation exchange is excellent. (2) Despite the

large value of h, the small values of Dg and D; and the large thermal conductivities (~ 40 W/mIK and
70 W/mIK for WC and Co, respectively) render the lumped capacitance approximation a good one.
(3) A detailed treatment of plasma heating of a composite powder particle is provided by Demetriou,
Lavine and Ghoniem (Proc. 5" ASME/JSME Joint Thermal Engineering Conf., March, 1999).



PROBLEM 5.26
KNOWN: Dimensons and operating conditions of an integrated circuit.
FIND: Steady-state temperature and time to come within 1°C of steady-state.
SCHEMATIC:

—> T,=20°C
— h=150Wfm3-K

T

r 9¢0"V

Substrate Chip, ¢= 9xIO‘Mm:'-§

L=5mm t=1mm

ASSUMPTIONS: (1) Constant properties, (2) Negligible hegt transfer from chip to subdtrate.
PROPERTIES: Chip materid (given): r = 2000 kg/m, ¢ = 700 JkgK.
ANALYSIS: At steady-dtate, conservation of energy yields

- Equt +Eg=0

- h(LZ)(Tf - Ty )+ q(l_2 ><t) =0

_ qt
T =Ty +—
=Ty +

9" 108 w/m3" 0.001m
150 W/m?2 xK
From the generd lumped capacitance analys's, Equation 5.15 reduces to

‘ (Lzﬁ)c%—rzq(Lzﬁ)- h(T- &)L2

Tf =20°C+ =80°C. <

With
2
g0 N _ 150 W/m* xK — 01071
ric (2000 kg/m3)(o.001 m) (700 Jkg*K )
; < 1oP
po L= 9 1% win =6.429KIs,
re (2000 kg/m )(700 JkgxK )
From Equation 5.24,
C Ty - 79- 20- 60)K
exp(-at):_-lf_:_¥ : E//a ! — )X _ 001667
i- Ty - bla (20- 20- 60)K
In(0.01667
t=- n(—l) =383 <
0.107 s

COMMENTS: Dueto additiona hest transfer from the chip to the substrate, the actua values of
Ts and t areless than those which have been computed.



PROBLEM 5.27
KNOWN: Dimensions and operating conditions of an integrated circuit.
FIND: Steady-state temperature and time to come within 1°C of steady-state.

SCHEMATIC:

M) l [R=200KW—

—> Tp=20°C
f Pod (hLz)-I th Reond Rconv

P 150w/mz K

Substrate Chip, g¢= Dx10°Wfm3, L=5mm | +=1mm

ASSUMPTIONS: (1) Constant properties.
PROPERTIES: Chip material (given): p =2000 kg/m3, Cp = 700 JkgK.

ANALYSIS: Thedirect and indirect paths for heat transfer from the chip to the coolant arein
parallel, and the equivalent resistanceis

1 1
Requiv = Hmz - R{% = gsjs x1073 +5 ><’10_3)W/K5 =114.3 K/W.

The corresponding overall heat transfer coefficient is
-1
(Requiv) _ 0.00875 W/K
12 (0.005 m)?

To obtain the steady-state temperature, apply conservation of energy to a control surface about
the chip.

U= =350 W/m?

~Eout +Eg =0 ~UL%(Tf —To) +q(L2 m) =0
6 \1//re3
T =T, + 3 = ope g 4 X107 Wim ’;0'001”1 =45.7°C. <
U 350 W/m*~ [K

From the general lumped capacitance analysis, Equation 5.15 yields
p(LZt)CZ—I = q(LZt) ~U(T -To L2

With
2
N 350 W/m? (K o050 <1
Pte (2000 kg’ ) (0001 m) (700 JkgTK)
6 \/m3
p=9 = 910 Wim =6.429 K/s
pc (2000 kg/m® ) (700 Jkg K
Equation 5.24 yields
- 44.7-20-25.7)K
exp(-at) =1 T DA ( )X _0.0889
T,-Te —bla  (20-20-25.7)K
t=-In(0.0389)/0.250 s =130s, <

COMMENTS: Heat transfer through the substrate is comparabl e to that associated with
direct convection to the coolant.



PROBLEM 5.28

KNOWN: Dimensions, initial temperature and thermophysical properties of chip, solder and
substrate. Temperature and convection coefficient of heating agent.

FIND: (a) Time constants and temperature histories of chip, solder and substrate when heated by an
air stream. Time corresponding to maximum stress on a solder ball. (b) Reduction in time associated
with using adielectric liquid to heat the components.

SCHEMATIC:
Chip T; = 20°C Solder ball
pch = 2300 kg/m3 D =0.002 mm
T = 80°C Cch = 710 J/kg-K W& Leh =0.015 m— psd = 11,000 kg/m3
- — = = 130 Jikg-K
hy =50 W/m2-K fen=0.002m | Ceq = 130 Jikg
hy, =200 W/m2-K —> v | Substrate
o= 0,01 m B e pep = 4000 kg/m?
= : ; Cep = 770 JIkg-K
K 7777 A0

K— Lgp=0.025m —>

ASSUMPTIONS: (1) Lumped capacitance analysisis valid for each component, (2) Negligible heat
transfer between components, (3) Negligible reduction in surface area due to contact between
components, (4) Negligible radiation for heating by air stream, (5) Uniform convection coefficient
among components, (6) Constant properties.

ANALYSIS: (a) FromEg. (5.7), 1, = (pVc)/hA
Chip: V= (L%h)tch = (0.015m)? (0.002m) =450 x10 ' m>, Ag :(2L%h +4Lchtch)

= 2(0.015m)? +4(0.015m) 0.002m =5.70 x10 *m?

_ 2300kg/m3x4.50x10” ' m3 x710J/ kg K

= 2585 <
50W /m? [K x5.70x10~*m?

Tt

Solder: Vv =D%/6 = m(0.002m)3 /6 =4.19x10 °m® A = D% = 7{0.002m)? =1.26 10 °m?
- _11,000kg/ m°x4.19x102m?3 x130J/ kg K

t 2 5 2 =958 <
50W/m“ K x1.26x10 “m

Substrate: V = (Lzsb tsb) = (0.025m)? (0.01m) =6.25x10 °m>, A =12, =(0.025m)? =6.25 10 *m?

_ 4000kg/ m3x6.25x10"%m3 x770J/ kg K

=616.0s <
50W / m? [K x6.25x10"*m?

Tt

Substituting Eg. (5.7) into (5.5) and recognizing that (T — T;)/(T« - Tj) = 1 —(6/6;), in which case (T —

Ti)/(Tw -Tj) = 0.99 yields 6/6; = 0.01, it follows that the time required for a component to experience
99% of its maximum possible temperatureriseis

to.g9 =7In(6; /6) =7In(100) =4.61r
Hence,

Chip: t =118.9s, Solder: t =438s, SQubstrate: t = 2840 <
Continued .....



PROBLEM 5.28 (Cont.)

Histories of the three components and temperature differences between a solder ball and its adjoining
components are shown below.

80 )Z/?,,—e oo
s/
S ¢
2 I/
2 50 |yt
g’_ / J\/A/A/A—
2 35 / Nl
A’/A/A/u
20
0 100 200 300 400 500
Time (s)
—8— Tsd
—6— Tch
—&— Tsb
_ 60
(&) A
E 50 il T
g 30 /
g 20
[
o \
£ 10 / "~ o]
. 0 \ﬂ\\e‘*\a&
0 20 40 60 80 100
Time (s)

—6— Tsd-Tch
—&— Tsd-Tsb

Commensurate with their time constants, the fastest and slowest responses to heating are associated
with the solder and substrate, respectively. Accordingly, the largest temperature difference is between
these two components, and it achieves a maximum value of 55°C at

t(maximum stress) = 40s <

(b) With the 4-fold increase in h associated with use of adielectric liquid to heat the components, the
time constants are each reduced by afactor of 4, and the times required to achieve 99% of the
maximum temperature rise are

Chip: t=295s, Solder: t=110s, Substrate: t = 708s <
The time savings is approximately 75%.

COMMENTS: Theforegoing analysis provides only afirst, albeit useful, approximation to the
heating problem. Several of the assumptions are highly approximate, particularly that of a uniform
convection coefficient. The coefficient will vary between components, as well as on the surfaces of
the components. Also, because the solder balls are flattened, there will be areduction in surface area
exposed to the fluid for each component, as well as heat transfer between components, which reduces
differences between time constants for the components.



PROBLEM 5.29

KNOWN: Electrical transformer of approximate cubical shape, 32 mm to aside, dissipates 4.0 W
when operating in ambient air at 20°C with a convection coefficient of 10 W/mZEB(.

FIND: () Develop amodel for estimating the steady-state temperature of the transformer, T(e), and
evaluate T(o), for the operating conditions, and (b) Develop amodel for estimating the temperature-
time history of the transformer if initially the temperature is Tj = T, and suddenly power is applied.
Determine the time required to reach within 5°C of its steady-state operating temperature.
SCHEMATIC:

Transformer model =20°C CVs for

32-mm cubical shape = 4 O W (a) steady-state and
M_= 028kg - 4 - T(@), Pa =4 W .
¢ =400 J/kg-K [ e _» T(t), Pe, Eg
/— Bottom side : L Oy DN
To= 20°C, insul 7 ; : :
b W2k insulated I Aoy &— | .

(b) transient conditions ST

ASSUMPTIONS: (1) Transformer is spatially isothermal object, (2) Initially object isin equilibrium
with its surroundings, (3) Bottom surface is adiabatic.

ANALYSIS: (a) Under steady-state conditions, for the control volume shown in the schematic above,
the energy balanceis

Ein_[.Eout“LEgen =0 O_QCV"'Pe:_hAsEr( ) ~Too[ +Pe =0 N
where Ag = 5x L2 =5x 0.032m x 0.032m = 5.12 x 10> m? , find

T () =Te +Pe/hAS_20°c+4W/(10W/m2[B(x512><10‘3 2) =081C <

(b) Under transient conditions, for the control volume shown above, the energy balanceis
dar

Ein —Eout +I'Egen =Eg O-Qey thRe = MCE 2
Substitute from Eq. (1) for Pe, separate variables, and define the limits of integration.
~h T (t) - TeB+hgT () -TE MCZ—I
B B _ E 3 to 6o d9
N (1) =T (=)g=Me (T T () e o d=

where 8 =T(t) — T(); 6; = Tj = T(0) = To, - T(o0); and 8, = T(tg) — T(o0) with ty asthe time when 8, =
- 5°C. Integrating and rearranging find (see Eg. 5.5),

0.28kgx400 J/kgK (20-98.1)°C

= > 3 5 S =1.67 hour <
10 W/ m? [K x5.12x10°m -5°C

COMMENTS: The spacewise isothermal assumption may not be a gross over simplification since
most of the material is copper and iron, and the external resistance by free convectionis high.

However, by ignoring interna resistance, our estimate for tq is optimistic.



PROBLEM 5.30
KNOWN: Series solution, Eq. 5.39, for transent conduction in a plane wall with convection.

FIND: Midplane (x*=0) and surface (x*=1) temperatures g* for Fo=0.1 and 1, using Bi=0.1, 1 and 10
with only the firg four eigenvalues. Based upon these results, discuss the vaidity of the gpproximate
solutions, Egs. 5.40 and 5.41.

SCHEMATIC:

O, Fo)
L 11@

ASSUMPTIONS: (1) One-dimensiona transient conduction, (2) Constant properties.
ANALYSIS: The series solution, EQ. 5.39, is of the form,
¥
qg =8 Cp exp (-z %Fo) cos(z X )
n=1
where the eigenvalues, z |, and the congtants, C,,, are from Egs. 5.39b and 5.39c.
Zp tanzy =Bi Cn=4sinzn/(22n+sin(22n)).
The eigenvaues are tabulated in Appendix B.3; note, however, that zq and C, are available from Table 5.1.
Thevduesof z, and C,, used to evduate g* are asfollows:

Bi z1 C Z9 C, z3 C; Z4 Ca

0.1 0.3111 1.0160 3.1731 -0.0197 6.2991 0.0050 9.43%4 -0.0022
1 0.8603 1.1191 3.4256 -0.1517 6.4373 0.0466 9.5293 -0.0217

10 14289 1.2620 4.3058 -0.3934 7.2281 0.2104 10.2003 -0.1309

Usng z , and C,, values, the terms of q* , designatedasqf, qg, qg and qZ, are asfollows.

Fo=0.1

Bi=0.1 Bi=1.0 Bi=10
X* 0 1 0 1 0 1
% 1.0062 0.9579 1.0393 0.6778 1.0289 0.1455
9z -0.0072 0.0072 -0.0469 0.0450 -0.0616 0.0244
93 0.0001 0.0001 0.0007 0.0007 0.0011 0.0006
a4 -2.99° 107  3.00° 107 2.47° 10° 246°10° -3.96 10° 283 10°
q 0.9991 0.9652 0.9931 0.7235 0.9684 0.1705

Continued .....



PROBLEM 5.30(Cont.)

Fo=1
Bi=0.1 Bi=1.0 Bi=10

x* 0 1 0 1 0 1

o 0.9223 0.8780 0.5339 0.3482 0.1638 0.0232
9o 835 10" 835 10"  -1.22°10° 117 10° 349 10° 138 10°
g3 7.04 10% - 4.70° 107 - 4.30° 10 -

a4 477 10 - 7.93 10 - 8.52 10 -

q 0.9223 0.8780 0.5339 0.3482 0.1638 0.0232

The tabulated results for q* =q* (x*, Bi, Fo) demondtrate that for Fo=1, the first eigenvaue is aufficent to

accurately represent the series. However, for Fo=0.1, three eigenvalues are required for accurate
representation.

A more detailed analysis would show that a practicd criterion for representation of the series solution by one
ggenvaueis Fo>0.2. For these Situations the approximate solutions, Egs. 5.40 and 5.41, are appropriate.
For the midplane, X =0, the first two eigenvaues for Fo=0.2 are;

Fo=0.2 x*=0
Bi 0.1 1.0 10
H 0.9965 0.9651 0.8389
9 -0.00226  -0.0145 -0.0096
q" 0.9939 0.9506 0.8293
Error,% +0.26 +1.53 +1.16

The percentage error shown in the last row of the above table is due to the effect of the second term. For
Bi=0.1, neglecting the second term provides an error of 0.26%. For Bi=1, the error is 1.53%.

Hence we conclude that the gpproximate series solutions (with only one eigenvaue) provides systematicaly
high results, but by less than 1.5%, for the Biot number range from 0.1 to 10.



PROBLEM 5.31

KNOWN: One-dimensond wal, initidly a a uniform temperature, Tj, is suddenly exposed to a
convection process (Ty, h). For wall #1, the time (t1 = 100s) required to reach a specified
temperature a x = L isprescribed, T(L1, t1) = 315°C.

FIND: For wdl #2 of different thickness and thermad conditions, the time, to, required for T(L 2, t2)
= 28°C.

SCHEMATIC:
Tix<0)=T; T(L,,100s)=315°C
T(Lz,-rz_) =28.5°C
Ton | 11
Lex L

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.
ANALYSIS: The properties, thickness and therma conditions for the two walls are;

wal  Lm) a9 KkWMK)  T(°C) Ty(C)  hWImK)

1 010 1510° 50 300 400 200

2 040 2510° 100 30 20 100
The dimengonless functiona dependence for the one-dimensiond, trangent temperature distribution,
Eq. 5.38, is

« T(xt)- Ty

q :—:f(x*,Bi,Fo)
Ti- Ty

where
X =x/L Bi = hL/k Fo=at/L2.

If the parameters x*, Bi, and Fo are the same for both walls, then q{ = qE. Evduate these
parameters:

wadl X* Bi Fo q*
1 1 0.40 0.150 0.85
2 1 040 1563 10°t, 085
where
qf _315- 400 _ 0.85 q; _285-20 _ 0.85
300- 400 30- 20
It follows that

Fop=Fo; 1563 10™%,=0.150
t, = 960s, <



PROBLEM 5.32

KNOWN: The chuck of a semiconductor processing tool, initially at a uniform temperature of T; =
100°C, is cooled on its top surface by supply air at 20°C with a convection coefficient of 50 W/m?IK.

FIND: (a) Time required for the lower surface to reach 25°C, and (b) Compute and plot the time-to-cool
as afunction of the convection coefficient for the range 10 < h < 2000 W/m?K; comment on the
effectiveness of the head design as a method for cooling the chuck.

SCHEMATIC:
l Air supply, T,.= 20°C

*—— Chuck, T(x,0)=T;=100°C

=T
% Cooling head
I NN
4| E
| Exit air, Teo
| h =50 W/m2:K
&,7 i —_—
|

Heater coil
(deactivated)

\ Insulation

ASSUMPTIONS: (1) One-dimensional, transient conduction in the chuck, (2) Lower surfaceis
perfectly insulated, (3) Uniform convection coefficient and air temperature over the upper surface of the
chuck, and (4) Constant properties.

PROPERTIES: Table A.1, Aluminum alloy 2024 ( (25 + 100)°C/ 2 = 335K): p = 2770 kg/m®, ¢, =
880 JkgK, k = 179 W/mIK.

ANALYSIS: (a) The Biot number for the chuck with h = 50 W/m’K is

hL _50W/m? K x0.025m

i=— = =0.007 <0.1 (1)
k 179W/mK
so that the lumped capacitance method is appropriate. Using Eq. 5.5, with V/As=1L,
- pve nﬂ 0=T-Ty 6 =T —Te
hAg 6
100-20)°C
t= (2770kg/m3 x0.025m x880J/kg (K /50W/m? m)lng
(25-20)°C
t =3379s=56.3min <

Continued...



PROBLEM 5.32 (Cont.)

(b) When h = 2000 W/m?K, using Eq. (1), find Bi = 0.28 > 0.1 so that the series solution, Section 5.51,
for the plane wall with convection must be used. Using the IHT Transient Conduction, Plane Wall
Model, the time-to-cool was calculated as afunction of the convection coefficient. Free convection
cooling conduction corresponds to h = 10 W/m?K and the time-to-cool is 282 minutes. With the cooling
head design, the time-to-cool can be substantially decreased if the convection coefficient can be
increased as shown below.

60

.
A

Time-to-cool, t (min)

—
—

0 1000 2000

Convection coefficient, h (W/m"2.K)



PROBLEM 6.33
KNOWN: Laminar boundary layer flow of air at 20°C and 1 atm having d; =1.13 0.

FIND: Ratio /4 when fluid is ethylene glycol for same conditions.

SCHEMATIC:
> )
AN 5 .
20T, 1atm
7 7.7 7-7) 777}

ASSUMPTIONS: (1) Laminar flow.

PROPERTIES: Table A-4, Air (293K, 1 atm): Pr = 0.709; Table A-5, Ethylene glycol
(293K): Pr=211.

ANALYSIS: The Prandtl number strongly influences relative growth of the velocity, 6, and
thermal, J;, boundary layers. For laminar flow, the approximate relationship is given by

=2
el
where n is a positive coefficient. Substituting the values for air

L
113

find that n = 0.355. Hence, for ethylene glycol it follows that

9 _ 0385 - 2110355 _g 69 <

Ot

(0.709)" =

COMMENTS: (1) For laminar flow, generally we find n = 0.33. In which case, 8/ J; =5.85.

(2) Recognize the physical importance of v > a, which gives large values of the Prandtl
number, and causes o > 6.



PROBLEM 6.34
KNOWN: Air, water, engine oil or mercury at 300K in laminar, parallel flow over aflat plate.
FIND: Sketch of velocity and thermal boundary layer thickness.
ASSUMPTIONS: (1) Laminar flow.
PROPERTIES: For thefluidsat 300K:

Fluid Table Pr
Air A4 0.71
Water A.6 5.83
EngineOil A5 6400
Mercury A5 0.025
ANALYSIS: For laminar, boundary layer flow over aflat plate.
O _pn
el
wheren > 0. Hence, the boundary layers appear as shown below.
Air:
Water:
Engine Qil:
Mercury:
——— "7 4
- - -
-
-~
-~ é

COMMENTS: Although Pr strongly influences relative boundary layer development in laminar
flow, itsinfluence is weak for turbulent flow.



PROBLEM 6.35

KNOWN: Expression for the local heat transfer coefficient of air at prescribed velocity and
temperature flowing over electronic elements on acircuit board and heat dissipation rate for a4 x 4
mm chip located 120mm from the leading edge.

FIND: Surface temperature of the chip surface, Tg

SCHEMATIC:
Appropriate correlation:

- .85 -
_'>7;=25°C 'e’- 47777” NU.X=0.04'Rexo Pf‘ o
> V=10m/s l |
45— Chi
AN \H—Boaf-g
L> % L=120mm

ASSUMPTIONS: (1) Steady-state conditions, (2) Power dissipated within chip islost by convection
across the upper surface only, (3) Chip surface isisothermal, (4) The average heat transfer coefficient
for the chip surface is equivalent to the local valueat x = L.

PROPERTIES: Table A-4, Air (assume Tg = 45°C, Tf = (45 + 25)/2 = 35°C = 308K, latm): v =
16.69 x 10 °m?/s, k = 26.9 x 10" W/mIK, Pr = 0.703.
ANALYSIS: From an energy balance on the chip (see above),

Qconv = Eg =30W. (@)
Newton’s law of cooling for the upper chip surface can be written as
Ts =Tos +0dconv / N Achip 2

where Achip = (2. Assumethat the average heat transfer coefficient (ﬁ) over the chip surfaceis

equivalent to the local coefficient evaluated at x = L. That is, hepjp = hy (L) where thelocal
coefficient can be evaluated from the special correlation for this situation,

.85
ovx? prl/3

v
and substituting numerical values with x = L, find

.85
hy = 0.04% L prl/3
v

NUy :thX =0.04

[0.0269 W/m K[ 010 m/sx0.120 m P2
H 0120m H Heeox100 m2/s
The surface temperature of the chip isfrom Eg. (2),

Tg = 25°C+30x10°3 W/107 W/m? [K x(0.004m)* =42.5°C. <
COMMENTS: (1) Note that the estimated value for T used to evaluate the air properties was
reasonable. (2) Alternatively, we could have evaluated hchip by performing the integration of the
local value, h(x).

Y3 107 wim? K.

hy =0.04 (0.703)



PROBLEM 6.36

KNOWN: Location and dimensions of computer chip on acircuit board. Form of the convection
correlation. Maximum allowable chip temperature and surface emissivity. Temperature of cooling air
and surroundings.

FIND: Effect of air velocity on maximum power dissipation, first without and then with consideration of
radiation effects.

SCHEMATIC:

Ts,r=25°C
/ sur

qll "
rad \ / qCOHV
=4 mm
Tw=25°C m——
[ 1 2 £  —
1<V<25m/s [ 7 £ 2 Chip
}_, N \ (Tc.max = 85 0C,£=0.8)

L =120
ASSUMPTIONS: (1) Steady-state, (2) Negligible temperature variations in chip, (3) Heat transfer
exclusively from the top surface of the chip, (4) The local heat transfer coefficient at X = L provides a
good approximation to the average heat transfer coefficient for the chip surface.

PROPERTIES: TableA4,air (T =(T, +T¢)/2 =328K): v =18.71x 10° m?/s, k = 0.0284 W/m[K,
Pr =0.703.

ANALYSIS: Performing an energy balance for a control surface about the chip, we obtain P, = Qeony +
G, WHere Geony = DA (T = Too ) Graa = hyAg (To =Ty ), and hy = g0 (T, + Ty )(TCZ +T§Jr) . With
h=h_, the convection coefficient may be determined from the correlation provided in Problem 6.35
(Nu_ = 0.04Re?® Pr) Hence,

P = 2 (D0 (/L )ReD® 3 (1, - ., ) o0 (T, +Ta ) (12 4781 ) (Te ~Teur

where Re. = VL/v. Computing the right side of this expression for € = 0 and € = 0.85, we obtain the
following results.

0.3

0.25

0.2 A
0.15 /

0.05 /

0

Chip power, Pc(W)

0 5 10 15 20 25

Velocity, V(m/s)

—>— epsilon = 0.85
—&— epsilon =0

Since h, increases as V*®, the chip power must increase with V in the same manner. Radiation exchange
increases P, by afixed, but small (6 mW) amount. While h, varies from 14.5 to 223 W/m’K over the
prescribed velocity range, h, = 6.5 W/m?K is a constant, independent of V.

COMMENTS: Alternatively, h could have been evaluated by integrating h, over the range 118 < x <
122 mm to obtain the appropriate average. However, the value would be extremely close to hy-, .



PROBLEM 6.37

KNOWN: Form of Nusselt number for flow of air or adielectric liquid over components of a circuit
card.

FIND: Ratios of time constants associated with intermittent heating and cooling. Fluid that provides
faster thermal response.

PROPERTIES: Prescribed. Air: k = 0.026 W/mK, n=2" 10~ m?s, Pr = 0.71. Didectric liquid: k
= 0.064 W/mK, n = 10° m?/s, Pr = 25.

ANALYSIS: From Eq. 5.7, the thermal time constant is

r'c
ti==—o0
hAg

Since the only variable that changes with the fluid is the convection coefficient, where

F:EN_ —£CReL pr" _Ecaé/"S prn
L L &n g
the desired ratio reduces to
Lt air(a) :E_d:k_damabmé@rd g
Ut dielectric(d) Na ka@d g &P o
0.8
t APPCEYs) .0.33
ta_0064%°107°0 @25 5 _ .

tt,d_0.026§ 106 5 &0715

Since its time constant is nearly two orders of magnitude smaller than that of the air, the dielectric liquid
is clearly the fluid of choice.

COMMENTS: The accelerated testing procedure suggested by this problem is commonly used to
test the durability of electronic packages.



PROBLEM 6.38

KNOWN: Form of the Nusselt number correlation for forced convection and fluid properties.

FIND: Expression for figure of merit Fr and values for air, water and a didectric liquid.

PROPERTIES: Prescribed. Air: k = 0.026 W/nK, n=15" 10° me/s, Pr = 0.70. Water: k =
0.600 W/mK, n = 10° m?/s, Pr = 5.0. Dielectric liquid: k = 0.064 W/mK, n = 10° m?/s, Pr = 25

ANALYSIS: With Nu ~ Rerlj1 Prn, the convection coefficient may be expressed as

~k%/|_ Gmprn~ Vm @Prng
L&n g Ll—ménm+

The figure of merit is therefore

kPr"
Fr=—r

n

and for the three fluids, with m = 0.80 and n = 0.33,

Air Water Didlectric
167 64,400 11,700

A (W 308/ 2.6 ,K)

Water is clearly the superior heat transfer fluid, while air is the least effective.

COMMENTS: The figure of merit indicates that heat transfer is enhanced by fluids of large k, large

Pr and small n.



PROBLEM 6.39

KNOWN: Ambient, interior and dewpoint temperatures. V ehicle speed and dimensions of
windshield. Heat transfer correlation for external flow.

FIND: Minimum value of convection coefficient needed to prevent condensation on interior surface
of windshield.

SCHEMATIC:

/’ fa <—~4w~4wv~dvvw~<—q
/ f@-
t=6mm\-V,‘_\4/L—800mm

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional heat transfer, (3) Constant properties.

PROPERTIES Table A-3, glass: kg = 1.4 W/mIK. Prescribed, air: k =0.023 W/mIK, v = 12.5 x
10 m/s Pr=0.70.

ANALYSIS: From the prescribed thermal circuit, conservation of energy yields
Tooi =Tsi _ Tsi ~Too,0

Uhi  t/kg+1/hg

where hy, may be obtained from the correlation

Nu, _h—kL_oosoR 8prl/3

With V = (70 mph x 1585 m/mile)/3600 s/h = 30.8 m/s, Rep = (30.8 m's x 0.800 m)/12.5 x 10°° m?/s
=1.97 x 10° and

_ 0.8
o = 202W/mK 0.030(1.97x106) (0.70)Y3 =83.1W /m?
0.800 m
From the energy balance, with Tgj = Tgp = 10°C
-1
(T -Two)0t 10
i = e
(Too,i ‘Ts,i) ﬁ@ hoﬁ
-1
s (10+15)°c) 0006 m 1 §
' (50-10)°CL4W/mIK g3, 1W/m2[ﬂ<ﬁ
hy =38.3W/m? K <

COMMENTS: The output of the fan in the automobil€’ s heater/defroster system must maintain a
velocity for flow over the inner surface that is large enough to provide the foregoing value of hy. In

addition, the output of the heater must be sufficient to maintain the prescribed value of T, ; @t this
velocity.



PROBLEM 6.40
KNOWN: Drag force and air flow conditions associated with aflat plate.
FIND: Rate of heat transfer from the plate.
SCHEMATIC:

Up =40 777/8 D /\

Tw :ZOOC —D 0.2711
prlatm

ASSUMPTIONS: (1) Chilton-Colburn analogy is applicable.

7=120°C

PROPERTIES: Table A-4, Air (70°C,1 atm): p = 1.018 kg/m", Cp = 1009 JkgIK, Pr = 0.70,
-6 2
v=2022x%x10 m/s.

ANALYSIS: Therate of heat transfer from the plateis
q= 2ﬁ(|_2) (Ts~Too)

where h may be obtained from the Chilton-Colburn anal ogy,

!

—qp?3-_ N p2r3
P Ue Cp
L _1 (0.075N/2)/(0.2m)°

Jo ugo /12 21018 kg/m3 (40 m/s)2/2

—

H:

N|_O'
NI, N

=576 x10™4.

Hence,
-2/3

=l
I

C
7fp Uso Cp Pr

h=576x10" (1.018kg/m3)40m/s (10097kg K ) (0.70)72/3

h =30 W/m? [K.
The heat rateis
q= 2(30 W/m? EIK) (0.2m)* (120-20)° C

q=240W. <

COMMENTS: Although the flow islaminar over the entire surface (Re;. = ueL/v =40 m/s

x 0.2m/20.22 x 10'6m2/s =4.0x 105), the pressure gradient is zero and the Chilton-Colburn
analogy is applicable to average, aswell aslocal, surface conditions. Note that the only
contribution to the drag force is made by the surface shear stress.



PROBLEM 6.41

KNOWN: Air flow conditions and drag force associated with a heater of prescribed surface
temperature and area.

FIND: Required heater power.

SCHEMATIC:
Upy=15m) A=0.25m2
o= /S, T=140°C
To=15°C, 5 ]‘9 )
p=latm —>F=0.25N

| IANANANANA VAN

ASSUMPTIONS: (1) Steady-state conditions, (2) Reynolds analogy is applicable, (3)
Bottom surface is adiabatic.

PROPERTIES: Table A-4, Air (Tf = 350K, 1atm): p = 0.995 kg/m”, ¢, = 1009 JkglK, Pr =
0.700.

ANALYSIS: The average shear stress and friction coefficient are
- - _ 025N

A 025m2
e _ 1N/m?

puz/2 0.995kgm3 (15m/s)2/ 2

=1 N/m?

=8.93x1073

Ol

From the Reynolds analogy,

S=— N -Cip23
P UooCp 2

Solving for h and substituting numerical values, find

h = 0.995 kg/m> (15m/s) 1009 Jkg K (8.93x10‘3 / 2) (0.7)72/3

h=85W/m? K.
Hence, the heat rateis

g=hA (Ts-T,) =85W/m? [K (0.25m2) (140-15)°C

q=2.66 kW. <

COMMENTS: Due to bottom heat losses, which have been assumed negligible, the actual
power requirement would exceed 2.66 kW.



PROBLEM 6.42

KNOWN: Heat transfer correlation associated with parallel flow over arough flat plate.
Velocity and temperature of air flow over the plate.

FIND: Surface shear stress| m from the leading edge.
SCHEMATIC:

Up=50mfs —>
I L L L VARV |
—x=lm ——>]

&——Nuy =0.04Rex?? Pr'5

ASSUMPTIONS: (1) Modified Reynolds analogy is applicable, (2) Constant properties.

PROPERTIES: Table A-4, Air (300K, 1atm): v = 15.89 x 10-6m2/S, Pr=0.71,p=116

kg/m®.

ANALYSIS: Applying the Chilton-Colburn analogy

0.9 5 1/3
Cr —st, Pr2/3 = Nuy ,2/3 _004Re™ P~ ,2/3
2 Rey Pr Rey Pr
St - 004ReD?
2
where
Re, =YX - S0MSXIM 45,006

V. 1589x10m?/s
Hence, the friction coefficient is

6 -0.1 2
Cs =0.08 (3.15><10 ) =0.0179 =rs/(p us /2)
and the surface shear stressis

ts=Ct (p U3 12) 2001791 16kg/m® (50 mis) /2

Tq = 25.96 kg/m 32 = 25.96 N/m?.
COMMENTS: Note that turbulent flow will exist at the designated |ocation.



PROBLEM 6.43

KNOWN: Nominal operating conditions of aircraft and characteristic length and average friction
coefficient of wing.

FIND: Average heat flux needed to maintain prescribed surface temperature of wing.
SCHEMATIC:

Electrical Airfoil

heater = 59C
T. = -230C C;=0.0025
<+—
V =100 m/s

le - S
€ L=2m >
ASSUMPTIONS: (1) Applicahility of modified Reynolds analogy, (2) Constant properties.

PROPERTIES: Prescribed, Air: v = 16.3 x 10°° m?/s, k = 0.022 W/mK, Pr = 0.72.

ANALYSIS: The average heat flux that must be maintained over the surface of the air foil is
q =h(Ts-T, ), where the average convection coefficient may be obtained from the modified
Reynolds analogy.

_&: pr2/3- NUL ooz Nup
Re_ Pr Re, Pr/3

Hence, with Re, = VL /v =100m/s(2m)/16.3x10 °m? /s =1.23x10’,

— 0.0025 (

NUL )1/3

1.23x 107)(0 72)"'° =13,780
| 0022w/ mK

13,780) =152W/m?
2m

n=XNu
L

q =152W/m? (K B - (-23)3°C =4260W /m? <

COMMENTS: If theflow isturbulent over the entire airfoil, the modified Reynolds anal ogy
provides a good measure of the relationship between surface friction and heat transfer. The relation
becomes more approximate with increasing laminar boundary layer development on the surface and
increasing values of the magnitude of the pressure gradient.



PROBLEM 6.44

KNOWN: Average frictional shear stress of 7 = 0.0625 N/m2 on upper surface of circuit board with
densely packed integrated circuits (1Cs)

FIND: Allowable power dissipation from the upper surface of the board if the average surface
temperature of the ICs must not exceed arise of 25°C above ambient air temperature.

SCHEMATIC:

—>

CAr> Ts - Tp < 25°C

T —> Tg = 0.0625 N/m? Ag = 120x120 mm

@
—_—

Up=2mM/s T ______ .
|| | | | N
\———-—-—.—- ‘.—-—-—-—w—-—l
| |

Circuit board with densely packed ICs

ASSUMPTIONS: (1) Steady-state conditions, (2) The modified Reynolds anaogy is applicable, (3)
Negligible heat transfer from bottom side of the circuit board, and (4) Thermophysical properties
required for the analysis evaluated at 300 K,
PROPERTIES: Table A-4, Air (Tf=300K, 1atm): p=1.161 kg/ma, Cp = 1007 JkgK, Pr=0.707.
ANALYSIS: The power dissipation from the circuit board can be calculated from the convection rate
equation assuming an excess temperature (T - To) = 25°C.

q=hAg(Ts ~Tw) D
The average convection coefficient can be estimated from the Reynolds anal ogy and the measured
average frictional shear stress Ts.

Ct _g pr2/3 o :T—Sé St=_ 2.34)
2 pVel2 pVcy
With V = u, and substituting numerical values, find h.
s - h Lo23
P vZ p Vcp
_ TsC
h= S *P p—2/3
V
2
h= 0.0625 N/ m“x1007 J/ kg [K (0_707)—2/3 ~39.7 W/m2 K

2m/s

Substituting this result into Eq. (1), the allowable power dissipation is
q=39.7 W/m? (K x(0.120x0.120)m? x25 K =14.3 W <

COMMENTS: For this analyses using the modified or Chilton-Colburn analogy, we found Cs =
0.0269 and St = 0.0170. Using the Reynolds analogy, the results are dightly different with

h=315W/m? K andq=11.3W.



PROBLEM 8.21
KNOWN: Water is heated in atube having awall flux that is dependent upon the wall temperature.
FIND: (a) Beginning with a properly defined differential control volumein the tube, derive
expressions that can be used to obtain the temperatures for the water and the wall surface as a
function of distance from the inlet, Tm(X) and T4(X), respectively; (b) Using a numerical integration

scheme, calculate and plot the temperature distributions, Ty,(X) and T(x), on the same graph. Identify
and comment on the main features of the distributions; and (¢) Calculate the total heat transfer rate to
the water.

SCHEMATIC:
"(X)=q" [1+o(Ts-T Q. = 1x10* Wim?2
qs( ) qs,o[ (Ts - Tref)] asfo,Z o ey l )
Tref = 20°C :-é__ il
/ ' ' — Tr(X)
T>_J:_.'4{|’__. m
—D — s o — o . o — - N e e e o = - — |\ m i :
m = 0.1 kg/s Tm.o T
: —> dx  K—
Tmi=20°C - _ 2. I
m,i |_> o Tube, D=15mm, h=3000 Wim*K 1 _ Control volume

ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed flow and thermal conditions, (3)
No losses to the outer surface of the tube, and (3) Constant properties.

PROPERTIES: Table A6, Water (T =(Tm,i +Tm,0)/2=300K): c,= 4179 JkgK

ANALYSIS: (@) The properly defined control volume of perimeter P = D shown in the above
schematic follows from Fig. 8.6. The energy balance on the CV includes advection, convection at the
inner tube surface, and the heat flux dissipated in the tube wall. (See Eq. 8.38).

mcpcg—xm:q's(x)P:thl's(x)—Tm (xE (1,2)

where qgg(x) is dependent upon T«(x) according to the relation
gs(x)=dsoR+a (Ts (%) = Tret )B ©)

(b) Egs. (1 and 2) with Eq. (3) can be solved by numerical integration using the Der function in IHT
as shown in Comment 1. The temperature distributions for the water and wall surface are plotted
below.

80

60

40

Temperature, Tm or Ts (C)

20 — 1

0 1 2

Distance along tube, x (m)

—&— Water mean temperature, Tm(X)
Tube surface temperature, Ts(x)

Continued .....



PROBLEM 8.21 (Cont.)
(c) Thetotal heat transfer to the water can be evaluated from an overall energy balance on the water,

q=rmcp (Tm,o ~Tm,i ) (4)

q=0.1kg/sx4179 J/ kg K (344 -20)K =6018 W <

Alternatively, the heat rate can be evaluated by integration of the heat flux from the tube surface over
the length of the tube,

L
a=[ ds(x)Pdx (5)
0
where gg (x) isgiven by Eq. (3), and Tg(x) and Ty (X) are determined from the differential form of
the energy equation, Egs. (1) and (2). The result as shown in the IHT code below is 6005 W.
COMMENTS: (1) Note that Tyn(x) increases with distance greater than linearly, as expected since gg(x) does.
Also as expected, the difference, Tg(X) — Tm(X), likewise increases with distance greater than linearly.

(2) Inthe foregoing analysis, cp is evaluated at the mean fluid temperature Ty = (Tmjj + Tm,0)/2.

(3) The IHT code representing the foregoing equations to calculate and plot the temperature
distribution and to calcul ate the total heat rate to the water is shown below.

/* Results: integration for distributions; conditions at x =2 m

F xTs Ts q' g'"s_x X m

11.64 73.18 5483 1.164E5 2 34.39

3 30 1414 3E4 0 20 *

/* Results: heat rate by energy balances on fluid and tube surface
g_eb qg_hf

6018 6005 *

/* Results: for evaluating cp at Tm

Ts cp g"s_x X Tm

73.31 4179 1.166E5 2 34.44

30 4179 3E4 0 20 */

/I Energy balances

mdot * cp * der(Tm,x) = q' /I Energy balance, Eq. 8.38
q=q's x*P

g's_x=q"o*F_xTs

g'=h*P*(Ts-Tm) /I Convection rate equation
P=pi*D

/I Surface heat flux specification
F_xTs = (1 + alpha * (Ts -Tref))
alpha=0.2

Tref =20

/I Overall heat rate

/I Energy balance on the fluid

g_eb = mdot * cp * (Tmo - Tmi)

Tmi =20

Tmo = 34.4 /I From initial solve
/I Integration of the surface heat flux

gq_hf= g"o* P * INTEGRAL(F_XTs, x)

/[ Input variables

mdot = 0.1

D =0.015

h = 3000

g'o=1.0e4

IIL=2 /I Limit of integration over x
/I Tmi =20 /I Initial condition for integration

/I Water property functions :T dependence, From Table A.6
/I Units: T(K), p(bars);

xx=0 /I Quality (O=sat liquid or 1=sat vapor)

cp = cp_Tx("Water", Tmm,xx) /I Specific heat, J/kg-K
Tmm = (20 + 34.4) / 2 + 273



PROBLEM 8.22
KNOWN: Fow rate of engine ail through along tube.

FIND: () Heat transfer coefficient, h, (b) Outlet temperature of oil, T, o.

SCHEMATIC:
o Tube, D=3mm
T,=100°C . L=30m
M= 002kgls — U & Z 8 As=mDL

Tm, i =60°C Tmo

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Combined entry
conditions exi<.

PROPERTIES: Table A-5, EngineOil (Ts = 100°C = 373K): my=1.73° 10> Nogm?; Table
A-5, Engine Oil (Tm =77°C =350K ): Cp = 2118 JkgK, m=3.56" 10~ Nogint’, k = 0.138

W/mX, Pr = 546.
ANALYSIS: (a) Theoverdl energy baance and rate equations have the form
q=mcp (Tm,o - Tm,| ) g =hAgDTim (1.2)

Usng Eg. 8.42b, with P=pD, and Eg. 8.6

DT _Ts- Tm,o — exp ® P 0 3

Rep = dm 4" 0.02 kg/s

PDm p’ 310 3n" 356" 10" 2N ¢m?

=238.

For laminar and combined entry conditions, use Eq. 8.57

014 13
aRep Pro’> @m0 _® 238546 0 a8560

€ LD 3 &My  &0m3 103my &L735

Nup =1.86 =483

h=Nupk/D=4.83" 0.138 W/mxXK/3" 10" 3m = 222 W/m? XK. <
(b) Using Eq. (3) with the foregoing value of h,
(200- T o) C o & P 3710 %m” 30m 0

C222WIME K = T =909°C. <
(4]

(100_ 60)° C P 0.02kg/s” 2118 Jkg XK

COMMENTS: (1) Notethat requirements for the correlation, Eq. 8.57, are satisfied.
(2) The assumption of Ty, = 77°C for selecting property values was satisfactory.

(3) For thermd entry effect only, Eq. 8.56, h = 201 W/m2 XK and Tm,0 = 89.5°C.



PROBLEM 8.23

KNOWN: Inlet temperature and flowrate of oil flowing through atube of prescribed surface
temperature and geometry.

FIND: (a) Qil outlet temperature and total heat transfer rate, and (b) Effect of flowrate.
SCHEMATIC:

0.5¢4m< 2.0kgls

Tmi=20°C _~7
ASSUMPTIONS: (1) Negligible temperature drop across tube wall, (2) Negligible kinetic energy,
potential energy and flow work effects.

PROPERTIES: Table A.5, Engine oil (assume T, = 140°C, hence 'T'm =80°C=353K): p=852
kg/m®, v = 37.5 x 10° m/s, k = 138 x 10° W/mIK, Pr = 490, p = piJ = 0.032 kg/ms, ¢, = 2131 JkglK.

ANALYSIS: (a) For constant surface temperature the oil outlet temperature may be obtained from Eq.
8.42b. Hence

U apL U
Tmo=Ts _(Ts ~Tm,| )eXpﬁ—F h@
p

To determine h, first calculate Rep from Eq. 8.6,

4rn 4(0.5kg/s) _ 208

R = = =
D =Dy n{0.05m)(0.032kg/m3)

Hence the flow islaminar. Moreover, from Eg. 8.23 the thermal entry length is

Xfd ¢ = 0.05D Rep Pr =0.05(0.05m)(398)(490) =486m.

Since L = 25 mthe flow isfar from being thermally fully developed. However, from Eq. 8.3, Xigh =
0.05DRep = 0.05(0.05 m)(398) = 1 mand it is reasonabl e to assume fully developed hydrodynamic

conditions throughout the tube. Hence h may be determined from Eq. 8.56
0.0668(D/L )Rep Pr

1+0.04F(D/L)Rep P>

Nup =3.66+

With (D/L)RepPr = (0.05/25)398 x 490 = 390, it follows that

26

Nup =3.66 + =11.95.
1+2.14

Hence, E = N_UD 5 :1195%
D 0.05m

=33W/m? K and it follows that

Continued...



PROBLEM 8.23 (Cont.)

. . . 0  m(0.05m)(25m) o [0
Tm,0 =150 C—(150 C-20 C)expD— x33W/m? KQ
] 0.5kg/sx2131J/kg (K B

Tmyo = 35°C. <

From the overall energy balance, Eq. 8.37, it follows that
q=rcp (Tm,o ~Tm,i ) =0.5kg/sx2131/kg K x(35 —20)° C

q= 15,980 W. <

The value of Ty, has been grossly overestimated in evaluating the properties. The properties should be
re-evaluated at T = (20 + 35)/2 = 27°C and the calculations repeated. Iteration should continue until
satisfactory convergence is achieved between the calculated and assumed values of Tr,.. Following such

aprocedure, one would obtain T, = 36.4°C, Rep = 27.8, h =328 W/m?IK, and g=15660W. The
small effect of reevaluating the propertiesis attributed to the compensating effects on Rep (alarge
decrease) and Pr (alarge increase).

(b) The effect of flowrate on T, and g was determined by using the appropriate IHT Correlations and
Properties Toolpads.

40 30000
o 36
g
= S 25000
% . Bf /
@ o
3 g
g‘ 28 =
g £ 20000
&
5 24
o

20 15000

0.5 1 15 2 0.5 1 15 2
Mass flowrate, mdot(kg/s) Mass flowrate, mdot(kg/s)

The heat rate increases with increasing m due to the corresponding increase in Rep and hence h.
However, theincrease is not proportional to m, causing (Tm,o ~Tmi,i ) = q/ r'ncp , and hence Ty,,, to

decrease with increasing m. The maximum heat rate corresponds to the maximum flowrate (I = 0.20

Kg/s).

COMMENTS: Notethat significant error would be introduced by assuming fully devel oped thermal

conditions and WD = 3.66. Theflow remainswell within the laminar region over the entire range of
m.



PROBLEM 8.24

KNOWN: Inlet temperature and flowrate of oil moving through atube of prescribed diameter and
surface temperature.

FIND: (a) Qil outlet temperature T, for two tube lengths, 5 m and 100 m, and log mean and arithmetic
mean temperature differences, (b) Effect of L on T, and Nup .

SCHEMATIC:

m= 0.5kg/s
Tpmi=25°C

ASSUMPTIONS: (1) Steady-state conditions, (2) Negligible kinetic energy, potential energy and flow
work changes, (3) Constant properties.

PROPERTIES: Table A4, Oil (330K): ¢, = 2035 JkgK, p = 0.0836 N&/nv’, k = 0.141 W/mIK, Pr =
1205.

ANALYSIS: (a) Using Egs. 8.42b and86

DL -
Tmo=Ts— (Ts ~Tm,i eXpﬁ —h@
mep

Rep = 4 _ 4x0.5kg/s

5 =304.6
MDY 77x0.025m x0.0836N 3/ m

Since entry Iength effects will be significant, use Eq. 8.56
E_k Sg o5, 0:0688(D/L)Rep P 0 0.141W/mK ) g4 245x10%D/L 5
DL 1+004gD/L)RepPif °H  0025m [ 14 205(D/L)* %

For L =5m, h=564(3.66+17.51) =119W/m? [K , hence

0
Tm0:100°C—(75°C) exp X 0025m><5mx119W/m —28.4°C <
’ 0.5kg/sx 2035J/kg (K
For L =100m, h=5.64(3.66+3.38) =40W/m? (K, Tpo=44.9°C. <

Also, for L =5m,

=08l I8 g0 ATan = (8T, +4T;)/2=733C <
7 in(aTy/ATy)  ¢n(71.6/75)
For L =100 m, ATy =645°C, ATy =65.1°C <

(b) The effect of tube length on the outlet temperature and Nusselt number was determined by using the
Correlations and Properties Toolpads of IHT.

Continued...



PROBLEM 8.24 (Cont.)
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The outlet temperature approaches the surface temperature with increasing L, but even for L = 100 m,

Tmoiswell below T.. Although N_uD decays with increasing L, it is till well above the fully devel oped
value of Nup ¢ = 3.66.

COMMENTS: (1) The average, mean temperature, 'T'm = 330 K, was significantly overestimated in
part (8). The accuracy may be improved by evaluating the properties at alower temperature. (2) Use of
AT.minstead of ATy, isreasonable for small to moderate values of (Tm, - Tmo). For large values of

(Tm'| - Tmyo), ATgm ShOUId be uw-



PROBLEM 8.25

KNOWN: Qil at 80°C enters a single-tube preheater of 9-mm diameter and 5-m length; tube surface
maintained at 165°C by swirling combustion gases.

FIND: Determine the flow rate and heat transfer rate when the outlet temperature is 95°C.
SCHEMATIC:

T = 165°C
= = e
. — -
m="?
Tm,i =80°C
|
|—>x Tube, D =9 mm L=5m

ASSUMPTIONS: (1) Combined entry length, laminar flow, (2) Tube wall isisothermal, (3)
Negligible kinetic and potential energy, and flow work, (4) Constant properties.

PROPERTIES: Table A-5, Englne oil, new (Tm = (Tm,i + Tmo)/2=361K): p=8475 kg/m Cp=
2163 JkgK, v = 2.931 x 10°m /s k =0.1879 W/mIK, Pr = 3902; (Ts= 430 K): pg = 0.047 NEk/m2

ANALYSIS: Theoverall energy balance, Eq. 8.37, and rate equation, Eq. 8.42b, are
q=mcy (Tm,o ~Tmii ) D

Ts-T, U pLhU
s 'mo _ pﬁ_ ﬁ )
Ts=Tmii mcp

Not knowing the flow rate m, the Reynolds number cannot be calculated. Assume that the flow is

laminar, and the combined entry length condition occurs. The average convection coefficient can be
estimated using the Sieder-Tate correlation, Eq. 8.57,

14
— _hD Rep Pri3ou
N =— =1
Up ” 86B7L/D B EIJ_SE (3

where all properties are evaluated at Ty = (Tmj + Tim,0)/2, except for ps at the wall temperature Ts.
The Reynolds number follows from Eq. 8.6,
Rep =4m/mD u (4)

A tedious trial-and-error solution is avoided by using IHT to solve the system of equations with the
following result:

Rep Nup, hip (W/m’K) a(W) i (kg/h)
251 9.54 146 1432 159 <

Note that the flow is laminar, and evaluating X¢q using Eq. 8.3, find X¢q h = 44 m so the combined
entry length condition is appropriate.



PROBLEM 8.26

KNOWN: Ethylene glycol flowing through a coiled, thin walled tube submerged in a well-stirred
water bath maintained at a constant temperature.

FIND: Heat rate and required tube length for prescribed conditions.
SCHEMATIC:

n=0.01k
o §OE s Tuw] TniesT
Tmi=85C—} <= ’ ! )
' Ng T35 C
Thin-walled Well-stirred ] NA
‘l’u;oe D=3777771 water ’bafh, —’; A T 2506
' To=25°C H I

ASSUMPTIONS: (1) Steady-date conditions, (2) Tube wall therma resistance negligible, (3)
Convection coefficient on water side infinite; cooling process approximates constant wall surface
temperature distribution, (4) KE, PE and flow work changes negligible, (5) Constant properties, (6)
Negligible heat transfer enhancement associated with the coiling.

PROPERTIES: TabIeA-5 Ethylene glycol (Tm = (85 + 35)°C/2=60°C = 333 K): cp = 2562
JkgK, m=0522" 10 N>s/m2 k = 0.260 W/mX, Pr =51.3.

ANALYSIS: From an overall energy balance on the tube,

deonv = MCp(Tm,o- Tm,i)=0.01kg/s" 2562 Jkg(35- 85)"C=-1281W. (1) <
For the constant surface temperature condition, from the rate equation,

As = dcony /hDTym @

DT, _ 35-25
DT/ = (DT, - DT)/E —— gss 25)° C- (85- 25) Caﬂ -

=27.9°C. ©)

Find the Reynolds number to determine flow conditions,
4 4" 0.01 kg/s
p Dm P’ 0.003m 0522 10°2N >¢/m?

Hence, the flow islaminar and, assuming the flow is fully developed, the appropriate correlation is

Nup = h—D =3.66, h= Nu£ =3.66" 0.260£/0.003m = 317 W/m? %K. (5)
k D m>xK

Rep =

5 =813, @)

From Eq. (2), the required area, As, and tube length, L, are
Ag =1281 W/317 W/m? %~ 27.9°C =0.1448 m?
L =Ag/p D =0.1448m/p (0.003m) =15.4m, <

COMMENTS: Notethat for fully developed laminar flow conditions, the requirement is satisfied:
Gz_l = (L/D) / Rep Pr=(15.3/0.003) / (813~ 51.3) = 0.122 > 0.05. Note also the sign of the heat
rate gcony When using Egs. (1) and (2).



PROBLEM 8.27
KNOWN: Inlet and outlet temperatures and velocity of fluid flow in tube. Tube diameter and length.
FIND: Surface heet flux and temperaturesat x = 0.5 and 10 m.

SCHEMATIC:
fe———L=10m >
um=0-2m/s WX aNoNaTaVe aVolalololatoVaVolataloloFaloalalaloYoToloNelalo¥ols .
T 725°C y B T Tmes75C
D=127mm Q"

ASSUMPTIONS: (1) Steady-state conditions, (2) Constant properties, (3) Negligible heat lossto
surroundings, (4) Negligible potentid and kinetic energy changes and axid conduction.

PROPERTIES: Pharmaceuticd (giver): r = 1000 kg/m", G = 4000 JkgK, m=2" 10°
kg/sm, k = 0.48 W/mX, Pr = 10.

ANALYSIS: With
i =r VA =1000 kg/m3(0.2 m/s)p (0.0127 m)?/ 4= 0.0253 kg/s
Eq. 8.37 yidds
a=mcp(Tmo- Tm;i )= 0.0253 kg/s(4000 JkgK )50 K =5060 W.
The required hest flux isthen
o= o/A = 5060 W/p (0.0127 m)10 m =12,682 W/m®. <
With
Rep = r VD/m=1000 kg/m> (0.2 m/s) 0.0127 m/2” 10> kg/s»m =1270

the flow islaminar and Eq. 8.23 yidlds
Xfd,t = 0.05Rep PrD = 0.05(1270)10(0.0127 m) =8.06 m.

Hence, with fully developed hydrodynamic and therma conditionsa x = 10 m, Eq. 8.53 yields
h(10 m) = Nup 4 (k/D) = 4.36(0.48 W/m xK/0.0127 m)= 164.8 W/m?xK.
Hence, from Newton's law of cooling,
Tso = Tmo+(ag/h) =75°C+ (12,682 W/m?Z/164.8 W/im? XK ) =152°C. <
At x =0.5m, (x/D)/(RepPr) = 0.0031 and Figure 8.9 yields Nup » 8 for athermd entry region

with uniform surface hest flux. Hence, h(0.5 m) = 302.4 W/m2>K and, since Tyy, increases linearly
withX, Tn(X=05m) =T i+ (Tm,0 - Tm,i) (X/L) = 27.5°C. It followsthat

T5(x =05 m) »27.5°C + (12,682 W/m?/302.4 W/m? K | = 62.4°C <



PROBLEM 8.28

KNOWN: Inlet temperature, flow rate and properties of hot fluid. Initial temperature, volume and
properties of pharmaceutical. Heat transfer coefficient at outer surface and dimensions of cail.

FIND: (a) Expressionsfor Tc(t) and Tho(t), (b) Plots of T(t) and Th o(t) for prescribed conditions.
Effect of flow rate on time for pharmaceutical to reach a prescribed temperature.

SCHEMATIC:

Mp = 2.4 kg/s, T =200°0C > > Tho(®)

I Tubing
I/_ D=0.05m,L=40m

op.h = 2500 Jhkg-K ho = 1000 W/m2-K

pp = 0.002 N/s- m2 : T 250C. A 1 m3
: ci~ y Ve=1m
Pharmaceutical b = 1100 kg/m3

Cy,c = 2000 J/kg-K

kp = 0.260 W/m-K
Prh= 20

I
I
I
I
|

ASSUMPTIONS: (1) Constant properties, (2) Negligible heat loss from vessel to surroundings, (3)
Pharmaceutical isisothermal, (4) Negligible work due to stirring, (5) Negligible thermal energy
generation (or absorption) due to chemical reactions associated with the batch process, (6) Negligible
kinetic energy, potential energy and flow work changes for the hot fluid, (7) Negligible tube wall
conduction resistance.

ANALYSIS: (@) Performing an energy balance for a control surface about the stirred liquid, it
follows that

dTg_

T_E(pCDC Cv,cTc)= PcVeCy,c @ q(t) 1)
where, q(t) =M Cp,h (Th,i _Th,o) 2
or, q(t) = UAgAT/m (3a)
where
AT,y = (Th,| Tc) (Th 0 -Tc) (Thi ~Th o) (3)
DTh i y 0 Thi-
ﬁIho‘TcE rE_I_ho ﬁ
Substituting (3b) into (3a) and equating to (2),
. (Th i ~Th o)
Thi—T =UA
Mp Cp,h( h,i h,o) s DTh |
ﬁIh 0] ‘Tcﬁ
Hence, /n DTh !
’ ETh 0 Tc% My Cp h
or, Th,o (t)=Te +(Th, -Tc)exp(-UAs/ My Cp,h) 4 <

Substituting Egs. (2) and (4) into Eq. (1),
Continued .....



PROBLEM 8.28 (Cont.)

dT. . .
pclcCy ¢ dtc‘ Mncp,h T~ Te (Thi= Te)epl UAs/mpcpn H

dTe _MhCph (Th,i -Tc)
dt PcllcCy ¢

%—exp(—UAs/r'nh cp,h)%

_J'TC(t) dTc  _ Mh Cp,h
Te, (Tc‘Th,i) PclcCy,c

%—exp(—UAS/r'nh cp1h)%]’(§dt

— DTC_Th,i D: Mp Cp,h B AL/ -
N B g - me®(UAs Mg

Mh Cp,h %.— exp(—UA /My Cp,h )%t

PclcCv e

0 0
Te(t)=Thi -(Th,i ‘Tc,i)eXPE‘ E 6 <

Eq. (5) may be used to determine T¢(t) and the result used with (4) to determine Th o(t).

-1
(b) To evaluate the temperature histories, the overall heat transfer coefficient, u = (h;1 +h, 1) , must

first be determined. With Rep =4m/nDu =4 x2.4kg/s/m(0.05m)0.002N 8/m? =30,600, the flow
isturbulent and

h = % Nup = 0'268\5)\’5; WIS 5.023(30,600)" (20)°30=1240W /m? K

_ Ll
Hence, U = glooo) 1+ (1140) 1% W/m? [K =532W/m? (K. As shown below, the temperature of

the pharmaceutical s increases with time due to heat transfer from the hot fluid, approaching the inlet
temperature of the hot fluid (and its maximum possible temperature of 200°C) at t = 3600s.

200
e .
180 —E =

160 = &
140 W

120 K
100
80 /
60

40 {/
20

Temperature(C)

0 400 800 1200160020002400280032003600
Time(s)
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Continued .....



PROBLEM 8.28 (Cont.)

With increasing T, the rate of heat transfer from the hot fluid decreases (from 4.49 x 10°Watt=0
to 6760 W at 3600s), in which case T, o increases (from 125.2°C at t = 0 to 198.9°C at 3600s). The
time required for the pharmaceuticals to reach atemperature of T = 160°Cis

te =1266s <

Withincreasing my,, the overall heat transfer coefficient increases due to increasing h; and the hot
fluid maintains a higher temperature as it flows through the tube. Both effects enhance heat transfer
to the pharmaceutical, thereby reducing the time to reach 160°C from 2178sfor my, =1kg/s to 906s
at 5 kg/s.

2200

2000 \

1800 \

1600

Time, tc(s)

1400

1200

1000

800

1 2 3 4 5
Mass flowrate, mdoth (kg/s)

For 1< ry, < 5kg/s, 12,700 < Rep, < 63,700 and 565 < h; < 2050 W /m? [K.

COMMENTS: Although design changes involving the length and diameter of the coil can be used to
alter the heating rate, process control parameters are limited to Ty, ; and rhy,.



PROBLEM 8.29

KNOWN: Tubing with glycerin welded to transformer lateral surface to remove dissipated power.
Maximum allowable temperature rise of coolant is 6°C.

FIND: (a) Required coolant rate m, tube length L and lateral spacing S between turns, and (b) Effect of
flowrate on outlet temperature and maximum power.

SCHEMATIC:
Y Transformer, 1000 W Glycerin, Tm,i =24 0C

T >%> T Tg=47°C
H =500 mm S

l 1
D =20 mm
k—>}—D =300 mm

ASSUMPTIONS: (1) Steady-state conditions, (2) All heat dissipated by transformer transferred to
glycerin, (3) Fully developed flow (part a), (4) Negligible kinetic and potential energy changes, (5)
Negligible tube wall thermal resistance.

PROPERTIES: Table A5, Glycerin (Ty, =300K): p =1259.9 kg/m’®, ¢, = 2427 JkgK, pu = 79.9 x 10
2 NIE/m?, k = 286 x 10° W/mIK, Pr = 6780.

ANALYSIS: (a) From an overall energy balance assuming the maximum temperature rise of the
glycerin coolant is 6°C, find the flow rate as

a=mcy (Tmo ~Tmi) ™M=0/cp(Tmo ~Tm, ) =1000W/2427 J/kg [K (6K ) =6.87 x10 *kg/s <
From Eqg. 8.43, the length of tubing can be determined,
Ts=Tmo
Ts=Tm;
where P=1D. For the tube flow, find
4 _ 4x6.87x107%Kg/s .
DU 7x0.020mx79.9x10 72N §'m2

= exp(—PLﬁ/ mcp)

ReD =

which implies laminar flow, and if fully developed,

o E ~ -3
Nup =2 =366 p = 3:66%286x10 "WimMK _ g, oy /m2
k 0.020m
(#7-30y ¢ exp 5—(71(0.020 m) x52.3W/m? [K ><L)/(6.87 x10~2 kg/s x2427J/kg [KE
(47-24)'C
L=153m. <

The number of turns of the tubing, N, isN = L/(1D) = (15.3 m)/1q(0.3 m) = 16.2 and hence the spacing S
will be

S=H/N = 500 mnv16.2 = 30.8 mm. <

Continued...



PROBLEM 8.29 (Cont.)

(b) Parametric calculations were performed using the IHT Correlations Toolpad based on Eq. 8.56 (a
thermal entry length condition), and the following results were obtained.

3000 35
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L g
o
g 2200 ] £
o Q
g - El
g & ]
% 1800 & 2 ——
$ 5 —
ke
5
1400 o 27
1000 25
0.05 0.09 0.13 0.17 0.21 0.25 0.05 0.09 0.13 0.17 0.21 0.25
Mass flowrate, mdot(kg/s) Mass flowrate, mdot(kg/s)

With Ts maintained at 47°C, the maximum allowable transformer power (heat rate) and glycerin outlet
temperature increase and decrease, respectively, with increasing m. Theincreasein qisdueto an

increase in N_uD (and hence ﬁ) with increasing Rep. The value of N_uD increased from 5.3 t0 9.4 with
increasing m from 0.05 to 0.25 kg/s.

COMMENTS: Since GzE)1 =(L/D)/Rep Pr = (15.3m/0.02 m)/(5.47 x 6780) = 0.0206 < 0.05,
entrance length effects are significant, and Eg. 8.56 should be used to determine N_uD .
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