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Abstract	
This work is inspired by the discovery of a new class of dynamical system described by ODE coupled with 
their Liouville equation. These systems called self-controlled since the role of actuators is played by the 
probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, 
non-Newtonian properties such as randomness, entanglement, and probability interference typical for 
quantum systems have been described. Special attention was paid to the capability to violate the second law 
of thermodynamics, which makes these systems neither Newtonian, nor quantum. It has been shown that 
self-controlled dynamical systems can be linked to mathematical models of livings. The discovery of 
isolated dynamical systems that can decrease entropy in violation of the second law of thermodynamics, 
and resemblances of these systems to livings implies that Life can slow down	heat	death	of	the	Universe,	
and that can be associated with the Purpose of Life.  

1. Introduction.		
The heat death of the universe is a possible ultimate fate of the universe in which the universe has 
diminished to a state of no thermodynamic free energy and therefore can no longer sustain processes that 
increase entropy. This theory stems from the second law of thermodynamics, which states that entropy 
tends to increase in an isolated system. From this, the theory infers that if the universe lasts for a sufficient 
time, it will asymptotically approach a state where all energy is evenly distributed. In other words, 
according to this theory, in nature there is a tendency to the dissipation (energy loss) of mechanical energy 
(motion); hence, by extrapolation, there exists the view that the mechanical movement of the universe will 
run down, as work is converted to heat, in time because of the second law of thermodynamics. In this work, 
we will comment on the discovery of isolated dynamical systems,[1], which can decrease entropy in 
violation of the second law of thermodynamics, while resemblances of these systems to livings provides 
reasons to hypothesize that Life can slow down heat death of the Universe, and that can be associated with 
the purpose of Life.  
 
2. Self-controlled dynamics. 
 
The starting point of our approach is the Madelung equation.[2], that is a hydrodynamics version of the 
Schrödinger equation  

∂ρ
∂t
+∇•( ρ

m
∇S) = 0       (1) 
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Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck constant 

divided by 2π . The last term in Eq. (2) is known as quantum potential. From the viewpoint of Newtonian 
mechanics, Eq. (1) expresses continuity of the flow of probability density, and Eq. (2) is the Hamilton-
Jacobi equation for the action S of the particle. Actually the quantum potential in Eq. (2), as a feedback 
from Eq. (1) to Eq. (2), represents the difference between the Newtonian and quantum mechanics, and 
therefore, it is solely responsible for fundamental quantum properties.  

The Madelung equations (1), and (2) can be converted to the Schrödinger equation using the ansatz 
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 ρ =Ψ exp(−iS / h)         (3)  

where ρ and S being real function. 

Our approach is based upon a modification of the Madelung equation, and in particular, upon replacing the 
quantum potential with a different Liouville feedback, Fig.1 

  
Figure 1. Classic Physics, Quantum Physics and Physics of Life. 

 
In Newtonian physics, the concept of probability ρ is introduced via the Liouville equation 

∂ρ
∂t
+∇•(ρF) = 0         (4) 

generated by the system of ODE 

dv
dt
= F[v1(t),...vn (t),t]        (5) 

where v is velocity vector. 
It describes the continuity of the probability density flow originated by the error distribution  

ρ0 =ρ(t = 0)          (6) 
 in the initial condition of ODE (6).  

Let us rewrite Eq.  (2) in the following form 

dv
dt
= F[ρ(v)]        (7) 

where v is a velocity of a hypothetical particle. 

This is a fundamental step in our approach: in Newtonian dynamics, the probability never explicitly enters 
the equation of motion. In addition to that, the Liouville equation generated by Eq. (7) is nonlinear with 
respect to the probability density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0        (8) 

and therefore, the system (7),(8) departs from Newtonian dynamics. However although it has the same 
topology as quantum mechanics (since now the equation of motion is coupled with the equation of 
continuity of probability density), it does not belong to it either. Indeed Eq. (7) is more general than the 
Hamilton-Jacoby equation (2): it is not necessarily conservative, and F is not necessarily the quantum 
potential although further we will impose some restriction upon it that links F to the concept of 
information. The relation of the system (7), (8) to Newtonian and quantum physics is illustrated in Fig.1. 
    Following [1], we consider the force F that plays the role of a feedback from the Liouville equation (8) 
to the equation of motion (7). Turning to one-dimensional case, let us specify this feedback as 
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F = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (9) 

c0 > 0, c1 > 0, c3 > 0        (10)  
Then Eq.(9) can be reduced to the following: 

v = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (11) 

and the corresponding Liouville equation will turn into the nonlinear PDE 

∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

− c2
∂2ρ

∂V 2
+ c3

∂3ρ

∂V 3
= 0       (12)  

This equation is known as the KdV-Bergers’ PDE. The mathematical theory behind the KdV equation 
became rich and interesting, and, in the broad sense, it is a topic of active mathematical research. A 
homogeneous version of this equation that illustrates its distinguished properties is nonlinear PDE of 
parabolic type. But a fundamental difference between the standard KdV-Bergers equation and Eq. (12) is 
that Eq. (12) dwells in the probability space, and therefore, it must satisfy the normalization constraint 

ρdV =1
−∞

∞

∫                     (13)  

 However as shown in [2], this constraint is satisfied: in physical space it expresses conservation of mass, 
and it can be easily scale-down to the constraint (13) in probability space. That allows one to apply all the 
known results directly to Eq. (12). However it should be noticed that all the conservation invariants have 
different physical meaning: they are not related to conservation of momentum and energy, but rather 
impose constraints upon the Shannon information. 
       In physical space, Eq. (12) has many applications from shallow waves to shock waves and solitons.  
However, application of solutions of the same equations in probability space is fundamentally different.    
Analysis of Eqs. (11),(12) and (13) performed in [1] discovered non-Newtonian properties of their 
solutions such as randomness, entanglement, and probability interference typical for quantum systems. But 
the most surprising property of these equations that may have fundamental philosophical implications was 
a capability of their solutions to violate the second law of thermodynamics, and we will demonstrate it 
below. For that purpose consider the simplest case of the system (11),(12).and (13) assuming that 

c0 = 0, c2 = 0, c3 = 0, c1 > 0         (14) 
and find the change of entropy H 
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= c1[ |
−∞

∞

ρ2 (lnρ+1)− ρdV
−∞

∞

∫ ]= −c1 < 0
															(15) 

At the same time, the original system (11), (12) is isolated: it has no external interactions. Indeed the 
information force Eq. (9) is generated by the Liouville equation that, in turn, is generated by the equation of 
motion (11). In addition to that, the particle described by ODE (11) is in equilibrium v = 0 prior to 
activation of the feedback (9). Therefore the solution of Eqs. (11), and (12) can violate the second law of 
thermodynamics, and that means that this class of dynamical systems does not belong to physics as we 
know it. This conclusion triggers the following question: are there any phenomena in Nature that can be 
linked to dynamical systems (11), (12)?  The answer will be discussed bellow.  
 Thus despite the mathematical similarity between Eq.(12) and the KdV-Bergers equation, the physical 
interpretation of Eq.(12) is fundamentally different: it is a part of the dynamical system (11),(12) in which 
Eq. (12) plays the role of the Liouville equation generated by Eq. (11). As follows from Eq. (15), this 
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system, being isolated and being in equilibrium, has the capability to decrease entropy, i.e. to move from 
disorder to order without external resources. In addition to that, as shown in [1], the system displays 
transition from deterministic state to randomness  
 This property represents departure from classical and quantum physics, and, as shown in [3], provides a 
link to behavior of livings. That suggests that this kind of dynamics requires extension of modern physics 
to include physics of life.  

The process of violation of the second law of thermodynamics is illustrated in Fig. 2: the higher values of 
ρ  propagate faster than lower ones. As a result, the moving front becomes steeper and steeper, and that 
leads to formation of solitons (c3>0), or shock waves (c3=0) in probability space. This process is 
accompanied by decrease of entropy. 

 
Figure 2. Formation of shock waves in probability space. 
  
As shown in [5], there is another mechanism of violation of the second law of thermodynamics where 
instead of formation of shock waves and solitons in probability space, a negative diffusion takes place in 
the Liouville equation. That occurs if   

c0 = 0, c1 = 0, c3 = 0, but c2 = f (ρ) c2 = f (ρ)    (16) 

In order to prove that self-controlled dynamical systems exist not only in mathematical world, but in real 
world as well we will turn to models of livings. But prior to that we notice that the Madelung equation does 
belong to the class of self-controlled ODE while describing quantum mechanics. However its solutions do 
not violate the second law of thermodynamics, which means that not every self-controlled ODE possesses 
such capability.   
3. Biological interpretation of self-controlled dynamics. 
The recent statement about completeness of the physical picture of our Universe made in Geneva raised 
many questions, and one of them is the ability to create Life and Intelligence out of physical matter without 
any additional entities. The main difference between living and non-living matter is in directions of their 
evolution: it has been recently recognized that the evolution of livings is progressive in a sense that it is 
directed to the highest levels of complexity. Such a property is not consistent with the behavior of isolated 
Newtonian systems that cannot increase their complexity without external forces. That difference created 
so called Schrödinger paradox: in a world governed by the second law of thermodynamics, all isolated 
systems are expected to approach a state of maximum disorder; since life approaches and maintains a 
highly ordered state – one can argue that this violates the Second Law implicating a paradox,[4].	But	
livings	are	not	isolated	due	to	such	processes	as	metabolism	and	reproduction:	the	increase	of	order	
inside	an	organism	is	compensated	by	the	increase	in	disorder	outside	this	organism,	and	that	
removes	the	paradox.	Nevertheless	it	is	still	tempting	to	find	a	mechanism	that	drives	livings	from	
disorder	to	order.	As	shown	above,	moving	from	a	disorder	to	order	is	not	a	prerogative	of	open	
systems:	an	isolated	system	can	do	it	without	help	from	outside.	However	such	system	cannot	belong	
to	the	world	of	the	modern	physics:	it	belongs	to	the	world	of	living	matter,	and	that	lead	us	to	the	
concept	of	an	intelligent	particle	–	the	first	step	to	physics	of	livings.	In	order	to	introduce	such	a	
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particle,	we	start	with	an	idealized	mathematical	model	of	livings	by	addressing	only	one	aspect	of	
Life:	a	biosignature,	i.e.	mechanical	invariants	of	Life,	and	in	particular,	the	geometry	and	
kinematics	of	intelligent	behavior	disregarding	other	aspects	of	Life	such	as	metabolism	and	
reproduction.	By	narrowing	the	problem	in	this	way,	we	are	able	to	extend	the	mathematical	
formalism	of	physics’	First	Principles	to	include	description	of	intelligent	behavior.	At	the	same	time,	
by	ignoring	metabolism	and	reproduction,	we	can	make	the	system	isolated,	and	it	will	be	a	challenge	
to	find	such	activity	of	livings,	which	could	me	modeled	by	isolated	dynamical	systems.	In	this	paper	
we	hypothesize	that	the	sought	activity	could	be	associated	with	human	intuition	recalling	that	
intuition is defined as a kind of immediate knowledge or awareness not based upon some logical process 
— a form of insight that brings together appropriately relationships between the elements of a problem or 
situation. 	
    The proposed model illuminates the “border line” between living and non-living systems. The model 
introduces a L-particle (particle of Life) that, in addition to Newtonian properties, possesses the ability to 
process information. The probability density can be associated with the self-image of the L-particle as a 
member of the class to which this particle belongs, while its ability to convert the density into the 
information force - with the self-awareness (both these concepts are adopted from psychology). Continuing 
this line of associations, the equation of motion (see  Eq. (11)) can be identified with a motor dynamics, 
while the evolution of density (see Eq. (12)) –with a mental dynamics. Actually the mental dynamics plays 
the role of the Maxwell sorting demon: it rearranges the probability distribution by creating the information 
force and converting it into a force that is applied to the particle. One should notice that mental dynamics 
describes evolution of the whole class of state variables (differed from each other only by initial 
conditions), and that can be associated with the ability to generalize that is a privilege of living systems. 
Continuing our biologically inspired interpretation, it should be recalled that the second law of 
thermodynamics states that the entropy of an isolated system cannot  decrease. This law has a clear 
probabilistic interpretation: increase of entropy corresponds to the passage of the system from less probable 
to more probable states, while the highest probability of the most disordered state (that is the state with the 
highest entropy) follows from a simple combinatorial analysis. However, this statement is correct only if 
there is no Maxwell’ sorting demon, i.e., nobody inside the system is rearranging the probability 
distributions. But this is precisely what the Liouville feedback is doing: it takes the probability density ρ  
from Equation (12), creates functions of this density, converts them into a force and applies this force to the 
equation of motion (11). As demonstrated by Eq.(15), the evolution of the probability density may lead to 
the entropy decrease “against the second law of thermodynamics”. 
Obviously the last statement should not be taken literary; indeed, the proposed model captures only those 
aspects of the living systems that are associated with their behavior, and in particular, with their motor-
mental dynamics, since other properties are beyond the dynamical formalism.  Therefore, such 
physiological processes that are needed for the metabolism are not included into the model. That is why 
this model is in a formal disagreement with the second laws of thermodynamics while the living systems 
are not. Indeed, applying the second law of thermodynamics, we consider our system as isolated one while 
the underlying real system is open due to other activities of livings that were not included in our model. 
Nevertheless, despite these limitations, the L-particle model captures the “magic” of Life: the ability to 
create self-image and self-awareness and move from disorder to the order. 
								From	 psychological	 viewpoint	 the	 proposed	 model	 can	 be	 interpreted	 as	 representing	
interactions	of	the	L-	particle,	or	living	agent	with	the	self-image	and	the	images	of	other	agents	via	
the	mechanisms	of	self-awareness.	In	order	to	associate	these	basic	concepts	of	psychology	with	our	
mathematical	 formalism,	 we	 have	 to	 recall	 that	 living	 systems	 can	 be	 studied	 in	 many	 different	
spaces	such	as	physical	(or	geographical)	space	as	well	as	abstract	(or	conceptual)	spaces.	The	latter	
category	includes,	for	instance,	social	class	space,	sociometric	space,	social	distance	space,	semantic	
space	est.	Turning	to	our	model,	one	can	identify	two	spaces:	the	physical	space	v,t	in	which	the	agent	
state	variables	 vi = xi 		evolve,(see	Eqs.(11)),	and	an	abstract	space	in	which	the	probability	density	
of	the	agent’	state	variables	evolve	(see	Eq.(12)).The	connection	with	these	spaces	have	been	already	
described	earlier:	if	Eqs.	(11)	are	run	many	times	starting	with	the	same	initial	conditions,	one	will	
arrive	at	an	ensemble	of		different	random	solutions,	while	Eq.	(12)	will	show	what	is	the	probability	
for	each	of	these	solutions	to	appear.	Thus,	Eq.	(12)	describes	the	general	picture	of	evolution	of	the	
communicating	 agents	 that	 does	 not	 depend	 upon	 particular	 initial	 conditions.	 Therefore,	 the	
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solution	of	 this	equation	can	be	 interpreted	as	 the	evolution	of	 the	self-	and	non-self	 images	of	 the	
agents	that	jointly	constitutes	the	collective	mind	in	the	probability	space,	Fig.	(3).		

	
Figure	3.	Collective	mind.	

	
Based	 upon	 that,	 one	 can	 propose	 the	 following	 interpretation	 of	 the	 model	 of	 communicating	
agents:	considering	the	agents	as	L-particles,	one	can	identify	Eqs.	(11)	as	a	model	simulating	their	
motor	dynamics,	i.e.	actual	motions	in	physical	space,	while	Eq.(12)	as	the	collective	mind	composed	
of	mental	 dynamics	of	 the	 agents.	 Such	 an	 interpretation	 is	 evoked	by	 the	 concept	 of	 reflection	 in	
psychology.	 Reflection	 is	 traditionally	 understood	 as	 the	 human	 ability	 to	 take	 the	 position	 of	 an	
observer	in	relation	to	one’s	own	thoughts.	In	other	words,	the	reflection	is	the	self-awareness	via	the	
interaction	with	the	image	of	the	self.	Hence,	in	terms	of	the	phenomenological	formalism	proposed	
above,	a	non-living	system	may	possess	the	self-image,	but	it	is	not	equipped	with	the	self-awareness,	
and	therefore,	 this	self-image	 is	not	 in	use.	On	the	contrary,	 in	 living	systems	the	self-awareness	 is	
represented	by	the	 information	forces	that	send	information	from	the	self-image	(12)	to	the	motor	
dynamics	 (11).	Due	 to	 this	property	 that	 is	well-pronounced	 in	 the	proposed	model,	 a	 living	agent	
can	run	its	mental	dynamics	ahead	of	real	time,	(since	the	mental	dynamics	is	fully	deterministic,	and	
it	does	not	depend	explicitly	upon	the	motor	dynamics)	and	thereby,	 it	can	predict	future	expected	
values	of	its	state	variables;	then,	by	interacting	with	the	self-image	via	the	information	forces,	it	can	
change	the	expectations	if	they	are	not	consistent	with	the	objective.	Such	a	self-controlled	dynamics	
provides	a	major	advantage	for	the	corresponding	living	agents,	and	especially,	for	biological	species:	
due	to	the	ability	to	predict	future,	they	are	better	equipped	for	dealing	with	uncertainties,	and	that	
improves	 their	 survivability.	 It	 should	 be	 emphasized	 that	 the	 proposed	 model,	 strictly	 speaking,	
does	not	discriminate	living	systems	of	different	kind	in	a	sense	that	all	of	them	are	characterized	by	
a	 self-awareness-based	 feedback	 from	mental	 (12)	 to	motor	 (11)	dynamics.	However,	 in	 primitive	
living	systems	(such	as	bacteria	or	viruses)	the	self-awareness	is	reduced	to	the	simplest	form	that	is	
the	 self/no-self	 discrimination;	 in	 other	 words,	 the	 difference	 between	 the	 living	 systems	 is	
represented	by	the	level	of	complexity	of	that	feedback.		
			A	broad	range	of	other	properties	of	similarity	between	livings	and	self-controlled	dynamics	were	
addressed	 in	 [6,7]:	 optimization,	 abstraction,	 generalization,	 cooperation,	 and	 competition	 as	 a	
privilege	of	livings	were	performed	by	solutions	of	self-controlled	dynamics.			
    Thus, the proposed model offers a unified description of the progressive evolution of living systems. 
Based upon this model, one can formulate and implement the principle of maximum increase of complexity 
that governs the large-time-scale evolution of living systems. 

However despite of such a remarkable resemblance between the self-controlled systems and properties of 
livings, our goal is still not achieved: we did not find any processes in livings’ activity that violate the 
second law of thermodynamics. In order to achieve that goal, we will take a closer look to processes 
associated with human intuition. 
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4. Human intuition.   

A human intelligence, and in particular, its most mysterious kind – intuition - has always been an enigma 
for physicists, and an obstacle for artificial intelligence.  It was well understood that human behavior, and 
in particular, the decision making process, is governed by feedbacks from the external world, and this part 
of the problem was successfully simulated in the most sophisticated way by control systems.  However, in 
addition to that, when the external world does not provide sufficient information, a human turns for 
“advise” to his experience, and that is associated with intuition. In other words, intuition is a phenomenon 
of the mind that describes the ability to acquire knowledge without inference or the use of reason. 
    In this section, intuition-based intelligence is implemented by a feedback from the self-image (a concept 
adapted from psychology), and we will illustrate its physical model in connection with the decision-making 
process.	  
			A	decision	making	process	 can	be	modeled	by	a	 time	evolution	of	a	vector	π whose	components	

πi i =1,2…N( ) 	present	a	probability	distribution	over	N	different	choices.		The	evolution	of	this	
vector	can	be	written	in	the	form	of	a	Markov	chain:	

niptt i

n

i
iij

n

j
ji ,...2,1,0,1,)()(

11

=≥==+ ∑∑
==

πππτπ 	 	 	 (17)	

where	 pij 	is	the	transition	matrix	representing	a	decision	making	policy.		If	 pij =const.,	the	process	

(17)	approaches	 some	 final	distribution	π∞ 	regardless	of	 the	 initial	 state	π0 .	 In	particular,	 in	 the	
case	of	doubly	stochastic	transition	matrix,	i.e.,	when	 	
	

	 pij
j=1

N

∑ =1 and pij
i=1

N

∑ =1 	 	 	 	 	 (18)	

all	the	final	choices	become	equally	probable	

	 	
πi = π j =1/ N

	 	 	 	 	 	 	 (19)	

	
i.e.,	 the	 system	 approaches	 its	 thermodynamics	 limit	 which	 is	 characterized	 by	 the	 maximum	
entropy.		When	the	external	world	is	changing,	such	a	rigid	behavior	is	unsatisfactory,	and	the	matrix	

pij 	has	 to	 be	 changed	 accordingly,	 i.e., pij = pij (t) .	 	 Obviously	 this	 change	 can	 be	 implemented	
only	if	the	external	information	is	available,	and	there	are	certain	sets	of	rules	for	correct	responses.		
However,	in	real	world	situations,	the	number	of	rules	grows	exponentially	with	the	dimensionalities	
of	external	factors,	and	therefore,	any	man-made	device	fails	to	implement	such	rules	in	full.	
					The	main	 departure	 from	 this	 strategy	 can	 be	 observed	 in	 human	 approach	 to	 decision-making	
process.		Indeed,	faced	with	an	uncertainty,	a	human	uses	an	intuition-based	approach	relying	upon	
his	previous	experience	and	knowledge	in	the	form	of	certain	invariants	or	patterns	of	behavior	that	
are	suitable	for	the	whole	class	of	similar	situations.		Such	ability	follows	from	the	fact	that	a	human	
possesses	a	self-image,	and	 interacts	with	 it.	 	This	concept	which	 is	widely	exploited	 in	psychology	
has	been	known	as	far	back	as	to	ancient	philosophers,	but	so	far	its	mathematical	formalization	has	
never	been	linked	to	the	decision	making	model	(17).	
	 First	we	will	start	with	an	abstract	mathematical	question:	 	can	the	system	(17)	change	its	
evolution,	and	consequently,	its	limit	distribution,	without	any	external	“forces”?		The	formal	answer	
is	 definitely	 positive.	 	 Indeed,	 if	 the	 transition	 matrix	 depends	 upon	 the	 current	 probability	
distribution	

pij = pij (πk ) 		 	 	 	 	 	 (20)	
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then	 the	 evolution	 (17)	 becomes	 nonlinear,	 and	 it	 may	 have	 many	 different	 scenarios	 depending	
upon	 the	 initial	 state 0π .	 	 In	 particular	 case	 (20),	 it	 could	 “overcome”	 the	 second	 law	 of	
thermodynamics	 decreasing	 its	 final	 entropy	 by	 using	 only	 the	 “internal”	 resources.	 Indeed	 let	 us	
assume	that	the	objective	of	the	system	is	to	approach	the	deterministic	state	

0,1 21 == ππ 			 	 	 	 	 	 	 (21)	
Then	as	shown	in	[1],	if	the	feedback	is	chosen	as	
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	the	evolution	of	the	probability	 1π 	can	be	presented	as:	

21
)(

11
)(

1
)1(

1 )1( pp nnn πππ −+=+ 	 	 	 	 	 (23)	 	

	in	which	 11p and	 22p 	are	substituted	from	Eqs.	(22).	
				It	is	easily	verifiable	that	

0,1 21 == ∞∞ ππ 	 	 	 	 	 	 (24)	 	 	
i.e.,	the	objective	is	achieved	due	to	the	“internal”	feedback	(22)	
				The	 implementation	 of	 the	 stochastic	 process	 which	 probabilities	 are	 described	 by	 the	 Markov	
chains	 (17)	 with	 the	 feedback	 (22)	 has	 been	 described	 in	 [1].	 This	 stochastic	 process	 can	 be	
simulated	by	quantum	recurrent	nets	(QRN).	(See	Fig.	4)	
	 	
This	QRN	is	described	by	the	following	set	of	difference	equations	with	constant	time	delay	

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ 	 	 	 	(25)	

The	curly	brackets	are	intended	to	emphasize	that	 1σ 	is	to	be	taken	as	a	measurement	operation	
with	the	effect	similar	to	those	of	a	sigmoid	function	in	classical	neural	networks.	

	
Fig.	4.	A	one-dimensional	quantum	recurrent	network.	

An initial state, |ψ (0) > , is fed into the network, transformed under the action of a unitary operator, U,	
subjected to a measurement indicated by the measurement operator M{ }, and the result of the 
measurement is used to control the new state fed back into the network at the next iteration. One is free to 
record, duplicate or even monitor the sequence of measurement outcomes, as they are all merely bits and 
hence constitute classical information. Moreover, one is free to choose the function used during the reset 
phase, including the possibility of adding no offset state whatsoever. Such flexibility makes the QRN 
architecture remarkably versatile. To simulate a Markov process, it is sufficient to return just the last output 
state to the next input at each iteration. 	 	 	
      From physical viewpoint, the example described above can be associated with a particle that escapes 
from the Brownian motion using its own “internal effort” in violation of the second law of thermodynamics	
while	the	entropy	decreases	from	infinity	to	zero,	[5].	In	other	words,	as	a	result	of	interaction	with	
his	 own	 image	 and	 without	 any	 “external”	 enforcement,	 the	 decision	 maker	 can	 depart	 from	 the	
thermodynamics	limit	(19)	of	his	performance	“against	the	second	law.”		Obviously,	the	enforcement	
in	 the	 form	 of	 the	 feedback	 (22)	 is	 an	 internal	 one	 since	 the	 image	 (17)	 is	 the	 uniquely	 defined	
product	of	 the	dynamical	evolution	 (25),	 i.e.,	 such	a	 “free	will”	effort	 is	 in	a	disagreement	with	 the	
second	law	of	thermodynamics.	The	philosophical	consequences	of	this	result	have	been	discussed	in	
[1].	 It	 is	 easy	 to	 conclude	 that	 the	 system	 Eqs.	 (25)	 and	 (17)	 represents	 a	 finite-difference	
approximation	of	the	dynamical	system	Eqs.	(11)	and	(12)	where	Eq.	(25)	describes	motor	dynamics,	
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and	Eq.17)		-	mental	dynamics.	Obviously	Eqs.	(22)	correspond	to	the	feedback		Eq.(9),	and	Eqs.(18)	
–	to	the	normalization	constraint	Eq.(13).	

5. Models and reality. 

Does Nature make use of models “offered” by mathematics? The history of mathematics demonstrates that 
it does. Let us turn to imaginary numbers discovered by Pythagoras. Initially they were misunderstood and 
even forbidden, and it took centuries for physicists to realize that without imaginary numbers, quantum 
mechanics cannot be formulated properly. Actually our problem is to find a match between a “granted” by 
mathematics model of self-controlled dynamics and some natural phenomena. A part of the problem was 
already solved: we found a match between self-controlled systems that do not violate the second law of 
thermodynamics, and livings. However the most difficult part is still open: what natural phenomena could 
match a special type of self-controlled systems that cannot be described by conventional physics since they 
violate the second law of thermodynamics? In order to find the answer, let us turn to the processes in 
human brain. The information provided by neurophysicists is the following: Of all the objects in the 
universe, the human brain is the most complex: So it is no surprise that, despite the glow from recent 
advances in the science of the brain and mind, we still find ourselves squinting in the dark somewhat. Most 
of neuroscientists think that the brain is not computable and no engineering can reproduce it and that 
human consciousness can’t be replicated in silicon because most of its important features are the result of 
unpredictable, nonlinear interactions among billions of cells. Intuition is among a dozen of the brain 
processes that cannot be reduced neither to Newtonian nor to quantum physics, and that increases chances 
that enlarging contemporary physics with the capability to violate the second law of thermodynamics could 
help. The information provided by neuroscience makes connection between intuition and implicit or 
unconscious recognition memory that arises from information that was not attended to, but which is 
processed, and can subsequently be retrieved, without ever entering into conscious awareness. The study 
also provides evidence that the retrieval of explicit and implicit memories involves distinct neural 
substrates and mechanisms. The distinction between explicit and implicit memory has been recognized for 
centuries. It was known that implicit memories could influence behavior, because a human can learn to 
perform new motor skills despite having severe deficits in other forms of memory. Thus, the term implicit 
memory refers to the phenomenon whereby previous experience, of which one is not consciously aware, 
can aid performance on specific tasks. And that is all that can be provided by neuroscience. In view of that, 
we will try to complement the concept of intuition by mathematical consideration. The idea is illustrated 
below. We start with a problem of finding the global maximum of a surface,(see Fig.5). A rational agent ( a 
robot) will perform the sequence of  following steps: 1)he will find the points with zero first derivatives by 
solving the system of algebraic equations,2)compute all the components of the curvature tensor at each 
point he found, 3)select only those points, which have all the curvature components negative, 4)compute  
the 
 

 

  Figure 5. Finding the global maximum. 
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values of the function in the selected points and find the global maximum.  
      This is the simplest algorithm (without “human tricks”), which can be executed by a robot. However its 
cost grows exponentially as a function of dimensionality of the surface, as it is for any global optimization 
problem. That is why this class of algorithms became the major obstacle for progress in artificial 
intelligence.  
     The alternative we propose exploits a special type of self-controlled dynamics that solve the global 
maximum problem bypassing all exponentially complex operations. The idea of this algorithm is the 
following: introduce a positive function to be maximized as the probability density to which the solution is 
attracted. Then the larger value of this function will have the higher probability to appear. Following [6], 
we briefly describe the algorithm. For that reason let us replace the feedback Eq.(9) by the following	

f = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη               (26) 

Here )(* vρ is a preset probability density satisfying the constraints (13), and ξ is a positive constant with 
dimensionality [1/sec]. As follows from Eq. (26), f has dimensionality of a force per unit mass that depends 
upon the probability density ρ , and therefore, it can be associated with the concept of information, so we 

will call it the information force. In this context, the coefficient ξ can be associated with the Planck 
constant that relates Newtonian and information forces. But since we are planning to deal with livings that 
belong to the macro-world, ξmust be of order of a viscose friction coefficient.  
With the feedback (26), Eqs. (7) and (8) take the form, respectively 

v = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη                                                                (27)            

∂ρ
∂t
+ ξ[ρ(t)−ρ*]= 0                                                                            (28)                                                   

  The last equation has the analytical solution  

ρ = [(ρ0 −ρ
*)e−ξt +ρ*]                                                                               (29)                                 

Subject to the initial condition 

ρ(t = 0) =ρ0                               (30)            
that satisfies the constraint (13). 
This solution converges to a preset stationary distribution )(* Vρ . Obviously the normalization condition for 

ρ is satisfied if it is satisfied for ρ0 and ρ*. Indeed, 

ρ
−∞

∞

∫ VdV = [ ∫ (ρ0 −ρ*)VdV ]e−ξt +
−∞

∞

∫ ρ*VdV =1    (31) 

Rewriting Eq. (29) in the form 

ρ =ρ0e
−ξt +ρ*(1− e−ξt )        (32) 

                   
one observes that 0≥ρ at all 0≥t  and .∞>>∞− V  
As follows from Eq. (29), the solution of Eq. (28) has an attractor that is represented by the preset 

probability densityρ*(V ) . Substituting the solution (29) into Eq. (27), one arrives at the ODE that 
simulates the stochastic process with the probability distribution (29) 
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v = ζe−ξt

[ρ0 (v)−ρ
*(v)]e−ξt +ρ*(v)

[ρ0 (η)−ρ
*(

−∞

v

∫ η)] dη                                      (33)  

It is reasonable to assume that the solution (29) starts with a maximum entropy when  

ρ0 → 0 	 	 	 	 	 	 	 	 	 	 (34)	
 As a result of that assumption, all the randomness is supposed to be preset in the form of a Brownian 
motion characterized by infinitely large entropy. At this point, we deviate from the case considered in [6] to 
demonstrate the violation of the second law of thermodynamics. Indeed as follows from Eq. (29), the 

probability density ρ0 (v) attracted to the preset distribution ρ*(v)while the initial entropy change 

from infinity to the entropy of the preset distribution H * that is finite. At the same time, the original 
system (27), (28) is isolated: it has no external interactions. Indeed the information force Eq. (26) is 
generated by the Liouville equation that, in turn, is generated by the equation of motion (27). In addition to 
that, the particle described by ODE (27) is in equilibrium v = 0 prior to activation of the feedback (9). 
Therefore the solution of Eqs. (27), and (28) could violate the second law of thermodynamics, and that 
means that this class of dynamical systems does not belong to physics as we know it. 

The approach is generalized to n-dimensional case simply by replacing v with a vectorv = v1,v2 ,...vn  
since Eq. (28) does not include space derivatives 

!vi =
ξ

nρ({v},t)
[ρ({η},t)−ρ*({η}

−∞

vi

∫ )]dηi         (35) 

                    

∂ρ({V},t)
∂t

+ ξρ({V}t)−ρ*({V}) = 0                   (36.) 

 
The idea of the proposed algorithm in more details is the following: introduce a positive function 

∞<||),,...,( 21 in vvvvψ  to be maximized as the probability density ρ*(v1,v2 ,...vn ) to which the 

solution of Eq. (32) is attracted. Then the larger value of this function will have the higher probability to 
appear. The following steps are needed to implement this algorithm:  
1. Build and implement the n-dimensional version of the model Eqs. (31), and (32), as an analog devise 

.,...2,1,)]()([
)}()]()({[

*
0**

0

nid
vevvn

ev
iv

t

t

i =−
+−

= ∫
∞−

−

−

ζζρζρ
ρρρ

!   (37)    

2. Normalize the function to be maximized 

∫
∞

∞−

=

}{})({

})({})({
vdv

vv
ψ

ψ
ψ                          (38) 

3. Using Eq. (32), evaluate time τ of approaching the stationary process to accuracy ε 

ψε
ψ

τ
−

≈
1ln                               (39)      

4. Substitute ψ instead of ρ* into Eqs. (37) and run the system during the time interval τ. 

5. The solution will “collapse” into one of possible solutions with the probabilityψ . Observing 
(measuring) the corresponding values of {v*}, find the first approximation to the optimal solution.  
6. Switching the device to the initial state and then starting again, arrive at the next approximations. 
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7.  The sequence of the approximations represents Bernoulli trials that exponentially improve the chances 
of the optimal solution to become a winner. Indeed, the probability of success sρ  and failure fρ  after the 
first trial is, respectively 

11 1, ψρψρ −== fs                                     (40)                 
Then the probability of success after M trials is 

∞→→−−= MatM
sM 1)1(1 ψρ                                 (41)       

 Therefore, after polynomial number of trials, one arrived at the solution to the problem. Despite several 
computational advantages of this algorithm over existing algorithms, the basic problem in question is the 
implementability of analog simulations using Newtonian/quantum resources. Indeed, the model described 
by Eqs. (31) and (32) does not belong to physical space, as we know it: it belongs to the expanded quantum 
space, (see Fig. 1). This means that, in principle, the pure analog simulation of this algorithm is impossible 
unless some digital device is included, (see [1]). However our goal here is not an AI implementation, but 
rather a justification of the hypothesis that the best “implementation“is human brain processes, and in 
particular, human intuition. Actually the example described above demonstrates that the self-controlled 
system bypass the exponentially complex operations and finds a shortcut leading to a fast solution of the 
problem due to the capability to violate the second law of thermodynamics. This explains why the chess 
world champion Kasparov has bitten the much more powerful supercomputer Deep Blue in 1996: the 
computer, as a rational robot, prior to each move computed and compared all the N following moves while 
the number of such moves grows exponentially as a function of N; on the contrary, Kasparov computed and 
compared only reasonable moves, and the selection of such moves was provided by the “Maxwell demon” 
that violated the second law of thermodynamics. 
 
6. Philosophical implications. 
Discovery of isolated dynamical systems, which could violate the second law of thermodynamics, and 
phenomenological resemblance of their behavior to human brain processes, calls for revision of the concept 
of heat death.  
       The heat death of the universe is a possible ultimate fate of the universe in which the universe has 
diminished to a state of no thermodynamic free energy and therefore can no longer sustain processes that 
increase entropy (including computation and life). This theory stems from the second law of 
thermodynamics, which states that entropy tends to increase in an isolated system. From this, the theory 
infers that if the universe lasts for a sufficient time, it will asymptotically approach a state where all energy 
is evenly distributed. In other words, according to this theory, in nature there is a tendency to the 
dissipation (energy loss) of mechanical energy (motion); hence, by extrapolation, there exists the view that 
the mechanical movement of the universe will run down, as work is converted to heat, in time because of 
the second law of thermodynamics. But could heat death be prevented? Based upon the above discovery we 
hypothesize, that, in principle, it is possible. However this conclusion is not the one, which represents our 
goal: nobody is seriously worried about heat death since the time scale of human life is negligible on the 
cosmological scale. What is more important is the role of life in physics, the reason of its promotion by 
Nature as well as its purpose – to affect the cosmological processes including possible prevention of the 
heat death. 

 So far we presented the justification not for all livings, and not even for all human, but only for 
“outstanding “human who make great discoveries, and thereby decrease world entropy by making world 
more ordered. For instance, Newton compressed all the mechanics information about macro world into 
three parameters: mass, acceleration and force. Schrödinger expanded these results to micro-world, est. 
Using terminology of this work, such discoveries contributed more order into “mental dynamics”. However 
later on they materialized into “motor dynamics”, i.e. into high technology, and became more visible and 
better computable in terms of entrop 
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