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ON THE WALLIS FORMULA

BAI-NI GUO1,∗, FENG QI2,3

Abstract. By virtue of complex methods and tools, the authors express the
famous Wallis formula as a sum involving binomial coefficients, establish the

expansions for sink x and cosk x in terms of cos(mx), find the general formulas

for the derivatives of sink x and cosk x, and recover the general multiple-angle

formulas for sin(kx) and cos(kx), where k ∈ N and m ∈ Z.

1. Introduction

It is well known [8, 9, 16, 18, 23] that

(1.1) In =

∫ π/2

0

cosn x dx =

∫ π/2

0

sinn xdx =
(n− 1)!!

n!!
×

{π
2

for n even

1 for n odd

for n ∈ N, where n!! denotes a double factorial. Usually we call (1.1) the Wallis
cosine or sine formula, or simply say, the Wallis formula, in the literature. In
mathematical analysis, the Wallis formula (1.1) is derived generally by integrating
by parts and mathematical induction.

The formula (1.1) may also be represented by

In =

√
π Γ((n+ 1)/2)

nΓ(n/2)
=

√
π

2

Γ((n+ 1)/2)

Γ((n+ 2)/2)
,

where Γ(x) stands for the classical Euler gamma function which may defined by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0.

The Wallis ratio is defined [42] as

Wn =
(2n− 1)!!

(2n)!!
=

(2n)!

22n(n!)2
=

1√
π

Γ
(
n+ 1

2

)
Γ(n+ 1)

, n ∈ N.

It is clear that for n ∈ N

(1.2) Wn =
2

π
I2n =

1

22n

(
2n

n

)
and

I2n−1I2n =
π

4n
.

There have existed plenty of literature about bounding the Wallis ratio. See, for
example, [4, 5, 6, 7, 9, 16, 17, 19, 20, 22, 42, 43, 47].
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In [18], the Wallis formula (1.1) was generalized as

I(t) =

∫ π/2

0

cost x dx =

∫ π/2

0

sint xdx =

√
π

2

Γ((t+ 1)/2)

Γ((t+ 2)/2)
, t ≥ 0.

See also [27, Section 2.3] and [48, 49].
In [2, p. 123], it was claimed that if Im,n is a primitive of sinm x cosn x for

m,n ∈ R, then

Im+2,n = − sinm+1 x cosn+1 x

m+ n+ 2
+

m+ 1

m+ n+ 2
Im,n

is a primitive of sinm+2 x cosn x if m+ n+ 2 6= 0. With the aid of this formula the
formula (1.1) may be recovered.

In [3, 10], by establishing double inequalities for I2n−1 and I2n, the double in-
equality

√
π√

1 + (9π/16− 1)/n
≤
∫ √n
−
√
n

e−x
2

dx <

√
π√

1− 3/(4n)

was obtained for n ∈ N. As a result, the probability integral∫ ∞
0

e−x
2

dx =

√
π

2

was recovered. For more information, please refer to [2, p. 123], [22, 34] and related
references therein.

In [13, 44], among other things, the sequence nI2n for n ∈ N, which originates
from computation of the probability of intersecting between a plane couple and a
convex body, was proved to be increasing.

For recent developments on the gamma function and the ratios of two gamma
functions, please refer to the papers [11, 12, 14, 15, 21, 24, 25, 26, 29, 30, 32, 33,
35, 36, 37, 40, 41, 45, 46], the expository and survey articles [27, 28, 38, 39] and
closely related references therein.

The aims of this paper are, by virtue of complex methods and tools, to express
the sequence I2n−1 as a sum involving binomial coefficients and to recover the
identity (1.2). As by-products, the expansions for sink x and cosk x in terms of

cos(mx) for m ∈ Z, the derivatives for sink x and cosk x, and the general multiple-
angle formulas for sin(kx) and cos(kx) are established and recovered.

2. Main results

Now we are in a position to establish and recover our main results and by-
products.

Theorem 2.1. For n ∈ N, we have

(2.1) I2n−1 =
(−1)n+1

22n−1

2n−1∑
k=0

(−1)k

2n− 2k − 1

(
2n− 1

k

)
.

First proof. Let i =
√
−1 be the imaginary unit. Then for n ∈ N we have

I2n−1 =

∫ π/2

0

(
eix + e−ix

2

)2n−1

dx
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=
1

22n−1

∫ π/2

0

2n−1∑
`=0

(
2n− 1

`

)
ei`xe−i(2n−1−`)x dx

=
1

22n−1

2n−1∑
`=0

(
2n− 1

`

)∫ π/2

0

ei(2`−2n+1)x dx

=
1

22n−1

2n−1∑
`=0

(
2n− 1

`

)
1

i(2`− 2n+ 1)

[
ei(2`−2n+1)π/2 − 1

]
=

1

22n−1

2n−1∑
`=0

(
2n− 1

`

)
1

2`− 2n+ 1
i
[
1− ei(2`−2n+1)π/2

]
=

1

22n−1

2n−1∑
`=0

(
2n− 1

`

)
1

2`− 2n+ 1
sin

(2`− 2n+ 1)π

2

=
1

22n−1

2n−1∑
`=0

(
2n− 1

`

)
1

2`− 2n+ 1
cos[(`− n)π]

=
1

22n−1

2n−1∑
`=0

(
2n− 1

`

)
(−1)`−n

2`− 2n+ 1
.

The formula (2.1) follows. �

Second proof. For n ∈ N, we have

In =

∫ π/2

0

(
eix − e−ix

2i

)n
dx

=
1

2n

∫ π/2

0

[
ei(x−π/2) − e−i(x+π/2)

]n
dx

=
1

2n

∫ π/2

0

n∑
`=0

(−1)n−`
(
n

`

)
ei`(x−π/2)e−i(n−`)(x+π/2) dx

=
1

2n

n∑
`=0

(−1)n−`
(
n

`

)∫ π/2

0

ei[(2`−n)x−nπ/2] dx

=
1

2n

n∑
`=0

(−1)n−`
(
n

`

)∫ π/2

0

cos

[
(2`− n)x− nπ

2

]
dx.

Therefore, it follows that

I2n−1 =
−1

22n−1

2n−1∑
`=0

(−1)`
(

2n− 1

`

)∫ π/2

0

cos

[
(2`− 2n+ 1)x− (2n− 1)

π

2

]
dx

=
(−1)n

22n−1

2n−1∑
`=0

(−1)`
(

2n− 1

`

)∫ π/2

0

sin[(2`− 2n+ 1)x] dx

=
(−1)n+1

22n−1

2n−1∑
`=0

(−1)`
(

2n− 1

`

)
1

2`− 2n+ 1

[
cos

(2`− 2n+ 1)π

2
− 1

]
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=
(−1)n

22n−1

2n−1∑
`=0

(−1)`
(

2n− 1

`

)
1

2`− 2n+ 1
.

The proof is completed. �

Corollary 2.1. For ` ∈ N, we have

cos` x =
1

2`

∑̀
q=0

(
`

q

)
cos[(2q − `)x],(2.2)

sin` x =
(−1)`

2`

∑̀
q=0

(−1)q
(
`

q

)
cos

[
(2q − `)x− `

2
π

]
,(2.3)

and ∑̀
q=0

(
`

q

)
sin[(2q − `)x] = 0,(2.4)

∑̀
q=0

(−1)q
(
`

q

)
sin

[
(2q − `)x− `

2
π

]
= 0.(2.5)

Proof. From the second proof of Theorem 2.1, we conclude that

cos` x =
1

2`
(eix + e−ix)` =

1

2`

∑̀
q=0

(
`

q

)
eqixe−(`−q)ix =

1

2`

∑̀
q=0

(
`

q

)
e(2q−`)ix

=
1

2`

∑̀
q=0

(
`

q

)
{cos[(2q − `)x] + i sin[(2q − `)x]}.

Equating the real and imaginary parts in the above equality gives equalities (2.2)
and (2.4).

Similarly, we have

sin` x =
1

(2i)`

∑̀
q=0

(−1)`−q
(
`

q

)
eqixe−(`−q)ix =

(−1)`

(2i)`

∑̀
q=0

(−1)q
(
`

q

)
e(2q−`)ix

=
(−1)`

2`
e−πi`/2

∑̀
q=0

(−1)q
(
`

q

)
e(2q−`)ix =

(−1)`

2`

∑̀
q=0

(−1)q
(
`

q

)
e[(2q−`)x−π`/2]i

=
(−1)`

2`

∑̀
q=0

(−1)q
(
`

q

){
cos

[
(2q − `)x− `

2
π

]
+ i sin

[
(2q − `)x− `

2
π

]}
.

Hence, we obtain equalities (2.3) and (2.5). �

Corollary 2.2. For m, k ∈ N, we have

dm cosk x

dxm
=

1

2k

k∑
q=0

(
k

q

)
(2q − k)m cos

[
π

2
m+ (2q − k)x

]
,(2.6)

dm sink x

dxm
=

(−1)k

2k

k∑
q=0

(−1)q
(
k

q

)
(2q − k)m cos

[
(m− k)

π

2
+ (2q − k)x

]
,(2.7)
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and
k∑
q=0

(
k

q

)
(2q − k)m sin

[
π

2
m+ (2q − k)x

]
= 0,

k∑
q=0

(−1)q
(
k

q

)
(2q − k)m sin

[
(m− k)

π

2
+ (2q − k)x

]
= 0.

Proof. These identities follow from directly differentiating on all the sides of the
identities in Corollary 2.1. �

Remark 2.1. The formulas (2.6) and (2.7) were established and applied in the
paper [31].

Theorem 2.2. For n ∈ N, we have

(2.8) I2n =
π

22n+1

(
2n

n

)
.

First proof. A direct calculation reveals that

I2n =

∫ π/2

0

(
eix + e−ix

2

)2n

dx

=
1

22n

∫ π/2

0

2n∑
`=0

(
2n

`

)
ei`xe−i(2n−`)x dx

=
1

22n

2n∑
`=0

(
2n

`

)∫ π/2

0

ei(2`−2n)x dx

=
1

22n

[(
n−1∑
`=0

+

2n∑
`=n+1

)(
2n

`

)∫ π/2

0

ei(2`−2n)x dx+
π

2

(
2n

n

)]

=
π

22n+1

(
2n

n

)
+

1

22n

(
n−1∑
`=0

+

2n∑
`=n+1

)(
2n

`

)
1

i(2`− 2n)

[
ei(2`−2n)π/2 − 1

]
=

π

22n+1

(
2n

n

)
+

1

22n

(
n−1∑
`=0

+

2n∑
`=n+1

)(
2n

`

)
i

2`− 2n

[
1− ei(2`−2n)π/2

]
=

π

22n+1

(
2n

n

)
+

1

22n

(
n−1∑
`=0

+

2n∑
`=n+1

)(
2n

`

)
1

2(`− n)
sin

2(`− n)π

2

=
π

22n+1

(
2n

n

)
.

Consequently, the formula (2.8) is proved. �

Second proof. By virtue of (2.3), it follows that

I2n =
1

22n

2n∑
`=0

(−1)`
(

2n

`

)∫ π/2

0

cos[(2`− 2n)x− nπ] dx

=
(−1)n

22n

2n∑
`=0

(−1)`
(

2n

`

)∫ π/2

0

cos[(2`− 2n)x] dx
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=
(−1)n

22n

[
(−1)n

(
2n

n

)
π

2
+

(
n−1∑
`=0

+

2n∑
`=n+1

)
(−1)`

(
2n

`

)
1

2`− 2n
sin

(2`− 2n)π

2

]

=
π

22n+1

(
2n

n

)
.

As a result, the formula (2.8) is proved. �

Third proof. Letting ` = 2n and integrating from 0 to π
2 on both sides of (2.2)

arrive at the formula (2.8). �

Remark 2.2. In [2, p. 100], the formula (2.8) was proved alternatively.

3. General multiple-angle formulas for sine and cosine

Let i =
√
−1 be the imaginary unit. Then

ik =


i, k = 1 + 4`,

−1, k = 2 + 4`,

−i, k = 3 + 4`,

1, k = 4 + 4`,

where k ∈ N and ` ≥ 0. The quantity ik may also be computed by

ik = (−1)
1
2

[
k− 1−(−1)k

2

]
i
1−(−1)k

2

and

ik = ekπi/2 = cos
kπ

2
+ i sin

kπ

2
.

It is well known [1, p. 72] that the first few multiple-angle formulas are

sin(2x) = 2 sinx cosx,

cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x,

sin(3x) = 3 sinx− 4 sin3 x = 4 sinx sin

(
π

3
+ x

)
sin

(
π

3
− x
)
,

cos(3x) = 4 cos3 x− 3 cosx = 4 cosx cos

(
π

3
+ x

)
cos

(
π

3
− x
)
,

sin(4x) = 8 cos3 x sinx− 4 cosx sinx, cos(4x) = 8 cos4 x− 8 cos2 x+ 1.

Theorem 3.1. For k ≥ 2, the general multiple-angle formulas for the sine and
cosine functions are

sin(kx) =

k∑
`=0

(
k

`

)
sin

`π

2
sin` x cosk−` x

and

cos(kx) =

k∑
`=0

(
k

`

)
cos

`π

2
sin` x cosk−` x.

Proof. By the formula
ekxi = cos(kx) + i sin(kx),

we have

ekxi =
(
exi
)k

= (cosx+ i sinx)k



36 GUO AND QI

=

k∑
`=0

(
k

`

)
i` sin` x cosk−` x

=

k∑
`=0

(
k

`

)[
cos

`π

2
+ i sin

`π

2

]
sin` x cosk−` x

=

k∑
`=0

(
k

`

)
cos

`π

2
sin` x cosk−` x+ i

k∑
`=0

(
k

`

)
sin

`π

2
sin` x cosk−` x.

Further equating the real and imaginary parts yields the required general multiple-
angle formulas for the sine and cosine functions. The proof of Theorem 3.1 is
complete. �

Corollary 3.1. For k ≥ 2, we have

sin(kx) =

b(k−1)/2c∑
`=0

(
k

2`+ 1

)
sin

(2`+ 1)π

2
sin2`+1 x cosk−2`−1 x

=

b(k−1)/2c∑
`=0

(
k

2`+ 1

)
(−1)` sin2`+1 x cosk−2`−1 x

and

cos(kx) =

bk/2c∑
`=0

(
k

2`

)
cos(`π) sin2` x cosk−2` x

=

bk/2c∑
`=0

(
k

2`

)
(−1)` sin2` x cosk−2` x,

where bxc is called as the floor function which expresses the biggest integer not more
than x.
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