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Abstract

Differential privacy comes equipped with multiple analytical tools for the design of private data
analyses. One important tool is the so-called “privacy amplification by subsampling” principle,
which ensures that a differentially private mechanism run on a random subsample of a population
provides higher privacy guarantees than when run on the entire population. Several instances of
this principle have been studied for different random subsampling methods, each with an ad-hoc
analysis. In this paper we present a general method that recovers and improves prior analyses,
yields lower bounds and derives new instances of privacy amplification by subsampling. Our
method leverages a characterization of differential privacy as a divergence which emerged in the
program verification community. Furthermore, it introduces new tools, including advanced joint
convexity and privacy profiles, which might be of independent interest.

1 Introduction

Subsampling is a fundamental tool in the design and analysis of differentially private mechanisms.
Broadly speaking, the intuition behind the “privacy amplification by subsampling” principle is that
the privacy guarantees of a differentially private mechanism can be amplified by applying it to a
small random subsample of records from a given dataset. In machine learning, many classes of
algorithms involve sampling operations, e.g. stochastic optimization methods and Bayesian inference
algorithms, and it is not surprising that results quantifying the privacy amplification obtained via
subsampling play a key role in designing differentially private versions of these learning algorithms
[Bassily et al., 2014, Wang et al., 2015, Abadi et al., 2016, Jälkö et al., 2017, Park et al., 2016b,a].
Additionally, from a practical standpoint subsampling provides a straightforward method to obtain
privacy amplification when the final mechanism is only available as a black-box. For example, in
Apple’s iOS and Google’s Chrome deployments of differential privacy for data collection the privacy
parameters are hard-coded into the implementation and cannot be modified by the user. In this type
of settings, if the default privacy parameters are not satisfactory one could achieve a stronger privacy
guarantee by devising a strategy that only submits to the mechanism a random sample of the data.

Despite the practical importance of subsampling, existing tools to bound privacy amplification
only work for specific forms of subsampling and typically come with cumbersome proofs providing
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no information about the tightness of the resulting bounds. In this paper we remedy this situation
by providing a general framework for deriving tight privacy amplification results that can be applied
to any of the subsampling strategies considered in the literature. Our framework builds on a
characterization of differential privacy in terms of α-divergences [Barthe and Olmedo, 2013]. This
characterization has been used before for program verification [Barthe et al., 2012, 2016], while we use
it here for the first time in the context of algorithm analysis. In order to do this, we develop several
novel analytical tools, including advanced joint convexity – a property of α-divergence with respect
to mixture distributions – and privacy profiles – a general tool describing the privacy guarantees
that private algorithms provide.

One of our motivations to initiate a systematic study of privacy amplification by subsampling
is that this is an important primitive for the design of differentially private algorithms which has
received less attention than other building blocks like composition theorems [Dwork et al., 2010,
Kairouz et al., 2017, Murtagh and Vadhan, 2016]. Given the relevance of sampling operations in
machine learning, it is important to understand what are the limitations of privacy amplification and
develop a fine-grained understanding of its theoretical properties. Our results provide a first step in
this direction by showing how privacy amplification resulting from different sampling techniques can
be analyzed by means of single set of tools, and by showing how these tools can be used for proving
lower bounds. Our analyses also highlight the importance of choosing a sampling technique that
is well-adapted to the notion of neighbouring datasets under consideration. A second motivation
is that subsampling provides a natural example of mechanisms where the output distribution is a
mixture. Because mixtures have an additive structure and differential privacy is defined in terms of a
multiplicative guarantee, analyzing the privacy guarantees of mechanisms whose output distribution
is a mixture is in general a challenging task. Although our analyses are specialized to mixtures
arising from subsampling, we believe the tools we develop in terms of couplings and divergences will
also be useful to analyze other types of mechanisms involving mixture distributions. Finally, we
want to remark that privacy amplification results also play a role in analyzing the generalization and
sample complexity properties of private learning algorithms [Kasiviswanathan et al., 2011, Beimel
et al., 2013, Bun et al., 2015, Wang et al., 2016]; an in-depth understanding of the interplay between
sampling and differential privacy might also have applications in this direction.

2 Problem Statement and Methodology Overview

A mechanism M : X → P(Z) with input space X and output space Z is a randomized algorithm
that on input x outputs a sample from the distributionM(x) over Z. Here P(Z) denotes the set of
probability measures on the output space Z. We implicitly assume Z is equipped with a sigma-algebra
of measurable subsets and a base measure, in which case P(Z) is restricted to probability measures
that are absolutely continuous with respect to the base measure. In most cases of interest Z is
either a discrete space equipped with the counting measure or an Euclidean space equipped with the
Lebesgue measure. We also assume X is equipped with a binary symmetric relation 'X defining the
notion of neighbouring inputs.

Let ε ≥ 0 and δ ∈ [0, 1]. A mechanismM is said to be (ε, δ)-differentially private w.r.t. 'X if
for every pair of inputs x 'X x′ and every measurable subset E ⊆ Z we have

Pr[M(x) ∈ E] ≤ eεPr[M(x′) ∈ E] + δ . (1)
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For our purposes, it will be more convenient to express differential privacy in terms of α-divergences1.
Concretely, the α-divergence (α ≥ 1) between two probability measures µ, µ′ ∈ P(Z) is defined as2

Dα(µ‖µ′) = sup
E

(
µ(E)− αµ′(E)

)
=

∫
Z

[
dµ

dµ′
(z)− α

]
+

dµ′(z) =
∑
z∈Z

[µ(z)− αµ′(z)]+ , (2)

where E ranges over all measurable subsets of Z, [•]+ = max{•, 0}, and the last equality is a
specialization for discrete Z. It is easy to see [Barthe and Olmedo, 2013] thatM is (ε, δ)-differentially
private if and only if Deε(M(x)‖M(x′)) ≤ δ for every x and x′ such that x 'X x′.

In order to emphasize the relevant properties of M from a privacy amplification point of
view, we introduce the concepts of privacy profile and group-privacy profiles. The privacy profile
δM of a mechanism M is a function associating to each privacy parameter α = eε a bound on
the α-divergence between the results of running the mechanism on two adjacent datasets, i.e.
δM(ε) = supx'Xx′ Deε(M(x)‖M(x′)) (we will discuss the properties of this tool in more details
in the next section). Informally speaking, the privacy profile represents the set of all of privacy
parameters under which a mechanism provides differential privacy. In particular, recall that an
(ε, δ)-DP mechanismM is also (ε′, δ′)-DP for any ε′ ≥ ε and any δ′ ≥ δ. The privacy profile δM
defines a curve in [0,∞) × [0, 1] that separates the space of privacy parameters into two regions:
the ones for whichM satisfies differential privacy and the ones for which it does not. This curve
exists for every mechanismM, even for mechanisms that satisfy pure DP for some value of ε. When
the mechanism is clear from the context we might slightly abuse our notation and write δ(ε) or
δ for the corresponding privacy profile. To define group-privacy profiles δM,k (k ≥ 1) we use the
path-distance d induced by 'X :

d(x, x′) = min{k : ∃x1, . . . , xk−1, x 'X x1, x1 'X x2, . . . , xk−1 'X x′} .

With this notation, we define δM,k(ε) = supd(x,x′)≤kDeε(M(x)‖M(x′)). Note that δM = δM,1.

Problem Statement A well-known method for increasing privacy of a mechanism is to apply
the mechanism to a random subsample of the input database, rather than on the database itself.
Intuitively, the method decreases the chances of leaking information about a particular individual
because nothing about that individual can be leaked in the cases where the individual is not included
in the subsample. The question addressed in this paper is to devise methods for quantifying
amplification and for proving optimality of the bounds. This turns out to be a surprisingly subtle
problem.

Formally, let X and Y be two sets equipped with neighbouring relations 'X and 'Y respectively.
We assume that both X and Y contain databases (modelled as sets, multisets, or tuples) over a
universe U that represents all possible records contained in a database. A subsampling mechanism
is a randomized algorithm S : X → P(Y ) that takes as input a database x and outputs a finitely
supported distribution over datasets. Note that we find it convenient to distinguish between X and
Y because x and y might not always have the same type. For example, sampling with replacement
from a set x yields a multiset y.

1Also known in the literature as elementary divergences [Österreicher, 2002] and hockey-stick divergences [Sason
and Verdú, 2016].

2Here dµ/dµ′ denotes the Radon-Nikodym derivative between µ and µ′. In particular, if µ and µ′ have densities
p = dµ/dν and p′ = dµ′/dν with respect to some base measure ν, then dµ/dµ′ = p/p′.
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Subsampling 'Y 'X η δ′ Theorem

Poisson(γ) R R γ γδ 8

WOR(n,m) S S m
n

m
n δ 9

WR(n,m) S S 1−
(
1− 1

n

)m ∑m
k=1

(
m
k

) (
1
n

)k (
1− 1

n

)m−k
δk 10

WR(n,m) S R 1−
(
1− 1

n

)m ∑m
k=1

(
m
k

) (
1
n

)k (
1− 1

n

)m−k
δk 11

Table 1: Summary of privacy amplification bounds. Amplification parameter η: eε′ = 1 + η(eε − 1).
Types of subsampling: without replacement (WOR) and with replacement (WR). Neighbouring
relations: remove/add-one (R) and substitute one (S).

The problem of privacy amplification can now be stated as follows: let M : Y → P(Z) be a
mechanism with privacy profile δM with respect to 'Y , and let S be a subsampling mechanism.
Consider the subsampled mechanism MS : X → P(Z) given by MS(x) = M(S(x)), where the
composition notation means we feed a sample from S(x) intoM. The goal is to relate the privacy
profiles of M and MS , via an inequality of the form: for every ε ≥ 0, there exists 0 ≤ ε′ ≤ ε
such that δMS (ε′) ≤ h(δM(ε)), where h is some function to be determined. In terms of differential
privacy, one can be read as saying that ifM is (ε, δ)-DP, them the subsampled mechanismMS is
(ε′, h(δ))-DP for some ε′ ≤ ε. This is a privacy amplification statement because the new mechanism
has better privacy parameters than the original one.

A full specification of this problem requires formalizing the following three ingredients: (i) dataset
representation specifying whether the inputs to the mechanism are sets, multisets, or tuples; (ii)
neighbouring relations in X and Y , including the usual remove/add-one 'r and substitute-one
's relations; (iii) subsampling method and its parameters, with the most commonly used being
subsample without replacement, subsampling with replacement, and Poisson subsampling.

Regardless of the specific setting being considered, the main challenge in the analysis of privacy
amplification by subsampling resides in the fact that the output distribution of the mechanism
µ = MS(x) ∈ P(Z) is a mixture distribution. In particular, writing µy = M(y) ∈ P(Z) for any
y ∈ Y and taking ω = S(x) ∈ P(Y ) to be the (finitely supported) distribution over subsamples
from x produced by the subsampling mechanism, we can write µ =

∑
y ω(y)µy = ωM , where M

denotes the Markov kernel operating on measures defined by M. Consequently, proving privacy
amplifications results requires reasoning about the mixtures obtained when sampling from two
neighbouring datasets x 'X x′, and how the privacy parameters are affected by the mixture.

Our Contribution We provide a unified method for deriving privacy amplification by subsampling
bounds (Section 3). Our method recovers all existing results in the literature and allow us to derive
novel amplification bounds (Section 4). In most cases our method also provides optimal constants
which are shown to be tight by a generic lower bound (Section 5). Our analysis relies on properties
of divergences and privacy profiles, together with two additional ingredients.

The first ingredient is a novel advanced joint convexity property providing upper bounds on
the α-divergence between overlapping mixture distributions. In the specific context of differential
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privacy this result yields for every x 'X x′:

Deε′ (M
S(x)‖MS(x′)) ≤ η ·

(
(1− β)Deε(µ1‖µ0) + βDeε(µ1‖µ′1)

)
, (3)

for eε′ = 1 + η(eε − 1), some β ∈ [0, 1], and η = TV(S(x),S(x′)) being the total variation distance
between the distributions over subsamples. Here µ0, µ1, µ

′
1 ∈ P(Z) are suitable measures obtained

fromMS(x) andMS(x′) through a coupling and projection operation. In particular, the proof of
advanced joint convexity uses ideas from probabilistic couplings, and more specifically the maximal
coupling construction (see Theorem 2 and its proof for more details). It is also interesting to
note that the non-linear relation ε′ = log(1 + η(eε − 1)) already appears in some existing privacy
amplification results (e.g. Li et al. [2012]). Although for small ε and η this relation yields ε′ = O(ηε),
our results show that the more complicated non-linear relation is in fact a fundamental aspect of
privacy amplification by subsampling.

The second ingredient in our analysis establishes an upper bound for the divergences occurring in
the right hand side of (3) in terms of group-privacy profiles. It states that under suitable conditions,
we have Deε(νM‖ν ′M) ≤

∑
k≥1 λk(ν)δM,k(e

ε) for suitable choices of λk. Again, the proof of the
inequality uses tools from probabilistic couplings.

The combination of these results yields a bound of the privacy profile ofMS as a function of the
group-privacy profiles ofM. Based on this inequality, we will establish several privacy amplification
result and prove tightness results. This methodology can be applied to any of the settings discussed
above in terms of dataset representation, neighbouring relation, and type of subsampling. Table 1
summarizes several results that can be obtained with our method (see Section 4 for details). The
supplementary material also contains plots illustrating our bounds (Figure 1) and proofs of all the
results presented in the paper.

3 Tools: Couplings, Divergences and Privacy Profiles

We next introduce several tools that will be used to support our analyses. The first and second tools
are known, whereas the remaining tools are new and of independent interest.

Divergences The following characterization follows immediately from the definition of α-divergence
in terms of the supremum over E.

Theorem 1 ([Barthe and Olmedo, 2013]). A mechanism M is (ε, δ)-differentially private with
respect to 'X if and only if supx'Xx′ Deε(M(x)‖M(x′)) ≤ δ.

Note that in the statement of the theorem we take α = eε. Throughout the paper we sometimes
use these two notations interchangeably to make expressions more compact.

We now state consequences of the definition of α-divergence: (i) 0 ≤ Dα(µ‖µ′) ≤ 1; (ii) the
function α 7→ Dα(µ‖µ′) is monotonically decreasing; (iii) the function (µ, µ′) 7→ Dα(µ‖µ′) is jointly
convex. Furthermore, one can show that limα→∞Dα(µ‖µ′) = 0 if and only if supp(µ) ⊆ supp(µ′).

Couplings Couplings are a standard tool for deriving upper bounds for the statistical distance
between distributions. Concretely, it is well-known that the total variation distance between two
distributions ν, ν ′ ∈ P(Y ) satisfies TV(ν, ν ′) ≤ Prπ[y 6= y′] for any coupling π, where equality is
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attained by taking the so-called maximal coupling. We recall the definition of coupling and provide
a construction of the maximal coupling, which we shall use in later sections.

A coupling between two distributions ν, ν ′ ∈ P(Y ) is a distribution π ∈ P(Y ×Y ) whose marginals
along the projections (y, y′) 7→ y and (y, y′) 7→ y′ are ν and ν ′ respectively. Couplings always exist,
and furthermore, there exists a maximal coupling, which exactly characterizes the total variation
distance between ν and ν ′. Let ν0(y) = min{ν(y), ν ′(y)} and let η = TV(ν, ν ′) = 1−

∑
y∈Y ν0(y),

where TV denotes the total variation distance. The maximal coupling between ν and ν ′ is defined
as the mixture π = (1 − η)π0 + ηπ1, where π0(y, y′) = ν0(y)1[y = y′]/(1 − η), and ν1(y, y′) =
(ν(y)− ν0(y))(ν ′(y′)− ν0(y′))/η. Projecting the maximal coupling along the marginals yields the
overlapping mixture decompositions ν = (1− η)ν0 + ην1 and ν ′ = (1− η)ν0 + ην ′1.

Advanced Joint Convexity The privacy amplification phenomenon is tightly connected to an
interesting new form of joint convexity for α-divergences, which we call advanced joint convexity.

Theorem 2 (Advanced Joint Convexity of Dα
3). Let µ, µ′ ∈ P(Z) be measures satisfying µ =

(1−η)µ0 +ηµ1 and µ′ = (1−η)µ0 +ηµ′1 for some η, µ0, µ1, and µ′1. Given α ≥ 1, let α′ = 1+η(α−1)
and β = α′/α. Then the following holds:

Dα′(µ‖µ′) = ηDα(µ1‖(1− β)µ0 + βµ′1) . (4)

Note that writing α = eε and α′ = eε
′ in the above lemma we get the relation ε′ = log(1+η(eε−1)).

Applying standard joint convexity to the right hand side above we conclude: Dα′(µ‖µ′) ≤ (1 −
β)ηDα(µ1‖µ0) + βηDα(µ1‖µ′1). Note that applying joint convexity directly on Dα′(µ‖µ′) instead
of advanced joint complexity yields a weaker bound which implies amplification for the δ privacy
parameter, but not for the ε privacy parameter.

When using advanced joint convexity to analyze privacy amplification we consider two elements
x and x′ and fix the following notation. Let ω = S(x) and ω′ = S(x′) and µ = ωM and µ′ = ω′M ,
where we use the notation M to denote the Markov kernel associated with mechanismM operating
on measures over Y . We then consider the mixture factorization of ω and ω′ obtained by taking
the decompositions induced by projecting the maximal coupling π = (1− η)π0 + ηπ1 on the first
and second marginals: ω = (1 − η)ω0 + ηω1 and ω′ = (1 − η)ω0 + ηω′1. It is easy to see from
the construction of the maximal coupling that ω1 and ω′1 have disjoint supports and η is the
smallest probability such that this condition holds. In this way we obtain the canonical mixture
decompositions µ = (1− η)µ0 + ηµ1 and µ′ = (1− η)µ0 + ηµ′1, where µ0 = ω0M , µ1 = ω1M and
µ′1 = ω′1M .

Privacy Profiles We state some important properties of privacy profiles. Our first result illustrates
our claim that the “privacy curve” exists for every mechanism M in the context of the Laplace
output perturbation mechanism.

Theorem 3. Let f : X → R be a function with global sensitivity ∆ = supx'Xx′ |f(x) − f(x′)|.
SupposeM(x) = f(x) + Lap(b) is a Laplace output perturbation mechanism with noise parameter b.
The privacy profile ofM is given by δM(ε) = [1− exp( ε−θ2 )]+, where θ = ∆/b.

The well-known fact that the Laplace mechanism with b ≥ ∆/ε is (ε, 0)-DP follows from this
result by noting that δM(ε) = 0 for any ε ≥ θ. However, Theorem 3 also provides more information:

3Proofs of all our results are presented in the appendix.
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it shows that for ε < ∆/b the Laplace mechanism with noise parameter b satisfies (ε, δ)-DP with
δ = δM(ε).

For mechanisms that only satisfy approximate DP, the privacy profile provides information
about the behaviour of δM(ε) as we increase ε → ∞. The classical analysis for the Gaussian
output perturbation mechanism provides some information in this respect. Recall that for a
function f : X → Rd with L2 global sensitivity ∆ = supx'Xx′ ‖f(x) − f(x)‖2 the mechanism
M(x) = f(x) +N (0, σ2I) satisfies (ε, δ)-DP if σ2 ≥ 2∆2 log(1.25/δ)/ε2 and ε ∈ (0, 1) (cf. [Dwork
and Roth, 2014, Theorem A.1]). This can be rewritten as δM(ε) ≤ 1.25e−ε

2/2θ2 for ε ∈ (0, 1),
where θ = ∆/σ. Recently, Balle and Wang [Balle and Wang, 2018] gave a new analysis of the
Gaussian mechanism that is valid for all values of ε. Their analysis can be interpreted as providing
an expression for the privacy profile of the Gaussian mechanism in terms of the CDF of a standard
normal distribution Φ(t) = (2π)−1/2

∫ t
−∞ e

−r2/2dr.

Theorem 4 ([Balle and Wang, 2018]). Let f : X → Rd be a function with L2 global sensitivity ∆.
For any σ > 0 let θ = ∆/σ. The privacy profile of the Gaussian mechanismM(x) = f(x)+N (0, σ2I)
is given by δM(eε) = Φ(θ/2− ε/θ)− eεΦ(−θ/2− ε/θ).

Interestingly, the proof of Theorem 4 implicitly provides a characterization of privacy profiles in
terms of privacy loss random variables that holds for any mechanism. Recall that the privacy loss
random variable of a mechanismM on inputs x 'X x′ is defined as Lx,x

′

M = log(dµ/dµ′)(z), where
µ =M(x), µ′ =M(x′), and z ∼ µ.

Theorem 5 ([Balle and Wang, 2018]). The privacy profile of any mechanismM satisfies

δM(ε) = sup
x'Xx′

(
Pr[Lx,x

′

M > ε]− eεPr[Lx
′,x
M < −ε]

)
.

The characterization above generalizes the well-known inequality δM(ε) ≤ supx'Xx′ Pr[L
x,x′

M > ε]
(eg. see [Dwork and Roth, 2014]). This bound is often used to derive (ε, δ)-DP guarantees from other
notions of privacy defined in terms of the moment generating function of the privacy loss random
variable, including concentrated DP [Dwork and Rothblum, 2016], zero-concentrated DP [Bun and
Steinke, 2016], Rényi DP [Mironov, 2017], and truncated concentrated DP [Bun et al., 2018]. We
now show a reverse implication also holds. Namely, that privacy profiles can be used to recover all
the information provided by the moment generating function of the privacy loss random variable.

Theorem 6. Given a mechanismM and inputs x 'X x′ let µ =M(x) and µ′ =M(x′). For s ≥ 0,
define the moment generating function ϕx,x

′

M (s) = E[exp(sLx,x
′

M )]. Then we have

ϕx,x
′

M (s) = 1 + s(s+ 1)

∫ ∞
0

(
esεDeε(µ‖µ′) + e−(s+1)εDeε(µ

′‖µ)
)
dε .

In particular, if Deε(µ‖µ′) = Deε(µ
′‖µ) holds4 for every x 'X x′, then supx'Xx′ ϕ

x,x′

M (s) = 1 + s(s+

1)
∫∞

0 (esε + e−(s+1)ε)δM(ε)dε.
4For example, this is satisfied by all output perturbation mechanisms with symmetric noise distributions.
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Group-privacy Profiles Recall the kth group privacy profile of a mechanismM is defined as
δM,k(ε) = supd(x,x′)≤kDeε(M(x)‖M(x′)). A standard group privacy analysis5 immediately yields
δM,k(ε) ≤ (eε − 1)δM(ε/k)/(eε/k − 1). However, “white-box” approaches based on full knowledge of
the privacy profile ofM can be used to improve this result for specific mechanisms. For example, it
is not hard to see that, combining the expressions from Theorems 3 and 4 with the triangle inequality
on the global sensitivity of changing k records in a dataset, one obtains bounds that improve on
the “black-box” approach for all ranges of parameters for the Laplace and Gaussian mechanisms.
This is one of the reasons why we state our bounds directly in terms of (group-)privacy profiles (a
numerical comparison can be found in the supplementary material).

Distance-compatible Coupling The last tool we need to prove general privacy amplification
bounds based on α-divergences is the existence of a certain type of couplings between two distributions
like the ones occurring in the right hand side of (4). Recall that any coupling π between two
distributions ν, ν ′ ∈ P(Y ) can be used to rewrite the mixture distributions µ̃ = νM and µ̃′ = ν ′M as
µ̃ =

∑
y,y′ πy,y′M(y) and µ̃′ =

∑
y,y′ πy,y′M(y′). Using the joint convexity of Dα and the definition

of group-privacy profiles to get the bound

Deε(µ̃‖µ̃′) ≤
∑
y,y′

πy,y′Deε(M(y)‖M(y′)) ≤
∑
y,y′

πy,y′δM,dY (y,y′)(ε) . (5)

Since this bound holds for any coupling π, one can set out to optimize it by finding a coupling the
minimizes the right hand side of (5). We show that the existence of couplings whose support is
contained inside a certain subset of Y × Y is enough to obtain an optimal bound. Furthermore,
we show that when this condition is satisfied the resulting bound depends only on ν and the
group-privacy profiles ofM.

We say that two distributions ν, ν ′ ∈ P(Y ) are dY -compatible if there exists a coupling π between
ν and ν ′ such for any (y, y′) ∈ supp(π) we have dY (y, y′) = dY (y, supp(ν ′)), where the distance
between a point y and the set supp(ν ′) is defined as the distance between y and the closest point in
supp(ν ′).

Theorem 7. Let C(ν, ν ′) be the set of all couplings between ν and ν ′ and for k ≥ 1 let Yk = {y ∈
supp(ν) : dY (y, supp(ν ′)) = k}. If ν and ν ′ are dY -compatible, then the following holds:

min
π∈C(ν,ν′)

∑
y,y′

πy,y′δM,dY (y,y′)(ε) =
∑
k≥1

ν(Yk)δM,k(ε) . (6)

Applying this result to the bound resulting from the right hand side of (4) yields most of the
concrete privacy amplification results presented in the next section.

4 Privacy Amplification Bounds

In this section we provide explicit privacy amplification bounds for the most common subsampling
methods and neighbouring relations found in the literature on differential privacy, and provide
pointers to existing bounds and other related work. For our analysis we work with order-independent

5IfM is (ε, δ)-DP with respect to 'Y , then it is (kε, ((ekε − 1)/(eε − 1))δ)-DP with respect to 'kY , cf. [Vadhan,
2017, Lemma 2.2]
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representations of datasets without repetitions, i.e. sets. This is mostly for technical convenience,
since all our results also hold if one considers datasets represented as tuples or multisets. Note
however that subsampling with replacement for a set can yield a multiset; hence we introduce
suitable notations for sets and multisets.

Fix a universe of records U and let 2 = {0, 1}. We write 2U and NU for the spaces of all sets and
multisets with records from U . Note every set is also a multiset. For n ≥ 0 we also write 2Un and NUn
for the spaces of all sets and multisets containing exactly n records6 from U . Given x ∈ NU we write
xu for the number of occurrences of u ∈ U in x. The support of a multiset x is the defined as the set
supp(x) = {u ∈ U : xu > 0} of elements that occur at least once in x. Given multisets x, x′ ∈ NU we
write x′ ⊆ x to denote that x′u ≤ xu for all u ∈ U .

For order-independent datasets represented as multisets it is natural to consider the two following
neighbouring relations. The remove/add-one relation is obtained by letting x 'r x′ hold whenever
x ⊆ x′ with |x| = |x′| − 1 or x′ ⊆ x with |x| = |x′| + 1; i.e. x′ is obtained by removing or adding
a single element to x. The substitute-one relation is obtained by letting x 's x′ hold whenever
‖x− x′‖1 = 2 and |x| = |x′|; i.e. x′ is obtained by replacing an element in x with a different element
from U . Note how 'r relates pairs of datasets with different sizes, while 's only relates pairs of
datasets with the same size.

Poisson Subsampling Perhaps the most well-known privacy amplification result refers to the
analysis of Poisson subsampling with respect to the remove/add-one relation. In this case the
subsampling mechanism Spoγ : 2U → P(2U ) takes a set x and outputs a sample y from the distribution
ω = Spoγ (x) supported on all set y ⊆ x given by ω(y) = γ|y|(1 − γ)|x|−|y|. This corresponds to
independently adding to y with probability γ each element from x. Now, given a mechanism
M : 2U → P(Z) with privacy profile δM with respect to 'r, we are interested in bounding the
privacy profile of the subsampled mechanismMSwoγ with respect to 'r.

Theorem 8. LetM′ =MS
po
γ . For any ε ≥ 0 we have δM′(ε′) ≤ γδM(ε), where ε′ = log(1 + γ(eε −

1)).

Privacy amplification with Poisson sampling was used in [Chaudhuri and Mishra, 2006, Beimel
et al., 2010, Kasiviswanathan et al., 2011, Beimel et al., 2014], which considered loose bounds. A
proof of this tight result in terms of (ε, δ)-DP was first given in [Li et al., 2012]. In the context of
the moments accountant technique based on the moment generating function of the privacy loss
random variable, [Abadi et al., 2016] provide an amplification result for Gaussian output perturbation
mechanisms under Poisson subsampling.

Sampling Without Replacement Another known results on privacy amplification corresponds
to the analysis of sampling without replacement with respect to the substitution relation. In this
case one considers the subsampling mechanism Swom : 2Un → P(2Um) that given a set x ∈ 2Un of
size n outputs a sample from the uniform distribution ω = Swom (x) over all subsets y ⊆ x of size
m ≤ n. Then, for a given a mechanismM : 2Um → P(Z) with privacy profile δM with respect to the
substitution relation 's on sets of size m, we are interested in bounding the privacy profile of the
mechanismMSwom with respect to the substitution relation on sets of size n.

Theorem 9. Let M′ = MSwom . For any ε ≥ 0 we have δM′(ε
′) ≤ (m/n)δM(ε), where ε′ =

log(1 + (m/n)(eε − 1)).
6In the case of multisets records are counted with multiplicity.
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This setting has been used in [Beimel et al., 2013, Bassily et al., 2014, Wang et al., 2016] with
non-tight bounds. A proof of this tight bound formulated in terms of (ε, δ)-DP can be directly
recovered from Ullman’s class notes [Ullman, 2017], although the stated bound is weaker. Rényi DP
amplification bounds for subsampling without replacement were developed in [Wang et al., 2018].

Sampling With Replacement Next we consider the case of sampling with replacement with
respect to the substitution relation 's. The subsampling with replacement mechanism Swrm : 2Un →
P(NUm) takes a set x of size n and outputs a sample from the multinomial distribution ω = Swrm (x)
over all multisets y of size m ≤ n with supp(y) ⊆ x, given by ω(y) = (m!/nm)

∏
u∈U xu/(yu!). In

this case we suppose the base mechanismM : NUm → P(Z) is defined on multisets and has privacy
profile δM with respect to 's. We are interested in bounding the privacy profile of the subsampled
mechanismMSwrm : 2Un → P(Z) with respect to 's.

Theorem 10. LetM′ =MSwrm . Given ε ≥ 0 and ε′ = log(1 + (1− (1− 1/n)m)(eε − 1)) we have

δM′(ε
′) ≤

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Note that if m = γn, then 1− (1− 1/n)m ≈ γ. A version of this bound in terms of (ε, δ)-DP that
implicitly uses the group privacy property can be found in [Bun et al., 2015]. Our bound matches
the asymptotics of [Bun et al., 2015] while providing optimal constants and allowing for white-box
group privacy bounds.

Hybrid Neighbouring Relations Using our method it is also possible to analyze new settings
which have not been considered before. One interesting example occurs when there is a mismatch
between the two neighbouring relations arising in the analysis. For example, suppose one knows the
group-privacy profiles δM,k of a base mechanismM : NUm → P(Z) with respect to the substitution
relation 's. In this case one could ask whether it makes sense to study the privacy profile of the
subsampled mechanismMSwrm : 2U → P(Z) with respect to the remove/add relation 'r. In principle,
this makes sense in settings where the size of the inputs toM is restricted due to implementation
constraints (eg. limited by the memory available in a GPU used to run a private mechanism that
computes a gradient on a mini-batch of size m). In this case one might still be interested in analyzing
the privacy loss incurred from releasing such stochastic gradients under the remove/add relation.
Note that this setting cannot be implemented using sampling without replacement since under the
remove/add relation we cannot a priori guarantee that the input dataset will have at least size m
because the size of the dataset must be kept private [Vadhan, 2017]. Furthermore, one cannot hope
to get a meaningful result about the privacy profile of the subsampled mechanism across all inputs
sets in 2U ; instead the privacy guarantee will depend on the size of the input dataset as shown in
the following result.

Theorem 11. LetM′ =MSwrm . For any ε ≥ 0 and n ≥ 0 we have

sup
x∈2Un ,x'rx′

Deε′ (M
′(x)‖M′(x′)) ≤

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) ,

where ε′ = log(1 + (1− (1− 1/n)m)(eε − 1)).
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When the Neighbouring Relation is “Incompatible” Now we consider a simple example
where distance-compatible couplings are not available: Poisson subsampling with respect to the
substitution relation. Suppose x, x′ ∈ 2Un are sets of size n related by the substitution relation 's.
Let ω = Spoη (x) and ω′ = Spoη (x′) and note that TV(ω, ω′) = η. Let x0 = x ∩ x′ and v = x \ x0,
v′ = x′ \ x0. In this case the factorization induced by the maximal coupling is obtained by taking
ω0 = Spoη (x0), ω1(y ∪ {v}) = ω0(y), and ω′1(y ∪ {v′}) = ω0(y). Now the support of ω0 contains sets
of sizes between 0 and n− 1, while the supports of ω1 and ω1 contain sets of sizes between 1 and n.
From this observation one can deduce that ω1 and ω0 are not d's-compatible, and ω1 and ω′1 are
not d'r -compatible.

This argument shows that the method we used to analyze the previous settings cannot be
extended to analyze Poisson subsampling under the substitution relation, regardless of whether
the privacy profile of the base mechanism is given in terms of the replacement/addition or the
substitution relation. This observation is saying that some pairings between subsampling method and
neighbouring relation are more natural than others. Nonetheless, even without distance-compatible
couplings it is possible to provide privacy amplification bounds for Poisson subsampling with respect
to the substitution relation, although the resulting bound is quite cumbersome. The corresponding
statement and analysis can be found in the supplementary material.

5 Lower Bounds

In this section we show that many of the results given in the previous section are tight by constructing
a randomized membership mechanism that attains these upper bounds. For the sake of generality, we
state the main construction in terms of tuples instead of multisets. In fact, we prove a general lemma
that can be used to obtain tightness results for any subsampling mechanism and any neighbouring
relation satisfying two natural assumptions.

For p ∈ [0, 1] let Rp : {0, 1} → P({0, 1}) be the randomized response mechanism that given
b ∈ {0, 1} returns b with probability p and 1−b with probability 1−p. Note that for p = (eε+δ)/(eε+1)
this mechanism is (ε, δ)-DP. Let ν0 = Rp(0) and ν1 = Rp(1). For any ε ≥ 0 and p ∈ [0, 1]
define ψp(ε) = [p − eε(1 − p)]+. It is easy to verify that Deε(ν0‖ν1) = Deε(ν1‖ν0) = ψp(ε).
Now let U be a universe containing at least two elements. For v ∈ U and p ∈ [0, 1] we define
the randomized membership mechanism Mv,p that given a tuple x = (u1, . . . , un) ∈ U? returns
Mv,p(x) = Rp(I[v ∈ x]). We say that a subsampling mechanism S : X → P(U?) defined on some
set X ⊆ U? is natural if the following two conditions are satisfied: (1) for any x ∈ X and u ∈ U , if
u ∈ x then there exists y ∈ supp(S(x)) such that u ∈ y; (2) for any x ∈ X and u ∈ U , if u /∈ x then
we have u /∈ y for every y ∈ supp(S(x)).

Lemma 12. Let X ⊆ U? be equipped with a neighbouring relation 'X such that there exist x 'X x′

with v ∈ x and v /∈ x′. Suppose S : X → P(U?) is a natural subsampling mechanism and let
η = supx'Xx′ TV(S(x),S(x′)). For any ε ≥ 0 and ε′ = log(1 + η(eε − 1)) we have

δMSv,p(ε
′) = sup

x'Xx′
Deε

′ (MSv,p(x)‖MSv,p(x′)) = ηψp(ε) .

We can now apply this lemma to show that the first three results from previous section are tight.
This requires specializing from tuples to (multi)sets, and plugging in the definitions of neighbouring
relation, subsampling mechanism, and η used in each of these theorems.

Theorem 13. The mechanismMv,p attains the bounds in Theorems 8, 9, 10 for any p and η.
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6 Conclusions

We have developed a general method for reasoning about privacy amplification by subsampling.
Our method is applicable to many different settings, some which have already been studied in the
literature, and others which are new. Technically, our method leverages two new tools of independent
interest: advanced joint convexity and privacy profiles. In the future, it would be interesting to
study whether our tools can be extended to give concrete bounds on privacy amplification for other
privacy notions such as concentrated DP [Dwork and Rothblum, 2016], zero-concentrated DP [Bun
and Steinke, 2016], Rényi DP [Mironov, 2017], and truncated concentrated DP [Bun et al., 2018].
A good starting point is Theorem 6 establishing relations between privacy profiles and moment
generating functions of the privacy loss random variable. An alternative approach is to extend the
recent results for Rényi DP amplification by subsampling without replacement given in [Wang et al.,
2018] to more general notions of subsampling and neighbouring relations.
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A Proofs from Section 3

Proof of Theorem 2. It suffices to check that for any z ∈ Z,

[µ(z)− α′µ′(z)]+ = η
[
µ1(z)− α

(
(1− β)µ0(z) + βµ′1(z)

)]
+

.

Plugging this identity in the definition of Dα′ we get the desired equality

Dα′(µ‖µ′) = ηDα(µ1‖(1− β)µ0 + βµ′1) .

Proof of Theorem 3. Suppose x 'X x′ and assume without loss of generality that y = f(x) = 0 and
y′ = f(x) = ∆ > 0. Plugging the density of the Laplace distribution in the definition of α-divergence
we get

Deε(Lap(b)‖∆ + Lap(b)) =
1

2b

∫
R

[
e−
|z|
b − eεe−

|z−∆|
b

]
+
dz .

Now we observe that the quantity inside the integral above is positive if and only if |z−∆|− |z| ≥ εb.
Since ||z + ∆| − |z|| ≤ ∆, we see that the divergence is zero for ε > ∆/b. On the other hand, for
ε ∈ [0,∆/b] we have {z : |z −∆| − |z| ≥ εb} = (−∞, (∆− εb)/2]. Thus, we have

1

2b

∫
R

[
e−
|z|
b − eεe−

|z−∆|
b

]
+
dz =

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz − eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz .

Now we can compute both integrals as probabilities under the Laplace distribution:

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz = Pr

[
Lap(b) ≤ ∆− εb

2

]
= 1− 1

2
exp

(
εb−∆

2b

)
,

eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz = eεPr

[
Lap(b) ≤ −∆− εb

2

]
=
eε

2
exp

(
−εb−∆

2b

)
.

Putting these two quantities together we finally get, for ε ≤ ∆/b:

Deε(Lap(b)‖∆ + Lap(b)) = 1− exp

(
ε

2
− ∆

2b

)
.

Proof of Theorem 6. Let ϕ = ϕx,x
′

M , L = Lx,x
′

M , ϕ̃ = ϕx
′,x
M , and L̃ = Lx

′,x
M . Recall that for any

non-negative random variable z one has E[z] =
∫∞

0 Pr[z > t]dt. We use this to write the moment
generating function of the corresponding privacy loss random variable for s ≥ 0 as follows:

ϕ(s) =

∫ ∞
0

Pr[esL > t]dt

=

∫ ∞
0

Pr

[
p(z)

q(z)
> t1/s

]
dt ,
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where z ∼ µ, and p and q represent the densities of µ and ν with respect to a fixed base measure.
Next we observe the probability inside the integral above can be decomposed in terms of a divergence
and a second integral with respect to q:

Pr

[
p(z)

q(z)
> t1/s

]
= Pr[p(z) > t1/sq(z)]

= Eµ
[
I[p > t1/sq]

]
=

∫
I[p(z) > t1/sq(z)]p(z)dz

=

∫
I[p(z) > t1/sq(z)](p(z)− t1/sq(z))dz + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dz

=

∫
[p(z)− t1/sq(z)]+dz + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dz

= Dt1/s(µ‖µ
′) + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dz .

Note the term Dt1/s(µ‖µ′) above is not a divergence when t1/s < 1. The integral term above can be
re-written as a probability in terms of L̃ as follows:∫

I[p(z) > t1/sq(z)]q(z)dz = Pr[p(z′) > t1/sq(z′)]

= Pr

[
p(z′)

q(z′)
> t1/s

]
= Pr

[
e−L̃ > t1/s

]
,

where z′ ∼ µ′. Thus, integrating with respect to t we get an expression for ϕ(s) involving two terms
that we will need to massage further:

ϕ(s) =

∫ ∞
0

Dt1/s(µ‖µ
′)dt+

∫ ∞
0

t1/sPr
[
e−L̃ > t1/s

]
dt .

To compute the second integral in the RHS above we perform the change of variables dt′ = t1/sdt,
which comes from taking t′ = t1+1/s/(1 + 1/s), or, equivalently, t = ((1 + 1/s)t′)1/(1+1/s). This
allows us to introduce the moment generating function of L̃ as follows:∫ ∞

0
t1/sPr

[
e−L̃ > t1/s

]
dt =

∫ ∞
0

Pr
[
e−L̃ > ((1 + 1/s)t′)1/(s+1)

]
dt′

=

∫ ∞
0

Pr

[
s

s+ 1
e−(s+1)L̃ > t′

]
dt′

=
s

s+ 1
E
[
e−(s+1)L̃

]
=

s

s+ 1
ϕ̃(−s− 1) .

Putting the derivations above together and substituting ϕ̃(−s− 1) for ϕ(s) we see that

ϕ(s) =
s

s+ 1
ϕ(s) +

∫ ∞
0

Dt1/s(µ‖µ
′)dt ,
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or equivalently:

ϕ(s) = (s+ 1)

∫ ∞
0

Dt1/s(µ‖µ
′)dt .

Now we observe that some terms in the integral above cannot be bounded using an α-divergence
between µ and µ′, e.g. for t ∈ (0, 1) the term Dt1/s(µ‖µ′) is not a divergence. Instead, using the
definition of Dt1/s(µ‖µ′) we can see that these terms are equal to by 1 − t1/s + t1/sDt−1/s(µ′‖µ),
where the last term is now a divergence. Thus, we split the integral in the expression for ϕ(s) into
two parts and obtain

ϕ(s) = (s+ 1)

∫ 1

0

(
1− t′1/s + t′

1/s
Dt′−1/s(µ′‖µ)

)
dt′ + (s+ 1)

∫ ∞
1

Dt1/s(µ‖µ
′)dt

= 1 + (s+ 1)

∫ 1

0
t′

1/s
Dt′−1/s(µ′‖µ)dt′ + (s+ 1)

∫ ∞
1

Dt1/s(µ‖µ
′)dt .

Finally, we can obtain the desired equation by performing a series of simple changes of variables
t′ = 1/t, α = t1/s, and α = eε:

ϕ(s) = 1 + (s+ 1)

∫ ∞
1

t−2−1/sDt1/s(µ
′‖µ)dt+ (s+ 1)

∫ ∞
1

Dt1/s(µ‖µ
′)dt

= 1 + s(s+ 1)

∫ ∞
1

(
αs−1Dα(µ‖µ′) + α−s−2Dα(µ′‖µ)

)
dα

= 1 + s(s+ 1)

∫ ∞
0

(
esεDeε(µ‖µ′) + e−(s+1)εDeε(µ

′‖µ)
)
dε .

Proof of Theorem 7. The result follows from a few simple observations. The first observation is that
for any coupling π ∈ C(ν, ν ′) and y ∈ supp(ν ′) we have∑

y′

πy,y′δM,d(y,y′)(ε) ≥
∑
y′

πy,y′δM,d(y,supp(ν′))(ε)

=
∑
y

νyδM,d(y,supp(ν′))(ε) ,

where the first inequality follows from d(y, y′) ≥ d(y, supp(ν ′)) and the fact that δM,k(ε) is mono-
tonically increasing with k. Thus the RHS of (6) is always a lower bound for the LHS. Now
let π be a dY -compatible coupling. Since the support of π only contains pairs (y, y′) such that
d(y, y′) = d(y, supp(ν ′)), we see that∑

y,y′

πy,y′δM,d(y,y′)(ε) =
∑
y,y′

πy,y′δM,d(y,supp(ν′))(ε) =
∑
y

νyδM,d(y,supp(ν′))(ε) .

The result follows.
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B Proofs from Section 4

Proof of Theorem 8. Using the tools from Section 3, the analysis is quite straightforward. Given
x, x′ ∈ 2U with x 'r x′, we write ω = Swoη (x) and ω′ = Swoη (x′) and note that TV(ω, ω′) = η. Next
we define x0 = x ∩ x′ and observe that either x0 = x or x0 = x′ by the definition of 'r. Let
ω0 = Spoη (x0). Then the decompositions of ω and ω′ induced by their maximal coupling have either
ω1 = ω0 when x = x0 or ω′1 = ω0 when x′ = x0. Noting that applying advanced joined convexity in
the former case leads to an additional cancellation we see that the maximum will be attained when
x′ = x0. In this case the distribution ω1 is given by ω1(y ∪ {v}) = ω0(y). This observation yields an
obvious d'r -compatible coupling between ω1 and ω0 = ω′1: first sample y′ from ω0 and then build y
by adding v to y′. Since every pair of datasets generated by this coupling has distance one with
respect to d'r , Theorem 7 yields the bound δM′(ε′) ≤ ηδM(ε).

Proof of Theorem 9. The analysis proceeds along the lines of the previous proof. First we note
that for any x, x′ ∈ 2Un with x 's x′, the total variation distance between ω = Swom (x) and
ω′ = Swom (x′) is given by η = TV(ω, ω′) = m/n. Applying advanced joint convexity (Theorem 2)
with the decompositions ω = (1 − η)ω0 + ηω1 and ω′ = (1 − η)ω0 + ηω′1 given by the maximal
coupling, the analysis of Deε′ (ωM‖ω

′M) reduces to bounding the divergences Deε(ω1M‖ω0M) and
Deε(ω1M‖ω′1M). In this case both quantities can be bounded by δM(ε) by constructing appropriate
d's-compatible couplings and combining (5) with Theorem 7.

We construct the couplings as follows. Suppose v, v′ ∈ U are the elements where x and x′ differ:
xv = x′v + 1 and x′v′ = xv′ + 1. Let x0 = x ∩ x′. Then we have ω0 = Swom (x0). Furthermore, writing
ω̃1 = Swom−1(x0) we have ω1(y) = ω̃1(y ∩ x0) and ω′1(y) = ω̃1(y ∩ x0). Using these definitions we build
a coupling π1,1 between ω1 and ω′1 through the following generative process: sample y0 from ω̃1 and
then let y = y0 ∪ {v} and y′ ∪ {v′}. Similarly, we build a coupling π1,0 between ω1 and ω0 as follows:
sample y0 from ω̃1, sample u uniformly from x0 \ y0, and then let y = y0 ∪ {v} and y′ = y0 ∪ {u}.
It is obvious from these constructions that π1,1 and π0,1 are both d's-compatible. Plugging these
observations together, we get δM′(ε′) ≤ (m/n)δM(ε).

Proof of Theorem 10. To bound the privacy profile of the subsampled mechanismMSwrm on 2Un with
respect to 's we start by noting that taking x, x′ ∈ 2Un , x 's x′, the total variation distance between
ω = Swrm (x) and ω′ = Swrm (x′) is given by η = TV(ω, ω′) = 1 − (1 − 1/n)m. To define appropriate
mixture components for applying the advanced joint composition property we write v and v′ for
the elements where x and x′ differ and x0 = x ∩ x′ for the common part between both datasets.
Then we have ω0 = Swrm (x0). Furthermore, ω1 is the distribution obtained from sampling ỹ from
ω̃1 = Swrm−1(x) and building y by adding one occurrence of v to ỹ. Similarly, sampling y′ from ω′1
corresponds to adding v′ to a multiset sampled from Swrm−1(x′).

Now we construct appropriate distance-compatible couplings. First we let π1,1 ∈ P(NUm × NUm)
be the distribution given by sampling y from ω1 as above and outputting the pair (y, y′) obtained
by replacing each v in y by v′. It is immediate from this construction that π1,1 is a d's-compatible
coupling between ω1 and ω′1. Furthermore, using the notation from Theorem 7 and the construction
of the maximal coupling, we see that for k ≥ 1:

ω1(Yk) =
ω(Yk)− (1− η)ω0(Yk)

η
=

Pry∼ω[yv = k]

η
=

1

η

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
,
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where we used ω0(Yk) = 0 since ω0 is supported on multisets that do not include v. Therefore, the
distributions µ1 = ω1M and µ′1 = ω′1M satisfy

ηDeε(µ1‖µ′1) ≤
m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) . (7)

On the other hand, we can build a d's-compatible coupling between ω1 and ω0 by first sampling y
from ω1 and then replacing each occurrence of v by an element picked uniformly at random from x0.
Again, this shows that Deε(µ1‖µ0) is upper bounded by the right hand side of (7).

Therefore, we conclude that

δM′(ε
′) ≤

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Proof of Theorem 11. Suppose x 'r x′ with |x| = n and |x′| = n−1. This is the worst-case direction
for the neighbouring relation like in the proof of Theorem 8. Let ω = Swrm (x) and ω = Swrm (x′). We
have η = TV(ω, ω′) = 1− (1− 1/n)m, and the factorization induced by the maximal coupling has
ω0 = ω′1 = ω′ and ω1 is given by first sampling ỹ from Swrm−1(x) and then producing y by adding
to ỹ a copy of the element v where x and x′ differ. This definition of ω1 suggests the following
coupling between ω1 and ω0: first sample y from ω1, then produce y′ by replacing each copy of v
with a element from x′ sampled independently and uniformly. By construction we see that this
coupling is d's-compatible, so we can apply Theorem 7. Using the same argument as in the proof of
Theorem 10 we see that ηω1(Yk) =

(
m
k

)
(1/n)k(1− 1/n)m−k. Thus, we finally get

Deε′ (M
Swrm (x)‖MSwrm (x′)) = ηDeε(ω1M‖ω0M)

≤ η
m∑
k=1

ω1(Yk)δM,k(ε)

=
m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Theorem 14. Let M : 2U → P(Z) be a mechanism with privacy profile δM with respect to 's.
Then the privacy profile with respect of 's of the subsampled mechanismM′ =MS

po
γ : 2Un → P(Z)

on datasets of size n satisfies the following:

δM′(ε
′) ≤ γβδM(ε) + γ(1− β)

(
n−1∑
k=1

γ̃kδM(εk) + γ̃n

)
,

where ε′ = log(1 + γ(eε − 1)), β = eε
′
/eε, εk = ε+ log( γ

1−γ (nk − 1)), and γ̃k =
(
n−1
k−1

)
γk−1(1− γ)n−k.

Proof of Theorem 14. Suppose x, x′ ∈ 2Un are sets of size n related by the substitution relation 's.
Let ω = Spoη (x) and ω′ = Spoη (x′) and note that TV(ω, ω′) = η. Let x0 = x ∩ x′ and v = x \ x0,
v′ = x′ \ x0. In this case the factorization induced by the maximal coupling is obtained by taking
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ω0 = Spoη (x0), ω1(y ∪ {v}) = ω0(y), and ω′1(y ∪ {v′}) = ω0(y). From this factorization we see it is
easy to construct a coupling π1,1 between ω1 and ω′1 that is d's-compatible. Therefore we have
Deε(ω1M‖ω′1M) ≤ δM(ε).

Since we have already identified that no d's-compatible coupling between ω1 and ω0 can
exist, we shall further decompose these distributions “by hand”. Let νk = Swok (x0) and note
that νk corresponds to the distribution ω0 conditioned on |y| = k. Similarly, we define ν̃k as
the distribution corresponding to sampling ỹ from Swok−1(x0) and outputting the set y obtained
by adding v to ỹ. Then ν̃k equals the distribution of ω1 conditioned on |y| = k. Now we write
γk = Pry∼ω0 [|y| = k] =

(
n−1
k

)
γk(1− γ)n−1−k and γ̃k = Pry∼ω1 [|y| = k] =

(
n−1
k−1

)
γk−1(1− γ)n−k. With

these notations we can write the decompositions ω0 =
∑n−1

k=0 γkνk and ω1 =
∑n

k=1 γ̃kν̃k. Further,
we observe that the construction of ν̃k and νk shows there exist d's-compatible couplings between
these pairs of distributions when 1 ≤ k ≤ n − 1, leading to Deε(ν̃kM‖νkM) ≤ δM(ε). To exploit
this fact we first write

Deε(ω1M‖ω0M) = Deε

(
n−1∑
k=1

γ̃kν̃kM + γ̃nν̃nM

∥∥∥∥∥γ0ν0M +

n−1∑
k=1

γkνkM

)
.

Now we use that α-divergences can be applied to arbitrary non-negative measures, which are not
necessarily probability measures, using the same definition we have used so far. Under this relaxation,
given non-negative measures νi, ν ′i, i = 1, 2, on a measure space Z we have Dα(ν1 + ν2‖ν ′1 + ν ′2) ≤
Dα(ν1‖ν ′1) +Dα(ν2‖ν ′2), Dα(aν1‖bν2) = aDαb/a(ν1‖ν2) for a ≥ 0 and b > 0, and Dα(ν1‖0) = ν1(Z).
Using these properties on the decomposition above we see that

Deε(ω1M‖ω0M) ≤
n−1∑
k=1

γ̃kDeεk (ν̃kM‖νkM) + γ̃n

≤
n−1∑
k=1

γ̃kδM(εk) + γ̃n ,

where eεk = (γk/γ̃k)e
ε = (γ/(1− γ))(n/k − 1)eε.

C Proofs from Section 5

Proof of Lemma 12. We start by observing that for any x ∈ X the distribution µ =MSv,p(x) must
be a mixture µ = (1− θ)ν0 + θν1 for some θ ∈ [0, 1]. This follows from the fact that there are only
two possibilities ν0 and ν1 for Mv,p(y) depending on whether v /∈ y or v ∈ y. Similarly, taking
x 'X x′ we get µ′ =MSv,p(x′) with µ′ = (1− θ′)ν0 + θ′ν1 for some θ′ ∈ [0, 1]. Assuming (without
loss of generality) θ ≥ θ′, we use the advanced joint convexity property of Dα to get

Deε′ (µ‖µ
′) = θDeε(ν1‖(1− θ′/θ)ν0 + (θ′/θ)ν1)

≤ θ(1− θ′/θ)Deε(ν1‖ν0) = (θ − θ′)ψp(ε) ≤ θψp(ε) ,

where ε′ = log(1 + θ(eε − 1)) and β = eε
′
/eε, and the inequality follows from joint convexity.

Now note the inequalities above are in fact equalities when θ′ = 0, which is equivalent to the
fact v /∈ x′ because S is a natural subsampling mechanism. Thus, observing that the function
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θ 7→ θψp(log(1 + (eε
′ − 1)/θ)) is monotonically increasing, we get

sup
x'Xx′

Deε′ (M
S
v,p(x)‖MSv,p(x′)) = sup

x'Xx′,v /∈x′
θψp(log(1 + (eε

′ − 1)/θ))

= ηψp(log(1 + (eε
′ − 1)/η)) = ηψp(ε) .

D Plots of Privacy Profiles
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(a) Privacy profiles with mechanisms calibrated to
provide the same δ at ε = 0. Profile expressions are
given in Section 5 (RR), Theorem 3 (Laplace), and
Theorem 4 (Gauss).
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(b) Subsampled Gaussian mechanism. Comparison
between sampling without replacement (Theorem 9)
and with replacement (Theorem 10, with white-box
group privacy), both with the same subsampled
dataset sizes.
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(c) Subsampled Laplace mechanism. Comparison be-
tween sampling without replacement (Theorem 9) and
with replacement (Theorem 10, with white-box group
privacy), both with the same subsampled dataset
sizes.
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(d) Subsampled Laplace mechanism. Impact of group-
privacy effect in sampling with replacement (white-
box group privacy).
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(e) Subsampled Laplace mechanism. Impact of white-
box vs. black-box group-privacy in sampling with
replacement.

Figure 1: Plots of privacy profiles. Results illustrate the notion of privacy profile and the different
subsampling bounds derived in the paper.
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