

 i

Mastering the FreeRTOS™
Real Time Kernel

This is the 161204 copy which does not yet cover FreeRTOS V9.0.0, FreeRTOS V10.0.0, or

low power tick-less operation. Check http://www.FreeRTOS.org regularly for additional

documentation and updates to this book. See http://www.FreeRTOS.org/FreeRTOS-V9.html

for information on FreeRTOS V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for

information on FreeRTOS V10.x.x. Applications created using FreeRTOS V9.x.x onwards can

allocate all kernel objects statically at compile time, removing the need to include a heap

memory manager.

This text is being provided for free. In return we ask that you use the business contact

email link on http://www.FreeRTOS.org/contact to provide feedback, comments and

corrections. Thank you.

http://www.freertos.org/
http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/contact

ii

 iii

iv

Mastering the FreeRTOS™
Real Time Kernel

A Hands-On Tutorial Guide

Richard Barry

 v

Pre-release 161204 Edition.

All text, source code, and diagrams are the exclusive property of Real Time Engineers Ltd.

unless otherwise noted inline.

© Real Time Engineers Ltd. 2016. All rights reserved.

http://www.FreeRTOS.org
http://www.FreeRTOS.org/plus
http://www.FreeRTOS.org/labs

FreeRTOS™, FreeRTOS.org™ and the FreeRTOS logo are trademarks of Real Time Engineers Ltd. OPENRTOS® and

SAFERTOS® are trademarks of WITTENSTEIN Aerospace and Simulation Ltd. All other brands or product names are the

property of their respective holders.

http://www.freertos.org/
http://www.freertos.org/plus

vi

 vii

To Caroline, India and Max.

viii

 ix

Contents

Contents .. ix

List of Figures ... xvi

List of Code Listings ... xix

List of Tables .. xxiii

List of Notation .. xxvi

Preface .. 1

Multitasking in Small Embedded Systems .. 2

About FreeRTOS ... 2

Value Proposition ... 3

A Note About Terminology ... 3

Why Use a Real-time Kernel? .. 3

FreeRTOS Features .. 5

Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family 6

Included Source Files and Projects .. 7

Obtaining the Examples that Accompany this Book ... 7

Chapter 1 The FreeRTOS Distribution ... 9

1.1 Chapter Introduction and Scope .. 10

Scope .. 10

1.2 Understanding the FreeRTOS Distribution .. 11

Definition: FreeRTOS Port ... 11

Building FreeRTOS .. 11

FreeRTOSConfig.h .. 11

The Official FreeRTOS Distribution .. 12

The Top Directories in the FreeRTOS Distribution ... 12

FreeRTOS Source Files Common to All Ports ... 12

FreeRTOS Source Files Specific to a Port ... 14

Header Files .. 15

1.3 Demo Applications .. 16

1.4 Creating a FreeRTOS Project ... 18

Adapting One of the Supplied Demo Projects .. 18

Creating a New Project from Scratch ... 19

1.5 Data Types and Coding Style Guide ... 20

Data Types .. 21

Variable Names ... 22

Function Names ... 22

Formatting.. 23

x

Macro Names ... 23

Rationale for Excessive Type Casting .. 24

Chapter 2 Heap Memory Management ... 25

2.1 Chapter Introduction and Scope .. 26

Prerequisites .. 26

Dynamic Memory Allocation and its Relevance to FreeRTOS .. 26

Options for Dynamic Memory Allocation ... 27

Scope ... 28

2.2 Example Memory Allocation Schemes .. 29

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically
allocated, removing the need to include a heap memory manager 29

Heap_1 .. 29

Heap_2 .. 30

Heap_3 .. 32

Heap_4 .. 32

Setting a Start Address for the Array Used By Heap_4 .. 34

Heap_5 .. 35

The vPortDefineHeapRegions() API Function .. 36

2.3 Heap Related Utility Functions .. 41

The xPortGetFreeHeapSize() API Function .. 41

The xPortGetMinimumEverFreeHeapSize() API Function .. 41

Malloc Failed Hook Functions .. 42

Chapter 3 Task Management ... 44

3.1 Chapter Introduction and Scope .. 45

Scope ... 45

3.2 Task Functions .. 46

3.3 Top Level Task States ... 47

3.4 Creating Tasks .. 48

The xTaskCreate() API Function .. 48

Example 1. Creating tasks ... 51

Example 2. Using the task parameter ... 55

3.5 Task Priorities ... 58

3.6 Time Measurement and the Tick Interrupt ... 60

Example 3. Experimenting with priorities .. 62

3.7 Expanding the ‘Not Running’ State .. 64

The Blocked State .. 64

The Suspended State... 65

The Ready State .. 65

Completing the State Transition Diagram ... 65

Example 4. Using the Blocked state to create a delay .. 66

The vTaskDelayUntil() API Function ... 70

Example 5. Converting the example tasks to use vTaskDelayUntil() 71

 xi

Example 6. Combining blocking and non-blocking tasks .. 72

3.8 The Idle Task and the Idle Task Hook ... 75

Idle Task Hook Functions ... 75

Limitations on the Implementation of Idle Task Hook Functions 76

Example 7. Defining an idle task hook function .. 76

3.9 Changing the Priority of a Task ... 79

The vTaskPrioritySet() API Function .. 79

The uxTaskPriorityGet() API Function .. 79

Example 8. Changing task priorities ... 80

3.10 Deleting a Task ... 85

The vTaskDelete() API Function .. 85

Example 9. Deleting tasks .. 86

3.11 Thread Local Storage .. 89

3.12 Scheduling Algorithms .. 90

A Recap of Task States and Events ... 90

Configuring the Scheduling Algorithm .. 90

Prioritized Pre-emptive Scheduling with Time Slicing ... 91

Prioritized Pre-emptive Scheduling (without Time Slicing) .. 95

Co-operative Scheduling .. 97

Chapter 4 Queue Management .. 101

4.1 Chapter Introduction and Scope .. 102

Scope .. 102

4.2 Characteristics of a Queue .. 103

Data Storage .. 103

Access by Multiple Tasks ... 106

Blocking on Queue Reads ... 106

Blocking on Queue Writes .. 106

Blocking on Multiple Queues .. 107

4.3 Using a Queue .. 108

The xQueueCreate() API Function ... 108

The xQueueSendToBack() and xQueueSendToFront() API Functions 109

The xQueueReceive() API Function ... 111

The uxQueueMessagesWaiting() API Function .. 113

Example 10. Blocking when receiving from a queue .. 114

4.4 Receiving Data From Multiple Sources ... 119

Example 11. Blocking when sending to a queue, and sending structures on a queue .. 120

4.5 Working with Large or Variable Sized Data ... 126

Queuing Pointers ... 126

Using a Queue to Send Different Types and Lengths of Data 128

4.6 Receiving From Multiple Queues .. 131

Queue Sets .. 131

The xQueueCreateSet() API Function .. 132

The xQueueAddToSet() API Function .. 134

xii

The xQueueSelectFromSet() API Function .. 135

Example 12. Using a Queue Set .. 137

More Realistic Queue Set Use Cases .. 141

4.7 Using a Queue to Create a Mailbox ... 143

The xQueueOverwrite() API Function ... 144

The xQueuePeek() API Function .. 145

Chapter 5 Software Timer Management ... 147

5.1 Chapter Introduction and Scope .. 148

Scope ... 148

5.2 Software Timer Callback Functions ... 149

5.3 Attributes and States of a Software Timer ... 150

Period of a Software Timer ... 150

One-shot and Auto-reload Timers .. 150

Software Timer States .. 151

5.4 The Context of a Software Timer ... 153

The RTOS Daemon (Timer Service) Task .. 153

The Timer Command Queue .. 153

Daemon Task Scheduling .. 154

5.5 Creating and Starting a Software Timer ... 158

The xTimerCreate() API Function ... 158

The xTimerStart() API Function .. 159

Example 13. Creating one-shot and auto-reload timers .. 163

5.6 The Timer ID ... 166

The vTimerSetTimerID() API Function ... 166

The pvTimerGetTimerID() API Function ... 166

Example 14. Using the callback function parameter and the software timer ID 167

5.7 Changing the Period of a Timer ... 170

The xTimerChangePeriod() API Function ... 170

5.8 Resetting a Software Timer ... 174

The xTimerReset() API Function .. 174

Example 15. Resetting a software timer ... 176

Chapter 6 Interrupt Management .. 181

6.1 Chapter Introduction and Scope .. 182

Events .. 182

Scope ... 183

6.2 Using the FreeRTOS API from an ISR .. 184

The Interrupt Safe API .. 184

The Benefits of Using a Separate Interrupt Safe API .. 184

The Disadvantages of Using a Separate Interrupt Safe API ... 185

The xHigherPriorityTaskWoken Parameter .. 185

The portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() Macros 187

6.3 Deferred Interrupt Processing .. 189

 xiii

6.4 Binary Semaphores Used for Synchronization .. 191

The xSemaphoreCreateBinary() API Function ... 194

The xSemaphoreTake() API Function .. 194

The xSemaphoreGiveFromISR() API Function .. 196

Example 16. Using a binary semaphore to synchronize a task with an interrupt 198

Improving the Implementation of the Task Used in Example 16 202

6.5 Counting Semaphores .. 208

The xSemaphoreCreateCounting() API Function ... 210

Example 17. Using a counting semaphore to synchronize a task with an interrupt 211

6.6 Deferring Work to the RTOS Daemon Task .. 213

The xTimerPendFunctionCallFromISR() API Function ... 214

Example 18. Centralized deferred interrupt processing .. 216

6.7 Using Queues within an Interrupt Service Routine .. 220

The xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() API
Functions ... 220

Considerations When Using a Queue From an ISR ... 222

Example 19. Sending and receiving on a queue from within an interrupt 222

6.8 Interrupt Nesting ... 228

A Note to ARM Cortex-M and ARM GIC Users .. 230

Chapter 7 Resource Management ... 233

7.1 Chapter Introduction and Scope .. 234

Mutual Exclusion .. 236

Scope .. 237

7.2 Critical Sections and Suspending the Scheduler ... 238

Basic Critical Sections ... 238

Suspending (or Locking) the Scheduler ... 240

The vTaskSuspendAll() API Function ... 241

The xTaskResumeAll() API Function ... 241

7.3 Mutexes (and Binary Semaphores) ... 243

The xSemaphoreCreateMutex() API Function .. 245

Example 20. Rewriting vPrintString() to use a semaphore ... 245

Priority Inversion .. 249

Priority Inheritance ... 250

Deadlock (or Deadly Embrace) .. 251

Recursive Mutexes .. 252

Mutexes and Task Scheduling ... 255

7.4 Gatekeeper Tasks ... 259

Example 21. Re-writing vPrintString() to use a gatekeeper task 259

Chapter 8 Event Groups... 265

8.1 Chapter Introduction and Scope .. 266

Scope .. 266

8.2 Characteristics of an Event Group ... 268

xiv

Event Groups, Event Flags and Event Bits ... 268

More About the EventBits_t Data Type .. 269

Access by Multiple Tasks ... 269

A Practical Example of Using an Event Group ... 269

8.3 Event Management Using Event Groups ... 271

The xEventGroupCreate() API Function ... 271

The xEventGroupSetBits() API Function .. 271

The xEventGroupSetBitsFromISR() API Function .. 272

The xEventGroupWaitBits() API Function ... 275

Example 22. Experimenting with event groups ... 279

8.4 Task Synchronization Using an Event Group .. 285

The xEventGroupSync() API Function .. 287

Example 23. Synchronizing tasks ... 289

Chapter 9 Task Notifications ... 293

9.1 Chapter Introduction and Scope .. 294

Communicating Through Intermediary Objects... 294

Task Notifications—Direct to Task Communication .. 294

Scope ... 295

9.2 Task Notifications; Benefits and Limitations ... 296

Performance Benefits of Task Notifications .. 296

RAM Footprint Benefits of Task Notifications ... 296

Limitations of Task Notifications ... 296

9.3 Using Task Notifications .. 298

Task Notification API Options ... 298

The xTaskNotifyGive() API Function .. 298

The vTaskNotifyGiveFromISR() API Function .. 299

The ulTaskNotifyTake() API Function ... 300

Example 24. Using a task notification in place of a semaphore, method 1 302

Example 25. Using a task notification in place of a semaphore, method 2 305

The xTaskNotify() and xTaskNotifyFromISR() API Functions 307

The xTaskNotifyWait() API Function ... 310

Task Notifications Used in Peripheral Device Drivers: UART Example 313

Task Notifications Used in Peripheral Device Drivers: ADC Example 320

Task Notifications Used Directly Within an Application ... 322

Chapter 10 Low Power Support .. 327

Chapter 11 Developer Support ... 328

11.1 Chapter Introduction and Scope .. 329

11.2 configASSERT() .. 330

Example configASSERT() definitions ... 330

11.3 FreeRTOS+Trace .. 332

11.4 Debug Related Hook (Callback) Functions .. 336

 xv

Malloc failed hook .. 336

11.5 Viewing Run-time and Task State Information ... 337

Task Run-Time Statistics ... 337

The Run-Time Statistics Clock ... 337

Configuring an Application to Collect Run-Time Statistics .. 338

The uxTaskGetSystemState() API Function ... 339

The vTaskList() Helper Function .. 342

The vTaskGetRunTimeStats() Helper Function .. 344

Generating and Displaying Run-Time Statistics, a Worked Example 345

11.6 Trace Hook Macros ... 348

Available Trace Hook Macros .. 348

Defining Trace Hook Macros .. 352

FreeRTOS Aware Debugger Plug-ins .. 353

Chapter 12 Trouble Shooting ... 355

12.1 Chapter Introduction and Scope .. 356

12.2 Interrupt Priorities .. 357

12.3 Stack Overflow .. 359

The uxTaskGetStackHighWaterMark() API Function ... 359

Run Time Stack Checking—Overview ... 360

Run Time Stack Checking—Method 1 ... 360

Run Time Stack Checking—Method 2 ... 361

12.4 Inappropriate Use of printf() and sprintf() ... 362

Printf-stdarg.c .. 362

12.5 Other Common Sources of Error ... 364

Symptom: Adding a simple task to a demo causes the demo to crash 364

Symptom: Using an API function within an interrupt causes the application to crash ... 364

Symptom: Sometimes the application crashes within an interrupt service routine 364

Symptom: The scheduler crashes when attempting to start the first task 365

Symptom: Interrupts are unexpectedly left disabled, or critical sections do not nest
correctly ... 365

Symptom: The application crashes even before the scheduler is started 365

Symptom: Calling API functions while the scheduler is suspended, or from inside a
critical section, causes the application to crash .. 366

INDEX .. 368

xvi

 List of Figures

Figure 1. Top level directories within the FreeRTOS distribution .. 12

Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree 13

Figure 3. Port specific source files within the FreeRTOS directory tree 14

Figure 4. The demo directory hierarchy .. 17

Figure 5. RAM being allocated from the heap_1 array each time a task is created 30

Figure 6. RAM being allocated and freed from the heap_2 array as tasks are created
and deleted ... 31

Figure 7. RAM being allocated and freed from the heap_4 array ... 33

Figure 8 Memory Map ... 37

Figure 9. Top level task states and transitions.. 47

Figure 10. The output produced when Example 1 is executed ... 53

Figure 11. The actual execution pattern of the two Example 1 tasks 54

Figure 12. The execution sequence expanded to show the tick interrupt executing 61

Figure 13. Running both tasks at different priorities ... 63

Figure 14. The execution pattern when one task has a higher priority than the other 63

Figure 15. Full task state machine .. 66

Figure 16. The output produced when Example 4 is executed ... 68

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop ... 69

Figure 18. Bold lines indicate the state transitions performed by the tasks in Example 4 70

Figure 19. The output produced when Example 6 is executed ... 74

Figure 20. The execution pattern of Example 6 .. 74

Figure 21. The output produced when Example 7 is executed ... 78

Figure 22. The sequence of task execution when running Example 8 83

Figure 23. The output produced when Example 8 is executed ... 84

Figure 24. The output produced when Example 9 is executed ... 87

Figure 25. The execution sequence for example 9 ... 88

Figure 26. Execution pattern highlighting task prioritization and pre-emption in a
hypothetical application in which each task has been assigned a unique
priority ... 92

Figure 27 Execution pattern highlighting task prioritization and time slicing in a
hypothetical application in which two tasks run at the same priority 94

Figure 28 The execution pattern for the same scenario as shown in Figure 27, but this
time with configIDLE_SHOULD_YIELD set to 1 .. 95

Figure 29 Execution pattern that demonstrates how tasks of equal priority can receive
hugely different amounts of processing time when time slicing is not used 96

Figure 30 Execution pattern demonstrating the behavior of the co-operative scheduler 98

Figure 31. An example sequence of writes to, and reads from a queue 104

Figure 32. The output produced when Example 10 is executed ... 118

Figure 33. The sequence of execution produced by Example 10 ... 118

Figure 34. An example scenario where structures are sent on a queue 119

Figure 35 The output produced by Example 11 ... 123

 xvii

Figure 36. The sequence of execution produced by Example 11 ... 124

Figure 37 The output produced when Example 12 is executed ... 141

Figure 38 The difference in behavior between one-shot and auto-reload software timers 150

Figure 39 Auto-reload software timer states and transitions .. 152

Figure 40 One-shot software timer states and transitions ... 152

Figure 41 The timer command queue being used by a software timer API function to
communicate with the RTOS daemon task ... 154

Figure 42 The execution pattern when the priority of a task calling xTimerStart() is above
the priority of the daemon task .. 154

Figure 43 The execution pattern when the priority of a task calling xTimerStart() is below
the priority of the daemon task .. 156

Figure 44 The output produced when Example 13 is executed ... 165

Figure 45 The output produced when Example 14 is executed ... 169

Figure 46 Starting and resetting a software timer that has a period of 6 ticks 174

Figure 47 The output produced when Example 15 is executed ... 179

Figure 48 Completing interrupt processing in a high priority task .. 190

Figure 49. Using a binary semaphore to implement deferred interrupt processing 191

Figure 50. Using a binary semaphore to synchronize a task with an interrupt 193

Figure 51. The output produced when Example 16 is executed ... 201

Figure 52. The sequence of execution when Example 16 is executed 202

Figure 53. The scenario when one interrupt occurs before the task has finished
processing the first event .. 204

Figure 54 The scenario when two interrupts occur before the task has finished
processing the first event .. 205

Figure 55. Using a counting semaphore to ‘count’ events .. 209

Figure 56. The output produced when Example 17 is executed ... 212

Figure 57. The output produced when Example 18 is executed ... 218

Figure 58 The sequence of execution when Example 18 is executed 219

Figure 59. The output produced when Example 19 is executed ... 226

Figure 60. The sequence of execution produced by Example 19 ... 227

Figure 61. Constants affecting interrupt nesting behavior .. 230

Figure 62 How a priority of binary 101 is stored by a Cortex-M microcontroller that
implements four priority bits .. 231

Figure 63. Mutual exclusion implemented using a mutex ... 244

Figure 64. The output produced when Example 20 is executed ... 248

Figure 65. A possible sequence of execution for Example 20 .. 249

Figure 66. A worst case priority inversion scenario .. 250

Figure 67. Priority inheritance minimizing the effect of priority inversion 251

Figure 68 A possible sequence of execution when tasks that have the same priority use
the same mutex .. 255

Figure 69 A sequence of execution that could occur if two instances of the task shown by
Listing 125 are created at the same priority .. 257

Figure 70. The output produced when Example 21 is executed ... 264

Figure 71 Event flag to bit number mapping in a variable of type EventBits_t 268

xviii

Figure 72 An event group in which only bits 1, 4 and 7 are set, and all the other event
flags are clear, making the event group’s value 0x92 .. 268

Figure 73 The output produced when Example 22 is executed with xWaitForAllBits set to
pdFALSE .. 283

Figure 74 The output produced when Example 22 is executed with xWaitForAllBits set to
pdTRUE .. 284

Figure 75 The output produced when Example 23 is executed ... 292

Figure 76 A communication object being used to send an event from one task to another 294

Figure 77 A task notification used to send an event directly from one task to another 295

Figure 78. The output produced when Example 16 is executed ... 304

Figure 79. The sequence of execution when Example 24 is executed 305

Figure 80. The output produced when Example 25 is executed ... 307

Figure 81 The communication paths from the application tasks to the cloud server, and
back again .. 323

Figure 82 FreeRTOS+Trace includes more than 20 interconnected views 332

Figure 83 FreeRTOS+Trace main trace view - one of more than 20 interconnected trace
views .. 333

Figure 84 FreeRTOS+Trace CPU load view - one of more than 20 interconnected trace
views .. 334

Figure 85 FreeRTOS+Trace response time view - one of more than 20 interconnected
trace views .. 334

Figure 86 FreeRTOS+Trace user event plot view - one of more than 20 interconnected
trace views .. 335

Figure 87 FreeRTOS+Trace kernel object history view - one of more than 20
interconnected trace views .. 335

Figure 88 Example output generated by vTaskList() ... 344

Figure 89 Example output generated by vTaskGetRunTimeStats() 345

Figure 90 FreeRTOS ThreadSpy Eclipse plug-in from Code Confidence Ltd. 353

file:///R:/FreeRTOS/Projects/191-ApplicationNotesAndBook/3rd%20edition/Mastering%20the%20FreeRTOS%20Real%20Time%20Kernel%20-%20A%20Hands-On%20Tutorial%20Guide.docx%23_Toc468601029

 xix

List of Code Listings

Listing 1. The template for a new main() function ... 18

Listing 2. Using GCC syntax to declare the array that will be used by heap_4, and place
the array in a memory section named .my_heap .. 35

Listing 3. Using IAR syntax to declare the array that will be used by heap_4, and place
the array at the absolute address 0x20000000 ... 35

Listing 4. The vPortDefineHeapRegions() API function prototype .. 36

Listing 5. The HeapRegion_t structure ... 36

Listing 6. An array of HeapRegion_t structures that together describe the 3 regions of
RAM in their entirety ... 38

Listing 7. An array of HeapRegion_t structures that describe all of RAM2, all of RAM3,
but only part of RAM1 ... 39

Listing 8. The xPortGetFreeHeapSize() API function prototype .. 41

Listing 9. The xPortGetMinimumEverFreeHeapSize() API function prototype 41

Listing 10. The malloc failed hook function name and prototype. ... 42

Listing 11. The task function prototype ... 46

Listing 12. The structure of a typical task function .. 46

Listing 13. The xTaskCreate() API function prototype .. 48

Listing 14. Implementation of the first task used in Example 1 ... 52

Listing 15. Implementation of the second task used in Example 1 ... 52

Listing 16. Starting the Example 1 tasks .. 53

Listing 17. Creating a task from within another task after the scheduler has started 55

Listing 18. The single task function used to create two tasks in Example 2 56

Listing 19. The main() function for Example 2. ... 57

Listing 20. Using the pdMS_TO_TICKS() macro to convert 200 milliseconds into an
equivalent time in tick periods ... 61

Listing 21. Creating two tasks at different priorities .. 62

Listing 22. The vTaskDelay() API function prototype .. 67

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay() .. 68

Listing 24. vTaskDelayUntil() API function prototype .. 71

Listing 25. The implementation of the example task using vTaskDelayUntil() 72

Listing 26. The continuous processing task used in Example 6 .. 73

Listing 27. The periodic task used in Example 6 .. 73

Listing 28. The idle task hook function name and prototype ... 76

Listing 29. A very simple Idle hook function ... 77

Listing 30. The source code for the example task now prints out the ulIdleCycleCount
value ... 77

Listing 31. The vTaskPrioritySet() API function prototype .. 79

Listing 32. The uxTaskPriorityGet() API function prototype .. 79

Listing 33. The implementation of Task 1 in Example 8 ... 81

Listing 34. The implementation of Task 2 in Example 8 ... 82

Listing 35. The implementation of main() for Example 8 ... 83

xx

Listing 36. The vTaskDelete() API function prototype ... 85

Listing 37. The implementation of main() for Example 9 ... 86

Listing 38. The implementation of Task 1 for Example 9 .. 87

Listing 39. The implementation of Task 2 for Example 9 .. 87

Listing 40. The xQueueCreate() API function prototype ... 108

Listing 41. The xQueueSendToFront() API function prototype ... 109

Listing 42. The xQueueSendToBack() API function prototype .. 109

Listing 43. The xQueueReceive() API function prototype ... 112

Listing 44. The uxQueueMessagesWaiting() API function prototype 113

Listing 45. Implementation of the sending task used in Example 10. 115

Listing 46. Implementation of the receiver task for Example 10 .. 116

Listing 47. The implementation of main() in Example 10 .. 117

Listing 48. The definition of the structure that is to be passed on a queue, plus the
declaration of two variables for use by the example .. 120

Listing 49. The implementation of the sending task for Example 11 121

Listing 50. The definition of the receiving task for Example 11 ... 122

Listing 51. The implementation of main() for Example 11 ... 123

Listing 52. Creating a queue that holds pointers ... 127

Listing 53. Using a queue to send a pointer to a buffer ... 127

Listing 54. Using a queue to receive a pointer to a buffer ... 127

Listing 55. The structure used to send events to the TCP/IP stack task in
FreeRTOS+TCP ... 128

Listing 56. Pseudo code showing how an IPStackEvent_t structure is used to send data
received from the network to the TCP/IP task ... 129

Listing 57. Pseudo code showing how an IPStackEvent_t structure is used to send the
handle of a socket that is accepting a connection to the TCP/IP task 129

Listing 58. Pseudo code showing how an IPStackEvent_t structure is used to send a
network down event to the TCP/IP task .. 130

Listing 59. Pseudo code showing how an IPStackEvent_t structure is used to send a
network down to the TCP/IP task .. 130

Listing 60. The xQueueCreateSet() API function prototype .. 132

Listing 61. The xQueueAddToSet() API function prototype .. 134

Listing 62. The xQueueSelectFromSet() API function prototype ... 135

Listing 63. Implementation of main() for Example 12 .. 138

Listing 64. The sending tasks used in Example 12 ... 139

Listing 65. The receive task used in Example 12 .. 140

Listing 66. Using a queue set that contains queues and semaphores 142

Listing 67. A queue being created for use as a mailbox ... 144

Listing 68. The xQueueOverwrite() API function prototype ... 144

Listing 69. Using the xQueueOverwrite() API function .. 145

Listing 70. The xQueuePeek() API function prototype .. 146

Listing 71. Using the xQueuePeek() API function ... 146

Listing 72. The software timer callback function prototype ... 149

Listing 73. The xTimerCreate() API function prototype ... 158

 xxi

Listing 74. The xTimerStart() API function prototype .. 160

Listing 75. Creating and starting the timers used in Example 13 .. 163

Listing 76. The callback function used by the one-shot timer in Example 13 164

Listing 77. The callback function used by the auto-reload timer in Example 13 164

Listing 78. The vTimerSetTimerID() API function prototype ... 166

Listing 79. The pvTimerGetTimerID() API function prototype ... 166

Listing 80. Creating the timers used in Example 14 ... 167

Listing 81. The timer callback function used in Example 14 ... 168

Listing 82. The xTimerChangePeriod() API function prototype ... 170

Listing 83. Using xTimerChangePeriod() ... 173

Listing 84. The xTimerReset() API function prototype .. 175

Listing 85. The callback function for the one-shot timer used in Example 15 177

Listing 86. The task used to reset the software timer in Example 15 178

Listing 87. The portEND_SWITCHING_ISR() macros .. 188

Listing 88. The portYIELD_FROM_ISR() macros ... 188

Listing 89. The xSemaphoreCreateBinary() API function prototype 194

Listing 90. The xSemaphoreTake() API function prototype .. 195

Listing 91. The xSemaphoreGiveFromISR() API function prototype 196

Listing 92. Implementation of the task that periodically generates a software interrupt in
Example 16 .. 198

Listing 93. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 16.............................. 199

Listing 94. The ISR for the software interrupt used in Example 16 200

Listing 95. The implementation of main() for Example 16 ... 201

Listing 96. The recommended structure of a deferred interrupt processing task, using a
UART receive handler as an example .. 207

Listing 97. The xSemaphoreCreateCounting() API function prototype 210

Listing 98. The call to xSemaphoreCreateCounting() used to create the counting
semaphore in Example 17 .. 211

Listing 99. The implementation of the interrupt service routine used by Example 17 212

Listing 100. The xTimerPendFunctionCallFromISR() API function prototype 214

Listing 101. The prototype to which a function passed in the xFunctionToPend
parameter of xTimerPendFunctionCallFromISR() must conform 214

Listing 102. The software interrupt handler used in Example 18 .. 217

Listing 103. The function that performs the processing necessitated by the interrupt in
Example 18. ... 217

Listing 104. The implementation of main() for Example 18 ... 218

Listing 105. The xQueueSendToFrontFromISR() API function prototype 220

Listing 106. The xQueueSendToBackFromISR() API function prototype 220

Listing 107. The implementation of the task that writes to the queue in Example 19 223

Listing 108. The implementation of the interrupt service routine used by Example 19 224

Listing 109. The task that prints out the strings received from the interrupt service
routine in Example 19 ... 225

Listing 110. The main() function for Example 19 .. 226

Listing 111. An example read, modify, write sequence .. 234

xxii

Listing 112. An example of a reentrant function .. 236

Listing 113. An example of a function that is not reentrant ... 236

Listing 114. Using a critical section to guard access to a register ... 238

Listing 115. A possible implementation of vPrintString() ... 239

Listing 116. Using a critical section in an interrupt service routine .. 240

Listing 117. The vTaskSuspendAll() API function prototype ... 241

Listing 118. The xTaskResumeAll() API function prototype .. 241

Listing 119. The implementation of vPrintString() ... 242

Listing 120. The xSemaphoreCreateMutex() API function prototype 245

Listing 121. The implementation of prvNewPrintString() ... 246

Listing 122. The implementation of prvPrintTask() for Example 20 247

Listing 123. The implementation of main() for Example 20 ... 248

Listing 124. Creating and using a recursive mutex ... 254

Listing 125. A task that uses a mutex in a tight loop ... 256

Listing 126. Ensuring tasks that use a mutex in a loop receive a more equal amount of
processing time, while also ensuring processing time is not wasted by
switching between tasks too rapidly .. 258

Listing 127. The name and prototype for a tick hook function ... 260

Listing 128. The gatekeeper task ... 260

Listing 129. The print task implementation for Example 21 .. 261

Listing 130. The tick hook implementation .. 262

Listing 131. The implementation of main() for Example 21 ... 263

Listing 132. The xEventGroupCreate() API function prototype ... 271

Listing 133. The xEventGroupSetBits() API function prototype ... 272

Listing 134. The xEventGroupSetBitsFromISR() API function prototype............................... 273

Listing 135. The xEventGroupWaitBits() API function prototype ... 275

Listing 136. Event bit definitions used in Example 22 ... 279

Listing 137. The task that sets two bits in the event group in Example 22 280

Listing 138. The ISR that sets bit 2 in the event group in Example 22 281

Listing 139. The task that blocks to wait for event bits to become set in Example 22 282

Listing 140. Creating the event group and tasks in Example 22 ... 283

Listing 141. Pseudo code for two tasks that synchronize with each other to ensure a
shared TCP socket is no longer in use by either task before the socket is
closed ... 286

Listing 142. The xEventGroupSync() API function prototype .. 288

Listing 143. The implementation of the task used in Example 23 ... 290

Listing 144. The main() function used in Example 23 ... 291

Listing 145. The xTaskNotifyGive() API function prototype ... 298

Listing 146. The vTaskNotifyGiveFromISR() API function prototype 299

Listing 147. The ulTaskNotifyTake() API function prototype ... 300

Listing 148. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 24 303

Listing 149. The implementation of the interrupt service routine used in Example 24 304

 xxiii

Listing 150. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 25.............................. 306

Listing 151. The implementation of the interrupt service routine used in Example 25 306

Listing 152. Prototypes for the xTaskNotify() and xTaskNotifyFromISR() API functions 308

Listing 153. The xTaskNotifyWait() API function prototype ... 310

Listing 154. Pseudo code demonstrating how a binary semaphore can be used in a
driver library transmit function ... 315

Listing 155. Pseudo code demonstrating how a task notification can be used in a driver
library transmit function ... 317

Listing 156. Pseudo code demonstrating how a task notification can be used in a driver
library receive function .. 319

Listing 157. Pseudo code demonstrating how a task notification can be used to pass a
value to a task .. 321

Listing 158. The structure and data type sent on a queue to the server task 323

Listing 159. The Implementation of the Cloud Read API Function 324

Listing 160. The Server Task Processing a Read Request .. 324

Listing 161. The Implementation of the Cloud Write API Function .. 325

Listing 162. The Server Task Processing a Send Request .. 326

Listing 163 Using the standard C assert() macro to check pxMyPointer is not NULL 330

Listing 164 A simple configASSERT() definition useful when executing under the control
of a debugger ... 331

Listing 165 A configASSERT() definition that records the source code line that failed an
assertion ... 331

Listing 166. The uxTaskGetSystemState() API function prototype 339

Listing 167. The TaskStatus_t structure ... 341

Listing 168. The vTaskList() API function prototype ... 343

Listing 169. The vTaskGetRunTimeStats() API function prototype 344

Listing 170. 16-bit timer overflow interrupt handler used to count timer overflows 346

Listing 171. Macros added to FreeRTOSConfig.h to enable the collection of run-time
statistics.. 346

Listing 172. The task that prints out the collected run-time statistics 347

Listing 173. The uxTaskGetStackHighWaterMark() API function prototype 359

Listing 174. The stack overflow hook function prototype .. 360

List of Tables

Table 1. FreeRTOS source files to include in the project ... 20

Table 2. Port specific data types used by FreeRTOS ... 21

Table 3. Macro prefixes ... 23

Table 4. Common macro definitions ... 23

Table 5. vPortDefineHeapRegions() parameters .. 37

Table 6. xPortGetFreeHeapSize() return value .. 41

Table 7. xPortGetMinimumEverFreeHeapSize() return value... 42

Table 8. xTaskCreate() parameters and return value ... 48

Table 9. vTaskDelay() parameters ... 67

xxiv

Table 10. vTaskDelayUntil() parameters .. 71

Table 11. vTaskPrioritySet() parameters .. 79

Table 12. uxTaskPriorityGet() parameters and return value ... 80

Table 13. vTaskDelete() parameters .. 85

Table 14. The FreeRTOSConfig.h settings that configure the kernel to use Prioritized
Pre-emptive Scheduling with Time Slicing .. 91

Table 15. An explanation of the terms used to describe the scheduling policy 92

Table 16. The FreeRTOSConfig.h settings that configure the kernel to use Prioritized
Pre-emptive Scheduling without Time Slicing.. 96

Table 17. The FreeRTOSConfig.h settings that configure the kernel to use co-operative
scheduling .. 98

Table 18. xQueueCreate() parameters and return value .. 108

Table 19. xQueueSendToFront() and xQueueSendToBack() function parameters and
return value ... 109

Table 20. xQueueReceive() function parameters and return values 112

Table 21. uxQueueMessagesWaiting() function parameters and return value 114

Table 22. Key to Figure 36 ... 124

Table 23. xQueueCreateSet() parameters and return value ... 133

Table 24. xQueueAddToSet() parameters and return value ... 134

Table 25. xQueueSelectFromSet() parameters and return value ... 136

Table 26. xQueueOverwrite() parameters and return value .. 145

Table 27. xTimerCreate() parameters and return value .. 158

Table 28. xTimerStart() parameters and return value ... 160

Table 29. vTimerSetTimerID() parameters ... 166

Table 30. pvTimerGetTimerID() parameters and return value .. 167

Table 31. xTimerChangePeriod() parameters and return value .. 171

Table 32. xTimerReset() parameters and return value ... 175

Table 33. xSemaphoreCreateBinary() Return Value .. 194

Table 34. xSemaphoreTake() parameters and return value ... 195

Table 35. xSemaphoreGiveFromISR() parameters and return value 197

Table 36. xSemaphoreCreateCounting() parameters and return value 210

Table 37. xTimerPendFunctionCallFromISR() parameters and return value 214

Table 38. xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
parameters and return values ... 220

Table 39. Constants that control interrupt nesting .. 228

Table 40. xTaskResumeAll() return value .. 241

Table 41. xSemaphoreCreateMutex() return value ... 245

Table 42, xEventGroupCreate() return value .. 271

Table 43, xEventGroupSetBits() parameters and return value ... 272

Table 44, xEventGroupSetBitsFromISR() parameters and return value 273

Table 45, The Effect of the uxBitsToWaitFor and xWaitForAllBits Parameters 275

Table 46, xEventGroupWaitBits() parameters and return value .. 277

Table 47, xEventGroupSync() parameters and return value ... 288

Table 48. xTaskNotifyGive() parameters and return value ... 299

 xxv

Table 49. vTaskNotifyGiveFromISR() parameters and return value 299

Table 50. ulTaskNotifyTake() parameters and return value .. 301

Table 51. xTaskNotify() parameters and return value .. 308

Table 52. Valid xTaskNotify() eNotifyAction Parameter Values, and Their Resultant
Effect on the Receiving Task’s Notification Value ... 309

Table 53. xTaskNotifyWait() parameters and return value ... 310

Table 54. Macros used in the collection of run-time statistics ... 338

Table 55, uxTaskGetSystemState() parameters and return value .. 340

Table 56. TaskStatus_t structure members .. 341

Table 57. vTaskList() parameters .. 343

Table 58. vTaskGetRunTimeStats() parameters .. 344

Table 59. A selection of the most commonly used trace hook macros 348

Table 60. uxTaskGetStackHighWaterMark() parameters and return value 359

xxvi

List of Notation

ADC Analog to Digital Converter

API Application Programming Interface

DMA Direct Memory Access

FAQ Frequently Asked Question

FIFO First In First Out

HMI Human Machine Interface

IDE Integrated Development Environment

IRQ Interrupt Request

ISR Interrupt Service Routine

LCD Liquid Crystal Display

MCU Microcontroller

RMS Rate Monotonic Scheduling

RTOS Real-time Operating System

SIL Safety Integrity Level

SPI Serial Peripheral Interface

TCB Task Control Block

UART Universal Asynchronous Receiver/Transmitter

 1

Preface

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

2

Multitasking in Small Embedded Systems

About FreeRTOS

FreeRTOS is solely owned, developed and maintained by Real Time Engineers Ltd. Real

Time Engineers Ltd. have been working in close partnership with the world’s leading chip

companies for well over a decade to provide you award winning, commercial grade, and

completely free high quality software.

FreeRTOS is ideally suited to deeply embedded real-time applications that use

microcontrollers or small microprocessors. This type of application normally includes a mix of

both hard and soft real-time requirements.

Soft real-time requirements are those that state a time deadline—but breaching the deadline

would not render the system useless. For example, responding to keystrokes too slowly might

make a system seem annoyingly unresponsive without actually making it unusable.

Hard real-time requirements are those that state a time deadline—and breaching the deadline

would result in absolute failure of the system. For example, a driver’s airbag has the potential

to do more harm than good if it responded to crash sensor inputs too slowly.

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which embedded

applications can be built to meet their hard real-time requirements. It allows applications to be

organized as a collection of independent threads of execution. On a processor that has only

one core, only a single thread can be executing at any one time. The kernel decides which

thread should be executing by examining the priority assigned to each thread by the

application designer. In the simplest case, the application designer could assign higher

priorities to threads that implement hard real-time requirements, and lower priorities to threads

that implement soft real-time requirements. This would ensure that hard real-time threads are

always executed ahead of soft real-time threads, but priority assignment decisions are not

always that simplistic.

Do not be concerned if you do not fully understand the concepts in the previous paragraph yet.

The following chapters provide a detailed explanation, with many examples, to help you

understand how to use a real-time kernel, and how to use FreeRTOS, in particular.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 3

Value Proposition

The unprecedented global success of FreeRTOS comes from its compelling value proposition;

FreeRTOS is professionally developed, strictly quality controlled, robust, supported, does not

contain any intellectual property ownership ambiguity, and is truly free to use in commercial

applications without any requirement to expose your proprietary source code. You can take a

product to market using FreeRTOS without even talking to Real Time Engineers ltd., let alone

paying any fees, and thousands of people do just that. If, at any time, you would like to

receive additional backup, or if your legal team require additional written guarantees or

indemnification, then there is a simple low cost commercial upgrade path. Peace of mind

comes with the knowledge that you can opt to take the commercial route at any time you

choose.

A Note About Terminology

In FreeRTOS, each thread of execution is called a ‘task’. There is no consensus on

terminology within the embedded community, but I prefer ‘task’ to ‘thread,’ as thread can have

a more specific meaning in some fields of application.

Why Use a Real-time Kernel?

There are many well established techniques for writing good embedded software without the

use of a kernel, and, if the system being developed is simple, then these techniques might

provide the most appropriate solution. In more complex cases, it is likely that using a kernel

would be preferable, but where the crossover point occurs will always be subjective.

As already described, task prioritization can help ensure an application meets its processing

deadlines, but a kernel can bring other less obvious benefits, too. Some of these are listed

very briefly below.

 Abstracting away timing information

The kernel is responsible for execution timing and provides a time-related API to the

application. This allows the structure of the application code to be simpler, and the overall

code size to be smaller.

 Maintainability/Extensibility

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

4

Abstracting away timing details results in fewer interdependencies between modules, and

allows the software to evolve in a controlled and predictable way. Also, the kernel is

responsible for timing, so application performance is less susceptible to changes in the

underlying hardware.

 Modularity

Tasks are independent modules, each of which should have a well-defined purpose.

 Team development

Tasks should also have well-defined interfaces, allowing easier development by teams.

 Easier testing

If tasks are well-defined independent modules with clean interfaces, they can be tested in

isolation.

 Code reuse

Greater modularity and fewer interdependencies results in code that can be reused with

less effort.

 Improved efficiency

Using a kernel allows software to be completely event-driven, so no processing time is

wasted by polling for events that have not occurred. Code executes only when there is

something that must be done.

Counter to the efficiency saving is the need to process the RTOS tick interrupt, and to

switch execution from one task to another. However, applications that don’t make use of an

RTOS normally include some form of tick interrupt anyway.

 Idle time

The Idle task is created automatically when the scheduler is started. It executes whenever

there are no application tasks wishing to execute. The idle task can be used to measure

spare processing capacity, to perform background checks, or simply to place the processor

into a low-power mode.

 Power Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 5

The efficiency gains that are obtained by using an RTOS allow the processor to spend

more time in a low power mode.

Power consumption can be decreased significantly by placing the processor into a low

power state each time the Idle task runs. FreeRTOS also has a special tick-less mode.

Using the tick-less mode allows the processor to enter a lower power mode than would

otherwise be possible, and remain in the low power mode for longer.

 Flexible interrupt handling

Interrupt handlers can be kept very short by deferring processing to either a task created by

the application writer, or the FreeRTOS daemon task.

 Mixed processing requirements

Simple design patterns can achieve a mix of periodic, continuous and event-driven

processing within an application. In addition, hard and soft real-time requirements can be

met by selecting appropriate task and interrupt priorities.

FreeRTOS Features

FreeRTOS has the following standard features:

 Pre-emptive or co-operative operation

 Very flexible task priority assignment

 Flexible, fast and light weight task notification mechanism

 Queues

 Binary semaphores

 Counting semaphores

 Mutexes

 Recursive Mutexes

 Software timers

 Event groups

 Tick hook functions

 Idle hook functions

 Stack overflow checking

 Trace recording

 Task run-time statistics gathering

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

6

 Optional commercial licensing and support

 Full interrupt nesting model (for some architectures)

 A tick-less capability for extreme low power applications

 Software managed interrupt stack when appropriate (this can help save RAM)

Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family

The FreeRTOS open source license is designed to ensure:

1. FreeRTOS can be used in commercial applications.

2. FreeRTOS itself remains freely available to everybody.

3. FreeRTOS users retain ownership of their intellectual property.

See http://www.FreeRTOS.org/license for the latest open source license information.

OpenRTOS is a commercially licensed version of FreeRTOS provided under license from Real

Time Engineers Ltd. by a third party.

SafeRTOS shares the same usage model as FreeRTOS, but has been developed in

accordance with the practices, procedures, and processes necessary to claim compliance with

various internationally recognized safety related standards.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/

 7

Included Source Files and Projects

Obtaining the Examples that Accompany this Book

Source code, pre-configured project files, and full build instructions for all the examples

presented in this book are provided in an accompanying zip file. You can download the zip file

from http://www.FreeRTOS.org/Documentation/code if you did not receive a copy with the

book. The zip file may not include the latest version of FreeRTOS.

The screen shots included in this book were taken while the examples were executing in a

Microsoft Windows environment, using the FreeRTOS Windows port. The project that uses

the FreeRTOS Windows port is pre-configured to build using the free Express edition of Visual

Studio, which can be downloaded from http://www.microsoft.com/express. Note that, while the

FreeRTOS Windows port provides a convenient evaluation, test and development platform, it

does not provide true real-time behavior.

http://www.freertos.org/Documentation/code
http://www.microsoft.com/express

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 9

Chapter 1

The FreeRTOS Distribution

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

10

1.1 Chapter Introduction and Scope

FreeRTOS is distributed as a single zip file archive that contains all the official FreeRTOS

ports, and a large number of pre-configured demo applications.

Scope

This chapter aims to help users orientate themselves with the FreeRTOS files and directories

by:

 Providing a top level view of the FreeRTOS directory structure.

 Describing which files are actually required by any particular FreeRTOS project.

 Introducing the demo applications.

 Providing information on how a new project can be created.

The description here relates only to the official FreeRTOS distribution. The examples that

come with this book use a slightly different organization.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 11

1.2 Understanding the FreeRTOS Distribution

Definition: FreeRTOS Port

FreeRTOS can be built with approximately twenty different compilers, and can run on more

than thirty different processor architectures. Each supported combination of compiler and

processor is considered to be a separate FreeRTOS port.

Building FreeRTOS

FreeRTOS can be thought of as a library that provides multi-tasking capabilities to what would

otherwise be a bare metal application.

FreeRTOS is supplied as a set of C source files. Some of the source files are common to all

ports, while others are specific to a port. Build the source files as part of your project to make

the FreeRTOS API available to your application. To make this easy for you, each official

FreeRTOS port is provided with a demo application. The demo application is pre-configured

to build the correct source files, and include the correct header files.

Demo applications should build ‘out of the box’, although some demos are older than others,

and sometimes a change in the build tools made since the demo was released can cause an

issue. Section 1.3 describes the demo applications.

FreeRTOSConfig.h

FreeRTOS is configured by a header file called FreeRTOSConfig.h.

FreeRTOSConfig.h is used to tailor FreeRTOS for use in a specific application. For example,

FreeRTOSConfig.h contains constants such as configUSE_PREEMPTION, the setting of

which defines whether the co-operative or pre-emptive scheduling algorithm will be used1. As

FreeRTOSConfig.h contains application specific definitions, it should be located in a directory

that is part of the application being built, not in a directory that contains the FreeRTOS source

code.

A demo application is provided for every FreeRTOS port, and every demo application contains

a FreeRTOSConfig.h file. It is therefore never necessary to create a FreeRTOSConfig.h file

1 Scheduling algorithms are described in section 3.12.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

12

from scratch. Instead, it is recommended to start with, then adapt, the FreeRTOSConfig.h

used by the demo application provided for the FreeRTOS port in use.

The Official FreeRTOS Distribution

FreeRTOS is distributed in a single zip file. The zip file contains source code for all the

FreeRTOS ports, and project files for all the FreeRTOS demo applications. It also contains a

selection of FreeRTOS+ ecosystem components, and a selection of FreeRTOS+ ecosystem

demo applications.

Do not be put off by the number of files in the FreeRTOS distribution! Only a very small

number of files are required in any one application.

The Top Directories in the FreeRTOS Distribution

The first and second level directories of the FreeRTOS distribution are shown and described in

Figure 1.

FreeRTOS
 │ │
 │ ├─Source Directory containing the FreeRTOS source files
 │ │
 │ └─Demo Directory containing pre-configured and port specific FreeRTOS demo projects
 │
FreeRTOS-Plus
 │
 ├─Source Directory containing source code for some FreeRTOS+ ecosystem components
 │
 └─Demo Directory containing demo projects for FreeRTOS+ ecosystem components

Figure 1. Top level directories within the FreeRTOS distribution

The zip file only contains one copy of the FreeRTOS source files; all the FreeRTOS demo

projects, and all the FreeRTOS+ demo projects, expect to find the FreeRTOS source files in

the FreeRTOS/Source directory, and may not build if the directory structure is changed.

FreeRTOS Source Files Common to All Ports

The core FreeRTOS source code is contained in just two C files that are common to all the

FreeRTOS ports. These are called tasks.c, and list.c, and they are located directly in the

FreeRTOS/Source directory, as shown in Figure 2. In addition to these two files, the following

source files are located in the same directory:

 queue.c

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 13

queue.c provides both queue and semaphore services, as described later in this book.

queue.c is nearly always required.

 timers.c

timers.c provides software timer functionality, as described later in this book. It need only

be included in the build if software timers are actually going to be used.

 event_groups.c

event_groups.c provides event group functionality, as described later in this book. It need

only be included in the build if event groups are actually going to be used.

 croutine.c

croutine.c implements the FreeRTOS co-routine functionality. It need only be included in

the build if co-routines are actually going to be used. Co-routines were intended for use on

very small microcontrollers, are rarely used now, and are therefore not maintained to the

same level as other FreeRTOS features. Co-routines are not described in this book.

FreeRTOS
 │
 └─Source
 │
 ├─tasks.c FreeRTOS source file - always required
 ├─list.c FreeRTOS source file - always required
 ├─queue.c FreeRTOS source file - nearly always required
 ├─timers.c FreeRTOS source file - optional
 ├─event_groups.c FreeRTOS source file - optional
 └─croutine.c FreeRTOS source file - optional

Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree

It is recognized that the file names may result in name space clashes, as many projects will

already include files that have the same names. It is however considered that changing the

names of the files now would be problematic, as to do so would break compatibility with the

many thousands of projects that use FreeRTOS, as well as automation tools, and IDE plug-

ins.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

14

FreeRTOS Source Files Specific to a Port

Source files specific to a FreeRTOS port are contained within the FreeRTOS/Source/portable

directory. The portable directory is arranged as a hierarchy, first by compiler, then by

processor architecture. The hierarchy is shown in Figure 3.

If you are running FreeRTOS on a processor with architecture ‘architecture’ using compiler

‘compiler’ then, in addition to the core FreeRTOS source files, you must also build the files

located in FreeRTOS/Source/portable/[compiler]/[architecture] directory.

As will be described in Chapter 2, Heap Memory Management, FreeRTOS also considers

heap memory allocation to be part of the portable layer. Projects that use a FreeRTOS

version older than V9.0.0 must include a heap memory manager. From FreeRTOS V9.0.0 a

heap memory manager is only required if configSUPPORT_DYNAMIC_ALLOCATION is set to

1 in FreeRTOSConfig.h, or if configSUPPORT_DYNAMIC_ALLOCATION is left undefined.

FreeRTOS provides five example heap allocation schemes. The five schemes are named

heap_1 to heap_5, and are implemented by the source files heap_1.c to heap_5.c

respectively. The example heap allocation schemes are contained in the

FreeRTOS/Source/portable/MemMang directory. If you have configured FreeRTOS to use

dynamic memory allocation then it is necessary to build one of these five source files in your

project, unless your application provides an alternative implementation.

FreeRTOS
 │
 └─Source
 │
 └─portable Directory containing all port specific source files
 │
 ├─MemMang Directory containing the 5 alternative heap allocation source files
 │
 ├─[compiler 1] Directory containing port files specific to compiler 1
 │ │
 │ ├─[architecture 1] Contains files for the compiler 1 architecture 1 port
 │ ├─[architecture 2] Contains files for the compiler 1 architecture 2 port
 │ └─[architecture 3] Contains files for the compiler 1 architecture 3 port
 │
 └─[compiler 2] Directory containing port files specific to compiler 2
 │
 ├─[architecture 1] Contains files for the compiler 2 architecture 1 port
 ├─[architecture 2] Contains files for the compiler 2 architecture 2 port
 └─[etc.]

Figure 3. Port specific source files within the FreeRTOS directory tree

Include Paths

FreeRTOS requires three directories to be included in the compiler’s include path. These are:

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 15

1. The path to the core FreeRTOS header files, which is always

FreeRTOS/Source/include.

2. The path to the source files that are specific to the FreeRTOS port in use. As

described above, this is FreeRTOS/Source/portable/[compiler]/[architecture].

3. A path to the FreeRTOSConfig.h header file.

Header Files

A source file that uses the FreeRTOS API must include ‘FreeRTOS.h’, followed by the header

file that contains the prototype for the API function being used—either ‘task.h’, ‘queue.h’,

‘semphr.h’, ‘timers.h’ or ‘event_groups.h’.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

16

1.3 Demo Applications

Each FreeRTOS port comes with at least one demo application that should build with no errors

or warnings being generated, although some demos are older than others, and sometimes a

change in the build tools made since the demo was released can cause an issue.

A note to Linux users: FreeRTOS is developed and tested on a Windows host. Occasionally

this results in build errors when demo projects are built on a Linux host. Build errors are

almost always related to the case of letters used when referencing file names, or the direction

of slash characters used in file paths. Please use the FreeRTOS contact form

(http://www.FreeRTOS.org/contact) to alert us to any such errors.

The demo application has several purposes:

 To provide an example of a working and pre-configured project, with the correct files

included, and the correct compiler options set.

 To allow ‘out of the box’ experimentation with minimal setup or prior knowledge.

 As a demonstration of how the FreeRTOS API can be used.

 As a base from which real applications can be created.

Each demo project is located in a unique sub-directory under the FreeRTOS/Demo directory.

The name of the sub-directory indicates the port to which the demo project relates.

Every demo application is also described by a web page on the FreeRTOS.org web site. The

web page includes information on:

 How to locate the project file for the demo within the FreeRTOS directory structure.

 Which hardware the project is configured to use.

 How to set up the hardware for running the demo.

 How to build the demo.

 How the demo is expected to behave.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/contact

 17

All the demo projects create a subset of the common demo tasks, the implementations of

which are contained in the FreeRTOS/Demo/Common/Minimal directory. The common demo

tasks exist purely to demonstrate how the FreeRTOS API can be used—they do not

implement any particular useful functionality.

More recent demo projects can also build a beginners ‘blinky’ project. Blinky projects are very

basic. Typically they will create just two tasks and one queue.

Every demo project includes a file called main.c. This contains the main() function, from where

all the demo application tasks are created. See the comments within the individual main.c files

for information specific to that demo.

The FreeRTOS/Demo directory hierarchy is shown in Figure 4.

FreeRTOS
 │
 └─Demo Directory containing all the demo projects
 │
 ├─[Demo x] Contains the project file that builds demo ‘x’
 │
 ├─[Demo y] Contains the project file that builds demo ‘y’
 │
 ├─[Demo z] Contains the project file that builds demo ‘z’
 │
 └─Common Contains files that are built by all the demo applications

Figure 4. The demo directory hierarchy

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

18

1.4 Creating a FreeRTOS Project

Adapting One of the Supplied Demo Projects

Every FreeRTOS port comes with at least one pre-configured demo application that should

build with no errors or warnings. It is recommended that new projects are created by adapting

one of these existing projects; this will allow the project to have the correct files included, the

correct interrupt handlers installed, and the correct compiler options set.

To start a new application from an existing demo project:

1. Open the supplied demo project and ensure that it builds and executes as expected.

2. Remove the source files that define the demo tasks. Any file that is located within the

Demo/Common directory can be removed from the project.

3. Delete all the function calls within main(), except prvSetupHardware() and

vTaskStartScheduler(), as shown in Listing 1.

4. Check the project still builds.

Following these steps will create a project that includes the correct FreeRTOS source files, but

does not define any functionality.

int main(void)

{

 /* Perform any hardware setup necessary. */

 prvSetupHardware();

 /* --- APPLICATION TASKS CAN BE CREATED HERE --- */

 /* Start the created tasks running. */

 vTaskStartScheduler();

 /* Execution will only reach here if there was insufficient heap to

 start the scheduler. */

 for(;;);

 return 0;

}

Listing 1. The template for a new main() function

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 19

Creating a New Project from Scratch

As already mentioned, it is recommended that new projects are created from an existing demo

project. If this is not desirable, then a new project can be created using the following

procedure:

1. Using your chosen tool chain, create a new project that does not yet include any

FreeRTOS source files.

2. Ensure the new project can be built, downloaded to your target hardware, and

executed.

3. Only when you are sure you already have a working project, add the FreeRTOS source

files detailed in Table 1 to the project.

4. Copy the FreeRTOSConfig.h header file used by the demo project provided for the port

in use into the project directory.

5. Add the following directories to the path the project will search to locate header files:

 FreeRTOS/Source/include

 FreeRTOS/Source/portable/[compiler]/[architecture] (where [compiler] and

[architecture] are correct for your chosen port)

 The directory containing the FreeRTOSConfig.h header file

6. Copy the compiler settings from the relevant demo project.

7. Install any FreeRTOS interrupt handlers that might be necessary. Use the web page

that describes the port in use, and the demo project provided for the port in use, as a

reference.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

20

Table 1. FreeRTOS source files to include in the project

File Location

tasks.c FreeRTOS/Source

queue.c FreeRTOS/Source

list.c FreeRTOS/Source

timers.c FreeRTOS/Source

event_groups.c FreeRTOS/Source

All C and assembler files FreeRTOS/Source/portable/[compiler]/[architecture]

heap_n.c FreeRTOS/Source/portable/MemMang, where n is either 1, 2,

3, 4 or 5. This file became optional from FreeRTOS V9.0.0.

Projects that use a FreeRTOS version older than V9.0.0 must build one of the heap_n.c files.

From FreeRTOS V9.0.0 a heap_n.c file is only required if

configSUPPORT_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h or if

configSUPPORT_DYNAMIC_ALLOCATION is left undefined. Refer to Chapter 2, Heap

Memory Management, for more information.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 21

1.5 Data Types and Coding Style Guide

Data Types

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other

things) definitions for two port specific data types: TickType_t and BaseType_t. These data

types are described in Table 2.

Table 2. Port specific data types used by FreeRTOS

Macro or typedef
used

Actual type

TickType_t FreeRTOS configures a periodic interrupt called the tick interrupt.

The number of tick interrupts that have occurred since the FreeRTOS

application started is called the tick count. The tick count is used as a

measure of time.

The time between two tick interrupts is called the tick period. Times are

specified as multiples of tick periods.

TickType_t is the data type used to hold the tick count value, and to

specify times.

TickType_t can be either an unsigned 16-bit type, or an unsigned 32-bit

type, depending on the setting of configUSE_16_BIT_TICKS within

FreeRTOSConfig.h. If configUSE_16_BIT_TICKS is set to 1, then

TickType_t is defined as uint16_t. If configUSE_16_BIT_TICKS is set to

0 then TickType_t is defined as uint32_t.

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit

architectures, but severely limits the maximum block period that can be

specified. There is no reason to use a 16-bit type on a 32-bit

architecture.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

22

Table 2. Port specific data types used by FreeRTOS

Macro or typedef
used

Actual type

BaseType_t This is always defined as the most efficient data type for the architecture.

Typically, this is a 32-bit type on a 32-bit architecture, a 16-bit type on a

16-bit architecture, and an 8-bit type on an 8-bit architecture.

BaseType_t is generally used for return types that can take only a very

limited range of values, and for pdTRUE/pdFALSE type Booleans.

Some compilers make all unqualified char variables unsigned, while others make them signed.

For this reason, the FreeRTOS source code explicitly qualifies every use of char with either

‘signed’ or ‘unsigned’, unless the char is used to hold an ASCII character, or a pointer to char

is used to point to a string.

Plain int types are never used.

Variable Names

Variables are prefixed with their type: ‘c’ for char, ‘s’ for int16_t (short), ‘l’ int32_t (long), and ‘x’

for BaseType_t and any other non-standard types (structures, task handles, queue handles,

etc.).

If a variable is unsigned, it is also prefixed with a ‘u’. If a variable is a pointer, it is also prefixed

with a ‘p’. For example, a variable of type uint8_t will be prefixed with ‘uc’, and a variable of

type pointer to char will be prefixed with ‘pc’.

Function Names

Functions are prefixed with both the type they return, and the file they are defined within. For

example:

 vTaskPrioritySet() returns a void and is defined within task.c.

 xQueueReceive() returns a variable of type BaseType_t and is defined within queue.c.

 pvTimerGetTimerID() returns a pointer to void and is defined within timers.c.

File scope (private) functions are prefixed with ‘prv’.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 23

Formatting

One tab is always set to equal four spaces.

Macro Names

Most macros are written in upper case, and prefixed with lower case letters that indicate where

the macro is defined. Table 3 provides a list of prefixes.

Table 3. Macro prefixes

Prefix Location of macro definition

port (for example, portMAX_DELAY) portable.h or

portmacro.h

task (for example, taskENTER_CRITICAL()) task.h

pd (for example, pdTRUE) projdefs.h

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h

err (for example, errQUEUE_FULL) projdefs.h

Note that the semaphore API is written almost entirely as a set of macros, but follows the

function naming convention, rather than the macro naming convention.

The macros defined in Table 4 are used throughout the FreeRTOS source code.

Table 4. Common macro definitions

Macro Value

pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

24

Rationale for Excessive Type Casting

The FreeRTOS source code can be compiled with many different compilers, all of which differ

in how and when they generate warnings. In particular, different compilers want casting to be

used in different ways. As a result, the FreeRTOS source code contains more type casting

than would normally be warranted.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 25

Chapter 2

Heap Memory Management

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated,

removing the need to include a heap memory manager

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

26

2.1 Chapter Introduction and Scope

Prerequisites

FreeRTOS is provided as a set of C source files, so being a competent C programmer is a

prerequisite for using FreeRTOS, and therefore this chapter assumes the reader is familiar

with concepts such as:

 How a C project is built, including the different compiling and linking phases.

 What the stack and heap are.

 The standard C library malloc() and free() functions.

Dynamic Memory Allocation and its Relevance to FreeRTOS

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

Following chapters of this book will introduce kernel objects such as tasks, queues,

semaphores and event groups. To make FreeRTOS as easy to use as possible, these kernel

objects are not statically allocated at compile-time, but dynamically allocated at run-time;

FreeRTOS allocates RAM each time a kernel object is created, and frees RAM each time a

kernel object is deleted. This policy reduces design and planning effort, simplifies the API, and

minimizes the RAM footprint.

This chapter discusses dynamic memory allocation. Dynamic memory allocation is a C

programming concept, and not a concept that is specific to either FreeRTOS or multitasking. It

is relevant to FreeRTOS because kernel objects are allocated dynamically, and the dynamic

memory allocation schemes provided by general purpose compilers are not always suitable for

real-time applications.

Memory can be allocated using the standard C library malloc() and free() functions, but they

may not be suitable, or appropriate, for one or more of the following reasons:

 They are not always available on small embedded systems.

 Their implementation can be relatively large, taking up valuable code space.

 They are rarely thread-safe.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 27

 They are not deterministic; the amount of time taken to execute the functions will differ

from call to call.

 They can suffer from fragmentation1.

 They can complicate the linker configuration.

 They can be the source of difficult to debug errors if the heap space is allowed to grow

into memory used by other variables.

Options for Dynamic Memory Allocation

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

Early versions of FreeRTOS used a memory pools allocation scheme, whereby pools of

different size memory blocks were pre-allocated at compile time, then returned by the memory

allocation functions. Although this is a common scheme to use in real-time systems, it proved

to be the source of many support requests, predominantly because it could not use RAM

efficiently enough to make it viable for really small embedded systems—so the scheme was

dropped.

FreeRTOS now treats memory allocation as part of the portable layer (as opposed to part of

the core code base). This is in recognition of the fact that different embedded systems have

varying dynamic memory allocation and timing requirements, so a single dynamic memory

allocation algorithm will only ever be appropriate for a subset of applications. Also, removing

dynamic memory allocation from the core code base enables application writer’s to provide

their own specific implementations, when appropriate.

When FreeRTOS requires RAM, instead of calling malloc(), it calls pvPortMalloc(). When

RAM is being freed, instead of calling free(), the kernel calls vPortFree(). pvPortMalloc() has

the same prototype as the standard C library malloc() function, and vPortFree() has the same

prototype as the standard C library free() function.

pvPortMalloc() and vPortFree() are public functions, so can also be called from application

code.

1 The heap is considered to be fragmented if the free RAM within the heap is broken up into small
blocks that are separated from each other. If the heap is fragmented, then an attempt to allocate a
block will fail if no single free block in the heap is large enough to contain the block, even if the total size
of all the separate free blocks in the heap is many times greater than the size of the block that cannot be
allocated.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

28

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

FreeRTOS comes with five example implementations of both pvPortMalloc() and vPortFree(),

all of which are documented in this chapter. FreeRTOS applications can use one of the

example implementations, or provide their own.

The five examples are defined in the heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c

source files respectively, all of which are located in the FreeRTOS/Source/portable/MemMang

directory.

Scope

This chapter aims to give readers a good understanding of:

 When FreeRTOS allocates RAM.

 The five example memory allocation schemes supplied with FreeRTOS.

 Which memory allocation scheme to select.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 29

2.2 Example Memory Allocation Schemes

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated, removing the
need to include a heap memory manager

Heap_1

It is common for small dedicated embedded systems to only create tasks and other kernel

objects before the scheduler has been started. When this is the case, memory only gets

dynamically allocated by the kernel before the application starts to perform any real-time

functionality, and the memory remains allocated for the lifetime of the application. This means

the chosen allocation scheme does not have to consider any of the more complex memory

allocation issues, such as determinism and fragmentation, and can instead just consider

attributes such as code size and simplicity.

Heap_1.c implements a very basic version of pvPortMalloc(), and does not implement

vPortFree(). Applications that never delete a task, or other kernel object, have the potential to

use heap_1.

Some commercially critical and safety critical systems that would otherwise prohibit the use of

dynamic memory allocation also have the potential to use heap_1. Critical systems often

prohibit dynamic memory allocation because of the uncertainties associated with non-

determinism, memory fragmentation, and failed allocations—but Heap_1 is always

deterministic, and cannot fragment memory.

The heap_1 allocation scheme subdivides a simple array into smaller blocks, as calls to

pvPortMalloc() are made. The array is called the FreeRTOS heap.

The total size (in bytes) of the array is set by the definition configTOTAL_HEAP_SIZE within

FreeRTOSConfig.h. Defining a large array in this manner can make the application appear to

consume a lot of RAM—even before any memory has been allocated from the array.

Each created task requires a task control block (TCB) and a stack to be allocated from the

heap. Figure 5 demonstrates how heap_1 subdivides the simple array as tasks are created.

Referring to Figure 5:

 A shows the array before any tasks have been created—the entire array is free.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

30

 B shows the array after one task has been created.

 C shows the array after three tasks have been created.

A B

TCB

Stack

C

TCB

Stack

TCB

Stack

TCB

Stack

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

F
re

e
 s

p
a

c
e

Figure 5. RAM being allocated from the heap_1 array each time a task is created

Heap_2

Heap_2 is retained in the FreeRTOS distribution for backward compatibility, but its use is not

recommended for new designs. Consider using heap_4 instead of heap_2, as heap_4

provides enhanced functionality.

Heap_2.c also works by subdividing an array that is dimensioned by

configTOTAL_HEAP_SIZE. It uses a best fit algorithm to allocate memory and, unlike

heap_1, it does allow memory to be freed. Again, the array is statically declared, so will make

the application appear to consume a lot of RAM, even before any memory from the array has

been assigned.

The best fit algorithm ensures that pvPortMalloc() uses the free block of memory that is closest

in size to the number of bytes requested. For example, consider the scenario where:

 The heap contains three blocks of free memory that are 5 bytes, 25 bytes, and 100

bytes, respectively.

 pvPortMalloc() is called to request 20 bytes of RAM.

The smallest free block of RAM into which the requested number of bytes will fit is the 25-byte

block, so pvPortMalloc() splits the 25-byte block into one block of 20 bytes and one block of 5

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 31

bytes1, before returning a pointer to the 20-byte block. The new 5-byte block remains

available to future calls to pvPortMalloc().

Unlike heap_4, Heap_2 does not combine adjacent free blocks into a single larger block, so it

is more susceptible to fragmentation. However, fragmentation is not an issue if the blocks

being allocated and subsequently freed are always the same size. Heap_2 is suitable for an

application that creates and deletes tasks repeatedly, provided the size of the stack allocated

to the created tasks does not change.

A B C

TCB

Stack

TCB

Stack

TCB

Stack

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

TCB

Stack

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

F
re

e
s
p

a
c
e

F
re

e
 s

p
a

c
e

Figure 6. RAM being allocated and freed from the heap_2 array as tasks are created
and deleted

Figure 6 demonstrates how the best fit algorithm works when a task is created, deleted, and

then created again. Referring to Figure 6:

1. A shows the array after three tasks have been created. A large free block remains at

the top of the array.

2. B shows the array after one of the tasks has been deleted. The large free block at the

top of the array remains. There are now also two smaller free blocks that were

previously allocated to the TCB and stack of the deleted task.

3. C shows the situation after another task has been created. Creating the task has

resulted in two calls to pvPortMalloc(), one to allocate a new TCB, and one to allocate

the task stack. Tasks are created using the xTaskCreate() API function, which is

1 This is an oversimplification, because heap_2 stores information on the block sizes within the heap
area, so the sum of the two split blocks will actually be less than 25.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

32

described in section 3.4. The calls to pvPortMalloc() occur internally within

xTaskCreate().

Every TCB is exactly the same size, so the best fit algorithm ensures that the block of

RAM previously allocated to the TCB of the deleted task is reused to allocate the TCB

of the new task.

The size of the stack allocated to the newly created task is identical to that allocated to

the previously deleted task, so the best fit algorithm ensures that the block of RAM

previously allocated to the stack of the deleted task is reused to allocate the stack of

the new task.

The larger unallocated block at the top of the array remains untouched.

Heap_2 is not deterministic, but is faster than most standard library implementations of

malloc() and free().

Heap_3

Heap_3.c uses the standard library malloc() and free() functions, so the size of the heap is

defined by the linker configuration, and the configTOTAL_HEAP_SIZE setting has no affect.

Heap_3 makes malloc() and free() thread-safe by temporarily suspending the FreeRTOS

scheduler. Thread safety, and scheduler suspension, are both topics that are covered in

Chapter 7, Resource Management.

Heap_4

Like heap_1 and heap_2, heap_4 works by subdividing an array into smaller blocks. As

before, the array is statically declared, and dimensioned by configTOTAL_HEAP_SIZE, so will

make the application appear to consume a lot of RAM, even before any memory has actually

been allocated from the array.

Heap_4 uses a first fit algorithm to allocate memory. Unlike heap_2, heap_4 combines

(coalescences) adjacent free blocks of memory into a single larger block, which minimizes the

risk of memory fragmentation.

The first fit algorithm ensures pvPortMalloc() uses the first free block of memory that is large

enough to hold the number of bytes requested. For example, consider the scenario where:

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 33

 The heap contains three blocks of free memory that, in the order in which they appear

in the array, are 5 bytes, 200 bytes, and 100 bytes, respectively.

 pvPortMalloc() is called to request 20 bytes of RAM.

The first free block of RAM into which the requested number of bytes will fit is the 200-byte

block, so pvPortMalloc() splits the 200-byte block into one block of 20 bytes, and one block of

180 bytes1, before returning a pointer to the 20-byte block. The new 180-byte block remains

available to future calls to pvPortMalloc().

Heap_4 combines (coalescences) adjacent free blocks into a single larger block, minimizing

the risk of fragmentation, and making it suitable for applications that repeatedly allocate and

free different sized blocks of RAM.

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

B

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

C

TCB

Stack

Queue

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

D

TCB

Stack

Queue

TCB

Stack

F
re

e
 s

p
a

c
e

User
Free Space

E

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

User
Free Space

Free Space

F

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

A

TCB

Stack

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Figure 7. RAM being allocated and freed from the heap_4 array

Figure 7 demonstrates how the heap_4 first fit algorithm with memory coalescence works, as

memory is allocated and freed. Referring to Figure 7:

1. A shows the array after three tasks have been created. A large free block remains at

the top of the array.

2. B shows the array after one of the tasks has been deleted. The large free block at the

top of the array remains. There is also a free block where the TCB and stack of the

1 This is an oversimplification, because heap_4 stores information on the block sizes within the heap
area, so the sum of the two split blocks will actually be less than 200 bytes.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

34

task that has been deleted were previously allocated. Note that, unlike when heap_2

was demonstrated, the memory freed when the TCB was deleted, and the memory

freed when the stack was deleted, does not remain as two separate free blocks, but is

instead combined to create a larger single free block.

3. C shows the situation after a FreeRTOS queue has been created. Queues are created

using the xQueueCreate() API function, which is described in section 4.3.

xQueueCreate() calls pvPortMalloc() to allocate the RAM used by the queue. As

heap_4 uses a first fit algorithm, pvPortMalloc() will allocate RAM from the first free

RAM block that is large enough to hold the queue, which in Figure 7, was the RAM

freed when the task was deleted. The queue does not consume all the RAM in the free

block however, so the block is split into two, and the unused portion remains available

to future calls to pvPortMalloc().

4. D shows the situation after pvPortMalloc() has been called directly from application

code, rather than indirectly by calling a FreeRTOS API function. The user allocated

block was small enough to fit in the first free block, which was the block between the

memory allocated to the queue, and the memory allocated to the following TCB.

The memory freed when the task was deleted has now been split into three separate

blocks; the first block holds the queue, the second block holds the user allocated

memory, and the third block remains free.

5. E show the situation after the queue has been deleted, which automatically frees the

memory that had been allocated to the deleted queue. There is now free memory on

either side of the user allocated block.

6. F shows the situation after the user allocated memory has also been freed. The

memory that had been used by the user allocated block has been combined with the

free memory on either side to create a larger single free block.

Heap_4 is not deterministic, but is faster than most standard library implementations of

malloc() and free().

Setting a Start Address for the Array Used By Heap_4

This section contains advanced level information. It is not necessary to read or understand

this section in order to use Heap_4.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 35

Sometimes it is necessary for an application writer to place the array used by heap_4 at a

specific memory address. For example, the stack used by a FreeRTOS task is allocated from

the heap, so it might be necessary to ensure the heap is located in fast internal memory,

rather than slow external memory.

By default, the array used by heap_4 is declared inside the heap_4.c source file, and its start

address is set automatically by the linker. However, if the

configAPPLICATION_ALLOCATED_HEAP compile time configuration constant is set to 1 in

FreeRTOSConfig.h, then the array must instead be declared by the application that is using

FreeRTOS. If the array is declared as part of the application, then the application’s writer can

set its start address.

If configAPPLICATION_ALLOCATED_HEAP is set to 1 in FreeRTOSConfig.h, then a uint8_t

array called ucHeap, and dimensioned by the configTOTAL_HEAP_SIZE setting, must be

declared in one of the application’s source files.

The syntax required to place a variable at a specific memory address is dependent on the

compiler in use, so refer to your compiler’s documentation. Examples for two compilers follow:

 Listing 2 shows the syntax required by the GCC compiler to declare the array, and

place the array in a memory section called .my_heap.

 Listing 3 shows the syntax required by the IAR compiler to declare the array, and place

the array at the absolute memory address 0x20000000.

uint8_t ucHeap[configTOTAL_HEAP_SIZE] __attribute__ ((section(".my_heap")));

Listing 2. Using GCC syntax to declare the array that will be used by heap_4, and
place the array in a memory section named .my_heap

uint8_t ucHeap[configTOTAL_HEAP_SIZE] @ 0x20000000;

Listing 3. Using IAR syntax to declare the array that will be used by heap_4, and
place the array at the absolute address 0x20000000

Heap_5

The algorithm used by heap_5 to allocate and free memory is identical to that used by heap_4.

Unlike heap_4, heap_5 is not limited to allocating memory from a single statically declared

array; heap_5 can allocate memory from multiple and separated memory spaces. Heap_5 is

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

36

useful when the RAM provided by the system on which FreeRTOS is running does not appear

as a single contiguous (without space) block in the system’s memory map.

At the time of writing, heap_5 is the only provided memory allocation scheme that must be

explicitly initialized before pvPortMalloc() can be called. Heap_5 is initialized using the

vPortDefineHeapRegions() API function. When heap_5 is used, vPortDefineHeapRegions()

must be called before any kernel objects (tasks, queues, semaphores, etc.) can be created.

The vPortDefineHeapRegions() API Function

vPortDefineHeapRegions() is used to specify the start address and size of each separate

memory area that together makes up the total memory used by heap_5.

void vPortDefineHeapRegions(const HeapRegion_t * const pxHeapRegions);

Listing 4. The vPortDefineHeapRegions() API function prototype

Each separate memory areas is described by a structure of type HeapRegion_t. A description

of all the available memory areas is passed into vPortDefineHeapRegions() as an array of

HeapRegion_t structures.

typedef struct HeapRegion

{

 /* The start address of a block of memory that will be part of the heap.*/

 uint8_t *pucStartAddress;

 /* The size of the block of memory in bytes. */

 size_t xSizeInBytes;

} HeapRegion_t;

Listing 5. The HeapRegion_t structure

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 37

Table 5. vPortDefineHeapRegions() parameters

Parameter Name/
Returned Value

Description

pxHeapRegions A pointer to the start of an array of HeapRegion_t structures. Each

structure in the array describes the start address and length of a memory

area that will be part of the heap when heap_5 is used.

The HeapRegion_t structures in the array must be ordered by start

address; the HeapRegion_t structure that describes the memory area

with the lowest start address must be the first structure in the array, and

the HeapRegion_t structure that describes the memory area with the

highest start address must be the last structure in the array.

The end of the array is marked by a HeapRegion_t structure that has its

pucStartAddress member set to NULL.

By way of example, consider the hypothetical memory map shown in Figure 8 A, which

contains three separate blocks of RAM: RAM1, RAM2 and RAM3. It is assumed executable

code is placed in read only memory, which is not shown.

0x00000000

0x010000

0x01FFFF
RAM1 Remaining

Free

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

RAM1 Containing

Variables

0x01nnnn

0x00000000

0x010000

0x01FFFF

RAM1

65K bytes

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

0x00000000

0x010000

0x01FFFF

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

RAM1 Containing

Variables, inc.

ucHeap[]

A B C

Figure 8 Memory Map

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

38

Listing 6 shows an array of HeapRegion_t structures that together describe the three blocks of

RAM in their entirety.

/* Define the start address and size of the three RAM regions. */

#define RAM1_START_ADDRESS ((uint8_t *) 0x00010000)

#define RAM1_SIZE (65 * 1024)

#define RAM2_START_ADDRESS ((uint8_t *) 0x00020000)

#define RAM2_SIZE (32 * 1024)

#define RAM3_START_ADDRESS ((uint8_t *) 0x00030000)

#define RAM3_SIZE (32 * 1024)

/* Create an array of HeapRegion_t definitions, with an index for each of the three

RAM regions, and terminating the array with a NULL address. The HeapRegion_t

structures must appear in start address order, with the structure that contains the

lowest start address appearing first. */

const HeapRegion_t xHeapRegions[] =

{

 { RAM1_START_ADDRESS, RAM1_SIZE },

 { RAM2_START_ADDRESS, RAM2_SIZE },

 { RAM3_START_ADDRESS, RAM3_SIZE },

 { NULL, 0 } /* Marks the end of the array. */

};

int main(void)

{

 /* Initialize heap_5. */

 vPortDefineHeapRegions(xHeapRegions);

 /* Add application code here. */

}

Listing 6. An array of HeapRegion_t structures that together describe the 3 regions
of RAM in their entirety

While Listing 6 correctly describes the RAM, it does not demonstrate a usable example,

because it allocates all the RAM to the heap, leaving no RAM free for use by other variables.

When a project is built, the linking phase of the build process allocates a RAM address to each

variable. The RAM available for use by the linker is normally described by a linker

configuration file, such as a linker script. In Figure 8 B it is assumed the linker script included

information on RAM1, but did not include information on RAM2 or RAM3. The linker has

therefore placed variables in RAM1, leaving only the portion of RAM1 above address

0x0001nnnn available for use by heap_5. The actual value of 0x0001nnnn will depend on the

combined size of all the variables included in the application being linked. The linker has left

all of RAM2 and all of RAM3 unused, leaving the whole of RAM2 and the whole of RAM3

available for use by heap_5.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 39

If the code shown in Listing 6 was used, the RAM allocated to heap_5 below address

0x0001nnnn would overlap the RAM used to hold variables. To avoid that, the first

HeapRegion_t structure within the xHeapRegions[] array could use a start address of

0x0001nnnn, rather than a start address of 0x00010000. However, that is not a recommended

solution because:

1. The start address might not be easy to determine.

2. The amount of RAM used by the linker might change in future builds, necessitating an

update to the start address used in the HeapRegion_t structure.

3. The build tools will not know, and therefore cannot warn the application writer, if the

RAM used by the linker and the RAM used by heap_5 overlap.

Listing 7 demonstrates a more convenient and maintainable example. It declares an array

called ucHeap. ucHeap is a normal variable, so it becomes part of the data allocated to RAM1

by the linker. The first HeapRegion_t structure in the xHeapRegions array describes the start

address and size of ucHeap, so ucHeap becomes part of the memory managed by heap_5.

The size of ucHeap can be increased until the RAM used by the linker consumes all of RAM1,

as shown in Figure 8 C.

/* Define the start address and size of the two RAM regions not used by the

linker. */

#define RAM2_START_ADDRESS ((uint8_t *) 0x00020000)

#define RAM2_SIZE (32 * 1024)

#define RAM3_START_ADDRESS ((uint8_t *) 0x00030000)

#define RAM3_SIZE (32 * 1024)

/* Declare an array that will be part of the heap used by heap_5. The array will be

placed in RAM1 by the linker. */

#define RAM1_HEAP_SIZE (30 * 1024)

static uint8_t ucHeap[RAM1_HEAP_SIZE];

/* Create an array of HeapRegion_t definitions. Whereas in Listing 6 the first entry

described all of RAM1, so heap_5 will have used all of RAM1, this time the first

entry only describes the ucHeap array, so heap_5 will only use the part of RAM1 that

contains the ucHeap array. The HeapRegion_t structures must still appear in start

address order, with the structure that contains the lowest start address appearing

first. */

const HeapRegion_t xHeapRegions[] =

{

 { ucHeap, RAM1_HEAP_SIZE },

 { RAM2_START_ADDRESS, RAM2_SIZE },

 { RAM3_START_ADDRESS, RAM3_SIZE },

 { NULL, 0 } /* Marks the end of the array. */

};

Listing 7. An array of HeapRegion_t structures that describe all of RAM2, all of
RAM3, but only part of RAM1

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

40

The advantages of the technique demonstrated in Listing 7 include:

1. It is not necessary to use a hard coded start address.

2. The address used in the HeapRegion_t structure will be set automatically, by the

linker, so will always be correct, even if the amount of RAM used by the linker changes

in future builds.

3. It is not possible for RAM allocated to heap_5 to overlap data placed into RAM1 by the

linker.

4. The application will not link if ucHeap is too big.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 41

2.3 Heap Related Utility Functions

The xPortGetFreeHeapSize() API Function

The xPortGetFreeHeapSize() API function returns the number of free bytes in the heap at the

time the function is called. It can be used to optimize the heap size. For example, if

xPortGetFreeHeapSize() returns 2000 after all the kernel objects have been created, then the

value of configTOTAL_HEAP_SIZE can be reduced by 2000.

xPortGetFreeHeapSize() is not available when heap_3 is used.

size_t xPortGetFreeHeapSize(void);

Listing 8. The xPortGetFreeHeapSize() API function prototype

Table 6. xPortGetFreeHeapSize() return value

Parameter Name/
Returned Value

Description

Returned value The number of bytes that remain unallocated in the heap at the time

xPortGetFreeHeapSize() is called.

The xPortGetMinimumEverFreeHeapSize() API Function

The xPortGetMinimumEverFreeHeapSize() API function returns the minimum number of

unallocated bytes that have ever existed in the heap since the FreeRTOS application started

executing.

The value returned by xPortGetMinimumEverFreeHeapSize() is an indication of how close the

application has ever come to running out of heap space. For example, if

xPortGetMinimumEverFreeHeapSize() returns 200, then, at some time since the application

started executing, it came within 200 bytes of running out of heap space.

xPortGetMinimumEverFreeHeapSize() is only available when heap_4 or heap_5 is used.

size_t xPortGetMinimumEverFreeHeapSize(void);

Listing 9. The xPortGetMinimumEverFreeHeapSize() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

42

Table 7. xPortGetMinimumEverFreeHeapSize() return value

Parameter Name/
Returned Value

Description

Returned value The minimum number of unallocated bytes that have existed in the

heap since the FreeRTOS application started executing.

Malloc Failed Hook Functions

pvPortMalloc() can be called directly from application code. It is also called within FreeRTOS

source files each time an kernel object is created. Examples of kernel objects include tasks,

queues, semaphores, and event groups—all of which are described in later chapters of this

book.

Just like the standard library malloc() function, if pvPortMalloc() cannot return a block of RAM

because a block of the requested size does not exist, then it will return NULL. If

pvPortMalloc() is executed because the application writer is creating a kernel object, and the

call to pvPortMalloc() returns NULL, then the kernel object will not be created.

All the example heap allocation schemes can be configured to call a hook (or callback)

function if a call to pvPortMalloc() returns NULL.

If configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h, then the application

must provide a malloc failed hook function that has the name and prototype shown by Listing

10. The function can be implemented in any way that is appropriate for the application.

void vApplicationMallocFailedHook(void);

Listing 10. The malloc failed hook function name and prototype.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 43

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

44

Chapter 3

Task Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 45

3.1 Chapter Introduction and Scope

Scope

This chapter aims to give readers a good understanding of:

 How FreeRTOS allocates processing time to each task within an application.

 How FreeRTOS chooses which task should execute at any given time.

 How the relative priority of each task affects system behavior.

 The states that a task can exist in.

Readers should also gain a good understanding of:

 How to implement tasks.

 How to create one or more instances of a task.

 How to use the task parameter.

 How to change the priority of a task that has already been created.

 How to delete a task.

 How to implement periodic processing using a task (software timers are discussed in a

later chapter).

 When the idle task will execute and how it can be used.

The concepts presented in this chapter are fundamental to understanding how to use

FreeRTOS, and how FreeRTOS applications behave. This is, therefore, the most detailed

chapter in the book.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

46

3.2 Task Functions

Tasks are implemented as C functions. The only thing special about them is their prototype,

which must return void and take a void pointer parameter. The prototype is demonstrated by

Listing 11.

void ATaskFunction(void *pvParameters);

Listing 11. The task function prototype

Each task is a small program in its own right. It has an entry point, will normally run forever

within an infinite loop, and will not exit. The structure of a typical task is shown in Listing 12.

FreeRTOS tasks must not be allowed to return from their implementing function in any way—

they must not contain a ‘return’ statement and must not be allowed to execute past the end of

the function. If a task is no longer required, it should instead be explicitly deleted. This is also

demonstrated in Listing 12.

A single task function definition can be used to create any number of tasks—each created task

being a separate execution instance, with its own stack and its own copy of any automatic

(stack) variables defined within the task itself.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 47

void ATaskFunction(void *pvParameters)

{

/* Variables can be declared just as per a normal function. Each instance of a task

created using this example function will have its own copy of the lVariableExample

variable. This would not be true if the variable was declared static – in which case
only one copy of the variable would exist, and this copy would be shared by each

created instance of the task. (The prefixes added to variable names are described in

section 1.5, Data Types and Coding Style Guide.) */

int32_t lVariableExample = 0;

 /* A task will normally be implemented as an infinite loop. */

 for(;;)

 {

 /* The code to implement the task functionality will go here. */

 }

 /* Should the task implementation ever break out of the above loop, then the task

 must be deleted before reaching the end of its implementing function. The NULL

 parameter passed to the vTaskDelete() API function indicates that the task to be

 deleted is the calling (this) task. The convention used to name API functions is

 described in section 0, Projects that use a FreeRTOS version older than V9.0.0

must build one of the heap_n.c files. From FreeRTOS V9.0.0 a heap_n.c file is only

required if configSUPPORT_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h or if

configSUPPORT_DYNAMIC_ALLOCATION is left undefined. Refer to Chapter 2, Heap Memory

Management, for more information.

Data Types and Coding Style Guide. */

 vTaskDelete(NULL);

}

Listing 12. The structure of a typical task function

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

48

3.3 Top Level Task States

An application can consist of many tasks. If the processor running the application contains a

single core, then only one task can be executing at any given time. This implies that a task

can exist in one of two states, Running and Not Running. This simplistic model is considered

first—but keep in mind that it is an over simplification. Later in the chapter it is shown that the

Not Running state actually contains a number of sub-states.

When a task is in the Running state the processor is executing the task’s code. When a task

is in the Not Running state, the task is dormant, its status having been saved ready for it to

resume execution the next time the scheduler decides it should enter the Running state.

When a task resumes execution, it does so from the instruction it was about to execute before

it last left the Running state.

Not RunningNot RunningNot Running Running

All tasks that are

not currently

Running are in the

Not Running state

Only one task

can be in the

Running state at

any one time

Figure 9. Top level task states and transitions

A task transitioned from the Not Running state to the Running state is said to have been

‘switched in’ or ‘swapped in’. Conversely, a task transitioned from the Running state to the Not

Running state is said to have been ‘switched out’ or ‘swapped out’. The FreeRTOS scheduler

is the only entity that can switch a task in and out.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 49

3.4 Creating Tasks

The xTaskCreate() API Function

FreeRTOS V9.0.0 also includes the xTaskCreateStatic() function, which allocates the memory required to create a

task statically at compile time: Tasks are created using the FreeRTOS xTaskCreate() API function.

This is probably the most complex of all the API functions, so it is unfortunate that it is the first

encountered, but tasks must be mastered first as they are the most fundamental component of

a multitasking system. All the examples that accompany this book make use of the

xTaskCreate() function, so there are plenty of examples to reference.

Section 1.5, Data Types and Coding Style Guide, describes the data types and naming

conventions used.

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode,

 const char * const pcName,

 uint16_t usStackDepth,

 void *pvParameters,

 UBaseType_t uxPriority,

 TaskHandle_t *pxCreatedTask);

Listing 13. The xTaskCreate() API function prototype

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally

implemented as an infinite loop. The pvTaskCode parameter is simply a

pointer to the function that implements the task (in effect, just the name

of the function).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

50

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

pcName A descriptive name for the task. This is not used by FreeRTOS in any

way. It is included purely as a debugging aid. Identifying a task by a

human readable name is much simpler than attempting to identify it by

its handle.

The application-defined constant configMAX_TASK_NAME_LEN

defines the maximum length a task name can take—including the NULL

terminator. Supplying a string longer than this maximum will result in

the string being silently truncated.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 51

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

usStackDepth Each task has its own unique stack that is allocated by the kernel to the

task when the task is created. The usStackDepth value tells the kernel

how large to make the stack.

The value specifies the number of words the stack can hold, not the

number of bytes. For example, if the stack is 32-bits wide and

usStackDepth is passed in as 100, then 400 bytes of stack space will be

allocated (100 * 4 bytes). The stack depth multiplied by the stack width

must not exceed the maximum value that can be contained in a variable

of type uint16_t.

The size of the stack used by the Idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE1. The value assigned

to this constant in the FreeRTOS demo application for the processor

architecture being used is the minimum recommended for any task. If

your task uses a lot of stack space, then you must assign a larger value.

There is no easy way to determine the stack space required by a task.

It is possible to calculate, but most users will simply assign what they

think is a reasonable value, then use the features provided by

FreeRTOS to ensure that the space allocated is indeed adequate, and

that RAM is not being wasted unnecessarily. Section 12.3, Stack

Overflow, contains information on how to query the maximum stack

space that has actually been used by a task.

pvParameters Task functions accept a parameter of type pointer to void (void*). The

value assigned to pvParameters is the value passed into the task.

Some examples in this book demonstrate how the parameter can be

used.

1 This is the only way the FreeRTOS source code uses the configMINIMAL_STACK_SIZE setting,
although the constant is also used inside demo applications to help make the demos portable across
multiple processor architectures.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

52

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

uxPriority Defines the priority at which the task will execute. Priorities can be

assigned from 0, which is the lowest priority, to

(configMAX_PRIORITIES – 1), which is the highest priority.

configMAX_PRIORITIES is a user defined constant that is described in

section 3.5.

Passing a uxPriority value above (configMAX_PRIORITIES – 1) will

result in the priority assigned to the task being capped silently to the

maximum legitimate value.

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being

created. This handle can then be used to reference the task in API calls

that, for example, change the task priority or delete the task.

If your application has no use for the task handle, then pxCreatedTask

can be set to NULL.

Returned value There are two possible return values:

1. pdPASS

This indicates that the task has been created successfully.

2. pdFAIL

This indicates that the task has not been created because there is

insufficient heap memory available for FreeRTOS to allocate enough

RAM to hold the task data structures and stack.

Chapter 2 provides more information on heap memory

management.

Example 1. Creating tasks

This example demonstrates the steps needed to create two simple tasks, then start the tasks

executing. The tasks simply print out a string periodically, using a crude null loop to create the

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 53

period delay. Both tasks are created at the same priority, and are identical except for the

string they print out—see Listing 14 and Listing 15 for their respective implementations.

void vTask1(void *pvParameters)

{

const char *pcTaskName = "Task 1 is running\r\n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 14. Implementation of the first task used in Example 1

void vTask2(void *pvParameters)

{

const char *pcTaskName = "Task 2 is running\r\n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 15. Implementation of the second task used in Example 1

The main() function creates the tasks before starting the scheduler—see Listing 16 for its

implementation.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

54

int main(void)

{

 /* Create one of the two tasks. Note that a real application should check

 the return value of the xTaskCreate() call to ensure the task was created

 successfully. */

 xTaskCreate(vTask1, /* Pointer to the function that implements the task. */

 "Task 1",/* Text name for the task. This is to facilitate

 debugging only. */

 1000, /* Stack depth - small microcontrollers will use much

 less stack than this. */

 NULL, /* This example does not use the task parameter. */

 1, /* This task will run at priority 1. */

 NULL); /* This example does not use the task handle. */

 /* Create the other task in exactly the same way and at the same priority. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely that

 there was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 16. Starting the Example 1 tasks

Executing the example produces the output shown in Figure 10.

Figure 10. The output produced when Example 1 is executed1

1 The screen shot shows each task printing out its message exactly once before the next task executes.
This is an artificial scenario that results from using the FreeRTOS Windows simulator. The Windows
simulator is not truly real time. Also writing to the Windows console takes a relatively long time and
results in a chain of Windows system calls. Executing the same code on a genuine embedded target
with a fast and non-blocking print function may result in each task printing its string many times before
being switched out to allow the other task to run.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 55

Figure 10 shows the two tasks appearing to execute simultaneously; however, as both tasks

are executing on the same processor core, this cannot be the case. In reality, both tasks are

rapidly entering and exiting the Running state. Both tasks are running at the same priority,

and so share time on the same processor core. Their actual execution pattern is shown in

Figure 11.

The arrow along the bottom of Figure 11 shows the passing of time from time t1 onwards. The

colored lines show which task is executing at each point in time—for example, Task 1 is

executing between time t1 and time t2.

Only one task can exist in the Running state at any one time. So, as one task enters the

Running state (the task is switched in), the other enters the Not Running state (the task is

switched out).

Time

Task 1

Task 2

t1 t2

At time t1, Task 1

enters the Running

state and executes

until time t2

t3

At time t2 Task 2 enters the Running

state and executes until time t3 - at

which point Task1 re-enters the

Running state

Figure 11. The actual execution pattern of the two Example 1 tasks

Example 1 created both tasks from within main(), prior to starting the scheduler. It is also

possible to create a task from within another task. For example, Task 2 could have been

created from within Task 1, as shown by Listing 17.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

56

void vTask1(void *pvParameters)

{

const char *pcTaskName = "Task 1 is running\r\n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* If this task code is executing then the scheduler must already have

 been started. Create the other task before entering the infinite loop. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 17. Creating a task from within another task after the scheduler has started

Example 2. Using the task parameter

The two tasks created in Example 1 are almost identical, the only difference between them

being the text string they print out. This duplication can be removed by, instead, creating two

instances of a single task implementation. The task parameter can then be used to pass into

each task the string that it should print out.

Listing 18 contains the code of the single task function (vTaskFunction) used by Example 2.

This single function replaces the two task functions (vTask1 and vTask2) used in Example 1.

Note how the task parameter is cast to a char * to obtain the string the task should print out.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 57

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later exercises will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 18. The single task function used to create two tasks in Example 2

Even though there is now only one task implementation (vTaskFunction), more than one

instance of the defined task can be created. Each created instance will execute independently

under the control of the FreeRTOS scheduler.

Listing 19 shows how the pvParameters parameter to the xTaskCreate() function is used to

pass the text string into the task.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

58

/* Define the strings that will be passed in as the task parameters. These are

defined const and not on the stack to ensure they remain valid when the tasks are

executing. */

static const char *pcTextForTask1 = "Task 1 is running\r\n";

static const char *pcTextForTask2 = "Task 2 is running\r\n";

int main(void)

{

 /* Create one of the two tasks. */

 xTaskCreate(vTaskFunction, /* Pointer to the function that

 implements the task. */

 "Task 1", /* Text name for the task. This is to

 facilitate debugging only. */

 1000, /* Stack depth - small microcontrollers

 will use much less stack than this. */

 (void*)pcTextForTask1, /* Pass the text to be printed into the

 task using the task parameter. */

 1, /* This task will run at priority 1. */

 NULL); /* The task handle is not used in this

 example. */

 /* Create the other task in exactly the same way. Note this time that multiple

 tasks are being created from the SAME task implementation (vTaskFunction). Only

 the value passed in the parameter is different. Two instances of the same

 task are being created. */

 xTaskCreate(vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2, 1, NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely that

 there was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 19. The main() function for Example 2.

The output from Example 2 is exactly as per that shown for example 1 in Figure 10.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 59

3.5 Task Priorities

The uxPriority parameter of the xTaskCreate() API function assigns an initial priority to the task

being created. The priority can be changed after the scheduler has been started by using the

vTaskPrioritySet() API function.

The maximum number of priorities available is set by the application-defined

configMAX_PRIORITIES compile time configuration constant within FreeRTOSConfig.h. Low

numeric priority values denote low-priority tasks, with priority 0 being the lowest priority

possible. Therefore, the range of available priorities is 0 to (configMAX_PRIORITIES – 1).

Any number of tasks can share the same priority—ensuring maximum design flexibility.

The FreeRTOS scheduler can use one of two methods to decide which task will be in the

Running state. The maximum value to which configMAX_PRIORITIES can be set depends on

the method used:

1. Generic Method

The generic method is implemented in C, and can be used with all the FreeRTOS

architecture ports.

When the generic method is used, FreeRTOS does not limit the maximum value to

which configMAX_PRIORITIES can be set. However, it is always advisable to keep

the configMAX_PRIORITIES value at the minimum necessary, because the higher its

value, the more RAM will be consumed, and the longer the worst case execution time

will be.

The generic method will be used if

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0 in FreeRTOSConfig.h,

or if configUSE_PORT_OPTIMISED_TASK_SELECTION is left undefined, or if the

generic method is the only method provided for the FreeRTOS port in use.

2. Architecture Optimized Method

The architecture optimized method uses a small amount of assembler code, and is

faster than the generic method. The configMAX_PRIORITIES setting does not affect

the worst case execution time.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

60

If the architecture optimized method is used then configMAX_PRIORITIES cannot be

greater than 32. As with the generic method, it is advisable to keep

configMAX_PRIORITIES at the minimum necessary, as the higher its value, the more

RAM will be consumed.

The architecture optimized method will be used if

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 1 in FreeRTOSConfig.h.

Not all FreeRTOS ports provide an architecture optimized method.

The FreeRTOS scheduler will always ensure that the highest priority task that is able to run is

the task selected to enter the Running state. Where more than one task of the same priority is

able to run, the scheduler will transition each task into and out of the Running state, in turn.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 61

3.6 Time Measurement and the Tick Interrupt

Section 3.12, Scheduling Algorithms, describes an optional feature called ‘time slicing’. Time

slicing was used in the examples presented so far, and is the behavior observed in the output

they produced. In the examples, both tasks were created at the same priority, and both tasks

were always able to run. Therefore, each task executed for a ‘time slice’, entering the Running

state at the start of a time slice, and exiting the Running state at the end of a time slice. In

Figure 11, the time between t1 and t2 equals a single time slice.

To be able to select the next task to run, the scheduler itself must execute at the end of each

time slice1. A periodic interrupt, called the ‘tick interrupt’, is used for this purpose. The length

of the time slice is effectively set by the tick interrupt frequency, which is configured by the

application-defined configTICK_RATE_HZ compile time configuration constant within

FreeRTOSConfig.h. For example, if configTICK_RATE_HZ is set to 100 (Hz), then the time

slice will be 10 milliseconds. The time between two tick interrupts is called the ‘tick period’.

One time slice equals one tick period.

Figure 11 can be expanded to show the execution of the scheduler itself in the sequence of

execution. This is shown in Figure 12, in which the top line shows when the scheduler is

executing, and the thin arrows show the sequence of execution from a task to the tick

interrupt, then from the tick interrupt back to a different task.

The optimal value for configTICK_RATE_HZ is dependent on the application being developed,

although a value of 100 is typical.

1 It is important to note that the end of a time slice is not the only place that the scheduler can select a
new task to run; as will be demonstrated throughout this book, the scheduler will also select a new task
to run immediately after the currently executing task enters the Blocked state, or when an interrupt
moves a higher priority task into the Ready state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

62

Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

Kernel runs in tick

interrupt to select

next task

Newly selected task runs when

the tick interrupt completes

Figure 12. The execution sequence expanded to show the tick interrupt executing

FreeRTOS API calls always specify time in multiples of tick periods, which are often referred to

simply as ‘ticks’. The pdMS_TO_TICKS() macro converts a time specified in milliseconds into

a time specified in ticks. The resolution available depends on the defined tick frequency, and

pdMS_TO_TICKS() cannot be used if the tick frequency is above 1KHz (if

configTICK_RATE_HZ is greater than 1000). Listing 20 shows how to use pdMS_TO_TICKS()

to convert a time specified as 200 milliseconds into an equivalent time specified in ticks.

/* pdMS_TO_TICKS() takes a time in milliseconds as its only parameter, and evaluates

to the equivalent time in tick periods. This example shows xTimeInTicks being set to

the number of tick periods that are equivalent to 200 milliseconds. */

TickType_t xTimeInTicks = pdMS_TO_TICKS(200);

Listing 20. Using the pdMS_TO_TICKS() macro to convert 200 milliseconds into an
equivalent time in tick periods

Note: It is not recommended to specify times in ticks directly within the application, but instead

to use the pdMS_TO_TICKS() macro to specify times in milliseconds, and in so doing,

ensuring times specified within the application do not change if the tick frequency is changed.

The ‘tick count’ value is the total number of tick interrupts that have occurred since the

scheduler was started, assuming the tick count has not overflowed. User applications do not

have to consider overflows when specifying delay periods, as time consistency is managed

internally by FreeRTOS.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 63

Section 3.12, Scheduling Algorithms, describes configuration constants that affect when the

scheduler will select a new task to run, and when a tick interrupt will execute.

Example 3. Experimenting with priorities

The scheduler will always ensure that the highest priority task that is able to run is the task

selected to enter the Running state. In our examples so far, two tasks have been created at

the same priority, so both entered and exited the Running state in turn. This example looks at

what happens when the priority of one of the two tasks created in Example 2 is changed. This

time, the first task will be created at priority 1, and the second at priority 2. The code to create

the tasks is shown in Listing 21. The single function that implements both tasks has not

changed; it still simply prints out a string periodically, using a null loop to create a delay.

/* Define the strings that will be passed in as the task parameters. These are

defined const and not on the stack to ensure they remain valid when the tasks are

executing. */

static const char *pcTextForTask1 = "Task 1 is running\r\n";

static const char *pcTextForTask2 = "Task 2 is running\r\n";

int main(void)

{

 /* Create the first task at priority 1. The priority is the second to last

 parameter. */

 xTaskCreate(vTaskFunction, "Task 1", 1000, (void*)pcTextForTask1, 1, NULL);

 /* Create the second task at priority 2, which is higher than a priority of 1.

 The priority is the second to last parameter. */

 xTaskCreate(vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2, 2, NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* Will not reach here. */

 return 0;

}

Listing 21. Creating two tasks at different priorities

The output produced by Example 3 is shown in Figure 13.

The scheduler will always select the highest priority task that is able to run. Task 2 has a

higher priority than Task 1 and is always able to run; therefore, Task 2 is the only task to ever

enter the Running state. As Task 1 never enters the Running state, it never prints out its

string. Task 1 is said to be ‘starved’ of processing time by Task 2.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

64

Figure 13. Running both tasks at different priorities

Task 2 is always able to run because it never has to wait for anything—it is either cycling

around a null loop, or printing to the terminal.

Figure 14 shows the execution sequence for Example 3.

Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

The scheduler runs in the tick interrupt

but selects the same task. Task 2 is

always in the Running state and Task 1 is

always in the Not Running state

Figure 14. The execution pattern when one task has a higher priority than the other

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 65

3.7 Expanding the ‘Not Running’ State

So far, the created tasks have always had processing to perform and have never had to wait

for anything—as they never have to wait for anything, they are always able to enter the

Running state. This type of ‘continuous processing’ task has limited usefulness, because they

can only be created at the very lowest priority. If they run at any other priority, they will prevent

tasks of lower priority ever running at all.

To make the tasks useful they must be re-written to be event-driven. An event-driven task has

work (processing) to perform only after the occurrence of the event that triggers it, and is not

able to enter the Running state before that event has occurred. The scheduler always selects

the highest priority task that is able to run. High priority tasks not being able to run means that

the scheduler cannot select them and must, instead, select a lower priority task that is able to

run. Therefore, using event-driven tasks means that tasks can be created at different priorities

without the highest priority tasks starving all the lower priority tasks of processing time.

The Blocked State

A task that is waiting for an event is said to be in the ‘Blocked’ state, which is a sub-state of the

Not Running state.

Tasks can enter the Blocked state to wait for two different types of event:

1. Temporal (time-related) events—the event being either a delay period expiring, or an

absolute time being reached. For example, a task may enter the Blocked state to wait

for 10 milliseconds to pass.

2. Synchronization events—where the events originate from another task or interrupt. For

example, a task may enter the Blocked state to wait for data to arrive on a queue.

Synchronization events cover a broad range of event types.

FreeRTOS queues, binary semaphores, counting semaphores, mutexes, recursive mutexes,

event groups and direct to task notifications can all be used to create synchronization events.

All these features are covered in future chapters of this book.

It is possible for a task to block on a synchronization event with a timeout, effectively blocking

on both types of event simultaneously. For example, a task may choose to wait for a

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

66

maximum of 10 milliseconds for data to arrive on a queue. The task will leave the Blocked

state if either data arrives within 10 milliseconds, or 10 milliseconds pass with no data arriving.

The Suspended State

‘Suspended’ is also a sub-state of Not Running. Tasks in the Suspended state are not

available to the scheduler. The only way into the Suspended state is through a call to the

vTaskSuspend() API function, the only way out being through a call to the vTaskResume() or

xTaskResumeFromISR() API functions. Most applications do not use the Suspended state.

The Ready State

Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the

Ready state. They are able to run, and therefore ‘ready’ to run, but are not currently in the

Running state.

Completing the State Transition Diagram

Figure 15 expands on the previous over-simplified state diagram to include all the Not Running

sub-states described in this section. The tasks created in the examples so far have not used

the Blocked or Suspended states; they have only transitioned between the Ready state and

the Running state—highlighted by the bold lines in Figure 15.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 67

Not Running

(super state)

Ready

Blocked

Suspended

Running

Event Blocking API

function called
vTaskSuspend()

called

vTaskSuspend()

called
vTaskResume()

called

vTaskSuspend()

called

Figure 15. Full task state machine

Example 4. Using the Blocked state to create a delay

All the tasks created in the examples presented so far have been ‘periodic’—they have

delayed for a period and printed out their string, before delaying once more, and so on. The

delay has been generated very crudely using a null loop—the task effectively polled an

incrementing loop counter until it reached a fixed value. Example 3 clearly demonstrated the

disadvantage of this method. The higher priority task remained in the Running state while it

executed the null loop, ‘starving’ the lower priority task of any processing time.

There are several other disadvantages to any form of polling, not least of which is its

inefficiency. During polling, the task does not really have any work to do, but it still uses

maximum processing time, and so wastes processor cycles. Example 4 corrects this behavior

by replacing the polling null loop with a call to the vTaskDelay() API function, the prototype for

which is shown in Listing 22. The new task definition is shown in Listing 23. Note that the

vTaskDelay() API function is available only when INCLUDE_vTaskDelay is set to 1 in

FreeRTOSConfig.h.

vTaskDelay() places the calling task into the Blocked state for a fixed number of tick interrupts.

The task does not use any processing time while it is in the Blocked state, so the task only

uses processing time when there is actually work to be done.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

68

void vTaskDelay(TickType_t xTicksToDelay);

Listing 22. The vTaskDelay() API function prototype

Table 9. vTaskDelay() parameters

Parameter
Name

Description

xTicksToDelay The number of tick interrupts that the calling task will remain in the Blocked

state before being transitioned back into the Ready state.

For example, if a task called vTaskDelay(100) when the tick count was

10,000, then it would immediately enter the Blocked state, and remain in

the Blocked state until the tick count reached 10,100.

The macro pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks. For example, calling

vTaskDelay(pdMS_TO_TICKS(100)) will result in the calling task

remaining in the Blocked state for 100 milliseconds.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 69

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. This time a call to vTaskDelay() is used which places

 the task into the Blocked state until the delay period has expired. The

 parameter takes a time specified in ‘ticks’, and the pdMS_TO_TICKS() macro
 is used (where the xDelay250ms constant is declared) to convert 250

 milliseconds into an equivalent time in ticks. */

 vTaskDelay(xDelay250ms);

 }

}

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay()

Even though the two tasks are still being created at different priorities, both will now run. The

output of Example 4, which is shown in Figure 16, confirms the expected behavior.

Figure 16. The output produced when Example 4 is executed

The execution sequence shown in Figure 17 explains why both tasks run, even though they

are created at different priorities. The execution of the scheduler itself is omitted for simplicity.

The idle task is created automatically when the scheduler is started, to ensure there is always

at least one task that is able to run (at least one task in the Ready state). Section 3.8, The Idle

Task and the Idle Task Hook, describes the Idle task in more detail.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

70

Time

Task 1

Task 2

t1 t2 t3

Idle

tn

1 - Task 2 has the highest priority so runs first. It

prints out its string then calls vTaskDelay() - and in so

doing enters the Blocked state, permitting the lower

priority Task 1 to execute.

2 - Task 1 prints out its string, then it too

enters the Blocked state by calling

vTaskDelay().

3 - At this point both application tasks are in

the Blocked state - so the Idle task runs.

4 - When the delay expires the scheduler moves the

tasks back into the ready state, where both execute

again before once again calling vTaskDelay() causing

them to re-enter the Blocked state. Task 2 executes

first as it has the higher priority.

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

Only the implementation of the two tasks has changed, not their functionality. Comparing

Figure 17 with Figure 12 demonstrates clearly that this functionality is being achieved in a

much more efficient manner.

Figure 12 shows the execution pattern when the tasks use a null loop to create a delay—so

are always able to run, and as a result use one hundred percent of the available processor

time between them. Figure 17 shows the execution pattern when the tasks enter the Blocked

state for the entirety of their delay period, so use processor time only when they actually have

work that needs to be performed (in this case simply a message to be printed out), and as a

result only use a tiny fraction of the available processing time.

In the Figure 17 scenario, each time the tasks leave the Blocked state they execute for a

fraction of a tick period before re-entering the Blocked state. Most of the time there are no

application tasks that are able to run (no application tasks in the Ready state) and, therefore,

no application tasks that can be selected to enter the Running state. While this is the case,

the idle task will run. The amount of processing time allocated to the idle is a measure of the

spare processing capacity in the system. Using an RTOS can significantly increase the spare

processing capacity simply by allowing an application to be completely event driven.

The bold lines in Figure 18 show the transitions performed by the tasks in Example 4, with

each now transitioning through the Blocked state before being returned to the Ready state.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 71

Not Running

(super state)

Ready

Blocked

Suspended

Running

Event Blocking API

function called
vTaskSuspend()

called

vTaskSuspend()

called
vTaskResume()

called

vTaskSuspend()

called

Figure 18. Bold lines indicate the state transitions performed
 by the tasks in Example 4

The vTaskDelayUntil() API Function

vTaskDelayUntil() is similar to vTaskDelay(). As just demonstrated, the vTaskDelay()

parameter specifies the number of tick interrupts that should occur between a task calling

vTaskDelay(), and the same task once again transitioning out of the Blocked state. The length

of time the task remains in the blocked state is specified by the vTaskDelay() parameter, but

the time at which the task leaves the blocked state is relative to the time at which vTaskDelay()

was called.

The parameters to vTaskDelayUntil() specify, instead, the exact tick count value at which the

calling task should be moved from the Blocked state into the Ready state. vTaskDelayUntil()

is the API function that should be used when a fixed execution period is required (where you

want your task to execute periodically with a fixed frequency), as the time at which the calling

task is unblocked is absolute, rather than relative to when the function was called (as is the

case with vTaskDelay()).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

72

void vTaskDelayUntil(TickType_t * pxPreviousWakeTime, TickType_t xTimeIncrement);

Listing 24. vTaskDelayUntil() API function prototype

Table 10. vTaskDelayUntil() parameters

Parameter Name Description

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil()

is being used to implement a task that executes periodically and

with a fixed frequency. In this case, pxPreviousWakeTime holds

the time at which the task last left the Blocked state (was ‘woken’

up). This time is used as a reference point to calculate the time at

which the task should next leave the Blocked state.

The variable pointed to by pxPreviousWakeTime is updated

automatically within the vTaskDelayUntil() function; it would not

normally be modified by the application code, but must be initialized

to the current tick count before it is used for the first time. Listing 25

demonstrates how the initialization is performed.

xTimeIncrement This parameter is also named on the assumption that

vTaskDelayUntil() is being used to implement a task that executes

periodically and with a fixed frequency—the frequency being set by

the xTimeIncrement value.

xTimeIncrement is specified in ‘ticks’. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Example 5. Converting the example tasks to use vTaskDelayUntil()

The two tasks created in Example 4 are periodic tasks, but using vTaskDelay() does not

guarantee that the frequency at which they run is fixed, as the time at which the tasks leave

the Blocked state is relative to when they call vTaskDelay(). Converting the tasks to use

vTaskDelayUntil() instead of vTaskDelay() solves this potential problem.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 73

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

TickType_t xLastWakeTime;

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* The xLastWakeTime variable needs to be initialized with the current tick

 count. Note that this is the only time the variable is written to explicitly.

 After this xLastWakeTime is automatically updated within vTaskDelayUntil(). */

 xLastWakeTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* This task should execute every 250 milliseconds exactly. As per

 the vTaskDelay() function, time is measured in ticks, and the

 pdMS_TO_TICKS() macro is used to convert milliseconds into ticks.

 xLastWakeTime is automatically updated within vTaskDelayUntil(), so is not

 explicitly updated by the task. */

 vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(250));

 }

}

Listing 25. The implementation of the example task using vTaskDelayUntil()

The output produced by Example 5 is exactly as per that shown for Example 4 in Figure 16.

Example 6. Combining blocking and non-blocking tasks

Previous examples have examined the behavior of both polling and blocking tasks in isolation.

This example re-enforces the stated expected system behavior by demonstrating an execution

sequence when the two schemes are combined, as follows.

1. Two tasks are created at priority 1. These do nothing other than continuously print out

a string.

These tasks never make any API function calls that could cause them to enter the

Blocked state, so are always in either the Ready or the Running state. Tasks of this

nature are called ‘continuous processing’ tasks, as they always have work to do (albeit

rather trivial work, in this case). The source for the continuous processing tasks is

shown in Listing 26.

2. A third task is then created at priority 2, so above the priority of the other two tasks.

The third task also just prints out a string, but this time periodically, so uses the

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

74

vTaskDelayUntil() API function to place itself into the Blocked state between each print

iteration.

The source for the periodic task is shown in Listing 27.

void vContinuousProcessingTask(void *pvParameters)

{

char *pcTaskName;

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. This task just does this repeatedly

 without ever blocking or delaying. */

 vPrintString(pcTaskName);

 }

}

Listing 26. The continuous processing task used in Example 6

void vPeriodicTask(void *pvParameters)

{

TickType_t xLastWakeTime;

const TickType_t xDelay3ms = pdMS_TO_TICKS(3);

 /* The xLastWakeTime variable needs to be initialized with the current tick

 count. Note that this is the only time the variable is explicitly written to.

 After this xLastWakeTime is managed automatically by the vTaskDelayUntil()

 API function. */

 xLastWakeTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString("Periodic task is running\r\n");

 /* The task should execute every 3 milliseconds exactly – see the
 declaration of xDelay3ms in this function. */

 vTaskDelayUntil(&xLastWakeTime, xDelay3ms);

 }

}

Listing 27. The periodic task used in Example 6

Figure 19 shows the output produced by Example 6, with an explanation of the observed

behavior given by the execution sequence shown in Figure 20.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 75

Figure 19. The output produced when Example 6 is executed

Time

Continuous 2

Idle

t1 t2

1 - Continuous task 1 runs for a

complete tick period (time slice

between times t1 and t2) - during

which time it could print out its

string many times.

t3

2 - The tick interrupt occurs during which the

scheduler selects a new task to run. As both

Continuous tasks have the same priority and

both are always able to run the scheduler

shares processing time between the two - so

Continuous 2 enters the Running state where it

remains for the entire tick period - during which

time it could print out its string many times.

Continuous 1

Periodic

3 - At time t3 the tick interrupt

runs again, causing a switch back

to Continuous 1, and so it goes

on.

t5

4 - At time t5 the tick interrupt finds that the Periodic task block

period has expired so moved the Periodic task into the Ready

state. The Periodic task is the highest priority task so

immediately then enters the Running state where it prints out its

string exactly once before calling vTaskDelayUntil() to return to

the Blocked state.

The Idle task never enters the

Running state as there are

always higher priority task that

are able to do so.

5 - The Periodic task entering the

Blocked state means the scheduler has

again to choose a task to enter the

Running state - in this case Continuous

1 is chosen and it runs up to the next tick

interrupt - during which time it could print

out its string many times.

Figure 20. The execution pattern of Example 6

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

76

3.8 The Idle Task and the Idle Task Hook

The tasks created in Example 4 spend most of their time in the Blocked state. While in this

state, they are not able to run, so cannot be selected by the scheduler.

There must always be at least one task that can enter the Running state1. To ensure this is

the case, an Idle task is automatically created by the scheduler when vTaskStartScheduler() is

called. The idle task does very little more than sit in a loop—so, like the tasks in the original

first examples, it is always able to run.

The idle task has the lowest possible priority (priority zero), to ensure it never prevents a

higher priority application task from entering the Running state—although there is nothing to

prevent application designers creating tasks at, and therefore sharing, the idle task priority, if

desired. The configIDLE_SHOULD_YIELD compile time configuration constant in

FreeRTOSConfig.h can be used to prevent the Idle task from consuming processing time that

would be more productively allocated to applications tasks. configIDLE_SHOULD_YIELD is

described in section 3.12, Scheduling Algorithms.

Running at the lowest priority ensures the Idle task is transitioned out of the Running state as

soon as a higher priority task enters the Ready state. This can be seen at time tn in Figure 17,

where the Idle task is immediately swapped out to allow Task 2 to execute at the instant Task

2 leaves the Blocked state. Task 2 is said to have pre-empted the idle task. Pre-emption

occurs automatically, and without the knowledge of the task being pre-empted.

Note: If an application uses the vTaskDelete() API function then it is essential that the Idle task

is not starved of processing time. This is because the Idle task is responsible for cleaning up

kernel resources after a task has been deleted.

Idle Task Hook Functions

It is possible to add application specific functionality directly into the idle task through the use

of an idle hook (or idle callback) function—a function that is called automatically by the idle

task once per iteration of the idle task loop.

1 This is the case even when the special low power features of FreeRTOS are being used, in which
case the microcontroller on which FreeRTOS is executing will be placed into a low power mode if none
of the tasks created by the application are able to execute.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 77

Common uses for the Idle task hook include:

 Executing low priority, background, or continuous processing functionality.

 Measuring the amount of spare processing capacity. (The idle task will run only when

all higher priority application tasks have no work to perform; so measuring the amount

of processing time allocated to the idle task provides a clear indication of how much

processing time is spare.)

 Placing the processor into a low power mode, providing an easy and automatic method

of saving power whenever there is no application processing to be performed (although

the power saving that can be achieved using this method is less than can be achieved

by using the tick-less idle mode described in Chapter 10, Low Power Support).

Limitations on the Implementation of Idle Task Hook Functions

Idle task hook functions must adhere to the following rules.

1. An Idle task hook function must never attempt to block or suspend.

Note: Blocking the idle task in any way could cause a scenario where no tasks are

available to enter the Running state.

2. If the application makes use of the vTaskDelete() API function, then the Idle task hook

must always return to its caller within a reasonable time period. This is because the

Idle task is responsible for cleaning up kernel resources after a task has been deleted.

If the idle task remains permanently in the Idle hook function, then this clean-up cannot

occur.

Idle task hook functions must have the name and prototype shown by Listing 28.

void vApplicationIdleHook(void);

Listing 28. The idle task hook function name and prototype

Example 7. Defining an idle task hook function

The use of blocking vTaskDelay() API calls in Example 4 created a lot of idle time—time when

the Idle task is executing because both application tasks are in the Blocked state. Example 7

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

78

makes use of this idle time through the addition of an Idle hook function, the source for which

is shown in Listing 29.

/* Declare a variable that will be incremented by the hook function. */

volatile uint32_t ulIdleCycleCount = 0UL;

/* Idle hook functions MUST be called vApplicationIdleHook(), take no parameters,

and return void. */

void vApplicationIdleHook(void)

{

 /* This hook function does nothing but increment a counter. */

 ulIdleCycleCount++;

}

Listing 29. A very simple Idle hook function

configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h for the idle hook function to

get called.

The function that implements the created tasks is modified slightly to print out the

ulIdleCycleCount value, as shown in Listing 30.

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task AND the number of times ulIdleCycleCount

 has been incremented. */

 vPrintStringAndNumber(pcTaskName, ulIdleCycleCount);

 /* Delay for a period of 250 milliseconds. */

 vTaskDelay(xDelay250ms);

 }

}

Listing 30. The source code for the example task now prints out the
ulIdleCycleCount value

The output produced by Example 7 is shown in Figure 21. It shows the idle task hook function

is called approximately 4 million times between each iteration of the application tasks (the

number of iterations is dependent on the speed of the hardware on which the demo is

executed).

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 79

Figure 21. The output produced when Example 7 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

80

3.9 Changing the Priority of a Task

The vTaskPrioritySet() API Function

The vTaskPrioritySet() API function can be used to change the priority of any task after the

scheduler has been started. Note that the vTaskPrioritySet() API function is available only

when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h.

void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority);

Listing 31. The vTaskPrioritySet() API function prototype

Table 11. vTaskPrioritySet() parameters

Parameter Name Description

pxTask The handle of the task whose priority is being modified (the subject

task)—see the pxCreatedTask parameter of the xTaskCreate() API

function for information on obtaining handles to tasks.

A task can change its own priority by passing NULL in place of a valid

task handle.

uxNewPriority The priority to which the subject task is to be set. This is capped

automatically to the maximum available priority of

(configMAX_PRIORITIES – 1), where configMAX_PRIORITIES is a

compile time constant set in the FreeRTOSConfig.h header file.

The uxTaskPriorityGet() API Function

The uxTaskPriorityGet() API function can be used to query the priority of a task. Note that the

uxTaskPriorityGet() API function is available only when INCLUDE_uxTaskPriorityGet is set to

1 in FreeRTOSConfig.h.

UBaseType_t uxTaskPriorityGet(TaskHandle_t pxTask);

Listing 32. The uxTaskPriorityGet() API function prototype

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 81

Table 12. uxTaskPriorityGet() parameters and return value

Parameter Name/
Return Value

Description

pxTask The handle of the task whose priority is being queried (the subject

task)—see the pxCreatedTask parameter of the xTaskCreate() API

function for information on obtaining handles to tasks.

A task can query its own priority by passing NULL in place of a valid

task handle.

Returned value The priority currently assigned to the task being queried.

Example 8. Changing task priorities

The scheduler will always select the highest Ready state task as the task to enter the Running

state. Example 8 demonstrates this by using the vTaskPrioritySet() API function to change the

priority of two tasks relative to each other.

Example 8 creates two tasks at two different priorities. Neither task makes any API function

calls that could cause it to enter the Blocked state, so both are always in either the Ready

state or the Running state. Therefore, the task with the highest relative priority will always be

the task selected by the scheduler to be in the Running state.

Example 8 behaves as follows:

1. Task 1 (Listing 33) is created with the highest priority, so is guaranteed to run first.

Task 1 prints out a couple of strings before raising the priority of Task 2 (Listing 34) to

above its own priority.

2. Task 2 starts to run (enters the Running state) as soon as it has the highest relative

priority. Only one task can be in the Running state at any one time, so when Task 2 is

in the Running state, Task 1 is in the Ready state.

3. Task 2 prints out a message before setting its own priority back down to below that of

Task 1.

4. Task 2 setting its priority back down means Task 1 is once again the highest priority

task, so Task 1 re-enters the Running state, forcing Task 2 back into the Ready state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

82

void vTask1(void *pvParameters)

{

UBaseType_t uxPriority;

 /* This task will always run before Task 2 as it is created with the higher

 priority. Neither Task 1 nor Task 2 ever block so both will always be in

 either the Running or the Ready state.

 Query the priority at which this task is running - passing in NULL means

 "return the calling task’s priority". */
 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString("Task 1 is running\r\n");

 /* Setting the Task 2 priority above the Task 1 priority will cause

 Task 2 to immediately start running (as then Task 2 will have the higher

 priority of the two created tasks). Note the use of the handle to task

 2 (xTask2Handle) in the call to vTaskPrioritySet(). Listing 35 shows how

 the handle was obtained. */

 vPrintString("About to raise the Task 2 priority\r\n");

 vTaskPrioritySet(xTask2Handle, (uxPriority + 1));

 /* Task 1 will only run when it has a priority higher than Task 2.

 Therefore, for this task to reach this point, Task 2 must already have

 executed and set its priority back down to below the priority of this

 task. */

 }

}

Listing 33. The implementation of Task 1 in Example 8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 83

void vTask2(void *pvParameters)

{

UBaseType_t uxPriority;

 /* Task 1 will always run before this task as Task 1 is created with the

 higher priority. Neither Task 1 nor Task 2 ever block so will always be

 in either the Running or the Ready state.

 Query the priority at which this task is running - passing in NULL means

 "return the calling task’s priority". */
 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)

 {

 /* For this task to reach this point Task 1 must have already run and

 set the priority of this task higher than its own.

 Print out the name of this task. */

 vPrintString("Task 2 is running\r\n");

 /* Set the priority of this task back down to its original value.

 Passing in NULL as the task handle means "change the priority of the

 calling task". Setting the priority below that of Task 1 will cause

 Task 1 to immediately start running again – pre-empting this task. */
 vPrintString("About to lower the Task 2 priority\r\n");

 vTaskPrioritySet(NULL, (uxPriority - 2));

 }

}

Listing 34. The implementation of Task 2 in Example 8

Each task can both query and set its own priority without the use of a valid task handle, by

simply using NULL, instead. A task handle is required only when a task wishes to reference a

task other than itself, such as when Task 1 changes the priority of Task 2. To allow Task 1 to

do this, the Task 2 handle is obtained and saved when Task 2 is created, as highlighted in the

comments in Listing 35.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

84

/* Declare a variable that is used to hold the handle of Task 2. */

TaskHandle_t xTask2Handle = NULL;

int main(void)

{

 /* Create the first task at priority 2. The task parameter is not used

 and set to NULL. The task handle is also not used so is also set to NULL. */

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 2, NULL);

 /* The task is created at priority 2 ______^. */

 /* Create the second task at priority 1 - which is lower than the priority

 given to Task 1. Again the task parameter is not used so is set to NULL -

 BUT this time the task handle is required so the address of xTask2Handle

 is passed in the last parameter. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, &xTask2Handle);

 /* The task handle is the last parameter _____^^^^^^^^^^^^^ */

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely there

 was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 35. The implementation of main() for Example 8

Figure 22 demonstrates the sequence in which the Example 8 tasks execute, with the

resultant output shown in Figure 23.

Time

Task 1

Task 2

t1 t2

Idle

1 - Task1 runs

first as it has the

highest priority

2 - Task2 runs each

time Task1 sets the

Task2 priority to be

the highest

3 - Task1 runs again when

Task2 lowers its own priority

back to being below the

Task1 priority, and so on

The Idle task never runs

as both application tasks

are always able to run and

always have a priority

above the idle priority

Figure 22. The sequence of task execution when running Example 8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 85

Figure 23. The output produced when Example 8 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

86

3.10 Deleting a Task

The vTaskDelete() API Function

A task can use the vTaskDelete() API function to delete itself, or any other task. Note that the

vTaskDelete() API function is available only when INCLUDE_vTaskDelete is set to 1 in

FreeRTOSConfig.h.

Deleted tasks no longer exist and cannot enter the Running state again.

It is the responsibility of the idle task to free memory allocated to tasks that have since been

deleted. Therefore, it is important that applications using the vTaskDelete() API function do

not completely starve the idle task of all processing time.

Note: Only memory allocated to a task by the kernel itself will be freed automatically when the

task is deleted. Any memory or other resource that the implementation of the task allocated

must be freed explicitly.

void vTaskDelete(TaskHandle_t pxTaskToDelete);

Listing 36. The vTaskDelete() API function prototype

Table 13. vTaskDelete() parameters

Parameter Name/
Return Value

Description

pxTaskToDelete The handle of the task that is to be deleted (the subject task)—see the

pxCreatedTask parameter of the xTaskCreate() API function for

information on obtaining handles to tasks.

A task can delete itself by passing NULL in place of a valid task handle.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 87

Example 9. Deleting tasks

This is a very simple example that behaves as follows.

1. Task 1 is created by main() with priority 1. When it runs, it creates Task 2 at priority 2.

Task 2 is now the highest priority task, so it starts to execute immediately. The source

for main() is shown in Listing 37, and the source for Task 1 is shown in Listing 38.

2. Task 2 does nothing other than delete itself. It could delete itself by passing NULL to

vTaskDelete() but instead, for demonstration purposes, it uses its own task handle.

The source for Task 2 is shown in Listing 39.

3. When Task 2 has been deleted, Task 1 is again the highest priority task, so continues

executing—at which point it calls vTaskDelay() to block for a short period.

4. The Idle task executes while Task 1 is in the blocked state and frees the memory that

was allocated to the now deleted Task 2.

5. When Task 1 leaves the blocked state it again becomes the highest priority Ready

state task and so pre-empts the Idle task. When it enters the Running state it creates

Task 2 again, and so it goes on.

int main(void)

{

 /* Create the first task at priority 1. The task parameter is not used

 so is set to NULL. The task handle is also not used so likewise is set

 to NULL. */

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL);

 /* The task is created at priority 1 ______^. */

 /* Start the scheduler so the task starts executing. */

 vTaskStartScheduler();

 /* main() should never reach here as the scheduler has been started. */

 for(;;);

}

Listing 37. The implementation of main() for Example 9

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

88

TaskHandle_t xTask2Handle = NULL;

void vTask1(void *pvParameters)

{

const TickType_t xDelay100ms = pdMS_TO_TICKS(100UL);

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString("Task 1 is running\r\n");

 /* Create task 2 at a higher priority. Again the task parameter is not

 used so is set to NULL - BUT this time the task handle is required so

 the address of xTask2Handle is passed as the last parameter. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 2, &xTask2Handle);

 /* The task handle is the last parameter _____^^^^^^^^^^^^^ */

 /* Task 2 has/had the higher priority, so for Task 1 to reach here Task 2

 must have already executed and deleted itself. Delay for 100

 milliseconds. */

 vTaskDelay(xDelay100ms);

 }

}

Listing 38. The implementation of Task 1 for Example 9

void vTask2(void *pvParameters)

{

 /* Task 2 does nothing but delete itself. To do this it could call vTaskDelete()

 using NULL as the parameter, but instead, and purely for demonstration purposes,

 it calls vTaskDelete() passing its own task handle. */

 vPrintString("Task 2 is running and about to delete itself\r\n");

 vTaskDelete(xTask2Handle);

}

Listing 39. The implementation of Task 2 for Example 9

Figure 24. The output produced when Example 9 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 89

Time

Task 2

Task 1

t1 t2

Idle

1 - Task 1 runs and creates Task 2.

Task 2 starts to run immediately as it

has the higher priority.

2 - Task 2 does nothing other than delete

itself, allowing execution to return to Task 1.

tn

3 - Task 1 calls vTaskDelay(), allowing

the idle task to run until the delay time

expires, and the whole sequence repeats.

Figure 25. The execution sequence for example 9

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

90

3.11 Thread Local Storage

TBD. This section will be written prior to final publication.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 91

3.12 Scheduling Algorithms

A Recap of Task States and Events

The task that is actually running (using processing time) is in the Running state. On a single

core processor there can only be one task in the Running state at any given time.

Tasks that are not actually running, but are not in either the Blocked state or the Suspended

state, are in the Ready state. Tasks that are in the Ready state are available to be selected by

the scheduler as the task to enter the Running state. The scheduler will always choose the

highest priority Ready state task to enter the Running state.

Tasks can wait in the Blocked state for an event and are automatically moved back to the

Ready state when the event occurs. Temporal events occur at a particular time, for example,

when a block time expires, and are normally used to implement periodic or timeout behavior.

Synchronization events occur when a task or interrupt service routine sends information using

a task notification, queue, event group, or one of the many types of semaphore. They are

generally used to signal asynchronous activity, such as data arriving at a peripheral.

Configuring the Scheduling Algorithm

The scheduling algorithm is the software routine that decides which Ready state task to

transition into the Running state.

All the examples so far have used the same scheduling algorithm, but the algorithm can be

changed using the configUSE_PREEMPTION and configUSE_TIME_SLICING configuration

constants. Both constants are defined in FreeRTOSConfig.h.

A third configuration constant, configUSE_TICKLESS_IDLE, also affects the scheduling

algorithm, as its use can result in the tick interrupt being turned off completely for extended

periods. configUSE_TICKLESS_IDLE is an advanced option provided specifically for use in

applications that must minimize their power consumption. configUSE_TICKLESS_IDLE is

described in Chapter 10, Low Power Support. The descriptions provided in this section

assume configUSE_TICKLESS_IDLE is set to 0, which is the default setting if the constant is

left undefined.

In all possible configurations the FreeRTOS scheduler will ensure tasks that share a priority

are selected to enter the Running state in turn. This ‘take it in turn’ policy is often referred to

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

92

as ‘Round Robin Scheduling’. A Round Robin scheduling algorithm does not guarantee time

is shared equally between tasks of equal priority, only that Ready state tasks of equal priority

will enter the Running state in turn.

Prioritized Pre-emptive Scheduling with Time Slicing

The configuration shown in Table 14 sets the FreeRTOS scheduler to use a scheduling

algorithm called ‘Fixed Priority Pre-emptive Scheduling with Time Slicing’, which is the

scheduling algorithm used by most small RTOS applications, and the algorithm used by all the

examples presented in this book so far. A description of the terminology used in the

algorithm’s name is provided in Table 15.

Table 14. The FreeRTOSConfig.h settings that configure the kernel to use
Prioritized Pre-emptive Scheduling with Time Slicing

Constant Value

configUSE_PREEMPTION 1

configUSE_TIME_SLICING 1

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 93

Table 15. An explanation of the terms used to describe the scheduling policy

Term Definition

Fixed Priority Scheduling algorithms described as ‘Fixed Priority’ do not change the priority

assigned to the tasks being scheduled, but also do not prevent the tasks

themselves from changing their own priority, or that of other tasks.

Pre-emptive Pre-emptive scheduling algorithms will immediately ‘pre-empt’ the Running

state task if a task that has a priority higher than the Running state task

enters the Ready state. Being pre-empted means being involuntarily (without

explicitly yielding or blocking) moved out of the Running state and into the

Ready state to allow a different task to enter the Running state.

Time Slicing Time slicing is used to share processing time between tasks of equal priority,

even when the tasks do not explicitly yield or enter the Blocked state.

Scheduling algorithms described as using ‘Time Slicing’ will select a new task

to enter the Running state at the end of each time slice if there are other

Ready state tasks that have the same priority as the Running task. A time

slice is equal to the time between two RTOS tick interrupts.

Figure 26 and Figure 27 demonstrate how tasks are scheduled when a fixed priority

preemptive scheduling with time slicing algorithm is used. Figure 26 shows the sequence in

which tasks are selected to enter the Running state when all the tasks in an application have a

unique priority. Figure 27 shows the sequence in which tasks are selected to enter the

Running state when two tasks in an application share a priority.

Task2 (med, periodic)

Task3 (low, event)

Task1 (high, event)

Idle task (continuous)

t1 t3t2 t4 t5t6 t7 t8
t10

t11
t12

t13t9

Task 3 pre-empts the idle task.

Task 2 pre-empts Task 3

Task 2 pre-empts

the Idle task

Task 1 pre-empts Task 2

Event processing is

delayed until higher

priority tasks block

Figure 26. Execution pattern highlighting task prioritization and pre-emption in a
hypothetical application in which each task has been assigned a unique

priority

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

94

Referring to Figure 26:

1. Idle Task

The idle task is running at the lowest priority, so gets pre-empted every time a higher

priority task enters the Ready state—for example, at times t3, t5 and t9.

2. Task 3

Task 3 is an event-driven task that executes with a relatively low priority, but above the

Idle priority. It spends most of its time in the Blocked state waiting for its event of

interest, transitioning from the Blocked state to the Ready state each time the event

occurs. All FreeRTOS inter-task communication mechanisms (task notifications,

queues, semaphores, event groups, etc.) can be used to signal events and unblock

tasks in this way.

Events occur at times t3 and t5, and also somewhere between t9 and t12. The events

occurring at times t3 and t5 are processed immediately as, at these times, Task 3 is the

highest priority task that is able to run. The event that occurs somewhere between

times t9 and t12 is not processed until t12 because, until then, the higher priority tasks

Task 1 and Task 2 are still executing. It is only at time t12 that both Task 1 and Task 2

are in the Blocked state, making Task 3 the highest priority Ready state task.

3. Task 2

Task 2 is a periodic task that executes at a priority above the priority of Task 3, but

below the priority of Task 1. The task’s period interval means Task 2 wants to execute

at times t1, t6, and t9.

At time t6, Task 3 is in the Running state, but Task 2 has the higher relative priority so

pre-empts Task 3 and starts executing immediately. Task 2 completes its processing

and re-enters the Blocked state at time t7, at which point Task 3 can re-enter the

Running state to complete its processing. Task 3 itself Blocks at time t8.

4. Task 1

Task 1 is also an event-driven task. It executes with the highest priority of all, so can

pre-empt any other task in the system. The only Task 1 event shown occurs at time

t10, at which time Task 1 pre-empts Task 2. Task 2 can complete its processing only

after Task 1 has re-entered the Blocked state at time t11.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 95

Task2 (Idle priority, continuous)

Task1 (high, event)

Idle task (continuous)

t1 t2 t3 t4 t5 t8 t9 t10 t11
t6 t7

Task 1 leaves the Blocked state and pre-empts the Idle Task

Task 1 re-enters the Blocked state

Figure 27 Execution pattern highlighting task prioritization and time slicing in a
hypothetical application in which two tasks run at the same priority

Referring to Figure 27:

1. The Idle Task and Task 2

The Idle task and Task 2 are both continuous processing tasks, and both have a priority

of 0 (the lowest possible priority). The scheduler only allocates processing time to the

priority 0 tasks when there are no higher priority tasks that are able to run, and shares

the time that is allocated to the priority 0 tasks by time slicing. A new time slice starts

on each tick interrupt, which in Figure 27 is at times t1, t2, t3, t4, t5, t8, t9, t10 and t11.

The Idle task and Task 2 enter the Running state in turn, which can results in both

tasks being in the Running state for part of the same time slice, as happens between

time t5 and time t8.

2. Task 1

The priority of Task 1 is higher than the Idle priority. Task 1 is an event driven task that

spends most of its time in the Blocked state waiting for its event of interest, transitioning

from the Blocked state to the Ready state each time the event occurs.

The event of interest occurs at time t6, so at t6 Task 1 becomes the highest priority task

that is able to run, and therefore Task 1 pre-empts the Idle task part way through a time

slice. Processing of the event completes at time t7, at which point Task 1 re-enters the

Blocked state.

Figure 27 shows the Idle task sharing processing time with a task created by the application

writer. Allocating that much processing time to the Idle task might not be desirable if the Idle

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

96

priority tasks created by the application writer have work to do, but the Idle task does not. The

configIDLE_SHOULD_YIELD compile time configuration constant can be used to change how

the Idle task is scheduled:

 If configIDLE_SHOULD_YIELD is set to 0 then the Idle task will remain in the Running

state for the entirety of its time slice, unless it is preempted by a higher priority task.

 If configIDLE_SHOULD_YIELD is set to 1 then the Idle task will yield (voluntarily give

up whatever remains of its allocated time slice) on each iteration of its loop if there are

other Idle priority tasks in the Ready state.

The execution pattern shown in Figure 27 is what would be observed when

configIDLE_SHOULD_YIELD is set to 0. The execution pattern shown in Figure 28 is what

would be observed in the same scenario when configIDLE_SHOULD_YIELD is set to 1.

Task2 (Idle priority, continuous)

Task1 (high, event)

Idle task (continuous)

t1 t2 t3 t4 t5 t8 t9 t10 t11
t6 t7

Task 1 leaves the Blocked

state and pre-empts Task 2

Task 1 re-enters the Blocked state,

allowing Task 2 to continue running

The Idle task runs for one iteration of its

implementing loop, then yields to allow the

scheduler to select another task

Task 2 runs for the remainder

of the time slice

Figure 28 The execution pattern for the same scenario as shown in Figure 27, but
this time with configIDLE_SHOULD_YIELD set to 1

Figure 28 also shows that, when configIDLE_SHOULD_YIELD is set to 1, the task selected to

enter the Running state after the Idle task does not execute for an entire time slice, but instead

executes for whatever remains of the time slice during which the Idle task yielded.

Prioritized Pre-emptive Scheduling (without Time Slicing)

Prioritized Preemptive Scheduling without time slicing maintains the same task selection and

pre-emption algorithms as described in the previous section, but does not use time slicing to

share processing time between tasks of equal priority.

The FreeRTOSConfig.h settings that configure the FreeRTOS scheduler to use prioritized

preemptive scheduling without time slicing are shown in Table 16.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 97

Table 16. The FreeRTOSConfig.h settings that configure the kernel to use
Prioritized Pre-emptive Scheduling without Time Slicing

Constant Value

configUSE_PREEMPTION 1

configUSE_TIME_SLICING 0

As was demonstrated in Figure 27, if time slicing is used, and there is more than one ready

state task at the highest priority that is able to run, then the scheduler will select a new task to

enter the Running state during each RTOS tick interrupt (a tick interrupt marking the end of a

time slice). If time slicing is not used, then the scheduler will only select a new task to enter

the Running state when either:

 A higher priority task enters the Ready state.

 The task in the Running state enters the Blocked or Suspended state.

There are fewer task context switches when time slicing is not used than when time slicing is

used. Therefore, turning time slicing off results in a reduction in the scheduler’s processing

overhead. However, turning time slicing off can also result in tasks of equal priority receiving

greatly different amounts of processing time, a scenario demonstrated by Figure 29. For this

reason, running the scheduler without time slicing is considered an advanced technique that

should only be used by experienced users.

Task2 (Idle priority, continuous)

Task1 (high, event)

Idle task (continuous)

t1 t2 t3 t4 t5 t8 t11 t12 t13
t6 t7

Task 1 leaves the Blocked state

and pre-empts the Idle task

Task 1 re-enters the

Blocked state

t9 t10

Task 1 leaves the Blocked

state and pre-empts Task 2

Task 1 re-enters the

Blocked state

Figure 29 Execution pattern that demonstrates how tasks of equal priority can
receive hugely different amounts of processing time when time slicing is not

used

Referring to Figure 29, which assumes configIDLE_SHOULD_YIELD is set to 0:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

98

1. Tick Interrupts

Tick interrupts occur at times t1, t2, t3, t4, t5, t8, t11, t12 and t13.

2. Task 1

Task 1 is a high priority event driven task that spends most of its time in the Blocked

state waiting for its event of interest. Task 1 transitions from the Blocked state to the

Ready state (and subsequently, as it is the highest priority Ready state task, on into the

Running state) each time the event occurs. Figure 29 shows Task 1 processing an

event between times t6 and t7, then again between times t9 and t10.

3. The Idle Task and Task 2

The Idle task and Task 2 are both continuous processing tasks, and both have a priority

of 0 (the idle priority). Continuous processing tasks do not enter the Blocked state.

Time slicing is not being used, so an idle priority task that is in the Running state will

remain in the Running state until it is pre-empted by the higher priority Task 1.

In Figure 29 the Idle task starts running at time t1, and remains in the Running state

until it is pre-empted by Task 1 at time t6—which is more than four complete tick

periods after it entered the Running state.

Task 2 starts running at time t7, which is when Task 1 re-enters the Blocked state to

wait for another event. Task 2 remains in the Running state until it too is pre-empted by

Task 1 at time t9—which is less than one tick period after it entered the Running state.

At time t10 the Idle task re-enters the Running state, despite having already received

more than four times more processing time than the Task 2.

Co-operative Scheduling

This book focuses on pre-emptive scheduling, but FreeRTOS can also use co-operative

scheduling. The FreeRTOSConfig.h settings that configure the FreeRTOS scheduler to use

co-operative scheduling are shown in Table 17.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 99

Table 17. The FreeRTOSConfig.h settings that configure the kernel to use co-
operative scheduling

Constant Value

configUSE_PREEMPTION 0

configUSE_TIME_SLICING Any value

When the co-operative scheduler is used, a context switch will only occur when the Running

state task enters the Blocked state, or the Running state task explicitly yields (manually

requests a re-schedule) by calling taskYIELD(). Tasks are never pre-empted, so time slicing

cannot be used.

Figure 30 demonstrates the behavior of the co-operative scheduler. The horizontal dashed

lines in Figure 30 show when a task is in the Ready state.

Task2 (medium priority)

Task1 (high priority)

Task3 (low priority)

t1 t2 t3 t4 t5 t6

Task 2 unblocks when

Task 3 writes to a queue

Task 1 unblocks when an

interrupt writes to a semaphore

Task 3 calls taskYIELD(), allowing

Task 1 to enter the Running state

Task 1 enters the Blocked state, allowing

Task 2 to enter the Running state

Figure 30 Execution pattern demonstrating the behavior of the co-operative
scheduler

Referring to Figure 30:

1. Task 1

Task 1 has the highest priority. It starts in the Blocked state, waiting for a semaphore.

At time t3 an interrupt gives the semaphore, causing Task 1 to leave the Blocked state

and enter the Ready state (giving semaphores from interrupts is covered in Chapter 6).

At time t3 Task 1 is the highest priority Ready state task, and if the pre-emptive

scheduler had been used Task 1 would become the Running state task. However, as

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

100

the co-operative scheduler is being used, Task 1 remains in the Ready state until time

t4—which is when the Running state task calls taskYIELD().

2. Task 2

The priority of Task 2 is between that of Task 1 and Task 3. It starts in the Blocked

state, waiting for a message that is sent to it by Task 3 at time t2.

At time t2 Task 2 is the highest priority Ready state task, and if the pre-emptive

scheduler had been used Task 2 would become the Running state task. However, as

the co-operative scheduler is being used, Task 2 remains in the Ready state until the

Running state task either enters the Blocked state of calls taskYIELD().

The running state task calls taskYIELD() at time t4, but by then Task 1 is the highest

priority Ready state task, so Task 2 does not actually become the Running state task

until Task 1 re-enters the Blocked state at time t5.

At time t6 Task 2 re-enters the Blocked state to wait for the next message, at which

point Task 3 is once again the highest priority Ready state task.

In a multi-tasking application the application writer must take care that a resource is not

accessed by more than one task simultaneously, as simultaneous access could corrupt the

resource. As an example, consider the following scenario in which the resource being

accessed is a UART (serial port). Two tasks are writing strings to the UART; Task 1 is writing

“abcdefghijklmnop”, and Task 2 is writing “123456789”:

1. Task 1 is in the Running state and starts to write its string. It writes “abcdefg” to the

UART, but leaves the Running state before writing any further characters.

2. Task 2 enters the Running state and writes “123456789” to the UART, before leaving

the Running state.

3. Task 1 re-enters the Running state and writes the remaining characters of its string to

the UART.

In that scenario what is actually written to the UART is “abcdefg123456789hijklmnop”. The

string written by Task 1 has not been written to the UART in an unbroken sequence as

intended, but instead it has been corrupted, because the string written to the UART by Task 2

appears within it.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 101

It is normally easier to avoid problems caused by simultaneous access when the co-operative

scheduler is used than when the pre-emptive scheduler is used1:

 When the pre-emptive scheduler is used the Running state task can be pre-empted at

any time, including when a resource it is sharing with another task is in an inconsistent

state. As just demonstrated by the UART example, leaving a resource in an

inconsistent state can result in data corruption.

 When the co-operative scheduler is used the application writer controls when a switch

to another task can occur. The application writer can therefore ensure a switch to

another task does not occur while a resource is in an inconsistent state.

 In the above UART example, the application writer can ensure Task 1 does not leave

the Running state until its entire string has been written to the UART, and in doing so,

removing the possibility of the string being corrupted by the activates of another task.

As demonstrated in Figure 30, systems will be less responsive when the co-operative

scheduler is used than when the pre-emptive scheduler is used:

 When the pre-emptive scheduler is used the scheduler will start running a task

immediately that the task becomes the highest priority Ready state task. This is often

essential in real-time systems that must respond to high priority events within a defined

time period.

 When the co-operative scheduler is used a switch to a task that has become the

highest priority Ready state task is not performed until the Running state task enters

the Blocked state or calls taskYIELD().

1 Methods of safely sharing resources between tasks are covered later in this book. Resources
provided by FreeRTOS itself, such as queues and semaphores, are always safe to share between
tasks.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

102

Chapter 4

Queue Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 103

4.1 Chapter Introduction and Scope

‘Queues’ provide a task-to-task, task-to-interrupt, and interrupt-to-task communication

mechanism.

Scope

This chapter aims to give readers a good understanding of:

 How to create a queue.

 How a queue manages the data it contains.

 How to send data to a queue.

 How to receive data from a queue.

 What it means to block on a queue.

 How to block on multiple queues.

 How to overwrite data in a queue.

 How to clear a queue.

 The effect of task priorities when writing to and reading from a queue.

Only task-to-task communication is covered in this chapter. Task-to-interrupt and interrupt-to-

task communication is covered in Chapter 6.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

104

4.2 Characteristics of a Queue

Data Storage

A queue can hold a finite number of fixed size data items. The maximum number of items a

queue can hold is called its ‘length’. Both the length and the size of each data item are set

when the queue is created.

Queues are normally used as First In First Out (FIFO) buffers, where data is written to the end

(tail) of the queue and removed from the front (head) of the queue. Figure 31 demonstrates

data being written to and read from a queue that is being used as a FIFO. It is also possible to

write to the front of a queue, and to overwrite data that is already at the front of a queue.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 105

Queue
Task A

int x;

Task B

int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of 5

integers. When the queue is created it does not contain any values so is empty.

Queue

10

Task A

int x;

x = 10;

Task B

int y;

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously

empty the value written is now the only item in the queue, and is therefore both the value at the back of the

queue and the value at the front of the queue.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

Task A changes the value of its local variable before writing it to the queue again. The queue now

contains copies of both values written to the queue. The first value written remains at the front of the

queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.

Queue

20 10

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the

value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

Send

Send

Receive

Queue

20

Task A

int x;

x = 20;

Task B

int y;

// y now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.

This is the value Task B would receive next if it read from the queue again. The queue now has four

empty spaces remaining.

Figure 31. An example sequence of writes to, and reads from a queue

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

106

There are two ways in which queue behavior could have been implemented:

1. Queue by copy

Queuing by copy means the data sent to the queue is copied byte for byte into the

queue.

2. Queue by reference

Queuing by reference means the queue only holds pointers to the data sent to the

queue, not the data itself.

FreeRTOS uses the queue by copy method. Queuing by copy is considered to be

simultaneously more powerful and simpler to use than queueing by reference because:

 Stack variable can be sent directly to a queue, even though the variable will not exist

after the function in which it is declared has exited.

 Data can be sent to a queue without first allocating a buffer to hold the data, and then

copying the data into the allocated buffer.

 The sending task can immediately re-use the variable or buffer that was sent to the

queue.

 The sending task and the receiving task are completely de-coupled—the application

designer does not need to concern themselves with which task ‘owns’ the data, or

which task is responsible for releasing the data.

 Queuing by copy does not prevent the queue from also being used to queue by

reference. For example, when the size of the data being queued makes it impractical

to copy the data into the queue, then a pointer to the data can be copied into the queue

instead.

 The RTOS takes complete responsibility for allocating the memory used to store data.

 In a memory protected system, the RAM that a task can access will be restricted. In

that case queueing by reference could only be used if the sending and receiving task

could both access the RAM in which the data was stored. Queuing by copy does not

impose that restriction; the kernel always runs with full privileges, allowing a queue to

be used to pass data across memory protection boundaries.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 107

Access by Multiple Tasks

Queues are objects in their own right that can be accessed by any task or ISR that knows of

their existence. Any number of tasks can write to the same queue, and any number of tasks

can read from the same queue. In practice it is very common for a queue to have multiple

writers, but much less common for a queue to have multiple readers.

Blocking on Queue Reads

When a task attempts to read from a queue, it can optionally specify a ‘block’ time. This is the

time the task will be kept in the Blocked state to wait for data to be available from the queue,

should the queue already be empty. A task that is in the Blocked state, waiting for data to

become available from a queue, is automatically moved to the Ready state when another task

or interrupt places data into the queue. The task will also be moved automatically from the

Blocked state to the Ready state if the specified block time expires before data becomes

available.

Queues can have multiple readers, so it is possible for a single queue to have more than one

task blocked on it waiting for data. When this is the case, only one task will be unblocked

when data becomes available. The task that is unblocked will always be the highest priority

task that is waiting for data. If the blocked tasks have equal priority, then the task that has

been waiting for data the longest will be unblocked.

Blocking on Queue Writes

Just as when reading from a queue, a task can optionally specify a block time when writing to

a queue. In this case, the block time is the maximum time the task should be held in the

Blocked state to wait for space to become available on the queue, should the queue already

be full.

Queues can have multiple writers, so it is possible for a full queue to have more than one task

blocked on it waiting to complete a send operation. When this is the case, only one task will

be unblocked when space on the queue becomes available. The task that is unblocked will

always be the highest priority task that is waiting for space. If the blocked tasks have equal

priority, then the task that has been waiting for space the longest will be unblocked.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

108

Blocking on Multiple Queues

Queues can be grouped into sets, allowing a task to enter the Blocked state to wait for data to

become available on any of the queues in the set. Queue sets are demonstrated in section

4.6, Receiving From Multiple Queues.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 109

4.3 Using a Queue

The xQueueCreate() API Function

A queue must be explicitly created before it can be used.

Queues are referenced by handles, which are variables of type QueueHandle_t. The

xQueueCreate() API function creates a queue and returns a QueueHandle_t that references

the queue it created.

FreeRTOS V9.0.0 also includes the xQueueCreateStatic() function, which allocates the memory required to create

a queue statically at compile time: FreeRTOS allocates RAM from the FreeRTOS heap when a

queue is created. The RAM is used to hold both the queue data structures and the items that

are contained in the queue. xQueueCreate() will return NULL if there is insufficient heap RAM

available for the queue to be created. Chapter 2 provides more information on the FreeRTOS

heap.

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength, UBaseType_t uxItemSize);

Listing 40. The xQueueCreate() API function prototype

Table 18. xQueueCreate() parameters and return value

Parameter Name Description

uxQueueLength The maximum number of items that the queue being created can hold

at any one time.

uxItemSize The size in bytes of each data item that can be stored in the queue.

Return Value If NULL is returned, then the queue cannot be created because there

is insufficient heap memory available for FreeRTOS to allocate the

queue data structures and storage area.

A non-NULL value being returned indicates that the queue has been

created successfully. The returned value should be stored as the

handle to the created queue.

After a queue has been created the xQueueReset() API function can be used to return the

queue to its original empty state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

110

The xQueueSendToBack() and xQueueSendToFront() API Functions

As might be expected, xQueueSendToBack() is used to send data to the back (tail) of a

queue, and xQueueSendToFront() is used to send data to the front (head) of a queue.

xQueueSend() is equivalent to, and exactly the same as, xQueueSendToBack().

Note: Never call xQueueSendToFront() or xQueueSendToBack() from an interrupt service

routine. The interrupt-safe versions xQueueSendToFrontFromISR() and

xQueueSendToBackFromISR() should be used in their place. These are described in Chapter

6.

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,

 const void * pvItemToQueue,

 TickType_t xTicksToWait);

Listing 41. The xQueueSendToFront() API function prototype

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,

 const void * pvItemToQueue,

 TickType_t xTicksToWait);

Listing 42. The xQueueSendToBack() API function prototype

Table 19. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value

Description

xQueue The handle of the queue to which the data is being sent (written). The

queue handle will have been returned from the call to xQueueCreate()

used to create the queue.

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item that the queue can hold is set when the queue is

created, so this many bytes will be copied from pvItemToQueue into

the queue storage area.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 111

Table 19. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value

Description

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the queue, should the

queue already be full.

Both xQueueSendToFront() and xQueueSendToBack() will return

immediately if xTicksToWait is zero and the queue is already full.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is

set to 1 in FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

112

Table 19. xQueueSendToFront() and xQueueSendToBack() function parameters
and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully sent to the

queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible the calling task was placed into the Blocked state, to wait

for space to become available in the queue, before the function

returned, but data was successfully written to the queue before the

block time expired.

2. errQUEUE_FULL

errQUEUE_FULL will be returned if data could not be written to the

queue because the queue was already full.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

another task or interrupt to make space in the queue, but the

specified block time expired before that happened.

The xQueueReceive() API Function

xQueueReceive() is used to receive (read) an item from a queue. The item that is received is

removed from the queue.

Note: Never call xQueueReceive() from an interrupt service routine. The interrupt-safe

xQueueReceiveFromISR() API function is described in Chapter 6.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 113

BaseType_t xQueueReceive(QueueHandle_t xQueue,

 void * const pvBuffer,

 TickType_t xTicksToWait);

Listing 43. The xQueueReceive() API function prototype

Table 20. xQueueReceive() function parameters and return values

Parameter Name/
Returned value

Description

xQueue The handle of the queue from which the data is being received (read).

The queue handle will have been returned from the call to

xQueueCreate() used to create the queue.

pvBuffer A pointer to the memory into which the received data will be copied.

The size of each data item that the queue holds is set when the queue

is created. The memory pointed to by pvBuffer must be at least large

enough to hold that many bytes.

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWait is zero, then xQueueReceive() will return immediately if

the queue is already empty.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set

to 1 in FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

114

Table 20. xQueueReceive() function parameters and return values

Parameter Name/
Returned value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully read from the

queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible the calling task was placed into the Blocked state, to wait for

data to become available on the queue, but data was successfully

read from the queue before the block time expired.

2. errQUEUE_EMPTY

errQUEUE_EMPTY will be returned if data cannot be read from the

queue because the queue is already empty.

If a block time was specified (xTicksToWait was not zero,) then the

calling task will have been placed into the Blocked state to wait for

another task or interrupt to send data to the queue, but the block time

expired before that happened.

The uxQueueMessagesWaiting() API Function

uxQueueMessagesWaiting() is used to query the number of items that are currently in a

queue.

Note: Never call uxQueueMessagesWaiting() from an interrupt service routine. The interrupt-

safe uxQueueMessagesWaitingFromISR() should be used in its place.

UBaseType_t uxQueueMessagesWaiting(QueueHandle_t xQueue);

Listing 44. The uxQueueMessagesWaiting() API function prototype

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 115

Table 21. uxQueueMessagesWaiting() function parameters and return value

Parameter Name/
Returned Value

Description

xQueue The handle of the queue being queried. The queue handle will have

been returned from the call to xQueueCreate() used to create the

queue.

Returned value The number of items that the queue being queried is currently holding.

If zero is returned, then the queue is empty.

Example 10. Blocking when receiving from a queue

This example demonstrates a queue being created, data being sent to the queue from multiple

tasks, and data being received from the queue. The queue is created to hold data items of

type int32_t. The tasks that send to the queue do not specify a block time, whereas the task

that receives from the queue does.

The priority of the tasks that send to the queue are lower than the priority of the task that

receives from the queue. This means the queue should never contain more than one item

because, as soon as data is sent to the queue the receiving task will unblock, pre-empt the

sending task, and remove the data—leaving the queue empty once again.

Listing 45 shows the implementation of the task that writes to the queue. Two instances of this

task are created, one that writes continuously the value 100 to the queue, and another that

writes continuously the value 200 to the same queue. The task parameter is used to pass

these values into each task instance.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

116

static void vSenderTask(void *pvParameters)

{

int32_t lValueToSend;

BaseType_t xStatus;

 /* Two instances of this task are created so the value that is sent to the

 queue is passed in via the task parameter - this way each instance can use

 a different value. The queue was created to hold values of type int32_t,

 so cast the parameter to the required type. */

 lValueToSend = (int32_t) pvParameters;

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Send the value to the queue.

 The first parameter is the queue to which data is being sent. The

 queue was created before the scheduler was started, so before this task

 started to execute.

 The second parameter is the address of the data to be sent, in this case

 the address of lValueToSend.

 The third parameter is the Block time – the time the task should be kept
 in the Blocked state to wait for space to become available on the queue

 should the queue already be full. In this case a block time is not

 specified because the queue should never contain more than one item, and

 therefore never be full. */

 xStatus = xQueueSendToBack(xQueue, &lValueToSend, 0);

 if(xStatus != pdPASS)

 {

 /* The send operation could not complete because the queue was full -

 this must be an error as the queue should never contain more than

 one item! */

 vPrintString("Could not send to the queue.\r\n");

 }

 }

}

Listing 45. Implementation of the sending task used in Example 10.

Listing 46 shows the implementation of the task that receives data from the queue. The

receiving task specifies a block time of 100 milliseconds, so will enter the Blocked state to wait

for data to become available. It will leave the Blocked state when either data is available on

the queue, or 100 milliseconds passes without data becoming available. In this example, the

100 milliseconds timeout should never expire, as there are two tasks continuously writing to

the queue.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 117

static void vReceiverTask(void *pvParameters)

{

/* Declare the variable that will hold the values received from the queue. */

int32_t lReceivedValue;

BaseType_t xStatus;

const TickType_t xTicksToWait = pdMS_TO_TICKS(100);

 /* This task is also defined within an infinite loop. */

 for(;;)

 {

 /* This call should always find the queue empty because this task will

 immediately remove any data that is written to the queue. */

 if(uxQueueMessagesWaiting(xQueue) != 0)

 {

 vPrintString("Queue should have been empty!\r\n");

 }

 /* Receive data from the queue.

 The first parameter is the queue from which data is to be received. The

 queue is created before the scheduler is started, and therefore before this

 task runs for the first time.

 The second parameter is the buffer into which the received data will be

 placed. In this case the buffer is simply the address of a variable that

 has the required size to hold the received data.

 The last parameter is the block time – the maximum amount of time that the
 task will remain in the Blocked state to wait for data to be available

 should the queue already be empty. */

 xStatus = xQueueReceive(xQueue, &lReceivedValue, xTicksToWait);

 if(xStatus == pdPASS)

 {

 /* Data was successfully received from the queue, print out the received

 value. */

 vPrintStringAndNumber("Received = ", lReceivedValue);

 }

 else

 {

 /* Data was not received from the queue even after waiting for 100ms.

 This must be an error as the sending tasks are free running and will be

 continuously writing to the queue. */

 vPrintString("Could not receive from the queue.\r\n");

 }

 }

}

Listing 46. Implementation of the receiver task for Example 10

Listing 47 contains the definition of the main() function. This simply creates the queue and the

three tasks before starting the scheduler. The queue is created to hold a maximum of five

int32_t values, even though the priorities of the tasks are set such that the queue will never

contain more than one item at a time.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

118

/* Declare a variable of type QueueHandle_t. This is used to store the handle

to the queue that is accessed by all three tasks. */

QueueHandle_t xQueue;

int main(void)

{

 /* The queue is created to hold a maximum of 5 values, each of which is

 large enough to hold a variable of type int32_t. */

 xQueue = xQueueCreate(5, sizeof(int32_t));

 if(xQueue != NULL)

 {

 /* Create two instances of the task that will send to the queue. The task

 parameter is used to pass the value that the task will write to the queue,

 so one task will continuously write 100 to the queue while the other task

 will continuously write 200 to the queue. Both tasks are created at

 priority 1. */

 xTaskCreate(vSenderTask, "Sender1", 1000, (void *) 100, 1, NULL);

 xTaskCreate(vSenderTask, "Sender2", 1000, (void *) 200, 1, NULL);

 /* Create the task that will read from the queue. The task is created with

 priority 2, so above the priority of the sender tasks. */

 xTaskCreate(vReceiverTask, "Receiver", 1000, NULL, 2, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 }

 else

 {

 /* The queue could not be created. */

 }

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely that

 there was insufficient FreeRTOS heap memory available for the idle task to be

 created. Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 47. The implementation of main() in Example 10

Both tasks that send to the queue have an identical priority. This causes the two sending

tasks to send data to the queue in turn. The output produced by Example 10 is shown in

Figure 32.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 119

Figure 32. The output produced when Example 10 is executed

Figure 33 demonstrate the sequence of execution.

Time

Receiver

Sender 2

t1

Sender 1

1 - The Receiver task runs first because it has the

highest priority. It attempts to read from the queue. The

queue is empty so the Receiver enters the Blocked state

to wait for data to become available. Sender 2 runs after

the Receiver has blocked.

2 - Sender 2 writes to the queue, causing the

Receiver to exit the Blocked state. The

Receiver has the highest priority so pre-empts

Sender 2.

3 - The Receiver task empties the queue

then enters the Blocked state again. This

time Sender 1 runs after the Receiver has

blocked.

4 - Sender 1 writes to the queue, causing

the Receiver to exit the Blocked state and

pre-empt Sender 1 - and so it goes on ……..

Figure 33. The sequence of execution produced by Example 10

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

120

4.4 Receiving Data From Multiple Sources

It is common in FreeRTOS designs for a task to receive data from more than one source. The

receiving task needs to know where the data came from to determine how the data should be

processed. An easy design solution is to use a single queue to transfer structures with both

the value of the data and the source of the data contained in the structure’s fields. This

scheme is demonstrated in Figure 34.

Controller

CAN bus

Task eDataID = eMotorSpeed
lDataValue = 10

Another Task

HMI Task

eDataID = eSpeedSetPoint

lDataValue = 5

Queue

typedef struct

{

 ID_t eDataID;

 int32_t lDataValue;

} Data_t;

Figure 34. An example scenario where structures are sent on a queue

Referring to Figure 34:

 A queue is created that holds structures of type Data_t. The structure members allow

both a data value and an enumerated type indicating what the data means to be sent to

the queue in one message.

 A central Controller task is used to perform the primary system function. This has to

react to inputs and changes to the system state communicated to it on the queue.

 A CAN bus task is used to encapsulate the CAN bus interfacing functionality. When

the CAN bus task has received and decoded a message, it sends the already decoded

message to the Controller task in a Data_t structure. The eDataID member of the

transferred structure is used to let the Controller task know what the data is—in the

depicted case it is a motor speed value. The lDataValue member of the transferred

structure is used to let the Controller task know the actual motor speed value.

 A Human Machine Interface (HMI) task is used to encapsulate all the HMI functionality.

The machine operator can probably input commands and query values in a number of

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 121

ways that have to be detected and interpreted within the HMI task. When a new

command is input, the HMI task sends the command to the Controller task in a Data_t

structure. The eDataID member of the transferred structure is used to let the Controller

task know what the data is—in the depicted case it is a new set point value. The

lDataValue member of the transferred structure is used to let the Controller task know

the actual set point value.

Example 11. Blocking when sending to a queue, and sending structures on a
queue

Example 11 is similar to Example 10, but the task priorities are reversed, so the receiving task

has a lower priority than the sending tasks. Also, the queue is used to pass structures, rather

than integers.

Listing 48 shows the definition of the structure used by Example 11.

/* Define an enumerated type used to identify the source of the data. */

typedef enum

{

 eSender1,

 eSender2

} DataSource_t;

/* Define the structure type that will be passed on the queue. */

typedef struct

{

 uint8_t ucValue;

 DataSource_t eDataSource;

} Data_t;

/* Declare two variables of type Data_t that will be passed on the queue. */

static const Data_t xStructsToSend[2] =

{

 { 100, eSender1 }, /* Used by Sender1. */

 { 200, eSender2 } /* Used by Sender2. */

};

Listing 48. The definition of the structure that is to be passed on a queue, plus the
declaration of two variables for use by the example

In Example 10, the receiving task has the highest priority, so the queue never contains more

than one item. This results from the receiving task pre-empting the sending tasks as soon as

data is placed into the queue. In Example 11, the sending tasks have the higher priority, so

the queue will normally be full. This is because, as soon as the receiving task removes an

item from the queue, it is pre-empted by one of the sending tasks which then immediately re-

fills the queue. The sending task then re-enters the Blocked state to wait for space to become

available on the queue again.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

122

Listing 49 shows the implementation of the sending task. The sending task specifies a block

time of 100 milliseconds, so it enters the Blocked state to wait for space to become available

each time the queue becomes full. It leaves the Blocked state when either space is available

on the queue, or 100 milliseconds passes without space becoming available. In this example,

the 100 milliseconds timeout should never expire, as the receiving task is continuously making

space by removing items from the queue.

static void vSenderTask(void *pvParameters)

{

BaseType_t xStatus;

const TickType_t xTicksToWait = pdMS_TO_TICKS(100);

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Send to the queue.

 The second parameter is the address of the structure being sent. The

 address is passed in as the task parameter so pvParameters is used

 directly.

 The third parameter is the Block time - the time the task should be kept

 in the Blocked state to wait for space to become available on the queue

 if the queue is already full. A block time is specified because the

 sending tasks have a higher priority than the receiving task so the queue

 is expected to become full. The receiving task will remove items from

 the queue when both sending tasks are in the Blocked state. */

 xStatus = xQueueSendToBack(xQueue, pvParameters, xTicksToWait);

 if(xStatus != pdPASS)

 {

 /* The send operation could not complete, even after waiting for 100ms.

 This must be an error as the receiving task should make space in the

 queue as soon as both sending tasks are in the Blocked state. */

 vPrintString("Could not send to the queue.\r\n");

 }

 }

}

Listing 49. The implementation of the sending task for Example 11

The receiving task has the lowest priority, so it will run only when both sending tasks are in the

Blocked state. The sending tasks will enter the Blocked state only when the queue is full, so

the receiving task will execute only when the queue is already full. Therefore, it always

expects to receive data even when it does not specify a block time.

The implementation of the receiving task is shown in Listing 50.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 123

static void vReceiverTask(void *pvParameters)

{

/* Declare the structure that will hold the values received from the queue. */

Data_t xReceivedStructure;

BaseType_t xStatus;

 /* This task is also defined within an infinite loop. */

 for(;;)

 {

 /* Because it has the lowest priority this task will only run when the

 sending tasks are in the Blocked state. The sending tasks will only enter

 the Blocked state when the queue is full so this task always expects the

 number of items in the queue to be equal to the queue length, which is 3 in

 this case. */

 if(uxQueueMessagesWaiting(xQueue) != 3)

 {

 vPrintString("Queue should have been full!\r\n");

 }

 /* Receive from the queue.

 The second parameter is the buffer into which the received data will be

 placed. In this case the buffer is simply the address of a variable that

 has the required size to hold the received structure.

 The last parameter is the block time - the maximum amount of time that the

 task will remain in the Blocked state to wait for data to be available

 if the queue is already empty. In this case a block time is not necessary

 because this task will only run when the queue is full. */

 xStatus = xQueueReceive(xQueue, &xReceivedStructure, 0);

 if(xStatus == pdPASS)

 {

 /* Data was successfully received from the queue, print out the received

 value and the source of the value. */

 if(xReceivedStructure.eDataSource == eSender1)

 {

 vPrintStringAndNumber("From Sender 1 = ", xReceivedStructure.ucValue);

 }

 else

 {

 vPrintStringAndNumber("From Sender 2 = ", xReceivedStructure.ucValue);

 }

 }

 else

 {

 /* Nothing was received from the queue. This must be an error as this

 task should only run when the queue is full. */

 vPrintString("Could not receive from the queue.\r\n");

 }

 }

}

Listing 50. The definition of the receiving task for Example 11

main() changes only slightly from the previous example. The queue is created to hold three

Data_t structures, and the priorities of the sending and receiving tasks are reversed. The

implementation of main() is shown in Listing 51.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

124

int main(void)

{

 /* The queue is created to hold a maximum of 3 structures of type Data_t. */

 xQueue = xQueueCreate(3, sizeof(Data_t));

 if(xQueue != NULL)

 {

 /* Create two instances of the task that will write to the queue. The

 parameter is used to pass the structure that the task will write to the

 queue, so one task will continuously send xStructsToSend[0] to the queue

 while the other task will continuously send xStructsToSend[1]. Both

 tasks are created at priority 2, which is above the priority of the receiver. */

 xTaskCreate(vSenderTask, "Sender1", 1000, &(xStructsToSend[0]), 2, NULL);

 xTaskCreate(vSenderTask, "Sender2", 1000, &(xStructsToSend[1]), 2, NULL);

 /* Create the task that will read from the queue. The task is created with

 priority 1, so below the priority of the sender tasks. */

 xTaskCreate(vReceiverTask, "Receiver", 1000, NULL, 1, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 }

 else

 {

 /* The queue could not be created. */

 }

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely that

 there was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 51. The implementation of main() for Example 11

The output produced by Example 11 is shown in Figure 35.

Figure 35 The output produced by Example 11

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 125

Figure 36 demonstrates the sequence of execution that results from having the priority of the

sending tasks above the priority of the receiving task. Table 22 provides further explanation of

Figure 36, and describes why the first four message originate from the same task.

Receiver

Sender 2

t1 t2

Sender 1

t3
t5 t6 t7t4

Figure 36. The sequence of execution produced by Example 11

Table 22. Key to Figure 36

Time Description

t1 Task Sender 1 executes and sends 3 data items to the queue.

t2 The queue is full so Sender 1 enters the Blocked state to wait for its next send to

complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

t3 Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for

its first send to complete. Task Receiver is now the highest priority task that is able to

run, so enters the Running state.

t4 Two tasks that have a priority higher than the receiving task’s priority are waiting for

space to become available on the queue, resulting in task Receiver being pre-empted

as soon as it has removed one item from the queue. Tasks Sender 1 and Sender 2

have the same priority, so the scheduler selects the task that has been waiting the

longest as the task that will enter the Running state—in this case that is task Sender

1.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

126

Table 22. Key to Figure 36

Time Description

t5 Task Sender 1 sends another data item to the queue. There was only one space in

the queue, so task Sender 1 enters the Blocked state to wait for its next send to

complete. Task Receiver is again the highest priority task that is able to run so enters

the Running state.

Task Sender 1 has now sent four items to the queue, and task Sender 2 is still

waiting to send its first item to the queue.

t6 Two tasks that have a priority higher than the receiving task’s priority are waiting for

space to become available on the queue, so task Receiver is pre-empted as soon as

it has removed one item from the queue. This time Sender 2 has been waiting longer

than Sender 1, so Sender 2 enters the Running state.

t7 Task Sender 2 sends a data item to the queue. There was only one space in the

queue so Sender 2 enters the Blocked state to wait for its next send to complete.

Both tasks Sender 1 and Sender 2 are waiting for space to become available on the

queue, so task Receiver is the only task that can enter the Running state.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 127

4.5 Working with Large or Variable Sized Data

Queuing Pointers

If the size of the data being stored in the queue is large, then it is preferable to use the queue

to transfer pointers to the data, rather than copy the data itself into and out of the queue byte

by byte. Transferring pointers is more efficient in both processing time and the amount of

RAM required to create the queue. However, when queuing pointers, extreme care must be

taken to ensure that:

1. The owner of the RAM being pointed to is clearly defined.

When sharing memory between tasks via a pointer, it is essential to ensure that both

tasks do not modify the memory contents simultaneously, or take any other action that

could cause the memory contents to be invalid or inconsistent. Ideally, only the

sending task should be permitted to access the memory until a pointer to the memory

has been queued, and only the receiving task should be permitted to access the

memory after the pointer has been received from the queue.

2. The RAM being pointed to remains valid.

If the memory being pointed to was allocated dynamically, or obtained from a pool of

pre-allocated buffers, then exactly one task should be responsible for freeing the

memory. No tasks should attempt to access the memory after it has been freed.

A pointer should never be used to access data that has been allocated on a task stack.

The data will not be valid after the stack frame has changed.

By way of example, Listing 52, Listing 53 and Listing 54 demonstrate how to use a queue to

send a pointer to a buffer from one task to another:

 Listing 52 creates a queue that can hold up to 5 pointers.

 Listing 53 allocates a buffer, writes a string to the buffer, then sends a pointer to the

buffer to the queue.

 Listing 54 receives a pointer to a buffer from the queue, then prints the string contained

in the buffer.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

128

/* Declare a variable of type QueueHandle_t to hold the handle of the queue being created. */

QueueHandle_t xPointerQueue;

/* Create a queue that can hold a maximum of 5 pointers, in this case character pointers. */

xPointerQueue = xQueueCreate(5, sizeof(char *));

Listing 52. Creating a queue that holds pointers

/* A task that obtains a buffer, writes a string to the buffer, then sends the address of the

buffer to the queue created in Listing 52. */

void vStringSendingTask(void *pvParameters)

{

char *pcStringToSend;

const size_t xMaxStringLength = 50;

BaseType_t xStringNumber = 0;

 for(;;)

 {

 /* Obtain a buffer that is at least xMaxStringLength characters big. The implementation

 of prvGetBuffer() is not shown – it might obtain the buffer from a pool of pre-allocated
 buffers, or just allocate the buffer dynamically. */

 pcStringToSend = (char *) prvGetBuffer(xMaxStringLength);

 /* Write a string into the buffer. */

 snprintf(pcStringToSend, xMaxStringLength, "String number %d\r\n", xStringNumber);

 /* Increment the counter so the string is different on each iteration of this task. */

 xStringNumber++;

 /* Send the address of the buffer to the queue that was created in Listing 52. The

 address of the buffer is stored in the pcStringToSend variable.*/

 xQueueSend(xPointerQueue, /* The handle of the queue. */

 &pcStringToSend, /* The address of the pointer that points to the buffer. */

 portMAX_DELAY);

 }

}

Listing 53. Using a queue to send a pointer to a buffer

/* A task that receives the address of a buffer from the queue created in Listing 52, and

written to in Listing 53. The buffer contains a string, which is printed out. */

void vStringReceivingTask(void *pvParameters)

{

char *pcReceivedString;

 for(;;)

 {

 /* Receive the address of a buffer. */

 xQueueReceive(xPointerQueue, /* The handle of the queue. */

 &pcReceivedString, /* Store the buffer’s address in pcReceivedString. */
 portMAX_DELAY);

 /* The buffer holds a string, print it out. */

 vPrintString(pcReceivedString);

 /* The buffer is not required any more - release it so it can be freed, or re-used. */

 prvReleaseBuffer(pcReceivedString);

 }

}

Listing 54. Using a queue to receive a pointer to a buffer

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 129

Using a Queue to Send Different Types and Lengths of Data

Previous sections have demonstrated two powerful design patterns; sending structures to a

queue, and sending pointers to a queue. Combining those techniques allows a task to use a

single queue to receive any data type from any data source. The implementation of the

FreeRTOS+TCP TCP/IP stack provides a practical example of how this is achieved.

The TCP/IP stack, which runs in its own task, must process events from many different

sources. Different event types are associated with different types and lengths of data. All

events that occur outside of the TCP/IP task are described by a structure of type

IPStackEvent_t, and sent to the TCP/IP task on a queue. The IPStackEvent_t structure is

shown in Listing 55. The pvData member of the IPStackEvent_t structure is a pointer that can

be used to hold a value directly, or point to a buffer.

/* A subset of the enumerated types used in the TCP/IP stack to identify events. */

typedef enum

{

 eNetworkDownEvent = 0, /* The network interface has been lost, or needs (re)connecting. */

 eNetworkRxEvent, /* A packet has been received from the network. */

 eTCPAcceptEvent, /* FreeRTOS_accept() called to accept or wait for a new client. */

 /* Other event types appear here but are not shown in this listing. */

} eIPEvent_t;

/* The structure that describes events, and is sent on a queue to the TCP/IP task. */

typedef struct IP_TASK_COMMANDS

{

 /* An enumerated type that identifies the event. See the eIPEvent_t definition above. */

 eIPEvent_t eEventType;

 /* A generic pointer that can hold a value, or point to a buffer. */

 void *pvData;

} IPStackEvent_t;

Listing 55. The structure used to send events to the TCP/IP stack task in
FreeRTOS+TCP

Example TCP/IP events, and their associated data, include:

 eNetworkRxEvent: A packet of data has been received from the network.

Data received from the network is sent to the TCP/IP task using a structure of type

IPStackEvent_t. The structure’s eEventType member is set to eNetworkRxEvent, and the

structure’s pvData member is used to point to the buffer that contains the received data. A

pseudo code example is shown in Listing 56.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

130

void vSendRxDataToTheTCPTask(NetworkBufferDescriptor_t *pxRxedData)

{

IPStackEvent_t xEventStruct;

 /* Complete the IPStackEvent_t structure. The received data is stored in

 pxRxedData. */

 xEventStruct.eEventType = eNetworkRxEvent;

 xEventStruct.pvData = (void *) pxRxedData;

 /* Send the IPStackEvent_t structure to the TCP/IP task. */

 xSendEventStructToIPTask(&xEventStruct);

}

Listing 56. Pseudo code showing how an IPStackEvent_t structure is used to
send data received from the network to the TCP/IP task

 eTCPAcceptEvent: A socket is to accept, or wait for, a connection from a client.

Accept events are sent from the task that called FreeRTOS_accept() to the TCP/IP task

using a structure of type IPStackEvent_t. The structure’s eEventType member is set to

eTCPAcceptEvent, and the structure’s pvData member is set to the handle of the socket

that is accepting a connection. A pseudo code example is shown in Listing 57.

void vSendAcceptRequestToTheTCPTask(Socket_t xSocket)

{

IPStackEvent_t xEventStruct;

 /* Complete the IPStackEvent_t structure. */

 xEventStruct.eEventType = eTCPAcceptEvent;

 xEventStruct.pvData = (void *) xSocket;

 /* Send the IPStackEvent_t structure to the TCP/IP task. */

 xSendEventStructToIPTask(&xEventStruct);

}

Listing 57. Pseudo code showing how an IPStackEvent_t structure is used to
send the handle of a socket that is accepting a connection to the TCP/IP

task

 eNetworkDownEvent: The network needs connecting, or re-connecting.

Network down events are sent from the network interface to the TCP/IP task using a

structure of type IPStackEvent_t. The structure’s eEventType member is set to

eNetworkDownEvent. Network down events are not associated with any data, so the

structure’s pvData member is not used. A pseudo code example is shown in Listing 58.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 131

void vSendNetworkDownEventToTheTCPTask(Socket_t xSocket)

{

IPStackEvent_t xEventStruct;

 /* Complete the IPStackEvent_t structure. */

 xEventStruct.eEventType = eNetworkDownEvent;

 xEventStruct.pvData = NULL; /* Not used, but set to NULL for completeness. */

 /* Send the IPStackEvent_t structure to the TCP/IP task. */

 xSendEventStructToIPTask(&xEventStruct);

}

Listing 58. Pseudo code showing how an IPStackEvent_t structure is used to
send a network down event to the TCP/IP task

The code that receives and processes these events within the TCP/IP task is shown in Listing

59. It can be seen that the eEventType member of the IPStackEvent_t structures received

from the queue is used to determine how the pvData member is to be interpreted.

IPStackEvent_t xReceivedEvent;

 /* Block on the network event queue until either an event is received, or xNextIPSleep ticks

 pass without an event being received. eEventType is set to eNoEvent in case the call to

 xQueueReceive() returns because it timed out, rather than because an event was received. */

 xReceivedEvent.eEventType = eNoEvent;

 xQueueReceive(xNetworkEventQueue, &xReceivedEvent, xNextIPSleep);

 /* Which event was received, if any? */

 switch(xReceivedEvent.eEventType)

 {

 case eNetworkDownEvent :

 /* Attempt to (re)establish a connection. This event is not associated with any

 data. */

 prvProcessNetworkDownEvent();

 break;

 case eNetworkRxEvent:

 /* The network interface has received a new packet. A pointer to the received data

 is stored in the pvData member of the received IPStackEvent_t structure. Process

 the received data. */

 prvHandleEthernetPacket((NetworkBufferDescriptor_t *)(xReceivedEvent.pvData));

 break;

 case eTCPAcceptEvent:

 /* The FreeRTOS_accept() API function was called. The handle of the socket that is

 accepting a connection is stored in the pvData member of the received IPStackEvent_t

 structure. */

 xSocket = (FreeRTOS_Socket_t *) (xReceivedEvent.pvData);

 xTCPCheckNewClient(pxSocket);

 break;

 /* Other event types are processed in the same way, but are not shown here. */

 }

Listing 59. Pseudo code showing how an IPStackEvent_t structure is received and
processed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

132

4.6 Receiving From Multiple Queues

Queue Sets

Often application designs require a single task to receive data of different sizes, data of

different meaning, and data from different sources. The previous section demonstrated how

this can be achieved in a neat and efficient way using a single queue that receives structures.

However, sometimes an application’s designer is working with constraints that limit their

design choices, necessitating the use of a separate queue for some data sources. For

example, third party code being integrated into a design might assume the presence of a

dedicated queue. In such cases a ‘queue set’ can be used.

Queue sets allow a task to receive data from more than one queue without the task polling

each queue in turn to determine which, if any, contains data.

A design that uses a queue set to receive data from multiple sources is less neat, and less

efficient, than a design that achieves the same functionality using a single queue that receives

structures. For that reason, it is recommended that queue sets are only used if design

constraints make their use absolutely necessary.

The following sections describe how to use a queue set by:

1. Creating a queue set.

2. Adding queues to the set.

Semaphores can also be added to a queue set. Semaphores are described later in this

book.

3. Reading from the queue set to determine which queues within the set contain data.

When a queue that is a member of a set receives data, the handle of the receiving

queue is sent to the queue set, and returned when a task calls a function that reads

from the queue set. Therefore, if a queue handle is returned from a queue set then the

queue referenced by the handle is known to contain data, and the task can then read

from the queue directly.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 133

Note: If a queue is a member of a queue set then do not read data from the queue

unless the queue’s handle has first been read from the queue set.

Queue set functionality is enabled by setting the configUSE_QUEUE_SETS compile time

configuration constant to 1 in FreeRTOSConfig.h.

The xQueueCreateSet() API Function

A queue set must be explicitly created before it can be used.

Queues sets are referenced by handles, which are variables of type QueueSetHandle_t. The

xQueueCreateSet() API function creates a queue set and returns a QueueSetHandle_t that

references the queue set it created.

QueueSetHandle_t xQueueCreateSet(const UBaseType_t uxEventQueueLength);

Listing 60. The xQueueCreateSet() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

134

Table 23. xQueueCreateSet() parameters and return value

Parameter Name Description

uxEventQueueLength When a queue that is a member of a queue set receives data, the

handle of the receiving queue is sent to the queue set.

uxEventQueueLength defines the maximum number of queue

handles the queue set being created can hold at any one time.

Queue handles are only sent to a queue set when a queue within the

set receives data. A queue cannot receive data if it is full, so no

queue handles can be sent to the queue set if all the queues in the

set are full. Therefore, the maximum number of items the queue set

will ever have to hold at one time is the sum of the lengths of every

queue in the set.

As an example, if there are three empty queues in the set, and each

queue has a length of five, then in total the queues in the set can

receive fifteen items (three queues multiplied by five items each)

before all the queues in the set are full. In that example

uxEventQueueLength must be set to fifteen to guarantee the queue

set can receive every item sent to it.

Semaphores can also be added to a queue set. Binary and counting

semaphores are covered later in this book. For the purposes of

calculating the necessary uxEventQueueLength, the length of a

binary semaphore is one, and the length of a counting semaphore is

given by the semaphore’s maximum count value.

As another example, if a queue set will contain a queue that has a

length of three, and a binary semaphore (which has a length of one),

uxEventQueueLength must be set to four (three plus one).

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 135

Table 23. xQueueCreateSet() parameters and return value

Parameter Name Description

Return Value If NULL is returned, then the queue set cannot be created because

there is insufficient heap memory available for FreeRTOS to allocate

the queue set data structures and storage area.

A non-NULL value being returned indicates that the queue set has

been created successfully. The returned value should be stored as

the handle to the created queue set.

The xQueueAddToSet() API Function

xQueueAddToSet() adds a queue or semaphore to a queue set. Semaphores are described

later in this book.

BaseType_t xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore,

 QueueSetHandle_t xQueueSet);

Listing 61. The xQueueAddToSet() API function prototype

Table 24. xQueueAddToSet() parameters and return value

Parameter Name Description

xQueueOrSemaphore The handle of the queue or semaphore that is being added to the

queue set.

Queue handles and semaphore handles can both be cast to the

QueueSetMemberHandle_t type.

xQueueSet The handle of the queue set to which the queue or semaphore is

being added.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

136

Table 24. xQueueAddToSet() parameters and return value

Parameter Name Description

Return Value There are two possible return values:

1. pdPASS

pdPASS will be returned only if the queue or semaphore was

successfully added to the queue set.

2. pdFAIL

pdFAIL will be returned if the queue or semaphore could not be

added to the queue set.

Queues and binary semaphores can only be added to a set when

they are empty. Counting semaphores can only be added to a set

when their count is zero. Queues and semaphores can only be a

member of one set at a time.

The xQueueSelectFromSet() API Function

xQueueSelectFromSet() reads a queue handle from the queue set.

When a queue or semaphore that is a member of a set receives data, the handle of the

receiving queue or semaphore is sent to the queue set, and returned when a task calls

xQueueSelectFromSet(). If a handle is returned from a call to xQueueSelectFromSet() then

the queue or semaphore referenced by the handle is known to contain data and the calling

task must then read from the queue or semaphore directly.

Note: Do not read data from a queue or semaphore that is a member of a set unless the

handle of the queue or semaphore has first been returned from a call to

xQueueSelectFromSet(). Only read one item from a queue or semaphore each time the

queue handle or semaphore handle is returned from a call to xQueueSelectFromSet().

QueueSetMemberHandle_t xQueueSelectFromSet(QueueSetHandle_t xQueueSet,

 const TickType_t xTicksToWait);

Listing 62. The xQueueSelectFromSet() API function prototype

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 137

Table 25. xQueueSelectFromSet() parameters and return value

Parameter Name Description

xQueueSet The handle of the queue set from which a queue handle or

semaphore handle is being received (read). The queue set handle

will have been returned from the call to xQueueCreateSet() used to

create the queue set.

xTicksToWait The maximum amount of time the calling task should remain in the

Blocked state to wait to receive a queue or semaphore handle from

the queue set, if all the queues and semaphore in the set are empty.

If xTicksToWait is zero then xQueueSelectFromSet() will return

immediately if all the queues and semaphores in the set are empty.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out) provided INCLUDE_vTaskSuspend is

set to 1 in FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

138

Table 25. xQueueSelectFromSet() parameters and return value

Parameter Name Description

Return Value A return value that is not NULL will be the handle of a queue or

semaphore that is known to contain data. If a block time was

specified (xTicksToWait was not zero), then it is possible that the

calling task was placed into the Blocked state to wait for data to

become available from a queue or semaphore in the set, but a

handle was successfully read from the queue set before the block

time expired. Handles are returned as a QueueSetMemberHandle_t

type, which can be cast to either a QueueHandle_t type or

SemaphoreHandle_t type.

If the return value is NULL then a handle could not be read from the

queue set. If a block time was specified (xTicksToWait was not zero)

then the calling task will have been placed into the Blocked state to

wait for another task or interrupt to send data to a queue or

semaphore in the set, but the block time expired before that

happened.

Example 12. Using a Queue Set

This example creates two sending tasks and one receiving task. The sending tasks send data

to the receiving task on two separate queues, one queue for each task. The two queues are

added to a queue set, and the receiving task reads from the queue set to determine which of

the two queues contain data.

The tasks, queues, and the queue set, are all created in main()—see Listing 63 for its

implementation.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 139

/* Declare two variables of type QueueHandle_t. Both queues are added to the same

queue set. */

static QueueHandle_t xQueue1 = NULL, xQueue2 = NULL;

/* Declare a variable of type QueueSetHandle_t. This is the queue set to which the

two queues are added. */

static QueueSetHandle_t xQueueSet = NULL;

int main(void)

{

 /* Create the two queues, both of which send character pointers. The priority

 of the receiving task is above the priority of the sending tasks, so the queues

 will never have more than one item in them at any one time*/

 xQueue1 = xQueueCreate(1, sizeof(char *));

 xQueue2 = xQueueCreate(1, sizeof(char *));

 /* Create the queue set. Two queues will be added to the set, each of which can

 contain 1 item, so the maximum number of queue handles the queue set will ever

 have to hold at one time is 2 (2 queues multiplied by 1 item per queue). */

 xQueueSet = xQueueCreateSet(1 * 2);

 /* Add the two queues to the set. */

 xQueueAddToSet(xQueue1, xQueueSet);

 xQueueAddToSet(xQueue2, xQueueSet);

 /* Create the tasks that send to the queues. */

 xTaskCreate(vSenderTask1, "Sender1", 1000, NULL, 1, NULL);

 xTaskCreate(vSenderTask2, "Sender2", 1000, NULL, 1, NULL);

 /* Create the task that reads from the queue set to determine which of the two

 queues contain data. */

 xTaskCreate(vReceiverTask, "Receiver", 1000, NULL, 2, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 /* As normal, vTaskStartScheduler() should not return, so the following lines

 Will never execute. */

 for(;;);

 return 0;

}

Listing 63. Implementation of main() for Example 12

The first sending task uses xQueue1 to send a character pointer to the receiving task every

100 milliseconds. The second sending task uses xQueue2 to send a character pointer to the

receiving task every 200 milliseconds. The character pointers are set to point to a string that

identifies the sending task. The implementation of both sending tasks is shown in Listing 64.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

140

void vSenderTask1(void *pvParameters)

{

const TickType_t xBlockTime = pdMS_TO_TICKS(100);

const char * const pcMessage = "Message from vSenderTask1\r\n";

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Block for 100ms. */

 vTaskDelay(xBlockTime);

 /* Send this task's string to xQueue1. It is not necessary to use a block

 time, even though the queue can only hold one item. This is because the

 priority of the task that reads from the queue is higher than the priority of

 this task; as soon as this task writes to the queue it will be pre-empted by

 the task that reads from the queue, so the queue will already be empty again

 by the time the call to xQueueSend() returns. The block time is set to 0. */

 xQueueSend(xQueue1, &pcMessage, 0);

 }

}

/*---*/

void vSenderTask2(void *pvParameters)

{

const TickType_t xBlockTime = pdMS_TO_TICKS(200);

const char * const pcMessage = "Message from vSenderTask2\r\n";

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Block for 200ms. */

 vTaskDelay(xBlockTime);

 /* Send this task's string to xQueue2. It is not necessary to use a block

 time, even though the queue can only hold one item. This is because the

 priority of the task that reads from the queue is higher than the priority of

 this task; as soon as this task writes to the queue it will be pre-empted by

 the task that reads from the queue, so the queue will already be empty again

 by the time the call to xQueueSend() returns. The block time is set to 0. */

 xQueueSend(xQueue2, &pcMessage, 0);

 }

}

Listing 64. The sending tasks used in Example 12

The queues that are written to by the sending tasks are members of the same queue set.

Each time a task sends to one of the queues, the handle of the queue is sent to the queue set.

The receiving task calls xQueueSelectFromSet() to read the queue handles from the queue

set. After the receiving task has received a queue handle from the set, it knows the queue

referenced by the received handle contains data, so reads the data from the queue directly.

The data it reads from the queue is a pointer to a string, which the receiving task prints out.

If a call to xQueueSelectFromSet() times out, then it will return NULL. In Example 12,

xQueueSelectFromSet() is called with an indefinite block time, so will never time out, and can

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 141

only return a valid queue handle. Therefore, the receiving task does not need to check to see

if xQueueSelectFromSet() returned NULL before the return value is used.

xQueueSelectFromSet() will only return a queue handle if the queue referenced by the handle

contains data, so it is not necessary to use a block time when reading from the queue.

The implementation of the receive task is shown in Listing 65.

void vReceiverTask(void *pvParameters)

{

QueueHandle_t xQueueThatContainsData;

char *pcReceivedString;

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Block on the queue set to wait for one of the queues in the set to contain data.

 Cast the QueueSetMemberHandle_t value returned from xQueueSelectFromSet() to a

 QueueHandle_t, as it is known all the members of the set are queues (the queue set

 does not contain any semaphores). */

 xQueueThatContainsData = (QueueHandle_t) xQueueSelectFromSet(xQueueSet,

 portMAX_DELAY);

 /* An indefinite block time was used when reading from the queue set, so

 xQueueSelectFromSet() will not have returned unless one of the queues in the set

 contained data, and xQueueThatContainsData cannot be NULL. Read from the queue. It

 is not necessary to specify a block time because it is known the queue contains

 data. The block time is set to 0. */

 xQueueReceive(xQueueThatContainsData, &pcReceivedString, 0);

 /* Print the string received from the queue. */

 vPrintString(pcReceivedString);

 }

}

Listing 65. The receive task used in Example 12

Figure 37 shows the output produced by Example 12. It can be seen that the receiving task

receives strings from both sending tasks. The block time used by vSenderTask1() is half of

the block time used by vSenderTask2(), causing the strings sent by vSenderTask1() to be

printed out twice as often as those sent by vSenderTask2().

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

142

Figure 37 The output produced when Example 12 is executed

More Realistic Queue Set Use Cases

Example 12 demonstrated a very simplistic case; the queue set only contained queues, and

the two queues it contained were both used to send a character pointer. In a real application,

a queue set might contain both queues and semaphores, and the queues might not all hold

the same data type. When this is the case, it is necessary to test the value returned by

xQueueSelectFromSet(), before the returned value is used. Listing 66 demonstrates how to

use the value returned from xQueueSelectFromSet() when the set has the following members:

1. A binary semaphore.

2. A queue from which character pointers are read.

3. A queue from which uint32_t values are read.

Listing 66 assumes the queues and semaphore have already been created and added to the

queue set.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 143

/* The handle of the queue from which character pointers are received. */

QueueHandle_t xCharPointerQueue;

/* The handle of the queue from which uint32_t values are received. */

QueueHandle_t xUint32tQueue;

/* The handle of the binary semaphore. */

SemaphoreHandle_t xBinarySemaphore;

/* The queue set to which the two queues and the binary semaphore belong. */

QueueSetHandle_t xQueueSet;

void vAMoreRealisticReceiverTask(void *pvParameters)

{

QueueSetMemberHandle_t xHandle;

char *pcReceivedString;

uint32_t ulRecievedValue;

const TickType_t xDelay100ms = pdMS_TO_TICKS(100);

 for(;;)

 {

 /* Block on the queue set for a maximum of 100ms to wait for one of the members of

 the set to contain data. */

 xHandle = xQueueSelectFromSet(xQueueSet, xDelay100ms);

 /* Test the value returned from xQueueSelectFromSet(). If the returned value is

 NULL then the call to xQueueSelectFromSet() timed out. If the returned value is not

 NULL then the returned value will be the handle of one of the set’s members. The
 QueueSetMemberHandle_t value can be cast to either a QueueHandle_t or a

 SemaphoreHandle_t. Whether an explicit cast is required depends on the compiler. */

 if(xHandle == NULL)

 {

 /* The call to xQueueSelectFromSet() timed out. */

 }

 else if(xHandle == (QueueSetMemberHandle_t) xCharPointerQueue)

 {

 /* The call to xQueueSelectFromSet() returned the handle of the queue that

 receives character pointers. Read from the queue. The queue is known to contain

 data, so a block time of 0 is used. */

 xQueueReceive(xCharPointerQueue, &pcReceivedString, 0);

 /* The received character pointer can be processed here... */

 }

 else if(xHandle == (QueueSetMemberHandle_t) xUint32tQueue)

 {

 /* The call to xQueueSelectFromSet() returned the handle of the queue that

 receives uint32_t types. Read from the queue. The queue is known to contain

 data, so a block time of 0 is used. */

 xQueueReceive(xUint32tQueue, &ulRecievedValue, 0);

 /* The received value can be processed here... */

 }

 Else if(xHandle == (QueueSetMemberHandle_t) xBinarySemaphore)

 {

 /* The call to xQueueSelectFromSet() returned the handle of the binary semaphore.

 Take the semaphore now. The semaphore is known to be available so a block time

 of 0 is used. */

 xSemaphoreTake(xBinarySemaphore, 0);

 /* Whatever processing is necessary when the semaphore is taken can be performed

 here... */

 }

 }

}

Listing 66. Using a queue set that contains queues and semaphores

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

144

4.7 Using a Queue to Create a Mailbox

There is no consensus on terminology within the embedded community, and ‘mailbox’ will

mean different things in different RTOSes. In this book the term mailbox is used to refer to a

queue that has a length of one. A queue may get described as a mailbox because of the way

it is used in the application, rather than because it has a functional difference to a queue:

 A queue is used to send data from one task to another task, or from an interrupt

service routine to a task. The sender places an item in the queue, and the receiver

removes the item from the queue. The data passes through the queue from the sender

to the receiver.

 A mailbox is used to hold data that can be read by any task, or any interrupt service

routine. The data does not pass through the mailbox, but instead remains in the

mailbox until it is overwritten. The sender overwrites the value in the mailbox. The

receiver reads the value from the mailbox, but does not remove the value from the

mailbox.

This chapter describes two queue API functions that allow a queue to be used as a mailbox.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 145

Listing 67 shows a queue being created for use as a mailbox.

/* A mailbox can hold a fixed size data item. The size of the data item is set

when the mailbox (queue) is created. In this example the mailbox is created to

hold an Example_t structure. Example_t includes a time stamp to allow the data held

in the mailbox to note the time at which the mailbox was last updated. The time

stamp used in this example is for demonstration purposes only - a mailbox can hold

any data the application writer wants, and the data does not need to include a time

stamp. */

typedef struct xExampleStructure

{

 TickType_t xTimeStamp;

 uint32_t ulValue;

} Example_t;

/* A mailbox is a queue, so its handle is stored in a variable of type

QueueHandle_t. */

QueueHandle_t xMailbox;

void vAFunction(void)

{

 /* Create the queue that is going to be used as a mailbox. The queue has a

 length of 1 to allow it to be used with the xQueueOverwrite() API function, which

 is described below. */

 xMailbox = xQueueCreate(1, sizeof(Example_t));

}

Listing 67. A queue being created for use as a mailbox

The xQueueOverwrite() API Function

Like the xQueueSendToBack() API function, the xQueueOverwrite() API function sends data

to a queue. Unlike xQueueSendToBack(), if the queue is already full, then xQueueOverwrite()

will overwrite data that is already in the queue.

xQueueOverwrite() should only be used with queues that have a length of one. That

restriction avoids the need for the function’s implementation to make an arbitrary decision as

to which item in the queue to overwrite, if the queue is full.

Note: Never call xQueueOverwrite() from an interrupt service routine. The interrupt-safe

version xQueueOverwriteFromISR() should be used in its place.

BaseType_t xQueueOverwrite(QueueHandle_t xQueue, const void * pvItemToQueue);

Listing 68. The xQueueOverwrite() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

146

Table 26. xQueueOverwrite() parameters and return value

Parameter Name/
Returned Value

Description

xQueue The handle of the queue to which the data is being sent (written). The

queue handle will have been returned from the call to xQueueCreate()

used to create the queue.

pvItemToQueue A pointer to the data to be copied into the queue.

The size of each item that the queue can hold is set when the queue is

created, so this many bytes will be copied from pvItemToQueue into

the queue storage area.

Returned value xQueueOverwrite() will write to the queue even when the queue is full,

so pdPASS is the only possible return value.

Listing 69 shows xQueueOverwrite() being used to write to the mailbox (queue) that was

created in Listing 67.

void vUpdateMailbox(uint32_t ulNewValue)

{

/* Example_t was defined in Listing 67. */

Example_t xData;

 /* Write the new data into the Example_t structure.*/

 xData.ulValue = ulNewValue;

 /* Use the RTOS tick count as the time stamp stored in the Example_t structure. */

 xData.xTimeStamp = xTaskGetTickCount();

 /* Send the structure to the mailbox - overwriting any data that is already in the

 mailbox. */

 xQueueOverwrite(xMailbox, &xData);

}

Listing 69. Using the xQueueOverwrite() API function

The xQueuePeek() API Function

xQueuePeek() is used to receive (read) an item from a queue without the item being removed

from the queue. xQueuePeek() receives data from the head of the queue, without modifying

the data stored in the queue, or the order in which data is stored in the queue.

Note: Never call xQueuePeek() from an interrupt service routine. The interrupt-safe version

xQueuePeekFromISR() should be used in its place.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 147

xQueuePeek() has the same function parameters and return value as xQueueReceive().

BaseType_t xQueuePeek(QueueHandle_t xQueue,

 void * const pvBuffer,

 TickType_t xTicksToWait);

Listing 70. The xQueuePeek() API function prototype

Listing 71 shows xQueuePeek() being used to receive the item posted to the mailbox (queue)

in Listing 69.

BaseType_t vReadMailbox(Example_t *pxData)

{

TickType_t xPreviousTimeStamp;

BaseType_t xDataUpdated;

 /* This function updates an Example_t structure with the latest value received

 from the mailbox. Record the time stamp already contained in *pxData before it

 gets overwritten by the new data. */

 xPreviousTimeStamp = pxData->xTimeStamp;

 /* Update the Example_t structure pointed to by pxData with the data contained in

 the mailbox. If xQueueReceive() was used here then the mailbox would be left

 empty, and the data could not then be read by any other tasks. Using

 xQueuePeek() instead of xQueueReceive() ensures the data remains in the mailbox.

 A block time is specified, so the calling task will be placed in the Blocked

 state to wait for the mailbox to contain data should the mailbox be empty. An

 infinite block time is used, so it is not necessary to check the value returned

 from xQueuePeek(), as xQueuePeek() will only return when data is available. */

 xQueuePeek(xMailbox, pxData, portMAX_DELAY);

 /* Return pdTRUE if the value read from the mailbox has been updated since this

 function was last called. Otherwise return pdFALSE. */

 if(pxData->xTimeStamp > xPreviousTimeStamp)

 {

 xDataUpdated = pdTRUE;

 }

 else

 {

 xDataUpdated = pdFALSE;

 }

 return xDataUpdated;

}

Listing 71. Using the xQueuePeek() API function

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

148

Chapter 5

Software Timer Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 149

5.1 Chapter Introduction and Scope

Software timers are used to schedule the execution of a function at a set time in the future, or

periodically with a fixed frequency. The function executed by the software timer is called the

software timer’s callback function.

Software timers are implemented by, and are under the control of, the FreeRTOS kernel.

They do not require hardware support, and are not related to hardware timers or hardware

counters.

Note that, in line with the FreeRTOS philosophy of using innovative design to ensure

maximum efficiency, software timers do not use any processing time unless a software timer

callback function is actually executing.

Software timer functionality is optional. To include software timer functionality:

1. Build the FreeRTOS source file FreeRTOS/Source/timers.c as part of your project.

2. Set configUSE_TIMERS to 1 in FreeRTOSConfig.h.

Scope

This chapter aims to give readers a good understanding of:

 The characteristics of a software timer compared to the characteristics of a task.

 The RTOS daemon task.

 The timer command queue.

 The difference between a one shot software timer and a periodic software timer.

 How to create, start, reset and change the period of a software timer.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

150

5.2 Software Timer Callback Functions

Software timer callback functions are implemented as C functions. The only thing special

about them is their prototype, which must return void, and take a handle to a software timer as

its only parameter. The callback function prototype is demonstrated by Listing 72.

void ATimerCallback(TimerHandle_t xTimer);

Listing 72. The software timer callback function prototype

Software timer callback functions execute from start to finish, and exit in the normal way. They

should be kept short, and must not enter the Blocked state.

Note: As will be seen, software timer callback functions execute in the context of a task that is

created automatically when the FreeRTOS scheduler is started. Therefore, it is essential that

software timer callback functions never call FreeRTOS API functions that will result in the

calling task entering the Blocked state. It is ok to call functions such as xQueueReceive(), but

only if the function’s xTicksToWait parameter (which specifies the function’s block time) is set

to 0. It is not ok to call functions such as vTaskDelay(), as calling vTaskDelay() will always

place the calling task into the Blocked state.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 151

5.3 Attributes and States of a Software Timer

Period of a Software Timer

A software timer’s ‘period’ is the time between the software timer being started, and the

software timer’s callback function executing.

One-shot and Auto-reload Timers

There are two types of software timer:

1. One-shot timers

Once started, a one-shot timer will execute its callback function once only. A one-shot

timer can be restarted manually, but will not restart itself.

2. Auto-reload timers

Once started, an auto-reload timer will re-start itself each time it expires, resulting in

periodic execution of its callback function.

Figure 38 shows the difference in behavior between a one-shot timer and an auto-reload timer.

The dashed vertical lines mark the times at which a tick interrupt occurs.

Timer2 (auto-reload)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t13 t15 t17

Timer1 (one-shot)

The one shot timer

executes once only

Period of

Timer 1 equals 6

Period of

Timer 2 equals 5

The auto-reload timer executes

repeatedly with fixed period

Both timers are

started at time t1

Figure 38 The difference in behavior between one-shot and auto-reload software
timers

Referring to Figure 38:

 Timer 1

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

152

Timer 1 is a one-shot timer that has a period of 6 ticks. It is started at time t1, so its

callback function executes 6 ticks later, at time t7. As timer 1 is a one-shot timer, its

callback function does not execute again.

 Timer 2

Timer 2 is an auto-reload timer that has a period of 5 ticks. It is started at time t1, so its

callback function executes every 5 ticks after time t1. In Figure 38 this is at times t6, t11

and t16.

Software Timer States

A software timer can be in one of the following two states:

 Dormant

A Dormant software timer exists, and can be referenced by its handle, but is not

running, so its callback functions will not execute.

 Running

A Running software timer will execute its callback function after a time equal to its

period has elapsed since the software timer entered the Running state, or since the

software timer was last reset.

Figure 39 and Figure 40 show the possible transitions between the Dormant and Running

states for an auto-reload timer and a one-shot timer respectively. The key difference between

the two diagrams is the state entered after the timer has expired; the auto-reload timer

executes its callback function then re-enters the Running state, the one-shot timer executes its

callback function then enters the Dormant state.

The xTimerDelete() API function deletes a timer. A timer can be deleted at any time.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 153

Timer expired /

Execute Callback

Dormant

Running

xTimerCreate()

called

xTimerStart(),

xTimerReset() or

xTimerChangePeriod()

called

xTimerStop()

called

Figure 39 Auto-reload software timer states and transitions

Dormant

Running

xTimerStart(),

xTimerReset() or

xTimerChangePeriod()

called

xTimerStop()

calledTimer expired /

Execute Callback

xTimerCreate()

called

Figure 40 One-shot software timer states and transitions

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

154

5.4 The Context of a Software Timer

The RTOS Daemon (Timer Service) Task

All software timer callback functions execute in the context of the same RTOS daemon (or

‘timer service’) task1.

The daemon task is a standard FreeRTOS task that is created automatically when the

scheduler is started. Its priority and stack size are set by the configTIMER_TASK_PRIORITY

and configTIMER_TASK_STACK_DEPTH compile time configuration constants respectively.

Both constants are defined within FreeRTOSConfig.h.

Software timer callback functions must not call FreeRTOS API functions that will result in the

calling task entering the Blocked state, as to do so will result in the daemon task entering the

Blocked state.

The Timer Command Queue

Software timer API functions send commands from the calling task to the daemon task on a

queue called the ‘timer command queue’. This is shown in Figure 41. Examples of

commands include ‘start a timer’, ‘stop a timer’ and ‘reset a timer’.

The timer command queue is a standard FreeRTOS queue that is created automatically when

the scheduler is started. The length of the timer command queue is set by the

configTIMER_QUEUE_LENGTH compile time configuration constant in FreeRTOSConfig.h.

1 The task used to be called the ‘timer service task’, because originally it was only used to execute
software timer callback functions. Now the same task is used for other purposes too, so it is known by
the more generic name of the ‘RTOS daemon task’.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 155

FreeRTOS (kernel) CodeApplication Code

/* A function implemented in

an application task. */

void vAFunction(void)

{

 /* Write function code

 here. */

 /* At some point the

 xTimerReset() API

 function is called.

 The implementation of

 xTimerReset() writes to

 the timer command queue.

 */

 xTimerReset();

 /* Write the rest of the

 function code here. */

}

/* A pseudo representation

of the FreeRTOS daemon task.

This is not the real

code! */

void prvTimerTask(...)

{

 for(;;)

 {

 /* Wait for a

 command. */

 xQueueReceive();

 /* Process the

 command. */

 }

}

Timer command queue

The API function

writes to the timer

command queue

The RTOS daemon

task reads from the

timer command queue

Figure 41 The timer command queue being used by a software timer API function to
communicate with the RTOS daemon task

Daemon Task Scheduling

The daemon task is scheduled like any other FreeRTOS task; it will only process commands,

or execute timer callback functions, when it is the highest priority task that is able to run.

Figure 42 and Figure 43 demonstrate how the configTIMER_TASK_PRIORITY setting affects

the execution pattern.

Figure 42 shows the execution pattern when the priority of the daemon task is below the

priority of a task that calls the xTimerStart() API function.

Task1

Daemon Task

t1 t4 t5t3

Idle

The Daemon task

processes the “start

timer” command

The Daemon

task enters the

Blocked state

The call to

xTimerStart() returns

Task 1 calls

xTimerStart()

t2

Figure 42 The execution pattern when the priority of a task calling xTimerStart() is
above the priority of the daemon task

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

156

Referring to Figure 42, in which the priority of Task 1 is higher than the priority of the daemon

task, and the priority of the daemon task is higher than the priority of the Idle task:

1. At time t1

Task 1 is in the Running state, and the daemon task is in the Blocked state.

The daemon task will leave the Blocked state if a command is sent to the timer

command queue, in which case it will process the command, or if a software timer

expires, in which case it will execute the software timer’s callback function.

2. At time t2

Task 1 calls xTimerStart().

xTimerStart() sends a command to the timer command queue, causing the daemon

task to leave the Blocked state. The priority of Task 1 is higher than the priority of the

daemon task, so the daemon task does not pre-empt Task 1.

Task 1 is still in the Running state, and the daemon task has left the Blocked state and

entered the Ready state.

3. At time t3

Task 1 completes executing the xTimerStart() API function. Task 1 executed

xTimerStart() from the start of the function to the end of the function, without leaving the

Running state.

4. At time t4

Task 1 calls an API function that results in it entering the Blocked state. The daemon

task is now the highest priority task in the Ready state, so the scheduler selects the

daemon task as the task to enter the Running state. The daemon task then starts to

process the command sent to the timer command queue by Task 1.

Note: The time at which the software timer being started will expire is calculated from

the time the ‘start a timer’ command was sent to the timer command queue—it is not

calculated from the time the daemon task received the ‘start a timer’ command from the

timer command queue.

5. At time t5

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 157

The daemon task has completed processing the command sent to it by Task 1, and

attempts to receive more data from the timer command queue. The timer command

queue is empty, so the daemon task re-enters the Blocked state. The daemon task will

leave the Blocked state again if a command is sent to the timer command queue, or if a

software timer expires.

The Idle task is now the highest priority task in the Ready state, so the scheduler

selects the Idle task as the task to enter the Running state.

Figure 43 shows a similar scenario to that shown by Figure 42, but this time the priority of the

daemon task is above the priority of the task that calls xTimerStart().

Task1

Daemon Task

t2 t5t3

Idle

The Daemon task

processes the “start

timer” command

The Daemon

task enters the

Blocked state

Task 1 calls

xTimerStart()

t1 t4

The call to

xTimerStart() returns

Figure 43 The execution pattern when the priority of a task calling xTimerStart() is
below the priority of the daemon task

Referring to Figure 43, in which the priority of the daemon task is higher than the priority of

Task 1, and the priority of the Task 1 is higher than the priority of the Idle task:

1. At time t1

As before, Task 1 is in the Running state, and the daemon task is in the Blocked state.

2. At time t2

Task 1 calls xTimerStart().

xTimerStart() sends a command to the timer command queue, causing the daemon

task to leave the Blocked state. The priority of the daemon task is higher than the

priority of Task 1, so the scheduler selects the daemon task as the task to enter the

Running state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

158

Task 1 was pre-empted by the daemon task before it had completed executing the

xTimerStart() function, and is now in the Ready state.

The daemon task starts to process the command sent to the timer command queue by

Task 1.

3. At time t3

The daemon task has completed processing the command sent to it by Task 1, and

attempts to receive more data from the timer command queue. The timer command

queue is empty, so the daemon task re-enters the Blocked state.

Task 1 is now the highest priority task in the Ready state, so the scheduler selects Task

1 as the task to enter the Running state.

4. At time t4

Task 1 was pre-empted by the daemon task before it had completed executing the

xTimerStart() function, and only exits (returns from) xTimerStart() after it has re-entered

the Running state.

5. At time t5

Task 1 calls an API function that results in it entering the Blocked state. The Idle task is

now the highest priority task in the Ready state, so the scheduler selects the Idle task

as the task to enter the Running state.

In the scenario shown by Figure 42, time passed between Task 1 sending a command to the

timer command queue, and the daemon task receiving and processing the command. In the

scenario shown by Figure 43, the daemon task had received and processed the command

sent to it by Task 1 before Task 1 returned from the function that sent the command.

Commands sent to the timer command queue contain a time stamp. The time stamp is used

to account for any time that passes between a command being sent by an application task,

and the same command being processed by the daemon task. For example, if a ‘start a timer’

command is sent to start a timer that has a period of 10 ticks, the time stamp is used to ensure

the timer being started expires 10 ticks after the command was sent, not 10 ticks after the

command was processed by the daemon task.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 159

5.5 Creating and Starting a Software Timer

The xTimerCreate() API Function

FreeRTOS V9.0.0 also includes the xTimerCreateStatic() function, which allocates the memory required to create a

timer statically at compile time: A software timer must be explicitly created before it can be used.

Software timers are referenced by variables of type TimerHandle_t. xTimerCreate() is used to

create a software timer and returns a TimerHandle_t to reference the software timer it creates.

Software timers are created in the Dormant state.

Software timers can be created before the scheduler is running, or from a task after the

scheduler has been started.

Section 0 describes the data types and naming conventions used.

TimerHandle_t xTimerCreate(const char * const pcTimerName,

 TickType_t xTimerPeriodInTicks,

 UBaseType_t uxAutoReload,

 void * pvTimerID,

 TimerCallbackFunction_t pxCallbackFunction);

Listing 73. The xTimerCreate() API function prototype

Table 27. xTimerCreate() parameters and return value

Parameter Name/
Returned Value

Description

pcTimerName A descriptive name for the timer. This is not used by FreeRTOS in

any way. It is included purely as a debugging aid. Identifying a timer

by a human readable name is much simpler than attempting to identify

it by its handle.

xTimerPeriodInTicks The timer’s period specified in ticks. The pdMS_TO_TICKS() macro

can be used to convert a time specified in milliseconds into a time

specified in ticks.

uxAutoReload Set uxAutoReload to pdTRUE to create an auto-reload timer. Set

uxAutoReload to pdFALSE to create a one-shot timer.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

160

Table 27. xTimerCreate() parameters and return value

Parameter Name/
Returned Value

Description

pvTimerID Each software timer has an ID value. The ID is a void pointer, and can

be used by the application writer for any purpose. The ID is

particularly useful when the same callback function is used by more

than one software timer, as it can be used to provide timer specific

storage. Use of a timer’s ID is demonstrated in an example within this

chapter.

pvTimerID sets an initial value for the ID of the task being created.

pxCallbackFunction Software timer callback functions are simply C functions that conform

to the prototype shown in Listing 72. The pxCallbackFunction

parameter is a pointer to the function (in effect, just the function name)

to use as the callback function for the software timer being created.

Returned value If NULL is returned, then the software timer cannot be created

because there is insufficient heap memory available for FreeRTOS to

allocate the necessary data structure.

A non-NULL value being returned indicates that the software timer has

been created successfully. The returned value is the handle of the

created timer.

Chapter 2 provides more information on heap memory management.

The xTimerStart() API Function

xTimerStart() is used to start a software timer that is in the Dormant state, or reset (re-start) a

software timer that is in the Running state. xTimerStop() is used to stop a software timer that

is in the Running state. Stopping a software timer is the same as transitioning the timer into

the Dormant state.

xTimerStart() can be called before the scheduler is started, but when this is done, the software

timer will not actually start until the time at which the scheduler starts.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 161

Note: Never call xTimerStart() from an interrupt service routine. The interrupt-safe version

xTimerStartFromISR() should be used in its place.

BaseType_t xTimerStart(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 74. The xTimerStart() API function prototype

Table 28. xTimerStart() parameters and return value

Parameter Name/
Returned Value

Description

xTimer The handle of the software timer being started or reset. The handle

will have been returned from the call to xTimerCreate() used to create

the software timer.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

162

Table 28. xTimerStart() parameters and return value

Parameter Name/
Returned Value

Description

xTicksToWait xTimerStart() uses the timer command queue to send the ‘start a

timer’ command to the daemon task. xTicksToWait specifies the

maximum amount of time the calling task should remain in the Blocked

state to wait for space to become available on the timer command

queue, should the queue already be full.

xTimerStart() will return immediately if xTicksToWait is zero and the

timer command queue is already full.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

If INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h then

setting xTicksToWait to portMAX_DELAY will result in the calling task

remaining in the Blocked state indefinitely (without a timeout) to wait

for space to become available in the timer command queue.

If xTimerStart() is called before the scheduler has been started then

the value of xTicksToWait is ignored, and xTimerStart() behaves as if

xTicksToWait had been set to zero.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 163

Table 28. xTimerStart() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if the ‘start a timer’ command was

successfully sent to the timer command queue.

If the priority of the daemon task is above the priority of the task

that called xTimerStart(), then the scheduler will ensure the start

command is processed before xTimerStart() returns. This is

because the daemon task will pre-empt the task that called

xTimerStart() as soon as there is data in the timer command

queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible the calling task was placed into the Blocked state to wait

for space to become available in the timer command queue before

the function returned, but data was successfully written to the timer

command queue before the block time expired.

1. pdFALSE

pdFALSE will be returned if the ‘start a timer’ command could not

be written to the timer command queue because the queue was

already full.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

the daemon task to make room in the timer command queue, but

the specified block time expired before that happened.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

164

Example 13. Creating one-shot and auto-reload timers

This example creates and starts a one-shot timer and an auto-reload timer—as shown in

Listing 75.

/* The periods assigned to the one-shot and auto-reload timers are 3.333 second and half a

second respectively. */

#define mainONE_SHOT_TIMER_PERIOD pdMS_TO_TICKS(3333)

#define mainAUTO_RELOAD_TIMER_PERIOD pdMS_TO_TICKS(500)

int main(void)

{

TimerHandle_t xAutoReloadTimer, xOneShotTimer;

BaseType_t xTimer1Started, xTimer2Started;

 /* Create the one shot timer, storing the handle to the created timer in xOneShotTimer. */

 xOneShotTimer = xTimerCreate(

 /* Text name for the software timer - not used by FreeRTOS. */

 "OneShot",

 /* The software timer's period in ticks. */

 mainONE_SHOT_TIMER_PERIOD,

 /* Setting uxAutoRealod to pdFALSE creates a one-shot software timer. */

 pdFALSE,

 /* This example does not use the timer id. */

 0,

 /* The callback function to be used by the software timer being created. */

 prvOneShotTimerCallback);

 /* Create the auto-reload timer, storing the handle to the created timer in xAutoReloadTimer. */

 xAutoReloadTimer = xTimerCreate(

 /* Text name for the software timer - not used by FreeRTOS. */

 "AutoReload",

 /* The software timer's period in ticks. */

 mainAUTO_RELOAD_TIMER_PERIOD,

 /* Setting uxAutoRealod to pdTRUE creates an auto-reload timer. */

 pdTRUE,

 /* This example does not use the timer id. */

 0,

 /* The callback function to be used by the software timer being created. */

 prvAutoReloadTimerCallback);

 /* Check the software timers were created. */

 if((xOneShotTimer != NULL) && (xAutoReloadTimer != NULL))

 {

 /* Start the software timers, using a block time of 0 (no block time). The scheduler has

 not been started yet so any block time specified here would be ignored anyway. */

 xTimer1Started = xTimerStart(xOneShotTimer, 0);

 xTimer2Started = xTimerStart(xAutoReloadTimer, 0);

 /* The implementation of xTimerStart() uses the timer command queue, and xTimerStart()

 will fail if the timer command queue gets full. The timer service task does not get

 created until the scheduler is started, so all commands sent to the command queue will

 stay in the queue until after the scheduler has been started. Check both calls to

 xTimerStart() passed. */

 if((xTimer1Started == pdPASS) && (xTimer2Started == pdPASS))

 {

 /* Start the scheduler. */

 vTaskStartScheduler();

 }

 }

 /* As always, this line should not be reached. */

 for(;;);

}

Listing 75. Creating and starting the timers used in Example 13

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 165

The timers’ callback functions just print a message each time they are called. The

implementation of the one-shot timer callback function is shown in Listing 76. The

implementation of the auto-reload timer callback function is shown in Listing 77.

static void prvOneShotTimerCallback(TimerHandle_t xTimer)

{

TickType_t xTimeNow;

 /* Obtain the current tick count. */

 xTimeNow = xTaskGetTickCount();

 /* Output a string to show the time at which the callback was executed. */

 vPrintStringAndNumber("One-shot timer callback executing", xTimeNow);

 /* File scope variable. */

 ulCallCount++;

}

Listing 76. The callback function used by the one-shot timer in Example 13

static void prvAutoReloadTimerCallback(TimerHandle_t xTimer)

{

TickType_t xTimeNow;

 /* Obtain the current tick count. */

 xTimeNow = uxTaskGetTickCount();

 /* Output a string to show the time at which the callback was executed. */

 vPrintStringAndNumber("Auto-reload timer callback executing", xTimeNow);

 ulCallCount++;

}

Listing 77. The callback function used by the auto-reload timer in Example 13

Executing this example produces the output shown in Figure 44. Figure 44 shows the auto-

reload timer’s callback function executing with a fixed period of 500 ticks

(mainAUTO_RELOAD_TIMER_PERIOD is set to 500 in Listing 75), and the one-shot timer’s

callback function executing only once, when the tick count is 3333

(mainONE_SHOT_TIMER_PERIOD is set to 3333 in Listing 75).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

166

Figure 44 The output produced when Example 13 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 167

5.6 The Timer ID

Each software timer has an ID, which is a tag value that can be used by the application writer

for any purpose. The ID is stored in a void pointer (void *), so can store an integer value

directly, point to any other object, or be used as a function pointer.

An initial value is assigned to the ID when the software timer is created—after which the ID

can be updated using the vTimerSetTimerID() API function, and queried using the

pvTimerGetTimerID() API function.

Unlike other software timer API functions, vTimerSetTimerID() and pvTimerGetTimerID()

access the software timer directly—they do not send a command to the timer command

queue.

The vTimerSetTimerID() API Function

void vTimerSetTimerID(const TimerHandle_t xTimer, void *pvNewID);

Listing 78. The vTimerSetTimerID() API function prototype

Table 29. vTimerSetTimerID() parameters

Parameter Name/
Returned Value

Description

xTimer The handle of the software timer being updated with a new ID value.

The handle will have been returned from the call to xTimerCreate()

used to create the software timer.

pvNewID The value to which the software timer’s ID will be set.

The pvTimerGetTimerID() API Function

void *pvTimerGetTimerID(TimerHandle_t xTimer);

Listing 79. The pvTimerGetTimerID() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

168

Table 30. pvTimerGetTimerID() parameters and return value

Parameter Name/
Returned Value

Description

xTimer The handle of the software timer being queried. The handle will have

been returned from the call to xTimerCreate() used to create the

software timer.

Returned value The ID of the software timer being queried.

Example 14. Using the callback function parameter and the software timer ID

The same callback function can be assigned to more than one software timer. When that is

done, the callback function parameter is used to determine which software timer expired.

Example 13 used two separate callback functions; one callback function was used by the one-

shot timer, and the other callback function was used by the auto-reload timer. Example 14

creates similar functionality to that created by Example 13, but assigns a single callback

function to both software timers.

The main() function used by Example 14 is almost identical to the main() function used in

Example 13. The only difference is where the software timers are created. This difference is

shown in Listing 80, where prvTimerCallback() is used as the callback function for both timers.

/* Create the one shot timer software timer, storing the handle in xOneShotTimer. */

xOneShotTimer = xTimerCreate("OneShot",

 mainONE_SHOT_TIMER_PERIOD,

 pdFALSE,

 /* The timer’s ID is initialized to 0. */

 0,

 /* prvTimerCallback() is used by both timers. */

 prvTimerCallback);

/* Create the auto-reload software timer, storing the handle in xAutoReloadTimer */

xAutoReloadTimer = xTimerCreate("AutoReload",

 mainAUTO_RELOAD_TIMER_PERIOD,

 pdTRUE,

 /* The timer’s ID is initialized to 0. */

 0,

 /* prvTimerCallback() is used by both timers. */

 prvTimerCallback);

Listing 80. Creating the timers used in Example 14

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 169

prvTimerCallback() will execute when either timer expires. The implementation of

prvTimerCallback() uses the function’s parameter to determine if it was called because the

one-shot timer expired, or because the auto-reload timer expired.

prvTimerCallback() also demonstrates how to use the software timer ID as timer specific

storage; each software timer keeps a count of the number of times it has expired in its own ID,

and the auto-reload timer uses the count to stop itself the fifth time it executes.

The implementation of prvTimerCallback() is shown in Listing 79.

static void prvTimerCallback(TimerHandle_t xTimer)

{

TickType_t xTimeNow;

uint32_t ulExecutionCount;

 /* A count of the number of times this software timer has expired is stored in the timer's

 ID. Obtain the ID, increment it, then save it as the new ID value. The ID is a void

 pointer, so is cast to a uint32_t. */

 ulExecutionCount = (uint32_t) pvTimerGetTimerID(xTimer);

 ulExecutionCount++;

 vTimerSetTimerID(xTimer, (void *) ulExecutionCount);

 /* Obtain the current tick count. */

 xTimeNow = xTaskGetTickCount();

 /* The handle of the one-shot timer was stored in xOneShotTimer when the timer was created.

 Compare the handle passed into this function with xOneShotTimer to determine if it was the

 one-shot or auto-reload timer that expired, then output a string to show the time at which

 the callback was executed. */

 if(xTimer == xOneShotTimer)

 {

 vPrintStringAndNumber("One-shot timer callback executing", xTimeNow);

 }

 else

 {

 /* xTimer did not equal xOneShotTimer, so it must have been the auto-reload timer that

 expired. */

 vPrintStringAndNumber("Auto-reload timer callback executing", xTimeNow);

 if(ulExecutionCount == 5)

 {

 /* Stop the auto-reload timer after it has executed 5 times. This callback function

 executes in the context of the RTOS daemon task so must not call any functions that

 might place the daemon task into the Blocked state. Therefore a block time of 0 is

 used. */

 xTimerStop(xTimer, 0);

 }

 }

}

Listing 81. The timer callback function used in Example 14

The output produced by Example 14 is shown in Figure 45. It can be seen that the auto-

reload timer only executes five times.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

170

Figure 45 The output produced when Example 14 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 171

5.7 Changing the Period of a Timer

Every official FreeRTOS port is provided with one or more example projects. Most example

projects are self-checking, and an LED is used to give visual feedback of the project’s status; if

the self-checks have always passed then the LED is toggled slowly, if a self-check has ever

failed then the LED is toggled quickly.

Some example projects perform the self-checks in a task, and use the vTaskDelay() function

to control the rate at which the LED toggles. Other example projects perform the self-checks

in a software timer callback function, and use the timer’s period to control the rate at which the

LED toggles.

The xTimerChangePeriod() API Function

The period of a software timer is changed using the xTimerChangePeriod() function.

If xTimerChangePeriod() is used to change the period of a timer that is already running, then

the timer will use the new period value to recalculate its expiry time. The recalculated expiry

time is relative to when xTimerChangePeriod() was called, not relative to when the timer was

originally started.

If xTimerChangePeriod() is used to change the period of a timer that is in the Dormant state (a

timer that is not running), then the timer will calculate an expiry time, and transition to the

Running state (the timer will start running).

Note: Never call xTimerChangePeriod() from an interrupt service routine. The interrupt-safe

version xTimerChangePeriodFromISR() should be used in its place.

BaseType_t xTimerChangePeriod(TimerHandle_t xTimer,

 TickType_t xNewTimerPeriodInTicks,

 TickType_t xTicksToWait);

Listing 82. The xTimerChangePeriod() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

172

Table 31. xTimerChangePeriod() parameters and return value

Parameter Name/
Returned Value

Description

xTimer The handle of the software timer being updated with a new period

value. The handle will have been returned from the call to

xTimerCreate() used to create the software timer.

xTimerPeriodInTicks The new period for the software timer, specified in ticks. The

pdMS_TO_TICKS() macro can be used to convert a time specified in

milliseconds into a time specified in ticks.

xTicksToWait xTimerChangePeriod() uses the timer command queue to send the

‘change period’ command to the daemon task. xTicksToWait specifies

the maximum amount of time the calling task should remain in the

Blocked state to wait for space to become available on the timer

command queue, should the queue already be full.

xTimerChangePeriod() will return immediately if xTicksToWait is zero

and the timer command queue is already full.

The macro pdMS_TO_TICKS() can be used to convert a time

specified in milliseconds into a time specified in ticks.

If INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h, then

setting xTicksToWait to portMAX_DELAY will result in the calling task

remaining in the Blocked state indefinitely (without a timeout) to wait

for space to become available in the timer command queue.

If xTimerChangePeriod() is called before the scheduler has been

started, then the value of xTicksToWait is ignored, and

xTimerChangePeriod() behaves as if xTicksToWait had been set to

zero.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 173

Table 31. xTimerChangePeriod() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully sent to the

timer command queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible the calling task was placed into the Blocked state to wait

for space to become available in the timer command queue before

the function returned, but data was successfully written to the timer

command queue before the block time expired.

2. pdFALSE

pdFALSE will be returned if the ‘change period’ command could

not be written to the timer command queue because the queue

was already full.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

the daemon task to make room in the queue, but the specified

block time expired before that happened.

Listing 83 shows how the FreeRTOS examples that include self-checking functionality in a

software timer callback function use xTimerChangePeriod() to increase the rate at which an

LED toggles if a self-check fails. The software timer that performs the self-checks is referred

to as the ‘check timer’.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

174

/* The check timer is created with a period of 3000 milliseconds, resulting in the LED toggling

every 3 seconds. If the self-checking functionality detects an unexpected state, then the check

timer’s period is changed to just 200 milliseconds, resulting in a much faster toggle rate. */

const TickType_t xHealthyTimerPeriod = pdMS_TO_TICKS(3000);

const TickType_t xErrorTimerPeriod = pdMS_TO_TICKS(200);

/* The callback function used by the check timer. */

static void prvCheckTimerCallbackFunction(TimerHandle_t xTimer)

{

static BaseType_t xErrorDetected = pdFALSE;

 if(xErrorDetected == pdFALSE)

 {

 /* No errors have yet been detected. Run the self-checking function again. The

 function asks each task created by the example to report its own status, and also checks

 that all the tasks are actually still running (and so able to report their status

 correctly). */

 if(CheckTasksAreRunningWithoutError() == pdFAIL)

 {

 /* One or more tasks reported an unexpected status. An error might have occurred.

 Reduce the check timer’s period to increase the rate at which this callback function

 executes, and in so doing also increase the rate at which the LED is toggled. This

 callback function is executing in the context of the RTOS daemon task, so a block

 time of 0 is used to ensure the Daemon task never enters the Blocked state. */

 xTimerChangePeriod(xTimer, /* The timer being updated. */

 xErrorTimerPeriod, /* The new period for the timer. */

 0); /* Do not block when sending this command. */

 }

 /* Latch that an error has already been detected. */

 xErrorDetected = pdTRUE;

 }

 /* Toggle the LED. The rate at which the LED toggles will depend on how often this function

 is called, which is determined by the period of the check timer. The timer’s period will

 have been reduced from 3000ms to just 200ms if CheckTasksAreRunningWithoutError() has ever

 returned pdFAIL. */

 ToggleLED();

}

Listing 83. Using xTimerChangePeriod()

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 175

5.8 Resetting a Software Timer

Resetting a software timer means to re-start the timer; the timer’s expiry time is recalculated to

be relative to when the timer was reset, rather than when the timer was originally started. This

is demonstrated by Figure 46, which shows a timer that has a period of 6 being started, then

reset twice, before eventually expiring and executing its callback function.

Timer1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t11 t13 t15

Expiry time calculated

to be t7 (t1 + 6 = t7)

Timer 1

is started

Expiry time re-

calculated to be t11

Expiry time re-

calculated to be t15

Timer 1

is reset

Timer 1

executes

Timer 1

is reset

Figure 46 Starting and resetting a software timer that has a period of 6 ticks

Referring to Figure 46:

 Timer 1 is started at time t1. It has a period of 6, so the time at which it will execute its

callback function is originally calculated to be t7, which is 6 ticks after it was started.

 Timer 1 is reset before time t7 is reached, so before it had expired and executed its

callback function. Timer 1 is reset at time t5, so the time at which it will execute its

callback function is re-calculated to be t11, which is 6 ticks after it was reset.

 Timer 1 is reset again before time t11, so again before it had expired and executed its

callback function. Timer 1 is reset at time t9, so the time at which it will execute its

callback function is re-calculated to be t15, which is 6 ticks after it was last reset.

 Timer 1 is not reset again, so it expires at time t15, and its callback function is executed

accordingly.

The xTimerReset() API Function

A timer is reset using the xTimerReset() API function.

xTimerReset() can also be used to start a timer that is in the Dormant state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

176

Note: Never call xTimerReset() from an interrupt service routine. The interrupt-safe version

xTimerResetFromISR() should be used in its place.

BaseType_t xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait);

Listing 84. The xTimerReset() API function prototype

Table 32. xTimerReset() parameters and return value

Parameter Name/
Returned Value

Description

xTimer The handle of the software timer being reset or started. The handle

will have been returned from the call to xTimerCreate() used to create

the software timer.

xTicksToWait xTimerChangePeriod() uses the timer command queue to send the

‘reset’ command to the daemon task. xTicksToWait specifies the

maximum amount of time the calling task should remain in the Blocked

state to wait for space to become available on the timer command

queue, should the queue already be full.

xTimerReset() will return immediately if xTicksToWait is zero and the

timer command queue is already full.

If INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h then

setting xTicksToWait to portMAX_DELAY will result in the calling task

remaining in the Blocked state indefinitely (without a timeout) to wait

for space to become available in the timer command queue.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 177

Table 32. xTimerReset() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully sent to the

timer command queue.

If a block time was specified (xTicksToWait was not zero), then it is

possible the calling task was placed into the Blocked state to wait

for space to become available in the timer command queue before

the function returned, but data was successfully written to the timer

command queue before the block time expired.

2. pdFALSE

pdFALSE will be returned if the ‘reset’ command could not be

written to the timer command queue because the queue was

already full.

If a block time was specified (xTicksToWait was not zero) then the

calling task will have been placed into the Blocked state to wait for

the daemon task to make room in the queue, but the specified

block time expired before that happened.

Example 15. Resetting a software timer

This example simulates the behavior of the backlight on a cell phone. The backlight:

 Turns on when a key is pressed.

 Remains on provided further keys are pressed within a certain time period.

 Automatically turns off if no key presses are made within a certain time period.

A one-shot software timer is used to implement this behavior:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

178

 The [simulated] backlight is turned on when a key is pressed, and turned off in the

software timer’s callback function.

 The software timer is reset each time a key is pressed.

 The time period during which a key must be pressed to prevent the backlight being

turned off is therefore equal to the period of the software timer; if the software timer is

not reset by a key press before the timer expires, then the timer’s callback function

executes, and the backlight is turned off.

The xSimulatedBacklightOn variable holds the backlight state. xSimulatedBacklightOn is set

to pdTRUE to indicate the backlight is on, and pdFALSE to indicate the backlight is off.

The software timer callback function is shown in Listing 85.

static void prvBacklightTimerCallback(TimerHandle_t xTimer)

{

TickType_t xTimeNow = xTaskGetTickCount();

 /* The backlight timer expired, turn the backlight off. */

 xSimulatedBacklightOn = pdFALSE;

 /* Print the time at which the backlight was turned off. */

 vPrintStringAndNumber(

 "Timer expired, turning backlight OFF at time\t\t", xTimeNow);

}

Listing 85. The callback function for the one-shot timer used in Example 15

Example 15 creates a task to poll the keyboard1. The task is shown in Listing 86, but for the

reasons described in the next paragraph, Listing 86 is not intended to be representative of an

optimal design.

Using FreeRTOS allows your application to be event driven. Event driven designs use

processing time very efficiently, because processing time is only used if an event has

occurred, and processing time is not wasted polling for events that have not occurred.

Example 15 could not be made event driven because it is not practical to process keyboard

interrupts when using the FreeRTOS Windows port, so the much less efficient polling

1 Printing to the Windows console, and reading keys from the Windows console, both result in the
execution of Windows system calls. Windows system calls, including use of the Windows console,
disks, or TCP/IP stack, can adversely affect the behavior of the FreeRTOS Windows port, and should
normally be avoided.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 179

technique had to be used instead. If Listing 86 was an interrupt service routine, then

xTimerResetFromISR() would be used in place of xTimerReset().

static void vKeyHitTask(void *pvParameters)

{

const TickType_t xShortDelay = pdMS_TO_TICKS(50);

TickType_t xTimeNow;

 vPrintString("Press a key to turn the backlight on.\r\n");

 /* Ideally an application would be event driven, and use an interrupt to process key

 presses. It is not practical to use keyboard interrupts when using the FreeRTOS Windows

 port, so this task is used to poll for a key press. */

 for(;;)

 {

 /* Has a key been pressed? */

 if(_kbhit() != 0)

 {

 /* A key has been pressed. Record the time. */

 xTimeNow = xTaskGetTickCount();

 if(xSimulatedBacklightOn == pdFALSE)

 {

 /* The backlight was off, so turn it on and print the time at which it was

 turned on. */

 xSimulatedBacklightOn = pdTRUE;

 vPrintStringAndNumber(

 "Key pressed, turning backlight ON at time\t\t", xTimeNow);

 }

 else

 {

 /* The backlight was already on, so print a message to say the timer is about to

 be reset and the time at which it was reset. */

 vPrintStringAndNumber(

 "Key pressed, resetting software timer at time\t\t", xTimeNow);

 }

 /* Reset the software timer. If the backlight was previously off, then this call

 will start the timer. If the backlight was previously on, then this call will

 restart the timer. A real application may read key presses in an interrupt. If

 this function was an interrupt service routine then xTimerResetFromISR() must be

 used instead of xTimerReset(). */

 xTimerReset(xBacklightTimer, xShortDelay);

 /* Read and discard the key that was pressed – it is not required by this simple

 example. */

 (void) _getch();

 }

 }

}

Listing 86. The task used to reset the software timer in Example 15

The output produced when Example 15 is executed is shown in Figure 47. With reference to

Figure 47:

 The first key press occurred when the tick count was 812. At that time the backlight

was turned on, and the one-shot timer was started.

 Further key presses occurred when the tick count was 1813, 3114, 4015 and 5016. All

of these key presses resulted in the timer being reset before the timer had expired.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

180

 The timer expired when the tick count was 10016. At that time the backlight was

turned off.

Figure 47 The output produced when Example 15 is executed

It can be seen in Figure 47 that the timer had a period of 5000 ticks; the backlight was turned

off exactly 5000 ticks after a key was last pressed, so 5000 ticks after the timer was last reset.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 181

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

182

Chapter 6

Interrupt Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 183

6.1 Chapter Introduction and Scope

Events

Embedded real-time systems have to take actions in response to events that originate from

the environment. For example, a packet arriving on an Ethernet peripheral (the event) might

require passing to a TCP/IP stack for processing (the action). Non-trivial systems will have to

service events that originate from multiple sources, all of which will have different processing

overhead and response time requirements. In each case, a judgment has to be made as to

the best event processing implementation strategy:

1. How should the event be detected? Interrupts are normally used, but inputs can also

be polled.

2. When interrupts are used, how much processing should be performed inside the

interrupt service routine (ISR), and how much outside? It is normally desirable to keep

each ISR as short as possible.

3. How events are communicated to the main (non-ISR) code, and how can this code be

structured to best accommodate processing of potentially asynchronous occurrences?

FreeRTOS does not impose any specific event processing strategy on the application

designer, but does provide features that allow the chosen strategy to be implemented in a

simple and maintainable way.

It is important to draw a distinction between the priority of a task, and the priority of an

interrupt:

 A task is a software feature that is unrelated to the hardware on which FreeRTOS is

running. The priority of a task is assigned in software by the application writer, and a

software algorithm (the scheduler) decides which task will be in the Running state.

 Although written in software, an interrupt service routine is a hardware feature because

the hardware controls which interrupt service routine will run, and when it will run.

Tasks will only run when there are no ISRs running, so the lowest priority interrupt will

interrupt the highest priority task, and there is no way for a task to pre-empt an ISR.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

184

All architectures on which FreeRTOS will run are capable of processing interrupts, but details

relating to interrupt entry, and interrupt priority assignment, vary between architectures.

Scope

This chapter aims to give readers a good understanding of:

 Which FreeRTOS API functions can be used from within an interrupt service routine.

 Methods of deferring interrupt processing to a task.

 How to create and use binary semaphores and counting semaphores.

 The differences between binary and counting semaphores.

 How to use a queue to pass data into and out of an interrupt service routine.

 The interrupt nesting model available with some FreeRTOS ports.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 185

6.2 Using the FreeRTOS API from an ISR

The Interrupt Safe API

Often it is necessary to use the functionality provided by a FreeRTOS API function from an

interrupt service routine (ISR), but many FreeRTOS API functions perform actions that are not

valid inside an ISR—the most notable of which is placing the task that called the API function

into the Blocked state; if an API function is called from an ISR, then it is not being called from a

task, so there is no calling task that can be placed into the Blocked state. FreeRTOS solves

this problem by providing two versions of some API functions; one version for use from tasks,

and one version for use from ISRs. Functions intended for use from ISRs have “FromISR”

appended to their name.

Note: Never call a FreeRTOS API function that does not have “FromISR” in its name from an

ISR.

The Benefits of Using a Separate Interrupt Safe API

Having a separate API for use in interrupts allows task code to be more efficient, ISR code to

be more efficient, and interrupt entry to be simpler. To see why, consider the alternative

solution, which would have been to provide a single version of each API function that could be

called from both a task and an ISR. If the same version of an API function could be called

from both a task and an ISR then:

 The API functions would need additional logic to determine if they had been called from

a task or an ISR. The additional logic would introduce new paths through the function,

making the functions longer, more complex, and harder to test.

 Some API function parameters would be obsolete when the function was called from a

task, while others would be obsolete when the function was called from an ISR.

 Each FreeRTOS port would need to provide a mechanism for determining the

execution context (task or ISR).

 Architectures on which it is not easy to determine the execution context (task or ISR)

would require additional, wasteful, more complex to use, and non-standard interrupt

entry code that allowed the execution context to be provided by software.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

186

The Disadvantages of Using a Separate Interrupt Safe API

Having two versions of some API functions allows both tasks and ISRs to be more efficient,

but introduces a new problem; sometimes it is necessary to call a function that is not part of

the FreeRTOS API, but makes use of the FreeRTOS API, from both a task and an ISR.

This is normally only a problem when integrating third party code, as that is the only time when

the software’s design is out of the control of the application writer. If this does become an

issue then the problem can be overcome using one of the following techniques:

1. Defer interrupt processing to a task1, so the API function is only ever called from the

context of a task.

2. If you are using a FreeRTOS port that supports interrupt nesting, then use the version

of the API function that ends in “FromISR”, as that version can be called from tasks and

ISRs (the reverse is not true, API functions that do not end in “FromISR” must not be

called from an ISR).

3. Third party code normally includes an RTOS abstraction layer that can be implemented

to test the context from which the function is being called (task or interrupt), and then

call the API function that is appropriate for the context.

The xHigherPriorityTaskWoken Parameter

This section introduces the concept of the xHigherPriorityTaskWoken parameter. Do not be

concerned if you do not fully understand this section yet, as practical examples are provided in

following sections.

If a context switch is performed by an interrupt, then the task running when the interrupt exits

might be different to the task that was running when the interrupt was entered—the interrupt

will have interrupted one task, but returned to a different task.

Some FreeRTOS API functions can move a task from the Blocked state to the Ready state.

This has already been seen with functions such as xQueueSendToBack(), which will unblock a

task if there was a task waiting in the Blocked state for data to become available on the

subject queue.

1 Deferred interrupt processing is covered in the next section of this book.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 187

If the priority of a task that is unblocked by a FreeRTOS API function is higher than the priority

of the task in the Running state then, in accordance with the FreeRTOS scheduling policy, a

switch to the higher priority task should occur. When the switch to the higher priority task

actually occurs is dependent on the context from which the API function is called:

 If the API function was called from a task

If configUSE_PREEMPTION is set to 1 in FreeRTOSConfig.h then the switch to the higher

priority task occurs automatically within the API function—so before the API function has

exited. This has already been seen in Figure 43, where writing to the timer command

queue resulted in a switch to the RTOS daemon task before the function that wrote to the

command queue had exited.

 If the API function was called from an interrupt

A switch to a higher priority task will not occur automatically inside an interrupt. Instead, a

variable is set to inform the application writer that a context switch should be performed.

Interrupt safe API functions (those that end in “FromISR”) have a pointer parameter called

pxHigherPriorityTaskWoken that is used for this purpose.

If a context switch should be performed, then the interrupt safe API function will set

*pxHigherPriorityTaskWoken to pdTRUE. To be able to detect this has happened, the

variable pointed to by pxHigherPriorityTaskWoken must be initialized to pdFALSE before it

is used for the first time.

If the application writer opts not to request a context switch from the ISR, then the higher

priority task will remain in the Ready state until the next time the scheduler runs—which in

the worst case will be during the next tick interrupt.

FreeRTOS API functions can only set *pxHighPriorityTaskWoken to pdTRUE. If an ISR

calls more than one FreeRTOS API function, then the same variable can be passed as the

pxHigherPriorityTaskWoken parameter in each API function call, and the variable only

needs to be initialized to pdFALSE before it is used for the first time.

There are several reasons why context switches do not occur automatically inside the interrupt

safe version of an API function:

1. Avoiding unnecessary context switches

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

188

An interrupt may execute more than once before it is necessary for a task to perform any

processing. For example, consider a scenario where a task processes a string that was

received by an interrupt driven UART; it would be wasteful for the UART ISR to switch to

the task each time a character was received because the task would only have processing

to perform after the complete string had been received.

2. Control over the execution sequence

Interrupts can occur sporadically, and at unpredictable times. Expert FreeRTOS users may

want to temporarily avoid an unpredictable switch to a different task at specific points in

their application—although this can also be achieved using the FreeRTOS scheduler

locking mechanism.

3. Portability

It is the simplest mechanism that can be used across all FreeRTOS ports.

4. Efficiency

Ports that target smaller processor architectures only allow a context switch to be

requested at the very end of an ISR, and removing that restriction would require additional

and more complex code. It also allows more than one call to a FreeRTOS API function

within the same ISR without generating more than one request for a context switch within

the same ISR.

5. Execution in the RTOS tick interrupt

As will be seen later in this book, it is possible to add application code into the RTOS tick

interrupt. The result of attempting a context switch inside the tick interrupt is dependent on

the FreeRTOS port in use. At best, it will result in an unnecessary call to the scheduler.

Use of the pxHigherPriorityTaskWoken parameter is optional. If it is not required, then set

pxHigherPriorityTaskWoken to NULL.

The portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() Macros

This section introduces the macros that are used to request a context switch from an ISR. Do

not be concerned if you do not fully understand this section yet, as practical examples are

provided in following sections.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 189

taskYIELD() is a macro that can be called in a task to request a context switch.

portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() are both interrupt safe versions of

taskYIELD(). portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() are both used in the

same way, and do the same thing1. Some FreeRTOS ports only provide one of the two

macros. Newer FreeRTOS ports provide both macros. The examples in this book use

portYIELD_FROM_ISR().

portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);

Listing 87. The portEND_SWITCHING_ISR() macros

portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

Listing 88. The portYIELD_FROM_ISR() macros

The xHigherPriorityTaskWoken parameter passed out of an interrupt safe API function can be

used directly as the parameter in a call to portYIELD_FROM_ISR().

If the portYIELD_FROM_ISR() xHigherPriorityTaskWoken parameter is pdFALSE (zero), then

a context switch is not requested, and the macro has no effect. If the portYIELD_FROM_ISR()

xHigherPriorityTaskWoken parameter is not pdFALSE, then a context switch is requested, and

the task in the Running state might change. The interrupt will always return to the task in the

Running state, even if the task in the Running state changed while the interrupt was executing.

Most FreeRTOS ports allow portYIELD_FROM_ISR() to be called anywhere within an ISR. A

few FreeRTOS ports (predominantly those for smaller architectures), only allow

portYIELD_FROM_ISR() to be called at the very end of an ISR.

1 Historically, portEND_SWITCHING_ISR() was the name used in FreeRTOS ports that required
interrupt handlers to use an assembly code wrapper, and portYIELD_FROM_ISR() was the name used
in FreeRTOS ports that allowed the entire interrupt handler to be written in C.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

190

6.3 Deferred Interrupt Processing

It is normally considered best practice to keep ISRs as short as possible. Reasons for this

include:

 Even if tasks have been assigned a very high priority, they will only run if no interrupts

are being serviced by the hardware.

 ISRs can disrupt (add ‘jitter’ to) both the start time, and the execution time, of a task.

 Depending on the architecture on which FreeRTOS is running, it might not be possible

to accept any new interrupts, or at least a subset of new interrupts, while an ISR is

executing.

 The application writer needs to consider the consequences of, and guard against,

resources such as variables, peripherals, and memory buffers being accessed by a

task and an ISR at the same time.

 Some FreeRTOS ports allow interrupts to nest, but interrupt nesting can increase

complexity and reduce predictability. The shorter an interrupt is, the less likely it is to

nest.

An interrupt service routine must record the cause of the interrupt, and clear the interrupt.

Any other processing necessitated by the interrupt can often be performed in a task, allowing

the interrupt service routine to exit as quickly as is practical. This is called ‘deferred interrupt

processing’, because the processing necessitated by the interrupt is ‘deferred’ from the ISR to

a task.

Deferring interrupt processing to a task also allows the application writer to prioritize the

processing relative to other tasks in the application, and use all the FreeRTOS API functions.

If the priority of the task to which interrupt processing is deferred is above the priority of any

other task, then the processing will be performed immediately, just as if the processing had

been performed in the ISR itself. This scenario is shown in Figure 48, in which Task 1 is a

normal application task, and Task 2 is the task to which interrupt processing is deferred.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 191

ISR

Task2
(deferred processing task)

Task1

t1 t3t2 t4

1 - Task1 is Running when an

interrupt occurs.

2 - The ISR executes, handles

the interrupting peripheral,

clears the interrupt, then

unblocks Task 2.

3 - The priority of Task 2 is higher than

the priority of Task 1, so the ISR returns

directly to Task 2, in which the interrupt

processing is completed.

4 - Task 2 enters the

Blocked state to wait for

the next interrupt, allowing

Task 1 to re-enter the

Running state.

Figure 48 Completing interrupt processing in a high priority task

In Figure 48, interrupt processing starts at time t2, and effectively ends at time t4, but only the

period between times t2 and t3 is spent in the ISR. If deferred interrupt processing had not

been used then the entire period between times t2 and t4 would have been spent in the ISR.

There is no absolute rule as to when it is best to perform all processing necessitated by an

interrupt in the ISR, and when it is best to defer part of the processing to a task. Deferring

processing to a task is most useful when:

 The processing necessitated by the interrupt is not trivial. For example, if the interrupt

is just storing the result of an analog to digital conversion, then it is almost certain this

is best performed inside the ISR, but if result of the conversion must also be passed

through a software filter, then it may be best to execute the filter in a task.

 It is convenient for the interrupt processing to perform an action that cannot be

performed inside an ISR, such as write to a console, or allocate memory.

 The interrupt processing is not deterministic—meaning it is not known in advance how

long the processing will take.

The following sections describe and demonstrate the concepts introduced in this chapter so

far, including FreeRTOS features that can be used to implement deferred interrupt processing.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

192

6.4 Binary Semaphores Used for Synchronization

The interrupt safe version of the Binary Semaphore API can be used to unblock a task each

time a particular interrupt occurs, effectively synchronizing the task with the interrupt. This

allows the majority of the interrupt event processing to be implemented within the

synchronized task, with only a very fast and short portion remaining directly in the ISR. As

described in the previous section, the binary semaphore is used to ‘defer’ interrupt processing

to a task1.

As previously demonstrated in Figure 48, if the interrupt processing is particularly time critical,

then the priority of the deferred processing task can be set to ensure the task always pre-

empts the other tasks in the system. The ISR can then be implemented to include a call to

portYIELD_FROM_ISR(), ensuring the ISR returns directly to the task to which interrupt

processing is being deferred. This has the effect of ensuring the entire event processing

executes contiguously (without a break) in time, just as if it had all been implemented within

the ISR itself. Figure 49 repeats the scenario shown in Figure 48, but with the text updated to

describe how the execution of the deferred processing task can be controlled using a

semaphore.

ISR

Task2
(deferred processing task)

Task1

t1 t3t2 t4

2 - The ISR executes, handles

the interrupting peripheral,

clears the interrupt, then ‘gives’

a semaphore to unblock Task 2.

3 - Task 2 completes

any further processing

necessitated by the

interrupt, then blocks

on the semaphore to

wait to be unblocked

again by the next

interrupt.

1 - When the interrupt

occurs, Task1 is Running,

and Task2 is Blocked

waiting for a semaphore.

Figure 49. Using a binary semaphore to implement deferred interrupt processing

The deferred processing task uses a blocking ‘take’ call to a semaphore as a means of

entering the Blocked state to wait for the event to occur. When the event occurs, the ISR uses

1 It is more efficient to unblock a task from an interrupt using a direct to task notification than it is using a
binary semaphore. Direct to task notifications are not covered until Chapter 9, Task Notifications.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 193

a ‘give’ operation on the same semaphore to unblock the task so that the required event

processing can proceed.

‘Taking a semaphore’ and ‘giving a semaphore’ are concepts that have different meanings

depending on their usage scenario. In this interrupt synchronization scenario, the binary

semaphore can be considered conceptually as a queue with a length of one. The queue can

contain a maximum of one item at any time, so is always either empty or full (hence, binary).

By calling xSemaphoreTake(), the task to which interrupt processing is deferred effectively

attempts to read from the queue with a block time, causing the task to enter the Blocked state

if the queue is empty. When the event occurs, the ISR uses the xSemaphoreGiveFromISR()

function to place a token (the semaphore) into the queue, making the queue full. This causes

the task to exit the Blocked state and remove the token, leaving the queue empty once more.

When the task has completed its processing, it once more attempts to read from the queue

and, finding the queue empty, re-enters the Blocked state to wait for the next event. This

sequence is demonstrated in Figure 50.

Figure 50 shows the interrupt ‘giving’ the semaphore, even though it has not first ‘taken’ it, and

the task ‘taking’ the semaphore, but never giving it back. This is why the scenario is described

as being conceptually similar to writing to and reading from a queue. It often causes confusion

as it does not follow the same rules as other semaphore usage scenarios, where a task that

takes a semaphore must always give it back—such as the scenarios described in Chapter 7,

Resource Management.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

194

Task

xSemaphoreTake()

...that now successfully

‘takes’ the semaphore, so it

is unavailable once more.

Task

The task can now perform its action, when complete

it will once again attempt to ‘take’ the semaphore

which will cause it to re-enter the Blocked state.

Task

The semaphore is not

available...

...so the task is blocked

waiting for the semaphore

xSemaphoreTake()

Task

xSemaphoreTake()
Interrupt!

An interrupt occurs...that

‘gives’ the semaphore….

xSemaphoreGiveFromISR()

Task

xSemaphoreTake()
Interrupt!

xSemaphoreGiveFromISR()

...which unblocks the task

(the semaphore is now

available)...

Figure 50. Using a binary semaphore to synchronize a task with an interrupt

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 195

The xSemaphoreCreateBinary() API Function

FreeRTOS V9.0.0 also includes the xSemaphoreCreateBinaryStatic() function, which allocates the memory

required to create a binary semaphore statically at compile time: Handles to all the various types of

FreeRTOS semaphore are stored in a variable of type SemaphoreHandle_t.

Before a semaphore can be used, it must be created. To create a binary semaphore, use the

xSemaphoreCreateBinary() API function1.

SemaphoreHandle_t xSemaphoreCreateBinary(void);

Listing 89. The xSemaphoreCreateBinary() API function prototype

Table 33. xSemaphoreCreateBinary() Return Value

Parameter Name Description

Returned value If NULL is returned, then the semaphore cannot be created because

there is insufficient heap memory available for FreeRTOS to allocate the

semaphore data structures.

A non-NULL value being returned indicates that the semaphore has been

created successfully. The returned value should be stored as the handle

to the created semaphore.

The xSemaphoreTake() API Function

‘Taking’ a semaphore means to ‘obtain’ or ‘receive’ the semaphore. The semaphore can be

taken only if it is available.

All the various types of FreeRTOS semaphore, except recursive mutexes, can be ‘taken’ using

the xSemaphoreTake() function.

xSemaphoreTake() must not be used from an interrupt service routine.

1 Some Semaphore API functions are actually macros, not functions. For simplicity, they are all referred
to as functions throughout this book.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

196

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait);

Listing 90. The xSemaphoreTake() API function prototype

Table 34. xSemaphoreTake() parameters and return value

Parameter Name/
Returned Value

Description

xSemaphore The semaphore being ‘taken’.

A semaphore is referenced by a variable of type SemaphoreHandle_t. It

must be explicitly created before it can be used.

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for the semaphore if it is not already available.

If xTicksToWait is zero, then xSemaphoreTake() will return immediately if

the semaphore is not available.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without a timeout) if INCLUDE_vTaskSuspend is set to 1 in

FreeRTOSConfig.h.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 197

Table 34. xSemaphoreTake() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS is returned only if the call to xSemaphoreTake() was

successful in obtaining the semaphore.

If a block time was specified (xTicksToWait was not zero), then it is

possible that the calling task was placed into the Blocked state to wait

for the semaphore if it was not immediately available, but the

semaphore became available before the block time expired.

2. pdFALSE

The semaphore is not available.

If a block time was specified (xTicksToWait was not zero), then the

calling task will have been placed into the Blocked state to wait for the

semaphore to become available, but the block time expired before this

happened.

The xSemaphoreGiveFromISR() API Function

Binary and counting semaphores1 can be ‘given’ using the xSemaphoreGiveFromISR()

function.

xSemaphoreGiveFromISR() is the interrupt safe version of xSemaphoreGive(), so has the

pxHigherPriorityTaskWoken parameter that was described at the start of this chapter.

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore,

 BaseType_t *pxHigherPriorityTaskWoken);

Listing 91. The xSemaphoreGiveFromISR() API function prototype

1 Counting semaphores are described in a later section of this book.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

198

Table 35. xSemaphoreGiveFromISR() parameters and return value

Parameter Name/
Returned Value

Description

xSemaphore The semaphore being ‘given’.

A semaphore is referenced by a variable of type

SemaphoreHandle_t, and must be explicitly created before

being used.

pxHigherPriorityTaskWoken It is possible that a single semaphore will have one or more

tasks blocked on it waiting for the semaphore to become

available. Calling xSemaphoreGiveFromISR() can make the

semaphore available, and so cause a task that was waiting

for the semaphore to leave the Blocked state. If calling

xSemaphoreGiveFromISR() causes a task to leave the

Blocked state, and the unblocked task has a priority higher

than the currently executing task (the task that was

interrupted), then, internally, xSemaphoreGiveFromISR() will

set *pxHigherPriorityTaskWoken to pdTRUE.

If xSemaphoreGiveFromISR() sets this value to pdTRUE,

then normally a context switch should be performed before

the interrupt is exited. This will ensure that the interrupt

returns directly to the highest priority Ready state task.

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned only if the call to

xSemaphoreGiveFromISR() is successful.

2. pdFAIL

If a semaphore is already available, it cannot be given,

and xSemaphoreGiveFromISR() will return pdFAIL.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 199

Example 16. Using a binary semaphore to synchronize a task with an interrupt

This example uses a binary semaphore to unblock a task from an interrupt service routine—

effectively synchronizing the task with the interrupt.

A simple periodic task is used to generate a software interrupt every 500 milliseconds. A

software interrupt is used for convenience because of the complexity of hooking into a real

interrupt in some target environments. Listing 92 shows the implementation of the periodic

task. Note that the task prints out a string both before and after the interrupt is generated.

This allows the sequence of execution to be observed in the output produced when the

example is executed.

/* The number of the software interrupt used in this example. The code shown is from

the Windows project, where numbers 0 to 2 are used by the FreeRTOS Windows port

itself, so 3 is the first number available to the application. */

#define mainINTERRUPT_NUMBER 3

static void vPeriodicTask(void *pvParameters)

{

const TickType_t xDelay500ms = pdMS_TO_TICKS(500UL);

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Block until it is time to generate the software interrupt again. */

 vTaskDelay(xDelay500ms);

 /* Generate the interrupt, printing a message both before and after

 the interrupt has been generated, so the sequence of execution is evident

 from the output.

 The syntax used to generate a software interrupt is dependent on the

 FreeRTOS port being used. The syntax used below can only be used with

 the FreeRTOS Windows port, in which such interrupts are only simulated. */

 vPrintString("Periodic task - About to generate an interrupt.\r\n");

 vPortGenerateSimulatedInterrupt(mainINTERRUPT_NUMBER);

 vPrintString("Periodic task - Interrupt generated.\r\n\r\n\r\n");

 }

}

Listing 92. Implementation of the task that periodically generates a software
interrupt in Example 16

Listing 93 shows the implementation of the task to which the interrupt processing is deferred—

the task that is synchronized with the software interrupt through the use of a binary

semaphore. Again, a string is printed out on each iteration of the task, so the sequence in

which the task and the interrupt execute is evident from the output produced when the

example is executed.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

200

It should be noted that, while the code shown in Listing 93 is adequate for Example 16, where

interrupts are generated by software, it is not adequate for scenarios where interrupts are

generated by hardware peripherals. A following sub-section describes how the structure of the

code needs to be changed to make it suitable for use with hardware generated interrupts.

static void vHandlerTask(void *pvParameters)

{

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Use the semaphore to wait for the event. The semaphore was created

 before the scheduler was started, so before this task ran for the first

 time. The task blocks indefinitely, meaning this function call will only

 return once the semaphore has been successfully obtained - so there is

 no need to check the value returned by xSemaphoreTake(). */

 xSemaphoreTake(xBinarySemaphore, portMAX_DELAY);

 /* To get here the event must have occurred. Process the event (in this

 Case, just print out a message). */

 vPrintString("Handler task - Processing event.\r\n");

 }

}

Listing 93. The implementation of the task to which the interrupt processing is
deferred (the task that synchronizes with the interrupt) in Example 16

Listing 94 shows the ISR. This does very little other than ‘give’ the semaphore to unblock the

task to which interrupt processing is deferred.

Note how the xHigherPriorityTaskWoken variable is used. It is set to pdFALSE before calling

xSemaphoreGiveFromISR(), then used as the parameter when portYIELD_FROM_ISR() is

called. A context switch will be requested inside the portYIELD_FROM_ISR() macro if

xHigherPriorityTaskWoken equals pdTRUE.

The prototype of the ISR, and the macro called to force a context switch, are both correct for

the FreeRTOS Windows port, and may be different for other FreeRTOS ports. Refer to the

port specific documentation pages on the FreeRTOS.org website, and the examples provided

in the FreeRTOS download, to find the syntax required for the port you are using.

Unlike most architectures on which FreeRTOS runs, the FreeRTOS Windows port requires an

ISR to return a value. The implementation of the portYIELD_FROM_ISR() macro provided

with the Windows port includes the return statement, so Listing 94 does not show a value

being returned explicitly.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 201

static uint32_t ulExampleInterruptHandler(void)

{

BaseType_t xHigherPriorityTaskWoken;

 /* The xHigherPriorityTaskWoken parameter must be initialized to pdFALSE as

 it will get set to pdTRUE inside the interrupt safe API function if a

 context switch is required. */

 xHigherPriorityTaskWoken = pdFALSE;

 /* 'Give' the semaphore to unblock the task, passing in the address of

 xHigherPriorityTaskWoken as the interrupt safe API function's

 pxHigherPriorityTaskWoken parameter. */

 xSemaphoreGiveFromISR(xBinarySemaphore, &xHigherPriorityTaskWoken);

 /* Pass the xHigherPriorityTaskWoken value into portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken was set to pdTRUE inside xSemaphoreGiveFromISR()

 then calling portYIELD_FROM_ISR() will request a context switch. If

 xHigherPriorityTaskWoken is still pdFALSE then calling

 portYIELD_FROM_ISR() will have no effect. Unlike most FreeRTOS ports, the

 Windows port requires the ISR to return a value - the return statement

 is inside the Windows version of portYIELD_FROM_ISR(). */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 94. The ISR for the software interrupt used in Example 16

The main() function creates the binary semaphore, creates the tasks, installs the interrupt

handler, and starts the scheduler. The implementation is shown in Listing 95.

The syntax of the function called to install an interrupt handler is specific to the FreeRTOS

Windows port, and may be different for other FreeRTOS ports. Refer to the port specific

documentation pages on the FreeRTOS.org website, and the examples provided in the

FreeRTOS download, to find the syntax required for the port you are using.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

202

int main(void)

{

 /* Before a semaphore is used it must be explicitly created. In this example

 a binary semaphore is created. */

 xBinarySemaphore = xSemaphoreCreateBinary();

 /* Check the semaphore was created successfully. */

 if(xBinarySemaphore != NULL)

 {

 /* Create the 'handler' task, which is the task to which interrupt

 processing is deferred. This is the task that will be synchronized with

 the interrupt. The handler task is created with a high priority to ensure

 it runs immediately after the interrupt exits. In this case a priority of

 3 is chosen. */

 xTaskCreate(vHandlerTask, "Handler", 1000, NULL, 3, NULL);

 /* Create the task that will periodically generate a software interrupt.

 This is created with a priority below the handler task to ensure it will

 get preempted each time the handler task exits the Blocked state. */

 xTaskCreate(vPeriodicTask, "Periodic", 1000, NULL, 1, NULL);

 /* Install the handler for the software interrupt. The syntax necessary

 to do this is dependent on the FreeRTOS port being used. The syntax

 shown here can only be used with the FreeRTOS windows port, where such

 interrupts are only simulated. */

 vPortSetInterruptHandler(mainINTERRUPT_NUMBER, ulExampleInterruptHandler);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 }

 /* As normal, the following line should never be reached. */

 for(;;);

}

Listing 95. The implementation of main() for Example 16

Example 16 produces the output shown in Figure 51. As expected, vHandlerTask() enters the

Running state as soon as the interrupt is generated, so the output from the task splits the

output produced by the periodic task. Further explanation is provided in Figure 52.

Figure 51. The output produced when Example 16 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 203

Interrupt

Handler

t1 t2

Periodic

1 - The Idle task is running most of the

time. Every 500ms it gets pre-empted by

the Periodic task.

Idle

Time

2 - The Periodic task prints its first

message then forces an interrupt. The

interrupt service routine (ISR) executes

immediately.

3 - The ISR ‘gives’ the semaphore, causing vHandlerTask() to unblock.

The ISR then returns directly to vHandlerTask() because the task is the

highest priority Ready state task. vHandlerTask() prints out its message

before returning to the Blocked state to wait for the next interrupt.

4 - The Periodic task is once again the highest priority task - it prints

out its second message before entering the Blocked state again to wait

for the next time period. This leaves just the Idle task able to run.

Figure 52. The sequence of execution when Example 16 is executed

Improving the Implementation of the Task Used in Example 16

Example 16 used a binary semaphore to synchronize a task with an interrupt. The execution

sequence was as follows:

1. The interrupt occurred.

2. The ISR executed and ‘gave’ the semaphore to unblock the task.

3. The task executed immediately after the ISR, and ‘took’ the semaphore.

4. The task processed the event, then attempted to ‘take’ the semaphore again—entering

the Blocked state because the semaphore was not yet available (another interrupt had

not yet occurred).

The structure of the task used in Example 16 is adequate only if interrupts occur at a relatively

low frequency. To understand why, consider what would happen if a second, and then a third,

interrupt had occurred before the task had completed its processing of the first interrupt:

 When the second ISR executed the semaphore would be empty, so the ISR would give

the semaphore, and the task would process the second event immediately after it had

completed processing the first event. That scenario is shown in Figure 53.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

204

 When the third ISR executed, the semaphore would already be available, preventing

the ISR giving the semaphore again, so the task would not know the third event had

occurred. That scenario is shown in Figure 54.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 205

Task

vProcessEvent()

The task takes the semaphore (without entering the

Blocked state), then processes the second event.

Task

xSemaphoreTake()

When the task has finished processing the first event it calls xSemaphoreTake() again.

Another interrupt has already occurred, so the semaphore is already available.

TaskInterrupt!

xSemaphoreGiveFromISR()

The task is still processing

the first event.

Another interrupt occurs while the task is still processing the

first event. The ISR ‘gives’ the semaphore again, effectively

latching the event so the event is not lost.

vProcessEvent()

Task

vProcessEvent()

The task ‘takes’ the semaphore, so the semaphore is no longer

available. The task then starts to process the first event.

Task

xSemaphoreTake()

Interrupt!

An interrupt ‘gives’ the

semaphore….

xSemaphoreGiveFromISR()

… which unblocks the task.

Task

The semaphore is not

available...

...the task is blocked

waiting for the semaphore.

xSemaphoreTake()

Figure 53. The scenario when one interrupt occurs before the task has finished
processing the first event

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

206

Task

The semaphore is not

available...

...the task is blocked

waiting for the semaphore.

xSemaphoreTake()

Task

xSemaphoreTake()

Interrupt!

An interrupt ‘gives’ the

semaphore….

xSemaphoreGiveFromISR()

… which unblocks the task.

Task

vProcessEvent()

The task ‘takes’ the semaphore, so the semaphore is no longer

available. The task then starts to process the first event.

TaskInterrupt!

xSemaphoreGiveFromISR()

The task is still processing

the first event.

A second interrupt occurs while the task is still processing

the first event. The ISR ‘gives’ the semaphore again,

effectively latching the event so the event is not lost.

vProcessEvent()

TaskInterrupt!

xSemaphoreGiveFromISR()

The task is still processing

the first event.

A third interrupt occurs while the task is still processing the first

event. The ISR cannot give the semaphore again, because

the semaphore is already available, and the event is lost.

vProcessEvent()

Task

xSemaphoreTake()

When the task has finished processing the first event it calls xSemaphoreTake() again. A

second and third interrupt have already occurred, so the semaphore is already available.

Task

vProcessEvent()

The task takes the semaphore (without entering the Blocked state), so the semaphore

is no longer available. The task then processes the second event.

Task

When the task has finished processing the second event it calls xSemaphoreTake() again,

but the semaphore is not available, and the task enters the Blocked state to wait for the

next interrupt - even though the third event has not been processed.

xSemaphoreTake()

Figure 54 The scenario when two interrupts occur before the task has finished
processing the first event

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 207

The deferred interrupt handling task used in Example 16, and shown in Listing 93, is

structured so that it only processes one event between each call to xSemaphoreTake(). That

was adequate for Example 16, because the interrupts that generated the events were

triggered by software, and occurred at a predictable time. In real applications, interrupts are

generated by hardware, and occur at unpredictable times. Therefore, to minimize the chance

of an interrupt being missed, the deferred interrupt handling task must be structured so that it

processes all the events that are already available between each call to xSemaphoreTake()1.

This is demonstrated by Listing 96, which shows how a deferred interrupt handler for a UART

could be structured. In Listing 96, it is assumed the UART generates a receive interrupt each

time a character is received, and that the UART places received characters into a hardware

FIFO (a hardware buffer).

The deferred interrupt handling task used in Example 16 had one other weakness; it did not

use a time out when it called xSemaphoreTake(). Instead, the task passed portMAX_DELAY

as the xSemaphoreTake() xTicksToWait parameter, which results in the task waiting

indefinitely (without a time out) for the semaphore to be available. Indefinite timeouts are often

used in example code because their use simplifies the structure of the example, and therefore

makes the example easier to understand. However, indefinite timeouts are normally bad

practice in real applications, because they make it difficult to recover from an error. As an

example, consider the scenario where a task is waiting for an interrupt to give a semaphore,

but an error state in the hardware is preventing the interrupt from being generated:

 If the task is waiting without a time out, it will not know about the error state, and will

wait forever.

 If the task is waiting with a time out, then xSemaphoreTake() will return pdFAIL when

the time out expires, and the task can then detect and clear the error the next time it

executes. This scenario is also demonstrated in Listing 96.

1 Alternatively, a counting semaphore, or a direct to task notification, can be used to count events.
Counting semaphores are described in the next section. Direct to task notifications are described in
Chapter 9, Task Notifications. Direct to task notifications are the preferred method as they are the most
efficient in both run time and RAM usage.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

208

static void vUARTReceiveHandlerTask(void *pvParameters)

{

/* xMaxExpectedBlockTime holds the maximum time expected between two interrupts. */

const TickType_t xMaxExpectedBlockTime = pdMS_TO_TICKS(500);

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* The semaphore is 'given' by the UART's receive (Rx) interrupt. Wait a

 maximum of xMaxExpectedBlockTime ticks for the next interrupt. */

 if(xSemaphoreTake(xBinarySemaphore, xMaxExpectedBlockTime) == pdPASS)

 {

 /* The semaphore was obtained. Process ALL pending Rx events before

 calling xSemaphoreTake() again. Each Rx event will have placed a

 character in the UART’s receive FIFO, and UART_RxCount() is assumed to
 return the number of characters in the FIFO. */

 while(UART_RxCount() > 0)

 {

 /* UART_ProcessNextRxEvent() is assumed to process one Rx character,

 reducing the number of characters in the FIFO by 1. */

 UART_ProcessNextRxEvent();

 }

 /* No more Rx events are pending (there are no more characters in the

 FIFO), so loop back and call xSemaphoreTake() to wait for the next

 interrupt. Any interrupts occurring between this point in the code and

 the call to xSemaphoreTake() will be latched in the semaphore, so will

 not be lost. */

 }

 else

 {

 /* An event was not received within the expected time. Check for, and if

 necessary clear, any error conditions in the UART that might be

 preventing the UART from generating any more interrupts. */

 UART_ClearErrors();

 }

 }

}

Listing 96. The recommended structure of a deferred interrupt processing task ,
using a UART receive handler as an example

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 209

6.5 Counting Semaphores

Just as binary semaphores can be thought of as queues that have a length of one, counting

semaphores can be thought of as queues that have a length of more than one. Tasks are not

interested in the data that is stored in the queue—just the number of items in the queue.

configUSE_COUNTING_SEMAPHORES must be set to 1 in FreeRTOSConfig.h for counting

semaphores to be available.

Each time a counting semaphore is ‘given’, another space in its queue is used. The number of

items in the queue is the semaphore’s ‘count’ value.

Counting semaphores are typically used for two things:

1. Counting events1

In this scenario, an event handler will ‘give’ a semaphore each time an event occurs—

causing the semaphore’s count value to be incremented on each ‘give’. A task will ‘take’ a

semaphore each time it processes an event—causing the semaphore’s count value to be

decremented on each ‘take’. The count value is the difference between the number of

events that have occurred and the number that have been processed. This mechanism is

shown in Figure 55.

Counting semaphores that are used to count events are created with an initial count value

of zero.

2. Resource management.

In this scenario, the count value indicates the number of resources available. To obtain

control of a resource, a task must first obtain a semaphore—decrementing the

semaphore’s count value. When the count value reaches zero, there are no free

resources. When a task finishes with the resource, it ‘gives’ the semaphore back—

incrementing the semaphore’s count value.

1 It is more efficient to count events using a direct to task notification than it is using a counting
semaphore. Direct to task notifications are not covered until Chapter 9.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

210

Counting semaphores that are used to manage resources are created so that their initial

count value equals the number of resources that are available. Chapter 7 covers using

semaphores to manage resources.

Task
[The semaphore count is 0]

The task is blocked waiting

for a semaphore

xSemaphoreTake()

Task

xSemaphoreTake()

Interrupt!

An interrupt occurs...that

‘gives’ the semaphore….

xSemaphoreGiveFromISR()

Task

xSemaphoreTake()

Interrupt!

xSemaphoreGiveFromISR()

...which unblocks the task (the

semaphore is now available)...

Task

xSemaphoreTake()

When the task has finished processing the first event it calls xSemaphoreTake()

again. Another two semaphores are already ‘available’, one is taken without the task

ever entering the Blocked state, leaving one ‘latched’ semaphore still available.

Task
Interrupt!

xSemaphoreGiveFromISR()

The task is still processing

the first event.

Another two interrupts occur while the task is still

processing the first event. Both ISRs ‘give’ the semaphore,

effectively latching both events, so neither event is lost.

Task

vProcessEvent()

...that now successfully ‘takes’ the

semaphore, so it is unavailable once more.

The task now starts to process the event.

[The semaphore count is 1]

[The semaphore count is 1]

[The semaphore count is 0]

[The semaphore count is 2]

[The semaphore count is 1]

vProcessEvent()

Figure 55. Using a counting semaphore to ‘count’ events

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 211

The xSemaphoreCreateCounting() API Function

FreeRTOS V9.0.0 also includes the xSemaphoreCreateCountingStatic() function, which allocates the memory

required to create a counting semaphore statically at compile time: Handles to all the various types of

FreeRTOS semaphore are stored in a variable of type SemaphoreHandle_t.

Before a semaphore can be used, it must be created. To create a counting semaphore, use

the xSemaphoreCreateCounting() API function.

SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t uxMaxCount,

 UBaseType_t uxInitialCount);

Listing 97. The xSemaphoreCreateCounting() API function prototype

Table 36. xSemaphoreCreateCounting() parameters and return value

Parameter Name/
Returned Value

Description

uxMaxCount The maximum value to which the semaphore will count. To continue the

queue analogy, the uxMaxCount value is effectively the length of the

queue.

When the semaphore is to be used to count or latch events, uxMaxCount

is the maximum number of events that can be latched.

When the semaphore is to be used to manage access to a collection of

resources, uxMaxCount should be set to the total number of resources

that are available.

uxInitialCount The initial count value of the semaphore after it has been created.

When the semaphore is to be used to count or latch events,

uxInitialCount should be set to zero—as, presumably, when the

semaphore is created, no events have yet occurred.

When the semaphore is to be used to manage access to a collection of

resources, uxInitialCount should be set to equal uxMaxCount—as,

presumably, when the semaphore is created, all the resources are

available.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

212

Table 36. xSemaphoreCreateCounting() parameters and return value

Parameter Name/
Returned Value

Description

Returned value If NULL is returned, the semaphore cannot be created because there is

insufficient heap memory available for FreeRTOS to allocate the

semaphore data structures. Chapter 2 provides more information on

heap memory management.

A non-NULL value being returned indicates that the semaphore has been

created successfully. The returned value should be stored as the handle

to the created semaphore.

Example 17. Using a counting semaphore to synchronize a task with an interrupt

Example 17 improves on the Example 16 implementation by using a counting semaphore in

place of the binary semaphore. main() is changed to include a call to

xSemaphoreCreateCounting() in place of the call to xSemaphoreCreateBinary(). The new API

call is shown in Listing 98.

/* Before a semaphore is used it must be explicitly created. In this example a

counting semaphore is created. The semaphore is created to have a maximum count

value of 10, and an initial count value of 0. */

xCountingSemaphore = xSemaphoreCreateCounting(10, 0);

Listing 98. The call to xSemaphoreCreateCounting() used to create the counting
semaphore in Example 17

To simulate multiple events occurring at high frequency, the interrupt service routine is

changed to ‘give’ the semaphore more than once per interrupt. Each event is latched in the

semaphore’s count value. The modified interrupt service routine is shown in Listing 99.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 213

static uint32_t ulExampleInterruptHandler(void)

{

BaseType_t xHigherPriorityTaskWoken;

 /* The xHigherPriorityTaskWoken parameter must be initialized to pdFALSE as it

 will get set to pdTRUE inside the interrupt safe API function if a context switch

 is required. */

 xHigherPriorityTaskWoken = pdFALSE;

 /* 'Give' the semaphore multiple times. The first will unblock the deferred

 interrupt handling task, the following 'gives' are to demonstrate that the

 semaphore latches the events to allow the task to which interrupts are deferred

 to process them in turn, without events getting lost. This simulates multiple

 interrupts being received by the processor, even though in this case the events

 are simulated within a single interrupt occurrence. */

 xSemaphoreGiveFromISR(xCountingSemaphore, &xHigherPriorityTaskWoken);

 xSemaphoreGiveFromISR(xCountingSemaphore, &xHigherPriorityTaskWoken);

 xSemaphoreGiveFromISR(xCountingSemaphore, &xHigherPriorityTaskWoken);

 /* Pass the xHigherPriorityTaskWoken value into portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken was set to pdTRUE inside xSemaphoreGiveFromISR() then

 calling portYIELD_FROM_ISR() will request a context switch. If

 xHigherPriorityTaskWoken is still pdFALSE then calling portYIELD_FROM_ISR() will

 have no effect. Unlike most FreeRTOS ports, the Windows port requires the ISR to

 return a value - the return statement is inside the Windows version of

 portYIELD_FROM_ISR(). */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 99. The implementation of the interrupt service routine used by Example 17

All the other functions remain unmodified from those used in Example 16.

The output produced when Example 17 is executed is shown in Figure 56. As can be seen,

the task to which interrupt handling is deferred processes all three [simulated] events each

time an interrupt is generated. The events are latched into the count value of the semaphore,

allowing the task to process them in turn.

Figure 56. The output produced when Example 17 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

214

6.6 Deferring Work to the RTOS Daemon Task

The deferred interrupt handling examples presented so far have required the application writer

to create a task for each interrupt that uses the deferred processing technique. It is also

possible to use the xTimerPendFunctionCallFromISR()1 API function to defer interrupt

processing to the RTOS daemon task—removing the need to create a separate task for each

interrupt. Deferring interrupt processing to the daemon task is called ‘centralized deferred

interrupt processing’.

Chapter 5 described how software timer related FreeRTOS API functions send commands to

the daemon task on the timer command queue. The xTimerPendFunctionCall() and

xTimerPendFunctionCallFromISR() API functions use the same timer command queue to send

an ‘execute function’ command to the daemon task. The function sent to the daemon task is

then executed in the context of the daemon task.

Advantages of centralized deferred interrupt processing include:

 Lower resource usage

It removes the need to create a separate task for each deferred interrupt.

 Simplified user model

The deferred interrupt handling function is a standard C function.

Disadvantages of centralized deferred interrupt processing include:

 Less flexibility

It is not possible to set the priority of each deferred interrupt handling task separately.

Each deferred interrupt handling function executes at the priority of the daemon task. As

described in Chapter 5, the priority of the daemon task is set by the

configTIMER_TASK_PRIORITY compile time configuration constant within

FreeRTOSConfig.h.

 Less determinism

1 It was noted in Chapter 5 that the daemon task was originally called the timer service task because it
was originally only used to execute software timer callback functions. Hence, xTimerPendFunctionCall()
is implemented in timers.c, and, in accordance with the convention of prefixing a function’s name with
the name of the file in which the function is implemented, the function’s name is prefixed with ‘Timer’.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 215

xTimerPendFunctionCallFromISR() sends a command to the back of the timer command

queue. Commands that were already in the timer command queue will be processed by

the daemon task before the ‘execute function’ command sent to the queue by

xTimerPendFunctionCallFromISR().

Different interrupts have different timing constraints, so it is common to use both methods of

deferring interrupt processing within the same application.

The xTimerPendFunctionCallFromISR() API Function

xTimerPendFunctionCallFromISR() is the interrupt safe version of xTimerPendFunctionCall().

Both API functions allow a function provided by the application writer to be executed by, and

therefore in the context of, the RTOS daemon task. Both the function to be executed, and the

value of the function’s input parameters, are sent to the daemon task on the timer command

queue. When the function actually executes is therefore dependent on the priority of the

daemon task relative to other tasks in the application.

BaseType_t xTimerPendFunctionCallFromISR(PendedFunction_t xFunctionToPend,

 void *pvParameter1,

 uint32_t ulParameter2,

 BaseType_t *pxHigherPriorityTaskWoken);

Listing 100. The xTimerPendFunctionCallFromISR() API function prototype

void vPendableFunction(void *pvParameter1, uint32_t ulParameter2);

Listing 101. The prototype to which a function passed in the xFunctionToPend
parameter of xTimerPendFunctionCallFromISR() must conform

Table 37. xTimerPendFunctionCallFromISR() parameters and return value

Parameter Name/
Returned Value

Description

xFunctionToPend A pointer to the function that will be executed in the daemon

task (in effect, just the function name). The prototype of the

function must be the same as that shown in Listing 101.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

216

Table 37. xTimerPendFunctionCallFromISR() parameters and return value

Parameter Name/
Returned Value

Description

pvParameter1 The value that will be passed into the function that is executed

by the daemon task as the function’s pvParameter1 parameter.

The parameter has a void * type to allow it to be used to pass

any data type. For example, integer types can be directly cast

to a void *, alternatively the void * can be used to point to a

structure.

ulParameter2 The value that will be passed into the function that is executed

by the daemon task as the function’s ulParameter2 parameter.

pxHigherPriorityTaskWoken xTimerPendFunctionCallFromISR() writes to the timer

command queue. If the RTOS daemon task was in the

Blocked state to wait for data to become available on the timer

command queue, then writing to the timer command queue will

cause the daemon task to leave the Blocked state. If the

priority of the daemon task is higher than the priority of the

currently executing task (the task that was interrupted), then,

internally, xTimerPendFunctionCallFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE.

If xTimerPendFunctionCallFromISR() sets this value to

pdTRUE, then a context switch must be performed before the

interrupt is exited. This will ensure that the interrupt returns

directly to the daemon task, as the daemon task will be the

highest priority Ready state task.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 217

Table 37. xTimerPendFunctionCallFromISR() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdPASS

pdPASS will be returned if the ‘execute function’ command

was written to the timer command queue.

2. pdFAIL

pdFAIL will be returned if the ‘execute function’ command

could not be written to the timer command queue because

the timer command queue was already full. Chapter 5

describes how to set the length of the timer command

queue.

Example 18. Centralized deferred interrupt processing

Example 18 provides similar functionality to Example 16, but without using a semaphore, and

without creating a task specifically to perform the processing necessitated by the interrupt.

Instead, the processing is performed by the RTOS daemon task.

The interrupt service routine used by Example 18 is shown in Listing 102. It calls

xTimerPendFunctionCallFromISR() to pass a pointer to a function called

vDeferredHandlingFunction() to the daemon task. The deferred interrupt processing is

performed by the vDeferredHandlingFunction() function.

The interrupt service routine increments a variable called ulParameterValue each time it

executes. ulParameterValue is used as the value of ulParameter2 in the call to

xTimerPendFunctionCallFromISR(), so will also be used as the value of ulParameter2 in the

call to vDeferredHandlingFunction() when vDeferredHandlingFunction() is executed by the

daemon task. The function’s other parameter, pvParameter1, is not used in this example.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

218

static uint32_t ulExampleInterruptHandler(void)

{

static uint32_t ulParameterValue = 0;

BaseType_t xHigherPriorityTaskWoken;

 /* The xHigherPriorityTaskWoken parameter must be initialized to pdFALSE as it will

 get set to pdTRUE inside the interrupt safe API function if a context switch is

 required. */

 xHigherPriorityTaskWoken = pdFALSE;

 /* Send a pointer to the interrupt's deferred handling function to the daemon task.

 The deferred handling function's pvParameter1 parameter is not used so just set to

 NULL. The deferred handling function's ulParameter2 parameter is used to pass a

 number that is incremented by one each time this interrupt handler executes. */

 xTimerPendFunctionCallFromISR(vDeferredHandlingFunction, /* Function to execute. */

 NULL, /* Not used. */

 ulParameterValue, /* Incrementing value. */

 &xHigherPriorityTaskWoken);

 ulParameterValue++;

 /* Pass the xHigherPriorityTaskWoken value into portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken was set to pdTRUE inside xTimerPendFunctionCallFromISR() then

 calling portYIELD_FROM_ISR() will request a context switch. If

 xHigherPriorityTaskWoken is still pdFALSE then calling portYIELD_FROM_ISR() will have

 no effect. Unlike most FreeRTOS ports, the Windows port requires the ISR to return a

 value - the return statement is inside the Windows version of portYIELD_FROM_ISR(). */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 102. The software interrupt handler used in Example 18

The implementation of vDeferredHandlingFunction() is shown in Listing 103. It prints out a

fixed string, and the value of its ulParameter2 parameter.

vDeferredHandlingFunction() must have the prototype shown in Listing 101, even though, in

this example, only one of its parameters is actually used.

static void vDeferredHandlingFunction(void *pvParameter1, uint32_t ulParameter2)

{

 /* Process the event - in this case just print out a message and the value of

 ulParameter2. pvParameter1 is not used in this example. */

 vPrintStringAndNumber("Handler function - Processing event ", ulParameter2);

}

Listing 103. The function that performs the processing necessitated by the interrupt
in Example 18.

The main() function used by Example 18 is shown in Listing 104. It is simpler than the main()

function used by Example 16 because it does not create either a semaphore or a task to

perform the deferred interrupt processing.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 219

vPeriodicTask() is the task that periodically generates software interrupts. It is created with a

priority below the priority of the daemon task to ensure it is pre-empted by the daemon task as

soon as the daemon task leaves the Blocked state.

int main(void)

{

/* The task that generates the software interrupt is created at a priority below the

priority of the daemon task. The priority of the daemon task is set by the

configTIMER_TASK_PRIORITY compile time configuration constant in FreeRTOSConfig.h. */

const UBaseType_t ulPeriodicTaskPriority = configTIMER_TASK_PRIORITY - 1;

 /* Create the task that will periodically generate a software interrupt. */

 xTaskCreate(vPeriodicTask, "Periodic", 1000, NULL, ulPeriodicTaskPriority, NULL);

 /* Install the handler for the software interrupt. The syntax necessary to do

 this is dependent on the FreeRTOS port being used. The syntax shown here can

 only be used with the FreeRTOS windows port, where such interrupts are only

 simulated. */

 vPortSetInterruptHandler(mainINTERRUPT_NUMBER, ulExampleInterruptHandler);

 /* Start the scheduler so the created task starts executing. */

 vTaskStartScheduler();

 /* As normal, the following line should never be reached. */

 for(;;);

}

Listing 104. The implementation of main() for Example 18

Example 18 produces the output shown in Figure 57. The priority of the daemon task is higher

than the priority of the task that generates the software interrupt, so

vDeferredHandlingFunction() is executed by the daemon task as soon as the interrupt is

generated. That results in the message output by vDeferredHandlingFunction() appearing in

between the two messages output by the periodic task, just as it did when a semaphore was

used to unblock a dedicated deferred interrupt processing task. Further explanation is

provided in Figure 58.

Figure 57. The output produced when Example 18 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

220

Interrupt

Daemon Task

t1 t2

Periodic

1 - The Idle task is running most of the

time. Every 500ms it gets pre-empted by

the Periodic task.

Idle

Time

2 - The Periodic task prints its first

message then forces an interrupt. The

interrupt service routine executes

immediately.

3 - The interrupt calls xTimerPendFunctionCallFromISR(), which writes

to the timer command queue, causing the daemon task to unblock. The

interrupt service routine then returns directly to the daemon task because

the daemon task is the highest priority Ready state task. The daemon

task prints out its message, including the incrementing parameter value,

before returning to the Blocked state to wait for either another message to

arrive on the timer command queue, or a software timer to expire.

4 - The Periodic task is once again the highest priority task - it prints

out its second message before entering the Blocked state again to wait

for the next time period. This leaves just the Idle task able to run.

Figure 58 The sequence of execution when Example 18 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 221

6.7 Using Queues within an Interrupt Service Routine

Binary and counting semaphores are used to communicate events. Queues are used to

communicate events, and to transfer data.

xQueueSendToFrontFromISR() is the version of xQueueSendToFront() that is safe to use in

an interrupt service routine, xQueueSendToBackFromISR() is the version of

xQueueSendToBack() that is safe to use in an interrupt service routine, and

xQueueReceiveFromISR() is the version of xQueueReceive() that is safe to use in an interrupt

service routine.

The xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() API
Functions

BaseType_t xQueueSendToFrontFromISR(QueueHandle_t xQueue,

 void *pvItemToQueue

 BaseType_t *pxHigherPriorityTaskWoken

);

Listing 105. The xQueueSendToFrontFromISR() API function prototype

BaseType_t xQueueSendToBackFromISR(QueueHandle_t xQueue,

 void *pvItemToQueue

 BaseType_t *pxHigherPriorityTaskWoken

);

Listing 106. The xQueueSendToBackFromISR() API function prototype

xQueueSendFromISR() and xQueueSendToBackFromISR() are functionally equivalent.

Table 38. xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
parameters and return values

Parameter Name/
Returned Value

Description

xQueue The handle of the queue to which the data is being sent

(written). The queue handle will have been returned from the

call to xQueueCreate() used to create the queue.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

222

Table 38. xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
parameters and return values

Parameter Name/
Returned Value

Description

pvItemToQueue A pointer to the data that will be copied into the queue.

The size of each item the queue can hold is set when the

queue is created, so this many bytes will be copied from

pvItemToQueue into the queue storage area.

pxHigherPriorityTaskWoken It is possible that a single queue will have one or more tasks

blocked on it, waiting for data to become available. Calling

xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() can make data available, and

so cause such a task to leave the Blocked state. If calling the

API function causes a task to leave the Blocked state, and the

unblocked task has a priority higher than the currently

executing task (the task that was interrupted), then, internally,

the API function will set *pxHigherPriorityTaskWoken to

pdTRUE.

If xQueueSendToFrontFromISR() or

xQueueSendToBackFromISR() sets this value to pdTRUE,

then a context switch should be performed before the interrupt

is exited. This will ensure that the interrupt returns directly to

the highest priority Ready state task.

Returned value There are two possible return values:

1. pdPASS

pdPASS is returned only if data has been sent successfully

to the queue.

2. errQUEUE_FULL

errQUEUE_FULL is returned if data cannot be sent to the

queue because the queue is already full.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 223

Considerations When Using a Queue From an ISR

Queues provide an easy and convenient way of passing data from an interrupt to a task, but it

is not efficient to use a queue if data is arriving at a high frequency.

Many of the demo applications in the FreeRTOS download include a simple UART driver that

uses a queue to pass characters out of the UART’s receive ISR. In those demos a queue is

used for two reasons: to demonstrate queues being used from an ISR, and to deliberately load

the system in order to test the FreeRTOS port. The ISRs that use a queue in this manner are

definitely not intended to represent an efficient design, and unless the data is arriving slowing,

it is recommended that production code does not copy the technique. More efficient

techniques, that are suitable for production code, include:

 Using Direct Memory Access (DMA) hardware to receive and buffer characters. This

method has practically no software overhead. A direct to task notification1 can then be

used to unblock the task that will process the buffer only after a break in transmission

has been detected.

 Copying each received character into a thread safe RAM buffer2. Again, a direct to

task notification can be used to unblock the task that will process the buffer after a

complete message has been received, or after a break in transmission has been

detected.

 Processing the received characters directly within the ISR, then using a queue to send

just the result of processing the data (rather than the raw data) to a task. This was

previously demonstrated by Figure 34.

Example 19. Sending and receiving on a queue from within an interrupt

This example demonstrates xQueueSendToBackFromISR() and xQueueReceiveFromISR()

being used within the same interrupt. As before, for convenience the interrupt is generated by

software.

1 Direct to task notifications provide the most efficient method of unblocking a task from an ISR. Direct
to task notifications are covered in Chapter 9, Task Notifications.

2 The ‘Stream Buffer’, provided as part of FreeRTOS+TCP (http://www.FreeRTOS.org/tcp), can be used
for this purpose.

http://www.freertos.org/tcp

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

224

A periodic task is created that sends five numbers to a queue every 200 milliseconds. It

generates a software interrupt only after all five values have been sent. The task

implementation is shown in Listing 107.

static void vIntegerGenerator(void *pvParameters)

{

TickType_t xLastExecutionTime;

uint32_t ulValueToSend = 0;

int i;

 /* Initialize the variable used by the call to vTaskDelayUntil(). */

 xLastExecutionTime = xTaskGetTickCount();

 for(;;)

 {

 /* This is a periodic task. Block until it is time to run again. The task

 will execute every 200ms. */

 vTaskDelayUntil(&xLastExecutionTime, pdMS_TO_TICKS(200));

 /* Send five numbers to the queue, each value one higher than the previous

 value. The numbers are read from the queue by the interrupt service routine.

 The interrupt service routine always empties the queue, so this task is

 guaranteed to be able to write all five values without needing to specify a

 block time. */

 for(i = 0; i < 5; i++)

 {

 xQueueSendToBack(xIntegerQueue, &ulValueToSend, 0);

 ulValueToSend++;

 }

 /* Generate the interrupt so the interrupt service routine can read the

 values from the queue. The syntax used to generate a software interrupt is

 dependent on the FreeRTOS port being used. The syntax used below can only be

 used with the FreeRTOS Windows port, in which such interrupts are only

 simulated.*/

 vPrintString("Generator task - About to generate an interrupt.\r\n");

 vPortGenerateSimulatedInterrupt(mainINTERRUPT_NUMBER);

 vPrintString("Generator task - Interrupt generated.\r\n\r\n\r\n");

 }

}

Listing 107. The implementation of the task that writes to the queue in Example 19

The interrupt service routine calls xQueueReceiveFromISR() repeatedly until all the values

written to the queue by the periodic task have been read out, and the queue is left empty. The

last two bits of each received value are used as an index into an array of strings. A pointer to

the string at the corresponding index position is then sent to a different queue using a call to

xQueueSendFromISR(). The implementation of the interrupt service routine is shown in

Listing 108.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 225

static uint32_t ulExampleInterruptHandler(void)

{

BaseType_t xHigherPriorityTaskWoken;

uint32_t ulReceivedNumber;

/* The strings are declared static const to ensure they are not allocated on the

interrupt service routine's stack, and so exist even when the interrupt service

routine is not executing. */

static const char *pcStrings[] =

{

 "String 0\r\n",

 "String 1\r\n",

 "String 2\r\n",

 "String 3\r\n"

};

 /* As always, xHigherPriorityTaskWoken is initialized to pdFALSE to be able to

 detect it getting set to pdTRUE inside an interrupt safe API function. Note that

 as an interrupt safe API function can only set xHigherPriorityTaskWoken to

 pdTRUE, it is safe to use the same xHigherPriorityTaskWoken variable in both

 the call to xQueueReceiveFromISR() and the call to xQueueSendToBackFromISR(). */

 xHigherPriorityTaskWoken = pdFALSE;

 /* Read from the queue until the queue is empty. */

 while(xQueueReceiveFromISR(xIntegerQueue,

 &ulReceivedNumber,

 &xHigherPriorityTaskWoken) != errQUEUE_EMPTY)

 {

 /* Truncate the received value to the last two bits (values 0 to 3

 inclusive), then use the truncated value as an index into the pcStrings[]

 array to select a string (char *) to send on the other queue. */

 ulReceivedNumber &= 0x03;

 xQueueSendToBackFromISR(xStringQueue,

 &pcStrings[ulReceivedNumber],

 &xHigherPriorityTaskWoken);

 }

 /* If receiving from xIntegerQueue caused a task to leave the Blocked state, and

 if the priority of the task that left the Blocked state is higher than the

 priority of the task in the Running state, then xHigherPriorityTaskWoken will

 have been set to pdTRUE inside xQueueReceiveFromISR().

 If sending to xStringQueue caused a task to leave the Blocked state, and if the

 priority of the task that left the Blocked state is higher than the priority of

 the task in the Running state, then xHigherPriorityTaskWoken will have been set

 to pdTRUE inside xQueueSendToBackFromISR().

 xHigherPriorityTaskWoken is used as the parameter to portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken equals pdTRUE then calling portYIELD_FROM_ISR() will

 request a context switch. If xHigherPriorityTaskWoken is still pdFALSE then

 calling portYIELD_FROM_ISR() will have no effect.

 The implementation of portYIELD_FROM_ISR() used by the Windows port includes a

 return statement, which is why this function does not explicitly return a

 value. */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 108. The implementation of the interrupt service routine used by Example 19

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

226

The task that receives the character pointers from the interrupt service routine blocks on the

queue until a message arrives, printing out each string as it is received. Its implementation is

shown in Listing 109.

static void vStringPrinter(void *pvParameters)

{

char *pcString;

 for(;;)

 {

 /* Block on the queue to wait for data to arrive. */

 xQueueReceive(xStringQueue, &pcString, portMAX_DELAY);

 /* Print out the string received. */

 vPrintString(pcString);

 }

}

Listing 109. The task that prints out the strings received from the interrupt service
routine in Example 19

As normal, main() creates the required queues and tasks before starting the scheduler. Its

implementation is shown in Listing 110.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 227

int main(void)

{

 /* Before a queue can be used it must first be created. Create both queues used

 by this example. One queue can hold variables of type uint32_t, the other queue

 can hold variables of type char*. Both queues can hold a maximum of 10 items. A

 real application should check the return values to ensure the queues have been

 successfully created. */

 xIntegerQueue = xQueueCreate(10, sizeof(uint32_t));

 xStringQueue = xQueueCreate(10, sizeof(char *));

 /* Create the task that uses a queue to pass integers to the interrupt service

 routine. The task is created at priority 1. */

 xTaskCreate(vIntegerGenerator, "IntGen", 1000, NULL, 1, NULL);

 /* Create the task that prints out the strings sent to it from the interrupt

 service routine. This task is created at the higher priority of 2. */

 xTaskCreate(vStringPrinter, "String", 1000, NULL, 2, NULL);

 /* Install the handler for the software interrupt. The syntax necessary to do

 this is dependent on the FreeRTOS port being used. The syntax shown here can

 only be used with the FreeRTOS Windows port, where such interrupts are only

 simulated. */

 vPortSetInterruptHandler(mainINTERRUPT_NUMBER, ulExampleInterruptHandler);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will now be

 running the tasks. If main() does reach here then it is likely that there was

 insufficient heap memory available for the idle task to be created. Chapter 2

 provides more information on heap memory management. */

 for(;;);

}

Listing 110. The main() function for Example 19

The output produced when Example 19 is executed is shown in Figure 59. As can be seen,

the interrupt receives all five integers, and produces five strings in response. More

explanation is given in Figure 60.

Figure 59. The output produced when Example 19 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

228

Interrupt

StringPrinter

t1

IntegerGenerator

Idle

Time

1 - The Idle task runs most

of the time. Every 200ms it

gets preempted by the

IntegerGenerator task.

2 - The IntegerGenerator writes 5 values

to a queue, then forces an interrupt.

3 - The interrupt service routine both reads from a queue and writes to a queue, writing a

string to one queue for every integer received from another. Writing strings to a queue

unblocks the StringPrinter task.

4 - The StringPrinter task is the highest priority task

so runs immediately after the interrupt service

routine. It prints out each string it receives on a

queue - when the queue is empty it enters the

Blocked state, allowing the lower priority

IntegerGenerator task to run again.

5 - The IntegerGenerator task is a periodic task so

blocks to wait for the next time period - once again

the idle task is the only task able to run. 200ms after

it last started to execute the whole sequence repeats.

Figure 60. The sequence of execution produced by Example 19

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 229

6.8 Interrupt Nesting

It is common for confusion to arise between task priorities and interrupt priorities. This section

discusses interrupt priorities, which are the priorities at which interrupt service routines (ISRs)

execute relative to each other. The priority assigned to a task is in no way related to the

priority assigned to an interrupt. Hardware decides when an ISR will execute, whereas

software decides when a task will execute. An ISR executed in response to a hardware

interrupt will interrupt a task, but a task cannot pre-empt an ISR.

Ports that support interrupt nesting require one or both of the constants detailed in Table 39 to

be defined in FreeRTOSConfig.h. configMAX_SYSCALL_INTERRUPT_PRIORITY and

configMAX_API_CALL_INTERRUPT_PRIORITY both define the same property. Older

FreeRTOS ports use configMAX_SYSCALL_INTERRUPT_PRIORITY, and newer FreeRTOS

port use configMAX_API_CALL_INTERRUPT_PRIORITY.

Table 39. Constants that control interrupt nesting

Constant Description

configMAX_SYSCALL_INTERRUPT_PRIORITY or

configMAX_API_CALL_INTERRUPT_PRIORITY

Sets the highest interrupt priority from which

interrupt-safe FreeRTOS API functions can

be called.

configKERNEL_INTERRUPT_PRIORITY Sets the interrupt priority used by the tick

interrupt, and must always be set to the

lowest possible interrupt priority.

If the FreeRTOS port in use does not also

use the

configMAX_SYSCALL_INTERRUPT_PRIORITY

constant, then any interrupt that uses

interrupt-safe FreeRTOS API functions

must also execute at the priority defined by

configKERNEL_INTERRUPT_PRIORITY.

Each interrupt source has a numeric priority, and a logical priority:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

230

 Numeric priority

The numeric priority is simply the number assigned to the interrupt priority. For example, if

an interrupt is assigned a priority of 7, then its numeric priority is 7. Likewise, if an interrupt

is assigned a priority of 200, then its numeric priority is 200.

 Logical priority

An interrupt’s logical priority describes that interrupt’s precedence over other interrupts.

If two interrupts of differing priority occur at the same time, then the processor will execute

the ISR for whichever of the two interrupts has the higher logical priority before it executes

the ISR for whichever of the two interrupts has the lower logical priority.

An interrupt can interrupt (nest with) any interrupt that has a lower logical priority, but an

interrupt cannot interrupt (nest with) any interrupt that has an equal or higher logical

priority.

The relationship between an interrupt’s numeric priority and logical priority is dependent on the

processor architecture; on some processors, the higher the numeric priority assigned to an

interrupt the higher that interrupt’s logical priority will be, while on other processor architectures

the higher the numeric priority assigned to an interrupt the lower that interrupt’s logical priority

will be.

A full interrupt nesting model is created by setting

configMAX_SYSCALL_INTERRUPT_PRIORITY to a higher logical interrupt priority than

configKERNEL_INTERRUPT_PRIORITY. This is demonstrated in Figure 61, which shows a

scenario where:

 The processor has seven unique interrupt priorities.

 Interrupts assigned a numeric priority of 7 have a higher logical priority than interrupts

assigned a numeric priority of 1.

 configKERNEL_INTERRUPT_PRIORITY is set to one.

 configMAX_SYSCALL_INTERRUPT_PRIORITY is set to three.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 231

configMAX_SYSCALL_INTERRUPT_PRIORITY = 3

configKERNEL_INTERRUPT_PRIORITY = 1

Interrupts using these priorities

will never be delayed by anything

the kernel is doing, can nest, but

cannot use any FreeRTOS API

functions.

Interrupts that make API calls

can only use these priorities,

can nest, but will be masked

by critical sections.

Interrupts that

don’t call any API

functions can use

any priority and

will nest

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

Figure 61. Constants affecting interrupt nesting behavior

Referring to Figure 61:

 Interrupts that use priorities 1 to 3, inclusive, are prevented from executing while the

kernel or the application is inside a critical section. ISRs running at these priorities can

use interrupt-safe FreeRTOS API functions. Critical sections are described in Chapter

7.

 Interrupts that use priority 4, or above, are not affected by critical sections, so nothing

the scheduler does will prevent these interrupts from executing immediately—within the

limitations of the hardware itself. ISRs executing at these priorities cannot use any

FreeRTOS API functions.

 Typically, functionality that requires very strict timing accuracy (motor control, for

example) would use a priority above configMAX_SYSCALL_INTERRUPT_PRIORITY

to ensure the scheduler does not introduce jitter into the interrupt response time.

A Note to ARM Cortex-M1 and ARM GIC Users

Interrupt configuration on Cortex-M processors is confusing, and prone to error. To assist your

development, the FreeRTOS Cortex-M ports automatically check the interrupt configuration,

but only if configASSERT() is defined. configASSERT() is described in section 11.2.

1 This section only partially applies to Cortex-M0 and Cortex-M0+ cores.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

232

The ARM Cortex cores, and ARM Generic Interrupt Controllers (GICs), use numerically low

priority numbers to represent logically high priority interrupts. This can seem counter-intuitive,

and is easy to forget. If you wish to assign an interrupt a logically low priority, then it must be

assigned a numerically high value. If you wish to assign an interrupt a logically high priority,

then it must be assigned a numerically low value.

The Cortex-M interrupt controller allows a maximum of eight bits to be used to specify each

interrupt priority, making 255 the lowest possible priority. Zero is the highest priority.

However, Cortex-M microcontrollers normally only implement a subset of the eight possible

bits. The number of bits actually implemented is dependent on the microcontroller family.

When only a subset of the eight possible bits has been implemented, it is only the most

significant bits of the byte that can be used—leaving the least significant bits unimplemented.

Unimplemented bits can take any value, but it is normal to set them to 1. This is demonstrated

by Figure 62, which shows how a priority of binary 101 is stored in a Cortex-M microcontroller

that implements four priority bits.

Figure 62 How a priority of binary 101 is stored by a Cortex-M microcontroller that
implements four priority bits

In Figure 62 the binary value 101 has been shifted into the most significant four bits because

the least significant four bits are not implemented. The unimplemented bits have been set to

1.

Some library functions expect priority values to be specified after they have been shifted up

into the implemented (most significant) bits. When using such a function the priority shown in

Figure 62 can be specified as decimal 95. Decimal 95 is binary 101 shifted up by four to make

binary 101nnnn (where ‘n’ is an unimplemented bit), and with the unimplemented bits set to 1

to make binary 1011111.

Some library functions expect priority values to be specified before they have been shifted up

into the implemented (most significant) bits. When using such a function the priority shown in

Figure 62 must be specified as decimal 5. Decimal 5 is binary 101 without any shift.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 233

configMAX_SYSCALL_INTERRUPT_PRIORITY and configKERNEL_INTERRUPT_PRIORITY

must be specified in a way that allows them to be written directly to the Cortex-M registers, so

after the priority values have been shifted up into the implemented bits.

configKERNEL_INTERRUPT_PRIORITY must always be set to the lowest possible interrupt

priority. Unimplemented priority bits can be set to 1, so the constant can always be set to 255,

no matter how many priority bits are actually implemented.

Cortex-M interrupts will default to a priority of zero—the highest possible priority. The

implementation of the Cortex-M hardware does not permit

configMAX_SYSCALL_INTERRUPT_PRIORITY to be set to 0, so the priority of an interrupt

that uses the FreeRTOS API must never be left at its default value.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

234

Chapter 7

Resource Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 235

7.1 Chapter Introduction and Scope

In a multitasking system there is potential for error if one task starts to access a resource, but

does not complete its access before being transitioned out of the Running state. If the task

leaves the resource in an inconsistent state, then access to the same resource by any other

task or interrupt could result in data corruption, or other similar issue.

Following are some examples:

1. Accessing Peripherals

Consider the following scenario where two tasks attempt to write to an Liquid Crystal

Display (LCD).

1. Task A executes and starts to write the string “Hello world” to the LCD.

2. Task A is pre-empted by Task B after outputting just the beginning of the string—

“Hello w”.

3. Task B writes “Abort, Retry, Fail?” to the LCD before entering the Blocked state.

4. Task A continues from the point at which it was pre-empted, and completes

outputting the remaining characters of its string—“orld”.

The LCD now displays the corrupted string “Hello wAbort, Retry, Fail?orld”.

2. Read, Modify, Write Operations

Listing 111 shows a line of C code, and an example of how the C code would typically be

translated into assembly code. It can be seen that the value of PORTA is first read from

memory into a register, modified within the register, and then written back to memory. This

is called a read, modify, write operation.

 /* The C code being compiled. */

 PORTA |= 0x01;

 /* The assembly code produced when the C code is compiled. */

 LOAD R1,[#PORTA] ; Read a value from PORTA into R1

 MOVE R2,#0x01 ; Move the absolute constant 1 into R2

 OR R1,R2 ; Bitwise OR R1 (PORTA) with R2 (constant 1)

 STORE R1,[#PORTA] ; Store the new value back to PORTA

Listing 111. An example read, modify, write sequence

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

236

This is a ‘non-atomic’ operation because it takes more than one instruction to complete, and

can be interrupted. Consider the following scenario where two tasks attempt to update a

memory mapped register called PORTA.

1. Task A loads the value of PORTA into a register—the read portion of the operation.

2. Task A is pre-empted by Task B before it completes the modify and write portions of

the same operation.

3. Task B updates the value of PORTA, then enters the Blocked state.

4. Task A continues from the point at which it was pre-empted. It modifies the copy of

the PORTA value that it already holds in a register, before writing the updated value

back to PORTA.

In this scenario, Task A updates and writes back an out of date value for PORTA. Task B

modifies PORTA after Task A takes a copy of the PORTA value, and before Task A writes

its modified value back to the PORTA register. When Task A writes to PORTA, it

overwrites the modification that has already been performed by Task B, effectively

corrupting the PORTA register value.

This example uses a peripheral register, but the same principle applies when performing

read, modify, write operations on variables.

3. Non-atomic Access to Variables

Updating multiple members of a structure, or updating a variable that is larger than the

natural word size of the architecture (for example, updating a 32-bit variable on a 16-bit

machine), are examples of non-atomic operations. If they are interrupted, they can result in

data loss or corruption.

4. Function Reentrancy

A function is ‘reentrant’ if it is safe to call the function from more than one task, or from both

tasks and interrupts. Reentrant functions are said to be ‘thread safe’ because they can be

accessed from more than one thread of execution without the risk of data or logical

operations becoming corrupted.

Each task maintains its own stack and its own set of processor (hardware) register values.

If a function does not access any data other than data stored on the stack or held in a

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 237

register, then the function is reentrant, and thread safe. Listing 112 is an example of a

reentrant function. Listing 113 is an example of a function that is not reentrant.

/* A parameter is passed into the function. This will either be passed on the stack,

or in a processor register. Either way is safe as each task or interrupt that calls

the function maintains its own stack and its own set of register values, so each task

or interrupt that calls the function will have its own copy of lVar1. */

long lAddOneHundred(long lVar1)

{

/* This function scope variable will also be allocated to the stack or a register,

depending on the compiler and optimization level. Each task or interrupt that calls

this function will have its own copy of lVar2. */

long lVar2;

 lVar2 = lVar1 + 100;

 return lVar2;

}

Listing 112. An example of a reentrant function

/* In this case lVar1 is a global variable, so every task that calls

lNonsenseFunction will access the same single copy of the variable. */

long lVar1;

long lNonsenseFunction(void)

{

/* lState is static, so is not allocated on the stack. Each task that calls this

function will access the same single copy of the variable. */

static long lState = 0;

long lReturn;

 switch(lState)

 {

 case 0 : lReturn = lVar1 + 10;

 lState = 1;

 break;

 case 1 : lReturn = lVar1 + 20;

 lState = 0;

 break;

 }

}

Listing 113. An example of a function that is not reentrant

Mutual Exclusion

To ensure data consistency is maintained at all times access to a resource that is shared

between tasks, or between tasks and interrupts, must be managed using a ‘mutual exclusion’

technique. The goal is to ensure that, once a task starts to access a shared resource that is

not re-entrant and not thread-safe, the same task has exclusive access to the resource until

the resource has been returned to a consistent state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

238

FreeRTOS provides several features that can be used to implement mutual exclusion, but the

best mutual exclusion method is to (whenever possible, as it is often not practical) design the

application in such a way that resources are not shared, and each resource is accessed only

from a single task.

Scope

This chapter aims to give readers a good understanding of:

 When and why resource management and control is necessary.

 What a critical section is.

 What mutual exclusion means.

 What it means to suspend the scheduler.

 How to use a mutex.

 How to create and use a gatekeeper task.

 What priority inversion is, and how priority inheritance can reduce (but not remove) its

impact.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 239

7.2 Critical Sections and Suspending the Scheduler

Basic Critical Sections

Basic critical sections are regions of code that are surrounded by calls to the macros

taskENTER_CRITICAL() and taskEXIT_CRITICAL(), respectively. Critical sections are also

known as critical regions.

taskENTER_CRITICAL() and taskEXIT_CRITICAL() do not take any parameters, or return a

value1. Their use is demonstrated in Listing 114.

/* Ensure access to the PORTA register cannot be interrupted by placing it within a

critical section. Enter the critical section. */

taskENTER_CRITICAL();

/* A switch to another task cannot occur between the call to taskENTER_CRITICAL() and

the call to taskEXIT_CRITICAL(). Interrupts may still execute on FreeRTOS ports that

allow interrupt nesting, but only interrupts whose logical priority is above the

value assigned to the configMAX_SYSCALL_INTERRUPT_PRIORITY constant – and those
interrupts are not permitted to call FreeRTOS API functions. */

PORTA |= 0x01;

/* Access to PORTA has finished, so it is safe to exit the critical section. */

taskEXIT_CRITICAL();

Listing 114. Using a critical section to guard access to a register

The example projects that accompany this book use a function called vPrintString() to write

strings to standard out—which is the terminal window when the FreeRTOS Windows port is

used. vPrintString() is called from many different tasks; so, in theory, its implementation could

protect access to standard out using a critical section, as shown in Listing 115.

1 A function like macro does not really ‘return a value’ in the same way that a real function does. This
book applies the term ‘return a value’ to macros when it is simplest to think of the macro as if it were a
function.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

240

void vPrintString(const char *pcString)

{

 /* Write the string to stdout, using a critical section as a crude method of

 mutual exclusion. */

 taskENTER_CRITICAL();

 {

 printf("%s", pcString);

 fflush(stdout);

 }

 taskEXIT_CRITICAL();

}

Listing 115. A possible implementation of vPrintString()

Critical sections implemented in this way are a very crude method of providing mutual

exclusion. They work by disabling interrupts, either completely, or up to the interrupt priority

set by configMAX_SYSCALL_INTERRUPT_PRIORITY—depending on the FreeRTOS port

being used. Pre-emptive context switches can occur only from within an interrupt, so, as long

as interrupts remain disabled, the task that called taskENTER_CRITICAL() is guaranteed to

remain in the Running state until the critical section is exited.

Basic critical sections must be kept very short, otherwise they will adversely affect interrupt

response times. Every call to taskENTER_CRITICAL() must be closely paired with a call to

taskEXIT_CRITICAL(). For this reason, standard out (stdout, or the stream where a computer

writes its output data) should not be protected using a critical section (as shown in Listing

115), because writing to the terminal can be a relatively long operation. The examples in this

chapter explore alternative solutions.

It is safe for critical sections to become nested, because the kernel keeps a count of the

nesting depth. The critical section will be exited only when the nesting depth returns to zero—

which is when one call to taskEXIT_CRITICAL() has been executed for every preceding call to

taskENTER_CRITICAL().

Calling taskENTER_CRITICAL() and taskEXIT_CRITICAL() is the only legitimate way for a

task to alter the interrupt enable state of the processor on which FreeRTOS is running.

Altering the interrupt enable state by any other means will invalidate the macro’s nesting

count.

taskENTER_CRITICAL() and taskEXIT_CRITICAL() do not end in ‘FromISR’, so must not be

called from an interrupt service routine. taskENTER_CRITICAL_FROM_ISR() is an interrupt

safe version of taskENTER_CRITICAL(), and taskEXIT_CRITICAL_FROM_ISR() is an

interrupt safe version of taskEXIT_CRITICAL(). The interrupt safe versions are only provided

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 241

for FreeRTOS ports that allow interrupts to nest—they would be obsolete in ports that do not

allow interrupts to nest.

taskENTER_CRITICAL_FROM_ISR() returns a value that must be passed into the matching

call to taskEXIT_CRITICAL_FROM_ISR(). This is demonstrated in Listing 116.

void vAnInterruptServiceRoutine(void)

{

/* Declare a variable in which the return value from taskENTER_CRITICAL_FROM_ISR()

will be saved. */

UBaseType_t uxSavedInterruptStatus;

 /* This part of the ISR can be interrupted by any higher priority interrupt. */

 /* Use taskENTER_CRITICAL_FROM_ISR() to protect a region of this ISR. Save the

 value returned from taskENTER_CRITICAL_FROM_ISR() so it can be passed into the

 matching call to taskEXIT_CRITICAL_FROM_ISR(). */

 uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();

 /* This part of the ISR is between the call to taskENTER_CRITICAL_FROM_ISR() and

 taskEXIT_CRITICAL_FROM_ISR(), so can only be interrupted by interrupts that have

 a priority above that set by the configMAX_SYSCALL_INTERRUPT_PRIORITY constant. */

 /* Exit the critical section again by calling taskEXIT_CRITICAL_FROM_ISR(),

 passing in the value returned by the matching call to

 taskENTER_CRITICAL_FROM_ISR(). */

 taskEXIT_CRITICAL_FROM_ISR(uxSavedInterruptStatus);

 /* This part of the ISR can be interrupted by any higher priority interrupt. */

}

Listing 116. Using a critical section in an interrupt service routine

It is wasteful to use more processing time executing the code that enters and then

subsequently exits a critical section, than executing the code actually being protected by the

critical section. Basic critical sections are very fast to enter, very fast to exit, and always

deterministic, making their use ideal when the region of code being protected is very short.

Suspending (or Locking) the Scheduler

Critical sections can also be created by suspending the scheduler. Suspending the scheduler

is sometimes also known as ‘locking’ the scheduler.

Basic critical sections protect a region of code from access by other tasks and by interrupts. A

critical section implemented by suspending the scheduler only protects a region of code from

access by other tasks, because interrupts remain enabled.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

242

A critical section that is too long to be implemented by simply disabling interrupts can, instead,

be implemented by suspending the scheduler. However, interrupt activity while the scheduler

is suspended can make resuming (or ‘un-suspending’) the scheduler a relatively long

operation, so consideration must be given to which is the best method to use in each case.

The vTaskSuspendAll() API Function

void vTaskSuspendAll(void);

Listing 117. The vTaskSuspendAll() API function prototype

The scheduler is suspended by calling vTaskSuspendAll(). Suspending the scheduler

prevents a context switch from occurring, but leaves interrupts enabled. If an interrupt

requests a context switch while the scheduler is suspended, then the request is held pending,

and is performed only when the scheduler is resumed (un-suspended).

FreeRTOS API functions must not be called while the scheduler is suspended.

The xTaskResumeAll() API Function

BaseType_t xTaskResumeAll(void);

Listing 118. The xTaskResumeAll() API function prototype

The scheduler is resumed (un-suspended) by calling xTaskResumeAll().

Table 40. xTaskResumeAll() return value

Returned Value Description

Returned value Context switches that are requested while the scheduler is suspended

are held pending and performed only as the scheduler is being resumed.

If a pending context switch is performed before xTaskResumeAll()

returns then pdTRUE is returned. Otherwise pdFALSE is returned.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 243

It is safe for calls to vTaskSuspendAll() and xTaskResumeAll() to become nested, because the

kernel keeps a count of the nesting depth. The scheduler will be resumed only when the

nesting depth returns to zero—which is when one call to xTaskResumeAll() has been

executed for every preceding call to vTaskSuspendAll().

Listing 119 shows the actual implementation of vPrintString(), which suspends the scheduler

to protect access to the terminal output.

void vPrintString(const char *pcString)

{

 /* Write the string to stdout, suspending the scheduler as a method of mutual

 exclusion. */

 vTaskSuspendScheduler();

 {

 printf("%s", pcString);

 fflush(stdout);

 }

 xTaskResumeScheduler();

}

Listing 119. The implementation of vPrintString()

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

244

7.3 Mutexes (and Binary Semaphores)

A Mutex is a special type of binary semaphore that is used to control access to a resource that

is shared between two or more tasks. The word MUTEX originates from ‘MUTual EXclusion’.

configUSE_MUTEXES must be set to 1 in FreeRTOSConfig.h for mutexes to be available.

When used in a mutual exclusion scenario, the mutex can be thought of as a token that is

associated with the resource being shared. For a task to access the resource legitimately, it

must first successfully ‘take’ the token (be the token holder). When the token holder has

finished with the resource, it must ‘give’ the token back. Only when the token has been

returned can another task successfully take the token, and then safely access the same

shared resource. A task is not permitted to access the shared resource unless it holds the

token. This mechanism is shown in Figure 63.

Even though mutexes and binary semaphores share many characteristics, the scenario shown

in Figure 63 (where a mutex is used for mutual exclusion) is completely different to that shown

in Figure 53 (where a binary semaphore is used for synchronization). The primary difference

is what happens to the semaphore after it has been obtained:

 A semaphore that is used for mutual exclusion must always be returned.

 A semaphore that is used for synchronization is normally discarded and not returned.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 245

Guarded

resource

When Task B finishes accessing the resource it too gives the mutex back. The mutex is now

once again available to both tasks.

Task A

Task B

xSemaphoreGive()

Guarded

resource

Task A giving the mutex back causes Task B to exit the Blocked state (the mutex is now

available). Task B can now successfully obtain the mutex, and having done so is permitted to

access the resource.

Task A

Task B

xSemaphoreTake()

Guarded

resource

Task B opts to enter the Blocked state to wait for the mutex - allowing Task A to run again.

Task A finishes with the resource so ‘gives’ the mutex back.

Task B

Task A

xSemaphoreGive()

xSemaphoreTake()

Guarded

resource

Task B executes and attempts to take the same mutex. Task A still has the mutex so the

attempt fails and Task B is not permitted to access the guarded resource.

Task A

Task B

xSemaphoreTake()

Guarded

resource

Task A attempts to take the mutex. Because the mutex is available Task A successfully

becomes the mutex holder so is permitted to access the resource.

Task B

Task A

xSemaphoreTake()

The mutex used to

guard the resource
Guarded

resource

The resource being

guarded by the mutex

Two tasks each want to access the resource, but a task is not permitted to access the

resource unless it is the mutex (token) holder.

Task A

Task B

Figure 63. Mutual exclusion implemented using a mutex

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

246

The mechanism works purely through the discipline of the application writer. There is no

reason why a task cannot access the resource at any time, but each task ‘agrees’ not to do so,

unless it is able to become the mutex holder.

The xSemaphoreCreateMutex() API Function

FreeRTOS V9.0.0 also includes the xSemaphoreCreateMutexStatic() function, which allocates the memory required

to create a mutex statically at compile time: A mutex is a type of semaphore. Handles to all the

various types of FreeRTOS semaphore are stored in a variable of type SemaphoreHandle_t.

Before a mutex can be used, it must be created. To create a mutex type semaphore, use the

xSemaphoreCreateMutex() API function.

SemaphoreHandle_t xSemaphoreCreateMutex(void);

Listing 120. The xSemaphoreCreateMutex() API function prototype

Table 41. xSemaphoreCreateMutex() return value

Parameter Name/
Returned Value

Description

Returned value If NULL is returned then the mutex could not be created because there is

insufficient heap memory available for FreeRTOS to allocate the mutex

data structures. Chapter 2 provides more information on heap memory

management.

A non-NULL return value indicates that the mutex has been created

successfully. The returned value should be stored as the handle to the

created mutex.

Example 20. Rewriting vPrintString() to use a semaphore

This example creates a new version of vPrintString() called prvNewPrintString(), then calls the

new function from multiple tasks. prvNewPrintString() is functionally identical to vPrintString(),

but controls access to standard out using a mutex, rather than by locking the scheduler. The

implementation of prvNewPrintString() is shown in Listing 121.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 247

static void prvNewPrintString(const char *pcString)

{

 /* The mutex is created before the scheduler is started, so already exists by the

 time this task executes.

 Attempt to take the mutex, blocking indefinitely to wait for the mutex if it is

 not available straight away. The call to xSemaphoreTake() will only return when

 the mutex has been successfully obtained, so there is no need to check the

 function return value. If any other delay period was used then the code must

 check that xSemaphoreTake() returns pdTRUE before accessing the shared resource

 (which in this case is standard out). As noted earlier in this book, indefinite

 time outs are not recommended for production code. */

 xSemaphoreTake(xMutex, portMAX_DELAY);

 {

 /* The following line will only execute once the mutex has been successfully

 obtained. Standard out can be accessed freely now as only one task can have

 the mutex at any one time. */

 printf("%s", pcString);

 fflush(stdout);

 /* The mutex MUST be given back! */

 }

 xSemaphoreGive(xMutex);

}

Listing 121. The implementation of prvNewPrintString()

prvNewPrintString() is called repeatedly by two instances of a task implemented by

prvPrintTask(). A random delay time is used between each call. The task parameter is used

to pass a unique string into each instance of the task. The implementation of prvPrintTask() is

shown in Listing 122.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

248

static void prvPrintTask(void *pvParameters)

{

char *pcStringToPrint;

const TickType_t xMaxBlockTimeTicks = 0x20;

 /* Two instances of this task are created. The string printed by the task is

 passed into the task using the task’s parameter. The parameter is cast to the
 required type. */

 pcStringToPrint = (char *) pvParameters;

 for(;;)

 {

 /* Print out the string using the newly defined function. */

 prvNewPrintString(pcStringToPrint);

 /* Wait a pseudo random time. Note that rand() is not necessarily reentrant,

 but in this case it does not really matter as the code does not care what

 value is returned. In a more secure application a version of rand() that is

 known to be reentrant should be used - or calls to rand() should be protected

 using a critical section. */

 vTaskDelay((rand() % xMaxBlockTimeTicks));

 }

}

Listing 122. The implementation of prvPrintTask() for Example 20

As normal, main() simply creates the mutex, creates the tasks, then starts the scheduler. The

implementation is shown in Listing 123.

The two instances of prvPrintTask() are created at different priorities, so the lower priority task

will sometimes be pre-empted by the higher priority task. As a mutex is used to ensure each

task gets mutually exclusive access to the terminal, even when pre-emption occurs, the strings

that are displayed will be correct and in no way corrupted. The frequency of pre-emption can

be increased by reducing the maximum time the tasks spend in the Blocked state, which is set

by the xMaxBlockTimeTicks constant.

Notes specific to using Example 20 with the FreeRTOS Windows port:

 Calling printf() generates a Windows system call. Windows system calls are outside

the control of FreeRTOS, and can introduce instability.

 The way in which Windows system calls execute mean it is rare to see a corrupted

string, even when the mutex is not used.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 249

int main(void)

{

 /* Before a semaphore is used it must be explicitly created. In this example a

 mutex type semaphore is created. */

 xMutex = xSemaphoreCreateMutex();

 /* Check the semaphore was created successfully before creating the tasks. */

 if(xMutex != NULL)

 {

 /* Create two instances of the tasks that write to stdout. The string they

 write is passed in to the task as the task’s parameter. The tasks are
 created at different priorities so some pre-emption will occur. */

 xTaskCreate(prvPrintTask, "Print1", 1000,

 "Task 1 ***************************************\r\n", 1, NULL);

 xTaskCreate(prvPrintTask, "Print2", 1000,

 "Task 2 ---------------------------------------\r\n", 2, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 }

 /* If all is well then main() will never reach here as the scheduler will now be

 running the tasks. If main() does reach here then it is likely that there was

 insufficient heap memory available for the idle task to be created. Chapter 2

 provides more information on heap memory management. */

 for(;;);

}

Listing 123. The implementation of main() for Example 20

The output produced when Example 20 is executed is shown in Figure 64. A possible

execution sequence is described in Figure 65.

Figure 64. The output produced when Example 20 is executed

Figure 64 shows that, as expected, there is no corruption in the strings that are displayed on

the terminal. The random ordering is a result of the random delay periods used by the tasks.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

250

Task 2

t1

Task 1

Idle

Time

1 - The delay period for Task 1 expires so

Task 1 pre-empts the idle task.

2 - Task 1 takes the mutex and starts to

write out its string. Before the entire string

has been output Task 1 is preempted by the

higher priority Task 2.

3 - Task 2 attempts to take the mutex, but the mutex is still held by

Task 1 so Task 2 enters the Blocked state, allowing Task 1 to

execute again.

4 - Task 1 completes writing out its string, and gives

back the mutex - causing Task 2 to exit the Blocked

state. Task 2 preempts Task 1 again

5 - Task 2 writes out its string, gives back the

semaphore, then enters the Blocked state to wait

for the next execution time. This allows Task 1 to

run again - Task 1 also enters the Blocked state to

wait for its next execution time leaving only the Idle

task to run.

Figure 65. A possible sequence of execution for Example 20

Priority Inversion

Figure 65 demonstrates one of the potential pitfalls of using a mutex to provide mutual

exclusion. The sequence of execution depicted shows the higher priority Task 2 having to wait

for the lower priority Task 1 to give up control of the mutex. A higher priority task being

delayed by a lower priority task in this manner is called ‘priority inversion’. This undesirable

behavior would be exaggerated further if a medium priority task started to execute while the

high priority task was waiting for the semaphore—the result would be a high priority task

waiting for a low priority task—without the low priority task even being able to execute. This

worst case scenario is shown in Figure 66.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 251

High priority task [HP]

t1

Medium priority task [MP]

Time

1 - The LP task takes a mutex before being

preempted by the HP task.

Low priority task [LP]

2 - The HP task attempts to take the mutex

but can’t because it is still being held by the

LP task. The HP task enters the Blocked

state to wait for the mutex to become

available.

3 - The LP task continues to execute, but

gets preempted by the MP task before it

gives the mutex back.

4 - The MP task is now running. The HP

task is still waiting for the LP task to return

the mutex, but the LP task is not even

executing!

Figure 66. A worst case priority inversion scenario

Priority inversion can be a significant problem, but in small embedded systems it can often be

avoided at system design time, by considering how resources are accessed.

Priority Inheritance

FreeRTOS mutexes and binary semaphores are very similar—the difference being that

mutexes include a basic ‘priority inheritance’ mechanism, whereas binary semaphores do not.

Priority inheritance is a scheme that minimizes the negative effects of priority inversion. It

does not ‘fix’ priority inversion, but merely lessens its impact by ensuring that the inversion is

always time bounded. However, priority inheritance complicates system timing analysis, and it

is not good practice to rely on it for correct system operation.

Priority inheritance works by temporarily raising the priority of the mutex holder to the priority of

the highest priority task that is attempting to obtain the same mutex. The low priority task that

holds the mutex ‘inherits’ the priority of the task waiting for the mutex. This is demonstrated by

Figure 67. The priority of the mutex holder is reset automatically to its original value when it

gives the mutex back.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

252

High priority task [HP]

t1

Medium priority task [MP]

Time

1 - The LP task takes a mutex before being

preempted by the HP task.

Low priority task [LP]

2 - The HP task attempts to take the mutex but can’t

because it is still being held by the LP task. The HP task

enters the Blocked state to wait for the mutex to become

available.

3 - The LP task is preventing the HP task from executing so inherits

the priority of the HP task. The LP task cannot now be preempted by

the MP task, so the amount of time that priority inversion exists is

minimized. When the LP task gives the mutex back it returns to its

original priority.

4 - The LP task returning the mutex causes the HP task to

exit the Blocked state as the mutex holder. When the HP

task has finished with the mutex it gives it back. The MP

task only executes when the HP task returns to the Blocked

state so the MP task never holds up the HP task.

Figure 67. Priority inheritance minimizing the effect of priority inversion

As just seen, priority inheritance functionality effects the priority of tasks that are using the

mutex. For that reason, mutexes must not be used from an interrupt service routines.

Deadlock (or Deadly Embrace)

‘Deadlock’ is another potential pitfall of using mutexes for mutual exclusion. Deadlock is

sometimes also known by the more dramatic name ‘deadly embrace’.

Deadlock occurs when two tasks cannot proceed because they are both waiting for a resource

that is held by the other. Consider the following scenario where Task A and Task B both need

to acquire mutex X and mutex Y in order to perform an action:

1. Task A executes and successfully takes mutex X.

2. Task A is pre-empted by Task B.

3. Task B successfully takes mutex Y before attempting to also take mutex X—but mutex

X is held by Task A so is not available to Task B. Task B opts to enter the Blocked

state to wait for mutex X to be released.

4. Task A continues executing. It attempts to take mutex Y—but mutex Y is held by Task

B, so is not available to Task A. Task A opts to enter the Blocked state to wait for

mutex Y to be released.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 253

At the end of this scenario, Task A is waiting for a mutex held by Task B, and Task B is waiting

for a mutex held by Task A. Deadlock has occurred because neither task can proceed.

As with priority inversion, the best method of avoiding deadlock is to consider its potential at

design time, and design the system to ensure that deadlock cannot occur. In particular, and

as previously stated in this book, it is normally bad practice for a task to wait indefinitely

(without a time out) to obtain a mutex. Instead, use a time out that is a little longer than the

maximum time it is expected to have to wait for the mutex—then failure to obtain the mutex

within that time will be a symptom of a design error, which might be a deadlock.

In practice, deadlock is not a big problem in small embedded systems, because the system

designers can have a good understanding of the entire application, and so can identify and

remove the areas where it could occur.

Recursive Mutexes

It is also possible for a task to deadlock with itself. This will happen if a task attempts to take

the same mutex more than once, without first returning the mutex. Consider the following

scenario:

1. A task successfully obtains a mutex.

2. While holding the mutex, the task calls a library function.

3. The implementation of the library function attempts to take the same mutex, and enters

the Blocked state to wait for the mutex to become available.

At the end of this scenario the task is in the Blocked state to wait for the mutex to be returned,

but the task is already the mutex holder. A deadlock has occurred because the task is in the

Blocked state to wait for itself.

This type of deadlock can be avoided by using a recursive mutex in place of a standard mutex.

A recursive mutex can be ‘taken’ more than once by the same task, and will be returned only

after one call to ‘give’ the recursive mutex has been executed for every preceding call to ‘take’

the recursive mutex.

Standard mutexes and recursive mutexes are created and used in a similar way:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

254

 Standard mutexes are created using xSemaphoreCreateMutex(). Recursive mutexes

are created using xSemaphoreCreateRecursiveMutex(). The two API functions have

the same prototype.

 Standard mutexes are ‘taken’ using xSemaphoreTake(). Recursive mutexes are

‘taken’ using xSemaphoreTakeRecursive(). The two API functions have the same

prototype.

 Standard mutexes are ‘given’ using xSemaphoreGive(). Recursive mutexes are ‘given’

using xSemaphoreGiveRecursive(). The two API functions have the same prototype.

Listing 124 demonstrates how to create and use a recursive mutex.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 255

/* Recursive mutexes are variables of type SemaphoreHandle_t. */

SemaphoreHandle_t xRecursiveMutex;

/* The implementation of a task that creates and uses a recursive mutex. */

void vTaskFunction(void *pvParameters)

{

const TickType_t xMaxBlock20ms = pdMS_TO_TICKS(20);

 /* Before a recursive mutex is used it must be explicitly created. */

 xRecursiveMutex = xSemaphoreCreateRecursiveMutex();

 /* Check the semaphore was created successfully. configASSERT() is described in

 section 11.2. */

 configASSERT(xRecursiveMutex);

 /* As per most tasks, this task is implemented as an infinite loop. */

 for(;;)

 {

 /* ... */

 /* Take the recursive mutex. */

 if(xSemaphoreTakeRecursive(xRecursiveMutex, xMaxBlock20ms) == pdPASS)

 {

 /* The recursive mutex was successfully obtained. The task can now access

 the resource the mutex is protecting. At this point the recursive call

 count (which is the number of nested calls to xSemaphoreTakeRecursive())

 is 1, as the recursive mutex has only been taken once. */

 /* While it already holds the recursive mutex, the task takes the mutex

 again. In a real application, this is only likely to occur inside a sub-

 function called by this task, as there is no practical reason to knowingly

 take the same mutex more than once. The calling task is already the mutex

 holder, so the second call to xSemaphoreTakeRecursive() does nothing more

 than increment the recursive call count to 2. */

 xSemaphoreTakeRecursive(xRecursiveMutex, xMaxBlock20ms);

 /* ... */

 /* The task returns the mutex after it has finished accessing the resource

 the mutex is protecting. At this point the recursive call count is 2, so

 the first call to xSemaphoreGiveRecursive() does not return the mutex.

 Instead, it simply decrements the recursive call count back to 1. */

 xSemaphoreGiveRecursive(xRecursiveMutex);

 /* The next call to xSemaphoreGiveRecursive() decrements the recursive call

 count to 0, so this time the recursive mutex is returned.*/

 xSemaphoreGiveRecursive(xRecursiveMutex);

 /* Now one call to xSemaphoreGiveRecursive() has been executed for every

 proceeding call to xSemaphoreTakeRecursive(), so the task is no longer the

 mutex holder.

 }

 }

}

Listing 124. Creating and using a recursive mutex

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

256

Mutexes and Task Scheduling

If two tasks of different priority use the same mutex, then the FreeRTOS scheduling policy

makes the order in which the tasks will execute clear; the highest priority task that is able to

run will be selected as the task that enters the Running state. For example, if a high priority

task is in the Blocked state to wait for a mutex that is held by a low priority task, then the high

priority task will pre-empt the low priority task as soon as the low priority task returns the

mutex. The high priority task will then become the mutex holder. This scenario has already

been seen in Figure 67.

It is however common to make an incorrect assumption as to the order in which the tasks will

execute when the tasks have the same priority. If Task 1 and Task 2 have the same priority,

and Task 1 is in the Blocked state to wait for a mutex that is held by Task 2, then Task 1 will

not pre-empt Task 2 when Task 2 ‘gives’ the mutex. Instead, Task 2 will remain in the

Running state, and Task 1 will simply move from the Blocked state to the Ready state. This

scenario is shown in Figure 68, in which the vertical lines mark the times at which a tick

interrupt occurs.

Task 1 (priority 1)

t1

Task 2 (priority 1)

1 - Task 2 executes for a

time slice, during which it

‘takes’ the mutex

3 - Task 1 attempts to ‘take’ the

mutex that is held by Task 2 and

enters the Blocked state to wait for

the mutex to become available

4 - Task 2 executes for the remainder

of the time slice and, because Task 1

is blocked, remains in the Running

state into the following time slice

t2 t3 t4

6 - Task 1 does not re-enter

the Running state until the

start of the next time slice

2 - Task 1 starts to execute

at the beginning of the next

time slice

5 - Task 2 ‘gives’

the mutex,

unblocking Task 1

Figure 68 A possible sequence of execution when tasks that have the same priority
use the same mutex

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 257

In the scenario shown in Figure 68, the FreeRTOS scheduler does not make Task 1 the

Running state task as soon as the mutex is available because:

1. Task 1 and Task 2 have the same priority, so unless Task 2 enters the Blocked state, a

switch to Task 1 should not occur until the next tick interrupt (assuming

configUSE_TIME_SLICING is set to 1 in FreeRTOSConfig.h).

2. If a task uses a mutex in a tight loop, and a context switch occurred each time the task

‘gave’ the mutex, then the task would only ever remain in the Running state for a short

time. If two or more tasks used the same mutex in a tight loop, then processing time

would be wasted by rapidly switching between the tasks.

If a mutex is used in a tight loop by more than one task, and the tasks that use the mutex have

the same priority, then care must be taken to ensure the tasks receive an approximately equal

amount of processing time. The reason the tasks might not receive an equal amount of

processing time is demonstrated by Figure 69, which shows a sequence of execution that

could occur if two instances of the task shown by Listing 125 are created at the same priority.

/* The implementation of a task that uses a mutex in a tight loop. The task creates

a text string in a local buffer, then writes the string to a display. Access to the

display is protected by a mutex. */

void vATask(void *pvParameter)

{

extern SemaphoreHandle_t xMutex;

char cTextBuffer[128];

 for(;;)

 {

 /* Generate the text string – this is a fast operation. */
 vGenerateTextInALocalBuffer(cTextBuffer);

 /* Obtain the mutex that is protecting access to the display. */

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Write the generated text to the display – this is a slow operation. */
 vCopyTextToFrameBuffer(cTextBuffer);

 /* The text has been written to the display, so return the mutex. */

 xSemaphoreGive(xMutex);

 }

}

Listing 125. A task that uses a mutex in a tight loop

The comments in Listing 125 note that creating the string is a fast operation, and updating the

display is a slow operation. Therefore, as the mutex is held while the display is being updated,

the task will hold the mutex for the majority of its run time.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

258

In Figure 69, the vertical lines mark the times at which a tick interrupt occurs.

Task 1 (priority 1)

t1

Task 2 (priority 1)

t2 t3 t4

6 - Task 2

‘takes’ the

mutex again

t5

1 - Task 2 executes for a

time slice, during which it

‘takes’ the mutex

3 - Task 1 attempts to ‘take’ the

mutex that is held by Task 2 and

enters the Blocked state to wait for

the mutex to become available

2 - Task 1 starts to execute

at the beginning of the next

time slice

4 - Task 2 executes for the remainder

of the time slice and, because Task 1 is

blocked, remains in the Running state

into the following time slice

5 - Task 2 ‘gives’

the mutex,

unblocking Task 1

7 - Task 1 starts to execute at the

beginning of the next time slice,

attempts to ‘take’ the mutex that is

held by Task 2, and enters the

Blocked state again to wait for the

mutex to become available

Figure 69 A sequence of execution that could occur if two instances of the task
shown by Listing 125 are created at the same priority

Step 7 in Figure 69 shows Task 1 re-entering the Blocked state—that happens inside the

xSemaphoreTake() API function.

Figure 69 demonstrates that Task 1 will be prevented from obtaining the mutex until the start

of a time slice coincides with one of the short periods during which Task 2 is not the mutex

holder.

The scenario shown in Figure 69 can be avoided by adding a call to taskYIELD() after the call

to xSemaphoreGive(). This is demonstrated in Listing 126, where taskYIELD() is called if the

tick count changed while the task held the mutex.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 259

void vFunction(void *pvParameter)

{

extern SemaphoreHandle_t xMutex;

char cTextBuffer[128];

TickType_t xTimeAtWhichMutexWasTaken;

 for(;;)

 {

 /* Generate the text string – this is a fast operation. */
 vGenerateTextInALocalBuffer(cTextBuffer);

 /* Obtain the mutex that is protecting access to the display. */

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Record the time at which the mutex was taken. */

 xTimeAtWhichMutexWasTaken = xTaskGetTickCount();

 /* Write the generated text to the display – this is a slow operation. */
 vCopyTextToFrameBuffer(cTextBuffer);

 /* The text has been written to the display, so return the mutex. */

 xSemaphoreGive(xMutex);

 /* If taskYIELD() was called on each iteration then this task would only ever

 remain in the Running state for a short period of time, and processing time

 would be wasted by rapidly switching between tasks. Therefore, only call

 taskYIELD() if the tick count changed while the mutex was held. */

 if(xTaskGetTickCount() != xTimeAtWhichMutexWasTaken)

 {

 taskYIELD();

 }

 }

}

Listing 126. Ensuring tasks that use a mutex in a loop receive a more equal amount
of processing time, while also ensuring processing time is not wasted by

switching between tasks too rapidly

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

260

7.4 Gatekeeper Tasks

Gatekeeper tasks provide a clean method of implementing mutual exclusion without the risk of

priority inversion or deadlock.

A gatekeeper task is a task that has sole ownership of a resource. Only the gatekeeper task is

allowed to access the resource directly—any other task needing to access the resource can

do so only indirectly by using the services of the gatekeeper.

Example 21. Re-writing vPrintString() to use a gatekeeper task

Example 21 provides another alternative implementation for vPrintString(). This time, a

gatekeeper task is used to manage access to standard out. When a task wants to write a

message to standard out, it does not call a print function directly but, instead, sends the

message to the gatekeeper.

The gatekeeper task uses a FreeRTOS queue to serialize access to standard out. The

internal implementation of the task does not have to consider mutual exclusion because it is

the only task permitted to access standard out directly.

The gatekeeper task spends most of its time in the Blocked state, waiting for messages to

arrive on the queue. When a message arrives, the gatekeeper simply writes the message to

standard out, before returning to the Blocked state to wait for the next message. The

implementation of the gatekeeper task is shown by Listing 128.

Interrupts can send to queues, so interrupt service routines can also safely use the services of

the gatekeeper to write messages to the terminal. In this example, a tick hook function is used

to write out a message every 200 ticks.

A tick hook (or tick callback) is a function that is called by the kernel during each tick interrupt.

To use a tick hook function:

1. Set configUSE_TICK_HOOK to 1 in FreeRTOSConfig.h.

2. Provide the implementation of the hook function, using the exact function name and

prototype shown in Listing 127.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 261

 void vApplicationTickHook(void);

Listing 127. The name and prototype for a tick hook function

Tick hook functions execute within the context of the tick interrupt, and so must be kept very

short, must use only a moderate amount of stack space, and must not call any FreeRTOS API

functions that do not end with ‘FromISR()’.

The scheduler will always execute immediately after the tick hook function, so interrupt safe

FreeRTOS API functions called from the tick hook do not need to use their

pxHigherPriorityTaskWoken parameter, and the parameter can be set to NULL.

static void prvStdioGatekeeperTask(void *pvParameters)

{

char *pcMessageToPrint;

 /* This is the only task that is allowed to write to standard out. Any other

 task wanting to write a string to the output does not access standard out

 directly, but instead sends the string to this task. As only this task accesses

 standard out there are no mutual exclusion or serialization issues to consider

 within the implementation of the task itself. */

 for(;;)

 {

 /* Wait for a message to arrive. An indefinite block time is specified so

 there is no need to check the return value – the function will only return
 when a message has been successfully received. */

 xQueueReceive(xPrintQueue, &pcMessageToPrint, portMAX_DELAY);

 /* Output the received string. */

 printf("%s", pcMessageToPrint);

 fflush(stdout);

 /* Loop back to wait for the next message. */

 }

}

Listing 128. The gatekeeper task

The task that writes to the queue is shown in Listing 129. As before, two separate instances of

the task are created, and the string the task writes to the queue is passed into the task using

the task parameter.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

262

static void prvPrintTask(void *pvParameters)

{

int iIndexToString;

const TickType_t xMaxBlockTimeTicks = 0x20;

 /* Two instances of this task are created. The task parameter is used to pass

 an index into an array of strings into the task. Cast this to the required

 type. */

 iIndexToString = (int) pvParameters;

 for(;;)

 {

 /* Print out the string, not directly, but instead by passing a pointer to

 the string to the gatekeeper task via a queue. The queue is created before

 the scheduler is started so will already exist by the time this task executes

 for the first time. A block time is not specified because there should

 always be space in the queue. */

 xQueueSendToBack(xPrintQueue, &(pcStringsToPrint[iIndexToString]), 0);

 /* Wait a pseudo random time. Note that rand() is not necessarily reentrant,

 but in this case it does not really matter as the code does not care what

 value is returned. In a more secure application a version of rand() that is

 known to be reentrant should be used - or calls to rand() should be protected

 using a critical section. */

 vTaskDelay((rand() % xMaxBlockTimeTicks));

 }

}

Listing 129. The print task implementation for Example 21

The tick hook function counts the number of times it is called, sending its message to the

gatekeeper task each time the count reaches 200. For demonstration purposes only, the tick

hook writes to the front of the queue, and the tasks write to the back of the queue. The tick

hook implementation is shown in Listing 130.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 263

void vApplicationTickHook(void)

{

static int iCount = 0;

 /* Print out a message every 200 ticks. The message is not written out directly,

 but sent to the gatekeeper task. */

 iCount++;

 if(iCount >= 200)

 {

 /* As xQueueSendToFrontFromISR() is being called from the tick hook, it is

 not necessary to use the xHigherPriorityTaskWoken parameter (the third

 parameter), and the parameter is set to NULL. */

 xQueueSendToFrontFromISR(xPrintQueue,

 &(pcStringsToPrint[2]),

 NULL);

 /* Reset the count ready to print out the string again in 200 ticks time. */

 iCount = 0;

 }

}

Listing 130. The tick hook implementation

As normal, main() creates the queues and tasks necessary to run the example, then starts the

scheduler. The implementation of main() is shown in Listing 131.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

264

/* Define the strings that the tasks and interrupt will print out via the

gatekeeper. */

static char *pcStringsToPrint[] =

{

 "Task 1 **\r\n",

 "Task 2 --\r\n",

 "Message printed from the tick hook interrupt ##############\r\n"

};

/*---*/

/* Declare a variable of type QueueHandle_t. The queue is used to send messages

from the print tasks and the tick interrupt to the gatekeeper task. */

QueueHandle_t xPrintQueue;

/*---*/

int main(void)

{

 /* Before a queue is used it must be explicitly created. The queue is created

 to hold a maximum of 5 character pointers. */

 xPrintQueue = xQueueCreate(5, sizeof(char *));

 /* Check the queue was created successfully. */

 if(xPrintQueue != NULL)

 {

 /* Create two instances of the tasks that send messages to the gatekeeper.

 The index to the string the task uses is passed to the task via the task

 parameter (the 4th parameter to xTaskCreate()). The tasks are created at

 different priorities so the higher priority task will occasionally preempt

 the lower priority task. */

 xTaskCreate(prvPrintTask, "Print1", 1000, (void *) 0, 1, NULL);

 xTaskCreate(prvPrintTask, "Print2", 1000, (void *) 1, 2, NULL);

 /* Create the gatekeeper task. This is the only task that is permitted

 to directly access standard out. */

 xTaskCreate(prvStdioGatekeeperTask, "Gatekeeper", 1000, NULL, 0, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 }

 /* If all is well then main() will never reach here as the scheduler will now be

 running the tasks. If main() does reach here then it is likely that there was

 insufficient heap memory available for the idle task to be created. Chapter 2

 provides more information on heap memory management. */

 for(;;);

}

Listing 131. The implementation of main() for Example 21

The output produced when Example 21 is executed is shown in Figure 70. As can be seen,

the strings originating from the tasks, and the strings originating from the interrupt, all print out

correctly with no corruption.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 265

Figure 70. The output produced when Example 21 is executed

The gatekeeper task is assigned a lower priority than the print tasks—so messages sent to the

gatekeeper remain in the queue until both print tasks are in the Blocked state. In some

situations, it would be appropriate to assign the gatekeeper a higher priority, so messages get

processed immediately—but doing so would be at the cost of the gatekeeper delaying lower

priority tasks until it has completed accessing the protected resource.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

266

Chapter 8

Event Groups

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 267

8.1 Chapter Introduction and Scope

It has already been noted that real-time embedded systems have to take actions in response

to events. Previous chapters have described features of FreeRTOS that allow events to be

communicated to tasks. Examples of such features include semaphores and queues, both of

which have the following properties:

 They allow a task to wait in the Blocked state for a single event to occur.

 They unblock a single task when the event occurs—the task that is unblocked is the

highest priority task that was waiting for the event.

Event groups are another feature of FreeRTOS that allow events to be communicated to

tasks. Unlike queues and semaphores:

 Event groups allow a task to wait in the Blocked state for a combination of one of more

events to occur.

 Event groups unblock all the tasks that were waiting for the same event, or combination

of events, when the event occurs.

These unique properties of event groups make them useful for synchronizing multiple tasks,

broadcasting events to more than one task, allowing a task to wait in the Blocked state for any

one of a set of events to occur, and allowing a task to wait in the Blocked state for multiple

actions to complete.

Event groups also provide the opportunity to reduce the RAM used by an application, as often

it is possible to replace many binary semaphores with a single event group.

Event group functionality is optional. To include event group functionality, build the FreeRTOS

source file event_groups.c as part of your project.

Scope

This chapter aims to give readers a good understanding of:

 Practical uses for event groups.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

268

 The advantages and disadvantages of event groups relative to other FreeRTOS

features.

 How to set bits in an event group.

 How to wait in the Blocked state for bits to become set in an event group.

 How to use an event group to synchronize a set of tasks.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 269

8.2 Characteristics of an Event Group

Event Groups, Event Flags and Event Bits

An event ‘flag’ is a Boolean (1 or 0) value used to indicate if an event has occurred or not. An

event ‘group’ is a set of event flags.

An event flag can only be 1 or 0, allowing the state of an event flag to be stored in a single bit,

and the state of all the event flags in an event group to be stored in a single variable; the state

of each event flag in an event group is represented by a single bit in a variable of type

EventBits_t. For that reason, event flags are also known as event ‘bits’. If a bit is set to 1 in

the EventBits_t variable, then the event represented by that bit has occurred. If a bit is set to 0

in the EventBits_t variable, then the event represented by that bit has not occurred.

Figure 71 shows how individual event flags are mapped to individual bits in a variable of type

EventBits_t.

Bit 0 is Flag 0

Event flags in a variable of type EventBits_t

01234567891011121314151617181920212223XXXXXXXX

Bit 23 is Flag 23

Bit 0Bit 8Bit 16

Figure 71 Event flag to bit number mapping in a variable of type EventBits_t

As an example, if the value of an event group is 0x92 (binary 1001 0010) then only event bits

1, 4 and 7 are set, so only the events represented by bits 1, 4 and 7 have occurred. Figure 72

shows a variable of type EventBits_t that has event bits 1, 4 and 7 set, and all the other event

bits clear, giving the event group a value of 0x92.

Event Group Value

XXXXXXXX 010010010000000000000000

Bit 0Bit 8Bit 16

Figure 72 An event group in which only bits 1, 4 and 7 are set, and all the other
event flags are clear, making the event group’s value 0x92

It is up to the application writer to assign a meaning to individual bits within an event group.

For example, the application writer might create an event group, then:

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

270

 Define bit 0 within the event group to mean “a message has been received from the

network”.

 Define bit 1 within the event group to mean “a message is ready to be sent onto the

network”.

 Define bit 2 within the event group to mean “abort the current network connection”.

More About the EventBits_t Data Type

The number of event bits in an event group is dependent on the configUSE_16_BIT_TICKS

compile time configuration constant within FreeRTOSConfig.h1:

 If configUSE_16_BIT_TICKS is 1, then each event group contains 8 usable event bits.

 If configUSE_16_BIT_TICKS is 0, then each event group contains 24 usable event bits.

Access by Multiple Tasks

Event groups are objects in their own right that can be accessed by any task or ISR that

knows of their existence. Any number of tasks can set bits in the same event group, and any

number of tasks can read bits from the same event group.

A Practical Example of Using an Event Group

The implementation of the FreeRTOS+TCP TCP/IP stack provides a practical example of how

an event group can be used to simultaneously simplify a design, and minimize resource

usage.

A TCP socket must respond to many different events. Examples of events include accept

events, bind events, read events and close events. The events a socket can expect at any

given time is dependent on the state of the socket. For example, if a socket has been created,

but not yet bound to an address, then it can expect to receive a bind event, but would not

expect to receive a read event (it cannot read data if it does not have an address).

1 configUSE_16_BIT_TICKS configures the type used to hold the RTOS tick count, so would seem
unrelated to the event groups feature. Its effect on the EventBits_t type is a consequence of
FreeRTOS’s internal implementation, and desirable as configUSE_16_BIT_TICKS should only be set to
1 when FreeRTOS is executing on an architecture that can handle 16-bit types more efficiently than 32-
bit types.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 271

The state of a FreeRTOS+TCP socket is held in a structure called FreeRTOS_Socket_t. The

structure contains an event group that has an event bit defined for each event the socket must

process. FreeRTOS+TCP API calls that block to wait for an event, or group of events, simply

block on the event group.

The event group also contains an ‘abort’ bit, allowing a TCP connection to be aborted, no

matter which event the socket is waiting for at the time.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

272

8.3 Event Management Using Event Groups

The xEventGroupCreate() API Function

FreeRTOS V9.0.0 also includes the xEventGroupCreateStatic() function, which allocates the memory required to

create an event group statically at compile time: An event group must be explicitly created before it

can be used.

Event groups are referenced using variables of type EventGroupHandle_t. The

xEventGroupCreate() API function is used to create an event group, and returns an

EventGroupHandle_t to reference the event group it creates.

EventGroupHandle_t xEventGroupCreate(void);

Listing 132. The xEventGroupCreate() API function prototype

Table 42, xEventGroupCreate() return value

Parameter
Name

Description

Return Value If NULL is returned, then the event group cannot be created because

there is insufficient heap memory available for FreeRTOS to allocate the

event group data structures. Chapter 2 provides more information on

heap memory management.

A non-NULL value being returned indicates that the event group has been

created successfully. The returned value should be stored as the handle

to the created event group.

The xEventGroupSetBits() API Function

The xEventGroupSetBits() API function sets one or more bits in an event group, and is

typically used to notify a task that the events represented by the bit, or bits, being set has

occurred.

Note: Never call xEventGroupSetBits() from an interrupt service routine. The interrupt-safe

version xEventGroupSetBitsFromISR() should be used in its place.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 273

EventBits_t xEventGroupSetBits(EventGroupHandle_t xEventGroup,

 const EventBits_t uxBitsToSet);

Listing 133. The xEventGroupSetBits() API function prototype

Table 43, xEventGroupSetBits() parameters and return value

Parameter
Name

Description

xEventGroup The handle of the event group in which bits are being set. The event

group handle will have been returned from the call to

xEventGroupCreate() used to create the event group.

uxBitsToSet A bit mask that specifies the event bit, or event bits, to set to 1 in the event

group. The value of the event group is updated by bitwise ORing the

event group’s existing value with the value passed in uxBitsToSet.

As an example, setting uxBitsToSet to 0x04 (binary 0100) will result in

event bit 3 in the event group becoming set (if it was not already set),

while leaving all the other event bits in the event group unchanged.

Returned Value The value of the event group at the time the call to xEventGroupSetBits()

returned. Note that the value returned will not necessarily have the bits

specified by uxBitsToSet set, because the bits may have been cleared

again by a different task.

The xEventGroupSetBitsFromISR() API Function

xEventGroupSetBitsFromISR() is the interrupt safe version of xEventGroupSetBits().

Giving a semaphore is a deterministic operation because it is known in advance that giving a

semaphore can result in at most one task leaving the Blocked state. When bits are set in an

event group it is not known in advance how many tasks will leave the Blocked state, so setting

bits in an event group is not a deterministic operation.

The FreeRTOS design and implementation standard does not permit non-deterministic

operations to be performed inside an interrupt service routine, or when interrupts are disabled.

For that reason, xEventGroupSetBitsFromISR() does not set event bits directly inside the

interrupt service routine, but instead defers the action to the RTOS daemon task.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

274

BaseType_t xEventGroupSetBitsFromISR(EventGroupHandle_t xEventGroup,

 const EventBits_t uxBitsToSet,

 BaseType_t *pxHigherPriorityTaskWoken);

Listing 134. The xEventGroupSetBitsFromISR() API function prototype

Table 44, xEventGroupSetBitsFromISR() parameters and return value

Parameter Name Description

xEventGroup The handle of the event group in which bits are being set. The

event group handle will have been returned from the call to

xEventGroupCreate() used to create the event group.

uxBitsToSet A bit mask that specifies the event bit, or event bits, to set to 1

in the event group. The value of the event group is updated by

bitwise ORing the event group’s existing value with the value

passed in uxBitsToSet.

As an example, setting uxBitsToSet to 0x05 (binary 0101) will

result in event bit 3 and event bit 0 in the event group

becoming set (if they were not already set), while leaving all

the other event bits in the event group unchanged.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 275

Table 44, xEventGroupSetBitsFromISR() parameters and return value

Parameter Name Description

pxHigherPriorityTaskWoken xEventGroupSetBitsFromISR() does not set the event bits

directly inside the interrupt service routine, but instead defers

the action to the RTOS daemon task by sending a command

on the timer command queue. If the daemon task was in the

Blocked state to wait for data to become available on the timer

command queue, then writing to the timer command queue will

cause the daemon task to leave the Blocked state. If the

priority of the daemon task is higher than the priority of the

currently executing task (the task that was interrupted), then,

internally, xEventGroupSetBitsFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE.

If xEventGroupSetBitsFromISR() sets this value to pdTRUE,

then a context switch should be performed before the interrupt

is exited. This will ensure that the interrupt returns directly to

the daemon task, as the daemon task will be the highest

priority Ready state task.

Returned Value There are two possible return values:

1. pdPASS

pdPASS will be returned only if data was successfully sent

to the timer command queue.

2. pdFALSE

pdFALSE will be returned if the ‘set bits’ command could

not be written to the timer command queue because the

queue was already full.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

276

The xEventGroupWaitBits() API Function

The xEventGroupWaitBits() API function allows a task to read the value of an event group, and

optionally wait in the Blocked state for one or more event bits in the event group to become

set, if the event bits are not already set.

EventBits_t xEventGroupWaitBits(const EventGroupHandle_t xEventGroup,

 const EventBits_t uxBitsToWaitFor,

 const BaseType_t xClearOnExit,

 const BaseType_t xWaitForAllBits,

 TickType_t xTicksToWait);

Listing 135. The xEventGroupWaitBits() API function prototype

The condition used by the scheduler to determine if a task will enter the Blocked state, and

when a task will leave the Blocked state, is called the ‘unblock condition’. The unblock

condition is specified by a combination of the uxBitsToWaitFor and the xWaitForAllBits

parameter values:

 uxBitsToWaitFor specifies which event bits in the event group to test

 xWaitForAllBits specifies whether to use a bitwise OR test, or a bitwise AND test

A task will not enter the Blocked state if its unblock condition is met at the time

xEventGroupWaitBits() is called.

Examples of conditions that will result in a task either entering the Blocked state, or exiting the

Blocked state, are provided in Table 45. Table 45 only shows the least significant four binary

bits of the event group and uxBitsToWaitFor values—the other bits of those two values are

assumed to be zero.

Table 45, The Effect of the uxBitsToWaitFor and xWaitForAllBits Parameters

Existing Event
Group Value

uxBitsToWaitFor
value

xWaitForAllBits
value

Resultant Behavior

0000 0101 pdFALSE The calling task will enter the Blocked

state because neither of bit 0 or bit 2

are set in the event group, and will

leave the Blocked state when either bit

0 OR bit 2 are set in the event group.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 277

Table 45, The Effect of the uxBitsToWaitFor and xWaitForAllBits Parameters

Existing Event
Group Value

uxBitsToWaitFor
value

xWaitForAllBits
value

Resultant Behavior

0100 0101 pdTRUE The calling task will enter the Blocked

state because bit 0 and bit 2 are not

both set in the event group, and will

leave the Blocked state when both bit 0

AND bit 2 are set in the event group.

0100 0110 pdFALSE The calling task will not enter the

Blocked state because xWaitForAllBits

is pdFALSE, and one of the two bits

specified by uxBitsToWaitFor is already

set in the event group.

0100 0110 pdTRUE The calling task will enter the Blocked

state because xWaitForAllBits is

pdTRUE, and only one of the two bits

specified by uxBitsToWaitFor is already

set in the event group. The task will

leave the Blocked state when both bit 2

and bit 3 are set in the event group.

The calling task specifies bits to test using the uxBitsToWaitFor parameter, and it is likely the

calling task will need to clear these bits back to zero after its unblock condition has been met.

Event bits can be cleared using the xEventGroupClearBits() API function, but using that

function to manually clear event bits will lead to race conditions in the application code if:

 There is more than one task using the same event group.

 Bits are set in the event group by a different task, or by an interrupt service routine.

The xClearOnExit parameter is provided to avoid these potential race conditions. If

xClearOnExit is set to pdTRUE, then the testing and clearing of event bits appears to the

calling task to be an atomic operation (uninterruptable by other tasks or interrupts).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

278

 Table 46, xEventGroupWaitBits() parameters and return value

Parameter Name Description

xEventGroup The handle of the event group that contains the event bits being read.

The event group handle will have been returned from the call to

xEventGroupCreate() used to create the event group.

uxBitsToWaitFor A bit mask that specifies the event bit, or event bits, to test in the event

group.

For example, if the calling task wants to wait for event bit 0 and/or event

bit 2 to become set in the event group, then set uxBitsToWaitFor to 0x05

(binary 0101). Refer to Table 45 for further examples.

xClearOnExit If the calling task’s unblock condition has been met, and xClearOnExit is

set to pdTRUE, then the event bits specified by uxBitsToWaitFor will be

cleared back to 0 in the event group before the calling task exits the

xEventGroupWaitBits() API function.

If xClearOnExit is set to pdFALSE, then the state of the event bits in the

event group are not modified by the xEventGroupWaitBits() API function.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 279

 Table 46, xEventGroupWaitBits() parameters and return value

Parameter Name Description

xWaitForAllBits The uxBitsToWaitFor parameter specifies the event bits to test in the

event group. xWaitForAllBits specifies if the calling task should be

removed from the Blocked state when one or more of the events bits

specified by the uxBitsToWaitFor parameter are set, or only when all of

the event bits specified by the uxBitsToWaitFor parameter are set.

If xWaitForAllBits is set to pdFALSE, then a task that entered the Blocked

state to wait for its unblock condition to be met will leave the Blocked state

when any of the bits specified by uxBitsToWaitFor become set (or the time

out specified by the xTicksToWait parameter expires).

If xWaitForAllBits is set to pdTRUE, then a task that entered the Blocked

state to wait for its unblock condition to be met will only leave the Blocked

state when all of the bits specified by uxBitsToWaitFor are set (or the time

out specified by the xTicksToWait parameter expires).

Refer to Table 45 for examples.

xTicksToWait The maximum amount of time the task should remain in the Blocked state

to wait for its unblock condition to be met.

xEventGroupWaitBits() will return immediately if xTicksToWait is zero, or

the unblock condition is met at the time xEventGroupWaitBits() is called.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set

to 1 in FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

280

 Table 46, xEventGroupWaitBits() parameters and return value

Parameter Name Description

Returned Value If xEventGroupWaitBits() returned because the calling task’s unblock

condition was met, then the returned value is the value of the event group

at the time the calling task’s unblock condition was met (before any bits

were automatically cleared if xClearOnExit was pdTRUE). In this case the

returned value will also meet the unblock condition.

If xEventGroupWaitBits() returned because the block time specified by the

xTicksToWait parameter expired, then the returned value is the value of

the event group at the time the block time expired. In this case the

returned value will not meet the unblock condition.

Example 22. Experimenting with event groups

This example demonstrates how to:

 Create an event group.

 Set bits in an event group from an interrupt service routine.

 Set bits in an event group from a task.

 Block on an event group.

The effect of the xEventGroupWaitBits() xWaitForAllBits parameter is demonstrated by first

executing the example with xWaitForAllBits set to pdFALSE, and then executing the example

with xWaitForAllBits set to pdTRUE.

Event bit 0 and event bit 1 are set from a task. Event bit 2 is set from an interrupt service

routine. These three bits are given descriptive names using the #define statements shown in

Listing 136.

/* Definitions for the event bits in the event group. */

#define mainFIRST_TASK_BIT (1UL << 0UL) /* Event bit 0, which is set by a task. */

#define mainSECOND_TASK_BIT (1UL << 1UL) /* Event bit 1, which is set by a task. */

#define mainISR_BIT (1UL << 2UL) /* Event bit 2, which is set by an ISR. */

Listing 136. Event bit definitions used in Example 22

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 281

Listing 137 shows the implementation of the task that sets event bit 0 and event bit 1. It sits in

a loop, repeatedly setting one bit, then the other, with a delay of 200 milliseconds between

each call to xEventGroupSetBits(). A string is printed out before each bit is set to allow the

sequence of execution to be seen in the console.

static void vEventBitSettingTask(void *pvParameters)

{

const TickType_t xDelay200ms = pdMS_TO_TICKS(200UL), xDontBlock = 0;

 for(;;)

 {

 /* Delay for a short while before starting the next loop. */

 vTaskDelay(xDelay200ms);

 /* Print out a message to say event bit 0 is about to be set by the task,

 then set event bit 0. */

 vPrintString("Bit setting task -\t about to set bit 0.\r\n");

 xEventGroupSetBits(xEventGroup, mainFIRST_TASK_BIT);

 /* Delay for a short while before setting the other bit. */

 vTaskDelay(xDelay200ms);

 /* Print out a message to say event bit 1 is about to be set by the task,

 then set event bit 1. */

 vPrintString("Bit setting task -\t about to set bit 1.\r\n");

 xEventGroupSetBits(xEventGroup, mainSECOND_TASK_BIT);

 }

}

Listing 137. The task that sets two bits in the event group in Example 22

Listing 138 shows the implementation of the interrupt service routine that sets bit 2 in the event

group. Again, a string is printed out before the bit is set to allow the sequence of execution to

be seen in the console. In this case however, because console output should not be

performed directly in an interrupt service routine, xTimerPendFunctionCallFromISR() is used to

perform the output in the context of the RTOS daemon task.

As in previous examples, the interrupt service routine is triggered by a simple periodic task that

forces a software interrupt. In this example, the interrupt is generated every 500 milliseconds.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

282

static uint32_t ulEventBitSettingISR(void)

{

/* The string is not printed within the interrupt service routine, but is instead

sent to the RTOS daemon task for printing. It is therefore declared static to ensure

the compiler does not allocate the string on the stack of the ISR, as the ISR's stack

frame will not exist when the string is printed from the daemon task. */

static const char *pcString = "Bit setting ISR -\t about to set bit 2.\r\n";

BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Print out a message to say bit 2 is about to be set. Messages cannot be

 printed from an ISR, so defer the actual output to the RTOS daemon task by

 pending a function call to run in the context of the RTOS daemon task. */

 xTimerPendFunctionCallFromISR(vPrintStringFromDaemonTask,

 (void *) pcString,

 0,

 &xHigherPriorityTaskWoken);

 /* Set bit 2 in the event group. */

 xEventGroupSetBitsFromISR(xEventGroup, mainISR_BIT, &xHigherPriorityTaskWoken);

 /* xTimerPendFunctionCallFromISR() and xEventGroupSetBitsFromISR() both write to

 the timer command queue, and both used the same xHigherPriorityTaskWoken

 variable. If writing to the timer command queue resulted in the RTOS daemon task

 leaving the Blocked state, and if the priority of the RTOS daemon task is higher

 than the priority of the currently executing task (the task this interrupt

 interrupted) then xHigherPriorityTaskWoken will have been set to pdTRUE.

.

 xHigherPriorityTaskWoken is used as the parameter to portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken equals pdTRUE, then calling portYIELD_FROM_ISR() will

 request a context switch. If xHigherPriorityTaskWoken is still pdFALSE, then

 calling portYIELD_FROM_ISR() will have no effect.

 The implementation of portYIELD_FROM_ISR() used by the Windows port includes a

 return statement, which is why this function does not explicitly return a

 value. */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 138. The ISR that sets bit 2 in the event group in Example 22

Listing 139 show the implementation of the task that calls xEventGroupWaitBits() to block on

the event group. The task prints out a string for each bit that is set in the event group.

The xEventGroupWaitBits() xClearOnExit parameter is set to pdTRUE, so the event bit, or bits,

that caused the call to xEventGroupWaitBits() to return will be cleared automatically before

xEventGroupWaitBits() returns.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 283

static void vEventBitReadingTask(void *pvParameters)

{

EventBits_t xEventGroupValue;

const EventBits_t xBitsToWaitFor = (mainFIRST_TASK_BIT |

 mainSECOND_TASK_BIT |

 mainISR_BIT);

 for(;;)

 {

 /* Block to wait for event bits to become set within the event group. */

 xEventGroupValue = xEventGroupWaitBits(/* The event group to read. */

 xEventGroup,

 /* Bits to test. */

 xBitsToWaitFor,

 /* Clear bits on exit if the

 unblock condition is met. */

 pdTRUE,

 /* Don't wait for all bits. This

 parameter is set to pdTRUE for the

 second execution. */

 pdFALSE,

 /* Don't time out. */

 portMAX_DELAY);

 /* Print a message for each bit that was set. */

 if((xEventGroupValue & mainFIRST_TASK_BIT) != 0)

 {

 vPrintString("Bit reading task -\t Event bit 0 was set\r\n");

 }

 if((xEventGroupValue & mainSECOND_TASK_BIT) != 0)

 {

 vPrintString("Bit reading task -\t Event bit 1 was set\r\n");

 }

 if((xEventGroupValue & mainISR_BIT) != 0)

 {

 vPrintString("Bit reading task -\t Event bit 2 was set\r\n");

 }

 }

}

Listing 139. The task that blocks to wait for event bits to become set in Example 22

The main() function creates the event group, and the tasks, before starting the scheduler. See

Listing 140 for its implementation. The priority of the task that reads from the event group is

higher than the priority of the task that writes to the event group, ensuring the reading task will

pre-empt the writing task each time the reading task’s unblock condition is met.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

284

int main(void)

{

 /* Before an event group can be used it must first be created. */

 xEventGroup = xEventGroupCreate();

 /* Create the task that sets event bits in the event group. */

 xTaskCreate(vEventBitSettingTask, "Bit Setter", 1000, NULL, 1, NULL);

 /* Create the task that waits for event bits to get set in the event group. */

 xTaskCreate(vEventBitReadingTask, "Bit Reader", 1000, NULL, 2, NULL);

 /* Create the task that is used to periodically generate a software interrupt. */

 xTaskCreate(vInterruptGenerator, "Int Gen", 1000, NULL, 3, NULL);

 /* Install the handler for the software interrupt. The syntax necessary to do

 this is dependent on the FreeRTOS port being used. The syntax shown here can

 only be used with the FreeRTOS Windows port, where such interrupts are only

 simulated. */

 vPortSetInterruptHandler(mainINTERRUPT_NUMBER, ulEventBitSettingISR);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 /* The following line should never be reached. */

 for(;;);

 return 0;

}

Listing 140. Creating the event group and tasks in Example 22

The output produced when Example 22 is executed with the xEventGroupWaitBits()

xWaitForAllBits parameter set to pdFALSE is shown in Figure 73. In Figure 73, it can be seen

that, because the xWaitForAllBits parameter in the call to xEventGroupWaitBits() was set to

pdFALSE, the task that reads from the event group leaves the Blocked state and executes

immediately every time any of the event bits are set.

Figure 73 The output produced when Example 22 is executed with xWaitForAllBits
set to pdFALSE

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 285

The output produced when Example 22 is executed with the xEventGroupWaitBits()

xWaitForAllBits parameter set to pdTRUE is shown in Figure 74. In Figure 74 it can be seen

that, because the xWaitForAllBits parameter was set to pdTRUE, the task that reads from the

event group only leaves the Blocked state after all three of the event bits are set.

Figure 74 The output produced when Example 22 is executed with xWaitForAllBits
set to pdTRUE

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

286

8.4 Task Synchronization Using an Event Group

Sometimes the design of an application requires two or more tasks to synchronize with each

other. For example, consider a design where Task A receives an event, then delegates some

of the processing necessitated by the event to three other tasks: Task B, Task C and Task D.

If Task A cannot receive another event until tasks B, C and D have all completed processing

the previous event, then all four tasks will need to synchronize with each other. Each task’s

synchronization point will be after that task has completed its processing, and cannot proceed

further until each of the other tasks have done the same. Task A can only receive another

event after all four tasks have reached their synchronization point.

A less abstract example of the need for this type of task synchronization is found in one of the

FreeRTOS+TCP demonstration projects. The demonstration shares a TCP socket between

two tasks; one task sends data to the socket, and a different task receives data from the same

socket1. It is not safe for either task to close the TCP socket until it is sure the other task will

not attempt to access the socket again. If either of the two tasks wishes to close the socket,

then it must inform the other task of its intent, and then wait for the other task to stop using the

socket before proceeding. The scenario where it is the task that sends data to the socket that

wishes to close the socket is demonstrated by the pseudo code shown in Listing 140.

The scenario demonstrated by Listing 140 is trivial, as there are only two tasks that need to

synchronize with each other, but it is easy to see how the scenario would become more

complex, and require more tasks to join the synchronization, if other tasks were performing

processing that was dependent on the socket being open.

1 At the time of writing, this is the only way a single FreeRTOS+TCP socket can be shared between
tasks.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 287

void SocketTxTask(void *pvParameters)

{

xSocket_t xSocket;

uint32_t ulTxCount = 0UL;

 for(;;)

 {

 /* Create a new socket. This task will send to this socket, and another task will receive

 from this socket. */

 xSocket = FreeRTOS_socket(...);

 /* Connect the socket. */

 FreeRTOS_connect(xSocket, ...);

 /* Use a queue to send the socket to the task that receives data. */

 xQueueSend(xSocketPassingQueue, &xSocket, portMAX_DELAY);

 /* Send 1000 messages to the socket before closing the socket. */

 for(ulTxCount = 0; ulTxCount < 1000; ulTxCount++)

 {

 if(FreeRTOS_send(xSocket, ...) < 0)

 {

 /* Unexpected error - exit the loop, after which the socket will be closed. */

 break;

 }

 }

 /* Let the Rx task know the Tx task wants to close the socket. */

 TxTaskWantsToCloseSocket();

 /* This is the Tx task’s synchronization point. The Tx task waits here for the Rx task to

 reach its synchronization point. The Rx task will only reach its synchronization point

 when it is no longer using the socket, and the socket can be closed safely. */

 xEventGroupSync(...);

 /* Neither task is using the socket. Shut down the connection, then close the socket. */

 FreeRTOS_shutdown(xSocket, ...);

 WaitForSocketToDisconnect();

 FreeRTOS_closesocket(xSocket);

 }

}

/*---*/

void SocketRxTask(void *pvParameters)

{

xSocket_t xSocket;

 for(;;)

 {

 /* Wait to receive a socket that was created and connected by the Tx task. */

 xQueueReceive(xSocketPassingQueue, &xSocket, portMAX_DELAY);

 /* Keep receiving from the socket until the Tx task wants to close the socket. */

 while(TxTaskWantsToCloseSocket() == pdFALSE)

 {

 /* Receive then process data. */

 FreeRTOS_recv(xSocket, ...);

 ProcessReceivedData();

 }

 /* This is the Rx task’s synchronization point - it only reaches here when it is no longer

 using the socket, and it is therefore safe for the Tx task to close the socket. */

 xEventGroupSync(...);

 }

}

Listing 141. Pseudo code for two tasks that synchronize with each other to ensure a
shared TCP socket is no longer in use by either task before the socket is

closed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

288

An event group can be used to create a synchronization point:

 Each task that must participate in the synchronization is assigned a unique event bit

within the event group.

 Each task sets its own event bit when it reaches the synchronization point.

 Having set its own event bit, each task blocks on the event group to wait for the event

bits that represent all the other synchronizing tasks to also become set.

However, the xEventGroupSetBits() and xEventGroupWaitBits() API functions cannot be used

in this scenario. If they were used, then the setting of a bit (to indicate a task had reached its

synchronization point) and the testing of bits (to determine if the other synchronizing tasks had

reached their synchronization point) would be performed as two separate operations. To see

why that would be a problem, consider a scenario where Task A, Task B and Task C attempt

to synchronize using an event group:

1. Task A and Task B have already reached the synchronization point, so their event bits

are set in the event group, and they are in the Blocked state to wait for task C’s event

bit to also become set.

2. Task C reaches the synchronization point, and uses xEventGroupSetBits() to set its bit

in the event group. As soon as Task C’s bit is set, Task A and Task B leave the

Blocked state, and clear all three event bits.

3. Task C then calls xEventGroupWaitBits() to wait for all three event bits to become set,

but by that time, all three event bits have already been cleared, Task A and Task B

have left their respective synchronization points, and so the synchronization has failed.

To successfully use an event group to create a synchronization point, the setting of an event

bit, and the subsequent testing of event bits, must be performed as a single uninterruptable

operation. The xEventGroupSync() API function is provided for that purpose.

The xEventGroupSync() API Function

xEventGroupSync() is provided to allow two or more tasks to use an event group to

synchronize with each other. The function allows a task to set one or more event bits in an

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 289

event group, then wait for a combination of event bits to become set in the same event group,

as a single uninterruptable operation.

The xEventGroupSync() uxBitsToWaitFor parameter specifies the calling task’s unblock

condition. The event bits specified by uxBitsToWaitFor will be cleared back to zero before

xEventGroupSync() returns, if xEventGroupSync() returned because the unblock condition had

been met.

EventBits_t xEventGroupSync(EventGroupHandle_t xEventGroup,

 const EventBits_t uxBitsToSet,

 const EventBits_t uxBitsToWaitFor,

 TickType_t xTicksToWait);

Listing 142. The xEventGroupSync() API function prototype

Table 47, xEventGroupSync() parameters and return value

Parameter Name Description

xEventGroup The handle of the event group in which event bits are to be set, and then

tested. The event group handle will have been returned from the call to

xEventGroupCreate() used to create the event group.

uxBitsToSet A bit mask that specifies the event bit, or event bits, to set to 1 in the event

group. The value of the event group is updated by bitwise ORing the

event group’s existing value with the value passed in uxBitsToSet.

As an example, setting uxBitsToSet to 0x04 (binary 0100) will result in

event bit 3 becoming set (if it was not already set), while leaving all the

other event bits in the event group unchanged.

uxBitsToWaitFor A bit mask that specifies the event bit, or event bits, to test in the event

group.

For example, if the calling task wants to wait for event bits 0, 1 and 2 to

become set in the event group, then set uxBitsToWaitFor to 0x07 (binary

111).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

290

Table 47, xEventGroupSync() parameters and return value

Parameter Name Description

xTicksToWait The maximum amount of time the task should remain in the Blocked state

to wait for its unblock condition to be met.

xEventGroupSync() will return immediately if xTicksToWait is zero, or the

unblock condition is met at the time xEventGroupSync() is called.

The block time is specified in tick periods, so the absolute time it

represents is dependent on the tick frequency. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait

indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set

to 1 in FreeRTOSConfig.h.

Returned Value If xEventGroupSync() returned because the calling task’s unblock

condition was met, then the returned value is the value of the event group

at the time the calling task’s unblock condition was met (before any bits

were automatically cleared back to zero). In this case the returned value

will also meet the calling task’s unblock condition.

If xEventGroupSync() returned because the block time specified by the

xTicksToWait parameter expired, then the returned value is the value of

the event group at the time the block time expired. In this case the

returned value will not meet the calling task’s unblock condition.

Example 23. Synchronizing tasks

Example 23 uses xEventGroupSync() to synchronize three instances of a single task

implementation. The task parameter is used to pass into each instance the event bit the task

will set when it calls xEventGroupSync().

The task prints a message before calling xEventGroupSync(), and again after the call to

xEventGroupSync() has returned. Each message includes a time stamp. This allows the

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 291

sequence of execution to be observed in the output produced. A pseudo random delay is

used to prevent all the tasks reaching the synchronization point at the same time.

See Listing 143 for the task’s implementation.

static void vSyncingTask(void *pvParameters)

{

const TickType_t xMaxDelay = pdMS_TO_TICKS(4000UL);

const TickType_t xMinDelay = pdMS_TO_TICKS(200UL);

TickType_t xDelayTime;

EventBits_t uxThisTasksSyncBit;

const EventBits_t uxAllSyncBits = (mainFIRST_TASK_BIT |

 mainSECOND_TASK_BIT |

 mainTHIRD_TASK_BIT);

 /* Three instances of this task are created - each task uses a different event

 bit in the synchronization. The event bit to use is passed into each task

 instance using the task parameter. Store it in the uxThisTasksSyncBit

 variable. */

 uxThisTasksSyncBit = (EventBits_t) pvParameters;

 for(;;)

 {

 /* Simulate this task taking some time to perform an action by delaying for a

 pseudo random time. This prevents all three instances of this task reaching

 the synchronization point at the same time, and so allows the example’s

 behavior to be observed more easily. */

 xDelayTime = (rand() % xMaxDelay) + xMinDelay;

 vTaskDelay(xDelayTime);

 /* Print out a message to show this task has reached its synchronization

 point. pcTaskGetTaskName() is an API function that returns the name assigned

 to the task when the task was created. */

 vPrintTwoStrings(pcTaskGetTaskName(NULL), "reached sync point");

 /* Wait for all the tasks to have reached their respective synchronization

 points. */

 xEventGroupSync(/* The event group used to synchronize. */

 xEventGroup,

 /* The bit set by this task to indicate it has reached the

 synchronization point. */

 uxThisTasksSyncBit,

 /* The bits to wait for, one bit for each task taking part

 in the synchronization. */

 uxAllSyncBits,

 /* Wait indefinitely for all three tasks to reach the

 synchronization point. */

 portMAX_DELAY);

 /* Print out a message to show this task has passed its synchronization

 point. As an indefinite delay was used the following line will only be

 executed after all the tasks reached their respective synchronization

 points. */

 vPrintTwoStrings(pcTaskGetTaskName(NULL), "exited sync point");

 }

}

Listing 143. The implementation of the task used in Example 23

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

292

The main() function creates the event group, creates all three tasks, and then starts the

scheduler. See Listing 144 for its implementation.

/* Definitions for the event bits in the event group. */

#define mainFIRST_TASK_BIT (1UL << 0UL) /* Event bit 0, set by the first task. */

#define mainSECOND_TASK_BIT(1UL << 1UL) /* Event bit 1, set by the second task. */

#define mainTHIRD_TASK_BIT (1UL << 2UL) /* Event bit 2, set by the third task. */

/* Declare the event group used to synchronize the three tasks. */

EventGroupHandle_t xEventGroup;

int main(void)

{

 /* Before an event group can be used it must first be created. */

 xEventGroup = xEventGroupCreate();

 /* Create three instances of the task. Each task is given a different name,

 which is later printed out to give a visual indication of which task is

 executing. The event bit to use when the task reaches its synchronization point

 is passed into the task using the task parameter. */

 xTaskCreate(vSyncingTask, "Task 1", 1000, mainFIRST_TASK_BIT, 1, NULL);

 xTaskCreate(vSyncingTask, "Task 2", 1000, mainSECOND_TASK_BIT, 1, NULL);

 xTaskCreate(vSyncingTask, "Task 3", 1000, mainTHIRD_TASK_BIT, 1, NULL);

 /* Start the scheduler so the created tasks start executing. */

 vTaskStartScheduler();

 /* As always, the following line should never be reached. */

 for(;;);

 return 0;

}

Listing 144. The main() function used in Example 23

The output produced when Example 23 is executed is shown in Figure 75. It can be seen that,

even though each task reaches the synchronization point at a different (pseudo random) time,

each task exits the synchronization point at the same time1 (which is the time at which the last

task reached the synchronization point).

1 Figure 75 shows the example running in the FreeRTOS Windows port, which does not provide true
real time behavior (especially when using Windows system calls to print to the console), and will
therefore show some timing variation.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 293

Figure 75 The output produced when Example 23 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

294

Chapter 9

Task Notifications

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 295

9.1 Chapter Introduction and Scope

It has been seen that applications that use FreeRTOS are structured as a set of independent

tasks, and that it is likely that these autonomous tasks will have to communicate with each

other so that, collectively, they can provide useful system functionality.

Communicating Through Intermediary Objects

This book has already described various ways in which tasks can communicate with each

other. The methods described so far have required the creation of a communication object.

Examples of communication objects include queues, event groups, and various different types

of semaphore.

When a communication object is used, events and data are not sent directly to a receiving

task, or a receiving ISR, but are instead sent to the communication object. Likewise, tasks

and ISRs receive events and data from the communication object, rather than directly from the

task or ISR that sent the event or data. This is depicted in Figure 76.

void vTask1(void *pvParam)

{

 for(;;)

 {

 /* Write function code

 here. */

 /* At some point vTask1

 sends an event to

 vTask2. The event is

 not sent directly to

 vTask2, but instead to

 a communication object.

 */

 ASendFunction();

 }

}

void vTask2(void *pvParam)

{

 for(;;)

 {

 /* Write function code

 here. */

 /* At some point vTask2

 receives an event from

 vTask1. The event is

 not received directly

 from vTask1, but instead

 from the communication

 object. */

 AReceiveFunction();

 }

}

Communication

object

The communication

object could be a

queue, event group,

or one of the many

types of semaphore

Figure 76 A communication object being used to send an event from one task to
another

Task Notifications—Direct to Task Communication

‘Task Notifications’ allow tasks to interact with other tasks, and to synchronize with ISRs,

without the need for a separate communication object. By using a task notification, a task or

ISR can send an event directly to the receiving task. This is depicted in Figure 77.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

296

void vTask1(void *pvParam)

{

 for(;;)

 {

 /* Write function code

 here. */

 /* At some point vTask1

 sends an event to

 vTask2 using a direct to

 task notification.*/

 ASendFunction();

 }

}

void vTask2(void *pvParam)

{

 for(;;)

 {

 /* Write function code

 here. */

 /* At some point vTask2

 receives a direct

 notification from vTask1

 */

 AReceiveFunction();

 }

}

This time there is no

communication

object in the middle

Figure 77 A task notification used to send an event directly from one task to another

Task notification functionality is optional. To include task notification functionality set

configUSE_TASK_NOTIFICATIONS to 1 in FreeRTOSConfig.h.

When configUSE_TASK_NOTIFICATIONS is set to 1, each task has a ‘Notification State’,

which can be either ‘Pending’ or ‘Not-Pending’, and a ‘Notification Value’, which is a 32-bit

unsigned integer. When a task receives a notification, its notification state is set to pending.

When a task reads its notification value, its notification state is set to not-pending.

A task can wait in the Blocked state, with an optional time out, for its notification state to

become pending.

Scope

This chapter aims to give readers a good understanding of:

 A task’s notification state and notification value.

 How and when a task notification can be used in place of a communication object, such

as a semaphore.

 The advantages of using a task notification in place of a communication object.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 297

9.2 Task Notifications; Benefits and Limitations

Performance Benefits of Task Notifications

Using a task notification to send an event or data to a task is significantly faster than using a

queue, semaphore or event group to perform an equivalent operation.

RAM Footprint Benefits of Task Notifications

Likewise, using a task notification to send an event or data to a task requires significantly less

RAM than using a queue, semaphore or event group to perform an equivalent operation. This

is because each communication object (queue, semaphore or event group) must be created

before it can be used, whereas enabling task notification functionality has a fixed overhead of

just eight bytes of RAM per task.

Limitations of Task Notifications

Task notifications are faster and use less RAM than communication objects, but task

notifications cannot be used in all scenarios. This section documents the scenarios in which a

task notification cannot be used:

 Sending an event or data to an ISR

Communication objects can be used to send events and data from an ISR to a task, and

from a task to an ISR.

Task notifications can be used to send events and data from an ISR to a task, but they

cannot be used to send events or data from a task to an ISR.

 Enabling more than one receiving task

A communication object can be accessed by any task or ISR that knows its handle (which

might be a queue handle, semaphore handle, or event group handle). Any number of

tasks and ISRs can process events or data sent to any given communication object.

Task notifications are sent directly to the receiving task, so can only be processed by the

task to which the notification is sent. However, this is rarely a limitation in practical cases

because, while it is common to have multiple tasks and ISRs sending to the same

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

298

communication object, it is rare to have multiple tasks and ISRs receiving from the same

communication object.

 Buffering multiple data items

A queue is a communication object that can hold more than one data item at a time. Data

that has been sent to the queue, but not yet received from the queue, is buffered inside the

queue object.

Task notifications send data to a task by updating the receiving task’s notification value. A

task’s notification value can only hold one value at a time.

 Broadcasting to more than one task

An event group is a communication object that can be used to send an event to more than

one task at a time.

Task notifications are sent directly to the receiving task, so can only be processed by the

receiving task.

 Waiting in the blocked state for a send to complete

If a communication object is temporarily in a state that means no more data or events can

be written to it (for example, when a queue is full no more data can be sent to the queue),

then tasks attempting to write to the object can optionally enter the Blocked state to wait for

their write operation to complete.

If a task attempts to send a task notification to a task that already has a notification

pending, then it is not possible for the sending task to wait in the Blocked state for the

receiving task to reset its notification state. As will be seen, this is rarely a limitation in

practical cases in which a task notification is used.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 299

9.3 Using Task Notifications

Task Notification API Options

Task notifications are a very powerful feature that can often be used in place of a binary

semaphore, a counting semaphore, an event group, and sometimes even a queue. This wide

range of usage scenarios can be achieved by using the xTaskNotify() API function to send a

task notification, and the xTaskNotifyWait() API function to receive a task notification.

However, in the majority of cases, the full flexibility provided by the xTaskNotify() and

xTaskNotifyWait() API functions is not required, and simpler functions would suffice.

Therefore, the xTaskNotifyGive() API function is provided as a simpler but less flexible

alternative to xTaskNotify(), and the ulTaskNotifyTake() API function is provided as a simpler

but less flexible alternative to xTaskNotifyWait().

The xTaskNotifyGive() API Function

xTaskNotifyGive() sends a notification directly to a task, and increments (adds one to) the

receiving task’s notification value. Calling xTaskNotifyGive() will set the receiving task’s

notification state to pending, if it was not already pending.

The xTaskNotifyGive()1 API function is provided to allow a task notification to be used as a

lighter weight and faster alternative to a binary or counting semaphore.

BaseType_t xTaskNotifyGive(TaskHandle_t xTaskToNotify);

Listing 145. The xTaskNotifyGive() API function prototype

1 xTaskNotifyGive() is actually implemented as macro, not a function. For simplicity it is referred to as a
function throughout this book.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

300

Table 48. xTaskNotifyGive() parameters and return value

Parameter Name/
Returned Value

Description

xTaskToNotify The handle of the task to which the notification is being

sent—see the pxCreatedTask parameter of the

xTaskCreate() API function for information on obtaining

handles to tasks.

Returned value xTaskNotifyGive() is a macro that calls xTaskNotify(). The

parameters passed into xTaskNotify() by the macro are set

such that pdPASS is the only possible return value.

xTaskNotify() is described later in this book.

The vTaskNotifyGiveFromISR() API Function

vTaskNotifyGiveFromISR() is a version of xTaskNotifyGive() that can be used in an interrupt

service routine.

void vTaskNotifyGiveFromISR(TaskHandle_t xTaskToNotify,

 BaseType_t *pxHigherPriorityTaskWoken);

Listing 146. The vTaskNotifyGiveFromISR() API function prototype

Table 49. vTaskNotifyGiveFromISR() parameters and return value

Parameter Name/
Returned Value

Description

xTaskToNotify The handle of the task to which the notification is being

sent—see the pxCreatedTask parameter of the

xTaskCreate() API function for information on obtaining

handles to tasks.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 301

Table 49. vTaskNotifyGiveFromISR() parameters and return value

Parameter Name/
Returned Value

Description

pxHigherPriorityTaskWoken If the task to which the notification is being sent is waiting in

the Blocked state to receive a notification, then sending the

notification will cause the task to leave the Blocked state.

If calling vTaskNotifyGiveFromISR() causes a task to leave

the Blocked state, and the unblocked task has a priority

higher than the priority of the currently executing task (the

task that was interrupted), then, internally,

vTaskNotifyGiveFromISR() will set

*pxHigherPriorityTaskWoken to pdTRUE.

If vTaskNotifyGiveFromISR() sets this value to pdTRUE, then

a context switch should be performed before the interrupt is

exited. This will ensure that the interrupt returns directly to

the highest priority Ready state task.

As with all interrupt safe API functions, the

pxHigherPriorityTaskWoken parameter must be set to

pdFALSE before it is used.

The ulTaskNotifyTake() API Function

ulTaskNotifyTake() allows a task to wait in the Blocked state for its notification value to be

greater than zero, and either decrements (subtracts one from) or clears the task’s notification

value before it returns.

The ulTaskNotifyTake() API function is provided to allow a task notification to be used as a

lighter weight and faster alternative to a binary or counting semaphore.

uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnExit, TickType_t xTicksToWait);

Listing 147. The ulTaskNotifyTake() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

302

Table 50. ulTaskNotifyTake() parameters and return value

Parameter Name/
Returned Value

Description

xClearCountOnExit If xClearCountOnExit is set to pdTRUE, then the calling

task’s notification value will be cleared to zero before the call

to ulTaskNotifyTake() returns.

If xClearCountOnExit is set to pdFALSE, and the calling

task’s notification value is greater than zero, then the calling

task’s notification value will be decremented before the call to

ulTaskNotifyTake() returns.

xTicksToWait The maximum amount of time the calling task should remain

in the Blocked state to wait for its notification value to be

greater than zero.

The block time is specified in tick periods, so the absolute

time it represents is dependent on the tick frequency. The

macro pdMS_TO_TICKS() can be used to convert a time

specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task

to wait indefinitely (without timing out), provided

INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 303

Table 50. ulTaskNotifyTake() parameters and return value

Parameter Name/
Returned Value

Description

Returned value The returned value is the calling task’s notification value

before it was either cleared to zero or decremented, as

specified by the value of the xClearCountOnExit parameter.

If a block time was specified (xTicksToWait was not zero),

and the return value is not zero, then it is possible the calling

task was placed into the Blocked state, to wait for its

notification value to be greater than zero, and its notification

value was updated before the block time expired.

If a block time was specified (xTicksToWait was not zero),

and the return value is zero, then the calling task was placed

into the Blocked state, to wait for its notification value to be

greater than zero, but the specified block time expired before

that happened.

Example 24. Using a task notification in place of a semaphore, method 1

Example 16 used a binary semaphore to unblock a task from within an interrupt service

routine—effectively synchronizing the task with the interrupt. This example replicates the

functionality of Example 16, but uses a direct to task notification in place of the binary

semaphore.

Listing 148 shows the implementation of the task that is synchronized with the interrupt. The

call to xSemaphoreTake() that was used in Example 16 has been replaced by a call to

ulTaskNotifyTake().

The ulTaskNotifyTake() xClearCountOnExit parameter is set to pdTRUE, which results in the

receiving task’s notification value being cleared to zero before ulTaskNotifyTake() returns. It is

therefore necessary to process all the events that are already available between each call to

ulTaskNotifyTake(). In Example 16, because a binary semaphore was used, the number of

pending events had to be determined from the hardware, which is not always practical. In

Example 24, the number of pending events is returned from ulTaskNotifyTake().

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

304

Interrupt events that occur between calls to ulTaskNotifyTake are latched in the task’s

notification value, and calls to ulTaskNotifyTake() will return immediately if the calling task

already has notifications pending.

/* The rate at which the periodic task generates software interrupts. */

const TickType_t xInterruptFrequency = pdMS_TO_TICKS(500UL);

static void vHandlerTask(void *pvParameters)

{

/* xMaxExpectedBlockTime is set to be a little longer than the maximum expected time

between events. */

const TickType_t xMaxExpectedBlockTime = xInterruptFrequency + pdMS_TO_TICKS(10);

uint32_t ulEventsToProcess;

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Wait to receive a notification sent directly to this task from the

 interrupt service routine. */

 ulEventsToProcess = ulTaskNotifyTake(pdTRUE, xMaxExpectedBlockTime);

 if(ulEventsToProcess != 0)

 {

 /* To get here at least one event must have occurred. Loop here until

 all the pending events have been processed (in this case, just print out

 a message for each event). */

 while(ulEventsToProcess > 0)

 {

 vPrintString("Handler task - Processing event.\r\n");

 ulEventsToProcess--;

 }

 }

 else

 {

 /* If this part of the function is reached then an interrupt did not

 arrive within the expected time, and (in a real application) it may be

 necessary to perform some error recovery operations. */

 }

 }

}

Listing 148. The implementation of the task to which the interrupt processing is
deferred (the task that synchronizes with the interrupt) in Example 24

The periodic task used to generate software interrupts prints a message before the interrupt is

generated, and again after the interrupt has been generated. This allows the sequence of

execution to be observed in the output produced.

Listing 149 shows the interrupt handler. This does very little other than send a notification

directly to the task to which interrupt handling is deferred.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 305

static uint32_t ulExampleInterruptHandler(void)

{

BaseType_t xHigherPriorityTaskWoken;

 /* The xHigherPriorityTaskWoken parameter must be initialized to pdFALSE as

 it will get set to pdTRUE inside the interrupt safe API function if a

 context switch is required. */

 xHigherPriorityTaskWoken = pdFALSE;

 /* Send a notification directly to the task to which interrupt processing is

 being deferred. */

 vTaskNotifyGiveFromISR(/* The handle of the task to which the notification

 is being sent. The handle was saved when the task

 was created. */

 xHandlerTask,

 /* xHigherPriorityTaskWoken is used in the usual

 way. */

 &xHigherPriorityTaskWoken);

 /* Pass the xHigherPriorityTaskWoken value into portYIELD_FROM_ISR(). If

 xHigherPriorityTaskWoken was set to pdTRUE inside vTaskNotifyGiveFromISR()

 then calling portYIELD_FROM_ISR() will request a context switch. If

 xHigherPriorityTaskWoken is still pdFALSE then calling

 portYIELD_FROM_ISR() will have no effect. The implementation of

 portYIELD_FROM_ISR() used by the Windows port includes a return statement,

 which is why this function does not explicitly return a value. */

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 149. The implementation of the interrupt service routine used in Example 24

The output produced when Example 24 is executed is shown in Figure 78. As expected, it is

identical to that produced when Example 16 is executed. vHandlerTask() enters the Running

state as soon as the interrupt is generated, so the output from the task splits the output

produced by the periodic task. Further explanation is provided in Figure 79.

Figure 78. The output produced when Example 16 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

306

Handler

t1 t2

Periodic

1 - The Idle task is running most of the

time. Every 500ms its gets pre-empted

by the Periodic task.

Idle

Time

2 - The Periodic task prints its first

message then forces an interrupt. The

interrupt service routine (ISR) executes

immediately.

4 - vHandlerTask() prints out its

message before returning to the

Blocked state to wait for the next

notification.

5 - The Periodic task is once again the highest priority task - it prints

out its second message before entering the Blocked state again to wait

for the next time period. This leaves just the Idle task able to run.

3 - The ISR sends a notification directly to vHandlerTask(), causing the task to

unblock. The ISR then returns directly to vHandlerTask() because the task is

then the highest priority Ready state task.

Interrupt

Figure 79. The sequence of execution when Example 24 is executed

Example 25. Using a task notification in place of a semaphore, method 2

In Example 24, the ulTaskNotifyTake() xClearOnExit parameter was set to pdTRUE. Example

25 modifies Example 24 slightly to demonstrate the behavior when the ulTaskNotifyTake()

xClearOnExit parameter is instead set to pdFALSE.

When xClearOnExit is pdFALSE, calling ulTaskNotifyTake() will only decrement (reduce by

one) the calling task’s notification value, instead of clearing it to zero. The notification count is

therefore the difference between the number of events that have occurred, and the number of

events that have been processed. That allows the structure of vHandlerTask() to be simplified

in two ways:

1. The number of events waiting to be processed is held in the notification value, so it

does not need to be held in a local variable.

2. It is only necessary to process one event between each call to ulTaskNotifyTake().

The implementation of vHandlerTask() used in Example 25 is shown in Listing 150.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 307

static void vHandlerTask(void *pvParameters)

{

/* xMaxExpectedBlockTime is set to be a little longer than the maximum expected time

between events. */

const TickType_t xMaxExpectedBlockTime = xInterruptFrequency + pdMS_TO_TICKS(10);

 /* As per most tasks, this task is implemented within an infinite loop. */

 for(;;)

 {

 /* Wait to receive a notification sent directly to this task from the

 interrupt service routine. The xClearCountOnExit parameter is now pdFALSE,

 so the task's notification value will be decremented by ulTaskNotifyTake(),

 and not cleared to zero. */

 if(ulTaskNotifyTake(pdFALSE, xMaxExpectedBlockTime) != 0)

 {

 /* To get here an event must have occurred. Process the event (in this

 case just print out a message). */

 vPrintString("Handler task - Processing event.\r\n");

 }

 else

 {

 /* If this part of the function is reached then an interrupt did not

 arrive within the expected time, and (in a real application) it may be

 necessary to perform some error recovery operations. */

 }

 }

}

Listing 150. The implementation of the task to which the interrupt processing is
deferred (the task that synchronizes with the interrupt) in Example 25

For demonstration purposes, the interrupt service routine has also been modified to send more

than one task notification per interrupt, and in so doing, simulate multiple interrupts occurring

at high frequency. The implementation of the interrupt service routine used in Example 25 is

shown in Listing 151.

static uint32_t ulExampleInterruptHandler(void)

{

BaseType_t xHigherPriorityTaskWoken;

 xHigherPriorityTaskWoken = pdFALSE;

 /* Send a notification to the handler task multiple times. The first ‘give’ will
 unblock the task, the following 'gives' are to demonstrate that the receiving

 task's notification value is being used to count (latch) events - allowing the

 task to process each event in turn. */

 vTaskNotifyGiveFromISR(xHandlerTask, &xHigherPriorityTaskWoken);

 vTaskNotifyGiveFromISR(xHandlerTask, &xHigherPriorityTaskWoken);

 vTaskNotifyGiveFromISR(xHandlerTask, &xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 151. The implementation of the interrupt service routine used in Example 25

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

308

The output produced when Example 25 is executed is shown in Figure 80. As can be seen,

vHandlerTask() processes all three events each time an interrupt is generated.

Figure 80. The output produced when Example 25 is executed

The xTaskNotify() and xTaskNotifyFromISR() API Functions

xTaskNotify() is a more capable version of xTaskNotifyGive() that can be used to update the

receiving task’s notification value in any of the following ways:

 Increment (add one to) the receiving task’s notification value, in which case

xTaskNotify() is equivalent to xTaskNotifyGive().

 Set one or more bits in the receiving task’s notification value. This allows a task’s

notification value to be used as a lighter weight and faster alternative to an event

group.

 Write a completely new number into the receiving task’s notification value, but only if

the receiving task has read its notification value since it was last updated. This allows

a task’s notification value to provide similar functionality to that provided by a queue

that has a length of one.

 Write a completely new number into the receiving task’s notification value, even if the

receiving task has not read its notification value since it was last updated. This allows

a task’s notification value to provide similar functionality to that provided by the

xQueueOverwrite() API function. The resultant behavior is sometimes referred to as a

‘mailbox’.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 309

xTaskNotify() is more flexible and powerful than xTaskNotifyGive(), and because of that extra

flexibility and power, it is also a little more complex to use.

xTaskNotifyFromISR() is a version of xTaskNotify() that can be used in an interrupt service

routine, and therefore has an additional pxHigherPriorityTaskWoken parameter.

Calling xTaskNotify() will always set the receiving task’s notification state to pending, if it was

not already pending.

BaseType_t xTaskNotify(TaskHandle_t xTaskToNotify,

 uint32_t ulValue,

 eNotifyAction eAction);

BaseType_t xTaskNotifyFromISR(TaskHandle_t xTaskToNotify,

 uint32_t ulValue,

 eNotifyAction eAction,

 BaseType_t *pxHigherPriorityTaskWoken);

Listing 152. Prototypes for the xTaskNotify() and xTaskNotifyFromISR() API
functions

Table 51. xTaskNotify() parameters and return value

Parameter Name/
Returned Value

Description

xTaskToNotify The handle of the task to which the notification is being

sent—see the pxCreatedTask parameter of the

xTaskCreate() API function for information on obtaining

handles to tasks.

ulValue How ulValue is used is dependent on the eNotifyAction value.

See Table 52.

eNotifyAction An enumerated type that specifies how to update the

receiving task’s notification value. See Table 52.

Returned value xTaskNotify() will return pdPASS except in the one case

noted in Table 52.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

310

Table 52. Valid xTaskNotify() eNotifyAction Parameter Values, and Their Resultant
Effect on the Receiving Task’s Notification Value

eNotifyAction Value Resultant Effect on Receiving Task

eNoAction The receiving task’s notification state is set to pending

without it’s notification value being updated. The

xTaskNotify() ulValue parameter is not used.

The eNoAction action allows a task notification to be used as

a faster and lighter weight alternative to a binary semaphore.

eSetBits The receiving task’s notification value is bitwise OR’ed with

the value passed in the xTaskNotify() ulValue parameter. For

example, if ulValue is set to 0x01, then bit 0 will be set in the

receiving task's notification value. As another example, if

ulValue is 0x06 (binary 0110) then bit 1 and bit 2 will be set in

the receiving task's notification value.

The eSetBits action allows a task notification to be used as a

faster and lighter weight alternative to an event group.

eIncrement The receiving task’s notification value is incremented. The

xTaskNotify() ulValue parameter is not used.

The eIncrement action allows a task notification to be used

as a faster and lighter weight alternative to a binary or

counting semaphore, and is equivalent to the simpler

xTaskNotifyGive() API function.

eSetValueWithoutOverwrite If the receiving task had a notification pending before

xTaskNotify() was called, then no action is taken and

xTaskNotify() will return pdFAIL.

If the receiving task did not have a notification pending before

xTaskNotify() was called, then the receiving task’s notification

value is set to the value passed in the xTaskNotify() ulValue

parameter.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 311

Table 51. xTaskNotify() parameters and return value

Parameter Name/
Returned Value

Description

eSetValueWithOverwrite The receiving task’s notification value is set to the value

passed in the xTaskNotify() ulValue parameter, regardless of

whether the receiving task had a notification pending before

xTaskNotify() was called or not.

The xTaskNotifyWait() API Function

xTaskNotifyWait() is a more capable version of ulTaskNotifyTake(). It allows a task to wait,

with an optional timeout, for the calling task’s notification state to become pending, should it

not already be pending. xTaskNotifyWait() provides options for bits to be cleared in the calling

task’s notification value both on entry to the function, and on exit from the function.

BaseType_t xTaskNotifyWait(uint32_t ulBitsToClearOnEntry,

 uint32_t ulBitsToClearOnExit,

 uint32_t *pulNotificationValue,

 TickType_t xTicksToWait);

Listing 153. The xTaskNotifyWait() API function prototype

Table 53. xTaskNotifyWait() parameters and return value

Parameter Name/
Returned Value

Description

ulBitsToClearOnEntry If the calling task did not have a notification pending before it

called xTaskNotifyWait(), then any bits set in

ulBitsToClearOnEntry will be cleared in the task’s notification

value on entry to the function.

For example, if ulBitsToClearOnEntry is 0x01, then bit 0 of

the task's notification value will be cleared. As another

example, setting ulBitsToClearOnEntry to 0xffffffff

(ULONG_MAX) will clear all the bits in the task's notification

value, effectively clearing the value to 0.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

312

Table 53. xTaskNotifyWait() parameters and return value

Parameter Name/
Returned Value

Description

ulBitsToClearOnExit If the calling task exits xTaskNotifyWait() because it received

a notification, or because it already had a notification pending

when xTaskNotifyWait() was called, then any bits set in

ulBitsToClearOnExit will be cleared in the task’s notification

value before the task exits the xTaskNotifyWait() function.

The bits are cleared after the task's notification value has

been saved in *pulNotificationValue (see the description of

pulNotificationValue below).

For example, if ulBitsToClearOnExit is 0x03, then bit 0 and

bit 1 of the task's notification value will be cleared before the

function exits.

Setting ulBitsToClearOnExit to 0xffffffff (ULONG_MAX) will

clear all the bits in the task's notification value, effectively

clearing the value to 0.

pulNotificationValue Used to pass out the task's notification value. The value

copied to *pulNotificationValue is the task's notification value

as it was before any bits were cleared due to the

ulBitsToClearOnExit setting.

pulNotificationValue is an optional parameter and can be set

to NULL if it is not required.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 313

Table 53. xTaskNotifyWait() parameters and return value

Parameter Name/
Returned Value

Description

xTicksToWait The maximum amount of time the calling task should remain

in the Blocked state to wait for its notification state to become

pending.

The block time is specified in tick periods, so the absolute

time it represents is dependent on the tick frequency. The

macro pdMS_TO_TICKS() can be used to convert a time

specified in milliseconds to a time specified in ticks.

Setting xTicksToWait to portMAX_DELAY will cause the task

to wait indefinitely (without timing out), provided

INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

314

Table 53. xTaskNotifyWait() parameters and return value

Parameter Name/
Returned Value

Description

Returned value There are two possible return values:

1. pdTRUE

This indicates xTaskNotifyWait() returned because a

notification was received, or because the calling task already

had a notification pending when xTaskNotifyWait() was

called.

If a block time was specified (xTicksToWait was not zero),

then it is possible that the calling task was placed into the

Blocked state, to wait for its notification state to become

pending, but its notification state was set to pending before

the block time expired.

2. pdFALSE

This indicates that xTaskNotifyWait() returned without the

calling task receiving a task notification.

If xTicksToWait was not zero then the calling task will have

been held in the Blocked state to wait for its notification state

to become pending, but the specified block time expired

before that happened.

Task Notifications Used in Peripheral Device Drivers: UART Example

Peripheral driver libraries provide functions that perform common operations on hardware

interfaces. Examples of peripherals for which such libraries are often provided include

Universal Asynchronous Receivers and Transmitters (UARTs), Serial Peripheral Interface

(SPI) ports, analog to digital converters (ADCs), and Ethernet ports. Examples of functions

typically provided by such libraries include functions to initialize a peripheral, send data to a

peripheral, and receive data from a peripheral.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 315

Some operations on peripherals take a relatively long time to complete. Examples of such

operations include a high precision ADC conversion, and the transmission of a large data

packet on a UART. In these cases the driver library function could be implemented to poll

(repeatedly read) the peripheral’s status registers to determine when the operation has

completed. However, polling in this manner is nearly always wasteful as it utilizes 100% of the

processor’s time while no productive processing is being performed. The waste is particularly

expensive in a multi-tasking system, where a task that is polling a peripheral might be

preventing the execution of a lower priority task that does have productive processing to

perform.

To avoid the potential for wasted processing time, an efficient RTOS aware device driver

should be interrupt driven, and give a task that initiates a lengthy operation the option of

waiting in the Blocked state for the operation to complete. That way, lower priority tasks can

execute while the task performing the lengthy operation is in the Blocked state, and no tasks

use processing time unless they can use it productively.

It is common practice for RTOS aware driver libraries to use a binary semaphore to place

tasks into the Blocked state. The technique is demonstrated by the pseudo code shown in

Listing 154, which provides the outline of an RTOS aware library function that transmits data

on a UART port. In Listing 154:

 xUART is a structure that describes the UART peripheral, and holds state information.

The xTxSemaphore member of the structure is a variable of type SemaphoreHandle_t.

It is assumed the semaphore has already been created.

 The xUART_Send() function does not include any mutual exclusion logic. If more than

one task is going to use the xUART_Send() function, then the application writer will

have to manage mutual exclusion within the application itself. For example, a task may

be required to obtain a mutex before calling xUART_Send().

 The xSemaphoreTake() API function is used to place the calling task into the Blocked

state after the UART transmission has been initiated.

 The xSemaphoreGiveFromISR() API function is used to remove the task from the

Blocked state after the transmission has completed, which is when the UART

peripheral’s transmit end interrupt service routine executes.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

316

/* Driver library function to send data to a UART. */

BaseType_t xUART_Send(xUART *pxUARTInstance, uint8_t *pucDataSource, size_t uxLength)

{

BaseType_t xReturn;

 /* Ensure the UART's transmit semaphore is not already available by attempting to take

 the semaphore without a timeout. */

 xSemaphoreTake(pxUARTInstance->xTxSemaphore, 0);

 /* Start the transmission. */

 UART_low_level_send(pxUARTInstance, pucDataSource, uxLength);

 /* Block on the semaphore to wait for the transmission to complete. If the semaphore

 is obtained then xReturn will get set to pdPASS. If the semaphore take operation times

 out then xReturn will get set to pdFAIL. Note that, if the interrupt occurs between

 UART_low_level_send() being called, and xSemaphoreTake() being called, then the event

 will be latched in the binary semaphore, and the call to xSemaphoreTake() will return

 immediately. */

 xReturn = xSemaphoreTake(pxUARTInstance->xTxSemaphore, pxUARTInstance->xTxTimeout);

 return xReturn;

}

/*---*/

/* The service routine for the UART's transmit end interrupt, which executes after the

last byte has been sent to the UART. */

void xUART_TransmitEndISR(xUART *pxUARTInstance)

{

BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Clear the interrupt. */

 UART_low_level_interrupt_clear(pxUARTInstance);

 /* Give the Tx semaphore to signal the end of the transmission. If a task is Blocked

 waiting for the semaphore then the task will be removed from the Blocked state. */

 xSemaphoreGiveFromISR(pxUARTInstance->xTxSemaphore, &xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 154. Pseudo code demonstrating how a binary semaphore can be used in a
driver library transmit function

The technique demonstrated in Listing 154 is perfectly workable, and indeed common

practice, but it has some drawbacks:

 The library uses multiple semaphores, which increases its RAM footprint.

 Semaphores cannot be used until they have been created, so a library that uses

semaphores cannot be used until it has been explicitly initialized.

 Semaphores are generic objects that are applicable to a wide range of use cases; they

include logic to allow any number of tasks to wait in the Blocked state for the

semaphore to become available, and to select (in a deterministic manner) which task to

remove from the Blocked state when the semaphore does become available.

Executing that logic takes a finite time, and that processing overhead is unnecessary in

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 317

the scenario shown is Listing 154, in which there cannot be more than one task waiting

for the semaphore at any given time.

Listing 155 demonstrates how to avoid these drawbacks by using a task notification in place of

a binary semaphore.

Note: If a library uses task notifications, then the library’s documentation must clearly state

that calling a library function can change the calling task’s notification state and notification

value.

In Listing 155:

 The xTxSemaphore member of the xUART structure has been replaced by the

xTaskToNotify member. xTaskToNotify is a variable of type TaskHandle_t, and is used

to hold the handle of the task that is waiting for the UART operation to complete.

 The xTaskGetCurrentTaskHandle() FreeRTOS API function is used to obtain the

handle of the task that is in the Running state.

 The library does not create any FreeRTOS objects, so does not incur a RAM overhead,

and does not need to be explicitly initialized.

 The task notification is sent directly to the task that is waiting for the UART operation to

complete, so no unnecessary logic is executed.

The xTaskToNotify member of the xUART structure is accessed from both a task and an

interrupt service routine, requiring that consideration be given as to how the processor will

update its value:

 If xTaskToNotify is updated by a single memory write operation, then it can be updated

outside of a critical section, exactly as shown in Listing 155. This would be the case if

xTaskToNotify is a 32-bit variable (TaskHandle_t was a 32-bit type), and the processor

on which FreeRTOS is running is a 32-bit processor.

 If more than one memory write operation is required to update xTaskToNotify, then

xTaskToNotify must only be updated from within a critical section—otherwise the

interrupt service routine might access xTaskToNotify while it is in an inconsistent state.

This would be the case if xTaskToNotify is a 32-bit variable, and the processor on

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

318

which FreeRTOS is running is a 16-bit processor, as it would require two 16-bit

memory write operations to update all 32-bits.

Internally, within the FreeRTOS implementation, TaskHandle_t is a pointer, so sizeof(

TaskHandle_t) always equals sizeof(void *).

/* Driver library function to send data to a UART. */

BaseType_t xUART_Send(xUART *pxUARTInstance, uint8_t *pucDataSource, size_t uxLength)

{

BaseType_t xReturn;

 /* Save the handle of the task that called this function. The book text contains notes as to

 whether the following line needs to be protected by a critical section or not. */

 pxUARTInstance->xTaskToNotify = xTaskGetCurrentTaskHandle();

 /* Ensure the calling task does not already have a notification pending by calling

 ulTaskNotifyTake() with the xClearCountOnExit parameter set to pdTRUE, and a block time of 0

 (don't block). */

 ulTaskNotifyTake(pdTRUE, 0);

 /* Start the transmission. */

 UART_low_level_send(pxUARTInstance, pucDataSource, uxLength);

 /* Block until notified that the transmission is complete. If the notification is received

 then xReturn will be set to 1 because the ISR will have incremented this task's notification

 value to 1 (pdTRUE). If the operation times out then xReturn will be 0 (pdFALSE) because

 this task's notification value will not have been changed since it was cleared to 0 above.

 Note that, if the ISR executes between the calls to UART_low_level_send() and the call to

 ulTaskNotifyTake(), then the event will be latched in the task’s notification value, and the
 call to ulTaskNotifyTake() will return immediately.*/

 xReturn = (BaseType_t) ulTaskNotifyTake(pdTRUE, pxUARTInstance->xTxTimeout);

 return xReturn;

}

/*---*/

/* The ISR that executes after the last byte has been sent to the UART. */

void xUART_TransmitEndISR(xUART *pxUARTInstance)

{

BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* This function should not execute unless there is a task waiting to be notified. Test this

 condition with an assert. This step is not strictly necessary, but will aid debugging.

 configASSERT() is described in section 11.2.*/

 configASSERT(pxUARTInstance->xTaskToNotify != NULL);

 /* Clear the interrupt. */

 UART_low_level_interrupt_clear(pxUARTInstance);

 /* Send a notification directly to the task that called xUART_Send(). If the task is Blocked

 waiting for the notification then the task will be removed from the Blocked state. */

 vTaskNotifyGiveFromISR(pxUARTInstance->xTaskToNotify, &xHigherPriorityTaskWoken);

 /* Now there are no tasks waiting to be notified. Set the xTaskToNotify member of the xUART

 structure back to NULL. This step is not strictly necessary but will aid debugging. */

 pxUARTInstance->xTaskToNotify = NULL;

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 155. Pseudo code demonstrating how a task notification can be used in a
driver library transmit function

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 319

Task notifications can also replace semaphores in receive functions, as demonstrated in

pseudo code Listing 156, which provides the outline of an RTOS aware library function that

receives data on a UART port. Referring to Listing 156:

 The xUART_Receive() function does not include any mutual exclusion logic. If more

than one task is going to use the xUART_Receive() function, then the application writer

will have to manage mutual exclusion within the application itself. For example, a task

may be required to obtain a mutex before calling xUART_Receive().

 The UART’s receive interrupt service routine places the characters that are received by

the UART into a RAM buffer. The xUART_Receive() function returns characters from

the RAM buffer.

 The xUART_Receive() uxWantedBytes parameter is used to specify the number of

characters to receive. If the RAM buffer does not already contain the requested

number characters, then the calling task is placed into the Blocked state to wait to be

notified that the number of characters in the buffer has increased. The while() loop is

used to repeat this sequence until either the receive buffer contains the requested

number of characters, or a timeout occurs.

 The calling task may enter the Blocked state more than once. The block time is

therefore adjusted to take into account the amount of time that has already passed

since xUART_Receive() was called. The adjustments ensure the total time spent

inside xUART_Receive() does not exceed the block time specified by the xRxTimeout

member of the xUART structure. The block time is adjusted using the FreeRTOS

vTaskSetTimeOutState() and xTaskCheckForTimeOut() helper functions.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

320

/* Driver library function to receive data from a UART. */

size_t xUART_Receive(xUART *pxUARTInstance, uint8_t *pucBuffer, size_t uxWantedBytes)

{

size_t uxReceived = 0;

TickType_t xTicksToWait;

TimeOut_t xTimeOut;

 /* Record the time at which this function was entered. */

 vTaskSetTimeOutState(&xTimeOut);

 /* xTicksToWait is the timeout value - it is initially set to the maximum receive

 timeout for this UART instance. */

 xTicksToWait = pxUARTInstance->xRxTimeout;

 /* Save the handle of the task that called this function. The book text contains notes

 as to whether the following line needs to be protected by a critical section or not. */

 pxUARTInstance->xTaskToNotify = xTaskGetCurrentTaskHandle();

 /* Loop until the buffer contains the wanted number of bytes, or a timeout occurs. */

 while(UART_bytes_in_rx_buffer(pxUARTInstance) < uxWantedBytes)

 {

 /* Look for a timeout, adjusting xTicksToWait to account for the time spent in this

 function so far. */

 if(xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) != pdFALSE)

 {

 /* Timed out before the wanted number of bytes were available, exit the loop. */

 break;

 }

 /* The receive buffer does not yet contain the required amount of bytes. Wait for a

 maximum of xTicksToWait ticks to be notified that the receive interrupt service

 routine has placed more data into the buffer. It does not matter if the calling

 task already had a notification pending when it called this function, if it did, it

 would just iteration around this while loop one extra time. */

 ulTaskNotifyTake(pdTRUE, xTicksToWait);

 }

 /* No tasks are waiting for receive notifications, so set xTaskToNotify back to NULL.

 The book text contains notes as to whether the following line needs to be protected by

 a critical section or not. */

 pxUARTInstance->xTaskToNotify = NULL;

 /* Attempt to read uxWantedBytes from the receive buffer into pucBuffer. The actual

 number of bytes read (which might be less than uxWantedBytes) is returned. */

 uxReceived = UART_read_from_receive_buffer(pxUARTInstance, pucBuffer, uxWantedBytes);

 return uxReceived;

}

/*---*/

/* The interrupt service routine for the UART's receive interrupt */

void xUART_ReceiveISR(xUART *pxUARTInstance)

{

BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 /* Copy received data into this UART's receive buffer and clear the interrupt. */

 UART_low_level_receive(pxUARTInstance);

 /* If a task is waiting to be notified of the new data then notify it now. */

 if(pxUARTInstance->xTaskToNotify != NULL)

 {

 vTaskNotifyGiveFromISR(pxUARTInstance->xTaskToNotify, &xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

 }

Listing 156. Pseudo code demonstrating how a task notification can be used in a
driver library receive function

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 321

Task Notifications Used in Peripheral Device Drivers: ADC Example

The previous section demonstrated how to use vTaskNotifyGiveFromISR() to send a task

notification from an interrupt to a task. vTaskNotifyGiveFromISR() is a simple function to use,

but its capabilities are limited; it can only send a task notification as a valueless event, it

cannot send data. This section demonstrates how to use xTaskNotifyFromISR() to send data

with a task notification event. The technique is demonstrated by the pseudo code shown in

Listing 157, which provides the outline of an RTOS aware interrupt service routine for an

Analog to Digital Converter (ADC). In Listing 157:

 It is assumed an ADC conversion is started at least every 50 milliseconds.

 ADC_ConversionEndISR() is the interrupt service routine for the ADC’s conversion end

interrupt, which is the interrupt that executes each time a new ADC value is available.

 The task implemented by vADCTask() processes each value generated by the ADC. It

is assumed the task’s handle was stored in xADCTaskToNotify when the task was

created.

 ADC_ConversionEndISR() uses xTaskNotifyFromISR() with the eAction parameter set

to eSetValueWithoutOverwrite to send a task notification to the vADCTask() task, and

write the result of the ADC conversion into the task’s notification value.

 The vADCTask() task uses xTaskNotifyWait() to wait to be notified that a new ADC

value is available, and to retrieve the result of the ADC conversion from its notification

value.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

322

/* A task that uses an ADC. */

void vADCTask(void *pvParameters)

{

uint32_t ulADCValue;

BaseType_t xResult;

/* The rate at which ADC conversions are triggered. */

const TickType_t xADCConversionFrequency = pdMS_TO_TICKS(50);

 for(;;)

 {

 /* Wait for the next ADC conversion result. */

 xResult = xTaskNotifyWait(

 /* The new ADC value will overwrite the old value, so there is no need

 to clear any bits before waiting for the new notification value. */

 0,

 /* Future ADC values will overwrite the existing value, so there is no

 need to clear any bits before exiting xTaskNotifyWait(). */

 0,

 /* The address of the variable into which the task's notification value

 (which holds the latest ADC conversion result) will be copied. */

 &ulADCValue,

 /* A new ADC value should be received every xADCConversionFrequency

 ticks. */

 xADCConversionFrequency * 2);

 if(xResult == pdPASS)

 {

 /* A new ADC value was received. Process it now. */

 ProcessADCResult(ulADCValue);

 }

 else

 {

 /* The call to xTaskNotifyWait() did not return within the expected time,

 something must be wrong with the input that triggers the ADC conversion, or with

 the ADC itself. Handle the error here. */

 }

 }

}

/*---*/

/* The interrupt service routine that executes each time an ADC conversion completes. */

void ADC_ConversionEndISR(xADC *pxADCInstance)

{

uint32_t ulConversionResult;

BaseType_t xHigherPriorityTaskWoken = pdFALSE, xResult;

 /* Read the new ADC value and clear the interrupt. */

 ulConversionResult = ADC_low_level_read(pxADCInstance);

 /* Send a notification, and the ADC conversion result, directly to vADCTask(). */

 xResult = xTaskNotifyFromISR(xADCTaskToNotify, /* xTaskToNotify parameter. */

 ulConversionResult, /* ulValue parameter. */

 eSetValueWithoutOverwrite, /* eAction parameter. */

 &xHigherPriorityTaskWoken);

 /* If the call to xTaskNotifyFromISR() returns pdFAIL then the task is not keeping up

 with the rate at which ADC values are being generated. configASSERT() is described

 in section 11.2.*/

 configASSERT(xResult == pdPASS);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

Listing 157. Pseudo code demonstrating how a task notification can be used to
pass a value to a task

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 323

Task Notifications Used Directly Within an Application

This section reinforces the power of task notifications by demonstrating their use in a

hypothetical application that includes the following functionality:

1. The application communicates across a slow internet connection to send data to, and

request data from, a remote data server. From here on, the remote data server is

referred to as the cloud server.

2. After requesting data from the cloud server, the requesting task must wait in the

Blocked state for the requested data to be received.

3. After sending data to the cloud server, the sending task must wait in the Blocked state

for an acknowledgement that the cloud server received the data correctly.

A schematic of the software design is shown in Figure 81. In Figure 81:

 The complexity of handling multiple internet connections to the cloud server is

encapsulated within a single FreeRTOS task. The task acts as a proxy server within

the FreeRTOS application, and is referred to as the server task.

 Application tasks read data from the cloud server by calling CloudRead(). CloudRead()

does not communicate with the cloud server directly, but instead sends the read

request to the server task on a queue, and receives the requested data from the server

task as a task notification.

 Application tasks write date to the cloud server by calling CloudWrite(). CloudWrite()

does not communicate with the cloud server directly, but instead sends the write

request to the server task on a queue, and receives the result of the write operation

from the server task as a task notification.

The structure sent to the server task by the CloudRead() and CloudWrite() functions is shown

in Listing 158.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

324

Server Task

void ServerTask(...)

{

 for(;;)

 {

 /* Wait for

 command or event. */

 xQueueReceive();

 /* Process command

 or event. */

 ProcessMessage();

 }

} Cloud Server

Application Task 2
Queue

Application Task 1

void Task1(...)

{

 for(;;)

 {

 CloudRead();

 }

}

void Task2(...)

{

 for(;;)

 {

 CloudWrite();

 }

}

Internet

Client Device (Running FreeRTOS)

Task

Notifications

Figure 81 The communication paths from the application tasks to the cloud server,
and back again

typedef enum CloudOperations

{

 eRead, /* Send data to the cloud server. */

 eWrite /* Receive data from the cloud server. */

} Operation_t;

typedef struct CloudCommand

{

 Operation_t eOperation; /* The operation to perform (read or write). */

 uint32_t ulDataID; /* Identifies the data being read or written. */

 uint32_t ulDataValue; /* Only used when writing data to the cloud server. */

 TaskHandle_t xTaskToNotify;/* The handle of the task performing the operation. */

} CloudCommand_t;

Listing 158. The structure and data type sent on a queue to the server task

Pseudo code for CloudRead() is shown in Listing 159. The function sends its request to the

server task, then calls xTaskNotifyWait() to wait in the Blocked state until it is notified that the

requested data is available.

Pseudo code showing how the server task manages a read request is shown in Listing 160.

When the data has been received from the cloud server, the server task unblocks the

application task, and sends the received data to the application task, by calling xTaskNotify()

with the eAction parameter set to eSetValueWithOverwrite.

Listing 160 shows a simplified scenario, as it assumes GetCloudData() does not have to wait

to obtain a value from the cloud server.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 325

/* ulDataID identifies the data to read. pulValue holds the address of the variable into

which the data received from the cloud server is to be written. */

BaseType_t CloudRead(uint32_t ulDataID, uint32_t *pulValue)

{

CloudCommand_t xRequest;

BaseType_t xReturn;

 /* Set the CloudCommand_t structure members to be correct for this read request. */

 xRequest.eOperation = eRead; /* This is a request to read data. */

 xRequest.ulDataID = ulDataID; /* A code that identifies the data to read. */

 xRequest.xTaskToNotify = xTaskGetCurrentTaskHandle(); /* Handle of the calling task. */

 /* Ensure there are no notifications already pending by reading the notification value

 with a block time of 0, then send the structure to the server task. */

 xTaskNotifyWait(0, 0, NULL, 0);

 xQueueSend(xServerTaskQueue, &xRequest, portMAX_DELAY);

 /* Wait for a notification from the server task. The server task writes the value

 received from the cloud server directly into this task’s notification value, so there is
 no need to clear any bits in the notification value on entry to or exit from the

 xTaskNotifyWait() function. The received value is written to *pulValue, so pulValue is

 passed as the address to which the notification value is written. */

 xReturn = xTaskNotifyWait(0, /* No bits cleared on entry. */

 0, /* No bits to clear on exit. */

 pulValue, /* Notification value into *pulValue. */

 pdMS_TO_TICKS(250)); /* Wait a maximum of 250ms. */

 /* If xReturn is pdPASS, then the value was obtained. If xReturn is pdFAIL, then the

 request timed out. */

 return xReturn;

}

Listing 159. The Implementation of the Cloud Read API Function

void ServerTask(void *pvParameters)

{

CloudCommand_t xCommand;

uint32_t ulReceivedValue;

 for(;;)

 {

 /* Wait for the next CloudCommand_t structure to be received from a task. */

 xQueueReceive(xServerTaskQueue, &xCommand, portMAX_DELAY);

 switch(xCommand.eOperation) /* Was it a read or write request? */

 {

 case eRead:

 /* Obtain the requested data item from the remote cloud server. */

 ulReceivedValue = GetCloudData(xCommand.ulDataID);

 /* Call xTaskNotify() to send both a notification and the value received from the

 cloud server to the task that made the request. The handle of the task is

 obtained from the CloudCommand_t structure. */

 xTaskNotify(xCommand.xTaskToNotify, /* The task’s handle is in the structure. */
 ulReceivedValue, /* Cloud data sent as notification value. */

 eSetValueWithOverwrite);

 break;

 /* Other switch cases go here. */

 }

 }

}

Listing 160. The Server Task Processing a Read Request

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

326

Pseudo code for CloudWrite() is shown in Listing 161. For the purpose of demonstration,

CloudWrite() returns a bitwise status code, where each bit in the status code is assigned a

unique meaning. Four example status bits are shown by the #define statements at the top of

Listing 161.

The task clears the four status bits, sends its request to the server task, then calls

xTaskNotifyWait() to wait in the Blocked state for the status notification.

/* Status bits used by the cloud write operation. */

#define SEND_SUCCESSFUL_BIT (0x01 << 0)

#define OPERATION_TIMED_OUT_BIT (0x01 << 1

#define NO_INTERNET_CONNECTION_BIT (0x01 << 2)

#define CANNOT_LOCATE_CLOUD_SERVER_BIT (0x01 << 3)

/* A mask that has the four status bits set. */

#define CLOUD_WRITE_STATUS_BIT_MASK (SEND_SUCCESSFUL_BIT |

 OPERATION_TIMED_OUT_BIT |

 NO_INTERNET_CONNECTION_BIT |

 CANNOT_LOCATE_CLOUD_SERVER_BIT)

uint32_t CloudWrite(uint32_t ulDataID, uint32_t ulDataValue)

{

CloudCommand_t xRequest;

uint32_t ulNotificationValue;

 /* Set the CloudCommand_t structure members to be correct for this write request. */

 xRequest.eOperation = eWrite; /* This is a request to write data. */

 xRequest.ulDataID = ulDataID; /* A code that identifies the data being written. */

 xRequest.ulDataValue = ulDataValue; /* Value of the data written to the cloud server. */

 xRequest.xTaskToNotify = xTaskGetCurrentTaskHandle(); /* Handle of the calling task. */

 /* Clear the three status bits relevant to the write operation by calling

 xTaskNotifyWait() with the ulBitsToClearOnExit parameter set to

 CLOUD_WRITE_STATUS_BIT_MASK, and a block time of 0. The current notification value is

 not required, so the pulNotificationValue parameter is set to NULL. */

 xTaskNotifyWait(0, CLOUD_WRITE_STATUS_BIT_MASK, NULL, 0);

 /* Send the request to the server task. */

 xQueueSend(xServerTaskQueue, &xRequest, portMAX_DELAY);

 /* Wait for a notification from the server task. The server task writes a bitwise status

 code into this task’s notification value, which is written to ulNotificationValue. */
 xTaskNotifyWait(0, /* No bits cleared on entry. */

 CLOUD_WRITE_STATUS_BIT_MASK, /* Clear relevant bits to 0 on exit. */

 &ulNotificationValue, /* Notified value. */

 pdMS_TO_TICKS(250)); /* Wait a maximum of 250ms. */

 /* Return the status code to the calling task. */

 return (ulNotificationValue & CLOUD_WRITE_STATUS_BIT_MASK);

Listing 161. The Implementation of the Cloud Write API Function

Pseudo code demonstrating how the server task manages a write request is shown in Listing

162. When the data has been sent to the cloud server, the server task unblocks the

application task, and sends the bitwise status code to the application task, by calling

xTaskNotify() with the eAction parameter set to eSetBits. Only the bits defined by the

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 327

CLOUD_WRITE_STATUS_BIT_MASK constant can get altered in the receiving task’s

notification value, so the receiving task can use other bits in its notification value for other

purposes.

Listing 162 shows a simplified scenario, as it assumes SetCloudData() does not have to wait

to obtain an acknowledgement from the remote cloud server.

void ServerTask(void *pvParameters)

{

CloudCommand_t xCommand;

uint32_t ulBitwiseStatusCode;

 for(;;)

 {

 /* Wait for the next message. */

 xQueueReceive(xServerTaskQueue, &xCommand, portMAX_DELAY);

 /* Was it a read or write request? */

 switch(xCommand.eOperation)

 {

 case eWrite:

 /* Send the data to the remote cloud server. SetCloudData() returns a bitwise

 status code that only uses the bits defined by the CLOUD_WRITE_STATUS_BIT_MASK

 definition (shown in Listing 161). */

 ulBitwiseStatusCode = SetCloudData(xCommand.ulDataID, xCommand.ulDataValue);

 /* Send a notification to the task that made the write request. The eSetBits

 action is used so any status bits set in ulBitwiseStatusCode will be set in the

 notification value of the task being notified. All the other bits remain

 unchanged. The handle of the task is obtained from the CloudCommand_t

 structure. */

 xTaskNotify(xCommand.xTaskToNotify, /* The task’s handle is in the structure. */
 ulBitwiseStatusCode, /* Cloud data sent as notification value. */

 eSetBits);

 break;

 /* Other switch cases go here. */

 }

 }

}

Listing 162. The Server Task Processing a Send Request

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

328

Chapter 10

Low Power Support

TBD. This chapter will be written prior to final publication.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 329

Chapter 11

Developer Support

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

330

11.1 Chapter Introduction and Scope

This chapter highlights a set of features that are included to maximize productivity by:

 Providing insight into how an application is behaving.

 Highlighting opportunities for optimization.

 Trapping errors at the point at which they occur.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 331

11.2 configASSERT()

In C, the macro assert() is used to verify an assertion (an assumption) made by the program.

The assertion is written as a C expression, and if the expression evaluates to false (0), then

the assertion has deemed to have failed. For example, Listing 163 tests the assertion that the

pointer pxMyPointer is not NULL.

/* Test the assertion that pxMyPointer is not NULL */

assert(pxMyPointer != NULL);

Listing 163 Using the standard C assert() macro to check pxMyPointer is not NULL

The application writer specifies the action to take if an assertion fails by providing an

implementation of the assert() macro.

The FreeRTOS source code does not call assert(), because assert() is not available with all

the compilers with which FreeRTOS is compiled. Instead, the FreeRTOS source code

contains lots of calls to a macro called configASSERT(), which can be defined by the

application writer in FreeRTOSConfig.h, and behaves exactly like the standard C assert().

A failed assertion must be treated as a fatal error. Do not attempt to execute past a line that

has failed an assertion.

Using configASSERT() improves productivity by immediately trapping and identifying many of

the most common sources of error. It is strongly advised to have configASSERT() defined

while developing or debugging a FreeRTOS application.

Defining configASSERT() will greatly assist in run-time debugging, but will also increase the

application code size, and therefore slow down its execution. If a definition of configASSERT()

is not provided, then the default empty definition will be used, and all the calls to

configASSERT() will be completely removed by the C pre-processor.

Example configASSERT() definitions

The definition of configASSERT() shown in Listing 164 is useful when an application is being

executed under the control of a debugger. It will halt execution on any line that fails an

assertion, so the line that failed the assertion will be the line displayed by the debugger when

the debug session is paused.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

332

/* Disable interrupts so the tick interrupt stops executing, then sit in a loop so

execution does not move past the line that failed the assertion. If the hardware

supports a debug break instruction, then the debug break instruction can be used in

place of the for() loop. */

#define configASSERT(x) if((x) == 0) { taskDISABLE_INTERRUPTS(); for(;;); }

Listing 164 A simple configASSERT() definition useful when executing under the
control of a debugger

The definition of configASSERT() shown in Listing 165 is useful when an application is not

being executed under the control of a debugger. It prints out, or otherwise records, the source

code line that failed an assertion. The line that failed the assertion is identified using the

standard C __FILE__ macro to obtain the name of the source file, and the standard C

__LINE__ macro to obtain the line number within the source file.

/* This function must be defined in a C source file, not the FreeRTOSConfig.h header

file. */

void vAssertCalled(const char *pcFile, uint32_t ulLine)

{

 /* Inside this function, pcFile holds the name of the source file that contains

 the line that detected the error, and ulLine holds the line number in the source

 file. The pcFile and ulLine values can be printed out, or otherwise recorded,

 before the following infinite loop is entered. */

 RecordErrorInformationHere(pcFile, ulLine);

 /* Disable interrupts so the tick interrupt stops executing, then sit in a loop

 so execution does not move past the line that failed the assertion. */

 taskDISABLE_INTERRUPTS();

 for(;;);

}

/*---*/

/* These following two lines must be placed in FreeRTOSConfig.h. */

extern void vAssertCalled(const char *pcFile, uint32_t ulLine);

#define configASSERT(x) if((x) == 0) vAssertCalled(__FILE__, __LINE__)

Listing 165 A configASSERT() definition that records the source code line that failed
an assertion

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 333

11.3 FreeRTOS+Trace

FreeRTOS+Trace is a run-time diagnostic and optimization tool provided by our partner

company, Percepio.

FreeRTOS+Trace captures valuable dynamic behavior information, then presents the captured

information in interconnected graphical views. The tool is also capable of displaying multiple

synchronized views.

The captured information is invaluable when analyzing, troubleshooting, or simply optimizing a

FreeRTOS application.

FreeRTOS+Trace can be used side-by-side with a traditional debugger, and complements the

debugger's view with a higher level time based perspective.

Figure 82 FreeRTOS+Trace includes more than 20 interconnected views

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

334

Figure 83 FreeRTOS+Trace main trace view - one of more than 20 interconnected
trace views

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 335

Figure 84 FreeRTOS+Trace CPU load view - one of more than 20 interconnected
trace views

Figure 85 FreeRTOS+Trace response time view - one of more than 20 interconnected
trace views

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

336

Figure 86 FreeRTOS+Trace user event plot view - one of more than 20
interconnected trace views

Figure 87 FreeRTOS+Trace kernel object history view - one of more than 20
interconnected trace views

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 337

11.4 Debug Related Hook (Callback) Functions

Malloc failed hook

The malloc failed hook (or callback) was described in Chapter 2, Heap Memory Management.

Defining a malloc failed hook ensures the application developer is notified immediately if an

attempt to create a task, queue, semaphore or event group fails.

Stack overflow hook

Details of the stack overflow hook are provided in section 12.3, Stack Overflow.

Defining a stack overflow hook ensures the application developer is notified if the amount of

stack used by a task exceeds the stack space allocated to the task.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

338

11.5 Viewing Run-time and Task State Information

Task Run-Time Statistics

Task run-time statistics provide information on the amount of processing time each task has

received. A task’s run time is the total time the task has been in the Running state since the

application booted.

Run-time statistics are intended to be used as a profiling and debugging aid during the

development phase of a project. The information they provide is only valid until the counter

used as the run-time statistics clock overflows. Collecting run-time statistics will increase the

task context switch time.

To obtain binary run-time statistics information, call the uxTaskGetSystemState() API function.

To obtain run-time statistics information as a human readable ASCII table, call the

vTaskGetRunTimeStats() helper function.

The Run-Time Statistics Clock

Run-time statistics need to measure fractions of a tick period. Therefore, the RTOS tick count

is not used as the run-time statistics clock, and the clock is instead provided by the application

code. It is recommended to make the frequency of the run-time statistics clock between 10

and 100 times faster than the frequency of the tick interrupt. The faster the run-time statistics

clock, the more accurate the statistics will be, but also the sooner the time value will overflow.

Ideally, the time value will be generated by a free-running 32-bit peripheral timer/counter, the

value of which can be read with no other processing overhead. If the available peripherals

and clock speeds do not make that technique possible, then alternative but less efficient

techniques include:

1. Configuring a peripheral to generate a periodic interrupt at the desired run-time

statistics clock frequency, and then using a count of the number of interrupts generated

as the run-time statistics clock.

This method is very inefficient if the periodic interrupt is only used for the purpose of

providing a run-time statistics clock. However, if the application already uses a periodic

interrupt with a suitable frequency, then it is simple and efficient to add a count of the

number of interrupts generated into the existing interrupt service routine.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 339

2. Generate a 32-bit value by using the current value of a free running 16-bit peripheral

timer as the 32-bit value’s least significant 16-bits, and the number of times the timer

has overflowed as the 32-bit value’s most significant 16-bits.

It is possible, with appropriate and somewhat complex manipulation, to generate a run-time

statistics clock by combining the RTOS tick count with the current value of an ARM Cortex-M

SysTick timer. Some of the demo projects in the FreeRTOS download demonstrate how this

is achieved.

Configuring an Application to Collect Run-Time Statistics

Table 54 details the macros necessary to collect task run-time statistics. It was originally

intended for the macros to be included in the RTOS port layer, which is why the macros are

prefixed ‘port’, but it has proven more practical to define them in FreeRTOSConfig.h.

Table 54. Macros used in the collection of run-time statistics

Macro Description

configGENERATE_RUN_TIME_STATS This macro must be set to 1 in

FreeRTOSConfig.h. When this

macro is set to 1 the scheduler will

call the other macros detailed in this

table at the appropriate times.

portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() This macro must be provided to

initialize whichever peripheral is

used to provide the run-time

statistics clock.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

340

Table 54. Macros used in the collection of run-time statistics

Macro Description

portGET_RUN_TIME_COUNTER_VALUE(), or

portALT_GET_RUN_TIME_COUNTER_VALUE(Time)

One of these two macros must be

provided to return the current run-

time statistics clock value. This is

the total time the application has

been running, in run-time statistics

clock units, since the application first

booted.

If the first macro is used it must be

defined to evaluate to the current

clock value. If the second macro is

used it must be defined to set its

‘Time’ parameter to the current clock

value.

The uxTaskGetSystemState() API Function

uxTaskGetSystemState() provides a snapshot of status information for each task under the

control of the FreeRTOS scheduler. The information is provided as an array of TaskStatus_t

structures, with one index in the array for each task. TaskStatus_t is described by Listing 167

and Table 56.

UBaseType_t uxTaskGetSystemState(TaskStatus_t * const pxTaskStatusArray,

 const UBaseType_t uxArraySize,

 uint32_t * const pulTotalRunTime);

Listing 166. The uxTaskGetSystemState() API function prototype

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 341

Table 55, uxTaskGetSystemState() parameters and return value

Parameter Name Description

pxTaskStatusArray A pointer to an array of TaskStatus_t structures.

The array must contain at least one TaskStatus_t structure for each

task. The number of tasks can be determined using the

uxTaskGetNumberOfTasks() API function.

The TaskStatus_t structure is shown in Listing 167, and the

TaskStatus_t structure members are described in Table 56.

uxArraySize The size of the array pointed to by the pxTaskStatusArray parameter.

The size is specified as the number of indexes in the array (the number

of TaskStatus_t structures contained in the array), not by the number of

bytes in the array.

 pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in

FreeRTOSConfig.h, then *pulTotalRunTime is set by

uxTaskGetSystemState() to the total run time (as defined by the run-

time statistics clock provided by the application) since the target booted.

pulTotalRunTime is optional, and can be set to NULL if the total run time

is not required.

Returned value The number of TaskStatus_t structures that were populated by

uxTaskGetSystemState() is returned.

The returned value should equal the number returned by the

uxTaskGetNumberOfTasks() API function, but will be zero if the value

passed in the uxArraySize parameter was too small.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

342

typedef struct xTASK_STATUS

{

 TaskHandle_t xHandle;

 const char *pcTaskName;

 UBaseType_t xTaskNumber;

 eTaskState eCurrentState;

 UBaseType_t uxCurrentPriority;

 UBaseType_t uxBasePriority;

 uint32_t ulRunTimeCounter;

 uint16_t usStackHighWaterMark;

} TaskStatus_t;

Listing 167. The TaskStatus_t structure

Table 56. TaskStatus_t structure members

Parameter Name/
Returned Value

Description

xHandle The handle of the task to which the information in the structure

relates.

pcTaskName The human readable text name of the task.

xTaskNumber Each task has a unique xTaskNumber value.

If an application creates and deletes tasks at run time then it is

possible that a task will have the same handle as a task that was

previously deleted. xTaskNumber is provided to allow application

code, and kernel aware debuggers, to distinguish between a task

that is still valid, and a deleted task that had the same handle as

the valid task.

eCurrentState An enumerated type that holds the state of the task.

eCurrentState can be one of the following values: eRunning,

eReady, eBlocked, eSuspended, eDeleted.

A task will only be reported as being in the eDeleted state for the

short period between the time the task was deleted by a call to

vTaskDelete(), and the time the Idle task frees the memory that

was allocated to the deleted task’s internal data structures and

stack. After that time, the task will no longer exist in any way, and

it is invalid to attempt to use its handle.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 343

Table 56. TaskStatus_t structure members

Parameter Name/
Returned Value

Description

uxCurrentPriority The priority at which the task was running at the time

uxTaskGetSystemState() was called. uxCurrentPriority will only be

higher than the priority assigned to the task by the application

writer if the task has temporarily been assigned a higher priority in

accordance with the priority inheritance mechanism described in

section 7.3, Mutexes (and Binary Semaphores).

uxBasePriority The priority assigned to the task by the application writer.

uxBasePriority is only valid if configUSE_MUTEXES is set to 1 in

FreeRTOSConfig.h.

ulRunTimeCounter The total run time used by the task since the task was created.

The total run time is provided as an absolute time that uses the

clock provided by the application writer for the collection of run-

time statistics. ulRunTimeCounter is only valid if

configGENERATE_RUN_TIME_STATS is set to 1 in

FreeRTOSConfig.h.

usStackHighWaterMark The task’s stack high water mark. This is the minimum amount of

stack space that has remained for the task since the task was

created. It is an indication of how close the task has come to

overflowing its stack; the closer this value is to zero, the closer the

task has come to overflowing its stack. usStackHighWaterMark is

specified in bytes.

The vTaskList() Helper Function

vTaskList() provides similar task status information to that provided by

uxTaskGetSystemState(), but it presents the information as a human readable ASCII table,

rather than an array of binary values.

vTaskList() is a very processor intensive function, and leaves the scheduler suspended for an

extended period. Therefore, it is recommended the function is used for debug purposes only,

and not in a production real-time system.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

344

vTaskList() is available if configUSE_TRACE_FACILITY and

configUSE_STATS_FORMATTING_FUNCTIONS are both set to 1 in FreeRTOSConfig.h.

void vTaskList(signed char *pcWriteBuffer);

Listing 168. The vTaskList() API function prototype

Table 57. vTaskList() parameters

Parameter
Name

Description

pcWriteBuffer A pointer to a character buffer into which the formatted and human

readable table is written. The buffer must be large enough to hold the

entire table, as no boundary checking is performed.

An example of the output generated by vTaskList() is shown in Figure 88. In the output:

 Each row provides information on a single task.

 The first column is the task’s name.

 The second column is the task’s state, where ‘R’ means Ready, ‘B’ means Blocked, ‘S’

means Suspended, and ‘D’ means the task has been deleted. A task will only be

reported as being in the deleted state for the short period between the time the task

was deleted by a call to vTaskDelete(), and the time the Idle task frees the memory that

was allocated to the deleted task’s internal data structures and stack. After that time,

the task will no longer exist in any way, and it is invalid to attempt to use its handle.

 The third column is the task’s priority.

 The fourth column is the task’s stack high water mark. See the description of

usStackHighWaterMark in Table 56.

 The fifth column is the unique number allocated to the task. See the description of

xTaskNumber in Table 56

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 345

Figure 88 Example output generated by vTaskList()

The vTaskGetRunTimeStats() Helper Function

vTaskGetRunTimeStats() formats collected run-time statistics into a human readable ASCII

table.

vTaskGetRunTimeStats() is a very processor intensive function and leaves the scheduler

suspended for an extended period. Therefore, it is recommended the function is used for

debug purposes only, and not in a production real-time system.

vTaskGetRunTimeStats() is available when configGENERATE_RUN_TIME_STATS and

configUSE_STATS_FORMATTING_FUNCTIONS are both set to 1 in FreeRTOSConfig.h.

void vTaskGetRunTimeStats(signed char *pcWriteBuffer);

Listing 169. The vTaskGetRunTimeStats() API function prototype

Table 58. vTaskGetRunTimeStats() parameters

Parameter
Name

Description

pcWriteBuffer A pointer to a character buffer into which the formatted and human

readable table is written. The buffer must be large enough to hold the

entire table, as no boundary checking is performed.

An example of the output generated by vTaskGetRunTimeStats() is shown in Figure 89. In the

output:

 Each row provides information on a single task.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

346

 The first column is the task name.

 The second column is the amount of time the task has spent in the Running state as an

absolute value. See the description of ulRunTimeCounter in Table 56.

 The third column is the amount of time the task has spent in the Running state as a

percentage of the total time since the target was booted. The total of the displayed

percentage times will normally be less than the expected 100% because statistics are

collected and calculated using integer calculations that round down to the nearest

integer value.

Figure 89 Example output generated by vTaskGetRunTimeStats()

Generating and Displaying Run-Time Statistics, a Worked Example

This example uses a hypothetical 16-bit timer to generate a 32-bit run-time statistics clock.

The counter is configured to generate an interrupt each time the 16-bit value reaches its

maximum value—effectively creating an overflow interrupt. The interrupt service routine

counts the number of overflow occurrences.

The 32-bit value is created by using the count of overflow occurrences as the two most

significant bytes of the 32-bit value, and the current 16-bit counter value as the least significant

two bytes of the 32-bit value. Pseudo code for the interrupt service routine is shown in Listing

170.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 347

void TimerOverflowInterruptHandler(void)

{

 /* Just count the number of interrupts. */

 ulOverflowCount++;

 /* Clear the interrupt. */

 ClearTimerInterrupt();

}

Listing 170. 16-bit timer overflow interrupt handler used to count timer overflows

Listing 171 shows the lines added to FreeRTOSConfig.h to enable the collection of run-time

statistics.

/* Set configGENERATE_RUN_TIME_STATS to 1 to enable collection of run-time

statistics. When this is done, both portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and

portGET_RUN_TIME_COUNTER_VALUE() or portALT_GET_RUN_TIME_COUNTER_VALUE(x) must also

be defined. */

#define configGENERATE_RUN_TIME_STATS 1

/* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() is defined to call the function that sets

up the hypothetical 16-bit timer (the function’s implementation is not shown). */
void vSetupTimerForRunTimeStats(void);

#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vSetupTimerForRunTimeStats()

/* portALT_GET_RUN_TIME_COUNTER_VALUE() is defined to set its parameter to the

current run-time counter/time value. The returned time value is 32-bits long, and is

formed by shifting the count of 16-bit timer overflows into the top two bytes of a

32-bit number, then bitwise ORing the result with the current 16-bit counter

value. */

#define portALT_GET_RUN_TIME_COUNTER_VALUE(ulCountValue) \

 { \

 extern volatile unsigned long ulOverflowCount; \

 \

 /* Disconnect the clock from the counter so it does not change \

 while its value is being used. */ \

 PauseTimer(); \

 \

 /* The number of overflows is shifted into the most significant \

 two bytes of the returned 32-bit value. */ \

 ulCountValue = (ulOverflowCount << 16UL); \

 \

 /* The current counter value is used as the least significant \

 two bytes of the returned 32-bit value. */ \

 ulCountValue |= (unsigned long) ReadTimerCount(); \

 \

 /* Reconnect the clock to the counter. */ \

 ResumeTimer(); \

 }

Listing 171. Macros added to FreeRTOSConfig.h to enable the collection of run-time
statistics

The task shown in Listing 172 prints out the collected run-time statistics every 5 seconds.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

348

/* For clarity, calls to fflush() have been omitted from this code listing. */

static void prvStatsTask(void *pvParameters)

{

TickType_t xLastExecutionTime;

/* The buffer used to hold the formatted run-time statistics text needs to be quite

large. It is therefore declared static to ensure it is not allocated on the task

stack. This makes this function non re-entrant. */

static signed char cStringBuffer[512];

/* The task will run every 5 seconds. */

const TickType_t xBlockPeriod = pdMS_TO_TICKS(5000);

 /* Initialize xLastExecutionTime to the current time. This is the only time this

 variable needs to be written to explicitly. Afterwards it is updated internally

 within the vTaskDelayUntil() API function. */

 xLastExecutionTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Wait until it is time to run this task again. */

 vTaskDelayUntil(&xLastExecutionTime, xBlockPeriod);

 /* Generate a text table from the run-time stats. This must fit into the

 cStringBuffer array. */

 vTaskGetRunTimeStats(cStringBuffer);

 /* Print out column headings for the run-time stats table. */

 printf("\nTask\t\tAbs\t\t\t%%\n");

 printf("---\n");

 /* Print out the run-time stats themselves. The table of data contains

 multiple lines, so the vPrintMultipleLines() function is called instead of

 calling printf() directly. vPrintMultipleLines() simply calls printf() on

 each line individually, to ensure the line buffering works as expected. */

 vPrintMultipleLines(cStringBuffer);

 }

}

Listing 172. The task that prints out the collected run-time statistics

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 349

11.6 Trace Hook Macros

Trace macros are macros that have been placed at key points within the FreeRTOS source

code. By default, the macros are empty, and so do not generate any code, and have no run

time overhead. By overriding the default empty implementations, an application writer can:

 Insert code into FreeRTOS without modifying the FreeRTOS source files.

 Output detailed execution sequencing information by any means available on the target

hardware. Trace macros appear in enough places in the FreeRTOS source code to

allow them to be used to create a full and detailed scheduler activity trace and profiling

log.

Available Trace Hook Macros

It would take too much space to detail every macro here. Table 59 details the subset of

macros deemed to be most useful to an application writer.

Many of the descriptions in Table 59 refer to a variable called pxCurrentTCB. pxCurrentTCB is

a FreeRTOS private variable that holds the handle of the task in the Running state, and is

available to any macro that is called from the FreeRTOS/Source/tasks.c source file.

Table 59. A selection of the most commonly used trace hook macros

Macro Description

traceTASK_INCREMENT_TICK(xTickCount) Called during the tick interrupt, after

the tick count is incremented. The

xTickCount parameter passes the

new tick count value into the macro.

traceTASK_SWITCHED_OUT() Called before a new task is

selected to run. At this point,

pxCurrentTCB contains the handle

of the task about to leave the

Running state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

350

Table 59. A selection of the most commonly used trace hook macros

Macro Description

traceTASK_SWITCHED_IN() Called after a task is selected to

run. At this point, pxCurrentTCB

contains the handle of the task

about to enter the Running state.

traceBLOCKING_ON_QUEUE_RECEIVE(pxQueue) Called immediately before the

currently executing task enters the

Blocked state following an attempt

to read from an empty queue, or an

attempt to 'take' an empty

semaphore or mutex. The

pxQueue parameter passes the

handle of the target queue or

semaphore into the macro.

traceBLOCKING_ON_QUEUE_SEND(pxQueue) Called immediately before the

currently executing task enters the

Blocked state following an attempt

to write to a queue that is full. The

pxQueue parameter passes the

handle of the target queue into the

macro.

traceQUEUE_SEND(pxQueue) Called from within xQueueSend(),

xQueueSendToFront(),

xQueueSendToBack(), or any of

the semaphore ‘give’ functions,

when the queue send or

semaphore ‘give’ is successful.

The pxQueue parameter passes

the handle of the target queue or

semaphore into the macro.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 351

Table 59. A selection of the most commonly used trace hook macros

Macro Description

traceQUEUE_SEND_FAILED(pxQueue) Called from within xQueueSend(),

xQueueSendToFront(),

xQueueSendToBack(), or any of

the semaphore ‘give’ functions,

when the queue send or

semaphore ‘give’ operation fails. A

queue send or semaphore ‘give’ will

fail if the queue is full and remains

full for the duration of any block

time specified. The pxQueue

parameter passes the handle of the

target queue or semaphore into the

macro.

traceQUEUE_RECEIVE(pxQueue) Called from within

xQueueReceive() or any of the

semaphore ‘take’ functions, when

the queue receive or semaphore

‘take’ is successful. The pxQueue

parameter passes the handle of the

target queue or semaphore into the

macro.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

352

Table 59. A selection of the most commonly used trace hook macros

Macro Description

traceQUEUE_RECEIVE_FAILED(pxQueue) Called from within

xQueueReceive() or any of the

semaphore ‘take’ functions, when

the queue or semaphore receive

operation fails. A queue receive or

semaphore ‘take’ operation will fail

if the queue or semaphore is empty

and remains empty for the duration

of any block time specified. The

pxQueue parameter passes the

handle of the target queue or

semaphore into the macro.

traceQUEUE_SEND_FROM_ISR(pxQueue) Called from within

xQueueSendFromISR() when the

send operation is successful. The

pxQueue parameter passes the

handle of the target queue into the

macro.

traceQUEUE_SEND_FROM_ISR_FAILED(pxQueue) Called from within

xQueueSendFromISR() when the

send operation fails. A send

operation will fail if the queue is

already full. The pxQueue

parameter passes the handle of the

target queue into the macro.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 353

Table 59. A selection of the most commonly used trace hook macros

Macro Description

traceQUEUE_RECEIVE_FROM_ISR(pxQueue) Called from within

xQueueReceiveFromISR() when

the receive operation is successful.

The pxQueue parameter passes

the handle of the target queue into

the macro.

traceQUEUE_RECEIVE_FROM_ISR_FAILED(pxQueue) Called from within

xQueueReceiveFromISR() when

the receive operation fails due to

the queue already being empty.

The pxQueue parameter passes

the handle of the target queue into

the macro.

traceTASK_DELAY_UNTIL() Called from within

vTaskDelayUntil() immediately

before the calling task enters the

Blocked state.

traceTASK_DELAY() Called from within vTaskDelay()

immediately before the calling task

enters the Blocked state.

Defining Trace Hook Macros

Each trace macro has a default empty definition. The default definition can be overridden by

providing a new macro definition in FreeRTOSConfig.h. If trace macro definitions become

long or complex, then they can be implemented in a new header file that is then itself included

from FreeRTOSConfig.h.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

354

In accordance with software engineering best practice, FreeRTOS maintains a strict data

hiding policy. Trace macros allow user code to be added to the FreeRTOS source files, so the

data types visible to the trace macros will be different to those visible to application code:

 Inside the FreeRTOS/Source/tasks.c source file, a task handle is a pointer to the data

structure that describes a task (the task’s Task Control Block, or TCB). Outside of the

FreeRTOS/Source/tasks.c source file a task handle is a pointer to void.

 Inside the FreeRTOS/Source/queue.c source file, a queue handle is a pointer to the

data structure that describes a queue. Outside of the FreeRTOS/Source/queue.c

source file a queue handle is a pointer to void.

Extreme caution is required if a normally private FreeRTOS data structure is accessed directly

by a trace macro, as private data structures might change between FreeRTOS versions.

FreeRTOS Aware Debugger Plug-ins

Plug-ins that provide some FreeRTOS awareness are available for the following IDEs. This

list may not be an exhaustive:

 Eclipse (StateViewer)

 Eclipse (ThreadSpy)

 IAR

 ARM DS-5

 Atollic TrueStudio

 Microchip MPLAB

 iSYSTEM WinIDEA

Figure 90 FreeRTOS ThreadSpy Eclipse
plug-in from Code Confidence Ltd.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 355

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

356

Chapter 12

Trouble Shooting

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 357

12.1 Chapter Introduction and Scope

This chapter highlights the most common issues encountered by users who are new to

FreeRTOS. First it focuses on three issues that have proven to be the most frequent source of

support requests over the years; incorrect interrupt priority assignment, stack overflow, and

inappropriate use of printf(). It then briefly, and in an FAQ style, touches on other common

errors, their possible cause, and their solutions.

Using configASSERT() improves productivity by immediately trapping and identifying many of

the most common sources of error. It is strongly advised to have configASSERT() defined

while developing or debugging a FreeRTOS application. configASSERT() is described in

section 11.2.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

358

12.2 Interrupt Priorities

Note: This is the number one cause of support requests, and in most ports defining

configASSERT() will trap the error immediately!

If the FreeRTOS port in use supports interrupt nesting, and the service routine for an interrupt

makes use of the FreeRTOS API, then it is essential the interrupt’s priority is set at or below

configMAX_SYSCALL_INTERRUPT_PRIORITY, as described in section 6.8, Interrupt

Nesting. Failure to do this will result in ineffective critical sections, which in turn will result in

intermittent failures.

Take particular care if running FreeRTOS on a processor where:

 Interrupt priorities default to having the highest possible priority, which is the case on

some ARM Cortex processors, and possibly others. On such processors, the priority of

an interrupt that uses the FreeRTOS API cannot be left uninitialized.

 Numerically high priority numbers represent logically low interrupt priorities, which may

seem counterintuitive, and therefore cause confusion. Again this is the case on ARM

Cortex processors, and possibly others.

 For example, on such a processor an interrupt that is executing at priority 5 can itself

be interrupted by an interrupt that has a priority of 4. Therefore, if

configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, any interrupt that uses the

FreeRTOS API can only be assigned a priority numerically higher than or equal to 5. In

that case, interrupt priorities of 5 or 6 would be valid, but an interrupt priority of 3 is

definitely invalid.

 Different library implementations expect the priority of an interrupt to be specified in a

different way. Again, particularly relevant to libraries that target ARM Cortex

processors, where interrupt priorities are bit shifted before being written to the

hardware registers. Some libraries will perform the bit shift themselves, whereas

others expect the bit shift to be performed before the priority is passed into the library

function.

 Different implementations of the same architecture implement a different number of

interrupt priority bits. For example, a Cortex-M processor from one manufacturer may

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 359

implement 3 priority bits, while a Cortex-M processor from another manufacturers may

implement 4 priority bits.

 The bits that define the priority of an interrupt can be split between bits that define a

pre-emption priority, and bits that define a sub-priority. Ensure all the bits are assigned

to specifying a pre-emption priority, so sub-priorities are not used.

In some FreeRTOS ports, configMAX_SYSCALL_INTERRUPT_PRIORITY has the alternative

name configMAX_API_CALL_INTERRUPT_PRIORITY.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

360

12.3 Stack Overflow

Stack overflow is the second most common source of support requests. FreeRTOS provides

several features to assist trapping and debugging stack related issues1.

The uxTaskGetStackHighWaterMark() API Function

Each task maintains its own stack, the total size of which is specified when the task is created.

uxTaskGetStackHighWaterMark() is used to query how close a task has come to overflowing

the stack space allocated to it. This value is called the stack ‘high water mark’.

 UBaseType_t uxTaskGetStackHighWaterMark(TaskHandle_t xTask);

Listing 173. The uxTaskGetStackHighWaterMark() API function prototype

Table 60. uxTaskGetStackHighWaterMark() parameters and return value

Parameter Name/
Returned Value

Description

xTask The handle of the task whose stack high water mark is being queried (the

subject task)—see the pxCreatedTask parameter of the xTaskCreate()

API function for information on obtaining handles to tasks.

A task can query its own stack high water mark by passing NULL in place

of a valid task handle.

Returned value The amount of stack used by the task grows and shrinks as the task

executes and interrupts are processed.

uxTaskGetStackHighWaterMark() returns the minimum amount of

remaining stack space that has been available since the task started

executing. This is the amount of stack that remains unused when stack

usage is at its greatest (or deepest) value. The closer the high water

mark is to zero, the closer the task has come to overflowing its stack.

1 These features are not available in the FreeRTOS Windows port.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 361

Run Time Stack Checking—Overview

FreeRTOS includes two optional run time stack checking mechanisms. These are controlled

by the configCHECK_FOR_STACK_OVERFLOW compile time configuration constant within

FreeRTOSConfig.h. Both methods increase the time it takes to perform a context switch.

The stack overflow hook (or stack overflow callback) is a function that is called by the kernel

when it detects a stack overflow. To use a stack overflow hook function:

1. Set configCHECK_FOR_STACK_OVERFLOW to either 1 or 2 in FreeRTOSConfig.h,

as described in the following sub-sections.

2. Provide the implementation of the hook function, using the exact function name and

prototype shown in Listing 174.

void vApplicationStackOverflowHook(TaskHandle_t *pxTask, signed char *pcTaskName);

Listing 174. The stack overflow hook function prototype

The stack overflow hook is provided to make trapping and debugging stack errors easier, but

there is no real way to recover from a stack overflow when it occurs. The function’s

parameters pass the handle and name of the task that has overflowed its stack into the hook

function.

The stack overflow hook gets called from the context of an interrupt.

Some microcontrollers generate a fault exception when they detect an incorrect memory

access, and it is possible for a fault to be triggered before the kernel has a chance to call the

stack overflow hook function.

Run Time Stack Checking—Method 1

Method 1 is selected when configCHECK_FOR_STACK_OVERFLOW is set to 1.

A task’s entire execution context is saved onto its stack each time it gets swapped out. It is

likely that this will be the time at which stack usage reaches its peak. When

configCHECK_FOR_STACK_OVERFLOW is set to 1, the kernel checks that the stack pointer

remains within the valid stack space after the context has been saved. The stack overflow

hook is called if the stack pointer is found to be outside its valid range.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

362

Method 1 is quick to execute, but can miss stack overflows that occur between context

switches.

Run Time Stack Checking—Method 2

Method 2 performs additional checks to those already described for method 1. It is selected

when configCHECK_FOR_STACK_OVERFLOW is set to 2.

When a task is created, its stack is filled with a known pattern. Method 2 tests the last valid 20

bytes of the task stack space to verify that this pattern has not been overwritten. The stack

overflow hook function is called if any of the 20 bytes have changed from their expected

values.

Method 2 is not as quick to execute as method 1, but is still relatively fast, as only 20 bytes are

tested. Most likely, it will catch all stack overflows; however, it is possible (but highly

improbable) that some overflows will be missed.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 363

12.4 Inappropriate Use of printf() and sprintf()

Inappropriate use of printf() is a common source of error, and, unaware of this, it is common

for application developers to then add further calls to printf() to aid debugging, and in-so-doing,

exasperate the problem.

Many cross compiler vendors will provide a printf() implementation that is suitable for use in

small embedded systems. Even when that is the case, the implementation may not be thread

safe, probably won’t be suitable for use inside an interrupt service routine, and depending on

where the output is directed, take a relatively long time to execute.

Particular care must be taken if a printf() implementation that is specifically designed for small

embedded systems is not available, and a generic printf() implementation is used instead, as:

 Just including a call to printf() or sprintf() can massively increase the size of the

application’s executable.

 printf() and sprintf() may call malloc(), which might be invalid if a memory allocation

scheme other than heap_3 is in use. See section 2.2, Example Memory Allocation

Schemes, for more information.

 printf() and sprintf() may require a stack that is many times bigger than would otherwise

be required.

Printf-stdarg.c

Many of the FreeRTOS demonstration projects use a file called printf-stdarg.c, which provides

a minimal and stack-efficient implementation of sprintf() that can be used in place of the

standard library version. In most cases, this will permit a much smaller stack to be allocated to

each task that calls sprintf() and related functions.

printf-stdarg.c also provides a mechanism for directing the printf() output to a port character by

character, which while slow, allows stack usage to be decreased even further.

Note that not all copies of printf-stdarg.c included in the FreeRTOS download implement

snprintf(). Copies that do not implement snprintf() simply ignore the buffer size parameter, as

they map directly to sprintf().

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

364

Printf-stdarg.c is open source, but is owned by a third party, and therefore licensed separately

from FreeRTOS. The license terms are contained at the top of the source file.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 365

12.5 Other Common Sources of Error

Symptom: Adding a simple task to a demo causes the demo to crash

Creating a task requires memory to be obtained from the heap. Many of the demo application

projects dimension the heap to be exactly big enough to create the demo tasks—so, after the

tasks are created, there will be insufficient heap remaining for any further tasks, queues, event

groups, or semaphores to be added.

The idle task, and possible also the RTOS daemon task, are created automatically when

vTaskStartScheduler() is called. vTaskStartScheduler() will return only if there is not enough

heap memory remaining for these tasks to be created. Including a null loop [for(;;);] after the

call to vTaskStartScheduler() can make this error easier to debug.

To be able to add more tasks, either increase the heap size, or remove some of the existing

demo tasks. See section 2.2, Example Memory Allocation Schemes, for more information.

Symptom: Using an API function within an interrupt causes the application to
crash

Do not use API functions within interrupt service routines, unless the name of the API function

ends with ‘...FromISR()’. In particular, do not create a critical section within an interrupt unless

using the interrupt safe macros. See section 6.2, Using the FreeRTOS API from an ISR, for

more information.

In FreeRTOS ports that support interrupt nesting, do not use any API functions in an interrupt

that has been assigned an interrupt priority above

configMAX_SYSCALL_INTERRUPT_PRIORITY. See section 6.8, Interrupt Nesting, for more

information.

Symptom: Sometimes the application crashes within an interrupt service routine

The first thing to check is that the interrupt is not causing a stack overflow. Some ports only

check for stack overflow within tasks, and not within interrupts.

The way interrupts are defined and used differs between ports and between compilers.

Therefore, the second thing to check is that the syntax, macros, and calling conventions used

in the interrupt service routine are exactly as described on the documentation page provided

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

366

for the port being used, and exactly as demonstrated in the demo application provided with the

port.

If the application is running on a processor that uses numerically low priority numbers to

represent logically high priorities, then ensure the priority assigned to each interrupt takes that

into account, as it can seem counter-intuitive. If the application is running on a processor that

defaults the priority of each interrupt to the maximum possible priority, then ensure the priority

of each interrupt is not left at its default value. See section 6.8, Interrupt Nesting, and section

12.2, Interrupt Priorities, for more information.

Symptom: The scheduler crashes when attempting to start the first task

Ensure the FreeRTOS interrupt handlers have been installed. Refer to the documentation

page for the FreeRTOS port in use for information, and the demo application provided for the

port for an example.

Some processors must be in a privileged mode before the scheduler can be started. The

easiest way to achieve this is to place the processor into a privileged mode within the C

startup code, before main() is called.

Symptom: Interrupts are unexpectedly left disabled, or critical sections do not
nest correctly

If a FreeRTOS API function is called before the scheduler has been started then interrupts will

deliberately be left disabled, and not re-enable again until the first task starts to execute. This

is done to protect the system from crashes caused by interrupts attempting to use FreeRTOS

API functions during system initialization, before the scheduler has been started, and while the

scheduler may be in an inconsistent state.

Do not alter the microcontroller interrupt enable bits or priority flags using any method other

than calls to taskENTER_CRITICAL() and taskEXIT_CRITICAL(). These macros keep a count

of their call nesting depth to ensure interrupts become enabled again only when the call

nesting has unwound completely to zero. Be aware that some library functions may

themselves enable and disable interrupts.

Symptom: The application crashes even before the scheduler is started

An interrupt service routine that could potentially cause a context switch must not be permitted

to execute before the scheduler has been started. The same applies to any interrupt service

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 367

routine that attempts to send to or receive from a FreeRTOS object, such as a queue or

semaphore. A context switch cannot occur until after the scheduler has started.

Many API functions cannot be called until after the scheduler has been started. It is best to

restrict API usage to the creation of objects such as tasks, queues, and semaphores, rather

than the use of these objects, until after vTaskStartScheduler() has been called.

Symptom: Calling API functions while the scheduler is suspended, or from
inside a critical section, causes the application to crash

The scheduler is suspended by calling vTaskSuspendAll() and resumed (unsuspended) by

calling xTaskResumeAll(). A critical section is entered by calling taskENTER_CRITICAL(),

and exited by calling taskEXIT_CRITICAL().

Do not call API functions while the scheduler is suspended, or from inside a critical section.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

368

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 369

INDEX

A
atomic, 235

B
background

background processing, 76

BaseType_t, 22

best fit, 30, 32

Binary Semaphore, 191

Blocked State, 64

Blocking on Queue Reads, 106

Blocking on Queue Writes, 106

Building FreeRTOS, 11

C
configAPPLICATION_ALLOCATED_HEAP, 35

configCHECK_FOR_STACK_OVERFLOW, 360

configGENERATE_RUN_TIME_STATS, 338

configIDLE_SHOULD_YIELD, 75, 95

configKERNEL_INTERRUPT_PRIORITY, 228

configMAX_PRIORITIES, 58

configMAX_SYSCALL_INTERRUPT_PRIORITY, 228

configMINIMAL_STACK_DEPTH, 50

configTICK_RATE_HZ, 60

configTOTAL_HEAP_SIZE, 29

configUSE_IDLE_HOOK, 77

configUSE_PORT_OPTIMISED_TASK_SELECTION,

58

configUSE_PREEMPTION, 90

configUSE_TASK_NOTIFICATIONS, 295

configUSE_TICKLESS_IDLE, 90

configUSE_TIME_SLICING, 90

continuous processing, 72

continuous processing task, 64

co-operative scheduling, 97

Counting Semaphores, 208

Creating a FreeRTOS Project, 18

Creating Tasks, 48

critical regions, 238

critical section, 230

Critical sections, 238

D
Data Types, 21

Deadlock, 251

Deadly Embrace, 251

deferred interrupts, 191

Deleting a Task, 85

Demo Applications, 16

E
eNoAction, 309

eNotifyAction, 308

errQUEUE_FULL, 111

eSetBits, 309

eSetValueWithoutOverwrite, 309

eSetValueWithOverwrite, 310

Event Bits, 268

event driven, 64

Event Flags, 268

Event Groups, 265

EventBits_t, 269

EventGroupHandle_t, 271

Events, 182

F
fixed execution period, 70

Fixed Priority, 92

Formatting, 23

free(), 26

FreeRTOSConfig.h, 11

Function Names, 22

Function Reentrancy, 235

G
Gatekeeper tasks, 259

H
Header Files, 15

Heap_1, 29

Heap_2, 30

Heap_3, 32

Heap_4, 32

heap_5, 35

HeapRegion_t, 36

high water mark, 359

highest priority, 51

I
Idle Task, 68, 75

Idle Task Hook, 75

Include Paths, 14

Interrupt Nesting, 228

L
locking the scheduler, 240

low power mode, 76

lowest priority, 51, 58

M
Macro Names, 23

Malloc Failed Hook, 42

malloc(), 26

Measuring the amount of spare processing capacity, 76

Mutex, 243

mutual exclusion, 236

370

N
non-atomic, 235

Not Running state, 47

O
OpenRTOS, 6

P
pdMS_TO_TICKS, 61

periodic

periodic tasks, 66

periodic interrupt, 60

Port, 11

portCONFIGURE_TIMER_FOR_RUN_TIME_STATS,

338

portGET_RUN_TIME_COUNTER_VALUE, 339

portMAX_DELAY, 110, 112, 161, 171, 175, 278, 289,

301

pre-empted

pre-emption, 75

Pre-emptive, 92

Priorities, 58

Prioritized Pre-emptive Scheduling, 95

priority, 51, 58

priority inheritance, 250

priority inversion, 249

pvParameters, 50, 159, 215, 341

pvPortMalloc(), 27

Q
queue access by Multiple Tasks, 106

queue block time, 106

queue item size, 103

queue length, 103

QueueHandle_t, 108

Queues, 101

QueueSetHandle_t, 132

R
RAM allocation, 27

Read, Modify, Write Operations, 234

Ready state, 65

reentrant, 235

Round Robin, 91

Run Time Stack Checking, 360

Run Time Statistics, 337

Running state, 47, 64

S
SafeRTOS, 6

Scheduling Algorithms, 90

SemaphoreHandle_t, 194, 210, 245

Software Timers, 147

Source Files, 12

spare processing capacity

measuring spare processing capacity, 69

Stack Overflow, 359

stack overflow hook, 360

starvation, 62

starving

starvation, 64

state diagram, 65

Suspended State, 65

suspending the scheduler, 240

swapped in, 47

swapped out, 47

switched in, 47

switched out, 47

Synchronization, 191

Synchronization events, 64

T
tabs, 23

Task Functions, 46

task handle, 51, 82

Task Notifications, 293

Task Parameter, 55

Task Synchronization, 285

taskYIELD(), 98

Temporal

temporal events, 64

the xSemaphoreCreateMutex(), 245

tick count, 61

tick hook function, 259

tick interrupt, 60

Tick Interrupt, 60

ticks, 61

TickType_t, 21

Time Measurement, 60

time slice, 60

Time Slicing, 92

Trace Hook Macros, 348

Trace macros, 348

traceBLOCKING_ON_QUEUE_RECEIVE, 349

traceBLOCKING_ON_QUEUE_SEND, 349

traceQUEUE_RECEIVE, 350

traceQUEUE_RECEIVE_FAILED, 351

traceQUEUE_RECEIVE_FROM_ISR, 352

traceQUEUE_RECEIVE_FROM_ISR_FAILED, 352

traceQUEUE_SEND, 349

traceQUEUE_SEND_FAILED, 350

traceQUEUE_SEND_FROM_ISR, 351

traceQUEUE_SEND_FROM_ISR_FAILED, 351

traceTASK_DELAY, 352

traceTASK_DELAY_UNTIL, 352

traceTASK_INCREMENT_TICK, 348

traceTASK_SWITCHED_IN, 349

traceTASK_SWITCHED_OUT, 348

Type Casting, 24

U
ulBitsToClearOnEntry, 310

ulBitsToClearOnExit, 311

ulTaskNotifyTake(), 300

uxQueueMessagesWaiting(), 113

uxTaskGetStackHighWaterMark(), 359

uxTaskPriorityGet(), 79

V
vApplicationStackOverflowHook, 360

 371

Variable Names, 22

vPortDefineHeapRegions(), 36

vPortFree(), 27

vSemaphoreCreateBinary(), 194, 210

vTaskDelay(), 66

vTaskDelayUntil(), 70

vTaskDelete(), 85

vTaskGetRunTimeStats(), 344

vTaskNotifyGiveFromISR(), 299

vTaskPrioritySet(), 79

vTaskResume(), 65

vTaskSuspend(), 65

vTaskSuspendAll(), 241

X
xClearCountOnExit, 301

xEventGroupCreate(), 271

xEventGroupSetBits(), 271

xEventGroupSetBitsFromISR(), 272

xEventGroupSync(), 287

xEventGroupWaitBits(), 275

xPortGetFreeHeapSize(), 41

xPortGetMinimumEverFreeHeapSize(), 41

xQueueCreate(), 108, 132, 271

xQueuePeek(), 145

xQueueReceive(), 111

xQueueSend(), 109

xQueueSendFromISR(), 220

xQueueSendToBack(), 109, 144

xQueueSendToFront(), 109, 144

xSemaphoreCreateCounting(), 210

xSemaphoreCreateRecursiveMutex(), 253

xSemaphoreGiveFromISR(), 196

xSemaphoreGiveRecursive(), 253

xSemaphoreTakeRecursive()., 253

xTaskCreate(), 48

xTaskGetTickCount(), 72

xTaskNotify(), 307

xTaskNotifyFromISR(), 308

xTaskNotifyGive(), 298

xTaskNotifyWait(), 310

xTaskResumeAll(), 241

xTaskResumeFromISR(), 65

	Contents
	List of Figures
	List of Code Listings
	List of Tables
	List of Notation
	Preface
	Multitasking in Small Embedded Systems
	About FreeRTOS
	Value Proposition
	A Note About Terminology
	Why Use a Real-time Kernel?
	FreeRTOS Features
	Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family

	Included Source Files and Projects
	Obtaining the Examples that Accompany this Book

	SECTION 1.
	Chapter 1 The FreeRTOS Distribution
	1.1 Chapter Introduction and Scope
	Scope

	1.2 Understanding the FreeRTOS Distribution
	Definition: FreeRTOS Port
	Building FreeRTOS
	FreeRTOSConfig.h
	The Official FreeRTOS Distribution
	The Top Directories in the FreeRTOS Distribution
	FreeRTOS Source Files Common to All Ports
	FreeRTOS Source Files Specific to a Port
	Header Files

	1.3 Demo Applications
	1.4 Creating a FreeRTOS Project
	Adapting One of the Supplied Demo Projects
	Creating a New Project from Scratch

	1.5 Data Types and Coding Style Guide
	Data Types
	Variable Names
	Function Names
	Formatting
	Macro Names
	Rationale for Excessive Type Casting

	Chapter 2 Heap Memory Management
	2.1 Chapter Introduction and Scope
	Prerequisites
	Dynamic Memory Allocation and its Relevance to FreeRTOS
	Options for Dynamic Memory Allocation
	Scope

	2.2 Example Memory Allocation Schemes
	From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated, removing the need to include a heap memory manager
	Heap_1
	Heap_2
	Heap_3
	Heap_4
	Setting a Start Address for the Array Used By Heap_4
	Heap_5
	The vPortDefineHeapRegions() API Function

	2.3 Heap Related Utility Functions
	The xPortGetFreeHeapSize() API Function
	The xPortGetMinimumEverFreeHeapSize() API Function
	Malloc Failed Hook Functions

	Chapter 3 Task Management
	3.1 Chapter Introduction and Scope
	Scope

	3.2 Task Functions
	3.3 Top Level Task States
	3.4 Creating Tasks
	The xTaskCreate() API Function
	Example 1. Creating tasks
	Example 2. Using the task parameter

	3.5 Task Priorities
	3.6 Time Measurement and the Tick Interrupt
	Example 3. Experimenting with priorities

	3.7 Expanding the ‘Not Running’ State
	The Blocked State
	The Suspended State
	The Ready State
	Completing the State Transition Diagram
	Example 4. Using the Blocked state to create a delay
	The vTaskDelayUntil() API Function
	Example 5. Converting the example tasks to use vTaskDelayUntil()
	Example 6. Combining blocking and non-blocking tasks

	3.8 The Idle Task and the Idle Task Hook
	Idle Task Hook Functions
	Limitations on the Implementation of Idle Task Hook Functions
	Example 7. Defining an idle task hook function

	3.9 Changing the Priority of a Task
	The vTaskPrioritySet() API Function
	The uxTaskPriorityGet() API Function
	Example 8. Changing task priorities

	3.10 Deleting a Task
	The vTaskDelete() API Function
	Example 9. Deleting tasks

	3.11 Thread Local Storage
	3.12 Scheduling Algorithms
	A Recap of Task States and Events
	Configuring the Scheduling Algorithm
	Prioritized Pre-emptive Scheduling with Time Slicing
	Prioritized Pre-emptive Scheduling (without Time Slicing)
	Co-operative Scheduling

	Chapter 4 Queue Management
	4.1 Chapter Introduction and Scope
	Scope

	4.2 Characteristics of a Queue
	Data Storage
	Access by Multiple Tasks
	Blocking on Queue Reads
	Blocking on Queue Writes
	Blocking on Multiple Queues

	4.3 Using a Queue
	The xQueueCreate() API Function
	The xQueueSendToBack() and xQueueSendToFront() API Functions
	The xQueueReceive() API Function
	The uxQueueMessagesWaiting() API Function
	Example 10. Blocking when receiving from a queue

	4.4 Receiving Data From Multiple Sources
	Example 11. Blocking when sending to a queue, and sending structures on a queue

	4.5 Working with Large or Variable Sized Data
	Queuing Pointers
	Using a Queue to Send Different Types and Lengths of Data

	4.6 Receiving From Multiple Queues
	Queue Sets
	The xQueueCreateSet() API Function
	The xQueueAddToSet() API Function
	The xQueueSelectFromSet() API Function
	Example 12. Using a Queue Set
	More Realistic Queue Set Use Cases

	4.7 Using a Queue to Create a Mailbox
	The xQueueOverwrite() API Function
	The xQueuePeek() API Function

	Chapter 5 Software Timer Management
	5.1 Chapter Introduction and Scope
	Scope

	5.2 Software Timer Callback Functions
	5.3 Attributes and States of a Software Timer
	Period of a Software Timer
	One-shot and Auto-reload Timers
	Software Timer States

	5.4 The Context of a Software Timer
	The RTOS Daemon (Timer Service) Task
	The Timer Command Queue
	Daemon Task Scheduling

	5.5 Creating and Starting a Software Timer
	The xTimerCreate() API Function
	The xTimerStart() API Function
	Example 13. Creating one-shot and auto-reload timers

	5.6 The Timer ID
	The vTimerSetTimerID() API Function
	The pvTimerGetTimerID() API Function
	Example 14. Using the callback function parameter and the software timer ID

	5.7 Changing the Period of a Timer
	The xTimerChangePeriod() API Function

	5.8 Resetting a Software Timer
	The xTimerReset() API Function
	Example 15. Resetting a software timer

	Chapter 6 Interrupt Management
	6.1 Chapter Introduction and Scope
	Events
	Scope

	6.2 Using the FreeRTOS API from an ISR
	The Interrupt Safe API
	The Benefits of Using a Separate Interrupt Safe API
	The Disadvantages of Using a Separate Interrupt Safe API
	The xHigherPriorityTaskWoken Parameter
	The portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() Macros

	6.3 Deferred Interrupt Processing
	6.4 Binary Semaphores Used for Synchronization
	The xSemaphoreCreateBinary() API Function
	The xSemaphoreTake() API Function
	The xSemaphoreGiveFromISR() API Function
	Example 16. Using a binary semaphore to synchronize a task with an interrupt
	Improving the Implementation of the Task Used in Example 16

	6.5 Counting Semaphores
	The xSemaphoreCreateCounting() API Function
	Example 17. Using a counting semaphore to synchronize a task with an interrupt

	6.6 Deferring Work to the RTOS Daemon Task
	The xTimerPendFunctionCallFromISR() API Function
	Example 18. Centralized deferred interrupt processing

	6.7 Using Queues within an Interrupt Service Routine
	The xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() API Functions
	Considerations When Using a Queue From an ISR
	Example 19. Sending and receiving on a queue from within an interrupt

	6.8 Interrupt Nesting
	A Note to ARM Cortex-M and ARM GIC Users

	Chapter 7 Resource Management
	7.1 Chapter Introduction and Scope
	Mutual Exclusion
	Scope

	7.2 Critical Sections and Suspending the Scheduler
	Basic Critical Sections
	Suspending (or Locking) the Scheduler
	The vTaskSuspendAll() API Function
	The xTaskResumeAll() API Function

	7.3 Mutexes (and Binary Semaphores)
	The xSemaphoreCreateMutex() API Function
	Example 20. Rewriting vPrintString() to use a semaphore
	Priority Inversion
	Priority Inheritance
	Deadlock (or Deadly Embrace)
	Recursive Mutexes
	Mutexes and Task Scheduling

	7.4 Gatekeeper Tasks
	Example 21. Re-writing vPrintString() to use a gatekeeper task

	Chapter 8 Event Groups
	8.1 Chapter Introduction and Scope
	Scope

	8.2 Characteristics of an Event Group
	Event Groups, Event Flags and Event Bits
	More About the EventBits_t Data Type
	Access by Multiple Tasks
	A Practical Example of Using an Event Group

	8.3 Event Management Using Event Groups
	The xEventGroupCreate() API Function
	The xEventGroupSetBits() API Function
	The xEventGroupSetBitsFromISR() API Function
	The xEventGroupWaitBits() API Function
	Example 22. Experimenting with event groups

	8.4 Task Synchronization Using an Event Group
	The xEventGroupSync() API Function
	Example 23. Synchronizing tasks

	Chapter 9 Task Notifications
	9.1 Chapter Introduction and Scope
	Communicating Through Intermediary Objects
	Task Notifications—Direct to Task Communication
	Scope

	9.2 Task Notifications; Benefits and Limitations
	Performance Benefits of Task Notifications
	RAM Footprint Benefits of Task Notifications
	Limitations of Task Notifications

	9.3 Using Task Notifications
	Task Notification API Options
	The xTaskNotifyGive() API Function
	The vTaskNotifyGiveFromISR() API Function
	The ulTaskNotifyTake() API Function
	Example 24. Using a task notification in place of a semaphore, method 1
	Example 25. Using a task notification in place of a semaphore, method 2
	The xTaskNotify() and xTaskNotifyFromISR() API Functions
	The xTaskNotifyWait() API Function
	Task Notifications Used in Peripheral Device Drivers: UART Example
	Task Notifications Used in Peripheral Device Drivers: ADC Example
	Task Notifications Used Directly Within an Application

	Chapter 10 Low Power Support
	Chapter 11 Developer Support
	11.1 Chapter Introduction and Scope
	11.2 configASSERT()
	Example configASSERT() definitions

	11.3 FreeRTOS+Trace
	11.4 Debug Related Hook (Callback) Functions
	Malloc failed hook

	11.5 Viewing Run-time and Task State Information
	Task Run-Time Statistics
	The Run-Time Statistics Clock
	Configuring an Application to Collect Run-Time Statistics
	The uxTaskGetSystemState() API Function
	The vTaskList() Helper Function
	The vTaskGetRunTimeStats() Helper Function
	Generating and Displaying Run-Time Statistics, a Worked Example

	11.6 Trace Hook Macros
	Available Trace Hook Macros
	Defining Trace Hook Macros
	FreeRTOS Aware Debugger Plug-ins

	Chapter 12 Trouble Shooting
	12.1 Chapter Introduction and Scope
	12.2 Interrupt Priorities
	12.3 Stack Overflow
	The uxTaskGetStackHighWaterMark() API Function
	Run Time Stack Checking—Overview
	Run Time Stack Checking—Method 1
	Run Time Stack Checking—Method 2

	12.4 Inappropriate Use of printf() and sprintf()
	Printf-stdarg.c

	12.5 Other Common Sources of Error
	Symptom: Adding a simple task to a demo causes the demo to crash
	Symptom: Using an API function within an interrupt causes the application to crash
	Symptom: Sometimes the application crashes within an interrupt service routine
	Symptom: The scheduler crashes when attempting to start the first task
	Symptom: Interrupts are unexpectedly left disabled, or critical sections do not nest correctly
	Symptom: The application crashes even before the scheduler is started
	Symptom: Calling API functions while the scheduler is suspended, or from inside a critical section, causes the application to crash

	INDEX

