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[Editor’s Note: The material in this tutorial has been

adapted for our ORBIT readers by Steve Sabin, Corporate

Marketing Manager. It is based on standard curriculum

presented in Bently Nevada’s Machinery Diagnostics

Seminar. For more information about Dynamic Stiffness,

contact our Training Department or write to

steve.sabin@bently.com]

working knowledge of Dynamic Stiffness for

the machinery engineer is as useful and

indispensable as Ohm’s Law is for the electrical

engineer. Unfortunately, the topic of Dynamic Stiffness

generally conjures up images of complicated equations with

limited practical value. Quite to the contrary, Dynamic

Stiffness is neither hard to understand, nor of only theoretical

interest. It is of significant practical value and teaches an

important, fundamental way of approaching and diagnosing

machinery problems.

This tutorial has been developed to help you understand

what Dynamic Stiffness is, why it is important, and how to

use it. While the mathematics are included, practical examples

and analogies are used wherever possible. Anyone familiar with

the basic concepts of machinery balancing and the calculations

for determining an Influence Vector will be able to understand

and apply the concepts in this tutorial. For this reason, we

draw heavily upon machinery balancing examples to convey

the concepts of Dynamic Stiffness. In fact, we’ll show that

the Influence Vector and Dynamic Stiffness are very closely

related to one another and that the calculations to determine

Dynamic Stiffness are really no more difficult than those

involved in basic machinery balancing.

In short, this tutorial focuses on a simple, practical

explanation of Dynamic Stiffness that anyone concerned

with machinery behavior will find useful and applicable.

[Editor’s Note: This tutorial requires familiarity with vector

calculations and concepts, conversions between rectangular

and polar coordinates, and the basics of complex number

operations, i.e., those with both direct and quadrature
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(sometimes called “real” and “imaginary”) components. If

you are not familiar with these topics, you are encouraged to

explore them via any college algebra or pre-calculus textbook.]

Dynamic Stiffness – Why Is It Important?

Sometimes, people concerned with “vibration analysis”

of machinery lose sight of a very simple truth: vibration is

merely a response to other conditions in a machine, it is not

(and should not be) the fundamental concern for the machinery

engineer. Instead vibration should be thought of as nothing

more than a ratio of the forces acting on the machine to its

stiffnesses. Mathematically, this is summarized as:

[1]

Unfortunately, as mentioned above, people all too often

become concerned exclusively with the left side of the above

equation (the vibration response) without giving appropriate

thought to the right side of the equation (why did the vibration

change?). As Equation 1 shows, vibration can only change as

the result of two things: a change in force or a change in

stiffness (or both). In other words, vibration is merely a result

of other root causes occurring in a machine. One of those

root causes can be changing stiffnesses, and it is for this

reason that a solid grasp of Dynamic Stiffness is essential

for the machinery specialist.

A change in unbalance is an example of a force changing

in a machine. In this case, force increases (the once-per-turn

unbalance excitation), stiffness stays the same, and vibration

increases as a result. 

In contrast, a cracked shaft, cracked foundation, or loose

hold-down bolt is an example of stiffness changing in a

machine. In these cases, the excitation force stays the same,

but stiffness is reduced. However, the same result occurs:

vibration increases. 

When vibration is viewed as a ratio of forces to stiffnesses,

the perspective changes and the focus becomes “what has

changed in the machine, the forces acting on it or its stiffnesses?”

rather than simply “more vibration is bad, less vibration is
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good.” Indeed, Equation 1 underscores why it is so important

to understand all changes in vibration – they signify a change

in Dynamic Stiffness or a change in force, or both. A sudden

reduction in vibration could signify an increased stiffness,

such as pipe strain or a cocked bearing or a frozen coupling.

All of these are undesirable. To the individual looking only at

a reduction in vibration as a favorable change, however, the

underlying cause of the vibration change and its significance

would be missed. 

Synchronous and Nonsynchronous

The excitation forces acting on a machine can be separated

into two broad categories: synchronous and nonsynchronous.

Synchronous means that the input force is at the same

frequency as the machine’s rotational speed. The most common

synchronous excitation force in rotating machinery is the

residual imbalance in the rotor. As this imbalance rotates, it

generates a once-per-turn centrifugal force. This is often why

a machine’s vibration is predominantly at 1X (once-per-turn)

– because the machine’s excitation force is predominantly at

1X as well.

Nonsynchronous, as you would expect, refers to any

excitation force that is independent of the rotational speed

of the machine. This tutorial will only concern itself with

synchronous excitation forces, namely, unbalance. It will also

confine itself to Synchronous Dynamic Stiffness, that is, the

stiffness characteristics for synchronous excitation. Synchronous

Dynamic Stiffness is a special case of Nonsynchronous

Dynamic Stiffness: namely, when the excitation frequency

equals the rotative speed of the machine.

Sometimes, exciting a machine with an oscillating force

is referred to as “perturbating” the machine. Synchronous

perturbation is as simple as creating a known imbalance in

the machine. It results in a once-per-turn rotating imbalance

force. Nonsynchronous perturbation is considerably more

difficult and requires special apparatus (see the article on

page 10 for an example of a nonsynchronous perturbator).

For this reason, nonsynchronous perturbation is rarely done

in the field, although it is an excellent tool when it can be

applied.

[Editor’s Note: Bently Nevada does provide expertise,

equipment, and services for conducting synchronous and

nonsynchronous perturbation in both laboratory and field

environments. Please contact our Global Services

Organization for further information.]

Why would we want to excite a machine at various

frequencies? Because its Dynamic Stiffness is a function of

the excitation frequency, and it is useful to see how Dynamic

Stiffness changes as a result of perturbation frequency. The

relationship between Dynamic Stiffness and frequency is

easily observed in the field during machine startups or coast-

downs. A machine will have characteristic resonances where

it responds to a given input force more strongly (with more

vibration amplitude) than at other frequencies. This is

because its Synchronous Dynamic Stiffness is at a minimum

at these excitation frequencies (rotational speeds).

Keeping It Simple – Balancing

Looking again at Equation 1 and considering a typical

balancing exercise, three things immediately become apparent:

1. In a balancing project we introduce a known synchronous

force (the centrifugal force generated by a calibration

weight).

2. We then measure the change in synchronous response

(the 1X vibration amplitude and phase) due to that

force.

3. If we know the synchronous force and the synchronous

response, we can calculate Synchronous Dynamic

Stiffness.

The only real difference in a typical balancing project is

that we use a relationship between force and response called

an Influence Vector. The Influence Vector provides a relation-

ship between weight placement and response, rather than

force and response, but it is intimately related to Dynamic

Stiffness. As we mentioned at the beginning of this tutorial,

we’ll later show the exact relationship between an Influence

Vector and Dynamic Stiffness. 

Vectors – How Much and Which Direction?

Believe it or not, we’ve already covered the most 

fundamental concept in our discussion of Dynamic Stiffness:

Dynamic Stiffness is nothing more than the forces acting on

“When vibration is viewed as a ratio of forces

to stiffnesses, the perspective changes and the

focus becomes ‘what has changed in the machine,

the forces acting on it or its stiffnesses?’

rather than simply ‘more vibration is bad,

less vibration is good.’”
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a rotor divided by its vibration response. It’s that simple.

Now, all that is left is the mathematics. While we indicated

earlier that this tutorial does not teach the basics of vector

mathematics or complex number operations, some basic

review is appropriate.

Forces and responses (vibration) are vector quantities.

That is, they have both magnitude and direction. Scalar

quantities have only magnitude, not direction. In this tutorial,

we’ll denote vector quantities with an arrow (such as ) and

scalar quantities in regular text (such as F). 

If we apply an oscillating force to a machine, it has both a

magnitude and a direction. A force that acts straight down at

a certain point on a machine is quite different from a force

that pushes across the machine at the same location, rather

than down on it. Thus, force is a vector quantity. 

We also find that the response is a vector. Not only is the

response a vector, but it has both a different magnitude and

direction than the input force. This confirms the observation

that when you push down on a rotor, it moves not only down-

ward (in the direction of the force) but also to the side (in a

direction at right angles to the force). 

Since the rotor’s response differs in both magnitude and

direction from that of the applied force, this tells us that the

relationship between force and response (the machine’s

Dynamic Stiffness) is also a vector quantity. If it were not a

vector quantity, only the magnitude would change, not the

direction. Thus, we have established by way of observation,

rather than mathematics, that forces, responses, and the

Dynamic Stiffness relating the two are all vector quantities.

Vectors are often treated mathematically as complex num-

bers. Figure 1 shows how a force can be separated into two

orthogonal (i.e., at right angles to one another) compo-

nents: (the force acting in the x-direction) and (the

force acting in the y-direction). 

Direct and Quadrature – At Right Angles

Like the force in Figure 1, we also

speak about Dynamic Stiffness in

terms of its orthogonal components,

since Dynamic Stiffness is a

vector. The component of

Dynamic Stiffness that acts in

the same direction as the

applied force is called Direct

Dynamic Stiffness (DDS) and

is denoted as . The com-

ponent of Dynamic Stiffness

orthogonal to this is known as the Quadrature Dynamic

Stiffness (QDS) and is denoted as . When both Direct and

Quadrature components are included, we generally refer to

Dynamic Stiffness as Complex Dynamic Stiffness (DS), ,

or sometimes just Dynamic Stiffness. Figure 2 illustrates this

relationship.

Incidentally, recall from our earlier discussions that we

concern ourselves only with synchronous excitation forces in

this tutorial. Therefore, even though we don’t designate it as

such, when we refer to Dynamic Stiffness throughout, we are

specifically referring to Synchronous Dynamic Stiffness. 

Returning to Figure 2 and the two orthogonal components

of Dynamic Stiffness, DDS determines how far the rotor

moves in the direction of the applied force and QDS determines

how far the rotor moves to the side (orthogonal to the applied

force). 

If you are familiar with complex numbers, you have

probably already realized from the foregoing discussions that

Complex Dynamic Stiffness is a complex quantity with its

direct (real) component and quadrature

(imaginary) component.

Figure 1. A force resolved into its orthogonal components, 
and .

Figure 2. The Relationship between Complex, Direct, and Quadrature Dynamic Stiffness.
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Bently Nevada avoids using the terminology “real” and

“imaginary” since it implies one component is somehow

more “real” than the other. Both are measurable, physical

quantities, readily observable. The terms “direct” and

“quadrature” are used instead. Mathematically, Complex

Dynamic Stiffness can be written as shown in Equation 2:

[2]

What Is Dynamic Stiffness?

If the force in Figure 3 were a steady preload, the spring

would slowly compress and the system would come to rest at

a new position. This static response is controlled only by the

static spring stiffness, K.

A dynamic force is a force that changes in magnitude or

direction with time. A dynamic input force will cause

dynamic output motion. Because of this dynamic motion,

both the Quadrature Stiffness due to damping and the mass

stiffness effects come into play. 

The force, , and the response, , are vectors, and they

have both magnitude and direction.

The mechanical system is a “black box.” We can obtain

information about the system by perturbing, or shaking it.

Shortly, we will see how this can be done to a rotor system

using a balance shot.

Synchronous Dynamic Stiffness

As we have said, the Synchronous Dynamic Stiffness,

, is the ratio of the applied force to the rotor system

response:

[3]

Another way of remembering this is to look at Hooke’s

Law for springs:

[4]

By Hooke’s Law, the force created is proportional to the

static spring deflection (or response), x, where K is the

spring stiffness. The Dynamic Stiffness, , is the rotor

dynamic equivalent of the simple, static, linear spring in the

Hooke’s Law equation. Rotor systems have both static and

dynamic springs, but you can derive the basic

Force/Response relationship from the Hooke’s Law relation.

Synchronous Rotor Response Is Controlled by
Synchronous Dynamic Stiffness

The Synchronous Dynamic Stiffness is in the denominator

of the rotor response equation and controls the rotor response

to the unbalance force.

In Equation 5, the phase lag of the unbalance mass is

given by the Greek letter delta, . The other terms in the

numerator are the unbalance mass, m, unbalance radius, ,

and rotative speed, .

The Dynamic Stiffness parameters are the rotor mass, M,

radial direct stiffness, K, damping, D, and Fluid

Circumferential Average Velocity Ratio, (lambda). is

Figure 3.  Dynamic Stiffness is the static spring stiffness of the
mechanical system complemented by the dynamic effects of mass
and damping.
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the ratio of the average fluid angular velocity divided by the

rotor angular velocity. Or, alternatively, the average fluid

angular velocity is equal to .

The “j” of the quadrature part is mathematically the ,

but merely means that the action occurs +90°. This is due to

a combination of two factors. First, the force on the rotor due

to damping is proportional to velocity, which leads displace-

ment by +90°. Second, the oil wedge stiffness can be separated

into two parts. The radial part (included in the spring stiffness,

K, in the Direct Dynamic Stiffness) acts along the same line

as the displacement; however, the tangential part, ,

acts at +90° relative to the displacement. The combination of

the stiffness due to the damping force and the tangential stiff-

ness produces the Quadrature Dynamic Stiffness that acts at

+90° relative to the displacement vector.

Synchronous Dynamic Stiffness Versus Speed

While Synchronous Dynamic Stiffness can be calculated

for a single speed, in fact both the Direct and Quadrature

parts are functions of the rotative speed, .

The Direct Dynamic Stiffness (Figure 4) is a parabola with

y-intercept equal to the radial spring stiffness, K. The zero

crossing is important and occurs when 

[7]

At speeds above resonance, the Direct Dynamic Stiffness

is negative.

The Quadrature Dynamic Stiffness (Figure 4) is a straight

line which starts at the origin at zero speed and has a slope

equal to .

All of the rotor parameters can be obtained from measure-

ments of the Synchronous Direct and Quadrature Dynamic

Stiffness graphs except for , which must be estimated.

Why Identify Dynamic Stiffness?

There are numerous reasons why knowing the Dynamic

Stiffness for your machine is valuable:

• Dynamic Stiffness is the relationship between machine

parameters and measured vibration response.

• Parameter identification provides information for

analytical modeling.

• Trending of Dynamic Stiffness can provide valuable

information on changes in machine parameters.

• Dynamic Stiffness can be used to estimate the dynamic

forces acting in a machine.

Knowledge of your rotor parameters together with an

understanding of what they mean in terms of rotor behavior

allows you to minimize the guesswork when diagnosing

machine problems and proposing solutions.

How Do We Measure Synchronous Dynamic Stiffness?

There are five basic steps involved in determining

Dynamic Stiffness:

Step 1 – Obtain reference data (startup or shutdown).

Step 2 – Attach a known unbalance mass to the rotor in

a known location and get new data.

Step 3 – Calculate response due to calibration weight

alone.

Step 4 – Calculate applied force from this calibration

weight.

Step 5 – Use data to calculate the Synchronous Dynamic

Stiffness.

The information necessary to calculate Synchronous

Dynamic Stiffness is obtained every time you balance your

machine. You start with an existing unbalanced machine

condition, produce a known force by installing a known

unbalance weight, and start up the machine again. The

change in vibration will be due to the weight that has been

added to the machine. The vibration data (1X-filtered

amplitude and phase) for the two runs can be used to calculate

the Synchronous Dynamic Stiffness.

Next, we’ll illustrate these five steps using actual data.Figure 4.  Synchronous Dynamic Stiffness versus speed.
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Synchronous Dynamic Stiffness Phase

A rotor operating well below the balance resonance will

have a Synchronous Dynamic Stiffness phase between 0° and

90°. At the resonance, the Dynamic Stiffness vector phase

will be 90°, and above the resonance the Dynamic Stiffness

vector phase will be greater than 90°. Note that the phase

angle of the Synchronous Dynamic Stiffness in this example

is 174°. This shows that the machine is operating above the

first balance.

Finding Direct and Quadrature Dynamic Stiffness

As noted previously, Dynamic Stiffness consists of two

parts:

[8]

It can be separated into Direct and Quadrature parts by

taking the cosine and sine, respectively, of the Synchronous

Dynamic Stiffness phase and multiplying by the amplitude of

the Synchronous Dynamic Stiffness.

Calculating Synchronous Dynamic Stiffness Over 
the Entire Speed Range

Using the same data from our previous example, Figure 5,

the Direct and Quadrature Dynamic Stiffness have been

calculated for each speed sample and are plotted separately.

The plots can then be used to find rotor parameters.

The rotor modal spring stiffness, K, can be found from the

value of the Direct Dynamic Stiffness at zero rotor speed.

The modal mass is then found using this value of K and the

rotor speed (in radians/sec) at the balance resonance, where

the Direct Dynamic Stiffness is equal to zero:

[9]

Note the very low slope of the Quadrature Stiffness. The

slope of the Synchronous Quadrature Dynamic Stiffness plot

yields the value of . To find D, the value of must

be estimated1. Since the data in this example was obtained

from a rotor kit with bronze bearings where there is very lit-

tle fluid interaction with the rotor, we can set = 0. Because

the slope is very low and lambda is zero, we can conclude

that the damping is very low for this machine.

Obtaining Rotor Parameters from Two Points

Alternatively, we can estimate rotor parameters using only

two points: the resonance and any other point away from the

resonance.

Note that, because amplitude and phase can change very

rapidly in the vicinity of a resonance, the data there may not

be accurate if a narrow bandpass filter was used together

with a fast ramp rate. Narrow bandpass filters require long

settling times (about 7 seconds for a 12 rpm filter compared

to about 0.7 seconds for a 120 rpm filter).

Also, nonlinearities are more likely to occur at resonances

because of the higher vibration amplitudes. The effective

spring stiffness at a high eccentricity resonance can be

different from the spring stiffness at low eccentricity.

For these reasons, in general it is better to calculate rotor

parameters from a complete graph of Synchronous Dynamic

Stiffness over the full range of machine speeds. That way,

noisy or bad data can be adjusted for, and anomalies at the

resonance can easily be seen.

The following example will use two points from Step 1

of our previous example: 

• the balance resonance at 1800 rpm. 

• the previously studied data point at 2000 rpm.1 In conventional fluid-film bearings, is generally between 0.42 and 0.48.

Figure 5.  Calculating Synchronous Dynamic Stiffness over the
entire speed range.
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Finding Rotor System Modal Stiffness

Two expressions are written for the Direct Dynamic

Stiffness that correspond to the two speeds of interest. The

Direct Dynamic Stiffness, , is equal to zero at the balance

resonance, and it is equal to some nonzero value at another

speed (2000 rpm in this example). This gives us two equations

and two unknowns. 

One way to solve this system is to eliminate the mass term,

M. To do this, solve the two equations for M:

[10]

Now, eliminating M, the resulting equation is solved for K,

the rotor system modal stiffness. The solution is found to be:

[11]

Finally, plug in the numbers.

What is modal stiffness? Each rotor system balance

resonance is associated with a vibration mode. A freely

vibrating rotor will usually have several natural frequencies

of vibration. Each of these frequencies constitutes a mode

with its own deflected mode shape. For example, first lateral

bending mode is often bow-shaped, and the second bending

mode is often s-shaped. Because the s-shaped mode has an

effective nodal point near the midspan of the rotor, the rotor

has much greater resistance to bending in the second mode;

thus, the modal stiffness is higher.

Similarly, the two modes will have different distributions

of moving mass; thus, the modal mass for the second mode is

lower than for the first mode.

Because of the higher modal stiffness and the lower modal

mass of the second mode, the natural frequency, , of

the second mode is higher.

The K, M, D, and in our models represent modal

parameters.

Finding Rotor System Modal Mass

Start with the basic relation for the natural frequency of

the system. Then solve for M. We already know the modal

spring stiffness, K, from our last calculation.

Substitute known K into (previous mass) Equation 9:

Finding Rotor System Modal Damping

1) Use the Quadrature Dynamic Stiffness expression

(refer to Equation 6): 

[12]

2) For this machine (rotor kit with bronze bearings), we

have already noted that = 0. Also, Synchronous

Quadrature Dynamic Stiffness at zero speed (i.e.,

) is zero. 

Damping is: [13]

(lambda) must be estimated when significant fluid

interaction with the rotor is present; that is, fluid that is

trapped in a way which allows fluid swirling to take place.

This can happen, for example, in fluid bearings, seals, or

around pump impellers.

Synchronous Dynamic Stiffness and the Influence Vector

The Synchronous Dynamic Stiffness, , and the

Influence Vector, , are very closely related. Dynamic

Stiffness is the ratio of the Force to the Response, while the

Influence Vector is the ratio of the Response to the unbalance

weight vector. In fact, one can be calculated from the other.

The relationship can be derived as shown below:
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Solve both equations for the response vector:

[14]

Here, m is the known calibration weight, is the radius

of the calibration weight that is mounted on the machine, 

is the rotor speed, is the response phase, and is the phase

(angular mounting location) of the calibration weight. Now

the equation can be solved to show the relationship of the

Synchronous Dynamic Stiffness to the Influence Vector.

Remember that both the Synchronous Dynamic Stiffness and

the Influence Vector are vectors with amplitude and phase.

Relationship Between Synchronous Dynamic Stiffness
and Influence Vector

Further simplifying Equation 14, we find:

[15]

[16]

[17]

Notice! Influence Vectors are usually calculated using

positive phase lag data. The expressions for Dynamic

Stiffness require phase lag to be negative. For this reason,

the negative sign in Equation 15 has been eliminated in

Equations 16 and 17.

The final Equations (16 and 17) show that and are

inversely related through the acceleration of the unbalance

mass. In these equations, H is the magnitude of the Influence

vector, , and KDS is the magnitude of the Synchronous

Dynamic Stiffness, .

The phase angles and are the angles of the

Influence Vector and Synchronous Dynamic Stiffness,

respectively. is the centripetal acceleration of the

calibration weight, and it is the connection between the two

vectors.

Example: Calculating the Dynamic Stiffness from the
Influence Vector

The Influence Vector has units of peak-to-peak that must

be converted to zero-to-peak for the Dynamic Stiffness.

There is a factor of ½ in the denominator to do this.

Given:

Influence vector = 4.68 mil pp/gram ∠46° lag

Radius of unbalance = 30 mm

Rotative speed = 2000 rpm

Find:

Solution: Use Equation 16 as shown below

Estimating Forces Using Dynamic Stiffness

Recall that Dynamic Stiffness is the ratio of the force to

the response from Equation 3: 

[3]

This expression can be rearranged to give us an equation

for estimating the force acting in a machine.

[18]

This is the procedure: 

• The Dynamic Stiffness is calculated at some point in

time, for example when the machine is balanced.

• The value of the Dynamic Stiffness is saved for future

reference.

• At some later time, the machine vibration is measured

using the same transducer that was used to calculate

the Dynamic Stiffness.

• That filtered vibration vector is multiplied by the

previously measured Dynamic Stiffness vector to

obtain an estimate of the force acting in the machine.

This method can be used with either shaft relative or

casing transducers.
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It is important to keep in mind that the original Dynamic

Stiffness was calculated using a force that occurred in the

machine at a specific location (for example, a balancing

plane) on the rotor. At some other time, the force acting on

the machine may originate in a different location on the rotor.

Because of the different transmission path, the Dynamic

Stiffness may not be exactly the same between this new force

location and the measurement transducer. Thus, this method

only provides an estimate of the dynamic force acting in the

machine.

Summary

• The Synchronous Dynamic Stiffness is simply the ratio

of the applied force to the rotor system response.

• Rotor parameters can be calculated from the

Synchronous Dynamic Stiffness.

• Synchronous Dynamic Stiffness and Influence Vectors

can be calculated from each other.

• Both Dynamic Stiffness and Influence Vectors can be

calculated every time a balance shot is performed.

Changes in machine behavior are a result of changes in

Dynamic Stiffness or changes in force. For example, suppose a

balance resonance shifts downward over time. Because the

resonant frequency is , either the modal stiffness, K,

has decreased, or the modal mass, M, has increased. A signif-

icant change in mass of the rotor is unlikely, so it is probable

that something has changed that has lowered the modal stiff-

ness of the rotor system. It could be a loosening foundation

or bearing support, a reduction in bearing stiffness, or a shaft

crack. 

As we have shown, the calculations for determining

Dynamic Stiffness and various rotor parameters are no more

involved than those for rotor balancing. Like balancing,

command of the basic principles in Dynamic Stiffness is an

important part of the machinery engineer’s available tools.  


