
In?. J. Man-Machine Studies (1992) 36, 741-773

Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces

PETER G. POLSON,* CLAYTON LEWIS, JOHN RIEMAN~ AND

CATHLEEN WHP.RTON~

Institute of Cognitive Science, *Department of Psychology and the fDepartment of
Computer Science, University of Colorado, Boulder, CO 80309-0345, USA

(Received 1 August 1990 and accepted in revised form 8 April 1991)

This paper presents a new methodology for performing theory-based evaluations of
user interface designs early in the design cycle. The methodology is an adaptation of
the design walkthrough techniques that have been used for many years in the
software engineering community. Traditional walkthroughs involve hand simulation
of sections of code to ensure that they implement specified functionality. The
method we present involves hand simulation of the cognitive activities of a user, to
ensure that the user can easily learn to perform tasks that the system is intended to
support. The cognitive walkthrough methodology, described in detail, is based on a
theory of learning by exploration presented in this paper. There is a summary of
preliminary results of effectiveness and comparisons with other design methods.

1. Introduction
It is widely acknowledged that many current computer systems and applications are
too hard to master and difficult to use (Whiteside, Bennett, & Holtzblat, 1988;
Shackel, 1984). There are many reasons for this, ranging from lack-of-fit of a tool to
the social and organizational context (Winograd & Flores, 1986) to shortcomings in
the software’s user interface, e.g. lack of feedback, complex dialog structures, and
hard-to-remember commands (Norman, 1988; Gentner & Grudin, 1990). User
interface problems can also be traced to failures in the management of the
development process: usability goals are not explicitly specified, and thus their

achievement is not managed during development (Bennett, 1984).

1.1. OVERVIEW OF THE METHOD

The design evaluation methodology proposed in this paper, the cognitive walk-
through, aims to provide a new tool for assessing the usability of a system, and
assigning causes to usability problems, early in the design process. Our focus in this
paper is on ease of learning. There are many situations in which users want to make
use of a system without having to invest much time or receive any formal
instruction. The method gives designers the ability to anticipate some learnability
problems before an implementation or even a mock-up of the design is available,
without empirically testing a prototype with representative users.

A cognitive walkthrough applies relevant cognitive theory in an evaluation
process that can be used by software developers under the constraints on time and
other resources imposed by the typical development process. Bellotti (1990)
discusses these constraints. A cognitive walkthrough has the same basic organization
and rationale as other types of design walkthroughs, including architecture

741

0020-7373/92/050741+ 33$03.00/O (Q 1992 Academic Press Limited

742 P. G. POLSON El' AL.

walkthroughs, functional requirements walkthroughs, document walkthroughs and
code walkthroughs. (Yourdon, 1989; Fagan, 1986). It is a review process in which
the author of a particular aspect of a design presents his or her proposed design
solution to a group of peers. The peers evaluate the solution using an explicit set of
criteria appropriate to the particular classes of design issues. In the cognitive
walkthrough, the criteria focus on the cognitive processes needed to perform tasks
with the system as designed.

The purpose of an evaluation of a design using the cognitive walkthrough
methodology is to evaluate the ease with which users can perform a task with little
or no formal instruction or informal coaching. The input to a cognitive walkthrough
session includes a detailed design description of the user interface, a task scenario,
explicit assumptions about the user population and the context of use, and a
sequence of actions with which a user could successfully complete the task using the
design under evaluation.

During the walkthrough process, the reviewers step through the actions,
considering the behavior of the interface and its effect on the user, and attempting
to identify those actions that would be difficult for the average member of the
proposed user population to choose or to execute. Claims that a given step would
not cause any difficulties must be supported by theoretical arguments, empirical
data, or relevant experience and common sense of the team members. Claims that a
given step will be problematic must also be supported by relevant theory, data or
experience. In essence, performing a walkthrough involves carrying out a hand
simulation of the cognitive processes that are required to successfully guess the
specified action sequence.

1.2. THE APPLICATION OF COGNITIVE THEORY IN THE DESIGN PROCESS

There have been numerous unsuccessful attempts to apply cognitive theory to design
more usable systems (Carroll & Campbell, 1986; Bennett et al. 1987; Carroll &
Kellogg, 1989). Bellotti (1990) reviews several theoretically-based design methodol-
ogies; she found that they are not applied in practice because they are not usable in
actual design contexts. One of our major goals in proposing the cognitive
walkthrough is to develop a theoretically-based design methodology that can be
used in actual development situations. It is based on a methodology that is well
understood and actually used by developers, design walkthroughs (Yourdon, 1989).

The cognitive walkthrough is an evaluation methodology that focuses on ease of
learning. It is especially appropriate for the development of applications where users
must (or prefer) to master a new application or function by learning through
exploration. Two examples are walk-up-and-use systems, e.g. ATMs and telephone-
based applications, and new functions in a frequently used application. Such systems
are particularly difficult and costly to develop successfully. Typical design guidelines,
e.g. Smith and Mosier (1986) or Rubenstein and Hersh (1984), provide very general
recommendations that are not specific enough to guide the development process. In
the past, ease of learning has had to be evaluated empirically using prototypes or
early versions of the application. Often, these costly studies were not performed
until late in the design cycle, when solutions to serious problems could require
extensive revisions and large delays.

COGNITIVE WALKTHROUGHS 743

1.3. OVERVIEW OF PAPER

We begin by describing the theory of exploration that provides the foundation for
our walkthrough methodology. Following this, we describe cognitive walkthroughs
and present a detailed example. We then summarize our experience with the
method. This is followed by a comparison of the walkthrough methodology with
other proposals to apply cognitive theories to design. The last section summarizes
our conclusions about the walkthrough methodology and discusses possible
extensions.

2. A theory of learning by exploration

A cognitive walkthrough evaluates the ease with which a typical user can
successfully perform a task using a given interface design. Our focus in this paper is
on tasks the user must learn to do by exploration, that is, by guessing what to do
using cues provided by the system, rather than by knowing how to use the system.
This evaluation is based on a detailed model of the cognitive processes involved in
successful exploration, i.e. correctly guessing the required actions. We extract from
this model a set of evaluation criteria that enables the designer to identify points
during an interaction sequence where a typical user will succeed or fail, and to
characterize causes of failures. The cognitive walkthrough consists of a way of
examining a proposed interface systematically in order to identify these failure
situations.

2.1 THEORETICAL FOUNDATIONS

Our model of exploration is an extension of a model of learning by exploration
proposed by Polson and Lewis (1990). The model is related to Norman’s (1986,
1988) theory of action that forms the theoretical foundation for his work on
cognitive engineering. Norman’s framework specifies a series of stages beginning
with the user’s initial goal, leading to the generation of a plan for an action,
execution of the action, evaluation of the feedback, revision of the goals and the
continuation of this cycle. The same basic cyclic model of action generation and
evaluation of consequences underlies our model of exploratory learning. Our model
also provides some insight into the cognitive mechanisms that control the cycle,
allowing specific predictions of certain cases in which failures may occur.

2.2. OUTLINE OF THE MODEL

We have developed our model within the framework of Kintsch’s construction-
integration model (Kintsch, 1988; Mannes & Kintsch, 1991; Doane, Kintsch 8r
Polson, 1990). The construction-integration model (Kintsch, 1988) describes the
processes by which users integrate a representation of text or other perceptual input
with background knowledge to construct a representation that will enable them to
perform a task. In outline, the model works as follows. An initial goal structure is
constructed from a description of the user’s task. Goal structures in the model are
similar to the goal hierarchies postulated by the GOMS model (Card, Moran &
Newell, 1983; Bovair, Kieras & Polson, 1990), with a top goal representing the
overall task, intermediate level goals defining a task decomposition and lowest level
goals describing individual actions (if these become known).

744 P. G. POLSON ET AL.

Goals are represented by propositions. They are linked to other goals, to
propositions representing background knowledge, to propositions representing
objects seen in the environment and to actions. Activation flows from the top goal
along these links to the representations of actions. When an action becomes
sufficiently activated, it is executed. Any response by the system is observed and
interpreted, resulting in the deactivation of accomplished goals and the building of
new propositions. These propositions represent new goals and changes in the
environment caused by the last action. These new propositions are linked into the
existing network of propositions. Activation now spreads through this new network.
The next action occurs when some action becomes sufficiently active, causing the
interpretation process to modify the network of propositions, leading to a new cycle.

2.3. LINKS BETWEEN GOALS AND ACTIONS

As just sketched, actions are executed when sufficient activation reaches them. For
this to happen there must be a path of associative connections between a user’s goal
and the representation of the action. A common situation in which such a path exists
can be seen in the “label following” strategy employed by naive users (Engelbeck,
1986; Polson & Lewis, 1990). Here an action, such as pressing a button, is chosen
because there is a label associated with the action that shares terms with an active
user goal. For example, a user with the goal of turning a system off would be
expected to press a button labelled “off” if one is available.

The associative path between goal and action is composed of at least four linked
propositions: the representations of the user’s currently active goal, the button label,
the button description including its location, and the action of pressing the button.
In the example introduced in the preceding paragraph, the goal proposition is linked
to the label proposition because of the shared term ‘off’ in both goal and label. The
label is linked to the button by shared terms that describe their common location.
The action of pressing is linked to the particular button by information about the
location and knowledge that buttons can be pressed. Activation spreads across these
links, and if it reaches a sufficient level, the button will be pressed.

Notice that there are several ways in which this path could be broken, so that the
correct action would not be taken: The label may not share terms with the goal. The
label might not be placed on the button, which would make the link between label
and the button unclear. The user might not know that buttons can be pressed. Even
if the path is complete, there are other possible failure modes. For example, there
could be two or more labels that seem to be linked to a given goal, and this could
cause a competing action to become active before the correct one. Failures of these
kinds are checked for in the walkthrough procedure.

Not all actions must be linked to goals in as simple and direct a way as required by
the label-following heuristic. However, some added knowledge must be assumed if
the user is expected to link an action to a goal without benefit of a label or
analogous cue, or expected to link a goal with a label that does not share terms with
the goal. The walkthrough procedure helps to make these assumptions explicit. For
example, if a button is labelled “l/O” rather than “on/off’, a successful user must
know what this symbol means. Designers need to consider whether such assump-
tions are valid for their target user population. Careful attention to questions of

COGNITIVE WALKTHROUGHS 745

existing knowledge allows the model and the walkthrough procedure to reflect the
behavior of expert system users faced with new applications or functionality, as well
as novice users who are approaching the system for the first time. (See Doane,
Kintsch & Polson, 1990, for further discussion of user knowledge requirements in
the context of the construction-integration model.)

2.4. MANAGEMENT OF GOAL STRUCTURE

2.4.1. Generating the goal structure
We assume that the user’s initial goals for a task will be incomplete in that they do
not specify a complete task decomposition that includes both representations of
subtasks and the action sequence necessary to carry out each subtask. Thus, we are
not dealing with routine cognitive skills where users have stored in long-term
memory a complete and correct representation of the goal structure and the
necessary action sequence (Card, Moran & Newell, 1983; Bovair, Kieras & Polson,
1990).

Fragments of the goal structure are generated by the user as he or she interacts
with the interface while attempting to carry out the task. The goal generation
process will be driven almost exclusively by prompts and other feedback received
from the interface. Part of the cognitive walkthrough procedure determines whether
the user’s background knowledge and the cues provided by the interface are
sufficient to construct the goal structure necessary to generate the action sequence
required to perform a task.

2.4.2. Generating goals for actions
Prompts, button labels and menu items interact with the user’s background
knowledge and existing goals to create more explicit goals, which define components
of the complete task and establish goals to perform specific actions. For example, a
user with a goal of “play my phone messages” may see the prompt “press P to play
messages” and form the goal of “Press the ‘P’ button.”

Notice that the lowest-level goal is to execute some physical action. It is the
execution of this action that will achieve the subgoal, and it is sequences of these
actions that ultimately allow the user to achieve the higher-level goals. In using the
model to analyse the interaction of a user with an interface, we use the term
“action” to designate either (i) “atomic” actions, such as pressing a single key or
clicking the mouse button, or (ii) well-practised sequences of atomic actions, which
a user in the proposed user group could be expected to execute without difficulty.
These sequences include such things as “Select ‘Print’ from the ‘File’ menu” for an
experienced Macintosh user.

2.4.3. Interpreting feedback
When an action has been taken, the goal structure must be revised. Feedback from
the system plays a critical role in this process. Goals associated with successfully
completed actions must be deactivated. New goals must be added to the structure
that specify new subtasks and the next correct action. The user must interpret the
system’s response to determine whether some current goal has been accomplished,
and hence should be deactivated, or whether some progress has been made towards

746 P. G. POLSON ET AL.

a current subtask goal. A user may post a goal to undertake some kind of error
recovery action if there is no indication that progress has been made. The
information contained in the system response, including prompts, is used to
generate new goals for additional subtasks and further actions necessary to
complete these subtasks.

2.4.4. The %nd-then ” goal structures
In many tasks and in interactive dialogs, goals are not posted individually but as part
of a structure that represents a goal and an associated sequence of subgoals that
must be accomplished in a fixed order. A good example comes from a typical initial
dialog that a user has with an ATM (automated teller machine). The ATM prompts
the user to enter a personal identication number followed by pressing the ENTER
key. The goal is something like “give the system my personal identification
number”, the first subgoal is “type in my personal identification number,” and the
second subgoal is “press the ENTER key.”

We call this goal structure an “and-then” structure because it indicates that the
original goal is to be achieved by accomplishing, in order, the first subgoal and then
the second subgoal. Although the figure shows only two subgoals, there may be
more, describing an ordered sequence of requirements. In the construction-
integration framework the processing of these ordered, related goals is governed by
flows of activation. The “and-then” construction is represented by a pattern of
associative links that are intended to direct activation to the second subgoal only
when the original goal is still active and the first subgoal has been completed, as
shown in Figure 1.

Each goal or subgoal shown in Figure 1 is a pair of nodes. One node, called the
“want-to” node, represents the intention to accomplish the goal. The other node
represents the achievement of the goal and is called the “done-it” node. Activation
of a “done-it” node deactivates the associated “want-to” node. When the main goal
is activated, activation flows to the first subgoal, and actions (or subsidiary goals) to
achieve that goal are initiated. The “done-it” node associated with the first subgoal
is activated when feedback from the environment and from internal expectations
indicate that the subtask is complete. Activation from the first subgoal’s “done-it”
also flows to the “and-then” node, permitting activation to flow from the original
goal to the second subgoal, which in turn causes the actions associated with the
second subgoal to be executed.

This goal structure can account for a common error in executing a sequence of
actions. If the first subgoal is similar to the original goal, the “done-it” nodes for
both the original goal and the first subgoal goal are likely to be associatively
connected by the propositions that represent accomplishment of these two closely
related goals. These connections can cause premature deactivation of the original
goal when only the first subgoal has been accomplished. We call this the supergoal
kill-off phenomenon; Young et al. (1989) call it the omitting secondary subgoals
problem; and it is sometimes called the semicolon problem because it occurs in
coding statements in programming languages that are supposed to end with a
semicolon.

In the ATM dialog example presented earlier, the original goal, “give the
personal identification number” is very similar to the first subgoal, “type in personal
identification number.” This similarity may cause the “done-it” nodes for both goals

COGNITIVE WALKTHROUGHS 747

1 FI~JKE 1. The “and-then” goal structure for the task of entering your personal identification number.
broken down into the two subtasks of typing in the number followed by pressing the enter key.

Key:

Activation Link

I,

Inhibitory Link

Give the System My Personal
Identification Number

Type in Personal
Identification Number J Press ENTER Key

to become active when the first subgoal is accomplished. This will cut off activation
to both the original goal and the first subgoal. Cutting off activation to the original
goal will prevent activation from reaching the node representing the second
subgoal, since both inputs to the “and-then” node have to be active in order for
activation to flow to the second subgoal. The terminator, the ENTER key in our
example, will not be pressed because of this premature loss of activation to the
whole “and-then” goal structure.

The cognitive walkthrough procedure includes a check for possible supergoal

748 P. G. POLSON ET AL.

kill-off. Whenever a subgoal in an “and-then” structure is satisfied, the original goal
is checked for similarity. As will be seen in the example detailed in Section 4,
“and-then” structures are common, and often include further “and-then” structures
nested below the subgoals.

3. The cognitive walkthrough procedure

The cognitive walkthrough is a precisely specified procedure for simulating a user’s
cognitive processes as the user interacts with an interface in an effort to accomplish a
specific task. A printed form with specific questions guides the walkthrough. These
questions reflect the cognitive model described above, allowing an analyst without
extensive training in cognitive psychology to implicitly use the model to analyze an
interface. The approach is similar to that of an income tax form, which allows a lay
person to evaluate the tax effects of transactions without specialized training in
accounting and tax law.

A cognitive walkthrough has two phases, preparation and evaluation. In the
preparation phase, the evaluators select a suite of tasks that are a representative
sample of the tasks that the application is intended to support. For each task in the
suite, they describe the initial state of the interface, the action sequence used to
accomplish the task and the user’s initial goals. During the evaluation phase, the
interaction between the user and the interface is analysed in depth. In accordance
with the cyclical model underlying the theory, the analysts look at each user action
to determine (a) what goals the user should have leading up to the action, (b)
whether the prompts and labels of the interface will induce the user to take the
correct action, assuming the correct goals and (c) how the user’s goals will change in
response to the feedback from the interface after the action is performed. The steps
of the walkthrough are laid out on paper forms shown in Figures 2, 3a-c.
Terminology used in the walkthrough, which was discussed in the previous section,
is summarized in Table 1.

3.1. PHASE 1: PREPARATION

3.1.1. Choose tasks to anaiyse
The first step in preparing for a walkthrough is to select a suite of tasks to be
analysed. These should be tasks whose accomplishment the system is intended to
support, defined and delimited from the point of view of the user. How tasks should
be selected is outside the scope of the method, though the value of the results
clearly depends on choosing a suite of tasks that represent things users actually will
want to do. The suite should include tasks that are made up of sequences of
elementary or basic tasks. In our experience, transitions among subtasks are often
sources of problems for users.

For example, a bank-by-phone application could have “query account balances,”
“transfer funds from one account to another,” and “query to see if specific checks
have cleared” as basic tasks supported by the application. The user will rarely have
trouble with these basic tasks in a reasonably designed system. However, many
tasks will involve sequences of these basic tasks. Consider the task of preventing the
last check you wrote at the supermarket from bouncing. You first see if the check

COGNITIVE WALKTHROUGHS 749

Terminology used in the cognitive walkthrough

action

task An activity that a user would want to perform with the system being
analyzed. Examples:

goal

l “Check the spelling of file ‘foe’ ”
l “Log in to the computer.”
Something the user wants to achieve. Higher-level goals may be identical

to task descriptions, while lower-level goals will describe actions.
Examples:

goal structure

l CHECK SPELLING OF FILE “FOO”
l START WORD PROCESSSING PROGRAM
l PRESS THE “ENTER” KEY
A physical activity that the user can perform. This may be a very simple,

“atomic” action, or a well-practiced sequence of atomic actions.
Examples:

l Press the ‘S’ key
l Select the “File” from the “Print” menu
A hierarchy of related goals. Under each higher-level goal, the subgoals

may be sequenced (“and-then”) or unordered. Examples:
l LOG ON TO THE COMPUTER

ENTER LOGIN NAME

and-then

step

and-then ENTER PASSWORD
l DELETES FILES ‘FOO’ and ‘BAR’

DELETE ‘FOO’
DELETE ‘BAR’

A goal structure in which two or more subgoals must be performed in a
specified order. (See example above.)

The unit of analysis in the cognitive walkthrough procedure. At each
step the analysts consider three things related to a single action:

l What goals the user should have immediately before the action;
l Whether these goals, given the current state of the interface, will

cause the user to select and execute the correct action;
l How the interface’s response to the correct action will cause the user’s

goals to change.

has cleared. If not, you query your checking account balance. If the balance is too
small, you transfer the necessary funds from your savings account. Decomposing the
original task into the right collection of subtasks and then executing the subtasks in
the correct order is a much more severe test of the interface.

3.1.2. Provide a task description
Once the tasks have been chosen, the walkthrough form guides the rest of the
preparation phase. The task must be described from the point of view of the
first-time user. Any special assumptions about the state of the system when the user
begins work must be noted. It is important to describe the tasks in realistic terms,
without using system-specific terms that real users would not use. For more
complex tasks, this initial description will often involve listing the primary subtasks,
i.e. the task decomposition, that must be accomplished by the user in order to
complete the original task. Background knowledge required to generate the correct
task decomposition is also recorded on the form.

750 P. G. POLSON ET AL

Cognitive Walkthrough Start-up Sheet

Interface
Task
Evaluator(s) Date

Task Description: Describe the task from the point of view of the first-time
user. Include any special assumptions about the state of the system assumed
when the user begins work.

Action Sequence: Make a numbered list of the atomic actions that the user
should perform to accomplish the task.

Anticipated Users: Briefly describe the class of users who will use this
system. Note what experience they are expected to have with systems similar
to this one, or with earlier versions of this system.

User’s Initial Goals: List the goals the user is likely to form when starting the
task. If there are other likely goal structures list them, and estimate for each
what percentage of users are likely to have them.

FIGURE 2. A simplified version of the form used to record the results of the first phase of the
walkthrough. The evaluators record the task description, the initial state of the interface (both visible and
hidden state information), and the “correct action” sequence. (The actual forms allow more space for the

analysts to write in than is shown in the figures in this article.)

3.1.3. Determine correct sequence of actions
For each task to be analysed, an appropriate sequence of actions must be specified
for accomplishing the task using the system. The cognitive walkthrough analysis will
critique this action sequence. It is important that the sequence be the best offered by
the interface; that is, it should be the sequence that would be expected to offer the
fewest obstacles to users. If an inferior sequence is used in the analysis and problems
are found, little has been learned. However, if the best sequence available is shown
to have problems, then there are clear grounds for modifying the system. Who
specifies the action sequence may vary, but the designer of the system may be best
suited to define the path which the interface was designed to support. If the system
is intended to offer alternative acceptable sequences for a task, all should be
analysed.

Choosing the right level of granularity for the action sequence requires some
judgement. If each keystroke is treated as a separate action, the sequence may be at
to low a level, be long and require much trivial and repetitive analysis, e.g. treating
each keystroke as a separate action when the user types in a long, familiar word. On
the other hand, if actions are clumped together, the analysis will be done at too high
a level, and some potential problems will be missed. The supergoal kill-off problem
discussed earler will be missed if the subgoals “type in personal identification
number” and “press ENTER key” are collapsed into one action, “enter personal
identification number.” The best policy is to start by thinking of actions being very
finely divided, then to collapse them into larger units only when it is clear that no
potential problem will be hidden.

COGNITIVE WALKTHROUGHS 751

If the interface is still in the design stage, the designer will need to provide
detailed specifications of the interface’s appearance before each action, and of the
interface’s behavior when each action is executed. Annotated sketches of screens
are appropriate for a visual interface. For an audio interface, proposed messages
should be quoted. Timing of responses is also relevant information that the analysts
will need to know.

31.4. Identify anticipated user population
Throughout the walkthrough procedure, the analysts will be required to make
detailed predictions about the users of the interface: what goals they will they form,
what actions they will find easy or hard, what changes to the interface they will
recognize as progress. To establish a sound footing for these judgements, a
relatively uniform population of potential users needs to be identified before the
analysis is started. The form asks the analysts to specifically consider the user
group’s background knowledge that might be relevant to the interface. This could
include experience with different applications on the same system, with similar
applications on other systems, or perhaps with similar interfaces. The knowledge
assumed for the user group will be a powerful tool during the rest of the
walkthrough, justifying the analysts’ conclusions and helping to focus questions that
could otherwise be difficult to resolve.

3.1.5. Describe the user’s initial goals
The final item on the form in Figure 2 marks the transition between the preparation
phase and the evaluation of the interface. Here the analyst notes what goals the user
will have at the start of the interaction. The goals listed should be those the user is
likely to form when starting the task. Each goal should be annotated as to whether it
is based on the task description, cues present initially on the screen or background
knowledge. If the goals include “and-then” structures, the goal and all subgoals for
each structure should be shown, with the leading, initially active subgoal marked. If
there are other likely goal structures, they should be listed, and estimates should be
given as to what percentages of users are likely to have them.

The point here is to indicate what the user’s goals are actually likely to be at this
stage, rather than what they should be for the task to be accomplished. When the
walkthrough begins these probable goals will be compared with the goals needed to
perform the task with the system, and discrepancies will count as problems with the
interface. Kieras (1988) presents a method for generating goal structures.

3.2. PHASE 2: EVALUATION OF EACH ACTION

During the evaluation phase, the interaction between the user and the interface is
analysed in depth. A complete analysis, described below, is performed for each
required action identified in the preparation phase and listed on the form shown in
Figure 2. Figures 3a, b and c show different parts of the form used to guide and
record the analysis of each action; as many copies of the form are filled in as there
are actions in the sequence.

The items on the form check for possible failures of the exploration process model
outlined earlier. Most items also ask the analyst to estimate the percentage of users

752 P. G. POLSON ET Al.

for whom a particular step in the exploration process will succeed; these percentages
can be used to sort out which failures are the most serious.

The form is divided into three sections. The first section deals with the
relationship between the goals needed to operate the interface and the goals users
actually have (Figure 3~). The second section checks for problems in selecting an
action, given the appropriate goals (Figure 36). The third section of the form asks
the analyst to work out how users’ goals are likely to change after making the
correct action and observing the system’s response (Figure 3~).

3.2.1. Goal structure for the current step
User problems with an interface can be divided into goal problems and action
problems. In a goal problem, the user is trying to do the wrong thing; in an action
problem, the user is trying to do the right thing but cannot figure out how to do it.
To permit problems to be divided in this way, the walkthrough procedure asks the
analyst to specify, at each step, what the correct goal(s) for this step are. As with the
sequence of correct actions, the correct goals might be supplied by the designer,
reflecting his or her view of how users should approach the task. Also, like the
action sequence, these goals should be chosen to make the interface look as good as
possible.

By specifying the appropriate goals differently, designers (or analysts) can change
the way problems look in the walkthrough analysis and what the obvious remedies
for them would be. For example, suppose the right action at some step of an
interaction is “press the 5 key,” and suppose that the user’s goal at this stage is
likely to be “end this transaction.” If the designer indicates that “end this
transaction” is the appropriate goal here, there will be obviously be an action
problem. There is no apparent way the user would link the 5 key to the current goal.
Possible remedies would include providing a label linking the 5 key to the goal,
providing a key labelled “end” and using it instead of the 5 key and so on. If, on the
other hand, the designer specifies that the appropriate goal for this step is “press the

Cognitive Walkthrough For A Step

Task __-__-- Action#

l.Goal structure for this step.
1.1. Correct goals. What are the appropriate goals for this point in the
interaction? Describe as for initial goals.

1.2. Mismatch with likely goals. What percentage of users will not have
these goals, based on the analysis at the end of the previous step? Check eacl
goal in this structure against your analysis at the end of the previous step.
Based on that analysis, will all users have the goal at this point, or may some
users have dropped it or failed to form it? Also check the analysis at the end of
the previous step to see if there are unwanted goals, not appropriate for this
step, that will be formed or retained by some users. (% 0 25 50 75 100)

RGURE 3~. A version of the form used to record the results of the second phase of the walkthrough for
each user action. This figure shows Section 1 out of three major sections.

COGNITIVE WALKTHROUGHS 753

5 key,” there would be no action problem but there would be a goal problem: users
probably won’t have that goal. A natural remedy here would be to provide a prompt
directing users to press 5 to end the transaction, or to train users so that they know
that pressing the 5 key is needed at this step.

This flexibility can be confusing, but as the example shows, the different choices
for appropriate goals reflect different choices in design philosophy which the
designer can make. Generally, a designer can work with more natural goals, and try
to solve the resultig action problems, or can assume less natural goals and try to
solve the resulting goal problems.

Item 1.2, of Figure 3a, presents the series of questions that guide the process of
evaluating the match between the goal structure that the user is likely to have and

2. Choosing and executing the action.

Correct action at this step:

2.1. Availability. Is it obvious that the correct action is a possible choice
here? If not, what percentage of users might miss it? (% 0 25 50 75 100)

2.2. Label. What label or description is associated with the correct action?

2.3. Link of label to action. If there is a label or description associated with
the correct action, is it obvious, and is it clearly linked with this action? If not,
what percentage of users might have trouble? (% 0 25 50 75 100)

2.4. Link of label to goal. If there is a label or description associated with
the correct action, is it obviously connected with one of the current goals for
this step? How? If not, what percentage of users might have trouble? Assume
all users have the appropriate goals listed in Section 1. (% 0 25 50 75 100)

2.5. No label. If there is no label associated with the correct action, how will
users relate this action to a current goal? What percentage might have trouble
doing so? (% 0 25 50 75 100)

2.6. Wrong choices. Are there other actions that might seem appropriate to
some current goal? If so, what are they, and what percentage of users might
choose one of these? (% 0 25 50 75 100)

2.7. Time-out. If there is a time-out in the interface at this step does it allow
time for the user to select the appropriate action? How many users might have
trouble? (% 0 25 50 75 100)

2.8. Hard to do. Is there anything physically tricky about executing the
action? If so, what percentage of users will have trouble? (% 0 25 50 75 100)

FIGURE 3b. A version of the form used to record the results of the second phase of the walkthrough for
each user action. This figure shows Section 2 out of three sections.

754 P. G. POLSON ET AL.

the “correct” goal structure. Once the “correct” goals have been specified they are
compared with the goals users are actually likely to have, using the analysis done as
part of the evaluation of the previous action (or on the preparation sheet, in the case
of the first action). The analyst checks whether the “correct” goals are likely to be
present, or whether some users may not have formed them, or may have discarded
them prematurely. The analyst also checks whether users are likely to bring over
inappropriate goals from the previous action. Missing or inappropriate goals
detected here are goal problems.

3.2.2. Choosing and performing the action
The next stage in the analysis looks for possible action problems. That is, assuming
users have the appropriate goals, will they choose the correct action? Goal problems
are put aside, having been dealt with in the previous stage of analysis, and the
information available to guide the user’s choice is examined from the point of view
of a user who has the correct goals.

The form in Figure 3b requires the analyst to check the following points. First, the
action must be available: the user must know that it is a possible action (Item 2.1).
For example, some menu-based systems have keyboard actions which are not
indicated on the menus. Users may not know these actions exist. Second, the action
must be linked to some current subgoal (Items 2.2-2.5). This can happen because
the system supplies some explicit prompt or cue that connects the action to the
subgoal (“press 1 for more messages”) or because of background knowledge the
user can be assumed to possess (“hanging up the phone will terminate this
transaction”). Third, there must be no competing, incorrect action that is also well
connected to current subgoals (Item 2.6). Fourth, the user must have time to make
the necessary selection: some interfaces interrupt the user if a response is not made
within a specified time (Item 2.7). Finally, the action itself should be easy to execute
(Item 2.8); an action would fail this last test if it required multiple simultaneous key
presses or selecting a small target on a touch screen.

3.2.3. Modijications of the goal structure
The final part of the analysis considers changes in the user’s goal structure caused by
the user’s interpretation of the system’s response. Assuming the user has success-
fully executed the correct action, what changes to current goals will he or she make?
The results of this analysis feed into the check for goal problems, mismatches
between the user’s actual goals and the goals necessary to generate the next correct
action. Since most goal modifications are triggered by the system’s response to the
previous action, this last part of the analysis begins with a description of that
response.

The first point checked is whether the user will see that progress has been made
toward some current goal (Figure 3c, Item 3.1). If not, the user may create a new
goal here, to quit or back up. This will usually, though not always, create a different
goal problem at the next step. Only if the correct next action actually is to quit or
back up would this not signal trouble for the interface.

The next point in the analysis is to identify current goals that have been
accomplished and consequently should be dropped. It is important that users realize
these goals are accomplished, or otherwise they will be kept activated and may

COGNITIVE WALKTHROUGHS 755

3. Modification of goal structure.
Assume the correct action has been taken. What is the system’s response?

3.1. Quit or backup. Will users see that they have made progress towards
some current goal? What will indicate this to them? What percentage of users
will not see progress and try to quit or backup? (% 0 25 50 75 100)

3.2. Accomplished goals. List all current goals that have been
accomplished. Is it obvious from the system response that each has been
accomplished? If not, indicate for each how many users will not realize it is
complete.

3.3. Incomplete goals that look accomplished. Are there any current
goals that have not been accomplished, but might appear to have been based
on the system response? What might indicate this? List any such goals and the
percentage of users will think that they have actually been accomplished.

3.4. “And-then” structures. Is there an “and-then” structure, and does one oi
its subgoals appear to be complete? If the subgoal is similar to the supergoal,
estimate how may users may prematurely terminate the “and-then” structure.

3.5. New goals in response to prompts. Does the system response
contain a prompt or cue that suggests any new goal or goals? If so, describe the
goals. If the prompt is unclear, indicate the percentage of users who will not
form these goals.

3.6. Other new goals. Are there any other new goals that users will form
given their current goals, the state of the interface, and their background
knowledge? Why? If so, describe the goals, and indicate how many users will
form them. NOTE that these goals may or may not be appropriate, so forming
them may be bad or good.

FIGURE 3~. A version of the form used to record the results of the second phase of the walkthrough for
each user action. This figure shows Section 3.

cause trouble for the next action. Item 3.2 of Figure 3c asks for a list of these
accomplished goals, and asks the analyst to consider for each one whether there is
adequate indication to the user that it is complete.

Item 3.3 checks for the opposite problem: goals that have not been accomplished
but may look as if they are. If these goals need to be carried forward to the next
step, as would usually be the case, false indications that they are complete will cause
trouble.

If an accomplished goal is a sub-goal in an “and-then” structure, it needs special
checking, which is specified in Item 3.4. If it is the last subgoal of an “and-then”
structure, then not only it but its supergoal must be deactivated. If it is not the last
subgoal, then it should be deactivated and the next subgoal made active. However.
if it is similar to its supergoal trouble may occur, as discussed earlier: the supergoal
may be prematurely judged accomplished, and the subsequent subgoal may not be

756 P. G. POLSON ET AL.

made active. This is the supergoal kill-off problem, which often shows up as a
missing delimiter in an interaction.

Items 3.5 and 3.6 check for the creation of new goals. If the system response
includes a prompt or menu the user is usually supposed to form a new goal based on
the information provided. Item 3.5 asks the analyst to examine whether the prompt
will be effective or whether some users may not form the expected goal.

Even without a prompt users may form new goals after executing an action For
example, if they are working through an “and-then” structure a new subgoal may
just have become current. They may have background knowledge about how to
accomplish the new subgoal which will lead them to form further subgoals at this
point. Item 3.6 asks the analyst to identify new goals that may be formed here.

These items from Figure 3c in the “Modification of goal structure” section of the
walkthrough suggest probable goal problems. Failing to form the goal suggested by
a prompt is probably going to lead to trouble. However, one cannot be sure about
goal problems until the correct goals for the next action are considered, at the
beginning of the analysis of the next action. After all, it could be that the goal
suggested by the unclear prompt actually is inappropriate for the next step, so that it
is users who form the goal, not those who fail to form it, who are in trouble. This
point is especially pertinent to Item 3.6, which asks for new goals not formed in
response to a prompt. Here there can be no presumption as to whether or not the
new goals are needed, since they are not suggested by the interface.

This section of the walkthrough concludes the analysis for a single action. The
proper handling of this section, then, is as input to the determination of goal
problems in the next step. The percentages of users forming or not forming certain
goals should not be taken as indications of problems at this stage, but just as data to
be used in identifying goal problems at the initial stage of’the analysis of the next
action.

4. Example: walking through “forward your calls”

In this section we describe a cognitive walkthrough of a task using a phone system.
We describe the start-up activities of a group of analysts, then highlight the
problems they discover as each of the required user actions is analysed.

The interface we use in the example is based closely on a real one, but its original
designers might well object to the analysis we present here. We will evaluate the
interface as a walk-up-and-use interface, where the user is not assumed to have any
knowledge of the system prior to use, other than the knowledge an average adult
would have about telephone systems. As will emerge in the analysis, it is unlikely
the designers intended to meet this demanding standard, but probably presumed
some level of user training before use. Nevertheless, our analysis is of value,
because although training for the system was offered to users many did not take it,
including one of us (C. Lewis). The analysis gives a reasonable account of his
real-life experience with the system.

4.1. ACTIVITIES BEFORE THE WALKTHROUGH

The analysts begin by agreeing on a task and a sequence of actions that will achieve
the task. One of the analysts is assigned to be the recorder. The recorder writes the

COGNITIVE WALKTHROUGHS 757

group’s initial decisions on the walkthrough start-up sheet (Figure 2). The task is
described as:

Forward all my calls to 492-1234.

The system start-up state has the special characteristic that the calls are already
transferred to 492-1111. The correct action sequence is:

1.
2.
3.
4.
5.
6.
7.

The

Pick up the handset.
Press ##7.
Hang up the handset.
Pick up the handset.
Press **7.
Press 21234.
Hang up the handset.

recorder copies each of the actions onto a separate walkthrough form
(into the space at the top of the form in Figure 36).

To understand this sequence, the analysts examine a transparent overlay for the
telephone keypad which provides instructions to users. They see that the sequence
consists of two parts, clearing forwarding (pressing ##7) and then specifying
forwarding (pressing **7 followed by entering the number that calls are to be
forwarded to).

The target group of users have no knowledge of this system or any similar
systems, and the recorder notes this on the form. The group now must indicate the
user’s initial goals. They feel nearly all users will have the goal included in the task
description, “forward all calls to 492-1234,” and that nearly all will form the
“and-then” subgoals “pick up handset” and “specify forwarding” for this goal.
They discuss the fact that not all users may assume they must pick up the handset
before specifying forwarding, but decide the number of users who will have this
problem will be small. They also consider whether users are likely to form the goal
of clearing forwarding before specifying it, and conclude this is unlikely for users
unfamiliar with the system. They indicate that only 25% of users will form this goal.
They summarize their conclusions as follows:

75% of users will have FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then SPECIFY FORWARDING

25% of users will have FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then SPECIFY FORWARDING

They use indenting to indicate when goals are subgoals of the goals above them.
That is, indented goals indicate the approach the user intends to take to accomplish
the goal above. They use underlining to indicate currently active goals.

4.2. ANALYSIS OF ACTION 1: PICK UP THE HANDSET

The analysts think long and hard before specifying the correct goals for starting the
task, in Item 1.1 in Figure 3~. They can see that they face a problem that will show

758 P. G. POLSON ET AL.

up in one of two ways. If they take the correct goals to be something close to the
initial goals they have just indicated are natural, there will be serious execution
problems. Users will not know they need to clear forwarding, and therefore will not
choose correct actions. If they make the correct goals more complete, execution
errors may be avoided but there will be serious goal problems. Users will not
naturally have the goal of cancelling forwarding.

They decide to let the problem show up as a goal problem, arguing that this
approach keeps them closer to the designer’s probable intent. They indicate that the
correct goals for this step are an “and-then” structure with the top goal of “forward
calls to 492 1234” and subgoals “pick up handset, clear forwarding, and specify
forwarding.” They show the correct goals as follows:

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then SPECIFY FORWARDING

Having decided on the correct goals the analysts compare these in Item 1.2 with the
goals they indicated were likely on the preparation form. They indicate on the form
that 75% of users would be expected to have a goal mismatch at this step, because
of the “clear forwarding” sub-goal that is needed but not likely to be formed.

The analysts now move in Section 2 of the form, shown in Figure 36, and consider
whether users will take the correct action, “pick up handset,” given that they have
the correct goals. They see no problems here: the action is available, and though
there is no label or description for it, none is needed, since users are assumed to
have the specific goal of performing this action. Coming to Item 2.6, which asks
whether there is some incorrect action that users might choose, the analysts note
that some users might jump the gun and try to press **7 to forward calls or **3 to
send them, but conclude few will do this.

Reaching Section 3 of the form (Figure 3c) the analysts assume the correct action
is taken, and note that the system’s response is a dial tone. They also note that all
users will consider that they have made progress, since they can tell they have
picked up the handset, even without hearing the dial tone. In Item 3.2 the analysts
indicate that the “pick up handset” goal is complete, and that all users will recognize
this. In Item 3.3 they do not note any goals that might appear complete which are
not. In Item 3.4 they note that “pick up handset” is the first subgoal of an
“and-then” structure, so that the next subgoal, “clear forwarding,” should become
active. They do not think “pick up handset” is similar to the supergoal, “forward
calls to 492 1234,” and so they do not think any users will wrongly drop any goals
here, They do not indicate any new goals in Items 3.5 and 3.6.

4.3. ANALYSIS OF ACTION 2: PRESS SC7

The analysts begin another sheet (another copy of Figures 3a-c) to record their
analysis of the next section. They are happy with the same correct goal structure as
for the first step, except that the second subgoal, “clear forwarding,” is active.

COGNITIVE WALKTHROUGHS 759

They note in Item 1.1 that these correct goals match the goals users will bring
forward from the previous step.

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then SPECIFY FORWARDING

In Section 2 the analysts note that “press ##7” is an available action, and that
there is descriptive material on the template that refers to it. They see that ##7
appears twice on the template, once in the block of text

CALL FORWARD ALL
START **7
CLEAR ##7

and again in the similar block below it:

CALL FORWARD BZYlDNANS
START **4
CLEAR ##7

Item 2.3 now asks them to consider whether this label material is obvious, and
whether it is clearly linked to the action. The analysts discuss this and conclude that
while most users are likely to see these labels, some may not because of the amount
of label material to be scanned. They indicate that about 25% of users may have
trouble here.

In Item 2.4 the analysts consider whether the labels for ##7 are clearly linked to
the goal of clearing forwarding. Because of the word “clear” in the labels they are
happy about this, and they decide to let this go. They indicate 0% trouble in Item
2.4.

At Item 2.6 the analysts note a serious problem. In addition to the labels for the
correct action the template includes

TRANSFER ALL CALLS
START **3
CLEAR ##3

and the analysts fear that CLEAR TRANSFER ALL CALLS is as good a match to
“clear forwarding” as CLEAR CALL FORWARD ALL is. They indicate that 25%
of users might choose action “press #3” at this step. The analysts see no problems
in Items 2.7 and 2.8.

In Section 3 of the form the analysts note that the system’s response to pressing
##7 is a series of short beeps: bip bip bip. They decide that while this message is
not very informative to users who are unfamiliar with the system, few users would
decide to quit or back up at this point.

In responding to Item 3.2, they debate whether forwarding has now been
cancelled, or whether it is not cancelled until the handset is hung up in the next step.
By experiment they determine that forwarding really is cancelled before hanging up.
So the subgoal “clear forwarding” is complete at this point, but because of the

760 P. G. POLSON ET AL.

uninformative feedback not many users will be confident of this. However, the
analysts decide that although many users will be unsure of what has happened most
will proceed on the assumption that forwarding has been cancelled rather than
keeping this goal open and looking for another way to clear. In responding to Item
3.3, they do not see any goals that are incomplete but might appear complete.

Since “clear forwarding” appears in an “and-then” structure the analysts consider
Item 3.4. They note that the 50% of users who realized that forwarding has been
cancelled should make the final subgoal “specify forwarding” active. They do not
judge that “clear forwarding” is similar enough to the supergoal to cause trouble.
They do not note any new subgoals in Items 3.5 and 3.6.

4.4. ANALYSIS OF ACTION 3: HANG UP

The analysts begin another sheet (Figures 3a-c). In considering the correct goals for
this step, they note a problem. The goals carried over from the previous step will
not make the user hang up here. Rather than proceeding with these goals and noting
an execution problem, they decide they will go back and add a new subgoal to the
“and-then” structure they indicated at the first step of the task. The new structure
has the supergoal “forward calls to 492-1234” and subgoals “pick up handset, clear
forwarding, hang up, and specify forwarding.” They revise their discussion of goal
mismatch at the start of the task to reflect the additional requirement that users
must know to hang up the handset after cancelling forwarding, and their analysis of
the “and-then” structure in Item 3.4 of the previous action. Having made these
changes they see no goal mismatches in Item 1.1.

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then HANG UP
and then SPECIFY FORWARDING

The remainder of the evaluation for this action produces no surprises. In responding
to the questions in Section 2, the analysts see no difficulty in carrying out the action
of hanging up, and in Section 3 note that the “hang up” goal will be accomplished
and the “specify forwarding” subgoal, which comes next in the “and-then”
structure, will become active. In Item 3.6 they indicate that users will form the new
goal of picking up the handset, as a subgoal of the newly active “specify forwarding”
goal, given that the handset is now back in the cradle and users can be assumed to
know that they must pick up the handset to work with it, as was assumed in
formulating the initial goals for this task.

4.5. ANALYSIS OF ACTION 4: PICK UP THE HANDSET

The analysts show the correct goals at this step to be:

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then HANG UP
and then CLEAR FORWARDING

COGNITIVE WALKTHROUGHS 761

and then SPECIFY FORWARDING
PICK UP HANDSET

and then SPECIFY FORWARDING

which agrees with the goals they expect to see carried over from the previous step.
In Sections 2 and 3 they see no problems: the user will pick up the handset and will
update the goal structure so that “specify forwarding” is the only current goal.

4.6. ANALYSIS OF ACTION 5: PRESS **7

The analysts indicate “specify forwarding” as the appropriate goal for this stage in
the interaction, which matches the goal carried over from the last step.

The analysis for choosing the appropriate action given this goal is similar to the
analysis for “press ##7.” The potential for confusion among CALL FORWARD
ALL, TRANSFER ALL CALLS and CALL FORWARD BZY/DNANS is again
noted in Item 2.6.

Assuming the user performs the correct action the analysts decide that users will
not be tempted to quit or back out, despite the absence of feedback. They also
decide that users will not prematurely drop the “specify forwarding” goal because
they have not specified the destination for forwarding. So the analysts decide that
users can be expected to leave this step with just the “specify forwarding” goal
current.

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING

and then HANG UP
and then SPECIFY FORWARDING

PICK UP HANDSET
and then SPECIFY FORWARDING

4.7. ANALYSIS OF ACTION 6: PRESS 21234

The analysts note two difficulties in formulating the appropriate goals for this step.
First, there is no explicit indication that the destination number is to be dialed at this
point, so it appears users must already have a goal posted to do this now. Second,
they note that what must be dialed is not the complete number for the destination
but only that part which would be dialed to reach the number from this phone. They
conclude that the appropriate goal structure is:

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then HANG UP
and then SPECIFY FORWARDING

PICK UP HANDSET
and then SPECIFY FORWARDING
and then DIAL EXTENSION FOR DESTINATION

762 P. G. POLSON ET Al..

and note the mismatch: this goal will not be carried over from the earlier step. After
discussion, they conclude that some proportion of users might actually guess this
goal in the aftermath of the previous step, and add an indication in Item 3.6 of the
previous step that 25% of users might add the correct goal there. This leaves them
with an estimate of 75% of users not having the needed goal at this step.

Given the correct goal, the analysts see no problem in executing the correct
action. The system response is the same bip bip bip sound heard after cancelling
forwarding, and the analysts note that this does not provide any clear feedback to
the uninitiated user, but they nevertheless conclude that users will consider their
“specify forwarding” goal to be complete. In Item 3.6 they indicate that given
ordinary knowledge of the telephone, users will now form the goal of hanging

UP-

4.8. ANALYSIS OF ACTION 7: HANG UP

The correct goal for this step seems clear to the analysts, and it matches the goal
carried over from the previous step.

FORWARD ALL CALLS TO 492 1234
PICK UP HANDSET

and then CLEAR FORWARDING
and then HANG UP
and then SPECIFY FORWARDING

PICK UP HANDSET
and then DIAL EXTENSION FOR DESTINATION
and then HANG UP

They see no problem in executing the appropriate action, and no reason to form any
new goals associated with the task.

4.9. AFTER THE WALKTHROUGH

In a real design situation, the walkthrough results would now go to the designer
(who may have also been part of the walkthrough team). Clearly the main problem
with the interface centers on the need to clear forwarding before specifying a new
destination. The designer can pursue one of three remedies: providing training so
that users will bring the right goal structure to the task, supplying prompt
information that tells users of the need to clear, or changing the system so that
clearing is no longer required. The last solution is obviously the best, if it is
technically feasible.

As problems are corrected, the designer would scan through the walkthrough
forms, note the goals and prompts that had caused problems, and evaluate the new
design for the same task. The detailed information recorded on the walkthrough
form that identified the problem would help ensure that the new design didn’t cause
a different problem at the same point. However, only by reviewing the entire
walkthrough could the revised interface be fully checked, since a changed label on
the template might incorrectly match a goal at any point in the action sequence, and
a revised goal structure might be modified inappropriately in a step that worked well
for the previous goal structure.

COGNITIVE WALKTHROUGHS 763

5. Experience with the method

The most direct evidence of the effectiveness of the cognitive walkthrough procedure
is presented in Lewis et al. (1990). The authors used an early version of the
procedure to analyse four simple answering machine interfaces for which results of
user testing were available. (Lewis et al., 1990; p. 237, shows a copy of the walkthrough
form.) The outcomes of the analyses were compared with evaluation data obtained from
college students performing two elementary tasks. Results were promising but not
outstanding: about half of observed user errors were identified in the walkthroughs. The
false alarm rate, the proportion of errors identified in the walkthrough but not observed
in user testing, was high, almost 75%.

5.1. STUDENT PROJECTS AND OTHER INFORMAL EVALUATIONS

Tests using later versions of the method in student projects by P. Arment. R.
Comeaux, M. Esemplare, K. Farnes, R. Moleres, K. Rabin, C. Stewart and H.
Wilcox on interfaces for a voicemail directory, a text editor, and a document routing
application produced broadly comparable results. Testing with the voicemail
directory showed that 50% of errors observed in thinking-aloud user tests were
identified in the walkthrough. Testing with the text editor interface included about
fifty varied tasks and compared the walkthrough results with a variety of evidence of
user problems, including field trouble reports and user interviews. The comparison
data were not matched specifically to the tasks used in the walkthrough, but
nevertheless about 30% of errors identified in the walkthrough appeared in the
comparison data. Of errors rated most serious in the walkthrough more than 70%
appeared in the comparison data. In the most successful test, using the document
routing application, the walkthrough procedure identified all problems found in
subsequent testing without any false alarms. However, this test was limited to a
single, fairly simple task.

The method has also been used in a number of design studies in which direct
comparison data are not available. Applications have included commercial software,
student projects, research tools and both telephone and graphical interfaces.
Without exception participants have indicated that the method was useful in
identifying potential problems in the designs.

5.2. EVALUATION OF A GRAPHICAL INTERFACE

Jeffries et al. (1991) evaluated the effectiveness of the cognitive walkthrough
methodology in analyzing an interface that was not designed as a walk-up-and-use
system. In part, this study served to actually evaluate the interface, and in part it
served to compare the cognitive walkthrough methodology, as applied by a group of
software engineers, to three other user interface evaluation techniques: guidelines,
also applied by a group of software engineers; heuristic evaluation, applied by
user-interface professionals; and usability testing of six subjects, conducted by a
human-factors professional. The application evaluated was a beta-test version of a
visual interface to the operating system of a general-purpose workstation. The
interface provides graphical tools to manipulate files, applications, help, screen
appearance etc. Seven user tasks were analyzed with the walkthrough methodology,
and the same tasks were used in the usability testing.

764 P. G. POLSON ET AL.

The study compared the quantity and type of usability problems found by each of
the four evaluation techniques. The heuristic evaluation by user-interface profes-
sionals identified 105 interface usability problems, while usability testing identified
31, the guidelines approach identified 35 and the cognitive walkthrough identified
35. Usability testing was not treated as a baseline method in this study, so the
question of false alarms, i.e. how accurately the predictions of the other methods
matched usability data, was not addressed. (See Jeffries et al., 1991, for more
detailed results, including evaluations of problem severity.)

The study applied measures such as severity, consistency, recurrence and generality
to the usability problems found, and used these results to categorize the advantages
and disadvantages of each of the four evaluation techniques. Under the criteria used
in the study, heuristic evaluation by user-interface professionals was deemed to be
most successful at identifying interface problems, although the authors noted that
this approach required the effort of several evaluators with the knowledge and
experience necessary to perform the evaluation. Usability testing was also rated
high, but with several disadvantages, including high cost. The cognitive walkthrough
technique, like the guidelines approach, had the advantage of being usable by
software developers. It also assisted the developers in defining the user’s goals and
assumptions, information that could be useful in correcting problems once found.
Disadvantages of the walkthrough technique included the need for a methodology to
define user tasks for evaluation, the time required to apply the method, and the
method’s failure to identify what the study termed “general and recurring
problems.”

5.3. EVOLUTION OF THE METHOD

Overall, these studies suggest that persons new to the method can apply it
successfully. However, people with a background in cognitive science find it easier
to get started. The concepts of goal structure, such as the decomposition of a
supergoal into subgoals, are new to many designers and analysts and require some
explanation. Some of the tests of the method have examined differences among
analysts in the problems identified. One result is that the developers of the method,
we ourselves, are more successful in applying it than persons without experience
with it. Esemplare, Farnes, Moleres, Rabin and Wilcox undertook attacking this
problem directly, and were able to revise the walkthrough form so as to increase its
effectiveness for inexperienced analysts. In general, the walkthrough form has
evolved to more directly reflect the structure underlying our model of learning by
exploration (see Section 2) and has become much more detailed. Compare Lewis et
al. (1990: p. 257) with Figures 2 and 3a-c.

Besides difference in knowledge and experience, there are other factors that
produce differences among analysts. Some differences are traceable to poor control
of the cognitive walkthrough procedure itself, with analysts examining differing
solution paths or forgetting steps in a path. Similarly, analysts make different
assumptions about the goals associated with steps in the procedure, not so much
because of real differences in analysis but because of differences in the care taken to
completely specify the goal structure.

Further variability arises from uncertainty about facts not derivable from the
cognitive theory underlying the walkthrough, such as whether or not users will know

COGNITIVE WALKTHROUGHS 765

what a “pound sign” is on a telephone keypad. Finally, there are differences in
noticing: one analyst may notice a potential link between a goal and the prompt for
an inappropriate action and another may not. These differences between analysts
have important implications for the method. The Lewis et al. (1990) study and other
less formal evaluations have focused on questions concerning interrater reliability,
and thus the analyses were done by individuals. We have done a few analyses as a
group and find it a very different experience. Even experienced individuals are
sensitive to different aspects of an interface. The group discussion provides a means
for evaluating and integrating these different viewpoints.

Another conclusion from all experiences with the method is that it is tedious.
Filling in the forms is repetitious and requires a lot of writing. We are exploring the
possibility of an automatic prompting system, which (for example) would permit
correct goals to be specified by revising those specified for the previous step. We
think this would not only speed up the procedure considerably but would also
eliminate much of the variability among analysts noted above.

5.4. CURRENT APPRAISAL

Our current appraisal of the method is favorable. We, and others who have tried the
method, feel that it provides a systematic way to produce an analysis of an interface
in considerable depth with much less effort than is required by explicit modelling
approaches. While not all problems in an interface can be identified, the cognitive
walkthrough analysis provides a framework in which empirical questions, like the
one about the “pound sign” used as an example above, can be identified and their
impact on the design understood, so that empirical testing of the interface can be
more focused.

6. Comparison with other evaluation methods

In this section, we review other design methods that have been developed to
improve usability. The cognitive walkthrough is a competitor, or a complement, to
these other methods.

6.1. THEORETICALLY-BASED SIMULATIONS AND ENGINEERING MODELS

61.1. GOMS/CCT
The best known and controversial proposals for applying cognitive theory to the
design process are to use theoretically-based, simulation models to evaluate trial
designs. The most developed of these proposals are the GOMs model (Card, Moran
& Newell, 1983) and Cognitive Complexity Theory (CCT) (Kieras & Polson, 1985;
Polson, 1987). These models range in complexity from simple engineering models
that can be developed in a few minutes to a few hours (e.g. the keystroke model of
Card, Moran & Newell, 1983), to complete, running, cognitive simulations (Bovair,
Kieras & Polson, 1990). These models all deal with routine cognitive skills and are
capable of making quantitative predictions of performance time and, in the case of
CCT, training time.

The use of these models can supplement, but not replace cognitive walkthrough
analysis. The models do not include the processes involved in exploration and they

766 P. G. POLSON ET AL.

do not attempt to predict errors driven by either slips or conceptual confusions
(Norman, 1981). Their use, accordingly, does not reveal the kind of problems the
cognitive walkthrough aims to identify.

61.2. PUB
Programmable user models, or PUMs, (Young, Green & Simon, 1989; Young &
Whittington, 1990) are similar to CCT in requiring that the analyst write an
executable specification of the mental operations involved in using a system and the
knowledge about the task and system possessed by the new user. However, unlike
CCT, PUMs are based on SOAR (Laird, ‘Newell & Rosenbloom, 1987), a problem-
solving architecture that models the acquisition .of cognitive skills. PUMs can predict
some of the conceptual problems new users will have during their attempts to learn
the new system.

To use a PUM the analyst constructs a set of “instructions” which can be
interpreted by a model of the user’s problem-solving behavior. The instructions
supply the knowledge necessary to guide the problem-solving model to use the
interface to be analysed. Problems with the interface appear whenever it proves
difficult to find instructions that work.

61.3. Comparisons with cognitive walkthroughs
There is much in common between the PUM method and the cognitive walk-
through. Both methods aim to expose the way in which users’ mental processes can
be expected to succeed or fail in attempting some task with an interface. However,
there are important differences as well. First, work with PUMs has focused on
situations in which users know quite a bit about the operations available in a system,
so that fairly complex reasoning is possible. The cognitive walkthrough focuses on
situations in which users know little about the system, and hence must be guided by
superficial cues rather than relying on their own reasoning. If either method were to
be extended toward the situation addressed by the other, they would probably
converge.

A related difference is that the cognitive walkthrough focuses on the interface
being analysed, with questions designed to relate difficulties in mental processing to
specific features of the interface, while PUM analysis focuses on the user’s
knowledge and reasoning. In situations in which users know a good deal about the
system, and can reason effectively about it, the cognitive walkthrough orientation
toward relatively superficial aspects of an interface might suffer in comparison with
the PUM’s orientation.

Another difference, at least considering the thrust of early PUM work, is that the
cognitive walkthrough directs the analyst to think through the sequence of mental
operations needed to perform a task, using this analysis to suggest what knowledge
may be needed to support these operations, while PUM analysis seeems to focus on
identifying needed knowledge a priori. Thus the walkthrough asks where problems
are likely to occur in attempting a task, while the PUM analysis asks what
instructions will sufice to support the task. The cognitive walkthrough analyst
directly constructs a critique of the interface, by identifying likely problems, while
the PUM analyst first attempts to create an adequate collection of instructions and
then critiques them, or notes the difficulties in creating an adequate set. We think

COGNITIVE WALKTHROUGHS 767

the cognitive walkthrough approach provides clearer direction for the analyst. We
also do not think the approach is really inconsistent with the PUM idea. One can
imagine attacking the problem of instructing a PUM starting in the same way as for
a cognitive walkthrough, by determining what mental operations are apparently
required in a task and building up instructions incrementally as needed to produce
the needed operations.

A final important difference between the cognitive walkthrough approach and the
PUM approach is the role of simulation. In PUM analysis the instructions for an
interface are evaluated by running them in an executable simulation, whereas the
walkthrough analysis stops with the analyst’s judgement that some step will or will
not be carried out. While the use of a running simulation has potential benefits in
guarding against mistakes of judgement, it has serious costs as well, of three kinds.

61.4. Problems using executable simulations
First, considerable experience with CCT, which uses executable simulations simpler
than those needed in PUM analysis, indicates that writing the simulations is an
unacceptable burden (Karat, Fowler & Gravelle, 1987; Butler et al., 1989).
Simulation modelling requires the use of novel software tools, e.g. production
systems or LISP, and other skills that are not generally available within most
software design teams. Not surprisingly, designers or analysts will not write a large
program, which can approach in complexity the system under development, just to
evaluate usability. In other words, developers view proposals to develop detailed
cognitive models as having an unacceptable cost-benefit tradeoff.

Second, it can be difficult to accommodate in a really executable simulation
sub-processes which cannot fully be implemented. In the cognitive walkthrough,
analysts make judgments about whether some text on the screen will be understood
to be related to a particular goal. Reasonable, though not conclusive, opinions can
be ventured on such questions, even though an executable simulation of the process
of comprehending text is far beyond reach.

Third, and finally, it can be difficult to relate problems in the simulation to
problems in the interface being analyzed. In the cognitive walkthrough method, the
questions on the form represent the results of mapping failures in mental processing
back onto the aspects of interfaces and tasks that create them. The questions
identify problems that would appear if a simulation were to be run, in terms of the
circumstances that cause them. When working with a real simulation, this mapping
back to the interface requires careful, detailed analyses of the simulation output.

6.2. OTHER WALKTHROUGHS

Bias (1988), Molich and Nielsen (1990) and Nielsen and Molich (1990) have
proposed other ways to adapt walkthrough methodology to evaluate user interfaces.
In Usability Walkthroughs (Bias, 1988) a panel of representative user and system
designers step through tasks with a proposed system design to detect and analyse
any confusions that might arise. Nielsen and his colleagues’ proposals are less
structured. A group of users, designers or other individuals is given a brief lecture
on a short list of principles of usability and then carries out an action-by-action
walkthrough of a proposed design.

768 P. G. POLSON ET AL.

Nielsen and Molich (1990) present some interesting evaluation results for their
method. They identified likely problems in three system designs, and then asked
evaluators to critique the designs. Individual evaluators detected a minority of the
errors identified by the authors. However, different evaluators found different
problems, and combining the judgments of three to five evaluators yields a large
percentage of the errors with reasonable false alarm rates.

These alternative walkthrough methodologies differ from the cognitive walk-
through in two related ways. First, they do not ask evaluators to consider
systematically the mental operations in system use, such as goal formation. Second,
they are not tied to any theoretical model of user-system interaction. Both of these
differences may favor the cognitive walkthrough approach. The usability principles
in Nielsen and Molich (1990) do not appear adequate to detect the most serious
problems in the telephone forwarding example described earlier, which hinge on
users’ goals and how they are modified. If more complete models of mental
processes are developed, they can be incorporated in the cognitive walkthrough
framework. However, there is no good way to update these other walkthrough
procedures to incorporate new insights.

The cognitive walkthrough has already evolved in response to extensions to the
underlying theory. The walkthroughs reported in Lewis et al. (1990) did not include
consideration of “and-then” structures, and hence could not detect supergoal kill-off
problems. The current walkthrough form handles this matter, reflecting growth in
the theory in the meantime. We doubt that untrained analysts would detect this
problem in the Nielsen and Molich method.

This is not to say that less-structured walkthroughs are of no value, or even that
they will perform less well in practice than the cognitive walkthrough. Many
problems with current user interfaces are so glaring that they would be revealed
under any serious scrutiny. Any user test would catch the problem with cancelling
forwarding in the telephone example, and it may be that most evaluators would
catch it even if the Nielsen and Molich principles do not point to it. Comparative
tests are required to establish the added value of the cognitive walkthrough method.

6.3. GUIDELINES

The most commonly used methodology is the application of design guidelines for
usable systems. The most ambitious compendium of these guidelines is the volume
by Smith and Mosier (1986); other examples are included in an introductory book
on software human factors written by Rubenstein and Hersch (1984). These
guidelines range from explicit pieces of advice about screen format to general
statements about design methodology and the characteristics of cognitive processes.

While guidelines can provide useful guidance in the early stages of design, there
are pitfalls in relying on them. For some, there is little empirical or theoretical
support. Others are distillations of experience with interface technology that is now
out-of-date, e.g. 24 x 80-character-oriented displays. Other guidelines are clearly
valid but may be difficult to apply. For example, one typical guideline is “minimize
working memory load.” Unfortunately, this does not specify how to measure
working memory load, nor does it suggest methods for reducing it. By their nature,
guidelines cannot handle complex interactions and trade-offs among design features:

COGNITIVE WALKTHROUGHS 769

the complex logic necessary to describe such phenomena cannot be captured in a
simple statement.

The cognitive walkthrough method does not cover the same ground as guidelines.
The cognitive walkthrough examines only whether users will be able to complete a
task, not (for example) whether they will enjoy it. Thus a guideline like “avoid
blaming the user for errors” is beyond the scope of the cognitive walkthrough
method, though clearly useful.

On the other hand, the cognitive walkthrough can give guidance on some
questions that resist treatment in simple guidelines. By analysing a prompt in the
context of a particular step in a task, for example, one can see clearly what will
make it work well or poorly: the links to specific goals and actions are crucial. This
insight is more helpful than “use simple and natural dialog,” one of the guidelines
used in the Nielsen and Molich (1990) study.

6.4. ITERATIVE DESIGN USING EMPIRICAL EVALUATION METHODS

Gould and Lewis (1985) and Gould (1988) urge the use of iterative design, using
user testing to evaluate successive designs and discover areas for improvement.
Results using the cognitive walkthrough clearly show that user testing will find
problems that the walkthrough misses, and we therefore believe user testing is
essential in developing a high-quality user interface, even if the cognitive walk-
through is also used.

However, user testing is more difficult to arrange than a cognitive walkthrough.
because of the need to locate and work with representative users. We believe that
doing a cognitive walkthrough on a design as a preliminary to user testing would be
a worthwhile investment. At least some likely problems could be identified and
solved before user testing, making the testing more effective, and testing could be
aimed at areas of the interface where questions arise in the walkthrough.

A further benefit of the cognitive walkthrough as a complement to user testing is
that it provides an explanation for problems that it identifies, whereas problems seen
in user testing are often difficult to diagnose. For example, it can be unclear from
observation whether incorrect user actions reflect goal problems, where users take
appropriate actions in pursuit of an inappropriate goal, or execution problems,
where users have the right goal but cannot find the appropriate action for that goal.
The walkthrough analysis can suggest which kind of failure is more likely.

6.5. CLAIMS EXTRACTION

Carroll and colleagues (Carroll & Campbell, 1989; Carroll & Kellogg, 1989; Carroll,
1990) have proposed that user interface design should be guided by the analysis of
existing interfaces, and the extraction of lessons, or “claims,” from them to be
applied to new designs. Proponents of this approach argue that these lessons can
substitute for cognitive theory as a support for design (Carroll, 1990).

We think the cognitive walkthrough is a useful tool for extracting claims from
existing designs, and can therefore support this approach. However, rather than
providing a substitute for cognitive theory, the cognitive walkthrough makes it
easier to apply cognitive theory to see what makes a design work well or poorly.

770 P. G. POLSON ET .4L.

6.6. SUMMARY OF CONTRASTS WITH OTHER DESIGN EVALUATION METHODS

We collect, in this section, the characteristics that distinguish the cognitive
walkthrough from other methods.

Role of simulation
The cognitive walkthrough does not use an executable simulation of the user’s
mental processes. Rather, the analyst steps through a partial hand simulation of
these processes, looking for circumstances that would cause trouble if the process
were to be fully modelled.

Focus on mental operations
The cognitive walkthrough asks the analyst to consider the mental processes of users
in detail, rather than examining only the characteristics of the interface being
evaluated.

Use of task context
The cognitive walkthrough identifies problems only in the context of specific tasks.
It does not attempt to enforce general guidelines that apply regardless of task
context, and it does not ask analysts to make general judgements about good and
bad features of an interface regardless of task context.

Links to the interface
The cognitive walkthrough ties the analysis of users’ mental processes directly to
features of the interface being evaluated, so that the role of specific prompts and
cues can be assessed.

Role of theory
The cognitive walkthrough is derived from a theoretical model of mental processes
in exploration, and can be updated as this theory becomes more complete or is
found to be in error.

7. Other uses of the cognitive walkthrough method

We have focused on the use of the walkthrough method by a group of analysts to
evaluate a user interface design for a walk-up-and-use system. We see opportunities
to apply and adapt the method in other situations.

7.1. CAPTURING DESIGN RATIONALE

Many workers are pointing to the importance of design rationale, the reasons why a
system is the way it is, in the course of design, in redesign and maintenance
(MacLean, Young & Moran, 1989; Carroll, 1990). The cognitive walkthrough
provides a framework for spelling out a design rationale for a user interface, in
which a designer can specify tasks to be supported, goal structures assumed for these
tasks and specifically, how the prompts and cues supplied by the interface are
intended to guide the evolution of users’ goals during task performance.

COGNITIVE WALKTHROUGHS 771

7.2. DESIGNERS’ SELF CRITICISM

Because it requires modest effort, we think the cognitive walkthrough lends itself to
use very early in design, when a designer is evaluating his or her own preliminary
design ideas rather than submitting them in more finished form for review by outside
analysts. The method might enable designers to get a design in better shape on their
own before calling on usability specialists, whose comments coming from outside a
design effort may be unwelcome.

John M. Carroll (pers. comm., 1990) and others have suggested to us that the
logic behind the cognitive walkthrough could be applied directly to produce design
ideas, not just to evaluate them. Items on the walkthrough form would be modified
to elicit specifications of interface features that would support the user at a given
step, rather than asking for an evaluation of existing features. For example, instead
of asking what label is provided for an action, and whether it is linked to the action
and a current goal, the modified form would ask the designer to supply a label that
is linked to action and goal.

7.3. SYSTEMS THAT ARE NOT WALK-UP-AND-USE

We have used cognitive walkthroughs informally to analyse issues in some
applications in which users are assumed to have considerable knowledge of the
system, for example the table features of Microsoft Word. We have been impressed
that the method seems able to cope well here, even though user background
knowledge of word processors and Macintosh interface conventions plays a central
role. The judgements the analysts must make in this situation may be more difficult
than in the case of walk-up-and-use interfaces, since analysts must weigh whether
the user’s background knowledge is adequate to interpret the cues correctly. The
work of Jeffries et al. (1991) also considered this issue to some extent.

Another issue in these more complex examples is that the intended path through
an interface may include searching for information, as, for example, in exploring the
pulldown menus on the menu bar. It appears that cognitive walkthrough analysis
can be used to assess whether this kind of exploration should be expected to work or

not for a given task.

8. Conclusions

This paper has presented a theoretically-based walkthrough methodology for the
evaluation of user interfaces. Our initial efforts and the initial efforts of colleagues in
othe laboratories suggest that the walkthrough methodology presented in this paper
has great promise.

The authors gratefully acknowledge research support from US West Advanced Technologies
and the National Science Foundation, grant number IRI 87-22792. Cathleen Wharton was
supported by a graduate fellowship funded by Hewlett-Packard Laboratories. The opinions
expressed in this paper are those of the authors and not necessarily those of any of the three
supporting organizations.

Catherine Marshall of US West has provided ideas and direction for much of this work. We
thank Pamela Arment, Catherine Ashworth, Steven Coffin, Robert Comeaux, Susan Davies,
Stephanie Doane, Mary Esemplare, Kris Fames, Roland Htlbscher, Douglas Lhotka, Rick

772 P. G. POLSON ET AL.

Moleres, Karen Rabin, Teresa Roberts, Claudia Stewart and Harold Wilcox for assistance
and suggestions. We also thank three anonymous reviewers for valuable comments on an
earlier version of this paper.

References

BELLO-~~~, V. M. E. (1990). A framework for assessing applicability of HCI techniques.
Proceeding of Interact90, 3rd IFIP Conference on Human-Computer Interaction,
Cambridge, England, August 1990.

BENNETT, J. L. (1984). Managing to meet usability requirements: establishing and meeting
software development goals. In J. BENNE~, D. CASE, J. SANELIN & M. SMITH, Eds.
Visual Display Terminals. pp: 164-184, Engelwood Cliffs, NJ: Prentice-Hall.

BENNEIT, J., LORCH, D., KIERAS, D. E. & POLSON, P. G.’ (1987). Developing a user
interface technology for use in industry. Proceeding of Interact87, 2nd IFZP Conference
on Human-Computer Interaction; pp. 21-26, Stuttgart, September 1987.

BIAS, R. (1988). User interface walkthroughs with representative users and usability experts.
Paper read at the symposium Human Factors Methodr (th)at Work,” Annual Meeting of
the Human Factors Society, Anaheim, CA, October 1988.

BOVAIR, S., KIERAS, K. E. & POLSON, P. G. (1990). The acquisition and performance of text
editing skill: a production system analysis. Human Computer Interaction 5, l-48.

BUTLER, K., BENNE~, J., POLSON, P. & KARAT, J. (1989). Predicting the complexity of
human-computer interaction: report of the workshop on analytical models. SIGCHI
Bulletin 20, pp. 63-79.

CARD, S. K., MORAN, T. P. & NEWELL, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Erlbaum.

CARROLL, J. M. & CAMPBELL, R. (1986). Softening up hard science: reply to Newell and
Card. Human Computer Interaction 2, 227-250.

Carroll, J. M. & CAMPBELL, R. (1989). Artifacts as psychological theories: the case of
human-computer interaction. Behavior and Information Technology 8, 247-256.

CARROLL, J. M. & KELLOGG, W. A. (1989). Artifact as theory-nexus: hermeneutics meets
theory-based design. In Proceedings CH1’89 Human Factors in Computer Systems, pp.
7-14, New York: Association for Computing Machinery.

CARROLL, J. M. (1990). Infinite detail and emulation in an ontologically minimized HCI. In
Proceedings of CHI’90 Conference on Human Factors in Computer Systems, pp. 321-327,
New York: Association for Computing Machinery.

DOANE, S., KINTSCH, W. & POLSON, P. G. (1990) UNIX command production: what users
must know. KS Technical Report #90-l, Institute of Cognitive Science, University of
Colorado, Boulder, CO 80309-0345, USA.

ENGELBECK, G. E. (1986). Exceptions to generalizations: implications for formal models of
human-computer interaction. Masters thesis, Department of Psychology, University of
Colorado, Boulder, CO.

FAGAN, M. E. (1986). Advances in software inspections. IEEE Transactions on Software
Engineering SE-U, pp. 744-751.

GENTNER, D. R. & GRUDIN, J. (1990). Why good engineers (sometimes) create bad
interfaces. In Proceedings of CHI’90 Conference on Human Factors in Computer
Systems, pp. 277-282, New York: Association for Computing Machinery.

GOULD, J. D. (1988). How to design usable systems. In M.Helander, Ed. The Handbook of
Human-Computer Interaction, pp. 757-789. Amsterdam: North-Holland.

GOULD, J. D. & LEWIS, C. H. (1985). Designing for usability-key principles and what
designers think. Communications of the ACM 28, 300-311.

JEFFRIES, R., MILLER, J. R., WHARTON, C. & UYEDA, K. M. (1991.) User interface
evaluation in the real world: a comparison of four techniques. In Proceedings of the
CH1’91 Conference on Human Factors in Computer Systems, pp. 119-124. New York:
Association for Computing Machinery.

KARAT, J., FOWLER, R. & GRAVELLE, M. (1987). Evaluating user interface complexity. In

COGNITIVE WALKTHROLJGHS 773

Proceeding of Interact87, 2nd IFIP Conference on Human-Computer interaction, pp.
489-495, Stuttgart, September 1987.

KIERAS, D. E. (1988). Towards a practical GOMS model methodology for user interface
design. In M. Helander, Ed. The Handbook of Human-Computer Interaction.
pp. 135-157, Amsterdam, NV: North-Holland.

KIERAS, D. E. & POLSON, P. G. (1985). An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies 22, 365-394.

KINTSCH, W. (1988). The role of knowledge in discourse comprehension: a construction-
integration model. Psychological Review 95, 163-182.

LAIRD, J., NEWELL, A. & ROSENBLOOM, P. (1987). SOAR: An architecture for general
intelligence. Artificial Zntelligence 33, l-64.

LEWIS, C. H., POLSON, P. G., WHARTON, C. & RIEMAN, J. (1990). In Proceedings of CHZ’90
Conference on Human Factors in Computer Systems, pp. 235-241, New York: Associa-
tion for Computing Machinery.

MACLEAN, A., YOUNG, R. M. & MORAN, T. P. (1989). Design rationale: the argument
behind the artifact. In Proceedings CHZ’89 Human Factors in Computer Systems, pp.
247-252, New York: Association for Computing Machinery.

MANNES, S. M. & KINTXH, W. (1991). Routine computing tasks: planning as understanding.
Cognitive Science 15, 305-342.

M~LICH, R. & NIELSEN, J. (1990). Improving a human-computer dialogue: what designers
know about traditional interface design. Communications of the ACM 33, 338-348.

NIELSEN, J. & MOLICH, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of
CHZ’90 Conference on Human Factors in Computer Systems, pp. 249-256, New York:
Association for Computing Machinery.

NORMAN, D. A. (1981). Categorization of action slips. Psychological Review 88, 1-15.
NORMAN, D. A. (1986). Cognitive Engineering. In D. A. NORMAN & S. W. DRAPER, Eds.

User Centered Systems Design: New Perspectives in Human-Computer Interaction,
pp. 31-61, Hillsdale, NJ: Lawrence Erlbaum Assoc.

NORMAN, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books.
POLSON, P. G. (1987). A quantitative theory of human-computer interaction. In J. M.

CARROLL, Ed. Interfacing Thought: Cognitive Aspects of Human-Computer Interaction,
pp. 185-235, Cambridge, MA: Bradford Books/MIT Press.

POLSON, P. G. & LEWIS, C. H. (1990). Theory-based design for easily learned interfaces.
Human-Computer Interaction 5, 191-220.

RUBENSTEIN, R. & HERSH, H. M. (1984). The Human Factor: Designing Computer Systems
for People. Burlington, MA: Digital Press.

SHACKEL, B. (1984). Designing for people in the information age. In B. SHACKEL, Ed.
Human-Computer Interaction-ZNTERACT’84, pp. 9-18, Amsterdam: North-Holland.

SMMITH, S. L. & MOSIER, J. N. (1986). Guidelines for designing the user interface software.
Report 7 MTR-10090, Esd-Tr-86-278. Bedford, MA: Mitre Corporation.

WHITESIDE, J., BENNETT, J. & HOLTZBLAT, K. (1988). Usability engineering: our experience
and evolution. In M. HELANDER, Ed. The Handbook of Human-Computer Interaction,
pp. 791-817, Amsterdam: North-Holland.

WINOGRAD, T. & FLORES, F. (1986). Understanding Computers and Cognition. Norwood.
NJ: Ablex Publishing Corp.

YOUNG, R. M., BARNARD, P., SIMON, T. & WHIII-INGTON. J. (1989). How would your
favorite user model cope with these scenarios? ACM SZGCHZ Bulletin 20, 51-55.

YOUNG, R. M., GREEN, T. R. G. & SIMON, T. (1989). Programmable user models for
predictive evaluation of interface designs. In Proceedings of CHZ’89 Conference on
Human Factors in Computer Systems, pp. 15-19, New York: Association for Computing
Machinery.

YOUNG, R. M. & WHIITINGTON, J. (1990). Using a knowledge analysis to predict conceptual
errors in text-editor usage. In Proceedings of CHI’90 Conference on Human Factors in
Computer Systems, pp. 91-97, New YorK: Association for Computing Machinery.

YOURDON. E. (1989). Structural Wafkthroughs, 4th edn. Englewood Cliffs, NJ: Yourdon
Press.

