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Our approach is based on partitioning the training set across multiple processors using a
parallel virtual machine. In this way, interconnected computers of varied architectures can
be used for the distributed evaluation of the error function and gradient values, and, thus,
training neural networks utilizing various learning methods. The proposed methodology
has large granularity and low synchronization, and has been implemented and tested. Our
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results indicate that the parallel virtual machine implementation of the training algorithms
developed leads to considerable speedup, especially when large network architectures and
training sets are used.

Image-guided diagnosis and surgery

© 2005 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Distributed systems allow the deployment and utilization of
heterogeneous, network-connected computing resources and
offer the potential to analyze, share and manage medical
imaging information in more flexible and intelligent ways,
with a view to making evidence-based decisions, recogniz-
ing patterns and generating new hypotheses on-line [1]. The
emergence of grid protocols in conjunction with distributed
computing offers CPU and data handling capabilities to users
and could provide decision support in clinical diagnosis [2].
Minimally invasive, image-guided diagnostic procedures and
surgery are particularly benefited from advanced software and
hardware infrastructures [3,4]. In this context, the integration
of navigation systems with high tracking accuracy and ma-
noeuvrability, real-time services, such as analysis of imaging

* Corresponding author.
E-mail addresses: vpp@math.upatras.gr (V.P. Plagianakos),
gmagoulas@dcs.bbk.ac.uk (G.D. Magoulas),
vrahatis@math.upatras.gr (M.N. Vrahatis).

data and classification, parallelization of computational meth-
ods, detection of similarities with data stored in collaborating
sites, comparison of patient’s images against the norm, infor-
mation sharing and e-collaboration with other experts would
definitely increase the efficiency of typical diagnostic proce-
dures and surgeries [3-8].

Towards this direction, this paper investigates the use of a
distributed computing methodology for an image-guided di-
agnostic scheme that employs Multi-layer Perceptrons (MLPs)
for the detection of lesions in colonoscopy images and video
sequences. To this end, we propose a way to partition the train-
ing set across multiple processors and we evaluate the speed
performance of the distributed scheme with respect to a single
processor implementation. The proposed distributed comput-
ing methodology utilizes the parallel virtual machine—PVM
[9-11] software tools and libraries.
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2. Background

In medical practice, minimally invasive techniques, such as
computed tomography, ultrasonography, confocal microscopy,
computed radiography, magnetic resonance imaging or en-
doscopy are now permitting visualization of previously
inaccessible regions of the body. Their objective is to increase
expert’s ability in identifying malignant regions and decrease
the need for intervention while maintaining the ability for
accurate diagnosis. Furthermore, it is possible to examine a
larger area, study living tissue in vivo - possibly at a distance
[12] - and, thus, minimize the shortcomings of biopsies, such
as a limited number of tissue samples, a delay in diagnosis,
infection, perforation and discomfort for the patient.

Colorectal cancer is the second leading cause of cancer-
related deaths in the United States [13,14]. Screening is
the current and most suitable prevention method for early
detection and removal of colorectal polyps. If such polyps
remain in the colon can possibly grow into malignant lesions.
Colonoscopy is the most accurate screening technique for de-
tecting polyps, also allowing biopsy of lesions and resection of
most of the polyps [15]. Colonoscopic diagnosis is a particular
challenging area, involving the extraction and interpretation
of patterns from complex medical video sequences under
variable perceptual conditions (resolution change, shadings,
shadows, lighting condition variations, reflections, etc.),
hypothesis generation and reasoning in relation to previous
experiences of the medical experts [4,16-18]. When one
considers that abnormalities are hard enough to diagnose,
the problem is exaggerated greatly when the physicians do
not know what they are looking for.

The use of intelligent approaches for the detection of
lesions in colonoscopy has to meet a number of challenges
[4,18]: the time varying nature of the process, changes in
the perceptual direction of the physician, variations in the
diffused light conditions. For example, though one can use
bright lights, the effect in a tight organ is that light tends
to diffuse which leads to some areas being clearly lit and
others not so; thus potentially hiding abnormalities. Relating
to diffused light and the restrictive nature of the organ, it is
easily possible for shadows to appear, restricting further what
is visible. Shadows can be caused by the endoscope itself,
different sections and abnormalities themselves. Lastly, the
limited manoeuvrability of the endoscope causes the views
at which abnormalities are visible to be far from ideal; a bad
view can easily exaggerate the noise present within the image
and hide abnormalities.

In most of these cases, training examples or explicit
knowledge are not able to capture all possible variations of
the environment. Collaboration among experts, estimations
of similarities with data held in remote sites, and fast analysis
of imaging data can definitely increase the efficiency of the
procedure.

3. Computational methods

Automatic detection of lesions in colonoscopy is subject to
uncertainties due to inaccurate measurements and lack of

precise modelling of lesion image characteristics (this is es-
pecially true for small size lesions) [19]. Given a colonoscopy
image, the “true” features associated with the physical sur-
face properties of the tissue are not exactly known to the sys-
tem developer. Usually, one or more feature-extraction models
[4,16,20] are used to provide values for each feature’s parame-
ters. The findings are then used to infer the correct interpre-
tation.

In this work, we combine texture segmentation with neural
networks for the automatic detection of lesions in colonoscopy
images and video sequences. The following subsections de-
scribe the various computational methods and principles that
we have considered in developing our approach.

3.1. Texture classification

Texture plays an important role in the characterization of re-
gions in digital images. It carries information about the mi-
crostructure of the regions and the distribution of the grey
levels. Texture is an inherent property of any image and of
medical images in particular, given that the tissue itself car-
ries a dominant textural appearance.

The classification of image regions within colonoscopy
images can be treated as a texture classification problem by
exploiting the textural characteristics of the corresponding
regions for the discrimination between lesions and normal
tissue samples. Automated classification and identification
of colonic carcinoma using microscopy images have been
proposed by ref. [21], but the use of clinical endoscopy video
frames for the identification of colonic tumors has been con-
sidered only in limited instances [4,17,18,22,23]. Along this
line of research, this paper makes use of texture information
for the detection of malignant regions in colonoscopy images
by employing some quantitative description of a texture.

Among a large variety of texture models, e.g. structural [24],
statistical [25-27] and random process [28], this work uses sta-
tistical measurements based on second-order statistics [27].
These statistical descriptors have been estimated using the
method of co-occurrence matrices applied to each region of
an image. This method evaluates a series of matrices that de-
scribe the spatial variation of grey level values within a local
area.

In our experiments, we have used the image data manage-
ment facilities of CoLD [4] to compute four co-occurrence ma-
trices for each sample area with a displacement of one pixel
and angles of 0°, 45°, 90°, 135°. In this way, four features have
been computed on each matrix to produce a 16-dimensional
feature vector describing each tissue sample, namely the an-
gular second moment, correlation, inverse difference moment
and entropy, as defined by Haralick [27] (see ref. [4] for details).

3.2.  Training MLPs using back-propagation algorithms

Let us consider an MLP whose I-th layer contains N; neurons,
I=1,..., M. Batch learning is realized by minimizing the error
function E defined by:
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where (}% - t}-.p)2 is the squared difference between the actual
output value at the j-th output layer neuron for the pattern
p and the target output value, and p is an index over input-
output pairs. The function E also provides the error surface
over the weight space.

The minimization of function E corresponds to updating
the weights by epoch, and requires a sequence of weight
vectors {wk}iio, where k indicates epochs. Successful training
implies that {wk}io= o converges to the point w* that mini-
mizes E. The gradient-based back-propagation (BP) training
algorithm minimizes the error function using the steepest
descent method with constant, heuristically chosen, learning
rate.

Several BP algorithms with adaptive learning rate have
been proposed in order to accelerate the training phase. In
this work, we consider the standard batch BP and four other
methods of this class and investigate their performance in a
distributed architecture.

The first BP variant that will be considered was proposed in
refs. [29,30]. It is a simple, heuristic, strategy for accelerating
the BP algorithm that is based on the use of a momentum term
(BPM). The second method was suggested by Vogl et al. [31]. It
increases the convergence of the BP by adapting the learning
rate at each epoch, in such a way that monotone decrease of
the error is enforced (VMRZA). To this end, Vogl et al. proposed
to start training with a small learning rate and increase it by
multiplying it with 1.05, if successive epochs reduce the error,
or rapidly decrease it by multiplying it with 0.7, if a significant
error increase occurs.

Another approach is based on the use of nonmonotone
strategies for adapting the learning rate, i.e. deterministic
adaptive training algorithms in which error function values
are allowed to increase at some epochs [32]. This approach
exploits the accumulated information with regard to previ-
ous error function values and provides the ability to handle
large learning rates. Additionally, it alleviates problems gener-
ated by poor selection of the user-defined learning parameters,
such as decreased rate of convergence, or even divergence and
premature saturation [33]. Along this line, we investigate the
use of the recently proposed NonMonotone Back-propagation
with Variable Stepsize (NMBPVS), [32], which exploits the local
shape of the error surface by estimating the Lipschitz constant
ateach epoch, and setting the learning rate accordingly. Lastly,
the NonMonotone Barzilai and Borwein BP algorithm (NMBBP),
which uses an adaptive learning rate that is calculated by a
two-point approximation to the secant equation [34,35], is ap-
plied.

4, A distributed architecture

Parallel processing, i.e. the method of having many small tasks
with the aim of solving one large problem, has emerged as a
key enabling technology in modern computing [36]. The past
several years have witnessed an ever-increasing acceptance
and adoption of parallel processing both for high-performance
scientific computing, and for more “general-purpose” applica-
tions, as a result of the demand for higher performance, lower
cost and sustained productivity. This worldwide acceptance
has been facilitated by two major developments: (a) Massively

Parallel Processors (MPPs) and (b) the widespread use of dis-
tributed computing.

This section gives a brief introduction to distributed com-
puting and describes in detail the methodology of our dis-
tributed architecture.

4.1.  Distributed computing and the parallel virtual
machine

Distributed computing is a process whereby computers con-
nected by a network are used collectively to solve a single prob-
lem [36]. The combined computational resources of several
general-purpose workstations, interconnected with a high-
speed local area network, may exceed the power of a single
high performance computer.

The most critical factor in parallel processing is the high
cost of the hardware. Large MPPs typically cost more than US$
10 million. In contrast with MPPs, distributed computing al-
lows users running their problems on a local set of existing
computers with a very little cost. Even building a PVM using
dedicated computers has a reduced cost. The cost of a 15-node
system is less than US$ 10,000 due to the use of Beowulf-
style nodes [37,38]. It must be noted that when using Be-
owulf nodes only the master node needs hard disk, video dis-
play, monitor and keyboard. The cost of materials for the PVM
topology used in our experiments is exhibited in Section 4.2
below.

The parallel virtual machine is a de facto standard mes-
sage passing interface. It is an integrated set of software tools
and libraries that emulates a general-purpose, flexible, hetero-
geneous concurrent computing framework on interconnected
computers of varied architectures [9]. PVM is designed to link
computing resources and provide users with a parallel plat-
form for running their computer applications, irrespective of
the number of different computer architectures and theirloca-
tions. Notice that once built, the PVM can be used for any CPU
intensive computational task [10,11]. PVM is capable of har-
nessing the combined resources of typically heterogeneous
networked computing platforms to deliver high levels of per-
formance and functionality.

The PVM system uses the message-passing model to allow
programmers to exploit the distributed computing across a
wide variety of computer architectures, including MPPs. PVM’s
key concept is that it makes a collection of computers to ap-
pear as one large virtual machine, hence its name [9].

4.2. PVM-based training methodology

The general use of an MLP consists of a training phase followed
by a classification phase. The training phase, usually, involves
an unconstrained optimization procedure of the BP class, and
consists of the following steps:

(1) Presentation to the MLP of all the training sets (patterns)
and computation of the activations of the network.

(2) Computation of the error function based on the activations
(usually the sum of squared differences between the actual
and the desired output).

(3) Computation or approximation of the gradients of the er-
ror function at a point in the weight space.
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(4) Adaptation of the weights of the MLP according to the
training algorithm used.

Training can be very time consuming, as a feasible mini-
mizer in the high-dimensional weight space is sought, and,
in general, the error function possesses complicated surface
with multitudes of local minima and broad flat regions ad-
joined to narrow steep ones. On the other hand, the classi-
fication of an unknown test vector is extremely fast, since it
requires only the propagation of the test vector through the
neural network.

In the algorithm model shown above, Steps 1-3 can be
easily performed in parallel, if the training set is partitioned
across multiple processors. On the other hand, Step 4 is better
performed using only one processor, after the partially eval-
uated error function and gradient values are sent to it and
accumulated.

Although MLPs have been widely used in many application
areas, real world problems demand an increasing amount of
computational resources. However, not many neural network
researchers have access to a high performance parallel ma-
chine [39]. On the other hand, most of the researchers have
access to networked workstations which can be easily used in
a distributed computing architecture [40].

Below, we construct a parallel procedure that uses the well
known master-slave computational model [9]. Our implemen-
tation is based on partitioning the training set across multiple
processors on the slave nodes. This results in the distributed
evaluation of the error function and gradient of the MLP. The
following subsections describe the algorithms for the master
and slave nodes and provide details for our implementation.

4.2.1.  The algorithm of the master node

At the beginning of the procedure, the master node adds the
slave nodes to the PVM, spawns the slave tasks, partitions the
initial training set into subsets (one for each slave node) and
sends the network architecture and the partitions of the train-
ing set to the slaves. Then, receives from each slave node the
corresponding portion of the error function and gradient, and
accumulates them to find the complete error function and gra-
dient values.

Note that the error function values are sent to the master
only if the employed training algorithm uses them; otherwise
only the partial gradient values are communicated. Finally, the
weights are updated (any batch training algorithm can be used
for this task), and the new weights are sent to the slave nodes
for the next epoch. When the termination condition is fulfilled,
the master node sends termination signals to the slaves and
shuts the PVM down. Below, a high level description of the
algorithm that runs on the master is presented.

Procedure master

\* Spawn slave procedures *\

InitializeAllSlaves;

\* Load patterns, initialize weights and MLP arch-
itecture *\

InitializeMLP;

\* Divide up the training set among the slaves %\

PartitionTrainingSet;

For slave:=1 to numOfSlaves do

\* Send MLP architecture to slave x\
SendMLP;
\* Send training subset to slave x\

SendPatterns;
Repeat
For slave:=1 to numOfSlaves do

\#*Receive error function values from slaves
)\
RcvPartialErrorFunction;
\* Receive gradient values from slaves *\
RcvPartialGradient;
\* Calculate the error function value over the
entire training set )\
AccumulateErrorFunction;
\* Calculate the gradient vector x\
AccumulateGradient;
\# Calculate the new weight vector x\
AdaptWeights;
For slave:=1 to numOfSlaves do
\* Send the new weight vector to slaves *\
SendWeights;
\# Check the termination condition *\
Until TerminationCondition;
\* Kill the slave processes *\
ShutDownSlaves;
\* Kill the PVM %\
ShutDownPVM;

The process of receiving the partial error function and gra-
dient values can be realized in a synchronous or an asyn-
chronous mode. When the synchronous mode is selected the
master is forced to communicate with the slaves in a specific
order. On the other hand, in asynchronous mode the com-
munications are performed in a first-come, first-serve basis.
Obviously, the asynchronous mode is the preferred one, since
the master does not have to wait for a slower slave, but instead
can continue gathering information from the other slaves.

4.2.2.  The algorithm of the slave nodes

Each slave node initially receives the MLP architecture and a
subset of the training set. Then, it calculates the partial er-
ror function and gradient values by means of a forward and
a backward pass, and sends these values to the master node.
Finally, the master node sends the updated weights for the
next epoch. Below, we provide a high level description of the
algorithm running on the slave.

procedure slave
\* Receive MLP architecture from master x\
RcvMLP;
\* Receive training subset from master x\
RcvPatterns;
Repeat
\* Calculate partial error function values *\
CalculatePartialErrorFunction;
\* Calculate partial gradient values *\
CalculatePartialGradient;
\* Send error function values to master x\
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Fig. 1 - Illustration of proposed methodology for image-guided diagnosis.

SendPartialErrorFunction;

\# Send gradient values to master x\
SendPartialGradient;

\* Receive new weight vector from master x*\

RcviWeights;
Until ShutDown;

4.3. Implementation details

In this work, the combination of texture segmentation and
neural networks is employed for the automatic detection of le-
sions in colonoscopy images and video sequences. The overall
procedure is illustrated in Fig. 1.

Below, we provide technical details and cost estimates for
the PVM implementation. The setup of the PVM is relatively
easy with the use of existing workstations. In the PVM system
used in our experiments, 15 slaves and one master node were
connected using a 100 Mbps Ethernet switch. A daemon pro-
cessrunningin the background of each node forms the parallel
virtual machine. The daemons are responsible for spawning
the tasks (program execution) on the host machines, the syn-
chronization and the communication between the tasks.

The cost of materials for the 15-node system is shown in
Table 1. The total price for the entire system is less than US$

10,000 (prices as of early 2004). It must be noted that only
the master node needs hard disk, video display, monitor and
keyboard. This is possible because of the use of Beowulf-style
nodes. Additional information about the Beowulf Project and
further details for parallel computer systems, can be found on
the WWW at: http://www.beowulf.org.

The operating system used in our implementation was
Linux, which is the most common operating system for in-
dividual nodes of Beowulf-style parallel computer systems.
Another reason for choosing Linux is that it is open-source
(its source code is provided) and free; no licence is required.

5. Experimental results

The proposed distributed computing methodology was ap-
plied for the detection of malignant regions in colonoscopic
video sequences. The aim of the experiment was to perform
a low level test of the system and explore the applicability of
our methodology in a real life diagnostic task.

Textures from normal and abnormal tissue samples
were randomly chosen from four frames of the same video
sequence, which exhibited resolution change, different per-
ceptual direction of the physician, different diffused light
conditions and were used for training the MLP to discriminate

Table 1 - Cost of materials for a 15-node parallel virtual machine (prices as of 2004)

Quantity Item Unit price (US$) Total (US$)
15 Intel Pentium 4 2.8 Ghz processor and appropriate 500 7500
motherboard
15 512 MB of SDRAM 40 600
15 10/100 Mbps ethernet network interface card 10 150
15 Tower case with 300 W power supply and fans 45 675
1 10/100 Mbps Ethernet 24-port Switch 330 330
16 Ethernet cables 5 80
1 Master computer with Intel Pentium 4 3.06Ghz, 650 650
512 MB of RAM, 10/100 Mbps ethernet network card,
60 GB hard disk, video display, mouse, monitor, key-
board
16 Linux operating system 0 0
Total 9985
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Table 2 - Results of the proposed distributed implementation of the training algorithms

Algorithm Min Mean Max S.D. Succ. (%)
BP 7697 8505 9314 1143 20
BPM 5685 8500 9315 952 32
VMRZA 453 734 1055 249 99
NMBBP 261 374 515 129 100
NMBPVS 263 656 955 227 100

between malignant and normal regions using the dis-
tributed architecture. No pre-filtering of the images, or post-
processing of the results were applied as the aim was only
to test the PVM-methodology and not to optimize the classi-
fier.

The training set was generated by applying the co-
occurrence matrices method described in previous section.
More specifically, the endoscopic images were separated into
windows of size 16 x 16 pixels with 8 pixels overlap. Then the
co-occurrence matrices algorithm was used to gather infor-
mation regarding each pixel in an image window [4,17]. The
16-dimensional feature vectors created for each window was
used as the input of an MLP with 16 inputs, 30 hidden nodes
and 2 outputs (540 weights and 32 biases); this MLP archi-
tecture had been found to perform very well in preliminary
experiments. The MLP was trained to discriminate between
normal and abnormal image regions using 1200 randomly se-
lected patterns from four video frames. The training procedure
stopped when the MLP exhibited 3% misclassifications on the
entire training set.

Using the PVM-based training methodology, the following
algorithms were implemented:

the back-propagation (BP),

the momentum BP (MBP) [29],

the adaptive BP (VMRZA) [31],

the Non-Monotone BP with Variable Stepsize (NMBPVS)
(41],

® the Non-Monotone Barzilai-Borwein back-propagation
NMBBP [41].

The algorithms were tested using the same initial weights,
initialized by the Nguyen-Widrow method [42], and received
the same sequence of input patterns. The weights of the MLP
were updated only after the entire set of patterns to be learned
was presented and processed in parallel.

Table 2 summarizes the performance of the algorithms for
simulations that reached solution. The reported parameters
are: Min the minimum number of epochs, Mean the mean
value of epochs, Max the maximum number of epochs, S.D.
the standard deviation and Succ. the simulations succeeded
out of 100 trials.

As is the case with all practical neural network training,
the aim is to train the MLPs to achieve a balance between
the ability to respond correctly to the input data used for
the training (memorization) and the ability to give correct
responses to input that is similar, but not identical, to that
used in training (generalization). To this end, to test the gen-
eralization performance of the trained MLPs, approximately
16,000 test patterns were created. This test set constitutes
the whole image region in each of the four frames and con-
tains normal and abnormal samples. In Table 3, the average

Table 3 - Generalization of the distributed

implementation of the training algorithms

Algorithm Generalization (%)
BP 78.1
BPM 78.1
VMRZA 79.1
NMBBP 83.9
NMBPVS 85.1

Speedup

N WA OO M

0 r T T T T T
1 3 5 7 9 11 13 15

Number of slaves

Fig. 2 - The speedup achieved by the proposed distributed
implementation vs. the number of processors used in the
simulation.

generalization capability of the algorithms on the test set is
exhibited.

Finally, we have tried to determine the average speedup
achieved by employing the proposed distributed implementa-
tion, relative to a single processor utilization. Several factors
caninfluence the speedup, such as the local area network load
and the CPU load due to system or other users’ tasks. Never-
theless, the speedup results indicate that when using more
than three slave nodes the combined processing power of the
PVM overbalances the overhead due to its initialization and
process communication, and a speedup is always possible. In
Fig. 2 the speedup versus the number of processors is plotted.

Thus, the speedup is considerable and worth the minimal
effort of developing the PVM implementation of the learning
algorithm, although it is not analogous to the number of slaves
used. Obviously, this was expected due to the overhead intro-
duced by the local area network and the PVM itself.

6. Conclusions and future plans

Research in computing, imaging and miniaturization has
made minimally invasive surgery practical and has opened
up new areas of research for diagnosis and treatment. An in-
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creasing need for large computing resources is appearing in
hospitals for image-guided diagnosis and surgery, simulation
of medical treatments and surgeries, advanced medical imag-
ing applications and accessibility of large amounts of data in
heterogeneous formats from distributed sources. Distributed
computing can facilitate the deployment of these advanced
medical applications.

In this paper, the combined computational resources of
several general purpose workstations, interconnected with a
local area network have been exploited to implement neu-
ral network learning algorithms in a distributed architecture
for image-guided diagnosis of lesions in colonoscopy video
sequences. Each workstation of the proposed distributed ar-
chitecture handles intensive computational tasks efficiently,
without the use of frequent process synchronization. Further-
more, the PVM performance in the experiments was stable
and predictable.

Simulation results have shown that speedups are always
possible and justify the extra effort of parallelizing the learn-
ing algorithm, especially when large MLP architectures and
large training sets are used. Our experience is that the speedup
achieved does not affect the generalization performance of
the neural networks with respect to the single classifier im-
plementation.
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