Common fixed point of multivalued graph contraction in metric spaces

Masoud Hadian Dehkordi, Masoud Ghods*
School of Mathematical Sciences, Iran University of Science and Technology, Narmak, Tehran, Iran
(Communicated by Themistocles M. Rassias)

Abstract

In this paper, we introduce the (G- ψ) contraction in a metric space by using a graph. Let F, T be two multivalued mappings on X. Among other things, we obtain a common fixed point of the mappings F, T in the metric space X endowed with a graph G.

Keywords: fixed point, multivalued; common(G- ψ) contraction; directed graph. 2010 MSC: Primary 47H10; Secondary 47H09.

1. Introduction and preliminaries

For a given metric space (X, d), let T denotes a selfmap. According to Petrusel and Rus [9], T is called a Picard operator (abbr., PO) if it has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for all $x \in X$, and is a weakly Picard operator (abbr.WPO) if for all $x \in X, \lim _{n \rightarrow \infty}\left(T^{n} x\right)$ exists (which may depend on x) and is a fixed point of T. Let (X, d) be a metric space and G be a directed graph with set $V(G)$ of its vertices coincides with X, and the set of its edges $E(G)$ is such that $(x, x) \notin E(G)$. Assume G has no parallel edges, we can identify G with the pair $(V(G), E(G))$, and treat it as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of the edges. Thus we can write

$$
\begin{equation*}
E\left(G^{-1}\right)=\{(x, y) \mid(y, x) \in E(G)\} . \tag{1.1}
\end{equation*}
$$

Let \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges. Actually,it will be more convenient for us to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention,

$$
\begin{equation*}
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right) . \tag{1.2}
\end{equation*}
$$

[^0]We point out the followings:
(i) $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G if $V^{\prime} \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$ and for all $(x, y) \in E^{\prime}$, $x, y \in V^{\prime}$.
(ii) If x and y are vertices in a graph G, then a path in G from x to y of length $N(N \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, N$.
(iii) Graph G is connected if there is a path between any two vertices, and is weakly connected if \tilde{G} is connected.
(iv) Assume that G is such that $E(G)$ is symmetric and x is a vertex in G, then the subgraph G_{x} consisting x is called component of G, if it consists all edges and vertices which are contained in some path beginning at x. In this case $V\left(G_{x}\right)=[x]_{G}$, where $[x]_{G}$ is the equivalence class of the following relation R defined on $V(G)$ by the rule: $y \mathrm{R} z$ if there is a path in G from y to z. Clearly, G_{x} is connected.
(v) The sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$, included in X, are Cauchy equivalent if each of them is a Cauchy sequence and $d\left(x_{n}, y_{n}\right) \longrightarrow 0$.
Let (X, d) be a complete metric space and let $C B(X)$ be a class of all nonempty closed and bounded subset of X. For $A, B \in C B(X)$, let

$$
H(A, B):=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\},
$$

where

$$
d(a, B):=\inf _{b \in B} d(a, b) .
$$

Mapping H is said to be a Hausdorff metric induced by d.
Definition 1.1. Let $T: X \longrightarrow C B(X)$ be a mappings, a point $x \in X$ is said to be a fixed point of the set-valued mapping T if $x \in T(x)$
Definition 1.2. A metric space (X, d) is called a ϵ-chainable metric space for some $\epsilon>0$ if given $x, y \in X$, there is an $n \in \mathbb{N}$ and a sequence $\left\{x_{i}\right\}_{i=0}^{n}$ such that $x_{0}=x \quad x_{n}=y \quad$ and $\quad d\left(x_{i-1}, x_{i}\right)<\epsilon \quad$ for $\quad i=1, \ldots, n$.

Property A ([6]). For any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, if $x_{n} \longrightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$, then $\left(x_{n}, x\right) \in E(G)$.
Lemma 1.3. ([1]). Let (X, d) be a complete metric space and $A, B \in C B(X)$. Then for all $\epsilon>0$ and $a \in A$ there exists an element $b \in B$ such that $d(a, b) \leq H(A, B)+\epsilon$.
Lemma 1.4. ([1]). Let $\left\{A_{n}\right\}$ be a sequence in $C B(X)$ and $\lim _{n \rightarrow \infty} H\left(A_{n}, A\right)=0$ for $A \in C B(X)$. If $x_{n} \in A_{n}$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, then $x \in A$.
Lemma 1.5. Let $A, B \in C B(X)$ with $H(A, B)<\epsilon$, then for each $a \in A$ there exists an element $b \in B$ such that $d(a, b)<\epsilon$.
Definition 1.6. Let us define the class $\Psi=\{\psi:[0,+\infty) \longrightarrow[0,+\infty) \mid \psi$ is nondecreasing $\}$ which satisfies the following conditions:
(i) for every $\left(t_{n}\right) \in \mathbb{R}^{+}, \psi\left(t_{n}\right) \longrightarrow 0$ if and only if $t_{n} \longrightarrow 0$;
(ii) for every $t_{1}, t_{2} \in \mathbb{R}^{+}, \psi\left(t_{1}+t_{2}\right) \leq \psi\left(t_{1}\right)+\psi\left(t_{2}\right)$;
(iii) for any $t>0$ we have $\psi(t) \leq t$.

Lemma 1.7. Let $A, B \in C B(X), a \in A$ and $\psi \in \Psi$. Then for each $\epsilon>0$, there exists $b \in B$ such that $\psi(d(a, b)) \leq \psi(H(A, B))+\epsilon$.

2. Main results

We begin with the following theorem the gives the existence of a fixed point for multivalued mappings(not necessarily unique) in metric spaces endowed with a graph.

Definition 2.1. Let (X, d) be a complete metric space and $F, T: X \longrightarrow C B(X)$ be a mappings, F and T are said to be a common $(\mathrm{G}-\psi)$ contraction if there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\psi(H(F(x), T(y)) \leq k \psi(d(x, y)) \text { for all }(x, y) \in E(G),(x \neq y) \tag{2.1}
\end{equation*}
$$

and for all $(x, y) \in E(G)$ if $u \in F(x)$ and $v \in T(y)$ are such that $\psi(d(u, v)) \leq k \psi(d(x, y))+\epsilon$, for each $\epsilon>0$ then $(u, v) \in E(G)$.

Theorem 2.2. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A. Let $F, T: X \longrightarrow C B(X)$ be a $(G-\psi)$ contraction and $X_{F}=\{x \in X:(x, u) \in$ $E(G)$ for some $u \in F(x)\}$. Then the following statements hold.

1. for any $x \in X_{F}, F,\left.T\right|_{[x]_{G}}$ have a common fixed point.
2. If $X_{F} \neq \emptyset$ and G is weakly connected, then F, T have a common fixed point in X.
3. If $X^{\prime}:=\cup\left\{[x]_{G}: x \in X_{F}\right\}$, then $F,\left.T\right|_{X^{\prime}}$ have a common fixed point.
4. If $F \subseteq E(G)$, then F, T have a common fixed point.

Proof . Let $x_{0} \in X_{F}$, then there is an $x_{1} \in F\left(x_{0}\right)$ for which $\left(x_{0}, x_{1}\right) \in E(G)$. Since F, T are (G- ψ) contraction, we should have
$\psi\left(H\left(F\left(x_{0}\right), T\left(x_{1}\right)\right)\right) \leq k \psi d\left(x_{0}, x_{1}\right)$.
By Lemma 1.7 , it ensures that there exists an $x_{2} \in T\left(x_{1}\right)$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right) \leq \psi\left(H\left(F\left(x_{0}\right), T\left(x_{1}\right)\right)\right)+k \leq k \psi d\left(x_{0}, x_{1}\right)+k .\right. \tag{2.2}
\end{equation*}
$$

Using the property of F, T being a (G- ψ) contraction $\left(x_{1}, x_{2}\right) \in E(G)$, since $E(G)$ is symmetric we obtain
$\psi\left(H\left(F\left(x_{2}\right), T\left(x_{1}\right)\right)\right) \leq k \psi d\left(x_{1}, x_{2}\right)$
and then by Lemma 1.7 shows the existence of an $x_{3} \in F\left(x_{2}\right)$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq \psi\left(H\left(T\left(x_{1}\right), F\left(x_{2}\right)\right)\right)+k^{2} . \tag{2.3}
\end{equation*}
$$

By inequality (2.2), (2.3), it results

$$
\begin{equation*}
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq k \psi\left(d\left(x_{1}, x_{2}\right)\right)+k^{2} \leq k^{2} \psi\left(d\left(x_{0}, x_{1}\right)\right)+2 k^{2} . \tag{2.4}
\end{equation*}
$$

By a similar approach, we can prove that $x_{2 n+1} \in F\left(x_{2 n}\right)$ and $x_{2 n+2} \in T\left(x_{2 n+1}\right), n:=0,1,2, \cdots$ as well as $\left(x_{n}, x_{n+1}\right) \in E(G)$ and $\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq k^{n} \psi\left(d\left(x_{0}, x_{1}\right)\right)+n k^{n}$.

We can easily show by following that $\left(x_{n}\right)$ is a Cauchy sequence in X.

$$
\sum_{n=0}^{\infty} \psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(d\left(x_{0}, x_{1}\right)\right) \sum_{n=0}^{\infty} k^{n}+\sum_{n=0}^{\infty} n k^{n}<\infty
$$

since $\sum_{n=0}^{\infty} \psi\left(d\left(x_{n}, x_{n+1}\right)\right)<\infty$, and $\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \longrightarrow 0$; consequently using the property of ψ we have $d\left(x_{n}, x_{n+1}\right) \longrightarrow 0$.

Hence $\left(x_{n}\right)$ converges to some point x in X. Next step is to show that x is a common fixed point of the mapping F and T. Using the property A and the fact of F, T being a (G- ψ) contraction, since $\left(x_{n}, x\right) \in E(G)$, then we encounter with the following two cases:
Case 1: for even values of n, we have

$$
\psi\left(H\left(F\left(x_{n}\right), T(x)\right) \leq k \psi\left(d\left(x_{n}, x\right)\right)\right.
$$

Since $x_{n+1} \in F\left(x_{n}\right)$ and $x_{n} \longrightarrow x$, then by Lemma 1.4, $x \in T(x)$.
Case 2: for odd values of n , we have

$$
\psi\left(H\left(F(x), T\left(x_{n}\right)\right) \leq k \psi\left(d\left(x, x_{n}\right)\right)\right.
$$

Since $x_{n+1} \in T\left(x_{n}\right)$ and $x_{n} \longrightarrow x$, then by Lemma 1.4 $x \in F(x)$. Hence from $\left(x_{n}, x_{n+1}\right) \in E(G)$, and $\left(x_{n}, x\right) \in E(G)$, for $n \in \mathbb{N}$, we conclude that $\left(x_{0}, x_{1}, \ldots, x_{n}, x\right)$ is a path in G and so $x \in\left[x_{0}\right]_{G}$.
2. For $X_{F} \neq \emptyset$, there exists an $x_{0} \in X_{F}$, and since G is weakly connected, then $\left[x_{0}\right]_{G}=X$ and by $1, F$ and T have a common fixed point.
3. From 1 and 2 , the following result is now immediate.
4. $F \subseteq E(G)$ implies that all $x \in X$ are such that there exists some $u \in F(x)$ with $(x, u) \in E(G)$, so $X_{F}=X$ by 2 and 3. F, T have a common fixed point.

See the following example.
Example 2.3. Let $X=\{0\} \cup\left\{\frac{1}{2^{n}}: n \in \mathbb{N} \cup\{0\}\right\}$. Consider the undirected graph G such that $V(G)=$ X and $E(G)=\left\{\left(\frac{1}{2^{n}}, 0\right),\left(0, \frac{1}{2^{n}}\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right),\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right): n \in\{2,3,4, \cdots\}\right\} \cup\left\{\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right),(1,0),(0,1)\right\}$. Let $F, T: X \longrightarrow C B(X)$ be defined by

$$
\begin{gather*}
F(x)= \begin{cases}0 & x=0, \\
\left\{\frac{1}{2^{n+1}}, \frac{1}{2^{n+2}}\right\} & x=\frac{1}{2^{n}}, n \in\{2,3,4, \cdots\}, \\
\frac{1}{4} & x=1, \frac{1}{2} .\end{cases} \tag{2.5}\\
T(y)= \begin{cases}0 & y=0 \\
\left\{\frac{1}{2^{n+1}}\right\} & y=\frac{1}{2^{n}}, n \in\{2,3,4, \cdots\}, \\
\frac{1}{4} & y=1, \frac{1}{2} .\end{cases} \tag{2.6}
\end{gather*}
$$

Then F, T are not a common(G- ψ) contraction where $d(x, y)=|x-y|$ and $\psi(t)=\frac{t}{t+1}$. It can be seen that if $x=\frac{1}{8}$ and $y=\frac{1}{4}$, then $T(y)=\left\{\frac{1}{8}\right\}, F(x)=\left\{\frac{1}{16}, \frac{1}{32}\right\}$, then we have

$$
\psi(H(F(x), T(y)) \leq k \psi(d(x, y)) \text { for all }(x, y) \in E(G),(x \neq y)
$$

and let $u=\frac{1}{32}$ and $v=\frac{1}{8}$, where $x=\frac{1}{8}$ and $y=\frac{1}{4}$, therefore $d\left(\frac{1}{32}, \frac{1}{8}\right)=\frac{3}{32}$, and $\psi\left(d\left(\frac{1}{32}, \frac{1}{8}\right)\right)=\frac{3}{35}$, also we have $d\left(\frac{1}{8}, \frac{1}{4}\right)=\frac{1}{8}$, so $\psi\left(d\left(\frac{1}{8}, \frac{1}{4}\right)\right)=\frac{1}{9}$. Thus there exists $k \in(0,1)$ such that $\psi\left(d\left(\frac{1}{32}, \frac{1}{8}\right)\right) \leq k \psi\left(d\left(\frac{1}{8}, \frac{1}{4}\right)\right)+\epsilon$, for all $\epsilon>0$, but $\left(\frac{1}{8}, \frac{1}{32}\right) \notin E(G)$.

Example 2.4. Let $X=\{0\} \cup\left\{\frac{1}{2^{n}}: n \in \mathbb{N} \cup\{0\}\right\}$. Consider the undirected graph G such that $V(G)=X$ and $E(G)=\left\{\left(\frac{1}{2^{n}}, 0\right),\left(0, \frac{1}{2^{n}}\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right),\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right): n \in \mathbb{N}\right\} \cup\{(1,0),(0,1)\}$. Let $F, T: X \longrightarrow C B(X)$ be defined by

$$
\begin{align*}
& F(x)= \begin{cases}0 & x=0, \frac{1}{2}, \\
\left\{\frac{1}{2}, \frac{1}{4}\right\} & x=1, \\
\left\{\frac{1}{2^{n+1}}\right\} & x=\frac{1}{2^{n}}, n \in\{2,3,4, \cdots\} .\end{cases} \tag{2.7}\\
& T(y)= \begin{cases}0 & y=0, \frac{1}{2}, \\
\left\{\frac{1}{8}, \frac{1}{16}\right\} & y=1, \\
\left\{\frac{1}{2^{n+1}}\right\} & y=\frac{1}{2^{n}}, n \in\{2,3,4, \cdots\} .\end{cases} \tag{2.8}
\end{align*}
$$

Then F, T are a common $(\mathrm{G}-\psi)$ contraction and $0 \in F(0) \cap T(0)$, where $d(x, y)=|x-y|$ and $\psi(t)=\frac{t}{t+1}$.
Property A^{\prime} : For any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, if $x_{n} \longrightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$, then there is subsequence $\left(x_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ such that $\left(x_{n_{k}}, x\right) \in E(G)$ for $n_{k} \in \mathbb{N}$. If We have property A^{\prime}, then improve the result of this paper as follows:

Theorem 2.5. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A^{\prime}. Let $F, T: X \longrightarrow C B(X)$ be a (G- ψ) contraction and $X_{F}=\{x \in X:(x, u) \in$ $E(G)$ for some $u \in F(x)\}$. Then the following statements hold.

1. for any $x \in X_{F},\left.F\right|_{[x]_{G}}$ has a fixed point.
2. If $X_{F} \neq \emptyset$ and G is weakly connected, then F, T have a fixed point in X.
3. If $X^{\prime}:=\cup\left\{[x]_{G}: x \in X_{F}\right\}$, then $F,\left.T\right|_{X^{\prime}}$ have a common fixed point.
4. If $F \subseteq E(G)$, then F, T have a common fixed point.

Corollary 2.6. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A. If G is weakly connected, then (G- ψ) contraction mappings $F, T: X \longrightarrow C B(X)$ such that $\left(x_{0}, x_{1}\right) \in E(G)$ for some $x_{1} \in F x_{0}$ have a common fixed point.

Corollary 2.7. Let (X, d) be a ϵ-chainable complete metric space for some $\epsilon>0$. Let $\psi \in \Psi$ and assume that $F, T: X \longrightarrow C B(X)$ be a such that there exists $k \in(0,1)$ with

$$
0<d(x, y)<\epsilon \Longrightarrow \psi(H(F(x), T(y)) \leq k \psi(d(x, y))
$$

Then T, F have a common fixed point.
Proof . Consider the G as $V(G)=X$ and

$$
E(G):=\{(x, y) \in X \times X: 0<d(x, y)<\epsilon\} .
$$

The ϵ-chainability of (X, d) means G is connected. If $(x, y) \in E(G)$, then

$$
\psi(H(F(x), T(y)) \leq k \psi(d(x, y))<\psi(d(x, y)) \leq d(x, y)<\epsilon
$$

and by using Lemma 1.5 for each $u \in F(x)$, we have the existence of $v \in T(y)$ such that $d(u, v)<\epsilon$, which implies $(u, v) \in E(G)$. Therefore F, T are $(\mathrm{G}-\psi)$ contraction mappings. Also, (X, d, G) has property A. Indeed, if $x_{n} \longrightarrow x$ and $d\left(x_{n}, x_{n+1}\right)<\epsilon$ for $n \in \mathbb{N}$, then $d\left(x_{n}, x\right)<\epsilon$ for sufficiently large n, hence $\left(x_{n}, x\right) \in E(G)$. So, by Theorem 2.2, F, and T have a common fixed point.

References

[1] N.A. Assad and W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972) 533-562.
[2] T.G. Bahaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
[3] I.Beg and A. Rashid Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl., 2013 (2013):252, doi 10,1186/1029-242X-2013-252
[4] I.Beg, A. Rashid Butt and S.Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010) 1214-1219.
[5] J. Gross and J. Yellen, Graph Theory and its Applications, CRC press, 2005.
[6] J. Jamchymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008) 1359-1373.
[7] S.B. Nadler Jr, Multivalued contraction mappings, Pac. J. Math. 30 (1969) 475-487.
[8] M. öztürk and E. Girgin, On some fixed-point theorems for ψ-contraction on metric space involving a graph, J. Inequal. Appl. 2014 (2014):39, doi: 10.1186/1029-242X-2014-39.
[9] A. Petrusel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418.

[^0]: *Corresponding author
 Email addresses: mhadian@iust.ac.ir (Masoud Hadian Dehkordi), mghods@iust.ac.ir (Masoud Ghods)

