Integer Points in Polyhedra Gennady Shmonin

Algorithms and complexity

Preliminary

Many problems, particularly in discrete mathematics, do not admit an analytic solution but
can trivially be solved in finite time, for example, by enumerating all potential solutions. Such
enumeration is a particular example of what we call an “algorithm”. Intuitively, an algorithm is a
finite sequence of instructions aiming to solve a specific problem. The notion of algorithms can
be made absolutely formal via Turing machines, which, despite of their simplicity, can be used
to simulate any real computational system. But for our purposes, intuitive understanding is
absolutely sufficient—programs written in C/C++/Java may serve as a good base. Nonetheless,
some formalism is still needed, to be able to prove “efficiency” of some algorithms.

Typically, we are not satisfied with just an arbitrary algorithm (or computer program). First
of all, it must be correct, i.e., always provide a solution of the problem. Yet, among all correct
algorithms, we prefer those which run faster. Naive enumeration requires considering all po-
tential solutions of the problem and usually fails to find a solution in reasonable time for “big”
instances of the problem.

For example, consider the perfect matching problem:

Given a graph G = (V, E), find a subset of edges M < E of size |V|/2 such that all
edges in M are pairwise disjoint (i.e., M is a perfect matching).

Clearly, we can enumerate all possible subsets M < E of size |V|/2 and check whether there is
one that is a perfect matching. But such an algorithm would need to look at (|\|/E|/|z) subsets,
and therefore, run for ages if |E| and |V| are big (just imagine that graph the input graph might
model all highways in the world). In contrast, there are much faster algorithms, which allow to
solve the problem in quite a reasonable time, comparable to the time needed to read the input
graph from memory. And this is, more or less, what we expect from all “efficient” algorithms:
their running time must be comparable with the time needed to read the input data, or in other
words, to the “size” of the input.

In order to combine these intuitive requirements into a rigorous theoretical framework, suit-
able for formal mathematical analysis of algorithms, we need to define what we mean by the
“size of the input”, by “the running time of the algorithm”, and finally, what we mean by saying
that “the running time must be comparable to the size of the input”.

1 Sizes and data structures

All objects used by an algorithm (numbers, matrices, graphs, equations, etc.) must in some way
be stored in the memory as a sequence of basic symbols, recognizable by the algorithm. Let X be
a finite set of symbols, further referred to as an alphabet. A finite ordered sequence of symbols
from X is called a string; the set of all symbols is denoted by Z*. The size of a string is the number
of symbols in it. Thus, every object used by an algorithm is a string. Observe that if size(z) is the

size of a string z representing, for instance, a matrix, then an algorithm cannot look at all entries
of the matrix in time smaller than size(z).

Of course, there is no unique way to represent all data structures using the symbols from Z,
and in order to proceed, we need to agree on one of them. First, we shall always assume that
X = {0, 1}; this naturally corresponds to real-world computers operating with bits. If the numbers
are written in binary encoding, then

size(z) =1+log,(lz| +1) forzez, (1)
size(a) = 1 +log,(Ipl +1) +log, (gl +1) fora=p/qeQwithp,qeZ,q>0 2)
n
size(c) = n+)_size(c;) for c = [c1,¢,...,cn]" € Q" (3)
i=1
m n
size(A) = mn + Z Z size(a;) for A=[a;jle Q""" 4)
i=1j=1

Another possibility is to write numbers in unary encoding, where a positive integer z is repre-
sented by a sequence of | z| ones. Then definitions (1) and (2) change to

size(z) =1+ |z] forzez,
size(a) =1+ |pl+1q| fora=p/lqeQwithp,qgeZ,q>0,

while equations (2)-(4) remain the same. The third common definition of sizes is slightly ide-
alistic and corresponds to the model, where representation of a number always takes constant
space; thus, equations (1) and (2) have the form

size(z) =1 forzez,
size(a) =1 fora=p/qeQwith p,geZ,q>0.

The size of a matrix is then the number of entries in it. The number 1 appearing in the formulae
above actually stands for any constant; as we shall see further, the actual value of those constant
does not matter for the analysis of algorithms.

Representation of other objects is also flexible. A graph G = (V, E) may be expressed via
adjacency lists, adjacency matrices, etc., but the size of these representations is typically O(m +
n), where n is the number of vertices and m is the number of edges. Linear equations a'x = 8
or inequalities a"x < f are given by a vector of coefficients a and a right-hand side . Systems
of linear equations Ax = b or inequalities Ax < b are given by a matrix of coefficients A and a
vector of right-hand sides b. Intuitively, it is often clear what is a “natural” representation of a
particular data structure on the alphabet X = {0, 1} and what is the size of that representation.

2 Problems

We distinguish between three types of “problems”; namely,

e decision problems, to which the answer is 'yes’ or 'no’: either there is a solution, or there
is no solution;

 search problems, where the task is to find a solution if one exists;

e optimization problems, where the task is to find a “best” (with respect to some criterion)
solution.

Formally, let Z be an alphabet. A decision problem can be identified with a subset IT of Z*;
then I1 can be viewed a set of inputs to the problem, for which the answer is ‘yes’ In words, we
say:

Given a string z€ X*, decide if z € II.
For example,

e “Given a graph G = (V, E), is there a perfect matching in G?” (Here II is the set of all graphs
having a perfect matching.)

* “Given a system of linear inequalities Ax < b, is there a solution x satisfying all these in-
equalities?” (Here II is the set of all systems of linear inequalities having a solution.)

* “Given a system of linear equations Ax = b, is there an integral non-negative solution x
satisfying all these inequalities?” (Here Il is the set of all systems of linear equations, for
which there is an integral non-negative solution.)

A search problem may be identified with a subset IT of X* x £* and the question is as follows:

Given a string z € %, find a string y € £* such that (z, y) € I1, or decide that no such
string exists.

We say that z is an input of the problem and y is a solution. For example,

e “Given a graph G = (V, E), find a perfect matching in G, or decide that G has no perfect
matching.” (Here II consists of all pairs (G, M) such that M is a perfect matching in a
graph G.)

* “Given a system of linear inequalities Ax < b, is there a solution x satisfying all these in-
equalities?” (Here I1 is the set of all pairs (Ax < b, x*) with Ax* < b.)

* “Given a system of linear equations Ax = b, is there an integral non-negative solution x
satisfying all these inequalities?” (Here II is the set of all pairs (Ax = b, x*) such that x* is
a non-negative integral vector with Ax* = b.)

Finally, an optimization problemI1 is generally the following:

Given a string z € £* and a cost function c¢: £* — Ry, find y € £* such that (z, y) € I
and f(y) is minimal (or maximal), or decide that no solution exists.

An optimization problem has the associated decision and search version, in which we ask about
existence of a y with f(y) being less (or greater) than some prescribed value. Often this allows
to exploit binary search in order to find an optimum solution. For instance, if we have a good
algorithm to find a matching (pairwise disjoint set of edges) in a graph of size at least y, or decide

3

that no such matching exist, we can run this algorithm log(|V'|/2) times to find a matching of
maximum size. Indeed, we know that there is a matching of size at most |V|/2 and at least one
(as any edge is a matching). Then we may ask the search algorithm for a matching of size at
least |V|/4, and depending on its answer, update the lower or the upper bound of the interval,
to which the size of a maximum matching is known to belong. Each time the length of that
interval will decrease by a factor of two, and after log(|V'|/2) iterations, we find a maximum-size
matching.

3 Algorithms and running time

As we agreed in the beginning, we shall assume intuitive understanding of what is an algorithm.
Thus, this is a finite set of instructions (with loops and branches possible); particularly, an al-
gorithm is also a string in £*. We say that an algorithm < solves a problem II if for any input
z € X*, it terminates after a finite number of steps and delivers a correct answer/solution. As
&/ is a string itself, there are only countably many algorithms. On the other hand, the num-
ber of possible problems is uncountable that implies that some problems cannot be solved by
any algorithm, i.e., undecidable. One of the most intriguing undecidable problems is testing
if a Diophantine equation has a solution (Hilbert’s tenth problem, resolved by Matiyasevich in
1970). Another popular example of an undecidable problem is the halting problem: Decide if a
given Turing machine (or computer program) terminates on a given input.

The running time of an algorithm on input z can be understood as the number of “elemen-
tary operations” the algorithm performs on input z. Typically, these elementary operations in-
clude addition, subtraction, multiplication, division, and comparison of numbers. It is natural
to expect that when the input grows, the algorithm needs more time to compute a solution.
Therefore, it makes sense to define the running time function of an algorithm as a function
f:Z+— Z. with f(n) being the largest running time over all inputs of size at most n. Efficiency
of an algorithm can then be expressed in terms of running time functions.

4 Polynomial, pseudo-polynomial and strongly polynomial al-
gorithms

An algorithm « is called polynomial if its running time function f(n) is bounded by some poly-
nomial in n. We say that a problem is solvable in polynomial time if there is a polynomial algo-
rithm that solves the problem. The class of all decision problems solvable in polynomial time
is denoted by P. We refer to polynomial algorithms as “efficient”, and to problems solvable in
polynomial time as “easy”.

But which storage model do we choose? For example, consider algorithms that accepts as
input a single integer z. If z is stored in unary encoding, i.e., size(z) = 1 + |z|, then an algorithm
with running time ©(|z|) is polynomial. On the other hand, if z is stored in binary encoding,
such an algorithm is not polynomial: indeed, |z| is exponential in size(z) = 1 + [log(|z| + 1)].
Moreover, in the most strict model, where size(z) = 1, the term “polynomial algorithm” actually
refers to algorithms that run in constant time (i.e., its running time is independent of z). In order

4

to distinguish these cases, we define an algorithm ¢ to be
e pseudo-polynomial if it is polynomial when the input is given in unary encoding,
* (weakly) polynomial if it is polynomial when the input is given in binary encoding,

e strongly polynomial if it is polynomial in the model with size(z) = 1 for every integer z and
also (weakly) polynomial.

For example, consider any algorithm < operating on an integral matrix A = [a;;] € Z™*" and
let @ := max{|a;;l: i =1,2,...,m, j = 1,2,...,n}. Then & is pseudo-polynomial if its running
time function is bounded by some polynomial in m, n and a. It is polynomial if its running
time function is bounded by some polynomial in m, n, and loga. Particularly, the size of any
number occurring during the execution of the algorithm must be bounded by a polynomial in
m, n and a as well. Lastly, of is strongly polynomial if its running time function is bounded by a
polynomial in m and n (assuming that each elementary operation takes constant time) and the
size of any number occurring during the execution is bounded by some polynomial in m, n and
loga.

It is absolutely clear how we can argue that a problem is easy: we need to describe an appro-
priate algorithm and prove that it is polynomial and yields a correct answer for any input. But
can we argue that a problem is “hard”?

5 NP-completeness

As defined in the previous section, the class P consists of problems solvable in polynomial time.
Another, possibly bigger class is called NP and can be seen as the class of decision problems, for
which an answer can be verified. In other words, finding an answer might be hard, but checking
its correctness is easy, provided a suitable certificate. Often, such a certificate is just a solution
to the associated search problem; for instance, given a system of linear equations Ax = b and an
integral non-negative vector x*, we can check in polynomial time if Ax* = b.

More formally, a decision problem IT < ~* belongs to NP if there is a polynomially solvable
decision problem IT' € £* x £* and a polynomial ¢ such that for each z € £*, z € I if and only if
thereis a y € Z* such that size(y) < ¢(size(z)) and (z, y) € IT'. Thus, z plays a réle of a polynomial-
size “proof”, or a “certificate”. It is clear that P < NP and that any problem in NP can be solved
in exponential time, as we can simply enumerate all possible certificates y. However, it is a big
open question if P # NP. The latter is widely believed to be true but no proof is known.

The complement of a decision problem IT < X* is the decision problem X* \II. The class of
decision problems, whose complement is in NP is denoted by coNP. Thus, coNP consists of the
decision problems II, for which the fact that a string z is not in I1 can be verified in polynomial
time, provided a polynomial-size certificate. Again, P < coNP is clear, and P # coNP is widely
believed but remains an open problem. Finally, it is believed that NP # coNP, but...an open
problem.

However, if P # NP really holds, then we already know many problems belonging to NP \ P.
These are the hardest problems in NP. Intuitively, we say that a problem II; is harder than a
problem II; if an efficient algorithm for I1; implies an efficient algorithm for 1. For example,

we can use an algorithm to find a maximume-size stable set in a graph (i.e., a subset of vertices
such that no two of them are connected by an edge) to find a maximum-size matching: Given
a graph G = (V, E), we construct a graph G’ = (V', E') with V' = E and (ey, e;) € E’ if and only if
edges e; and e; are disjoint in E; then a stable set in G’ yields a matching in G.

Formally, a decision problem IT; < X* is called reducible to a decision problem IT < X* if there
is a polynomial algorithm </ that for any string z € X* returns a string </ (z) such that z € I1; if
and only if &/ (z) € I1,. Particularly, if [T, is solvable in polynomial time, then II; is also solvable
in polynomial time. A problem II is called NP-hard if each problem in NP is reducible to II.
Finally, a problem II is NP-complete if it is NP-hard and belongs to NP itself. Surprisingly or
not, there are NP-complete problems and, in fact, there are many of them known. For instance,
finding a stable set of size at least y is NP-complete. A polynomial algorithm for any of NP-
complete problems would imply P = NP, and if P # NP, then none of these problems is solvable
in polynomial time.

In fact, there are many other complexity classes and the notion of completeness naturally
extends to all of them. One of research directions in algorithms and complexity theory is to dis-
tribute problems among these classes (and prove that a problem is complete in some of these
classes). For instance, given a problem II in NP, we would like to know if it is also in P or NP-
complete. For the problems proved to be NP-complete, it is sometimes interesting to know what
makes them hard; this brings us to the area of parameterized complexity. For example, we may
consider stable set problem on graphs of bounded degree: we assume that the degree of every
vertex in a graph is bounded by a constant, which does not belong to the input of the problem,
and ask for a polynomial algorithm in this case. However, the stable set problem remains hard
even with this assumption. Another example is integer programming: Given a system of lin-
ear inequalities Ax < b, is there an integral vector x* such that Ax* < b? This problem is also
NP-complete, but if we fix the number of variables (i.e., agree that the number of variables is
bounded by a constant, which does not belong to the input), then the problem can be solved in
polynomial time. In other words, there is an algorithm for integer programming with running
O(f (n) - poly(size(a;;)), m), where m is the number of inequalities and » is the number of rows,
f(n) might be an exponential function but poly(size(a;), m) is a polynomial in the size of the
entries of matrix A and the number of rows in A.

Almost all problems we shall consider in this class are related to integral solutions of a system
of linear inequalities, NP-hard in general, but solvable in polynomial time if we fix the number
of variables (or the number of inequalities). In the following section we sketch some of the basic
facts related to this subject.

	Sizes and data structures
	Problems
	Algorithms and running time
	Polynomial, pseudo-polynomial and strongly polynomial algorithms
	NP-completeness

