
ON THE INJECTIVE DIMENSION OF THE JACOBSON RADICAL
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Abstract. We conjecture that the injective dimension of the Jacobson radical equals the global dimen-

sion for Artin algebras. We provide a proof of this conjecture in case the Artin algebra has finite global
dimension and in some other cases.

Introduction

Recall that for a ring R the global dimension gldim(R) of R is defined as the supremum of the projective
dimensions of modules. In [A], Auslander proved the fundamental result that for semi-primary rings the
global dimension equals the maximum of the projective dimensions of the simple modules. For a modern
proof of Auslander’s result we refer to the book by Lam, see [L] theorem 5.72., where one can also find
applications of this result. Let J denote the Jacobson radical of a ring R. Then the result of Auslander
can be equivalently stated as gldim(R) = pd(J) + 1, where pd(J) denotes the projective dimension of the
Jacobson radical J . Thus in order to calculate the global dimension, it is enough to know the projective
dimension of a single module, namely the Jacobson radical of the ring. Suprisingly it seems that no
attention has been paid to the injective dimension of the Jacobson radical in the literature yet. In this
article we suggest the following conjecture:

Conjecture. Let A be an Artin algebra. Then the global dimension of A equals the injective dimension
of the Jacobson radical J of A.

We prove this conjecture for several classes of algebras in this article. The main theorem proves it for
algebras of finite global dimension:

Theorem. Let A be an Artin algebra of finite global dimension. Then the global dimension of A equals
the injective dimension of the Jacobson radical of A.

We further prove the conjecture for some other well studied classes of algebras such as local, selfinjec-
tive, Nakayama and Gorenstein algebras.

Corollary 1.8 is due to Dan Zacharia. The author thanks Dan Zacharia for useful discussions and for
allowing him to use corollary 1.8 in this article.

1. The injective dimension of the Jacobson radical

We assume that all algebras are connected non-semisimple Artin algebras and all modules are finitely
generated right modules if nothing is stated otherwise. We assume that the reader is familiar with the
basics of Artin algebras as explained for example in the book [ARS] or in [AnFul]. We denote by pd(M)
the projective dimension of a module M and by id(M) the injective dimension of M . We denote by A
an algebra and by J its Jacobson radical. Since the equation gldim(A) = id(J) is invariant under Morita
equivalence, we can assume that the algebra A is basic, that is A/J is isomorphic to the direct product of
division rings. Recall that the finitistic projective dimension of an algebra A is defined as the supremum
of all projective dimensions of modules with finite projective dimension. Dually, the finitistic injective
dimension of an algebra A is defined as the supremum of all injective dimensions of modules with finite
injective dimension. It is a famous open problem whether the finitistic dimension is always finite for
Artin algebras. Recall that an algebra is called QF-3 algebra in case the injective envelope of the regular
module is projective. Famous example of QF-3 algebras are Nakayama algebras (or sometimes called
serial algebras in the literature), which are by definition algebras such that every indecomposable module
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is uniserial. That Nakayama algebras are QF-3 algebras can be found for example in [AnFul] theorem
32.2.

Theorem 1.1. Let A be an Artin algebra.

(1) The global dimension of A equals the supremum of the injective dimensions of modules
(2) The global dimension of A equals the maximum of the projective dimension of the simple A-

modules.
(3) The global dimension of A equals the maximum of the injective dimension of the simple A-modules.

Proof. (1) This is well known, see for example [L], corollary 5.71.
(2) This is the classical result of Auslander mentioned in the introduction, see for example [L] theorem

5.72. for a proof.
(3) Let B = Aop be the opposite algebra of A. Then by (1) the global dimension of B equals the

maximum of projective dimensions of simple modules of B. Let S be a simple B-module with
projective dimension equal to the global dimension of B. Applying the duality and noting that
A and B have the same global dimension, D(S) is a simple A-module with injective dimension
equal to the global dimension of A.

�

Lemma 1.2. Let 0→ X → Y → Z → 0 be a short exact sequence. Then

(1) pd(X) ≤ max(pd(Y ), pd(Z)− 1).
(2) id(Z) ≤ max(id(Y ), id(X)− 1).

Proof. For (1), see [ASS] A.4. proposition 4.7. (b) in the appendix of the book. (2) is dual to (1).
�

Proposition 1.3. Let A be an Artin algebra. Then the global dimension of A equals the injective
dimension of J in the following cases:

(1) A is an algebra with finitistic injective dimension equal to zero.
(2) A is a Nakayama algebra.

Proof. (1) Recall that we assume that our algebras are non-semisimple. Assume that A has finitistic
injective dimension equal to zero. Then A has infinite global dimension, since all non-injective
modules must have infinite injective dimension by assumption. Assume J does not have infinite
injective dimension and therefore must be injective. Then the short exact sequence

0→ J → A→ A/J → 0

splits and thus every simple module is a direct summand of A and is therefore projective. This
would mean that the global dimension of A is zero as the global dimension equals the maximum
of the projective dimensions of the simple modules. This is a contradiction and thus the injective
dimension of J must be infinite.

(2) By (1), we can assume that A is not selfinjective, as selfinjective algebras have finitistic injective
dimension equal to zero.
Let A be a (nonselfinjective) Nakayama algebra with global dimension g > 0. Let P be an
indecomposable projective module with injective dimension g (such a module exists by [ARS] VI.
5. lemma 5.5). Then P is not injective and thus there is an embedding P → I where I is the
injective envelope of P . But I is projective, since Nakayama algebras are QF-3 algebras . Let
I = eiA. Then we can write P = eiJ

k for some k, since eiA is a uniserial module. But with
eiJ

k, all the modules eiJ
l for l = 0, 1, 2, ...k are also projective (this follows from the dual of

theorem 32.6. of [AnFul]). Thus we can write P as the radical of the projective module eiJ
k−1.

Therefore, there exists a direct summand of the Jacobson radical with injective dimension g and
thus the injective dimension of the Jacobson radical is itself equal to g.

�

Corollary 1.4. Let A be an Artin algebra that is local or selfinjective. Then gldim(A) = id(J).
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Proof. This follows immediately from 1.3, since every local or selfinjective algebra has the property that
an indecomposable module is either injective or has infinite injective dimension and thus the finitistic
injective dimension for such algebras is zero.

�

Before the next proposition, we remind the reader on the notion of quiver of an algebra, see for example
[SY2] for this notion and chapter 11.1. of [HGK] for algebras that are more general than Artin algebras.
Let A be a basic Artin algebra with a decomposition of 1A into a sum of pairwise orthogonal primitive
idempotents ei:

1A =

n⊕
k=1

ei.

The quiver of A, denoted by Q(A), is defined as the graph with point 1, ..., n (i corresponds to the
primitive idempotent ei) and an arrow from i to j if and only if eiJej/eiJ

2ej 6= 0. One can also give
each arrow a weight and make Q(A) into a valued quiver, see [SY2] chapter VII., but we do not need this
here. Note that Q(A) is a connected graph if and only if A is a connected algebra, see for example [HGK]
theorem 11.1.9. Since we assume that all our algebras are connected, also the quivers of our algebras
will be connected. Corresponding to the primitive idempotents ei (and the point i in the quiver of A)
there are the pairwise non-isomorphic indecomposable projective modules eiA with their tops Si, which
are the pairwise non-isomorphic simple A-modules. We need the following lemma:

Lemma 1.5. Let A be an Artin algebra and S a simple A-module. Then S is injective iff there is no
arrow in Q(A) that ends at i.

Proof. Let S = Si. There is an arrow from j to i in Q(A) iff Ext1A(Sj , Si) 6= 0 by theorem 1.9. of [SY2].
Now a module M is injective iff Ext1A(Sj ,M) = 0 for all simple modules j = 1, ..., n. Thus Si is injective
iff Ext1A(Sj , Si) = 0 for all j iff there is no arrow from a point j to i in Q(A). �

Proposition 1.6. Let A be an Artin algebra, then the injective dimension of J/J2 equals the global
dimension of A.

Proof. Note that J/J2 is a direct sum of simple modules, since this module is semisimple. Let S be a
simple module that is not injective corresponding to the point i in the quiver Q(A) of A. Then there
is an arrow starting at a point j to i in Q(A) or else S would be injective by 1.5. Now S is a direct
summand of J/J2 since ejJ/J

2ei 6= 0 and J/J2 is semisimple. But the global dimension of an algebra
equals the supremum of the injective dimensions of simple modules. Thus there is a simple non-injective
module with injective dimension equal to the global dimension that is a summand of J/J2, showing that
J/J2 has injective dimension equal to the global dimension.

�

Theorem 1.7. Let A be an Artin algebra of finite global dimension g. Then the injective dimension of
the Jacobson radical of A equals the global dimension of A.

Proof. Note that we assume that our algebras are not semisimple and thus g > 0. We have the short
exact sequence

0→ J2 → J → J/J2 → 0,

which gives that id(J/J2) ≤ max(id(J), id(J2) − 1) by 1.2. By 1.6 we have id(J/J2) = g, and thus the
inequality gives g ≤ max(id(J), id(J2) − 1). Now since we assume that A has finite global dimension,
id(J2)− 1 ≤ g− 1 and the inequality g ≤ max(id(J), id(J2)− 1) can only hold if id(J) = g, which proves
the theorem. �

We get two corollaries from the previous theorem. Recall that an algebra A is called Gorenstein in
case the injective dimension of the left and right regular modules are finite and coincide. In this case
the Gorenstein dimension of an algebra is by definition the injective dimension of the regular module A.
The class of Gorenstein algebras contains all algebras of finite global dimension and for algebras of finite
global dimension the Gorenstein dimension coincides with the global dimension. Using 1.7 we can prove
that our conjecture on the injective dimension of the Jacobson radical also holds for Gorenstein algebras.
The next corollary and its proof are due to Dan Zacharia.
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Corollary 1.8. Let A be a Gorenstein algebra. Then the injective dimension of the Jacobson radical
coincides with the Gorenstein dimension of A.

Proof. In case A has finite global dimension, the result follows from 1.7. Thus assume A is Gorenstein
with infinite global dimension. We have to prove that the Jacobson radical J has infinite injective
dimension. Look at the following short exact sequence, where the injective map is given by the inclusion
of the radical into the regular module:

0→ J → A→ A/J → 0.

The module A/J is a direct sum of simple modules and contains each simple A-module at least once
as a direct summand. Since the global dimension equals the maximum of injective dimension of simple
modules, A/J has infinite injective dimension. By assumption, A has finite injective dimension. Assume
now that J also has finite injective dimension. Then looking at the above short exact sequence and using
1.2, we get that id(A/J) ≤ max(id(A), id(J) − 1) < ∞, which is a contradiction. Thus J must have
infinite injective dimension.

�

We remark that the above proof of the theorem 1.7 also shows that the equality gldim(A) = id(J)
holds for algebras A where one has id(J) ≥ id(J2)− 1. We note that as a corollary:

Corollary 1.9. Let A be an Artin algebra with Jacobson radical J such that id(J) ≥ id(J2) − 1. Then
the global dimension of A equals the injective dimension of J . This is especially true for radical square
zeros algebras, namely such algebas where J2 = 0.

We remark that we tested the inequality id(J) ≥ id(J2) − 1 for various classes of algebras with the
computer and in all our examples we even had that id(J) ≥ id(J2).
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