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1. Introduction

We consider the Arrow-Debreu competitive market equilibrium problem which was first formulated by Leon

Walras in 1874 [36]. In this problem everyone in a population of n players has an initial endowment of a

divisible good and a utility function for consuming all goods—their own and others. Every player sells the

entire initial endowment and then uses the revenue to buy a bundle of goods such that his or her utility

function is maximized. Walras asked whether prices could be set for everyone’s good such that this is possible.

An answer was given by Arrow and Debreu in 1954 [1] who showed that such equilibrium would exist if the

utility functions were concave. Their proof was non-constructive and did not offer any algorithm to find such

equilibrium prices.

Fisher was the first to consider an algorithm to compute equilibrium prices for a related and different

model where players are divided into two sets: producers and consumers; see Brainard and Scarf [3,34].

Consumers have money to buy goods and maximize their individual utility functions; producers sell their

goods for money. The price equilibrium is an assignment of prices to goods so that when every consumer

buys a maximal bundle of goods then the market clears, meaning that all the money is spent and all the

goods are sold. Fisher’s model is a special case of Walras’ model when money is also considered a commodity

so that Arrow and Debreu’s result applies.

Eisenberg and Gale [11,16] gave a convex optimization setting to formulate Fisher’s model with linear

utility functions. They constructed a concave objective function that is maximized at the equilibrium. Thus,

finding an equilibrium became solving a convex optimization problem, and it could be obtained by using the

ellipsoid method in polynomial time. Here, polynomial time means that one can compute an ε approximate

equilibrium in a number of arithmetic operations bounded by polynomial in n and log 1
ε . Devanur et al. [9]

recently developed a “combinatorial” algorithm for solving Fisher’s model with linear utility functions too.

Both the ellipsoid method and the combinatorial algorithm have running times of the order of O(n8 log(1/ε)).

Neither approach, Eisenberg-Gale or Devanur et al., applied to the more general Walras model. The ε based

complexity result seems more appropriate for analyzing these problems because solutions may be irrational,

when the economy model or utility function is more general, even if all input data are rational.

Solving the Arrow-Debreu problem proved to be more difficult. Eaves [12] showed that the problem

with linear utility can be formulated as a linear complementarity problem (e.g. Cottle et al. [6]) so that

Lemke’s algorithm could compute the equilibrium, if it existed, in a finite time. It was also proved there

that there is an equilibrium solution whose entries were rational as a solution to an n2-dimension system of

linear equations of the original rational inputs. In a later paper [13], Eaves also proved that the problem with

Cobb-Douglas utilities could be solved in strongly polynomial time of O(n3). Other effective algorithms to

solve the problem include Primak [32], Dirkse and Ferris [10], and Rutherford [33]; see an excellent survey

by Ferris and Pang [15]. None of these are proved to be polynomial-time algorithms. Esteban-Bravo [14]
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recently gave another survey on linear and nonlinear optimization algorithms to compute equilibria that

could be found in the computational economics literature and suggested alternative approaches, based on

interior-point methods, which might be able to compute these equilibria in a practically efficient manner

even for large-scale models; but no theoretical complexity analysis was presented there either.

More recently, however, Jain [19] has showed that Walras’s model can be also formulated as a convex

optimization, more precisely, a convex inequality problem, so that the ellipsoid method again can be used

in solving it. Remarkably, it turned out that the very same formulation was developed by Nenakhov and

Primak [30] more than twenty years earlier. They found a clean set of posinomial inequalities to describe the

problem which are necessary and sufficient. This set of inequalities can be logarithmically transformed into

a set of convex inequalities, a technique which was used in the early ’60s for geometric programming.

The goal of this paper is threefold. First, we develop a polynomial-time interior-point algorithm to solve

Fisher’s model with linear utility. The complexity bound, O(n4 log 1
ε ), of this algorithm is significantly lower

than that of either the ellipsoid or the “combinatorial” algorithm mentioned above. Secondly, we present

an interior-point algorithm, which is not primal-dual, for solving the Arrow-Debreu pure exchange market

equilibrium problem with linear utility. The algorithm has an efficient barrier function for every convex

inequality where the self-concordant coefficient is at most 2. Thus, the number of arithmetic operations

of the algorithm is again bounded by O(n4 log 1
ε ), which is substantially lower than the one obtained by

the ellipsoid method. If the input data are rational, then an exact solution can be obtained by solving the

identified system of linear equations and inequalities, such as in Eaves’ model, when ε < 2−L, where L is the

bit length of the input data. Thus, the arithmetic operation bound becomes O(n4L), which is in line with

the best complexity bound for linear programming of the same dimension and size.

Finally, we develop a convex optimization setting for Walras’ model, and present a continuous path

leading to the set of Arrow-Debreu equilibria, similar to the central path developed for linear programming

interior-point methods (see, e.g., Megiddo [24]). The path is derived from the weighted logarithmic utility

and barrier functions and the Brouwer fixed-point theorem. The defining equations are bilinear and possess

some primal-dual structure for the application of Newton’s method. We also discuss some extensions of our

results at the end of the paper.

2. An Interior-Point Algorithm for Solving the Fisher Equilibrium Problem

In Fisher’s model the players are divided into two sets: producers and consumers. Consumer i, i ∈ C, has

given money endowment wi to spend and buys goods to maximize their individual utility functions; producer

j, j ∈ P , sells its good for money. The price equilibrium is an assignment of prices to goods so that when

every consumer buys a maximal bundle of goods then the market clears, meaning that all the money is spent

and all the goods are sold. Eisenberg and Gale [11] gave a convex optimization formulation, where, without
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losing generality, each producer has one unit of his or her good.

maximize
∑

i∈C wi log
(∑

j∈P uijxij

)

subject to
∑

i∈C xij = 1, ∀j ∈ P

xij ≥ 0, ∀i, j.
Here, player i, i ∈ C, has a linear utility function

ui(xi·) = u(xi1, ..., xin) =
∑

j

uijxij ,

where uij ≥ 0 is the given utility coefficient of player i for producer j’s good and xij represents the amount

of good bought from producer j by consumer i. They proved that the optimal Lagrange multipliers of this

convex problem are the market clearing prices.

Throughout this paper, we make the following assumptions:

Assumption 1 Every consumer’s initial endowment wi is positive, at least one uij is positive for every

i ∈ C, and at least one uij is positive for every j ∈ P .

This is to say that every consumer in the market has money to spend and he or she likes at least one good;

and every good is valued by at least one consumer. We will see that, with these assumptions, each good

can have a positive equilibrium price. If a consumer has zero budget or his or her utility has zero value for

every good, then buying nothing is an optimal solution for him or her so that he or she can be removed

from the market; if a good has zero value to every consumer, then it is a “free” good with zero price in a

price equilibrium and can be arbitrarily distributed among the consumers so that it can be removed from

the market too.

2.1. The weighted analytic center

The Eisenberg-Gale model can be rewritten as

maximize
∑

i∈C wi log ui (1)

subject to
∑

i∈C xij = 1, ∀j ∈ P

ui −
∑

j∈P uijxij = 0, ∀i ∈ C

ui, xij ≥ 0, ∀i, j.

Consider a more general problem

maximize
∑n

j=1 wj log xj (2)

subject to Ax = b,

x ≥ 0,
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where the given A is an m× n-dimensional matrix with full row rank, b is an m-dimensional vector, and wj

is the nonnegative weight on the jth variable. Any x which satisfies the constraints is called a primal feasible

solution, while any optimal solution to the problem is called a weighted analytic center.

If the weighted analytic center problem has an optimal solution, the optimality conditions are

Sx = w,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0,

(3)

where y and s are the Lagrange or KKT multipliers (also dual variable and slacks of the dual linear program:

min bT y subject to s = AT y ≥ 0), and S is the diagonal matrix with slack vector s on its diagonals. Let

the feasible set of (2) be bounded and have a (relative) interior, i.e., it has a strictly feasible point x > 0

with Ax = b (this clearly holds for problem (1)). Then, there is a strictly feasible dual solution s > 0 with

s = AT y for some y. Moreover, from the literature of interior-point algorithms (e.g., Megiddo and Kojima

et al. [24,23] and Güler [18]) here is what we know about the problem:

– The mapping u(x, s) = Sx maps F++ := {(x, s) > 0 : Ax = b, s = AT y} onto Rn
++ := {u > 0 ∈ Rn}

diffeomorphically, or u(·, ·) is continuous, differentiable and one-to-one, i.e., for any w ∈ Rn
++, system (3)

has a unique solution.

– The inverse mapping maps Rn
+ := {u ≥ 0 ∈ Rn} to F+ := {(x, s) ≥ 0 : Ax = b, s = AT y} upper

semi-continuously. In particular, let w := µw̄, where vector w̄ > 0 is fixed, and consider the solution of

(3) parameterized by scalar µ > 0. Then, the path of the solution is a one-dimensional smooth curve and

it converges as µ tends to 0 from above.

When wj > 0 for all j and integral for all j, a weight-scaling interior-point algorithm was developed by

Atkinson and Vaidya [2] where the arithmetic operation complexity bound is O(n3 log(max(w)
min(w) )) to compute

a solution such that
‖Sx− w‖ ≤ O(min(w)),

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.

They start with an approximate analytic center where all weights equal min(w), and then scale them up to

w iteratively. It is not clear how their algorithm can be adapted or analyzed when some of the wj ’s are zeros,

which is the case in Fisher’s model (1).

2.2. A modified primal-dual path-following algorithm

In this subsection, we modify the standard primal-dual path-following algorithm (e.g., Kojima et al. [22],

Monteiro and Adler [27] and Mizuno et al. [26]) for solving problems (2) and (1) and analyze their complexity
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to computing an ε-solution for any ε > 0:

‖Sx− w‖ ≤ ε,

Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.

(4)

Let x > 0 with Ax = b and (y, s > 0) with s = AT y be a primal-dual interior-point pair such that

‖Sx− ŵ‖ ≤ ηµ, (5)

where µ ≥ 0 represents an error measure (similar to the complementarity gap in classical interior-point

algorithms for linear programming), η is a positive constant less than 1, and

ŵj = max{µ, wj}. (6)

Such a point pair is called an approximate central-path point pair of the primal-dual feasible set F++.

Now we solve a primal-dual system of linear equations for dx, dy and ds:

Sdx + Xds = ŵ+ −Xs,

Adx = 0,

−AT dy + ds = 0,

(7)

where

ŵ+
j = max{(1− η√

n
)µ,wj}. (8)

Note that dT
x ds = dT

x AT dy = 0 here. The work involved in solving the system is to form the normal matrix

ADAT , where D is a diagonal matrix whose diagonal entries are strictly positive, and factorize it. More

precisely, if we premultiply both sides of the first equation of (7) by S−1, we have

dx + S−1Xds = S−1(ŵ+ −Xs);

premultiplying by A and noting Adx = 0 we have

AS−1Xds = AS−1(ŵ+ −Xs);

and substituting ds = AT dy we have

AS−1XAT dy = AS−1(ŵ+ −Xs),

where AS−1XAT is the normal matrix with D = S−1X.

After obtaining (dx, dy, ds) let

x+ := x + dx,

y+ := y + dy,

s+ := s + ds.

(9)
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Then, we prove that x+ and (y+, s+) are an interior-point feasible pair, and

‖(S+)x+ − ŵ+‖ ≤ ηµ+ (10)

where

µ+ = (1− η√
n

)µ,

so that the computation can repeat.

First, it is helpful to re-express dx and ds. Let

p := X−.5S.5dx,

q := X .5S−.5ds,

r := (XS)−.5(ŵ+ −Xs),

(11)

Note that

p + q = r and pT q = 0

so that p and q represent an orthogonal decomposition of r.

Secondly, from (5), (6), and (8), we have

xjsj ≥ ŵj − ηµ ≥ (1− η)µ

and

‖ŵ+ −Xs‖ = ‖ŵ+ − ŵ + ŵ −Xs‖ ≤ ‖ŵ+ − ŵ‖+ ‖ŵ −Xs‖ ≤ ηµ + ηµ = 2ηµ,

which implies that

‖r‖ ≤ ‖(XS)−.5‖‖ŵ+ −Xs‖ ≤ 2η
√

µ√
1− η

.

Moreover, it is also proved in Mizuno et al. [26] that

‖p‖2 + ‖q‖2 = ‖r‖2 and ‖Pq‖ ≤
√

2
4
‖r‖2.

Thus,

‖(S+)x+ − ŵ+‖2 = ‖(S + Ds)(x + dx)− ŵ+‖2

= ‖Sx + Sdx + Xds − ŵ+ + Dsdx‖2

= ‖Dsdx‖2

= ‖Pq‖2

≤
(√

2
4
‖r‖2

)2

≤
(√

2η2

1− η
µ

)2

≤
( √

2η2

(1− η)2
µ+

)2

.



8 Yinyu Ye

Thus, if we choose constant η such that √
2η2

(1− η)2
≤ η

(for example, η = 1/4), then condition (10) holds. Moreover,

‖X−1(x+ − x)‖ = ‖X−1dx‖
= ‖(XS)−.5p‖
≤ ‖(XS)−.5‖‖p‖
≤ ‖p‖√

(1− η)µ

≤ ‖r‖√
(1− η)µ

≤ 2η

1− η
< 1,

which implies that x+ > 0. Similarly, we have s+ > 0. That is, (x+, y+, s+) is a feasible interior-point pair.

We can generate an initial point pair x0 > 0 and s0 > 0 such that

‖S0x0 − µ0e‖ ≤ ηµ0

where µ0 = max(w) and e is the vector of all ones. Such a point pair corresponds to an approximate analytic

center of the bounded primal feasible and dual objective-level set. In problem (1), the primal feasible set has

a relative interior and it is bounded, which implies that the dual feasible set has a relative interior and its

objective-level set is bounded. The complexity to generate such an initial point pair is O(n3 log n) arithmetic

operations which will be seen in the next section. Since the dual feasible set is homogeneous, we can always

scale (y, s) so that µ0 = max(w).

Note that µ is decreased at a geometric rate (1 − η/
√

n) and it starts at max(w). Also, if wj = 0 for

some j, then

sjxj ≤ ε√
n

from

|sjxj − µ| ≤ ηµ

as soon as µ ≤ ε√
n(1+η)

. Thus, we have

Theorem 1 The primal-dual path-following algorithm solves the partial weight analytic center problem (2)

in O(
√

n log(n max(w)/ε)) iterations and each iteration solves a system of linear equations in O(nm2 + m3)

arithmetic operations. If Karmarkar’s rank-one update technique is used, the average arithmetic operations

per iteration can be reduced to O(n1.5m).

If the predictor-corrector algorithm of Mizuno et al. [26] is used, the quadratic convergence result of

[38] (also see [28]) applies to solving problem (2). We have
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Corollary 1 The primal-dual predictor-corrector algorithm solves the partial weight analytic center problem

(2) in O(
√

n(log(n max(w)C(A, b)) + log log(1/ε)) iterations and each iteration solves a system of linear

equations in O(nm2 + m3) arithmetic operations. Here, C(A, b) is a positive fixed number depending on the

data A and b, and if the entries of A and b are rational numbers then C(A, b) ≤ 2O(L(A,b)) where L(A, b) is

the bit-length of A and b.

These results indicate that the complexity of the weighted analytic center problem is in line with linear

programming of the same dimension and size.

2.3. Complexity analysis of solving the Fisher equilibrium

In solving Fisher’s problem with m = |P | producers and n = |C| consumers formulated by Eisenberg and

Gale in (1), the number of variables becomes mn + n and the number of equalities is m + n. We can assign

the initial x0 such that

x0
ij =

1
n

, ∀i, j

so that

u0
i =

1
n

∑

j∈P

uij , ∀i.

Let the dual vector y = (p; π) and set the dual variable with equality constraint j ∈ P to

p0
j = 2nβ

and dual variable with equality constraint i ∈ C to

π0
i =

β

u0
i

.

Then, we have slack variable s0
i = π0

i and u0
i

π0
i u0

i = β, ∀i

and slack variable s0
ij and x0

ij

s0
ijx

0
ij = (p0

j − π0
i uij)/n = 2β − uijβ∑

k∈P uik
, ∀i, j

which is between β and 2β. Using at most O(log(mn)) interior-point iterations, we will have an interior-point

pair satisfying condition (5) (e.g., see [39]).

Moreover, matrix A of (1) is sparse and each of its columns has at most two nonzeros. Thus, ADAT

can be formed in at most O(mn) operations, and it can be factorized in O((m + n)3) arithmetic operations.

Thus, we have
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Theorem 2 The modified primal-dual path-following algorithm solves the Fisher equilibrium problem (1)

with m producers and n consumers in at most O(
√

mn log((m + n)max(w)/ε)) iterations and each iteration

solves a system of linear equations in O((m + n)3) arithmetic operations.

This results a significant improvement over the O(m4n4 log((m+n)/ε)) arithmetic operation bound of either

the ellipsoid method or the combinatorial algorithm mentioned earlier.

In addition to the feasibility conditions, the optimality conditions of the Eisenberg-Gale formulation

can be written as

pj ·
∑

k∈P

uikxik ≥ wiuij , ∀i, j

xijpj ·
∑

k∈P

uikxik = xijwiuij , ∀i, j.

One can see that Assumption 1 on wi and uij implies p > 0. Moreover, an optimal solution xij and p of the

Eisenberg-Gale formulation is a solution of the system equations and inequalities:

pj = wiuij∑
k∈P

uikxik
, xij > 0, ∀(i, j) ∈ B∗

pj = wiuij∑
k∈P

uikxik
, xij = 0, ∀(i, j) ∈ Z∗

pj >
wiuij∑

k∈P
uikxik

, xij = 0, ∀(i, j) ∈ N∗

∑
i∈C xij = 1, pj > 0, ∀j

where B∗ is the set of the optimal super-basic variables xij which can be positive at an optimal primal

solution, N∗ is the set of optimal dual slacks

sij = pj − wiuij∑
k∈P uikxik

which can be positive at an optimal dual solution, and Z∗ contains the rest. Since the optimal solution set of

the Eisenberg-Gale formulation is convex, (B∗, Z∗, N∗) is a unique partition of all variables, and an optimal

solution pair with xij > 0 for all (i, j) ∈ B∗ and sij > 0 for all (i, j) ∈ N∗ is called a (relative) interior-point

or maximal-cardinality solution pair. A rounding procedure for interior-point algorithms was developed to

identify the partition and to round an approximate solution to an exact (relative) interior-point solution for

solving a range of convex optimization problems; see, e.g., [25,39].

Note that for any given (i, j) ∈ B∗ we have uij > 0 and if (i, k) ∈ B∗

uij

pj
=

uik

pk
;

and if (i, k) 6∈ B∗
uij

pj
≥ uik

pk
.

For any i, let

λi =
pk

uik
, ∀(i, k) ∈ B∗.
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Then, for any i, we have
∑

k∈P

uikxik =
∑

k∈P

uik

pk
pkxik

=
∑

k:(i,k)∈B∗

uik

pk
pkxik

=
∑

k:(i,k)∈B∗

1
λi

pkxik

=
1
λi

∑

k:(i,k)∈B∗
pkxik

=
1
λi

∑

k∈P

pkxik.

Therefore, if we view products pjxij as new variables yij , then the above system becomes a system of linear

equations and inequalities:

uijλi = pj , yij > 0, ∀(i, j) ∈ B∗

uijλi = pj , yij = 0, ∀(i, j) ∈ Z∗

uijλi < pj , yij = 0, ∀(i, j) ∈ N∗
∑

j∈P yij = wi, ∀i
∑

i∈C yij = pj , ∀j.
(Note the network-flow structure of the system which was explored by Devanur et al. [9].) Hence, there

exists a solution where entries of y∗ij , p∗j and λ∗i must be rational numbers and their size is bounded by the

bit-length L of all input data uij and wi. Moreover, there is a relative interior-point solution to the system

such that

y∗ij ≥ 2−L, ∀(i, j) ∈ B∗

and

2L ≥ p∗j ≥ uijλ
∗
i + 2−L, ∀(i, j) ∈ N∗.

These bounds are transformed back on the corresponding solution to the original system

x∗ij ≥ 2−2L, ∀(i, j) ∈ B∗

s∗ij = p∗j − wiuij∑
k∈P

uikx∗
ik

≥ 2−2L, ∀(i, j) ∈ N∗.
(12)

Thus, the interior-point algorithm rounding technique (e.g., [25,39]) can be applied to identify the partition

and to compute an exact solution of the above system in O(
√

mnL) interior-point algorithm iterations. We

now give a complete proof below.

Consider the more general problem (2) and let W = {j : wj > 0, j = 1, ..., n}. Then, the pair

(x∗j , s
∗
j ) must satisfy x∗js

∗
j = wj for j ∈ W and x∗js

∗
j = 0 for j 6∈ W in any optimal solution pair (x∗, s∗)

of (2). Let (x, s) be any feasible solution pair (x, s) which satisfies the centering condition (5) and (6) for

µ ≤ min{wj : j ∈ W}. Then,

wj − ηµ ≤ xjsj ≤ wj + ηµ, ∀j ∈ W
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and

(1− η)µ ≤ xjsj ≤ (1 + η)µ, ∀j 6∈ W.

For simplicity, let 1 6∈ W and x∗1 > 0 (s∗1 = 0) in a relative interior-point solution pair (x∗, s∗) of (2), i.e.,

1 ∈ B∗. Since

(x− x∗)T (s− s∗) = 0

we have

sT x∗ + xT s∗ = xT s + (x∗)T s∗ ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ

or
∑

j∈W

(x∗jsj + s∗jxj) +
∑

j 6∈W

(x∗jsj + s∗jxj) ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ. (13)

For every j ∈ W , we have

x∗jsj + s∗jxj ≥ 2
√

(xjsj)(x∗js
∗
j ) = 2

√
(xjsj)wj ≥ 2wj

√
1− ηµ

wj
≥ 2wj(1− ηµ

wj
) = 2wj − 2ηµ,

which, together with (13) and η = 1/4, imply

∑

j 6∈W

(x∗jsj + s∗jxj) ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ−
∑

j∈W

(2wj − 2ηµ)

=
∑

j∈W

(3ηµ) +
∑

j 6∈W

(1 + η)µ ≤ n(1 + η)µ.

Therefore, in particular, we have

s1x
∗
1 = s1x

∗
1 + x1s

∗
1 ≤ n(1 + η)µ,

so that

x1n(1 + η)µ ≥ x1s1x
∗
1 ≥ (1− η)µx∗1

which implies that

x1 ≥ 1− η

n(1 + η)
x∗1 and s1 ≤ n(1 + η)

µ

x∗1
.

Similarly, if s∗1 > 0 (x∗1 = 0) in the pair (x∗, s∗), i.e., 1 ∈ N∗, we have

s1 ≥ 1− η

n(1 + η)
s∗1 and x1 ≤ n(1 + η)

µ

s∗1
.

Now we define the set

P k = {j : xk
j ≥ sk

j }

where {xk, sk} is the solution sequence generated by the interior-point algorithm proposed earlier, and have

B∗ ⊂ P k and N∗ ∩ P k = ∅,

as soon as

µk <
1− η

n2(1 + η)2
min{(x∗j + s∗j )

2 : j ∈ B∗ ∪N∗}.
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We have just shown in (12) that for solving the Fisher problem

min{(x∗j + s∗j )
2 : j ∈ B∗ ∪N∗} ≥ 2−2L.

Thus, after O(
√

mnL) interior-point algorithm iterations (we can omit log n, since L ≥ n), the algorithm

guarantees B∗ ⊂ P k and N∗ ∩ P k = ∅. Then we formulate the system of linear equations and inequalities:

uijλi = pj , yij ≥ 0, ∀(i, j) ∈ P k

uijλi ≤ pj , yij = 0, ∀(i, j) 6∈ P k

∑
j∈P yij = wi, ∀i

∑
i∈C yij = pj , ∀j,

where the system is sure to have a feasible solution and any solution is a Fisher price equilibrium. One can

simply apply an interior-point linear programming algorithm to compute an exactly feasible solution in no

more than O(
√

mn(m + n)3L) arithmetic operations. To summarize, we have

Theorem 3 The modified primal-dual path-following algorithm, coupled with the rounding procedure, solves

the Fisher equilibrium problem (1) with m producers and n consumers exactly in at most O(
√

mn(m+n)3L)

arithmetic operations, where L is the bit-length of the input data uij and wi.

This theorem indicates, for the first time, that the complexity of the Fisher equilibrium problem is completely

in line with linear programming of the same dimension and size (mn + n variables and m + n constraints).

3. An Interior-Point Algorithm for Solving the Arrow-Debreu Equilibrium Problem

Here, without loss of generality, let each of the n players have exactly one unit of divisible good for trade

(we will relax this assumption later), and let player i, i = 1, ..., n, have the linear utility function

ui(xi1, ..., xin) =
∑

j

uijxij ,

where uij is the given utility coefficient of player i for player j’s good and xij represents the amount of good

bought from player j by player i. Again, assume that at least one uij > 0 for every i, and at least one uij > 0

for every j; that is, every player in the market likes at least one good; and every good is valued by at least

one player. We will see that, with these assumptions, each good can have a positive equilibrium price.

The main difference between Fisher’s and Walras’ models is that, in the latter, each player is both

producer and consumer and the initial endowment of player i is not given and will be the price assigned to

his or her good. Nevertheless, we can still write a (parametric) convex optimization model:

maximize
∑n

i=1 wi log
(∑n

j=1 uijxij

)

subject to
∑n

i=1 xij = 1, ∀j
xij ≥ 0, ∀i, j,
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or

maximize
∑n

i=1 wi log ui (14)

subject to
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, xij ≥ 0, ∀i, j,

where we wish to select weights wi’s such that the optimal dual prices equal these weights respectively.

For given w’s, the necessary and sufficient optimality conditions of the model are:

uiπi = wi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, πi, xij ≥ 0, ∀i, j,
where p is the n-dimensional optimal dual price vector of the first n equality constraints and π is the n-

dimensional optimal dual price vector of the second n equality constraints in (14). We call the first set of

equations the weighted centering condition, the second set of equations the complementarity condition, the

third set of inequalities the dual feasibility condition, and the fourth and fifth set the primal feasibility

conditions.

Later, we will prove that there is indeed a w ≥ 0 such that pi = wi in these conditions, that is, there

are (u, x) and (p, π) such that

uiπi = pi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j
∑n

i=1 xij = 1, ∀j
ui −

∑n
j=1 uijxij = 0, ∀i

ui, πi, xij ≥ 0, ∀i, j.

(15)

3.1. A self-dual weighted analytic center

Consider a more general problem

maximize
∑l

j=1 wj log xj (16)

subject to Ax = b,

x ≥ 0,
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where given A is an m× n matrix with full row rank,

b =


 e

0


 ∈ Rm,

and e is the l(≤ m)-dimension vector of all ones.

We prove the following theorem:

Theorem 4 Assume that the feasible set of (16) is bounded and it has a nonempty relative interior, and

that the dual feasibility AT y ≥ 0 implies y1, ..., yl ≥ 0. Then, there exist w1, ..., wl ≥ 0 such that the entries of

an optimal dual vector, corresponding to the first l equality constraints of (16), equal w1, ..., wl, respectively.

When wj’s satisfy this property, we call a solution of (16) a self-dual weighted analytic center of the feasible

set.

Proof. For any given w1, ..., wl ≥ 0, and, without loss of generality satisfying eT w =
∑l

j=1 wj = 1, the

optimality conditions of (16) are

sjxj = wj , j = 1, ..., l

sjxj = 0, j = l + 1, ..., n

s−AT y = 0,

Ax = b,

x, s ≥ 0.

(17)

These conditions are necessary and sufficient since the feasible set of (16) is bounded and has a nonempty

relative interior. Summing up the top n equalities, we have

n∑

j=1

sjxj =
l∑

j=1

wj = 1.

But from the remaining conditions

1 =
n∑

j=1

sjxj = xT s = xT (Ay) = (Ax)T y = bT y =
l∑

i=1

yi.

Let x0 > 0 such that Ax0 = b. Then, for any slack solution s = AT y ≥ 0 of the dual objective level set

{y : AT y ≥ 0, bT y = 1}

we have

sT x0 = bT y = 1

which implies that s is bounded, and so is y since A has full row rank. That is, the dual objective level set

{y : AT y ≥ 0, bT y = 1} is bounded.

From the assumption, yj ≥ 0 for j = 1, ..., l as long as AT y ≥ 0. Thus, y(w) := (y1, ..., yl) is a map,

called the Fisher map, from w = (w1, ..., wl) in the simplex S = {wj ≥ 0 :
∑l

j=1 wj = 1} to itself. In
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general, this mapping may not be one-to-one. But we show that it is upper semi-continuous on S. Our proof

is a simplified version of Güler [18]) for proving a more general problem. Let wk ∈ S, wk → w∗ ∈ S, and

(xk, yk, sk) be any convergent solution sequence of (17) with w = wk, k = 1, 2, .... We show that the limit

point (y∞, s∞) of the sequence (yk, sk), which is bounded in the dual objective level set, is a dual solution

of (17) with w = w∗.

Let (x∗, y∗, s∗) be a solution of (17) with w = w∗. Let w∗j > 0 for j = 1, ..., l′(≤ l) and the rest of

them equal zeros. Then, we have x∗js
∗
j = w∗j > 0 for j = 1, ..., l′ and at least one of x∗j and s∗j equals 0 for

j = l′ + 1, ..., n. Similarly, both x∞j s∞j = w∗j for j = 1, ..., l′; and at least one of x∞j and s∞j equals 0 for

j = l′ + 1, ..., n, since, otherwise, xk
j sk

j = wk
j 6→ 0. Suppose that there is one j̄ ∈ {1, ..., n} such that

(x∗̄j − x∞̄j )(s∗̄j − s∞̄j ) 6= 0.

Note that

(x∗ − x∞)T (s∗ − s∞) =
n∑

j=1

(x∗j − x∞j )(s∗j − s∞j ) = 0.

Then, we must have at least one j̄ ∈ {1, ..., n} such that

(x∗̄j − x∞̄j )(s∗̄j − s∞̄j ) > 0.

Without loss of generality assume x∗̄
j

> x∞̄
j
≥ 0. Then, if j̄ ≤ l′, we must have s∗̄

j
≥ s∞̄

j
> 0 and w∗̄

j
= x∗̄

j
s∗̄

j
>

x∞̄
j

s∞̄
j

= w∗̄
j
, which is a contradiction; if j̄ > l′, we must have s∗̄

j
≥ s∞̄

j
≥ 0 which, from x∗̄

j
s∗̄

j
= 0, implies

that 0 = s∗̄
j

= s∞̄
j

, which is also a contradiction. Therefore, we must have (x∗j − x∞j )(s∗j − s∞j ) = 0 for all j,

which implies that

x∗j = x∞j and s∗j = s∞j , ∀j = 1, ..., l′,

and

either x∗j = x∞j = 0 or s∗j = s∞j = 0, ∀j = l′ + 1, ..., n.

Thus, (x∗, y∞, s∞) satisfy all conditions of (17) with w = w∗, so that (y∞, s∞) is a dual solution of (17)

with w = w∗.

Since the mapping y(w) is upper semi-continuous on W , the result follows from the Kakutani fixed-

point theorem (see, e.g., [34,35,37]).



A Path to the Arrow-Debreu Competitive Market Equilibrium 17

Todd has suggested a simpler proof of the upper semicontinuity by considering the graph of the map:

(x, y, s, w) which satisfies

sjxj = wj , j = 1, ..., l

sjxj = 0, j = l + 1, ..., n

s−AT y = 0,

Ax = b,

eT w = 1,

x, s, w ≥ 0.

This is a closed set, so the correspondence is closed. Moreover, the correspondence is bounded from the proof

shown above. Thus, the result follows from [35]. However, using the proof of Theorem 4, we can develop a

stronger corollary for the Fisher equilibrium formulated in (1).

Corollary 2 The Fisher price equilibrium is unique under Assumption 1, that is, the Fisher map is one-to-

one on the relative interior of the simplex.

Proof. From wi > 0 for all i and the proof of Theorem 4, u∗i > 0 is unique for all i in any optimal solution

of (1). From the constraint structure of (1), at least one x∗ij > 0 or at least one pair (i, j) ∈ B∗ (see Section

2.3) for every j, so that p∗j = wiuij

u∗
i

. Thus, p∗j is also unique for every j.

This corollary implies that the Fisher map with linear utilities is a one-to-one map on the relative

interior of the simplex, and the proof of Theorem 4 further implies that it is also continuous.

Theorem 4 establishes an alternative to Arrow-Debreu’s general proof of equilibria restricted to the case

of linear utility. There may be an academic advantage of the constructed proof, however. First this proof

can be seen as an extension of the Eisenberg-Gale proof. Second, this proof reduces the Walras model (in

the Arrow-Debreu setting) to the Fisher model. This justifies an approximation algorithm of Jain et al. [20]

to compute an approximate equilibrium. Their approximation algorithm reduces the Walras setting to the

Fisher map, and it can be simply stated as

1. Start with arbitrary wi’s.

2. Compute the pi(w)’s.

3. Replace the wi’s with pi(w)’s plus a “residual”, and repeat the loop until the pi’s computed are almost

equal to the wi’s used in the loop. (It is proved that the “residual” keeps going down linearly in the

process.)

They have proved that this simple and elegant algorithm converges in a time bounded by 1
ε ; see [20]. Note

that, in general, this “budget (welfare) adjustment” scheme does not work. Consider an example of two

consumers where w1 = 2, w2 = 1, u11 = u22 = 1 and u12 = u21 = 2. The Fisher prices of the problem are

p1 = 1 and p2 = 2 so that the adjusted budgets will be w1 = 1 and w2 = 2—a complete reverse of the



18 Yinyu Ye

initial budget allocation. This implies that simply using p(w) to replace w cycles and does not terminate.

We also remark that adjusting weights on utilities to try to get to equilibrium has a long history, going back

to Negishi [29], and was exploited in algorithms by Ginsburgh and Waelbroeck [17] in the 1970s.

Overall, the conditions for a self-dual weighted analytic center of the feasible set of (16) can be written

as

sjxj = yj , j = 1, ..., l

sjxj = 0, j = l + 1, ..., n

s−AT y = 0,

Ax = b,

x, s ≥ 0.

Using these conditions but excluding the second one, we still have

0 ≤
n∑

j=l+1

sjxj = sT x−
l∑

j=1

sjxj = sT x−
l∑

j=1

yj = bT y −
l∑

j=1

yj = 0,

that is, sjxj = 0 for all j ≥ l+1. Thus, the second or complementarity condition is implied by the remaining

conditions. This fact was first proved in [30] for the Arrow-Debreu equilibrium problem, which is a special

case of problem (16). Thus, we have

Corollary 3 Assume that the feasible set of (16) is bounded and it has a nonempty interior, and the dual

feasibility AT y ≥ 0 implies y1, ..., yl ≥ 0. Then, a self-dual weighted analytic center of the feasible set of (16)

satisfies the following necessary and sufficient conditions:

sjxj = yj , j = 1, ..., l

s−AT y = 0,

Ax = b,

x, s ≥ 0.

(18)

Note that the system is homogeneous in (y, s) so that we may add a normalizing constraint

bT y =
l∑

j=1

yj = 1

to the conditions.

3.2. A convex minimization formulation

Nenakhov and Primak [30] (and Jain [19]) have shown that pi > 0 for all i under our assumption on uij in

problem (15). Again, Corollary 3 shows that the complementarity condition (the second set of equations in
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(15)) is implied by the remaining conditions. To see this more precisely, multiplying by xij on both sides of

the third equation of (15) and summing them over all (i, j) we have

0 ≤
∑

i,j

xij(pj − uijπi) (since xij ≥ 0 and (pj − uijπi) ≥ 0)

=
∑

i,j

xijpj −
∑

i,j

xijuijπi

=
∑

j

pj −
∑

i

uiπi (since
∑

i

xij = 1 and
∑

j

xijuij = ui)

=
∑

j

pj −
∑

i

pi (since uiπi = pi)

= 0.

Thus, xij(pj − uijπi) = 0 for all (i, j).

By deleting the complementarity condition and substituting ui and πi from the equalities of (15), the

Arrow-Debreu equilibrium is a point (x, p) that satisfies

∑
k uikxik ≥ uij

pi

pj
, ∀i, j

∑
i xij = 1, ∀j

pi > 0, ∀i
xij ≥ 0, ∀i, j.

(19)

Then, the problem of finding such (x, p) can be formulated as the following Phase I optimization

problem:

minimize θ (20)

subject to
∑

i xij = 1 + θ ∀j
∑

k uikxik ≥ uij
pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.

Here θ can be viewed as an inflated amount of each player’s good, i.e., initially every player pretends to have

1 + θ units of good. Then θ is gradually moved down to 0. One can easily see that the problem is strictly

feasible with a suitably large θ. Furthermore,

Lemma 1 For any feasible solution of Problem (20), we must have θ ≥ 0.

Proof. For all i, j, we have

xijpj

∑

k

uikxik ≥ piuijxij .

Summing these inequalities over j, we have

∑

j

xijpj




(∑

k

uikxik

)
≥ pi


∑

j

uijxij


 .
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Thus,
∑

j

xijpj ≥ pi.

Summing these inequalities over i, we have

∑

i

∑

j

xijpj ≥
∑

i

pi,

or

(1 + θ)
∑

j

pj ≥
∑

i

pi

which implies θ ≥ 0.

According to Arrow and Debreu [1], we must also have

Lemma 2 The minimal value of Problem (20) is θ = 0.

3.3. The logarithmic transformation and efficient barrier functions

Let yj = log pj , ∀j. Then problem (20) becomes

minimize θ (21)

subject to
∑

i xij − θ = 1 ∀j
∑

k uikxik ≥ uije
yi−yj ∀i, j : uij 6= 0

xij ≥ 0 ∀i, j.

Note that the new problem is a convex optimization problem since eyi−yj is a convex function in y. This

type of transformation has been used in geometric programming.

The question arises: is there an efficient barrier function for the inequality

∑

k

uikxik ≥ uije
yi−yj , uij 6= 0?

The answer is “yes”, and the barrier function is

− log

(∑

k

uikxik

)
− log

(
log

(∑

k

uikxik

)
− log uij − yi + yj

)

with self-concordant parameter 2; see Proposition 5.3.3 of Nesterov and Nemirovskii [31]. One may also

construct the dual, the Legendre transformation, of the barrier function.
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Let ūij = log uij and, for simplicity, uij > 0 for all i, j in the following. Then, we can formulate the

problem as a barrier optimization problem:

minimize θ − µ
∑

i,j (log xij + log (
∑

k uikxik) + log (log (
∑

k uikxik)− ūij − yi + yj))

subject to
∑

i xij − θ = 1 ∀j, (22)

where the barrier parameter µ > 0. Similar to what we did in the Eisenberg-Gale model (1), rewrite the

problem as

minimize θ − µ
∑

i,j (log xij + log ui + log (log ui − ūij − yi + yj))

subject to
∑

i xij − θ = 1 ∀j,
ui −

∑
j uijxij = 0 ∀i.

There are n2 + 2n + 1 variables in this formulation. The Hessian matrix H of the barrier objective function

has a block diagonal structure: the diagonal block with respect to xij is a n2 × n2 positive diagonal matrix

and the other diagonal block with respect to the remaining variables is a (2n+1)× (2n+1) positive definite

matrix. Thus, the numerical construction and factorization of H needs O(n3) arithmetic operations. Then

the computation and factorization of AT H−1A is also bounded by O(n3) arithmetic operations, since the

constraint matrix A is sparse and each of its columns has at most two nonzeros. Therefore, one can develop an

interior-point path-following or potential reduction algorithm to compute an ε-optimal solution, i.e., θ < ε.

Since the total self-concordant coefficient of the barrier function is O(n2), and each iteration uses at most

O(n3) arithmetic operations, we have

Theorem 5 There is an interior-point algorithm to generate a solution to problem (20) with θ < ε in

O(n log 1
ε ) iterations and each iteration uses O(n3) arithmetic operations.

Note that this worst-case complexity bound is significantly lower than that using the ellipsoid method by

Nenakhov and Primak [30] and Jain [19].

3.4. Alternative optimization setting

An alternative Phase I problem is

minimize θ (23)

subject to
∑

i xij = 1 ∀j
θ ·∑k uikxik ≥ uij

pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.

Initially, θ > 1, which is an inflated factor for the utility value. The problem is to drive θ to 1.
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Let yj = log pj , ∀j and κ = log θ. Then problem (20) becomes

minimize κ (24)

subject to
∑

i xij = 1 ∀j
∑

k uikxik ≥ uije
yi−yj−κ ∀i, j : uij 6= 0

xij ≥ 0, ∀i, j.

Again, the new problem is a convex optimization problem since eyi−yj−κ is a convex function in y and κ,

and the minimal value of the problem is 0.

3.5. Rounding to an exact solution

Eaves [12] showed that the Arrow-Debreu problem with linear utility can be formulated as a linear com-

plementarity problem. Again, an optimal solution yij := pjxij and price vector p is the solution of the

homogeneous system of linear equations and inequalities:

uijλi = pj , yij > 0, ∀(i, j) ∈ B∗

uijλi = pj , yij = 0, ∀(i, j) ∈ Z∗

uijλi < pj , yij = 0, ∀(i, j) ∈ N∗
∑

j∈P yij = pi, ∀i
∑

i∈C yij = pj , ∀j,
where B∗, Z∗ and N∗ are identical to those defined in the Fisher model. We may normalize p such that

p1 = 1. Then, the system has a rational solution and the size of its each entry is bounded by the bit-length

L of all input data uij . Thus, the same rounding technique can be applied to separate B∗(∈ P k) from

N∗(∩P k = ∅) for a variable partition P k generated from the interior-point algorithm, and to compute an

exact solution of the system linear equations and inequalities:

uijλi = pj , yij ≥ 0, ∀(i, j) ∈ P k

uijλi ≤ pj , yij = 0, ∀(i, j) 6∈ P k

∑
j∈P yij = pi, ∀i

∑
i∈C yij = pj , ∀j,

p1 = 1 .

in O(n4L) arithmetic operations. This implies that

Corollary 4 There is an interior-point algorithm to compute an exact solution of problem (20) with n

producers and n consumers in at most O(n4L) arithmetic operations, where L is the bit-length of the input

data uij.

Again, our result is a significant improvement over the ellipsoid method discussed by Jain [19].
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4. A Path to an Arrow-Debreu equilibrium

Now, we move our attention to whether there is a direct interior-point algorithm to solve the Arrow-Debreu

equilibrium problem, similar to the primal-dual path-following algorithm for linear programming and the

Fisher equilibrium. Such an algorithm may have economical and practical applications.

Consider the convex optimization problem for a fixed scalar 0 ≤ µ ≤ 1 and a nonnegative weight vector

w with
∑

i wi = n2:

maximize µ
∑

i,j log xij +
∑

i wi(1− µ) log
(∑

j uijxij

)
(25)

subject to
∑

i xij = 1, ∀j
xij ≥ 0, ∀i, j.

4.1. Economic interpretations

The objective of (25), when µ = 0, is the same objective function which Eisenberg and Gale used for Fisher’s

model. We now present economic interpretations for µ > 0. When µ = 1, then the objective function becomes

the logarithmic barrier function and the unique maximizer of (25) is the analytic center of the feasible set,

namely, xij = 1
n for all i, j. This is probably an ideal socialist solution if all players are homogeneous.

In our setting, the combined objective function represents a balance between socialism and individu-

alism. Here wi(1 − µ) is the weight for the log-utility value of player i. If again, wi represents the amount

of money player i possesses,
∑

i wi = n2 represents the total wealth of the players, and µ represents player

i’s tax-rate to be collected for social welfare. The leftover amount, wi(1 − µ), would be the weight used in

Eisenberg-Gale to make the market clear. Here, the total collected tax amount is n2µ and the tax-rate µ is

uniformly applied among the players. Mike Todd also pointed out that the objective function here is really

the convex combination of the two different utility functions, one is un-weighted and the other is weighted,

representing two different idealisms.

4.2. The fixed-point theorem

Unlike Fisher’s problem, we really don’t know how much money w each player possesses in Walras’ model—it

depends on the prices p, since they have to sell their goods at these prices for revenues. But the prices are

the optimal dual variables or Lagrange multipliers of the n equality constraints in (25). Then, the natural

question becomes, is there a vector w such that the optimal dual prices of (25) equal the wi’s, respectively.

We give an affirmative answer in the following theorem.
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Theorem 6 For any scalar 0 < µ ≤ 1, there exists a weight vector w ≥ nµ and
∑

i wi = n2 such that the

optimal dual price vector of (25) equals w.

Proof. When µ = 1, i.e., the tax-rate equals 1, the (unique) prices would be

wi = pi = n and xij =
1
n
∀i, j.

Consider 0 < µ < 1. Denote the compact simplex by

S(µ) = {y ∈ Rn :
∑

i

yi = n2, yi ≥ nµ, ∀i} ⊂ Rn
++.

Since µ > 0, the objective function of (25) is strictly convex for any w ≥ 0, and from convex optimization

theory the optimal solution x and its Lagrange (dual) solution p are unique and strictly positive and they

satisfy the necessary and sufficient conditions:

µ
xij

+ wi(1−µ)uij∑
k

uikxik
= pj , ∀i, j

∑
i xij = 1, ∀j
xij > 0, ∀i, j.

(26)

where pj is the optimal dual price or Lagrange multiplier for equality constraint j. The first set of constraints

is for the dual feasibility condition, and the last two sets are for the primal feasibility condition.

Summing up the dual feasibility equations, each multiplied by xij , over i and noting
∑

i xij = 1, we

have

pj = nµ +
∑

i

wi(1− µ)uijxij∑
k uikxik

≥ nµ, ∀j.

Summing the above equations over j, we have
∑

j

pj = n2µ +
∑

j

∑

i

wi(1− µ)uijxij∑
k uikxik

= n2µ +
∑

i

wi(1− µ)∑
k uikxik

∑

j

uijxij = n2µ +
∑

i

wi(1− µ) = n2µ + n2(1− µ) = n2.

That is, p ∈ S(µ). For given uij ’s and fixed µ > 0, we may think p ∈ S(µ) being a mapping of w ∈ S(µ),

that is, p(w) is a mapping from the simplex to itself, and it is one-to-one, continuous and differentiable (see

again, e.g., [18,24,23] and the proof of Theorem 4). From Brouwer’s fixed-point theorem (see, e.g., [34,35,

37]), there exists w ∈ S(µ) such that

p(w) = w,

which completes the proof.

Note that summing up the dual feasibility equations, each multiplied by xij , in (26) over j when w = p,

we have
∑

j

pjxij = nµ +
∑

j

wi(1− µ)uijxij∑
j uijxij

= nµ + wi(1− µ) = nµ + pi(1− µ).
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That is, the individual payment spent by player i equals his net income (after tax) plus nµ which can be

viewed as a tax amount refunded back to each player uniformly.

4.3. A path-following algorithm?

Let p = w = p(w) in the optimality conditions of (25). Moreover, let yi =
∑

j uijxij and qi = pi(1−µ)∑
j

uijxij
.

Then we have

xij(pj − uijqi) = µ, ∀i, j
yiqi − pi(1− µ) = 0, ∀i

∑
i xij = 1, ∀j

yi −
∑

j uijxij = 0, ∀i
∑

i pi = n2,

yi, qi ≥ 0, ∀i
xij , (pj − uijqi) ≥ 0, ∀i, j.

(27)

Since both the primal and dual solutions are bounded interior points for any given 0 < µ ≤ 1, they

can be written as (xij(µ), yi(µ), qi(µ), pi(µ)). Similar to the central path theory of linear programming (e.g.,

[24,18]), we have, for µ ∈ (0, 1], (xij(µ), yi(µ), qi(µ), pi(µ)) form continuous and bounded paths (
∑

i pi(µ) =
∑

i pi(1) = n2 for all µ). Moreover, when µ → 0+, any limit point converges to an Arrow-Debreu equilibrium

solution. System (27) has linear and bilinear equations, which are similar to the central path equations for

linear programming and primal-dual path-following Newton-based methods might be applicable. This is a

subject of further research.

5. Final Remarks

Consider a more general Arrow-Debreu exchange market problem where the market has n players and m

goods. Player i, i = 1, ..., n, has an initial bundle of goods 0 ≤ vi = (vi1; vi2; ...; vim) ∈ Rm and has a linear

utility function with coefficients (ui1; ui2; ...; uim) ≥ 0 ∈ Rm. The problem is how to price each good so that

the market clears. We assume that vi 6= 0 for every i, that is, every player brings some goods to the exchange

market; and, again, at least one uij is positive for every i, and at least one uij is positive for every j; that

is, every player in the market likes at least one good; and every good is valued by at least one player.

Note that, given the price vector p = (p1; p2; ...; pm) > 0, the individual utility maximization problem

is

max
∑

j

uijxij
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s.t.
∑

j

pjxij ≤ pT vi

xij ≥ 0.

The optimality conditions of this individual utility maximization problem, besides xij being feasible,

are

uij ≤
∑

k uikxik

pT vi
pj , ∀j.

It can be verified that if p and x satisfy the constraints

n∑

i=1

xij =
n∑

i=1

vij , ∀j,

∑

k

uikxik ≥ uij · pT vi

pj
, ∀i, j

xij ≥ 0, pj > 0, ∀i, j,

then p is an equilibrium price vector. Indeed, rewriting the second set of inequalities as

pj ·
∑

k

uikxik ≥ uij · pT vi, ∀i, j

and multiplying by xij on both sides, we have

pjxij ·
∑

k

uikxik ≥ uijxij · pT vi, ∀i, j.

Now summing these inequalities over j, we have

∑

j

pjxij ·
∑

k

uikxik ≥ pT vi ·
∑

j

uijxij , ∀i

or
∑

j

pjxij ≥ pT vi, ∀i.

Now summing them over i, we have

∑

j

pj

(
n∑

i=1

xij

)
≥

∑

j

pj

(
n∑

i=1

vij

)
.

But
∑n

i=1 xij =
∑n

i=1 vij for all j, so that the above must hold as equalities, and so

∑

j

pjxij = pT vi, ∀i.

That is, x is feasible, thereby optimal, for each of the individual utility maximization problems.
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To find x and p, similar to our earlier discussion, we form a minimization problem:

min θ

s.t.
n∑

i=1

xij =
n∑

i=1

vij + θ, ∀j,

∑

k

uikxik ≥ uij · pT vi

pj
, ∀i, j,

xij ≥ 0, pj > 0, ∀i, j.

The problem is feasible and has a relative interior, and its minimal value is 0. For example, one can assign

xij = vij +
θ

n
and pj = 1, ∀i, j

which satisfy the equalities. Then, if we choose θ sufficiently large, all inequalities are strictly satisfied.

By introducing new variables yj = log pj , j = 1, ...,m, the problem can be written

min θ

s.t.
n∑

i=1

xij =
n∑

i=1

vij + θ, ∀j,

log

(∑

k

uikxik

)
≥ log uij + log

(∑

k

vikeyk

)
− yj , ∀i, j, uij > 0,

xij ≥ 0, ∀i, j.

Since log(
∑

k uikxik) is concave in x and log (
∑

k vikeyk) is convex in y, the inequalities are convex constraints.

The rest of constraints are linear and so is the objective function. Therefore, the generalized Arrow-Debreu

exchange market problem is also a convex minimization problem.

An efficient barrier exists for solving this general problem by inserting a variable, for each i,

ui ≥ log




m∑

j=1

vije
yj




or

1 ≥
m∑

j=1

vije
yj−ui .

This is a standard (exponential) constraint in geometric programming, and it is known that the inequality

admits an efficient barrier; see Section 6.3.1 of Nesterov and Nemirovskii [31]. Therefore, the constraint

system of the problem becomes

∑n
i=1 xij =

∑n
i=1 vij + θ, ∀j,

log (
∑

k uikxik) ≥ log uij + ui − yj , ∀i, j, uij > 0,

1 ≥ ∑m
j=1 vije

yj−ui , ∀i,
xij ≥ 0, ∀i, j,
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and these inequalities all admit efficient barriers.

We also feel that the general self-dual weighted analytic center discussed in this paper seems to have

more applications in matrix games and other fixed-point problems. We expect more problems can be trans-

formed to convex optimization problems where efficient interior-point algorithms may apply.

Other questions remain, such as how to handle general concave utility functions and/or production.

Some answers have been given by Codenotti, Deng, Huang, Jain, Pemmaraju, Varadarajan, Vazirani, and Ye

[4,5,7,21]. Are there direct primal-dual interior-point algorithms for finding an Arrow-Debreu equilibrium

for these exchange economies? The path developed in this paper may give an answer.
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