
Automated Patent Classification

CS229/CS229A: Machine Learning

Ian Christopher • Sydney Lin • Sigurd Spieckermann

December 17, 2011

Abstract

The goal of this project is to automate the process of classifying patents under the hierarchical

International Patent Classification System (IPC). In this age of innovation, the war over intellectual

property (IP) becomes common between companies and even individuals. Although a patent

protects the ownership of IP, its application process is costly and slow. Moreover, most patent

lawyers nowadays manually classify patent applications based on their knowledge, experience and

individual research. Therefore, automation on patent classification not only helps to reduce human

error that might lead to expensive cost, but also accelerate the application process.

1 Introduction

Our system is aiming to categorize a query

patent under a five-leveled hierarchical classifica-

tion structure of different sections, classes, sub-

classes, groups and main groups or subgroups. In

the training step, our classification algorithm an-

alyzes the abstract, title, author (plus company,

if applicable) and citations of a given patent and

learns patterns between these features and its

assigned class(es). In a fair amount of cases,

patents can fall under different categories and it

may be difficult for a human expert to accurately

classify a patent.

Due to our inexperience with patent patent

law, we met with a patent lawyer in the area

in order to get a better understanding of com-

mon practice and computer-aided tools in this

business. After the conversation with him, we

were surprised that for new patents applica-

tions, most patent lawyers mostly rely on their

knowledge and research on the World Intellectual

Property1 Organization website with key words.

This increases our motivation on applying ma-

chine learning to solve the multi-class classifica-

tion problem.

2 Background

Text classification is a well-known area of pattern

recognition and information retrieval. Though

there has been a sufficient research in the area,

we tried to keep our effort largely original. That

being said we did use a number of publications

to guide us when results started to stall or there

were too many possible next steps to choose

from.

There were a number of basic text classifica-

tion papers that we read to better understand

the space. [SL01] was a well cited survey of

1http://www.wipo.int

1

sorts into hierarchical text classification. Their

metrics for classification performance was espe-

cially interesting. [RS02] used neural networks

to address the problem. [WL09] used support

vector machines and produced competitive re-

sults. [QHLZ11] helped introduce the use of la-

tent features and their importance to the prob-

lem. [XXYY08] had very good results using a

two step classification scheme for each patent

that involved pruning the hierarchy before ac-

tually classifying a document. We even found

a paper that was also trying to classify patents

using text [CIW] but it ignored the hierarchical

nature of the problem.

In addition to browsing text classification pa-

pers, we considered other types of hierarchical

classification problems. In particular [ima] pro-

vided background of a classification competi-

tion on the Imagenet data set and algorithms

that seemed more successful on image data.

Google research’s [SZYW10] provided informa-

tion about classifying videos.

3 Patent Data

Our data source is bulk downloads of patent

data from Google Patents, which originates from

the United States Patent and Trademark Of-

fice (USPTO). Google hosts a number of differ-

ent data sets within the patent legal space in-

cluding patent applications, patent grants, and

maintenance events related to the sets. We use

weekly bibliographic data on granted patents,

which Google provides for all patents since 1976.

3.1 Structure

One of the challenges of dealing with this data

is the sheer size of the data sets. A typical

week in 2010 comprises several thousand granted

patents. Each of these weekly sets takes typi-

cally under 10 MBytes compressed and approxi-

1990 1995 2000 2005 2010
101

102

103

104

105

Year

#
P
a
te
n
ts

Granted Patents

Utility
Design
Plant
Reissue
SIR

Figure 1: Granted Patents: Frequency of Types

mately 90 MBytes uncompressed in size. Conse-

quently, a single year of patents takes up about

4.5 GBytes of space. Relatively speaking this is

not a massive amount of data but on commod-

ity hardware it is a nontrivial amount as we are

intending to use many years of data. It is also

worth noting that the number of patents each

year roughly increases as time moves on so ear-

lier data sets are smaller. Another issue with

Google’s data turns out to be the inconsistency

in its structural representation across different

years. More specifically, the data over the last

ten years is provided according to two different

XML schemata and one prefix-based format.

3.2 Content

There exist different types of patents—utility

patents, design patents, reissue patents, statu-

tory invention registrations, and plant (like

corn/beans/trees) patents—with different prop-

erties regarding their information schemata.

Utility patents are the most common types of

patents and the ones we are focusing on, but

the data set contains patents of all types. They

include the information that we anticipate to

be meaningful features as opposed to other

types—in particular design patents that make

2

the largest fraction of the non-utility patents,

but merely consist of very few key words and

no classes. We wonder about their usefulness,

but do not dive deeper into this question.

Further, there exist various classification sys-

tem in different parts of the world besides the In-

ternational Patent Classification System (IPC).

In general, there is no one-to-one mapping be-

tween the different systems, but United States

patents are classified by a national classification

system as well as by the IPC. This has lasting ef-

fects on the rest of our work as we decide to use

the IPC as the basis of our classification effort

due to its deeper hierarchy.

3.3 Preprocessing

The first step in handling the data is to parse

it into a more appropriate format. The data

set provided by Google contains a significant

amount of redundant information represented in

the notoriously verbose XML format. As a re-

sult, the data set is largely space-inefficient for

our purposes and hence wastes storage capacity

as well as computation time in subsequent pro-

cessing steps. We decided to convert the data

into a comma-separated file format that only

contained information relevant to our problem.

This step resulted in a compression ratio of the

order ten to one making storage of patent data

across many years much more feasible.

In the second step, we preprocess the patent

text data in multiple ways to improve the per-

formance of our learning algorithms.

• Stop-word and punctuation removal

Stop-words do not contribute to the richness

of information of a text and punctuation is

difficult to handle properly by machines. By

removing both, the next is normalized and

better suited for our purposes. We remove

punctuation by means of the string-library

in Python that contains a complete set of

punctuation characters and replace all oc-

currences of those in our text data. Stop-

words are identified and removed by means

of the Natural Language Toolkit Develop-

ment (NLTK) library in Python using the

English corpus.

• Stemming In order to achieve invariance

with respect to inflected forms, we reduce

words to their stem using the Porter stem-

mer provided in the NLTK library.

• Mutual information and frequency

count Only a subset of words in text cor-

pora are often indicative of the content of a

text. In order to retain the most relevant

words and thereby limit the dimensional-

ity of our dictionary, we combine the mu-

tual information (MI) metric and the fre-

quency counts words by intersecting both

sets, which are each sorted in descend-

ing order of their values. Although MI is

only defined to relate words with one par-

ticular label—in our case patent classes—

, we obtain an overall scalar metric that

attempts to generalize the relevance of a

word to all classes by summing the quan-

tities for a word with respect to a partic-

ular class over all classes. However, it is

prone to give high weight to rare words that

are greatly nonuniformly distributed across

classes while they are in fact not particularly

indicative in general.

• Latent Semantic Analysis Our above-

described steps only address cosmetic

changes and statistical filtering. By apply-

ing Latent Semantic Analysis (LSA) to our

bag-of-words matrix, we attempt to iden-

tify similar semantic meanings of words and

project onto a lower-dimensional subspace

of abstracted semantics. This step will

3

prove vastly beneficial in later sections of

this report.

In the third step, we generate additional fea-

tures by computing the joint probabilities be-

tween an assignee as well as the assignees country

of origin and each class we are considering in our

classification task. Finally, we construct the the

binary-valued matrix of classes, that a patent is

categorized by and export all data to a MAT-

LAB data file using the SciPy Python library.

4 Classification

Our first goal is to accurately classify patents

into the first level of the classification hierar-

chy. In the second step, we consider two levels of

the hierarchy and flatten out the tree structure,

hence, we attempt to classify to approximately

150 different subclasses. Third, we perform a hi-

erarchical classification task by training a model

for each level and passing patents with active

predictions on to the next level. In these steps,

we compare a number of different learning algo-

rithms:

• Logistic Regression

• Linear L2-regularized L2-loss soft-margin

Support Vector Machine

• Multi-layer Feedforward Neural Network (+

GPU implementation)

We implemented all algorithms, except for the

SVM, ourselves in MATLAB and the GPU Neu-

ral Network in C++/CUDA by means of the

NVIDIA linear algebra library CUBLAS and the

open source library Thrust which is the CUDA-

equivalent of the STL in C++. The cost func-

tion of the Logistic Regression algorithm and the

Neural Network are optimized using the L-BFGS

optimization algorithm. The GPU implementa-

tion of the Neural Network uses a gradient de-

scent optimization method.

4.1 Algorithms

All algorithms except for the Neural Network are

binary classifiers. In order to achieve classifica-

tion with multiple simultaneous activations, we

follow the one-vs-all methodology and learn a

model for each class separately. Neural Networks

are naturally capable of performing a multi-class

multiple activations classification task. In con-

sequence of only few patents being assigned to a

certain class our data quite skewed which espe-

cially diminishes the performance of the binary

classifiers. In order to account for the data skew,

we up-sample the patents with positive class la-

bel giving a noteworthy improvement. In order

to comprehensively assess the performance of our

algorithms, we utilize four common metrics: ac-

curacy, precision, recall and F-Score. The ac-

curacy alone may be misleading in some cases,

e.g. when the data we train on is skewed. The

other three metrics give a better insight into the

actual performance and are in fact still relevant

after up-sampling the data because this step only

introduces balance artificially.

During early stages of testing our various al-

gorithms on a 10 weeks data set of patents from

2011, we observe that the bag-of-words feature

matrix with raw frequency counts is subopti-

mal because documents with a larger text corpus

cause larger values in their corresponding row.

In order to account for this issue, we normalize

the document word frequencies and see a signif-

icant improvement in the classification quality.

4.1.1 Logistic Regression

In a first step, we start with a one-vs-all regular-

ized Logistic Regression classifier as a baseline

4

because it is simple to implement and because it

provides a good basis for the later evaluation of

our more advanced learning algorithms. Logistic

Regression performs well for its implementation

complexity and performs best for a bag-of-words

feature matrix reduced to 200 dimensions using

LSA. The result of this setting yields an F-Score

of approximately 0.9 on the first level of our test

set after training the classifier with L-BFGS. In

the following steps, we use the Logistic Regres-

sion implementation to verify the performance of

the other learning algorithms.

Because the regularization term does not im-

prove the F-score, we suspect logistic regression

might under fit the data set. Consequently, we

implement a weighted logistic regression to im-

prove the F-score. At early stage of developing

algorithm, we defined accuracy with the assump-

tion that there is only one active label. However,

the accuracy was below what we had hoped for.

We stopped further work on this direction be-

cause the low accuracy was very likely to be a

result of overfitting the data set.

4.1.2 Backpropagation Neural Network

Neural Networks are capable of classify patents

into multiple active classes simultaneously which

makes them an attractive algorithm to use. In a

first implementation in MATLAB, we implement

a fully vectorized Backpropagation Neural Net-

work with one hidden layer and choose the num-

ber of hidden units close to the number of out-

put units. Coincidentally this architecture gives

us some of our best results compared to others

architectures with a single hidden layer. Beyond

adjusting the number of hidden units in a sin-

gle hidden layer, we take the following steps to

arrive at our final version of this algorithm:

• Normalized Bag-of-Words The nor-

malized bag-of-words feature matrix yields

an F-Score of approximately 0.9 on the test

set and slightly above that for the training

set after tuning the network parameters.

• Latent Semantic Analysis A further

approach to improve on the classification

quality drives us towards applying LSA to

our bag-of-words in order to capture se-

mantic similarity between words. However,

our scores for both, training and test set,

drop by about 15% which is indicative of

a bias problem. Different configurations of

the single hidden layer Neural Network do

not seem to improve results.

• Latent Semantic Analysis + 2 Hidden

Layers We extend our implementation to

handle multiple hidden layers in order to re-

alize a more complex model. The number

and sizes of the hidden layers are specified

by a vector whose entries denote the num-

ber of hidden units for each layer. A 100-

dimensional feature space using 200 hidden

units for the first, 20 units for the second

hidden layer and a regularization parameter

of 0.3 give best results across all our tests.

The convergence plot shown in Figure 2 gives a

better understanding of the relationship of the

number of iterations and the performance of the

algorithm. Overall, we notice that the cost func-

tions of our networks are difficult to optimize and

even though we use the L-BFGS algorithm, we

often terminate early in local minima and have

to repeat the optimization process with a new

set of random initial values or slightly modified

network parameters.

4.1.3 Backpropagation Neural Network

(GPU)

Heavy training of the Neural Network with two

hidden layers requires several thousand itera-

tions of the L-BFGS algorithm. Unfortunately

5

0 500 1,000 1,500

1

2

3

4

5

Iterations

V
al
u
e
o
f
C
o
st

F
u
n
ct
io
n

Convergence Plot

Figure 2: Neural Network Convergence Plot (1

Level)

this takes hours to run on the cluster we are us-

ing. Luckily our group has some experience with

general purpose GPU programming, so we de-

cide to port the Neural Network to CUDA. For

simplicity and feasibility in the context of this

project, we implement the gradient descent opti-

mization algorithm to minimize the cost function

instead of L-BFGS.

One of our tools for this implementation is

the Thrust Library, which provides a high level

interface for GPU programming. ”High-level”

here is relative term as the code is still low level.

Regardless it helps speed up development with

matrix multiplication methods and a number of

other high level utilities.

In our implementation, matrices are repre-

sented using Thrust vectors and managed by a

custom matrix class which handles the dimen-

sions and wraps required linear algebra opera-

tions. Matrix multiplications are generally exe-

cuted using CUBLAS whereas element-wise ma-

trix multiplications and reduction operations—

e.g. required to compute the cost function—

utilize optimized CUDA implementations of the

Thrust library. We also implement a few special-

ized kernels in order to combine smaller opera-

tions in one kernel launch.

Our GPU implementation of the Backpropa-

gation Neural Network approximately yields a

factor 20 speed-up over the vectorized MATLAB

implementation that we modify to use gradi-

ent descent as well for fair comparison. How-

ever, we notice that the gradient descent opti-

mization algorithm is vastly inferior to the L-

BFGS algorithm and is in fact unable to opti-

mize the cost function enough to train the Neu-

ral Network. We make this observation for both

implementations—MATLAB and C++/CUDA.

Nevertheless, we appreciate the speed-up and re-

fer to future work to implement an advanced op-

timization algorithm on the GPU.

4.1.4 Linear L2-regularized L2-loss soft-

margin Support Vector Machine

Support Vector Machines are a typical learning

algorithm for text classification in many of the

papers we looked at so we decide to apply them

to our problem. Conveniently linear support vec-

tor machines are available through the popular

library liblinear so testing them is a relatively

quick and easy task.

Though plugging the SVM library into our

code is simple and compare to the Neural Net-

work there are fewer parameters to tweak. It

turns out that we get best results for a normal-

ized bag-of-words matrix reduced through LSA

to a 750-dimensional feature space plus the as-

signee and assignees country of origin features as

described above. The performance of the SVM

is very good and compares to our optimal results

using the Neural Network. In terms of execution

time, it is noticeably faster although we train one

model per class in consequence of the one-vs-all

method we use. We also tried to use nonlin-

ear SVMs through the library but unfortunately

6

they do not seem to perform well and training is

slow.

0 1 2 3 4

·104

0.1

0.15

0.2

0.25

Training Examples

E
rr
or

(1
-
F
-s
co
re
)

Learning Curve

Training Set
Test Set

(a) Logistic Regression

0 1 2 3 4

·104

0

0.1

0.2

Training Examples

E
rr
or

(1
-
F
-s
co
re
)

Learning Curve

Training Set
Test Set

(b) Linear SVM

Figure 3: Learning Curves

4.1.5 Hierarchy Discussion

After getting sufficient results on the first layer

of the hierarchy, we move on to tackle the hier-

archy. Taking baby steps, we decide to concen-

trate on just the first two levels until we have

good enough accuracy to move on to the oth-

ers. Nonetheless we try to develop methods that

would scale to more levels if we choose to do so.

We approach the hierarchy problem in two dis-

tinct ways. Because we are trying to classify each

patent to at least one leaf node, we flatten the

hierarchy to a single level that just consists of

leaf nodes. The other approach is to classify

recursively on each level of the hierarchy until

we reach the bottom of the tree. Ultimately we

are left with comparable results between the two

which actually seem to agree with a few results

we found in literature before implementing.

The flat approach is the easiest to implement

because it only means changing the labels ma-

trix in our preprocessing. After this we can just

run algorithms for dealing with just the first level

on the data set. As such, this approach is often

called for training for each of the one hundred

plus labels on the second level. Consequently

this approach becomes much slower than the first

level code so we are unable to optimize parame-

ters as well.

The standard recursive approach is slightly

more difficult to implement but does not take too

long. We actually have a number of different ver-

sions of this approach depending on classification

parameters and how often we want to run latent

semantic analysis (top level, every level, etc.).

Because many of the classification algorithms are

one vs all, we actually have more train runs here

than in the flat approach, but here the training

sets are smaller as we only train on patents that

can be classified by the current node.

5 Results

6 Future Work

There are a number of ways that we could move

forward with our work in the future.

7

(a) Classification on 1 Level

Accuracy Precision Recall F-Score

Logistic Regression 0.973908 / 0.973689 0.848143 / 0.847178 0.962301 / 0.861350 0.901623 / 0.900660

Neural Network 0.984336 / 0.983452 0.985644 / 0.982583 0.902030 / 0.898394 0.941985 / 0.938604

Linear SVM 0.986899 / 0.981362 0.922070 / 0.901788 0.990729 / 0.973069 0.955167 / 0.936073

(b) Classification on 2 Levels

Accuracy Precision Recall F-Score

Neural Network 0.995011 / 0.994597 0.957578 / 0.933084 0.594714 / 0.573634 0.733735 / 0.710483

Linear SVM (flat) 0.998595 / 0.988762 0.892609 / 0.508447 0.998661 / 0.818083 0.942662 / 0.627128

Linear SVM 0.6160 0.8590 0.6968

Table 1: Results for Training/Test Set

• Classify further down the hierarchy

Much of our time has been spent on clas-

sifying on just the first level. We held off

on classifying on the second level until we

had sufficiently accurate results because we

were worried that otherwise we would get

bad results.

• Larger Datasets The size of the raw

XML data is one the order of several giga-

bytes per year. Though we can effectively

compress these files by picking out pertinent

metadata from XML, this is still a large set

without the help of a database if we want

to hold decades worth of data without a

database. A larger dataset would help us

with the uncommon classes and dive deeper

in to the classification hierarchy (which has

over sixty thousand leaf nodes).

• Additional features There were a num-

ber of fields in the raw XML data that we

ignored. Though most of them do not seem

useful, one in particular could be very help-

ful; patent citations. Unfortunately only

using only a year of data makes it hard

to resolve these citations, but if we had a

database we could construct numerous fea-

tures from them (citation classes, graph re-

lationships, titles, etc.).

• Hierarchy pruning A number of the

more successful papers we read, used a two

step classification approach. During the

first step a lightweight similarity metric was

used to prune the tree, leaving only plau-

sible categories remaining. After it would

classify in this pruned hierarchy. Of course

this would mean more training, but the re-

sults might be worth it.

• GPU optimization techniques At the

moment, we use gradient descent in our

GPU neural network propagation algo-

rithm. We use this algorithm due to its

implementation simplicity but we might be

able to use a more powerful optimization al-

gorithm to speed up our results there. In

particular, BFGS seems like a prime candi-

date to implement.

8

References

[CIW] Ioana Costantea, Radu Ioan, and Bot Gert Wanka. Patent document classification

based on mutual information feature selection.

[ima] Large Scale Visual Recognition Challenge 2010. http://www.image-net.org/

challenges/LSVRC/2010/pascal_ilsvrc.pdf.

[QHLZ11] X. Qiu, X. Huang, Z. Liu, and J. Zhou. Hierarchical text classification with latent concepts,

2011. http://www.aclweb.org/anthology/P/P11/P11-2105.pdf.

[RS02] Miguel E. Ruiz and Padmini Srinivasan. Hierarchical text categorization using neural networks.

Information Retrieval, 5:87–118, 2002. 10.1023/A:1012782908347.

[SL01] Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In Data Mining,

2001. ICDM 2001, Proceedings IEEE International Conference on, pages 521 –528, 2001.

[SZYW10] Y. Song, M. Zhao, J. Yagnik, and X. Wu. Taxonomic classication for web-based videos. 2010.

[WL09] X L Wang and B L Lu. Improved hierarchical svms for large-scale hierarchical text classification

challenge. Large scale hierarchical text classification, (60903119), 2009.

[XXYY08] G.R. Xue, D. Xing, Q. Yang, and Y. Yu. Deep classification in large-scale text hierarchies.

In Proceedings of the SIGIR conference on Research and development in information retrieval.

ACM Press, 2008.

9

