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1. Introduction 

Methods of estimation of density and regression 
function are quite common in statistical applications. 
Recently, there has been a lot of interest in 
nonparametric estimation of such functions based on 
wavelets. The reader may be referred to [17] and [32] 
for a detailed coverage of wavelet theory in statistics 
and to [25-26] for a recent comprehensive review and 
application of these and other methods of nonparametric 
functional estimation. 

Antoniadis et al. [2] and Masry [22] among others 
discussed the estimation of regression and density 
function using the wavelets. Prakasa Rao [24] 
considered the use of wavelets for estimating the 
derivatives of a density and investigated further their 
use for estimating the integrated squared density [24]. 
Walter and Ghorai [33] discussed the advantages and 
disadvantages of wavelet based methods of 
nonparametric estimation from i.i.d. sequences of 
random variables. Prakasa Rao [27] echoed the same 

advantages and disadvantages for the case of associated 
sequences. Furthermore, he pointed out that these 
methods allow one to obtain precise limits on the 
asymptotic mean squared error for the estimator of 
density and its derivatives as well as some other 
functional of the density [24,25]. Recently, Doosti et al. 
[14] have shown that the results in [27] can be extended 
to the case of negatively associated sequences. 

Chaubey et al. [5,6] extended results of [24] for a 
sequence of associated and negatively associated 
random variables. Doosti and Nezakati [15] and 
Chaubey and Doosti [7] obtained upper bounds for the 
Lp-losses for a sequence of m-dependent random 
variables in density function estimation and estimation 
of derivatives of density functions, respectively. We 
show that the Lp-error of a linear wavelet density 
estimator for some stochastic process (the estimator is 
constructed from dependent data) attains the same rate 
as when the observations are independent. The 
organization of the paper is as follows. In Section 2, we 
discuss the preliminaries of the wavelet based 
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estimation of the derivatives of the density along with 
the necessary underlying setup considered in [24]. Then 
in Section 3, we extend results of [21]. 

In Section 4, we study some conditions for some 
processes which are not necessarily Markov. 

2. Preliminaries 

Let  be a sequence of random variables 
on the probability space . We suppose that 

{ , 1}nX n ≥
( , , )PΩ ℵ

iX  has a bounded and compactly supported marginal 
density (.)f , with respect to Lebesgue measure, which 
does not depend on i. We estimate this density from n 
observations , 1,...,iX i = n . For any function 

2 ( )f ∈L R , we can write a formal expansion (see [8]): 

0 0 0

0 0

, , , ,j k j k j k j k j j
k Z j j k Z j j

f P f D fα φ δ ψ
∈ ≥ ∈ ≥

= + = +∑ ∑∑ ∑  

where the functions 

0 0

0

/ 2
, ( ) 2 (2 )j j

j k x x kφ φ= −  

and 
/ 2

, ( ) 2 (2 )j j
j k x x kψ ψ= −  

Constitute an (inhomogeneous) orthonormal basis of 
. Here 2 ( )L R ( )xφ  and ( )xψ  are the scale function 

and the orthogonal wavelet, respectively. Wavelet 
coefficients are given by the integrals 

0 0, , ,( ) ( ) , ( )j k j k j k j k,f x x dx f x dxα φ δ ψ= =∫ ∫  

We suppose that both φ  and , , have 
compact supports included in [ ,

1rψ +∈C r ∈N
]δ δ− . Note that, by 

corollary 5.5.2 in [9], ψ  is orthogonal to polynomials 
of degree , i.e. r≤

( ) 0, 0.1,...,lx x dx l rψ = ∀ =∫  

We suppose that f belongs to the Besov class (see 
[23], §VI.10), for some 0 1s r≤ ≤ + 1p ≥,  and , 
where 

1q ≥

,
, , ,{ , s

p q

s
s p q p q B

}F f B f M= ∈ ≤  

 
0,

0

1/( ( 2 ) )s
p q

js q q
j jB pp

j j

f P f D f
≥

= + ∑  

We may also say f belongs to the Besov class if and 
only if 

0 ,.
p

j l
α < ∞ ,   and  

 
0

( 1/ 2 1/ ) 1/
,.( ( 2 ) )

p

j s p q q
j l

j j

δ + −

≥

< ∞∑    (2.1) 

where We consider Besov spaces essentially because of 
their executional expressive power [see [31] and the 
discussion in [13]. We construct the density estimator 
see [27], 

0 0

0

, ,
ˆ ˆ

j

j k j k
k K

f α φ
∈

= ∑ ,   with  

 
0 0, ,

1

1ˆ (
n

)j k j k
i

iX
n

α φ
=

= ∑ ,   (2.2) 

where 
0jK  is the set of k such that 

0 ,sup ( ) sup ( )j kp f p φ φ∩ ≠ . The fact that φ  has a 

compact support implies that 
0jK  is finite and 

. Wavelet density estimators 

aroused much interest in the recent literature, see [12] 
and [16]. In the case of independent samples, the 
properties of the linear estimator (2.2) have been studied 
for a variety of error measures and density classes; see 
[19,21,30]. In the setup considered by Prakasa Rao [24], 
we assume that 

0

0
( ) (2 j

jcard K O= )

φ  is a scaling function generating an r-
regular multiresolution analysis and ( )

2 ( )df ∈L R . 
Furthermore, we assume that there exists  and 0mC ≥

0mβ ≥  such that 

( )| ( ) | (1 | |) , 0mm
mf x C x m dβ−≤ + ≤ ≤ . (2.3) 

Prakasa Rao [24] showed that the projection of ( )df  
on 

0jV  is 

0 0

( )
, ,( ) ( )d

n d j k j k
k

,f x a xφ=∑ . 

where 

0 0

( )
, ,( 1) ( ) ( )d d

j k j k Xa x fφ= − ∫ x dx

,

. 

So its estimator is 

0 0

( )
, ,

ˆ ˆ( ) ( )d
n d j k j k

k

f x a xφ=∑ , (2.4) 

where 

0 0

( )
, ,

1

( 1)ˆ ( )
d n

d
j k j k

i

a X
n

φ
=

−
= ∑ i , 

For the estimator in Equation (2.4), the sum is 
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considered for 
0jk K∈ . 

If we want the estimator of derivative of density 
function in Equation (2.4) for a stochastic process to 
attain the same result as for the associated, negatively 
associated and m-dependent cases, we have to impose 
certain weak dependence conditions on the considered 
process  defined on the ( ,{ , 1nX n ≥ } , )PΩ ℵ . Let  
denote the σ-algebra generated by the events 

m
kN

{ ,..., }k k m mX A X A∈ ∈ . 

We consider the following classical mixing 
conditions: 

1. strong mixing (s.m.), also called α-mixing, 

1 ,
sup sup | ( ) ( ) ( ) | ( ) 0

m
m sm A B

P AB P A P B sα
∞
+∈ ∈

− =
N N

→

→

 

 as s → ∞, 

2. complete regularity (c.r.), also called β-mixing, 

1sup { | ( | ) ( ) |} ( ) 0
m s

m
B

m
E Var P B P B sβ∞

+∈
− =

N
N  

 as s → ∞, 

3. uniformly strong mixing (u.s.m.), also called  
φ -mixing 

1 , ( ) 0,

| ( ) ( ) ( ) |sup sup ( ) 0
( )m

m sm A P A B

P AB P A P B s
P A

φ
∞
+∈ > ∈

−
= →

N N
 

 as s → ∞, 

4. ρ-mixing 

2 2
1( ), ( )

sup sup | ( , ) | 0
m

m sm X L Y L
corr X Y sρ

∞
+∈ ∈

= → →∞
N N

. 

Following [10] we denote by var ( )A Aμ∈F  the total 
variation of the restriction of the measure μ defined on 
some σ-algebra  to the σ-algebra . We call the 
corresponding values α(s), β(s) and 

N F
φ (s) the s.m., c.r. 

and u.s.m, coefficients, respectively. 
Moreover, we will show that under certain conditions 

of weak dependence (more precisely, under strong 
mixing conditions) the rate of convergence of wavelet 
estimators is the same (up to a constant) as for the 
independent case. As we will see, for the estimators to 
attain the “independent” rates of convergence, we 
should require the stochastic process to satisfy some 
local regularity conditions. 

3. Main Results 

First, we present a bound for the moment of order p 
of the sum of N random variables which depends on the 

second moment and mixing coefficients. This bound 
constitutes the basis of the main results of this paper-
Theorems 1, 2 and 3. This is a Rosenthal-type inequality 
(see [28,29] for other inequalities of this kind). We 
suppose that ( )iξ  is a strong mixing sequence of real 
random variables on the probability space . ( , , )PΩ ℵ

 
Lemma 3.1.  [21] Let 2 p≤ < ∞  and 1,..., nξ ξ  be a 
sequence of real-valued random variable such that 

( ) 0iξ =E , i Sξ
∞
< , and 2( )i

2ξ σ≤E . Then there 
exists C such that: 

1

2 2
/ 2 2 2

(| | )

{( ) ( ) ( )},

n
p

i
i

p p p p p
l l

n nC lS S
l l

ξ

σ σσ σ α

=

−≤ + +

∑E

n l

 

where l ∈N , 2 / 2l n≤ ≤ 2 2
1max{max ( )l u n u lσ σ≤ ≤=, , 

 and 2
1max ( 1)}u n u lσ≤ ≤ − 2 21( ) ( )u l

i uu ilσ ξ+ −
== ∑E . 

In what follows, α(l) is the strong mixing coefficient 
defined in the introduction. We denote 

0 0
0

2 2 2

1 1

1
2 2

, ,

max max( ( ), ( 1)),

( ) max ( ( ( ) ( ))) .
j

l u uu n l

u l

u j k i j kk K i u

l l

l X

σ σ σ

σ φ φ

≤ ≤ − +

+ −

∈
=

= −

= −∑E E iX

, ,

 (3.1) 

In Theorems 3.1 and 3.2, the results of [21] are 
obtained by letting d = 0. 

 
Theorem 3.1.  Let  with ( )

, ( )d
n d s p qf x F∈ 1/s p≥ , 

, and . Suppose that there exist constants 1p ≥ 1q ≥

1α >  and cα  such that for any l, 1( )l cαα α −≤ . 
Furthermore, suppose that there is a function g with 

( )g l G≥  (G is a positive constant), such that for any 
(ln( ))l O n= , . Then for , 

there exists a constant C such that 

2 lg( )l lσ ≤ max(2, )p p≥

2( )
1 2

2( ) ( )
, ,

ˆ( ) ( ) [ ]
(ln( ))

s d
sd d

n d n d p

nf x f x C
g n

′−
′+−− ≤E , 

where 1/ 1/s s p p′ ′= + −  and 
1

0 1
(ln( ))2 [ ] 2sj n

g n
+= . 

 
Theorem 3.2.  Let  with ( )

, ( )d
n d s p qf x F∈ , , 1/s p≥ , 

, and . Suppose that 1p ≥ 1q ≥ ( )l c l α
αα −≤ , for any 

l ∈N , 2 l n / 2≤ ≤ . Let us set ( 1) /[ (1 2 )]p s sμ α= + +  
(1 ) /p s sα ≥ +  and suppose that there is a function g 

with ( )g l G≥  (G is a positive constant), such that for 
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any , . Then for , 
there exists a constant C such that 

(ln( ))l O n= 2 lg( )l lσ ≤ max(2, )p p≥

2( )
1 2

2
( ) ( )
, ,

ˆ( ) ( ) [ ]
( )

s d
sd d

n d n d p

nf x f x C
g n μ

′−
′+−− ≤E , 

where 1/ 1/s s p′ ′= + − p

2

. 
 
Remark.  In the case of independent random variables, 

. Moreover, in the dependent case a rough 
bound  can be easily obtained. If some 
additional conditions are imposed on the process ( )

2 ( )l O lσ =
2 ( )l O lσ =

iX , 
the bound  can be achieved (see next 
section). Let us consider the following condition: 

. 

2 ( )l O lσ =

2: (l O lσ σ =C )
When the condition σC  is satisfied, the same rate as 

for the independent case, , is attained. We 
study 

2 /(2 )( s s lO n ′ ′− + )

σC  in the next section. Theorems 3.1 and 3.2 are 
corollaries of the following lemmas: 

 
Lemma 3.2.  Let  with ( )

, ,( )d
n d s p qf x F∈ , 1/s p≥ , , 

 and . Then there exists a constant 
C such that 

1p ≥

1q ≥ max(2, )p ≥ p

0
0

0
0

22 2( ) ( )
, ,

22 2 / 2 / ( 3) 4 / 2 /

2ˆ( ) ( ) {2

2( ) 2 ( ) }

j
j sd d l

n d n d p

j
jp P p p p

l

f x f x C
n l

l l
n

σ

σ α

−

− −

− ≤ +

+ +

E

,

/ 2

 (3.1) 

where , , and l ∈N 2 l n≤ ≤ 1/ 1/s s p′ ′= + − p . 
 

Proof.  First, we decompose 
2

( ) ( )
, ,

ˆ ( ) ( )d d
n d n d p

f x f x
′

−E  

into a bias term and a stochastic term 

0

0

2 2( ) ( ) ( ) ( )
, , , ,

2
( ) ( )
, ,

1 2

ˆ ( ) ( ) 2(

ˆ )

2( )

d d d d
n d n d n d j n d pp

d d
n d j n d p

f x f x f P f

f P f

T T

′′

′

− ≤ −

+ −

= +

E

E  (3.2) 

Now, we want to find upper bounds for  and . 1T 2T

0 0

( ) ( )
1 , ,( 2 )d d js js

j n d j n d p
j j j jp

T D f D f ′ ′−

′
≥ ≥′

= ≤∑ ∑ 2  

 
0 0

( ) 1/ 1/
,{ ( 2 ) } { 2 }d js q q js q

j n d p
j j j j

D f ′ ′

By Holder's inequality, with 1/  from the 
above equation, we have 

1/ 1,q q ′+ =

0

, ,

( ) ( )
1 , ,2s

p q p q

02s

s jd d
n d n dB

T C f C f′
′

s j

B

′ ′−≤ ≤ −

,

. (3.3) 

The last inequality holds, because of the continuous 
Sobolev injection, see [31] and the discussion in [12], 
which implies that for ,

s s
p q pB B ′

′⊂ q , one gets, 

, ,

( ) ( )
, ,s s

p q p q

d d
n d n dB B

f f′
′

≤ . 

Therefore, we get from Equation (3.3) 

02
1 2 s jT K ′−≤ . (3.4) 

Next, we have 

0

0 0 0

0

2
( ) ( )

2 , ,

2

, , ,

ˆ

ˆ( ) (
j

d d
n d j n d p

j k j k j k
k K

) .
p

T f P f

a a xφ

′

∈
′

= −

= −∑

E

E
 

This gives by using Lemma 1 in [21], p. 82 (using 
[23]), 

0

0 0

2 2 (1/ 2 1/ )
2 , ,ˆ{ }2 j p

j k j k lp
T C a a ′−

′
≤ −E . 

Further, by using Jensen's inequality the above 
equation implies, 

0

0 0

0

2 (1/ 2 1/ ) 2 /
2 ,ˆ2 {

j

pj p
, } p

j k j k
k K

T C a a
′′ ′−

∈

≤ −∑ E . (3.5) 

To complete the proof, it is sufficient to estimate 

0 0, ,ˆ
p

j k j ka a
′

−E . We know that 

0 0 0 0

( )
, , , ,

1

1ˆ {[ ( ) ]}
n

d
j k j k j k i j k

i

a a X a
n

φ
=

− = −∑ . 

Denote . Note that 
0

( )
,[ ( )d

i j k i j kX aξ φ= −
0 , ] iξ ∞

≤  
0 (1/ 2 ).2 j dK φ+

∞
, 0iξ =E , 2

iξ ≤E 022 j df
∞

 

 and 2( ) ( )d v dvφ∞
−∞∫ 0 0

( )
, ,ˆ| |d

j k j kα α− = ( 1)
1| |

d n
i in ξ−
=∑

)

. Hence 

applying the result in Equation (3.1) and using 
 we have 0

0
( ) (2 j

jcard K O=

q′−

′
≥ ≥

≤ ∑ ∑ ′  
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0 0

0

0 0 0

0 0 0

2 /
, ,

( / 2)( 2 2 ) / 2 2 /
1 2

(1 2 ) 2 2( / )

1 2(1 1/ )

ˆ{ | | }

1{ 2 ( 2 2 )}

2 2{ }.

j

p p
j k j k

k K

j j p dp j dpp p
p

j d j d j p

p

a a

C n c n c
n

K
nn

′ ′

∈

′ ′ ′′− +
′

+ + ′

′−

−

≤ +

≤ +

∑ E

′  

Now by substituting the above bound in (3.5), we get 
0 0 0

0

0 0 0 0

0 0 0

(1 2 ) 2 2( / )
2 (1/ 2 1/ )

2 1 2(1 1/ )

2 2( / ) 2 (1 2 )

1 2 2 /

(1 2 ) (1 2 )
1 2 /

1

2 22 {

2 2{ }

2 2 2{ ( ) }.

j d j d j p
j p

p

j j p j d j d

p

j j d j d
p

T K
nn

K
nn

K
n n n

′+ +
′−

′−

′− + +

′−

+ +
′−

≤ +

= +

= +

}

 

Since 02 jn ≥  and 1 2 / 0p ′− ≥  imply 0 1 2 /2( ) 1j p
n

′− ≤ , 
we have the inequality 

0 (1 2 )
2

2
2 j dK

T
n

+

≤ . (3.6) 

By using the bounds obtained in (3.5) and (3.6), and 
choosing  such that 0j

1
0 1 22 sj n ′+=  in (3.3), the theorem 

is proved. 
 

Proof of Theorems 3.1 and 3.2. To obtain the results it 
is sufficient to balance the terms in the upper bound 
(3.1) by choosing the parameters 02 j  and l. We first 
choose 02 j  to obtain equilibrium between the two first 
terms of the right-hand side of (3.1), and next, we 
choose l to attain the correct rate in the last terms. 

4. Discussion of the Theorem's Assumptions 

We study some additional conditions which the 
bound  can be achieved. 2 ( )l O lσ =

Comment.  Since the inequality  holds 
(see [16]) If the process is 

1/ 2( ) 2[ ( )]t tρ φ≤
φ -mixing and 

, then the process is ρ-mixing and 
. 

1/ 2
1[ ( )]t tφ∞
=Σ < Φ < ∞

∞1 ( )t t Rφ∞
=Σ < <
For Gaussian processes φ -mixing is equivalent to m-

dependence (see [18], Section 1), whereas ρ-mixing is 
equivalent to α-mixing (see [20], Section 2.1). 

 
Theorem 4.1.  Let  be a stochastic process 
on R and suppose the process is ρ-mixing and 

. Suppose Xn admits a bounded 

marginal density which is common for any n, then there 
exists a constant such that for any n, . 

( , 1nX n ≥ )

∞

2

1 ( )t tφ∞
=Σ < Φ <

2
l Glσ ≤

 
Proof.  We use the decomposition 

2
, , ,( ) ( ) ( )k u u k u kl V l C lσ ≤ + , (4.1) 

with 
1 ( ) ( )

, 1 0, 0,( ) ( ( ) ( ( ))l u d d
u k i f j k i f j k iV l E X E Xϕ ϕ+ −

== Σ − , (4.2) 

,

( ) ( )
1 0, 0,

( )

2 cov( ( ), (

u k

d d
u m t l u j k m j k t

C l

X Xϕ ϕ≤ < ≤ + −

=

∑∑ )) .
 (4.3) 

The term in (4.2) can be estimated as follows: 
( ) 2

, ( 1) 0,( ) max ( ( ))d
u k u i l u f j k iV l l E X

l f

ϕ≤ ≤ + −

∞

≤

≤
 (4.4) 

To bound the term  we apply a ρ-mixing 
covariance inequality (see [16], Section 1.2.2) that is, 

, ( )u kC l

0 0

0 0

( ) ( )
, ,

( ) 2 1/ 2 ( ) 2 1/ 2
, ,

| cov( ( ), ( )) |

2 ( )( ( ( )) ) ( ( ( ) )

2 ( ).

d d
j k m j k t

d d
f j k m f j k t

X X

t m E X E X

f t m

ϕ ϕ

ρ ϕ ϕ

ρ
∞

≤ −

≤ −

 

So we obtain 

0 0

( ) ( )
, 1 , ,

1

( ) 2 | cov( ( ), ( )) |

2 2 ( )

d d
u k u m t l u j k m j k t

u m t l u

C l X X

.f t m f Rl

ϕ ϕ

ρ ρ

≤ ≤ ≤ + −

≤ < ≤ + −∞ ∞

= ΣΣ

≤ ΣΣ − ≤
 

 
Theorem 4.2.  Let  be an R-valued stocastic 
process. Suppose that Xn admits a bounded marginal 
density which is common for all 1 , if the 
distribution of ( ,

( , 1nX n ≥ )

)
n N≤ ≤

m tX X  has a joint density , (.,.)m tf  
such that for all m and t, m t≠  

1/
, ,( | ( , ) | ) (.,.)m t m tf x y f Fν ν

νν
= ≤ < ∞∫  for some 

2ν< , (with the usual modification for ν = ∞ ) then there 
exists a constant G such that for all 0 (1 (2 / ))2 jl ν−≤ , 

. 2
l Glσ ≤

 
Proof.  Denote 0

0

(1 (2 / ))2 j
jl ν−≤ . We bound 2

,k uσ  as it 

has been done in (4.1). Next we use the partition 
, 2{( , )t m NΓ = ∈ 1( 1)}u m t l u 2≤ < < + − =Γ ΓU  where 

0
{( , ) ,0 min( , )}jt m t m l lΓ = ∈Γ < − ≤  
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and  is the compliment of  in Γ . Due to the 
inequality (4.4) it is enough to estimate the . 
To bound the covariance sum over the domain 

2Γ 1Γ

( , ) ( )u kC l

1Γ  we 
use 

0 0

0 0

( ) ( )
, ,

( ) ( )
, , ,

| cov( ( ) ( ) |

( | ( ) ( ) | ( , )

d d
j k m j k t

d d
j k j k m t

X X

x y f x y dxdy

ϕ ϕ

ϕ ϕ≤ ∫
 (4.5) 

0

0 0

( ) 2
,

2 /( ) ( ) 2
, ,

( | ( ) | ( ) ))

( | ( ))

d
j k

d d
j k f j k

x f x dx

F E
ν

ν ν

ϕ

ϕ ϕ
′

′

+

≤ +

∫

1X
 (4.5) 

with 1/ 1/ 1ν ν′ + = . 
Next, since 

0

0

0

2 / (1 2 / )( ) ( ) 2 /
,

2 (1 2 / )2(1 1/ ) ( )

2 ( (| ( ) |) )

(2 ) 2 ,

jd d
j k

jd

y dy
ν ν ν ν

ν

νν

ϕ ϕ

δ ϕ

′ ′ ′ ′−

′

−−

∞

=

≤

∫
 

and 0

0

/ 2( ) ( )
, 1| ( ) | 2 2 jd d

f j kE X fϕ δ ϕ −
∞∞

≤  we have by 

(4.5) 

0 0

0

0

( ) ( )
, ,
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For 
0jl l≤  the set  is empty and (4.6) together 

with (4.4) complete the proof. 
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Theorem 4.3.  Let  be an R-valued 
stochastic process and (Xn) is α-mixing with 
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admits a bounded marginal density which is common 
for all 1  then there exists a positive G such that 
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Proof.  We estimate the covariance sum over the set 
2Γ . By using the Davylov inequality (see [16], Section 

1.2.2) 
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because 2
ν

να −> . 
When substituting (4.6) and (4.7) in (4.3) we obtain 

the upper bound for . , ( )u kC l
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