ME451: Control Systems

Lecture 1 Introduction

Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University

1

Instructor

- Class Instructor: Dr. Jongeun Choi,
 - Website: <u>http://www.egr.msu.edu/~jchoi/</u>
 - Assistant Professor at ME department,
 - 2459 Engineering Building,
 - Email: jchoi@egr.msu.edu
- Office Hours
 - 2459 EB, MWF 10:10-11:00am, Extra hours by appointment
- Laboratory Instructor: Dr. Ranjan Mukherjee,
 - 2430 Engineering Building
 - Email: <u>mukherjee@egr.msu.edu</u>

Course information

- Lecture:
 - When: MWF: 11:30pm-12:20pm
 - Where: 226 Erickson Hall
 - Class and Laboratory website: <u>http://www.egr.msu.edu/classes/me451/jchoi/Fall2011/</u>

Required Textbook:

 Modern Control Systems, Richard C. Dorf and Robert H. Bishop, Prentice Hall, 12th edition, 2010, ISBN-10: 0-13-602458-0

Instructor

2

- Class Instructor: Dr. Jongeun Choi,
 - Website: <u>http://www.egr.msu.edu/~jchoi/</u>
 - Assistant Professor at ME department,
 - 2459 Engineering Building,
 - Email: jchoi@egr.msu.edu
- Office Hours
 - 2459 EB, MWF 11:30-12:20am, Extra hours by appointment
- Laboratory Instructor: Dr. Ranjan Mukherjee,
 - 2430 Engineering Building
 - Email: <u>mukherjee@egr.msu.edu</u>

Course information

- Lecture:
 - When: MWF: 12:40pm-1:30pm
 - Where: 2243 Engineering Building
 - Class and Laboratory website: <u>http://www.egr.msu.edu/classes/me451/jchoi/2012/</u>
- Required Textbook:
 - Modern Control Systems, Richard C. Dorf and Robert H. Bishop, Prentice Hall, 12th edition, 2010, ISBN-10: 0-13-602458-0

Main components of the course

- Lectures (about 40 lectures)
- Old Math Quiz
- Midterm1, Midterm2
- Final (Final exam period)
- Laboratory work
- Grading:
 - Homework plus Math Quiz (10%), Exam 1 (20%), Exam 2 (20%), Final Exam (comprehensive) (25%), Laboratory work (25%)
 - Homework will be due in one week from the day it is assigned

Tips to pass this course

- Come to the lectures as many times as you can.
- Print out and bring lecture slides to the lecture.
- Do "Exercises" given at the end of each lecture.
- Do homework every week.
- Read the textbook and the slides.
- Make use of instructor's office hours.
- If you want to get a very good grade...
 - Read the textbook thoroughly.
 - Read optional references too.
 - Do more than given "Exercises".
 - Use and be familiar with Matlab.

What is "Control"?

- Make some object (called system, or plant) behave as we desire.
- Imagine "control" around you!
 - Room temperature control
 - Car/bicycle driving
 - Voice volume control
 - "Control" (move) the position of the pointer
 - Cruise control or speed control
 - Process control
 - etc.

7

5

What is "Control Systems"?

- Why do we need control systems?
 - Convenient (room temperature control, laundry machine)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter)
 - They exist in nature. (human body temperature control)
 - Lower cost, high efficiency (factory automation), etc.
- Many examples of control systems around us

Open-Loop Control

- Open-loop Control System
 - Toaster, microwave oven, shooting a basketball

- Calibration is the key!
- Can be sensitive to disturbances

Example: Toaster

A toaster toasts bread, by setting timer.

Setting of timer Toasted bread

- Objective: make bread golden browned and crisp.
- A toaster does not measure the color of bread during the toasting process.
- For a fixed setting, in winter, the toast can be white and in summer, the toast can be black (Calibration!)
- A toaster would be more expensive with sensors to measure the color and actuators to adjust the timer based on the measured color.

Example: Laundry machine

A laundry machine washes clothes, by setting a program.

- A laundry machine does not measure how clean the clothes become.
- Control without measuring devices (sensors) are called open-loop control.

9

Closed-Loop (Feedback) Control

- Compare actual behavior with desired behavior
- Make corrections based on the error
- The sensor and the actuator are key elements of a feedback loop
- Design control algorithm

Ex: Automobile direction control

- Manual closed-loop (*feedback*) control.
- Although the controlled system is "Automobile", the *input* and the *output* of the system can be different, depending on *control objectives*!

Ex: Automobile cruise control

Attempts to maintain the speed of the automobile.

- Cruise control can be both manual and automatic.
- Note the similarity of the diagram above to the diagram in the previous slide!

Basic elements in feedback control systems

Control system design objective

To design a controller s.t. the output follows the reference in a "satisfactory" manner even in the face of disturbances.

Systematic controller design process

Goals of this course

To learn basics of feedback control systems

- Modeling as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Mechanical, electrical, electromechanical systems
- Analysis
 - Step response, frequency response
 - Stability: Routh-Hurwitz criterion, (Nyquist criterion)
- Design
 - Root locus technique, frequency response technique, PID control, lead/lag compensator
- Theory, (simulation with Matlab), practice in laboratories

Course roadmap

Summary & Exercises

- Introduction
 - Examples of control systems
 - Open loop and closed loop (feedback) control
 - Automatic control is a lot of fun!
- Next
 - Laplace transform
- Exercises
 - Buy the course textbook at the Bookstore.
 - Read Chapter 1 and 2.