
Introduction to Programming Using Java

Version 7.0, August 2014

(Version 7.0.2, with just a few corrections, December 2016)

David J. Eck

Hobart and William Smith Colleges

This is a PDF version of a free on-line book that is available at
http://math.hws.edu/javanotes/. The PDF does not include
source code files, solutions to exercises, or answers to quizzes, but

it does have external links to these resources, shown in blue.
The PDF also has internal links, shown in red. These links can

be used in Acrobat Reader and some other PDF reader programs.

http://math.hws.edu/javanotes/

ii

c©1996–2016, David J. Eck

David J. Eck (eck@hws.edu)
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
Geneva, NY 14456

This book can be distributed in unmodified form for non-commercial purposes.
Modified versions can be made and distributed for non-commercial purposes
provided they are distributed under the same license as the original. More
specifically: This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/. Other uses require
permission from the author.

The web site for this book is: http://math.hws.edu/javanotes

Contents

Preface xi

1 The Mental Landscape 1
1.1 Machine Language . 1
1.2 Asynchronous Events . 3
1.3 The Java Virtual Machine . 6
1.4 Building Blocks of Programs . 8
1.5 Object-oriented Programming . 10
1.6 The Modern User Interface . 13
1.7 The Internet and Beyond . 15
Quiz on Chapter 1 . 18

2 Names and Things 19
2.1 The Basic Java Application . 19
2.2 Variables and Types . 23

2.2.1 Variables . 23
2.2.2 Types . 25
2.2.3 Literals . 26
2.2.4 Strings and String Literals . 27
2.2.5 Variables in Programs . 28

2.3 Objects and Subroutines . 29
2.3.1 Built-in Subroutines and Functions . 30
2.3.2 Classes and Objects . 33
2.3.3 Operations on Strings . 34
2.3.4 Introduction to Enums . 36

2.4 Text Input and Output . 37
2.4.1 Basic Output and Formatted Output . 38
2.4.2 A First Text Input Example . 39
2.4.3 Basic TextIO Input Functions . 41
2.4.4 Introduction to File I/O . 43
2.4.5 Other TextIO Features . 45
2.4.6 Using Scanner for Input . 46

2.5 Details of Expressions . 47
2.5.1 Arithmetic Operators . 48
2.5.2 Increment and Decrement . 49
2.5.3 Relational Operators . 50
2.5.4 Boolean Operators . 50
2.5.5 Conditional Operator . 51

i

CONTENTS ii

2.5.6 Assignment Operators and Type Conversion 51
2.5.7 Precedence Rules . 53

2.6 Programming Environments . 54
2.6.1 Java Development Kit . 54
2.6.2 Command Line Environment . 55
2.6.3 Eclipse . 57
2.6.4 NetBeans . 60
2.6.5 BlueJ . 60
2.6.6 The Problem of Packages . 61

Exercises for Chapter 2 . 63
Quiz on Chapter 2 . 65

3 Control 67
3.1 Blocks, Loops, and Branches . 67

3.1.1 Blocks . 67
3.1.2 The Basic While Loop . 68
3.1.3 The Basic If Statement . 71
3.1.4 Definite Assignment . 73

3.2 Algorithm Development . 74
3.2.1 Pseudocode and Stepwise Refinement . 74
3.2.2 The 3N+1 Problem . 77
3.2.3 Coding, Testing, Debugging . 80

3.3 while and do..while . 82
3.3.1 The while Statement . 82
3.3.2 The do..while Statement . 84
3.3.3 break and continue . 86

3.4 The for Statement . 88
3.4.1 For Loops . 88
3.4.2 Example: Counting Divisors . 91
3.4.3 Nested for Loops . 93

3.5 The if Statement . 96
3.5.1 The Dangling else Problem . 96
3.5.2 Multiway Branching . 97
3.5.3 If Statement Examples . 99
3.5.4 The Empty Statement . 103

3.6 The switch Statement . 104
3.6.1 The Basic switch Statement . 104
3.6.2 Menus and switch Statements . 106
3.6.3 Enums in switch Statements . 108
3.6.4 Definite Assignment and switch Statements 108

3.7 Exceptions and try..catch . 109
3.7.1 Exceptions . 110
3.7.2 try..catch . 110
3.7.3 Exceptions in TextIO . 112

3.8 Introduction to Arrays . 114
3.8.1 Creating and Using Arrays . 114
3.8.2 Arrays and For Loops . 116

CONTENTS iii

3.8.3 Random Access . 117
3.8.4 Partially Full Arrays . 119
3.8.5 Two-dimensional Arrays . 120

3.9 GUI Programming . 122
3.9.1 Drawing Shapes . 122
3.9.2 Drawing in a Program . 125
3.9.3 Animation . 127

Exercises for Chapter 3 . 129
Quiz on Chapter 3 . 133

4 Subroutines 135
4.1 Black Boxes . 135
4.2 Static Subroutines and Variables . 137

4.2.1 Subroutine Definitions . 137
4.2.2 Calling Subroutines . 139
4.2.3 Subroutines in Programs . 140
4.2.4 Member Variables . 143

4.3 Parameters . 145
4.3.1 Using Parameters . 146
4.3.2 Formal and Actual Parameters . 147
4.3.3 Overloading . 148
4.3.4 Subroutine Examples . 149
4.3.5 Array Parameters . 151
4.3.6 Command-line Arguments . 152
4.3.7 Throwing Exceptions . 153
4.3.8 Global and Local Variables . 154

4.4 Return Values . 155
4.4.1 The return statement . 155
4.4.2 Function Examples . 156
4.4.3 3N+1 Revisited . 159

4.5 APIs, Packages, and Javadoc . 160
4.5.1 Toolboxes . 160
4.5.2 Java’s Standard Packages . 162
4.5.3 Using Classes from Packages . 163
4.5.4 Javadoc . 165
4.5.5 Static Import . 166

4.6 More on Program Design . 167
4.6.1 Preconditions and Postconditions . 168
4.6.2 A Design Example . 168
4.6.3 The Program . 173

4.7 The Truth About Declarations . 175
4.7.1 Initialization in Declarations . 175
4.7.2 Named Constants . 177
4.7.3 Naming and Scope Rules . 180

Exercises for Chapter 4 . 183
Quiz on Chapter 4 . 186

CONTENTS iv

5 Objects and Classes 189
5.1 Objects and Instance Methods . 189

5.1.1 Objects, Classes, and Instances . 190
5.1.2 Fundamentals of Objects . 192
5.1.3 Getters and Setters . 197
5.1.4 Arrays and Objects . 198

5.2 Constructors and Object Initialization . 199
5.2.1 Initializing Instance Variables . 199
5.2.2 Constructors . 200
5.2.3 Garbage Collection . 206

5.3 Programming with Objects . 207
5.3.1 Some Built-in Classes . 207
5.3.2 The class “Object” . 209
5.3.3 Writing and Using a Class . 210
5.3.4 Object-oriented Analysis and Design . 212

5.4 Programming Example: Card, Hand, Deck . 213
5.4.1 Designing the classes . 214
5.4.2 The Card Class . 216
5.4.3 Example: A Simple Card Game . 220

5.5 Inheritance and Polymorphism . 223
5.5.1 Extending Existing Classes . 223
5.5.2 Inheritance and Class Hierarchy . 225
5.5.3 Example: Vehicles . 226
5.5.4 Polymorphism . 229
5.5.5 Abstract Classes . 231

5.6 this and super . 234
5.6.1 The Special Variable this . 234
5.6.2 The Special Variable super . 235
5.6.3 super and this As Constructors . 236

5.7 Interfaces . 238
5.7.1 Defining and Implementing Interfaces . 238
5.7.2 Interfaces as Types . 240
5.7.3 Interfaces in Java 8 . 241

5.8 Nested Classes . 242
5.8.1 Static Nested Classes . 242
5.8.2 Inner Classes . 243
5.8.3 Anonymous Inner Classes . 244
5.8.4 Java 8 Lambda Expressions . 245

Exercises for Chapter 5 . 247
Quiz on Chapter 5 . 251

6 Introduction to GUI Programming 253
6.1 The Basic GUI Application . 253

6.1.1 JFrame and JPanel . 255
6.1.2 Components and Layout . 257
6.1.3 Events and Listeners . 257
6.1.4 Some Java GUI History . 259

CONTENTS v

6.2 Graphics and Painting . 259
6.2.1 Coordinates . 261
6.2.2 Colors . 262
6.2.3 Fonts . 264
6.2.4 Shapes . 264
6.2.5 Graphics2D . 266
6.2.6 An Example . 267
6.2.7 Where is main()? . 269

6.3 Mouse Events . 270
6.3.1 Event Handling . 271
6.3.2 MouseEvent and MouseListener . 272
6.3.3 MouseEvent Data . 275
6.3.4 MouseMotionListeners and Dragging . 278
6.3.5 Anonymous Event Handlers . 281

6.4 Timers, KeyEvents, and State Machines . 283
6.4.1 Timers and Animation . 283
6.4.2 Keyboard Events . 285
6.4.3 Focus Events . 288
6.4.4 State Machines . 289

6.5 Basic Components . 292
6.5.1 JButton . 294
6.5.2 JLabel . 295
6.5.3 JCheckBox . 295
6.5.4 JTextField and JTextArea . 296
6.5.5 JSlider . 298

6.6 Basic Layout . 299
6.6.1 Basic Layout Managers . 300
6.6.2 Borders . 303
6.6.3 SliderAndButtonDemo . 305
6.6.4 A Simple Calculator . 307
6.6.5 Using a null Layout . 309
6.6.6 A Little Card Game . 310

6.7 Menus and Dialogs . 314
6.7.1 Menus and Menubars . 315
6.7.2 Dialogs . 318
6.7.3 Fine Points of Frames . 320
6.7.4 Creating Jar Files . 321

Exercises for Chapter 6 . 324
Quiz on Chapter 6 . 330

7 Arrays and ArrayLists 331
7.1 Array Details . 331

7.1.1 For-each Loops . 332
7.1.2 Variable Arity Methods . 333
7.1.3 Array Literals . 335

7.2 Array Processing . 337
7.2.1 Some Processing Examples . 337

CONTENTS vi

7.2.2 Some Standard Array Methods . 340
7.2.3 RandomStrings Revisited . 341
7.2.4 Dynamic Arrays . 345

7.3 ArrayList . 347
7.3.1 ArrayList and Parameterized Types . 347
7.3.2 Wrapper Classes . 348
7.3.3 Programming With ArrayList . 350
7.3.4 Vectors . 353

7.4 Searching and Sorting . 354
7.4.1 Searching . 355
7.4.2 Association Lists . 357
7.4.3 Insertion Sort . 359
7.4.4 Selection Sort . 361
7.4.5 Unsorting . 363

7.5 Two-dimensional Arrays . 363
7.5.1 The Truth About 2D Arrays . 364
7.5.2 Conway’s Game Of Life . 366
7.5.3 Checkers . 370

Exercises for Chapter 7 . 377
Quiz on Chapter 7 . 381

8 Correctness, Robustness, Efficiency 383
8.1 Introduction to Correctness and Robustness . 383

8.1.1 Horror Stories . 384
8.1.2 Java to the Rescue . 385
8.1.3 Problems Remain in Java . 387

8.2 Writing Correct Programs . 388
8.2.1 Provably Correct Programs . 388
8.2.2 Robust Handling of Input . 391

8.3 Exceptions and try..catch . 395
8.3.1 Exceptions and Exception Classes . 396
8.3.2 The try Statement . 398
8.3.3 Throwing Exceptions . 401
8.3.4 Mandatory Exception Handling . 403
8.3.5 Programming with Exceptions . 404

8.4 Assertions and Annotations . 408
8.4.1 Assertions . 408
8.4.2 Annotations . 411

8.5 Analysis of Algorithms . 412
Exercises for Chapter 8 . 418
Quiz on Chapter 8 . 422

9 Linked Data Structures and Recursion 423
9.1 Recursion . 423

9.1.1 Recursive Binary Search . 424
9.1.2 Towers of Hanoi . 426
9.1.3 A Recursive Sorting Algorithm . 429
9.1.4 Blob Counting . 431

CONTENTS vii

9.2 Linked Data Structures . 435
9.2.1 Recursive Linking . 435
9.2.2 Linked Lists . 437
9.2.3 Basic Linked List Processing . 438
9.2.4 Inserting into a Linked List . 441
9.2.5 Deleting from a Linked List . 443

9.3 Stacks, Queues, and ADTs . 444
9.3.1 Stacks . 445
9.3.2 Queues . 448
9.3.3 Postfix Expressions . 453

9.4 Binary Trees . 456
9.4.1 Tree Traversal . 457
9.4.2 Binary Sort Trees . 459
9.4.3 Expression Trees . 463

9.5 A Simple Recursive Descent Parser . 466
9.5.1 Backus-Naur Form . 467
9.5.2 Recursive Descent Parsing . 468
9.5.3 Building an Expression Tree . 472

Exercises for Chapter 9 . 475
Quiz on Chapter 9 . 478

10 Generic Programming and Collection Classes 481
10.1 Generic Programming . 481

10.1.1 Generic Programming in Smalltalk . 482
10.1.2 Generic Programming in C++ . 483
10.1.3 Generic Programming in Java . 484
10.1.4 The Java Collection Framework . 485
10.1.5 Iterators and for-each Loops . 487
10.1.6 Equality and Comparison . 489
10.1.7 Generics and Wrapper Classes . 491

10.2 Lists and Sets . 492
10.2.1 ArrayList and LinkedList . 492
10.2.2 Sorting . 496
10.2.3 TreeSet and HashSet . 496
10.2.4 EnumSet . 499
10.2.5 Priority Queues . 500

10.3 Maps . 501
10.3.1 The Map Interface . 502
10.3.2 Views, SubSets, and SubMaps . 503
10.3.3 Hash Tables and Hash Codes . 506

10.4 Programming with the JFC . 508
10.4.1 Symbol Tables . 508
10.4.2 Sets Inside a Map . 510
10.4.3 Using a Comparator . 513
10.4.4 Word Counting . 514

10.5 Writing Generic Classes and Methods . 517
10.5.1 Simple Generic Classes . 517

CONTENTS viii

10.5.2 Simple Generic Methods . 519
10.5.3 Type Wildcards . 521
10.5.4 Bounded Types . 524

Exercises for Chapter 10 . 528
Quiz on Chapter 10 . 532

11 Streams, Files, and Networking 533
11.1 Streams, Readers, and Writers . 533

11.1.1 Character and Byte Streams . 534
11.1.2 PrintWriter . 535
11.1.3 Data Streams . 537
11.1.4 Reading Text . 538
11.1.5 The Scanner Class . 541
11.1.6 Serialized Object I/O . 542

11.2 Files . 543
11.2.1 Reading and Writing Files . 543
11.2.2 Files and Directories . 548
11.2.3 File Dialog Boxes . 550

11.3 Programming With Files . 553
11.3.1 Copying a File . 553
11.3.2 Persistent Data . 556
11.3.3 Files in GUI Programs . 558
11.3.4 Storing Objects in Files . 559

11.4 Networking . 567
11.4.1 URLs and URLConnections . 567
11.4.2 TCP/IP and Client/Server . 569
11.4.3 Sockets in Java . 571
11.4.4 A Trivial Client/Server . 573
11.4.5 A Simple Network Chat . 577

11.5 A Brief Introduction to XML . 580
11.5.1 Basic XML Syntax . 581
11.5.2 Working With the DOM . 582

Exercises for Chapter 11 . 588
Quiz on Chapter 11 . 591

12 Threads and Multiprocessing 593
12.1 Introduction to Threads . 593

12.1.1 Creating and Running Threads . 594
12.1.2 Operations on Threads . 598
12.1.3 Mutual Exclusion with “synchronized” . 601
12.1.4 Volatile Variables . 604

12.2 Programming with Threads . 606
12.2.1 Threads Versus Timers . 606
12.2.2 Recursion in a Thread . 607
12.2.3 Threads for Background Computation . 609
12.2.4 Threads for Multiprocessing . 611
12.2.5 The SwingUtilities Approach . 613

12.3 Threads and Parallel Processing . 614

CONTENTS ix

12.3.1 Problem Decomposition . 614
12.3.2 Thread Pools and Task Queues . 615
12.3.3 Producer/Consumer and Blocking Queues 618
12.3.4 Wait and Notify . 622

12.4 Threads and Networking . 628
12.4.1 The Blocking I/O Problem . 628
12.4.2 An Asynchronous Network Chat Program 629
12.4.3 A Threaded Network Server . 633
12.4.4 Using a Thread Pool . 635
12.4.5 Distributed Computing . 637

12.5 Network Programming Example . 643
12.5.1 The Netgame Framework . 644
12.5.2 A Simple Chat Room . 648
12.5.3 A Networked TicTacToe Game . 650
12.5.4 A Networked Poker Game . 653

Exercises for Chapter 12 . 654
Quiz on Chapter 12 . 658

13 Advanced GUI Programming 659
13.1 Images and Resources . 659

13.1.1 Images and BufferedImages . 659
13.1.2 Working With Pixels . 666
13.1.3 Resources . 668
13.1.4 Cursors and Icons . 669
13.1.5 Image File I/O . 671

13.2 Fancier Graphics . 672
13.2.1 Measuring Text . 673
13.2.2 Transparency . 675
13.2.3 Antialiasing . 677
13.2.4 Strokes and Paints . 678
13.2.5 Transforms and Shapes . 681

13.3 Actions and Buttons . 684
13.3.1 Action and AbstractAction . 684
13.3.2 Icons on Buttons . 686
13.3.3 Making Choices . 687
13.3.4 Toolbars . 691
13.3.5 Keyboard Accelerators . 692
13.3.6 HTML on Buttons . 694

13.4 Complex Components and MVC . 695
13.4.1 Model-View-Controller . 695
13.4.2 Lists and ListModels . 696
13.4.3 Tables and TableModels . 699
13.4.4 Documents and Editors . 703
13.4.5 Custom Components . 704

13.5 Finishing Touches . 709
13.5.1 The Mandelbrot Set . 709
13.5.2 Design of the Program . 711

CONTENTS x

13.5.3 Internationalization . 713
13.5.4 Events, Events, Events . 715
13.5.5 Custom Dialogs . 717
13.5.6 Preferences . 718

Exercises for Chapter 13 . 720
Quiz on Chapter 13 . 723

Appendix: Source Files 725

Glossary 735

Preface

Introduction to Programming Using Java is a free introductory computer programming
textbook that uses Java as the language of instruction. It is suitable for use in an introductory
programming course and for people who are trying to learn programming on their own. There
are no prerequisites beyond a general familiarity with the ideas of computers and programs.
There is enough material for a full year of college-level programming. Chapters 1 through 7
can be used as a textbook in a one-semester college-level course or in a year-long high school
course. The remaining chapters can be covered in a second course.

The Seventh Edition of the book covers “Java 7.” The most recent version of Java is 8, but
this book has only a few very short mentions of the new features in Java 8.

The home web site for this book is http://math.hws.edu/javanotes/. The page at that
address contains links for downloading a copy of the web site and for downloading PDF versions
of the book. The web site—and the web site download—includes source code for the sample
programs that are discussed in the text, answers to end-of-chapter quizzes and a discussion and
solution for each end-of-chapter exercises. Readers are encouraged to download the source code
for the examples and to read and run the programs as they read the book. Readers are also
strongly encouraged to read the exercise solutions if they want to get the most out of this book.

In style, this is a textbook rather than a tutorial. That is, it concentrates on explaining
concepts rather than giving step-by-step how-to-do-it guides. I have tried to use a conversa-
tional writing style that might be closer to classroom lecture than to a typical textbook. This
is certainly not a Java reference book, and it is not a comprehensive survey of all the features
of Java. It is not written as a quick introduction to Java for people who already know another
programming language. Instead, it is directed mainly towards people who are learning program-
ming for the first time, and it is as much about general programming concepts as it is about
Java in particular. I believe that Introduction to Programming using Java is fully competitive
with the conventionally published, printed programming textbooks that are available on the
market. (Well, all right, I’ll confess that I think it’s better.)

There are several approaches to teaching Java. One approach uses graphical user interface
programming from the very beginning. Some people believe that object oriented programming
should also be emphasized from the very beginning. This is not the approach that I take. The
approach that I favor starts with the more basic building blocks of programming and builds
from there. After an introductory chapter, I cover procedural programming in Chapters 2,
3, and 4. Object-oriented programming is introduced in Chapter 5. Chapter 6 covers the
closely related topic of event-oriented programming and graphical user interfaces. Arrays are
introduced in Chapter 3 with a full treatment in Chapter 7. Chapter 8 is a short chapter that
marks a turning point in the book, moving beyond the fundamental ideas of programming to
cover more advanced topics. Chapter 8 is about writing robust, correct, and efficient programs.
Chapters 9 and 10 cover recursion and data structures, including the Java Collection Framework.
Chapter 11 is about files and networking. Chapter 12 covers threads and parallel processing.

xi

http://math.hws.edu/javanotes/

Preface xii

Finally, Chapter 13 returns to the topic of graphical user interface programming to cover some
of Java’s more advanced capabilities.

∗ ∗ ∗

The Seventh Edition of “Introduction to Programming using Java” is not a huge update
from the sixth edition. In fact, my main motivation for the new version was to remove any use
of applets or coverage of applets from the book. Applets are Java programs that run on a web
page. When Java first came out, they were exciting, and it seemed like they would become a
major way of creating active content for the Web. Up until the sixth edition, the web pages
for this book included applets for running many of the sample programs. However, because
of security issues and the emergence of other technologies, applets are no longer widely used.
Furthermore, the most recent versions of Java made it fairly difficult and unpleasant to use the
applets in the book. In place of applets, I have tried to make it as easy as possible for readers
to download the sample programs and run them on their own computers.

Another significant change in the seventh edition is that arrays are now introduced in
Chapter 3 in a basic form that is used throughout the next three chapters. Previously, arrays
were not introduced until Chapter 7, after objects and GUI programming had already been
covered. Much of the more advanced coverage of arrays is still in Chapter 7.

Aside from that, there are many small improvements throughout, mostly related to features
that were new in Java 7. Version 7.0.2 is the final release of the seventh edition.

∗ ∗ ∗

The latest complete edition of Introduction to Programming using Java is available on line at
http://math.hws.edu/javanotes/. The first version of the book was written in 1996, and there
have been several editions since then. All editions are archived (at least until my retirement)
at the following Web addresses:

• First edition: http://math.hws.edu/eck/cs124/javanotes1/ (Covers Java 1.0.)

• Second edition: http://math.hws.edu/eck/cs124/javanotes2/ (Covers Java 1.1.)

• Third edition: http://math.hws.edu/eck/cs124/javanotes3/ (Covers Java 1.1.)

• Fourth edition: http://math.hws.edu/eck/cs124/javanotes4/ (Covers Java 1.4.)

• Fifth edition: http://math.hws.edu/eck/cs124/javanotes5/ (Covers Java 5.0.)

• Sixth edition: http://math.hws.edu/eck/cs124/javanotes6/ (Covers Java 5.0, with a bit
of 6.0.)

• Seventh edition: http://math.hws.edu/eck/cs124/javanotes7/ (Covers Java 7.)

Introduction to Programming using Java is free, but it is not in the pub-
lic domain. Version 7 is published under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/. For example, you can:

• Post an unmodified copy of the on-line version on your own Web site (including the parts
that list the author and state the license under which it is distributed!).

• Give away unmodified copies of this book or sell them at cost of production, as long as
they meet the requirements of the license.

• Make modified copies of the complete book or parts of it and post them on the web or
otherwise distribute them non-commercially, provided that attribution to the author is
given, the modifications are clearly noted, and the modified copies are distributed under
the same license as the original. This includes translations to other languages.

http://math.hws.edu/javanotes/
http://math.hws.edu/eck/cs124/javanotes1/
http://math.hws.edu/eck/cs124/javanotes2/
http://math.hws.edu/eck/cs124/javanotes3/
http://math.hws.edu/eck/cs124/javanotes4/
http://math.hws.edu/eck/cs124/javanotes5/
http://math.hws.edu/eck/cs124/javanotes6/
http://math.hws.edu/eck/cs124/javanotes7/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface xiii

For uses of the book in ways not covered by the license, permission of the author is required.
While it is not actually required by the license, I do appreciate hearing from people who

are using or distributing my work.

∗ ∗ ∗

A technical note on production: The on-line and PDF versions of this book are created
from a single source, which is written largely in XML. To produce the PDF version, the XML
is processed into a form that can be used by the TeX typesetting program. In addition to XML
files, the source includes DTDs, XSLT transformations, Java source code files, image files, a
TeX macro file, and a couple of scripts that are used in processing. The scripts work on Linux
and on Mac OS.

I have made the complete source files available for download at the following
address:

http://math.hws.edu/eck/cs124/downloads/javanotes7-full-source.zip
These files were not originally meant for publication, and therefore are not very cleanly

written. Furthermore, it requires a fair amount of expertise to use them. However, I have had
several requests for the sources and have made them available on an “as-is” basis. For more
information about the sources and how they are used see the README file from the source
download.

∗ ∗ ∗

Professor David J. Eck
Department of Mathematics and Computer Science
Hobart and William Smith Colleges
300 Pulteney Street
Geneva, New York 14456, USA
Email: eck@hws.edu
WWW: http://math.hws.edu/eck/

http://math.hws.edu/eck/cs124/downloads/javanotes7-full-source.zip
http://math.hws.edu/eck/

Chapter 1

Overview: The Mental Landscape

When you begin a journey, it’s a good idea to have a mental map of the terrain you’ll be
passing through. The same is true for an intellectual journey, such as learning to write computer
programs. In this case, you’ll need to know the basics of what computers are and how they
work. You’ll want to have some idea of what a computer program is and how one is created.
Since you will be writing programs in the Java programming language, you’ll want to know
something about that language in particular and about the modern computing environment for
which Java is designed.

As you read this chapter, don’t worry if you can’t understand everything in detail. (In fact,
it would be impossible for you to learn all the details from the brief expositions in this chapter.)
Concentrate on learning enough about the big ideas to orient yourself, in preparation for the
rest of the book. Most of what is covered in this chapter will be covered in much greater detail
later in the book.

1.1 The Fetch and Execute Cycle: Machine Language

A computer is a complex system consisting of many different components. But at the
heart—or the brain, if you want—of the computer is a single component that does the actual
computing. This is the Central Processing Unit , or CPU. In a modern desktop computer,
the CPU is a single “chip” on the order of one square inch in size. The job of the CPU is to
execute programs.

A program is simply a list of unambiguous instructions meant to be followed mechanically
by a computer. A computer is built to carry out instructions that are written in a very simple
type of language called machine language . Each type of computer has its own machine
language, and the computer can directly execute a program only if the program is expressed in
that language. (It can execute programs written in other languages if they are first translated
into machine language.)

When the CPU executes a program, that program is stored in the computer’s main mem-
ory (also called the RAM or random access memory). In addition to the program, memory
can also hold data that is being used or processed by the program. Main memory consists of a
sequence of locations. These locations are numbered, and the sequence number of a location
is called its address. An address provides a way of picking out one particular piece of informa-
tion from among the millions stored in memory. When the CPU needs to access the program
instruction or data in a particular location, it sends the address of that information as a sig-
nal to the memory; the memory responds by sending back the data contained in the specified

1

CHAPTER 1. THE MENTAL LANDSCAPE 2

location. The CPU can also store information in memory by specifying the information to be
stored and the address of the location where it is to be stored.

On the level of machine language, the operation of the CPU is fairly straightforward (al-
though it is very complicated in detail). The CPU executes a program that is stored as a
sequence of machine language instructions in main memory. It does this by repeatedly reading,
or fetching , an instruction from memory and then carrying out, or executing , that instruc-
tion. This process—fetch an instruction, execute it, fetch another instruction, execute it, and so
on forever—is called the fetch-and-execute cycle . With one exception, which will be covered
in the next section, this is all that the CPU ever does.

The details of the fetch-and-execute cycle are not terribly important, but there are a few
basic things you should know. The CPU contains a few internal registers, which are small
memory units capable of holding a single number or machine language instruction. The CPU
uses one of these registers—the program counter , or PC—to keep track of where it is in the
program it is executing. The PC simply stores the memory address of the next instruction that
the CPU should execute. At the beginning of each fetch-and-execute cycle, the CPU checks the
PC to see which instruction it should fetch. During the course of the fetch-and-execute cycle,
the number in the PC is updated to indicate the instruction that is to be executed in the next
cycle. (Usually, but not always, this is just the instruction that sequentially follows the current
instruction in the program.)

∗ ∗ ∗

A computer executes machine language programs mechanically—that is without under-
standing them or thinking about them—simply because of the way it is physically put together.
This is not an easy concept. A computer is a machine built of millions of tiny switches called
transistors, which have the property that they can be wired together in such a way that an
output from one switch can turn another switch on or off. As a computer computes, these
switches turn each other on or off in a pattern determined both by the way they are wired
together and by the program that the computer is executing.

Machine language instructions are expressed as binary numbers. A binary number is made
up of just two possible digits, zero and one. Each zero or one is called a bit . So, a machine
language instruction is just a sequence of zeros and ones. Each particular sequence encodes
some particular instruction. The data that the computer manipulates is also encoded as binary
numbers. In modern computers, each memory location holds a byte , which is a sequence of
eight bits. (A machine language instruction or a piece of data generally consists of several bytes,
stored in consecutive memory locations.)

A computer can work directly with binary numbers because switches can readily represent
such numbers: Turn the switch on to represent a one; turn it off to represent a zero. Machine
language instructions are stored in memory as patterns of switches turned on or off. When a
machine language instruction is loaded into the CPU, all that happens is that certain switches
are turned on or off in the pattern that encodes that instruction. The CPU is built to respond
to this pattern by executing the instruction it encodes; it does this simply because of the way
all the other switches in the CPU are wired together.

So, you should understand this much about how computers work: Main memory holds
machine language programs and data. These are encoded as binary numbers. The CPU fetches
machine language instructions from memory one after another and executes them. It does
this mechanically, without thinking about or understanding what it does—and therefore the
program it executes must be perfect, complete in all details, and unambiguous because the CPU
can do nothing but execute it exactly as written. Here is a schematic view of this first-stage

CHAPTER 1. THE MENTAL LANDSCAPE 3

understanding of the computer:

10001010 (Location 0)

00110100 (Location 1)

01110111 (Location 2)

10100100 (Location 3)

11010010 (Location 4)

10000110 (Location 5)

01001111 (Location 6)

10100000 (Location 7)

00000010 (Location 8)

10100010 (Location 9)

00010100 (Location 10)

.

.

.

Data to Memory

Data from Memory

Address for

reading/writing

data

Program

counter:

0010110111001000

CPU

Memory

1.2 Asynchronous Events: Polling Loops and Interrupts

The CPU spends almost all of its time fetching instructions from memory and executing
them. However, the CPU and main memory are only two out of many components in a real
computer system. A complete system contains other devices such as:

• A hard disk or solid state drive for storing programs and data files. (Note that main
memory holds only a comparatively small amount of information, and holds it only as
long as the power is turned on. A hard disk or solid state drive is used for permanent
storage of larger amounts of information, but programs have to be loaded from there into
main memory before they can actually be executed. A hard disk stores data on a spinning
magnetic disk, while a solid state drive is a purely electronic device with no moving parts.)

• A keyboard and mouse for user input.

• A monitor and printer which can be used to display the computer’s output.

• An audio output device that allows the computer to play sounds.

• A network interface that allows the computer to communicate with other computers
that are connected to it on a network, either wirelessly or by wire.

• A scanner that converts images into coded binary numbers that can be stored and
manipulated on the computer.

The list of devices is entirely open ended, and computer systems are built so that they can
easily be expanded by adding new devices. Somehow the CPU has to communicate with and
control all these devices. The CPU can only do this by executing machine language instructions
(which is all it can do, period). The way this works is that for each device in a system, there
is a device driver , which consists of software that the CPU executes when it has to deal
with the device. Installing a new device on a system generally has two steps: plugging the
device physically into the computer, and installing the device driver software. Without the
device driver, the actual physical device would be useless, since the CPU would not be able to
communicate with it.

CHAPTER 1. THE MENTAL LANDSCAPE 4

∗ ∗ ∗

A computer system consisting of many devices is typically organized by connecting those
devices to one or more busses. A bus is a set of wires that carry various sorts of information
between the devices connected to those wires. The wires carry data, addresses, and control
signals. An address directs the data to a particular device and perhaps to a particular register
or location within that device. Control signals can be used, for example, by one device to alert
another that data is available for it on the data bus. A fairly simple computer system might
be organized like this:

CPU

Input/

Output

Controller

Data

Address
Control

Empty Slot

for future

ExpansionMemory Disk Drive

Display Keyboard Network

Interface

Now, devices such as keyboard, mouse, and network interface can produce input that needs
to be processed by the CPU. How does the CPU know that the data is there? One simple idea,
which turns out to be not very satisfactory, is for the CPU to keep checking for incoming data
over and over. Whenever it finds data, it processes it. This method is called polling , since
the CPU polls the input devices continually to see whether they have any input data to report.
Unfortunately, although polling is very simple, it is also very inefficient. The CPU can waste
an awful lot of time just waiting for input.

To avoid this inefficiency, interrupts are generally used instead of polling. An interrupt
is a signal sent by another device to the CPU. The CPU responds to an interrupt signal by
putting aside whatever it is doing in order to respond to the interrupt. Once it has handled
the interrupt, it returns to what it was doing before the interrupt occurred. For example, when
you press a key on your computer keyboard, a keyboard interrupt is sent to the CPU. The
CPU responds to this signal by interrupting what it is doing, reading the key that you pressed,
processing it, and then returning to the task it was performing before you pressed the key.

Again, you should understand that this is a purely mechanical process: A device signals an
interrupt simply by turning on a wire. The CPU is built so that when that wire is turned on,
the CPU saves enough information about what it is currently doing so that it can return to
the same state later. This information consists of the contents of important internal registers
such as the program counter. Then the CPU jumps to some predetermined memory location
and begins executing the instructions stored there. Those instructions make up an interrupt
handler that does the processing necessary to respond to the interrupt. (This interrupt handler
is part of the device driver software for the device that signaled the interrupt.) At the end of
the interrupt handler is an instruction that tells the CPU to jump back to what it was doing;
it does that by restoring its previously saved state.

CHAPTER 1. THE MENTAL LANDSCAPE 5

Interrupts allow the CPU to deal with asynchronous events. In the regular fetch-and-
execute cycle, things happen in a predetermined order; everything that happens is “synchro-
nized” with everything else. Interrupts make it possible for the CPU to deal efficiently with
events that happen “asynchronously,” that is, at unpredictable times.

As another example of how interrupts are used, consider what happens when the CPU needs
to access data that is stored on a hard disk. The CPU can access data directly only if it is
in main memory. Data on the disk has to be copied into memory before it can be accessed.
Unfortunately, on the scale of speed at which the CPU operates, the disk drive is extremely
slow. When the CPU needs data from the disk, it sends a signal to the disk drive telling it
to locate the data and get it ready. (This signal is sent synchronously, under the control of
a regular program.) Then, instead of just waiting the long and unpredictable amount of time
that the disk drive will take to do this, the CPU goes on with some other task. When the disk
drive has the data ready, it sends an interrupt signal to the CPU. The interrupt handler can
then read the requested data.

∗ ∗ ∗

Now, you might have noticed that all this only makes sense if the CPU actually has several
tasks to perform. If it has nothing better to do, it might as well spend its time polling for input
or waiting for disk drive operations to complete. All modern computers use multitasking to
perform several tasks at once. Some computers can be used by several people at once. Since the
CPU is so fast, it can quickly switch its attention from one user to another, devoting a fraction
of a second to each user in turn. This application of multitasking is called timesharing . But a
modern personal computer with just a single user also uses multitasking. For example, the user
might be typing a paper while a clock is continuously displaying the time and a file is being
downloaded over the network.

Each of the individual tasks that the CPU is working on is called a thread . (Or a process;
there are technical differences between threads and processes, but they are not important here,
since it is threads that are used in Java.) Many CPUs can literally execute more than one
thread simultaneously—such CPUs contain multiple “cores,” each of which can run a thread—
but there is always a limit on the number of threads that can be executed at the same time.
Since there are often more threads than can be executed simultaneously, the computer has to be
able switch its attention from one thread to another, just as a timesharing computer switches
its attention from one user to another. In general, a thread that is being executed will continue
to run until one of several things happens:

• The thread might voluntarily yield control, to give other threads a chance to run.

• The thread might have to wait for some asynchronous event to occur. For example, the
thread might request some data from the disk drive, or it might wait for the user to press
a key. While it is waiting, the thread is said to be blocked , and other threads, if any, have
a chance to run. When the event occurs, an interrupt will “wake up” the thread so that
it can continue running.

• The thread might use up its allotted slice of time and be suspended to allow other threads
to run. Not all computers can “forcibly” suspend a thread in this way; those that can are
said to use preemptive multitasking . To do preemptive multitasking, a computer needs
a special timer device that generates an interrupt at regular intervals, such as 100 times
per second. When a timer interrupt occurs, the CPU has a chance to switch from one
thread to another, whether the thread that is currently running likes it or not. All modern
desktop and laptop computers, and even typical smartphones and tablets, use preemptive

CHAPTER 1. THE MENTAL LANDSCAPE 6

multitasking.

Ordinary users, and indeed ordinary programmers, have no need to deal with interrupts and
interrupt handlers. They can concentrate on the different tasks or threads that they want the
computer to perform; the details of how the computer manages to get all those tasks done are
not important to them. In fact, most users, and many programmers, can ignore threads and
multitasking altogether. However, threads have become increasingly important as computers
have become more powerful and as they have begun to make more use of multitasking and
multiprocessing. In fact, the ability to work with threads is fast becoming an essential job skill
for programmers. Fortunately, Java has good support for threads, which are built into the Java
programming language as a fundamental programming concept. Programming with threads
will be covered in Chapter 12.

Just as important in Java and in modern programming in general is the basic concept of
asynchronous events. While programmers don’t actually deal with interrupts directly, they do
often find themselves writing event handlers, which, like interrupt handlers, are called asyn-
chronously when specific events occur. Such “event-driven programming” has a very different
feel from the more traditional straight-through, synchronous programming. We will begin with
the more traditional type of programming, which is still used for programming individual tasks,
but we will return to threads and events later in the text, starting in Chapter 6

∗ ∗ ∗

By the way, the software that does all the interrupt handling, handles communication with
the user and with hardware devices, and controls which thread is allowed to run is called the
operating system . The operating system is the basic, essential software without which a
computer would not be able to function. Other programs, such as word processors and Web
browsers, are dependent upon the operating system. Common operating systems include Linux,
various versions of Windows, and Mac OS.

1.3 The Java Virtual Machine

Machine language consists of very simple instructions that can be executed directly by
the CPU of a computer. Almost all programs, though, are written in high-level programming
languages such as Java, Fortran, or C++. A program written in a high-level language cannot
be run directly on any computer. First, it has to be translated into machine language. This
translation can be done by a program called a compiler . A compiler takes a high-level-language
program and translates it into an executable machine-language program. Once the translation
is done, the machine-language program can be run any number of times, but of course it can only
be run on one type of computer (since each type of computer has its own individual machine
language). If the program is to run on another type of computer it has to be re-translated,
using a different compiler, into the appropriate machine language.

There is an alternative to compiling a high-level language program. Instead of using a
compiler, which translates the program all at once, you can use an interpreter , which translates
it instruction-by-instruction, as necessary. An interpreter is a program that acts much like a
CPU, with a kind of fetch-and-execute cycle. In order to execute a program, the interpreter
runs in a loop in which it repeatedly reads one instruction from the program, decides what is
necessary to carry out that instruction, and then performs the appropriate machine-language
commands to do so.

CHAPTER 1. THE MENTAL LANDSCAPE 7

One use of interpreters is to execute high-level language programs. For example, the pro-
gramming language Lisp is usually executed by an interpreter rather than a compiler. However,
interpreters have another purpose: they can let you use a machine-language program meant
for one type of computer on a completely different type of computer. For example, one of the
original home computers was the Commodore 64 or “C64”. While you might not find an actual
C64, you can find programs that run on other computers—or even in a web browser—that
“emulate” one. Such an emulator can run C64 programs by acting as an interpreter for the
C64 machine language.

∗ ∗ ∗

The designers of Java chose to use a combination of compilation and interpreting. Pro-
grams written in Java are compiled into machine language, but it is a machine language for
a computer that doesn’t really exist. This so-called “virtual” computer is known as the Java
Virtual Machine , or JVM. The machine language for the Java Virtual Machine is called Java
bytecode . There is no reason why Java bytecode couldn’t be used as the machine language of a
real computer, rather than a virtual computer. But in fact the use of a virtual machine makes
possible one of the main selling points of Java: the fact that it can actually be used on any
computer. All that the computer needs is an interpreter for Java bytecode. Such an interpreter
simulates the JVM in the same way that a C64 emulator simulates a Commodore 64 computer.
(The term JVM is also used for the Java bytecode interpreter program that does the simulation,
so we say that a computer needs a JVM in order to run Java programs. Technically, it would
be more correct to say that the interpreter implements the JVM than to say that it is a JVM.)

Of course, a different Java bytecode interpreter is needed for each type of computer, but
once a computer has a Java bytecode interpreter, it can run any Java bytecode program, and
the same program can be run on any computer that has such an interpreter. This is one of the
essential features of Java: the same compiled program can be run on many different types of
computers.

Java

Program

Java

Bytecode

Program

Compiler Java Interperter

for Windows

Java Interperter

for Linux

Java Interperter

for Mac OS

Why, you might wonder, use the intermediate Java bytecode at all? Why not just distribute
the original Java program and let each person compile it into the machine language of whatever
computer they want to run it on? There are several reasons. First of all, a compiler has to
understand Java, a complex high-level language. The compiler is itself a complex program.
A Java bytecode interpreter, on the other hand, is a relatively small, simple program. This
makes it easy to write a bytecode interpreter for a new type of computer; once that is done,
that computer can run any compiled Java program. It would be much harder to write a Java
compiler for the same computer.

Furthermore, some Java programs are meant to be downloaded over a network. This leads
to obvious security concerns: you don’t want to download and run a program that will damage

CHAPTER 1. THE MENTAL LANDSCAPE 8

your computer or your files. The bytecode interpreter acts as a buffer between you and the
program you download. You are really running the interpreter, which runs the downloaded
program indirectly. The interpreter can protect you from potentially dangerous actions on the
part of that program.

When Java was still a new language, it was criticized for being slow: Since Java bytecode was
executed by an interpreter, it seemed that Java bytecode programs could never run as quickly
as programs compiled into native machine language (that is, the actual machine language of the
computer on which the program is running). However, this problem has been largely overcome
by the use of just-in-time compilers for executing Java bytecode. A just-in-time compiler
translates Java bytecode into native machine language. It does this while it is executing the
program. Just as for a normal interpreter, the input to a just-in-time compiler is a Java bytecode
program, and its task is to execute that program. But as it is executing the program, it also
translates parts of it into machine language. The translated parts of the program can then be
executed much more quickly than they could be interpreted. Since a given part of a program is
often executed many times as the program runs, a just-in-time compiler can significantly speed
up the overall execution time.

I should note that there is no necessary connection between Java and Java bytecode. A
program written in Java could certainly be compiled into the machine language of a real com-
puter. And programs written in other languages can be compiled into Java bytecode. However,
the combination of Java and Java bytecode is platform-independent, secure, and network-
compatible while allowing you to program in a modern high-level object-oriented language.

(In the past few years, it has become fairly common to create new programming languages,
or versions of old languages, that compile into Java bytecode. The compiled bytecode programs
can then be executed by a standard JVM. New languages that have been developed specifically
for programming the JVM include Groovy, Clojure, and Processing. Jython and JRuby are
versions of older languages, Python and Ruby, that target the JVM. These languages make it
possible to enjoy many of the advantages of the JVM while avoiding some of the technicalities
of the Java language. In fact, the use of other languages with the JVM has become important
enough that several new features have been added to the JVM specifically to add better support
for some of those languages. And this improvement to the JVM has in turn made possible some
of the new features in Java 7 and Java 8.)

∗ ∗ ∗

I should also note that the really hard part of platform-independence is providing a “Graph-
ical User Interface”—with windows, buttons, etc.—that will work on all the platforms that
support Java. You’ll see more about this problem in Section 1.6.

1.4 Fundamental Building Blocks of Programs

There are two basic aspects of programming: data and instructions. To work with
data, you need to understand variables and types; to work with instructions, you need to
understand control structures and subroutines. You’ll spend a large part of the course
becoming familiar with these concepts.

A variable is just a memory location (or several consecutive locations treated as a unit)
that has been given a name so that it can be easily referred to and used in a program. The
programmer only has to worry about the name; it is the compiler’s responsibility to keep track
of the memory location. As a programmer, you need to keep in mind that the name refers to

CHAPTER 1. THE MENTAL LANDSCAPE 9

a kind of “box” in memory that can hold data, even though you don’t have to know where in
memory that box is located.

In Java and in many other programming languages, a variable has a type that indicates
what sort of data it can hold. One type of variable might hold integers—whole numbers such as
3, -7, and 0—while another holds floating point numbers—numbers with decimal points such as
3.14, -2.7, or 17.0. (Yes, the computer does make a distinction between the integer 17 and the
floating-point number 17.0; they actually look quite different inside the computer.) There could
also be types for individual characters (’A’, ’;’, etc.), strings (“Hello”, “A string can include
many characters”, etc.), and less common types such as dates, colors, sounds, or any other kind
of data that a program might need to store.

Programming languages always have commands for getting data into and out of variables
and for doing computations with data. For example, the following “assignment statement,”
which might appear in a Java program, tells the computer to take the number stored in the
variable named “principal”, multiply that number by 0.07, and then store the result in the
variable named “interest”:

interest = principal * 0.07;

There are also “input commands” for getting data from the user or from files on the computer’s
disks, and there are “output commands” for sending data in the other direction.

These basic commands—for moving data from place to place and for performing
computations—are the building blocks for all programs. These building blocks are combined
into complex programs using control structures and subroutines.

∗ ∗ ∗

A program is a sequence of instructions. In the ordinary “flow of control,” the computer
executes the instructions in the sequence in which they occur in the program, one after the
other. However, this is obviously very limited: the computer would soon run out of instructions
to execute. Control structures are special instructions that can change the flow of control.
There are two basic types of control structure: loops, which allow a sequence of instructions
to be repeated over and over, and branches, which allow the computer to decide between two
or more different courses of action by testing conditions that occur as the program is running.

For example, it might be that if the value of the variable “principal” is greater than 10000,
then the “interest” should be computed by multiplying the principal by 0.05; if not, then the
interest should be computed by multiplying the principal by 0.04. A program needs some
way of expressing this type of decision. In Java, it could be expressed using the following “if
statement”:

if (principal > 10000)

interest = principal * 0.05;

else

interest = principal * 0.04;

(Don’t worry about the details for now. Just remember that the computer can test a condition
and decide what to do next on the basis of that test.)

Loops are used when the same task has to be performed more than once. For example,
if you want to print out a mailing label for each name on a mailing list, you might say, “Get
the first name and address and print the label; get the second name and address and print
the label; get the third name and address and print the label. . . ” But this quickly becomes
ridiculous—and might not work at all if you don’t know in advance how many names there are.
What you would like to say is something like “While there are more names to process, get the

CHAPTER 1. THE MENTAL LANDSCAPE 10

next name and address, and print the label.” A loop can be used in a program to express such
repetition.

∗ ∗ ∗

Large programs are so complex that it would be almost impossible to write them if there
were not some way to break them up into manageable “chunks.” Subroutines provide one way to
do this. A subroutine consists of the instructions for performing some task, grouped together
as a unit and given a name. That name can then be used as a substitute for the whole set of
instructions. For example, suppose that one of the tasks that your program needs to perform
is to draw a house on the screen. You can take the necessary instructions, make them into
a subroutine, and give that subroutine some appropriate name—say, “drawHouse()”. Then
anyplace in your program where you need to draw a house, you can do so with the single
command:

drawHouse();

This will have the same effect as repeating all the house-drawing instructions in each place.
The advantage here is not just that you save typing. Organizing your program into sub-

routines also helps you organize your thinking and your program design effort. While writing
the house-drawing subroutine, you can concentrate on the problem of drawing a house without
worrying for the moment about the rest of the program. And once the subroutine is written,
you can forget about the details of drawing houses—that problem is solved, since you have a
subroutine to do it for you. A subroutine becomes just like a built-in part of the language which
you can use without thinking about the details of what goes on “inside” the subroutine.

∗ ∗ ∗

Variables, types, loops, branches, and subroutines are the basis of what might be called
“traditional programming.” However, as programs become larger, additional structure is needed
to help deal with their complexity. One of the most effective tools that has been found is object-
oriented programming, which is discussed in the next section.

1.5 Objects and Object-oriented Programming

Programs must be designed. No one can just sit down at the computer and compose a
program of any complexity. The discipline called software engineering is concerned with
the construction of correct, working, well-written programs. The software engineer tries to
use accepted and proven methods for analyzing the problem to be solved and for designing a
program to solve that problem.

During the 1970s and into the 80s, the primary software engineering methodology was
structured programming . The structured programming approach to program design was
based on the following advice: To solve a large problem, break the problem into several pieces
and work on each piece separately; to solve each piece, treat it as a new problem which can itself
be broken down into smaller problems; eventually, you will work your way down to problems
that can be solved directly, without further decomposition. This approach is called top-down
programming .

There is nothing wrong with top-down programming. It is a valuable and often-used ap-
proach to problem-solving. However, it is incomplete. For one thing, it deals almost entirely
with producing the instructions necessary to solve a problem. But as time went on, people
realized that the design of the data structures for a program was at least as important as the

CHAPTER 1. THE MENTAL LANDSCAPE 11

design of subroutines and control structures. Top-down programming doesn’t give adequate
consideration to the data that the program manipulates.

Another problem with strict top-down programming is that it makes it difficult to reuse
work done for other projects. By starting with a particular problem and subdividing it into
convenient pieces, top-down programming tends to produce a design that is unique to that
problem. It is unlikely that you will be able to take a large chunk of programming from another
program and fit it into your project, at least not without extensive modification. Producing
high-quality programs is difficult and expensive, so programmers and the people who employ
them are always eager to reuse past work.

∗ ∗ ∗

So, in practice, top-down design is often combined with bottom-up design . In bottom-up
design, the approach is to start “at the bottom,” with problems that you already know how to
solve (and for which you might already have a reusable software component at hand). From
there, you can work upwards towards a solution to the overall problem.

The reusable components should be as “modular” as possible. Amodule is a component of a
larger system that interacts with the rest of the system in a simple, well-defined, straightforward
manner. The idea is that a module can be “plugged into” a system. The details of what goes on
inside the module are not important to the system as a whole, as long as the module fulfills its
assigned role correctly. This is called information hiding , and it is one of the most important
principles of software engineering.

One common format for software modules is to contain some data, along with some sub-
routines for manipulating that data. For example, a mailing-list module might contain a list of
names and addresses along with a subroutine for adding a new name, a subroutine for printing
mailing labels, and so forth. In such modules, the data itself is often hidden inside the module;
a program that uses the module can then manipulate the data only indirectly, by calling the
subroutines provided by the module. This protects the data, since it can only be manipulated
in known, well-defined ways. And it makes it easier for programs to use the module, since they
don’t have to worry about the details of how the data is represented. Information about the
representation of the data is hidden.

Modules that could support this kind of information-hiding became common in program-
ming languages in the early 1980s. Since then, a more advanced form of the same idea has
more or less taken over software engineering. This latest approach is called object-oriented
programming , often abbreviated as OOP.

The central concept of object-oriented programming is the object , which is a kind of module
containing data and subroutines. The point-of-view in OOP is that an object is a kind of self-
sufficient entity that has an internal state (the data it contains) and that can respond to
messages (calls to its subroutines). A mailing list object, for example, has a state consisting
of a list of names and addresses. If you send it a message telling it to add a name, it will
respond by modifying its state to reflect the change. If you send it a message telling it to print
itself, it will respond by printing out its list of names and addresses.

The OOP approach to software engineering is to start by identifying the objects involved in
a problem and the messages that those objects should respond to. The program that results is
a collection of objects, each with its own data and its own set of responsibilities. The objects
interact by sending messages to each other. There is not much “top-down” in the large-scale
design of such a program, and people used to more traditional programs can have a hard time
getting used to OOP. However, people who use OOP would claim that object-oriented programs
tend to be better models of the way the world itself works, and that they are therefore easier

CHAPTER 1. THE MENTAL LANDSCAPE 12

to write, easier to understand, and more likely to be correct.

∗ ∗ ∗

You should think of objects as “knowing” how to respond to certain messages. Different
objects might respond to the same message in different ways. For example, a “print” message
would produce very different results, depending on the object it is sent to. This property of
objects—that different objects can respond to the same message in different ways—is called
polymorphism .

It is common for objects to bear a kind of “family resemblance” to one another. Objects
that contain the same type of data and that respond to the same messages in the same way
belong to the same class. (In actual programming, the class is primary; that is, a class is
created and then one or more objects are created using that class as a template.) But objects
can be similar without being in exactly the same class.

For example, consider a drawing program that lets the user draw lines, rectangles, ovals,
polygons, and curves on the screen. In the program, each visible object on the screen could be
represented by a software object in the program. There would be five classes of objects in the
program, one for each type of visible object that can be drawn. All the lines would belong to
one class, all the rectangles to another class, and so on. These classes are obviously related;
all of them represent “drawable objects.” They would, for example, all presumably be able to
respond to a “draw yourself” message. Another level of grouping, based on the data needed to
represent each type of object, is less obvious, but would be very useful in a program: We can
group polygons and curves together as “multipoint objects,” while lines, rectangles, and ovals
are “two-point objects.” (A line is determined by its two endpoints, a rectangle by two of its
corners, and an oval by two corners of the rectangle that contains it. The rectangles that I am
talking about here have sides that are vertical and horizontal, so that they can be specified by
just two points; this is the common meaning of “rectangle” in drawing programs.) We could
diagram these relationships as follows:

DrawableObject

MultipointObject TwoPointObject

Polygon RectangleCurve OvalLine

DrawableObject, MultipointObject, and TwoPointObject would be classes in the program.
MultipointObject and TwoPointObject would be subclasses of DrawableObject. The class
Line would be a subclass of TwoPointObject and (indirectly) of DrawableObject. A subclass of
a class is said to inherit the properties of that class. The subclass can add to its inheritance and
it can even “override” part of that inheritance (by defining a different response to some method).
Nevertheless, lines, rectangles, and so on are drawable objects, and the class DrawableObject
expresses this relationship.

Inheritance is a powerful means for organizing a program. It is also related to the problem
of reusing software components. A class is the ultimate reusable component. Not only can it

CHAPTER 1. THE MENTAL LANDSCAPE 13

be reused directly if it fits exactly into a program you are trying to write, but if it just almost
fits, you can still reuse it by defining a subclass and making only the small changes necessary
to adapt it exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a partial solution
to the software reuse problem. Objects, classes, and object-oriented programming will be
important themes throughout the rest of this text. You will start using objects that are built
into the Java language in the next chapter, and in Chapter 5 you will begin creating your own
classes and objects.

1.6 The Modern User Interface

When computers were first introduced, ordinary people—including most programmers—
couldn’t get near them. They were locked up in rooms with white-coated attendants who would
take your programs and data, feed them to the computer, and return the computer’s response
some time later. When timesharing—where the computer switches its attention rapidly from
one person to another—was invented in the 1960s, it became possible for several people to
interact directly with the computer at the same time. On a timesharing system, users sit at
“terminals” where they type commands to the computer, and the computer types back its re-
sponse. Early personal computers also used typed commands and responses, except that there
was only one person involved at a time. This type of interaction between a user and a computer
is called a command-line interface .

Today, of course, most people interact with computers in a completely different way. They
use a Graphical User Interface , or GUI. The computer draws interface components on the
screen. The components include things like windows, scroll bars, menus, buttons, and icons.
Usually, a mouse is used to manipulate such components or, on “touchscreens,” your fingers.
Assuming that you have not just been teleported in from the 1970s, you are no doubt already
familiar with the basics of graphical user interfaces!

A lot of GUI interface components have become fairly standard. That is, they have similar
appearance and behavior on many different computer platforms including Mac OS, Windows,
and Linux. Java programs, which are supposed to run on many different platforms without
modification to the program, can use all the standard GUI components. They might vary a
little in appearance from platform to platform, but their functionality should be identical on
any computer on which the program runs.

Shown below is an image of a very simple Java program that demonstrates a few standard
GUI interface components. When the program is run, a window similar to the picture shown
here will open on the computer screen. There are four components in the window with which the
user can interact: a button, a checkbox, a text field, and a pop-up menu. These components
are labeled. There are a few other components in the window. The labels themselves are
components (even though you can’t interact with them). The right half of the window is a
text area component, which can display multiple lines of text. A scrollbar component appears
alongside the text area when the number of lines of text becomes larger than will fit in the
text area. And in fact, in Java terminology, the whole window is itself considered to be a
“component.”

CHAPTER 1. THE MENTAL LANDSCAPE 14

(If you would like to run this program, the source code, GUIDemo.java, as well as a compiled
program, GUIDemo.jar, are available on line. For more information on using this and other
examples from this textbook, see Section 2.6.)

Now, Java actually has two complete sets of GUI components. One of these, the AWT or
Abstract Windowing Toolkit , was available in the original version of Java. The other, which
is known as Swing , was introduced in Java version 1.2, and is used in preference to the AWT
in most modern Java programs. The program that is shown above uses components that are
part of Swing.

When a user interacts with GUI components, “events” are generated. For example, clicking
a push button generates an event, and pressing return while typing in a text field generates an
event. Each time an event is generated, a message is sent to the program telling it that the
event has occurred, and the program responds according to its program. In fact, a typical GUI
program consists largely of “event handlers” that tell the program how to respond to various
types of events. In this example, the program has been programmed to respond to each event
by displaying a message in the text area. In a more realistic example, the event handlers would
have more to do.

The use of the term “message” here is deliberate. Messages, as you saw in the previous sec-
tion, are sent to objects. In fact, Java GUI components are implemented as objects. Java
includes many predefined classes that represent various types of GUI components. Some of
these classes are subclasses of others. Here is a diagram showing just a few of Swing’s GUI
classes and their relationships:

JComponent

JLabel JAbstractButton JComboBox JSlider JTextComponent

JButton JToggleButton

JCheckBox JRadioButton

JTextField JTextArea

Don’t worry about the details for now, but try to get some feel about how object-oriented
programming and inheritance are used here. Note that all the GUI classes are subclasses,
directly or indirectly, of a class called JComponent, which represents general properties that are
shared by all Swing components. In the diagram, two of the direct subclasses of JComponent
themselves have subclasses. The classes JTextArea and JTextField, which have certain behaviors

http://math.hws.edu/eck/cs124/javanotes7/source/chapter1/GUIDemo.java
http://math.hws.edu/eck/cs124/javanotes7/jars/chapter1/GUIDemo.jar

CHAPTER 1. THE MENTAL LANDSCAPE 15

in common, are grouped together as subclasses of JTextComponent. Similarly JButton and
JToggleButton are subclasses of JAbstractButton, which represents properties common to both
buttons and checkboxes. (JComboBox, by the way, is the Swing class that represents pop-up
menus.)

Just from this brief discussion, perhaps you can see how GUI programming can make effec-
tive use of object-oriented design. In fact, GUIs, with their “visible objects,” are probably a
major factor contributing to the popularity of OOP.

Programming with GUI components and events is one of the most interesting aspects of
Java. However, we will spend several chapters on the basics before returning to this topic in
Chapter 6.

1.7 The Internet and Beyond

Computers can be connected together on networks. A computer on a network can
communicate with other computers on the same network by exchanging data and files or by
sending and receiving messages. Computers on a network can even work together on a large
computation.

Today, millions of computers throughout the world are connected to a single huge network
called the Internet . New computers are being connected to the Internet every day, both
by wireless communication and by physical connection using technologies such as DSL, cable
modems, and Ethernet.

There are elaborate protocols for communication over the Internet. A protocol is simply a
detailed specification of how communication is to proceed. For two computers to communicate
at all, they must both be using the same protocols. The most basic protocols on the Internet are
the Internet Protocol (IP), which specifies how data is to be physically transmitted from one
computer to another, and the Transmission Control Protocol (TCP), which ensures that
data sent using IP is received in its entirety and without error. These two protocols, which are
referred to collectively as TCP/IP, provide a foundation for communication. Other protocols
use TCP/IP to send specific types of information such as web pages, electronic mail, and data
files.

All communication over the Internet is in the form of packets. A packet consists of some
data being sent from one computer to another, along with addressing information that indicates
where on the Internet that data is supposed to go. Think of a packet as an envelope with an
address on the outside and a message on the inside. (The message is the data.) The packet
also includes a “return address,” that is, the address of the sender. A packet can hold only
a limited amount of data; longer messages must be divided among several packets, which are
then sent individually over the net and reassembled at their destination.

Every computer on the Internet has an IP address, a number that identifies it uniquely
among all the computers on the net. (Actually, the claim about uniqueness is not quite true, but
the basic idea is valid, and the full truth is complicated.) The IP address is used for addressing
packets. A computer can only send data to another computer on the Internet if it knows that
computer’s IP address. Since people prefer to use names rather than numbers, most computers
are also identified by names, called domain names. For example, the main computer of
the Mathematics Department at Hobart and William Smith Colleges has the domain name
math.hws.edu. (Domain names are just for convenience; your computer still needs to know
IP addresses before it can communicate. There are computers on the Internet whose job it
is to translate domain names to IP addresses. When you use a domain name, your computer

CHAPTER 1. THE MENTAL LANDSCAPE 16

sends a message to a domain name server to find out the corresponding IP address. Then, your
computer uses the IP address, rather than the domain name, to communicate with the other
computer.)

The Internet provides a number of services to the computers connected to it (and, of course,
to the users of those computers). These services use TCP/IP to send various types of data over
the net. Among the most popular services are instant messaging, file sharing, electronic mail,
and the World-Wide Web. Each service has its own protocols, which are used to control
transmission of data over the network. Each service also has some sort of user interface, which
allows the user to view, send, and receive data through the service.

For example, the email service uses a protocol known as SMTP (Simple Mail Transfer
Protocol) to transfer email messages from one computer to another. Other protocols, such as
POP and IMAP, are used to fetch messages from an email account so that the recipient can
read them. A person who uses email, however, doesn’t need to understand or even know about
these protocols. Instead, they are used behind the scenes by computer programs to send and
receive email messages. These programs provide the user with an easy-to-use user interface to
the underlying network protocols.

The World-Wide Web is perhaps the most exciting of network services. The World-Wide
Web allows you to request pages of information that are stored on computers all over the
Internet. A Web page can contain links to other pages on the same computer from which it
was obtained or to other computers anywhere in the world. A computer that stores such pages
of information is called a web server . The user interface to the Web is the type of program
known as a web browser . Common web browsers include Internet Explorer, Firefox, Chrome,
and Safari. You use a Web browser to request a page of information. The browser sends a
request for that page to the computer on which the page is stored, and when a response is
received from that computer, the web browser displays it to you in a neatly formatted form.
A web browser is just a user interface to the Web. Behind the scenes, the web browser uses a
protocol called HTTP (HyperText Transfer Protocol) to send each page request and to receive
the response from the web server.

∗ ∗ ∗

Now just what, you might be thinking, does all this have to do with Java? In fact, Java
is intimately associated with the Internet and the World-Wide Web. When Java was first
introduced, one of its big attractions was the ability to write applets. An applet is a small
program that is transmitted over the Internet and that runs on a web page. Applets make it
possible for a web page to perform complex tasks and have complex interactions with the user.
Alas, applets have suffered from a variety of security problems, and fixing those problems has
made them more difficult to use. Applets have become much less common on the Web, and in
any case, there are other options for running programs on Web pages.

But applets are only one aspect of Java’s relationship with the Internet. Java can be used to
write complex, stand-alone applications that do not depend on a Web browser. Many of these
programs are network-related. For example many of the largest and most complex web sites
use web server software that is written in Java. Java includes excellent support for network
protocols, and its platform independence makes it possible to write network programs that
work on many different types of computer. You will learn about Java’s network support in
Chapter 11.

Its support for networking is not Java’s only advantage. But many good programming
languages have been invented only to be soon forgotten. Java has had the good luck to ride on
the coattails of the Internet’s immense and increasing popularity.

CHAPTER 1. THE MENTAL LANDSCAPE 17

∗ ∗ ∗

As Java has matured, its applications have reached far beyond the Net. The standard version
of Java already comes with support for many technologies, such as cryptography and data
compression. Free extensions are available to support many other technologies such as advanced
sound processing and three-dimensional graphics. Complex, high-performance systems can be
developed in Java. For example, Hadoop, a system for large scale data processing, is written in
Java. Hadoop is used by Yahoo, Facebook, and other Web sites to process the huge amounts
of data generated by their users.

Furthermore, Java is not restricted to use on traditional computers. Java can be used to
write programs for many smartphones (though not for the iPhone). It is the primary develop-
ment language for Android-based devices. (Some mobile devices use a version of Java called
Java ME (“Mobile Edition”), but Android uses Google’s own version of Java and does not use
the same graphical user interface components as standard Java.) Java is also the programming
language for the Amazon Kindle eBook reader and for interactive features on Blu-Ray video
disks.

At this time, Java certainly ranks as one of the most widely used programming languages.
It is a good choice for almost any programming project that is meant to run on more than
one type of computing device, and is a reasonable choice even for many programs that will
run on only one device. It is probably still the most widely taught language at Colleges and
Universities. It is similar enough to other popular languages, such as C, C++, and Python,
that knowing it will give you a good start on learning those languages as well. Overall, learning
Java is a great starting point on the road to becoming an expert programmer. I hope you enjoy
the journey!

Quiz 18

Quiz on Chapter 1
(answers)

1. One of the components of a computer is its CPU. What is a CPU and what role does it
play in a computer?

2. Explain what is meant by an “asynchronous event.” Give some examples.

3. What is the difference between a “compiler” and an “interpreter”?

4. Explain the difference between high-level languages and machine language.

5. If you have the source code for a Java program, and you want to run that program, you
will need both a compiler and an interpreter. What does the Java compiler do, and what
does the Java interpreter do?

6. What is a subroutine?

7. Java is an object-oriented programming language. What is an object?

8. What is a variable? (There are four different ideas associated with variables in Java. Try
to mention all four aspects in your answer. Hint: One of the aspects is the variable’s
name.)

9. Java is a “platform-independent language.” What does this mean?

10. What is the “Internet”? Give some examples of how it is used. (What kind of services
does it provide?)

http://math.hws.edu/eck/cs124/javanotes7/c1/quiz_answers.html

Chapter 2

Programming in the Small I:
Names and Things

On a basic level (the level of machine language), a computer can perform only very simple
operations. A computer performs complex tasks by stringing together large numbers of such
operations. Such tasks must be “scripted” in complete and perfect detail by programs. Creating
complex programs will never be really easy, but the difficulty can be handled to some extent by
giving the program a clear overall structure . The design of the overall structure of a program
is what I call “programming in the large.”

Programming in the small, which is sometimes called coding , would then refer to filling in
the details of that design. The details are the explicit, step-by-step instructions for performing
fairly small-scale tasks. When you do coding, you are working “close to the machine,” with some
of the same concepts that you might use in machine language: memory locations, arithmetic
operations, loops and branches. In a high-level language such as Java, you get to work with
these concepts on a level several steps above machine language. However, you still have to
worry about getting all the details exactly right.

This chapter and the next examine the facilities for programming in the small in the Java
programming language. Don’t be misled by the term “programming in the small” into thinking
that this material is easy or unimportant. This material is an essential foundation for all types
of programming. If you don’t understand it, you can’t write programs, no matter how good
you get at designing their large-scale structure.

The last section of this chapter discusses programming environments. That section
contains information about how to compile and run Java programs, and you should take a look
at it before trying to write and use your own programs or trying to use the sample programs
in this book.

2.1 The Basic Java Application

A program is a sequence of instructions that a computer can execute to perform some
task. A simple enough idea, but for the computer to make any use of the instructions, they
must be written in a form that the computer can use. This means that programs have to be
written in programming languages. Programming languages differ from ordinary human
languages in being completely unambiguous and very strict about what is and is not allowed
in a program. The rules that determine what is allowed are called the syntax of the language.
Syntax rules specify the basic vocabulary of the language and how programs can be constructed

19

CHAPTER 2. NAMES AND THINGS 20

using things like loops, branches, and subroutines. A syntactically correct program is one that
can be successfully compiled or interpreted; programs that have syntax errors will be rejected
(hopefully with a useful error message that will help you fix the problem).

So, to be a successful programmer, you have to develop a detailed knowledge of the syntax
of the programming language that you are using. However, syntax is only part of the story. It’s
not enough to write a program that will run—you want a program that will run and produce
the correct result! That is, the meaning of the program has to be right. The meaning of
a program is referred to as its semantics. More correctly, the semantics of a programming
language is the set of rules that determine the meaning of a program written in that language.
A semantically correct program is one that does what you want it to.

Furthermore, a program can be syntactically and semantically correct but still be a pretty
bad program. Using the language correctly is not the same as using it well. For example, a
good program has “style.” It is written in a way that will make it easy for people to read and
to understand. It follows conventions that will be familiar to other programmers. And it has
an overall design that will make sense to human readers. The computer is completely oblivious
to such things, but to a human reader, they are paramount. These aspects of programming are
sometimes referred to as pragmatics. (I will often use the more common term style .)

When I introduce a new language feature, I will explain the syntax, the semantics, and
some of the pragmatics of that feature. You should memorize the syntax; that’s the easy part.
Then you should get a feeling for the semantics by following the examples given, making sure
that you understand how they work, and, ideally, writing short programs of your own to test
your understanding. And you should try to appreciate and absorb the pragmatics—this means
learning how to use the language feature well, with style that will earn you the admiration of
other programmers.

Of course, even when you’ve become familiar with all the individual features of the language,
that doesn’t make you a programmer. You still have to learn how to construct complex programs
to solve particular problems. For that, you’ll need both experience and taste. You’ll find hints
about software development throughout this textbook.

∗ ∗ ∗

We begin our exploration of Java with the problem that has become traditional for such
beginnings: to write a program that displays the message “Hello World!”. This might seem like
a trivial problem, but getting a computer to do this is really a big first step in learning a new
programming language (especially if it’s your first programming language). It means that you
understand the basic process of:

1. getting the program text into the computer,

2. compiling the program, and

3. running the compiled program.

The first time through, each of these steps will probably take you a few tries to get right. I
won’t go into the details here of how you do each of these steps; it depends on the particular
computer and Java programming environment that you are using. See Section 2.6 for informa-
tion about creating and running Java programs in specific programming environments. But in
general, you will type the program using some sort of text editor and save the program in a file.
Then, you will use some command to try to compile the file. You’ll either get a message that the
program contains syntax errors, or you’ll get a compiled version of the program. In the case of
Java, the program is compiled into Java bytecode, not into machine language. Finally, you can
run the compiled program by giving some appropriate command. For Java, you will actually use

CHAPTER 2. NAMES AND THINGS 21

an interpreter to execute the Java bytecode. Your programming environment might automate
some of the steps for you—for example, the compilation step is often done automatically—but
you can be sure that the same three steps are being done in the background.

Here is a Java program to display the message “Hello World!”. Don’t expect to understand
what’s going on here just yet; some of it you won’t really understand until a few chapters from
now:

/** A program to display the message

* "Hello World!" on standard output.

*/

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

} // end of class HelloWorld

The command that actually displays the message is:

System.out.println("Hello World!");

This command is an example of a subroutine call statement . It uses a “built-in subroutine”
named System.out.println to do the actual work. Recall that a subroutine consists of the
instructions for performing some task, chunked together and given a name. That name can be
used to “call” the subroutine whenever that task needs to be performed. A built-in subroutine
is one that is already defined as part of the language and therefore automatically available for
use in any program.

When you run this program, the message “Hello World!” (without the quotes) will be
displayed on standard output. Unfortunately, I can’t say exactly what that means! Java is
meant to run on many different platforms, and standard output will mean different things on
different platforms. However, you can expect the message to show up in some convenient or
inconvenient place. (If you use a command-line interface, like that in Oracle’s Java Development
Kit, you type in a command to tell the computer to run the program. The computer will type
the output from the program, Hello World!, on the next line. In an integrated development
environment such as Eclipse, the output might appear somewhere in one of the environment’s
windows.)

You must be curious about all the other stuff in the above program. Part of it consists of
comments. Comments in a program are entirely ignored by the computer; they are there for
human readers only. This doesn’t mean that they are unimportant. Programs are meant to be
read by people as well as by computers, and without comments, a program can be very difficult
to understand. Java has two types of comments. The first type begins with // and extends to
the end of a line. There is a comment of this form on the last line of the above program. The
computer ignores the // and everything that follows it on the same line. The second type of
comment starts with /* and ends with */, and it can extend over more than one line. The first
three lines of the program are an example of this second type of comment. (A comment that
actually begins with /**, like this one does, has special meaning; it is a “Javadoc” comment
that can be used to produce documentation for the program.)

Everything else in the program is required by the rules of Java syntax. All programming in
Java is done inside “classes.” The first line in the above program (not counting the comment)
says that this is a class named HelloWorld. “HelloWorld,” the name of the class, also serves as

CHAPTER 2. NAMES AND THINGS 22

the name of the program. Not every class is a program. In order to define a program, a class
must include a subroutine named main, with a definition that takes the form:

public static void main(String[] args) {

〈statements 〉
}

When you tell the Java interpreter to run the program, the interpreter calls this main()

subroutine, and the statements that it contains are executed. These statements make up the
script that tells the computer exactly what to do when the program is executed. The main()

routine can call other subroutines that are defined in the same class or even in other classes,
but it is the main() routine that determines how and in what order the other subroutines are
used.

The word “public” in the first line of main() means that this routine can be called from out-
side the program. This is essential because the main() routine is called by the Java interpreter,
which is something external to the program itself. The remainder of the first line of the routine
is harder to explain at the moment; for now, just think of it as part of the required syntax.
The definition of the subroutine—that is, the instructions that say what it does—consists of
the sequence of “statements” enclosed between braces, { and }. Here, I’ve used 〈statements〉 as
a placeholder for the actual statements that make up the program. Throughout this textbook,
I will always use a similar format: anything that you see in 〈this style of text〉 (italic in angle
brackets) is a placeholder that describes something you need to type when you write an actual
program.

As noted above, a subroutine can’t exist by itself. It has to be part of a “class”. A program
is defined by a public class that takes the form:

public class 〈program-name 〉 {

〈optional-variable-declarations-and-subroutines 〉

public static void main(String[] args) {

〈statements 〉
}

〈optional-variable-declarations-and-subroutines 〉

}

The name on the first line is the name of the program, as well as the name of the class.
(Remember, again, that 〈program-name〉 is a placeholder for the actual name!)

If the name of the class is HelloWorld, then the class must be saved in a file called
HelloWorld.java. When this file is compiled, another file named HelloWorld.class will
be produced. This class file, HelloWorld.class, contains the translation of the program into
Java bytecode, which can be executed by a Java interpreter. HelloWorld.java is called the
source code for the program. To execute the program, you only need the compiled class file,
not the source code.

The layout of the program on the page, such as the use of blank lines and indentation, is not
part of the syntax or semantics of the language. The computer doesn’t care about layout—you
could run the entire program together on one line as far as it is concerned. However, layout is
important to human readers, and there are certain style guidelines for layout that are followed
by most programmers.

CHAPTER 2. NAMES AND THINGS 23

Also note that according to the above syntax specification, a program can contain other
subroutines besides main(), as well as things called “variable declarations.” You’ll learn more
about these later, but not until Chapter 4.

2.2 Variables and the Primitive Types

Names are fundamental to programming. In programs, names are used to refer to many
different sorts of things. In order to use those things, a programmer must understand the rules
for giving names to them and the rules for using the names to work with them. That is, the
programmer must understand the syntax and the semantics of names.

According to the syntax rules of Java, the most basic names are identifiers. Identifiers
can be used to name classes, variables, and subroutines. An identifier is a sequence of one or
more characters. It must begin with a letter or underscore and must consist entirely of letters,
digits, and underscores. (“Underscore” refers to the character ’ ’.) For example, here are some
legal identifiers:

N n rate x15 quite a long name HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier, but “Hello World” is
not. Upper case and lower case letters are considered to be different, so that HelloWorld,
helloworld, HELLOWORLD, and hElloWorLD are all distinct names. Certain words are reserved
for special uses in Java, and cannot be used as identifiers. These reserved words include:
class, public, static, if, else, while, and several dozen other words. (Remember that
reserved words are not identifiers, since they can’t be used as names for things.)

Java is actually pretty liberal about what counts as a letter or a digit. Java uses the
Unicode character set, which includes thousands of characters from many different languages
and different alphabets, and many of these characters count as letters or digits. However, I will
be sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose names for things.
For example, it is customary for names of classes to begin with upper case letters, while names
of variables and of subroutines begin with lower case letters; you can avoid a lot of confusion by
following this standard convention in your own programs. Most Java programmers do not use
underscores in names, although some do use them at the beginning of the names of certain kinds
of variables. When a name is made up of several words, such as HelloWorld or interestRate,
it is customary to capitalize each word, except possibly the first; this is sometimes referred
to as camel case , since the upper case letters in the middle of a name are supposed to look
something like the humps on a camel’s back.

Finally, I’ll note that in addition to simple identifiers, things in Java can have compound
names which consist of several simple names separated by periods. (Compound names are also
called qualified names.) You’ve already seen an example: System.out.println. The idea
here is that things in Java can contain other things. A compound name is a kind of path to an
item through one or more levels of containment. The name System.out.println indicates that
something called “System” contains something called “out” which in turn contains something
called “println”.

2.2.1 Variables

Programs manipulate data that are stored in memory. In machine language, data can only be
referred to by giving the numerical address of the location in memory where the data is stored.

CHAPTER 2. NAMES AND THINGS 24

In a high-level language such as Java, names are used instead of numbers to refer to data. It
is the job of the computer to keep track of where in memory the data is actually stored; the
programmer only has to remember the name. A name used in this way—to refer to data stored
in memory—is called a variable .

Variables are actually rather subtle. Properly speaking, a variable is not a name for the
data itself but for a location in memory that can hold data. You should think of a variable as
a container or box where you can store data that you will need to use later. The variable refers
directly to the box and only indirectly to the data in the box. Since the data in the box can
change, a variable can refer to different data values at different times during the execution of
the program, but it always refers to the same box. Confusion can arise, especially for beginning
programmers, because when a variable is used in a program in certain ways, it refers to the
container, but when it is used in other ways, it refers to the data in the container. You’ll see
examples of both cases below.

(In this way, a variable is something like the title, “The President of the United States.”
This title can refer to different people at different times, but it always refers to the same office.
If I say “the President is playing basketball,” I mean that Barack Obama is playing basketball.
But if I say “Hillary Clinton wants to be President” I mean that she wants to fill the office, not
that she wants to be Barack Obama.)

In Java, the only way to get data into a variable—that is, into the box that the variable
names—is with an assignment statement . An assignment statement takes the form:

〈variable 〉 = 〈expression 〉;

where 〈expression〉 represents anything that refers to or computes a data value. When the
computer comes to an assignment statement in the course of executing a program, it evaluates
the expression and puts the resulting data value into the variable. For example, consider the
simple assignment statement

rate = 0.07;

The 〈variable〉 in this assignment statement is rate, and the 〈expression〉 is the number 0.07.
The computer executes this assignment statement by putting the number 0.07 in the variable
rate, replacing whatever was there before. Now, consider the following more complicated
assignment statement, which might come later in the same program:

interest = rate * principal;

Here, the value of the expression “rate * principal” is being assigned to the variable
interest. In the expression, the * is a “multiplication operator” that tells the computer
to multiply rate times principal. The names rate and principal are themselves variables,
and it is really the values stored in those variables that are to be multiplied. We see that when
a variable is used in an expression, it is the value stored in the variable that matters; in this
case, the variable seems to refer to the data in the box, rather than to the box itself. When
the computer executes this assignment statement, it takes the value of rate, multiplies it by
the value of principal, and stores the answer in the box referred to by interest. When a
variable is used on the left-hand side of an assignment statement, it refers to the box that is
named by the variable.

(Note, by the way, that an assignment statement is a command that is executed by the
computer at a certain time. It is not a statement of fact. For example, suppose a program
includes the statement “rate = 0.07;”. If the statement “interest = rate * principal;”
is executed later in the program, can we say that the principal is multiplied by 0.07? No!

CHAPTER 2. NAMES AND THINGS 25

The value of rate might have been changed in the meantime by another statement. The
meaning of an assignment statement is completely different from the meaning of an equation
in mathematics, even though both use the symbol “=”.)

2.2.2 Types

A variable in Java is designed to hold only one particular type of data; it can legally hold that
type of data and no other. The compiler will consider it to be a syntax error if you try to
violate this rule by assigning a variable of the wrong type to a variable. We say that Java is a
strongly typed language because it enforces this rule.

There are eight so-called primitive types built into Java. The primitive types are named
byte, short, int, long, float, double, char, and boolean. The first four types hold integers
(whole numbers such as 17, -38477, and 0). The four integer types are distinguished by the
ranges of integers they can hold. The float and double types hold real numbers (such as 3.6 and
-145.99). Again, the two real types are distinguished by their range and accuracy. A variable
of type char holds a single character from the Unicode character set. And a variable of type
boolean holds one of the two logical values true or false.

Any data value stored in the computer’s memory must be represented as a binary number,
that is as a string of zeros and ones. A single zero or one is called a bit . A string of eight
bits is called a byte . Memory is usually measured in terms of bytes. Not surprisingly, the byte

data type refers to a single byte of memory. A variable of type byte holds a string of eight
bits, which can represent any of the integers between -128 and 127, inclusive. (There are 256
integers in that range; eight bits can represent 256—two raised to the power eight—different
values.) As for the other integer types,

• short corresponds to two bytes (16 bits). Variables of type short have values in the range
-32768 to 32767.

• int corresponds to four bytes (32 bits). Variables of type int have values in the range
-2147483648 to 2147483647.

• long corresponds to eight bytes (64 bits). Variables of type long have values in the range
-9223372036854775808 to 9223372036854775807.

You don’t have to remember these numbers, but they do give you some idea of the size of
integers that you can work with. Usually, for representing integer data you should just stick to
the int data type, which is good enough for most purposes.

The float data type is represented in four bytes of memory, using a standard method for
encoding real numbers. The maximum value for a float is about 10 raised to the power 38.
A float can have about 7 significant digits. (So that 32.3989231134 and 32.3989234399 would
both have to be rounded off to about 32.398923 in order to be stored in a variable of type
float.) A double takes up 8 bytes, can range up to about 10 to the power 308, and has about
15 significant digits. Ordinarily, you should stick to the double type for real values.

A variable of type char occupies two bytes in memory. The value of a char variable is a
single character such as A, *, x, or a space character. The value can also be a special character
such a tab or a carriage return or one of the many Unicode characters that come from different
languages. Values of type char are closely related to integer values, since a character is actually
stored as a 16-bit integer code number. In fact, we will see that chars in Java can actually be
used like integers in certain situations.

It is important to remember that a primitive type value is represented using ony a certain,
finite number of bits. So, an int can’t be an arbitrary integer; it can only be an integer

CHAPTER 2. NAMES AND THINGS 26

in a certain finite range of values. Similarly, float and double variables can only take on
certain values. They are not true real numbers in the mathematical sense. For example, the
mathematical constant π can only be approximated by a value of type float or double, since
it would require an infinite number of decimal places to represent it exactly. For that matter,
simple numbers like 1/3 can only be approximated by floats and doubles.

2.2.3 Literals

A data value is stored in the computer as a sequence of bits. In the computer’s memory, it
doesn’t look anything like a value written on this page. You need a way to include constant
values in the programs that you write. In a program, you represent constant values as literals.
A literal is something that you can type in a program to represent a value. It is a kind of name
for a constant value.

For example, to type a value of type char in a program, you must surround it with a pair
of single quote marks, such as ’A’, ’*’, or ’x’. The character and the quote marks make up a
literal of type char. Without the quotes, A would be an identifier and * would be a multiplication
operator. The quotes are not part of the value and are not stored in the variable; they are just
a convention for naming a particular character constant in a program. If you want to store the
character A in a variable ch of type char, you could do so with the assignment statement

ch = ’A’;

Certain special characters have special literals that use a backslash, \, as an “escape character”.
In particular, a tab is represented as ’\t’, a carriage return as ’\r’, a linefeed as ’\n’, the
single quote character as ’\’’, and the backslash itself as ’\\’. Note that even though you
type two characters between the quotes in ’\t’, the value represented by this literal is a single
tab character.

Numeric literals are a little more complicated than you might expect. Of course, there
are the obvious literals such as 317 and 17.42. But there are other possibilities for expressing
numbers in a Java program. First of all, real numbers can be represented in an exponential
form such as 1.3e12 or 12.3737e-108. The “e12” and “e-108” represent powers of 10, so that
1.3e12 means 1.3 times 1012 and 12.3737e-108 means 12.3737 times 10−108. This format can be
used to express very large and very small numbers. Any numeric literal that contains a decimal
point or exponential is a literal of type double. To make a literal of type float, you have to
append an “F” or “f” to the end of the number. For example, “1.2F” stands for 1.2 considered
as a value of type float. (Occasionally, you need to know this because the rules of Java say that
you can’t assign a value of type double to a variable of type float, so you might be confronted
with a ridiculous-seeming error message if you try to do something like “x = 1.2;” if x is a
variable of type float. You have to say “x = 1.2F;". This is one reason why I advise sticking
to type double for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such as 177777
and -32 are literals of type byte, short, or int, depending on their size. You can make a literal
of type long by adding “L” as a suffix. For example: 17L or 728476874368L. As another
complication, Java allows binary, octal (base-8), and hexadecimal (base-16) literals. I don’t
want to cover number bases in detail, but in case you run into them in other people’s programs,
it’s worth knowing a few things: Octal numbers use only the digits 0 through 7. In Java, a
numeric literal that begins with a 0 is interpreted as an octal number; for example, the octal
literal 045 represents the number 37, not the number 45. Octal numbers are rarely used, but
you need to be aware of what happens when you start a number with a zero. Hexadecimal

CHAPTER 2. NAMES AND THINGS 27

numbers use 16 digits, the usual digits 0 through 9 and the letters A, B, C, D, E, and F. Upper
case and lower case letters can be used interchangeably in this context. The letters represent
the numbers 10 through 15. In Java, a hexadecimal literal begins with 0x or 0X, as in 0x45

or 0xFF7A. Finally, binary literals start with 0b or 0B and contain only the digits 0 and 1; for
example: 0b10110.

As a final complication, numeric literals in Java 7 can include the underscore character (“ ”),
which can be used to separate groups of digits. For example, the integer constant for seven
billion could be written 7 000 000 000, which is a good deal easier to decipher than 7000000000.
There is no rule about how many digits have to be in each group. Underscores can be especially
useful in long binary numbers; for example, 0b1010 1100 1011.

I will note that hexadecimal numbers can also be used in character literals to represent
arbitrary Unicode characters. A Unicode literal consists of \u followed by four hexadecimal
digits. For example, the character literal ’\u00E9’ represents the Unicode character that is an
“e” with an acute accent.

For the type boolean, there are precisely two literals: true and false. These literals are
typed just as I’ve written them here, without quotes, but they represent values, not variables.
Boolean values occur most often as the values of conditional expressions. For example,

rate > 0.05

is a boolean-valued expression that evaluates to true if the value of the variable rate is greater
than 0.05, and to false if the value of rate is not greater than 0.05. As you’ll see in Chapter 3,
boolean-valued expressions are used extensively in control structures. Of course, boolean values
can also be assigned to variables of type boolean. For example, if test is a variable of type
boolean, then both of the following assignment statements are legal:

test = true;

test = rate > 0.05;

2.2.4 Strings and String Literals

Java has other types in addition to the primitive types, but all the other types represent objects
rather than “primitive” data values. For the most part, we are not concerned with objects for
the time being. However, there is one predefined object type that is very important: the type
String. (String is a type, but not a primitive type; it is in fact the name of a class, and we will
return to that aspect of strings in the next section.)

A value of type String is a sequence of characters. You’ve already seen a string literal:
"Hello World!". The double quotes are part of the literal; they have to be typed in the
program. However, they are not part of the actual String value, which consists of just the
characters between the quotes. A string can contain any number of characters, even zero. A
string with no characters is called the empty string and is represented by the literal "", a pair
of double quote marks with nothing between them. Remember the difference between single
quotes and double quotes! Single quotes are used for char literals and double quotes for String
literals! There is a big difference between the String "A" and the char ’A’.

Within a string literal, special characters can be represented using the backslash notation.
Within this context, the double quote is itself a special character. For example, to represent
the string value

I said, "Are you listening!"

with a linefeed at the end, you would have to type the string literal:

CHAPTER 2. NAMES AND THINGS 28

"I said, \"Are you listening!\"\n"

You can also use \t, \r, \\, and Unicode sequences such as \u00E9 to represent other
special characters in string literals.

2.2.5 Variables in Programs

A variable can be used in a program only if it has first been declared . A variable declaration
statement is used to declare one or more variables and to give them names. When the computer
executes a variable declaration, it sets aside memory for the variable and associates the variable’s
name with that memory. A simple variable declaration takes the form:

〈type-name 〉 〈variable-name-or-names 〉;

The 〈variable-name-or-names〉 can be a single variable name or a list of variable names
separated by commas. (We’ll see later that variable declaration statements can actually be
somewhat more complicated than this.) Good programming style is to declare only one variable
in a declaration statement, unless the variables are closely related in some way. For example:

int numberOfStudents;

String name;

double x, y;

boolean isFinished;

char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to explain its
purpose in the program, or to give other information that might be useful to a human reader.
For example:

double principal; // Amount of money invested.

double interestRate; // Rate as a decimal, not percentage.

In this chapter, we will only use variables declared inside the main() subroutine of a pro-
gram. Variables declared inside a subroutine are called local variables for that subroutine.
They exist only inside the subroutine, while it is running, and are completely inaccessible from
outside. Variable declarations can occur anywhere inside the subroutine, as long as each vari-
able is declared before it is used in any way. Some people like to declare all the variables at
the beginning of the subroutine. Others like to wait to declare a variable until it is needed. My
preference: Declare important variables at the beginning of the subroutine, and use a comment
to explain the purpose of each variable. Declare “utility variables” which are not important to
the overall logic of the subroutine at the point in the subroutine where they are first used. Here
is a simple program using some variables and assignment statements:

/**

* This class implements a simple program that

* will compute the amount of interest that is

* earned on $17,000 invested at an interest

* rate of 0.027 for one year. The interest and

* the value of the investment after one year are

* printed to standard output.

*/

public class Interest {

public static void main(String[] args) {

CHAPTER 2. NAMES AND THINGS 29

/* Declare the variables. */

double principal; // The value of the investment.

double rate; // The annual interest rate.

double interest; // Interest earned in one year.

/* Do the computations. */

principal = 17000;

rate = 0.027;

interest = principal * rate; // Compute the interest.

principal = principal + interest;

// Compute value of investment after one year, with interest.

// (Note: The new value replaces the old value of principal.)

/* Output the results. */

System.out.print("The interest earned is $");

System.out.println(interest);

System.out.print("The value of the investment after one year is $");

System.out.println(principal);

} // end of main()

} // end of class Interest

This program uses several subroutine call statements to display information to the user of the
program. Two different subroutines are used: System.out.print and System.out.println.
The difference between these is that System.out.println adds a linefeed after the end of the
information that it displays, while System.out.print does not. Thus, the value of interest,
which is displayed by the subroutine call “System.out.println(interest);”, follows on the
same line as the string displayed by the previous System.out.print statement. Note that the
value to be displayed by System.out.print or System.out.println is provided in parentheses
after the subroutine name. This value is called a parameter to the subroutine. A parameter
provides a subroutine with information it needs to perform its task. In a subroutine call state-
ment, any parameters are listed in parentheses after the subroutine name. Not all subroutines
have parameters. If there are no parameters in a subroutine call statement, the subroutine
name must be followed by an empty pair of parentheses.

All the sample programs for this textbook are available in separate source code files in the
on-line version of this text at http://math.hws.edu/javanotes/source. They are also included
in the downloadable archives of the web site, in a folder named source. The source code for
the Interest program, for example, can be found in the file Interest.java in subfolder named
chapter2 inside the source folder.

2.3 Strings, Classes, Objects, and Subroutines

The previous section introduced the eight primitive data types and the type String. There
is a fundamental difference between the primitive types and String : Values of type String
are objects. While we will not study objects in detail until Chapter 5, it will be useful for
you to know a little about them and about a closely related topic: classes. This is not just
because strings are useful but because objects and classes are essential to understanding another
important programming concept, subroutines.

http://math.hws.edu/javanotes/source
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest.java

CHAPTER 2. NAMES AND THINGS 30

2.3.1 Built-in Subroutines and Functions

Recall that a subroutine is a set of program instructions that have been chunked together and
given a name. A subroutine is designed to perform some task. To get that task performed
in a program, you can “call” the subroutine using a subroutine call statement. In Chapter 4,
you’ll learn how to write your own subroutines, but you can get a lot done in a program just
by calling subroutines that have already been written for you. In Java, every subroutine is
contained either in a class or in an object. Some classes that are standard parts of the Java
language contain predefined subroutines that you can use. A value of type String, which is an
object, contains subroutines that can be used to manipulate that string. These subroutines
are “built into” the Java language. You can call all these subroutines without understanding
how they were written or how they work. Indeed, that’s the whole point of subroutines: A
subroutine is a “black box” which can be used without knowing what goes on inside.

Let’s first consider subroutines that are part of a class. One of the purposes of a class is
to group together some variables and subroutines, which are contained in that class. These
variables and subroutines are called static members of the class. You’ve seen one example:
In a class that defines a program, the main() routine is a static member of the class. The parts
of a class definition that define static members are marked with the reserved word “static”,
such as the word “static” in public static void main...

When a class contains a static variable or subroutine, the name of the class is part of the full
name of the variable or subroutine. For example, the standard class named System contains
a subroutine named exit. To use that subroutine in your program, you must refer to it as
System.exit. This full name consists of the name of the class that contains the subroutine,
followed by a period, followed by the name of the subroutine. This subroutine requires an
integer as parameter, so you would actually use it with a subroutine call statement such as

System.exit(0);

Calling System.exit will terminate the program and shut down the Java Virtual Machine. You
could use it if you had some reason to terminate the program before the end of the main routine.
(The parameter tells the computer why the program was terminated. A parameter value of 0
indicates that the program ended normally. Any other value indicates that the program was
terminated because an error was detected, so you could call System.exit(1) to indicate that
the program is ending because of an error. The parameter is sent back to the operating system;
in practice, the value is usually ignored by the operating system.)

System is just one of many standard classes that come with Java. Another useful class
is called Math. This class gives us an example of a class that contains static variables: It
includes the variables Math.PI and Math.E whose values are the mathematical constants π

and e. Math also contains a large number of mathematical “functions.” Every subroutine
performs some specific task. For some subroutines, that task is to compute or retrieve some
data value. Subroutines of this type are called functions. We say that a function returns a
value. Generally, the returned value is meant to be used somehow in the program that calls
the function.

You are familiar with the mathematical function that computes the square root of a number.
The corresponding function in Java is called Math.sqrt. This function is a static member
subroutine of the class named Math. If x is any numerical value, then Math.sqrt(x) computes
and returns the square root of that value. Since Math.sqrt(x) represents a value, it doesn’t
make sense to put it on a line by itself in a subroutine call statement such as

Math.sqrt(x); // This doesn’t make sense!

CHAPTER 2. NAMES AND THINGS 31

What, after all, would the computer do with the value computed by the function in this case?
You have to tell the computer to do something with the value. You might tell the computer to
display it:

System.out.print(Math.sqrt(x)); // Display the square root of x.

or you might use an assignment statement to tell the computer to store that value in a variable:

lengthOfSide = Math.sqrt(x);

The function call Math.sqrt(x) represents a value of type double, and it can be used anyplace
where a numeric literal of type double could be used.

The Math class contains many static member functions. Here is a list of some of the more
important of them:

• Math.abs(x), which computes the absolute value of x.

• The usual trigonometric functions, Math.sin(x), Math.cos(x), and Math.tan(x). (For
all the trigonometric functions, angles are measured in radians, not degrees.)

• The inverse trigonometric functions arcsin, arccos, and arctan, which are written as:
Math.asin(x), Math.acos(x), and Math.atan(x). The return value is expressed in radi-
ans, not degrees.

• The exponential function Math.exp(x) for computing the number e raised to the power
x, and the natural logarithm function Math.log(x) for computing the logarithm of x in
the base e.

• Math.pow(x,y) for computing x raised to the power y.

• Math.floor(x), which rounds x down to the nearest integer value that is less than or
equal to x. Even though the return value is mathematically an integer, it is returned
as a value of type double, rather than of type int as you might expect. For example,
Math.floor(3.76) is 3.0. The function Math.round(x) returns the integer that is closest
to x, and Math.ceil(x) rounds x up to an integer. (“Ceil” is short for “ceiling”, the
opposite of “floor.”)

• Math.random(), which returns a randomly chosen double in the range 0.0 <=

Math.random() < 1.0. (The computer actually calculates so-called “pseudorandom”
numbers, which are not truly random but are effectively random enough for most pur-
poses.) We will find a lot of uses for Math.random in future examples.

For these functions, the type of the parameter—the x or y inside the parentheses—can be
any value of any numeric type. For most of the functions, the value returned by the function
is of type double no matter what the type of the parameter. However, for Math.abs(x), the
value returned will be the same type as x; if x is of type int, then so is Math.abs(x). So, for
example, while Math.sqrt(9) is the double value 3.0, Math.abs(9) is the int value 9.

Note that Math.random() does not have any parameter. You still need the parentheses,
even though there’s nothing between them. The parentheses let the computer know that this is
a subroutine rather than a variable. Another example of a subroutine that has no parameters
is the function System.currentTimeMillis(), from the System class. When this function is
executed, it retrieves the current time, expressed as the number of milliseconds that have passed
since a standardized base time (the start of the year 1970, if you care). One millisecond is one-
thousandth of a second. The return value of System.currentTimeMillis() is of type long (a
64-bit integer). This function can be used to measure the time that it takes the computer to

CHAPTER 2. NAMES AND THINGS 32

perform a task. Just record the time at which the task is begun and the time at which it is
finished and take the difference.

Here is a sample program that performs a few mathematical tasks and reports the time
that it takes for the program to run. On some computers, the time reported might be zero,
because it is too small to measure in milliseconds. Even if it’s not zero, you can be sure that
most of the time reported by the computer was spent doing output or working on tasks other
than the program, since the calculations performed in this program occupy only a tiny fraction
of a millisecond of a computer’s time.

/**

* This program performs some mathematical computations and displays the

* results. It also displays the value of the constant Math.PI. It then

* reports the number of seconds that the computer spent on this task.

*/

public class TimedComputation {

public static void main(String[] args) {

long startTime; // Starting time of program, in milliseconds.

long endTime; // Time when computations are done, in milliseconds.

double time; // Time difference, in seconds.

startTime = System.currentTimeMillis();

double width, height, hypotenuse; // sides of a triangle

width = 42.0;

height = 17.0;

hypotenuse = Math.sqrt(width*width + height*height);

System.out.print("A triangle with sides 42 and 17 has hypotenuse ");

System.out.println(hypotenuse);

System.out.println("\nMathematically, sin(x)*sin(x) + "

+ "cos(x)*cos(x) - 1 should be 0.");

System.out.println("Let’s check this for x = 1:");

System.out.print(" sin(1)*sin(1) + cos(1)*cos(1) - 1 is ");

System.out.println(Math.sin(1)*Math.sin(1)

+ Math.cos(1)*Math.cos(1) - 1);

System.out.println("(There can be round-off errors when"

+ " computing with real numbers!)");

System.out.print("\nHere is a random number: ");

System.out.println(Math.random());

System.out.print("The value of Math.PI is ");

System.out.println(Math.PI);

endTime = System.currentTimeMillis();

time = (endTime - startTime) / 1000.0;

System.out.print("\nRun time in seconds was: ");

System.out.println(time);

} // end main()

} // end class TimedComputation

CHAPTER 2. NAMES AND THINGS 33

2.3.2 Classes and Objects

Classes can be containers for static variables and subroutines. However classes also have another
purpose. They are used to describe objects. In this role, the class is a type, in the same way
that int and double are types. That is, the class name can be used to declare variables. Such
variables can only hold one type of value. The values in this case are objects. An object is
a collection of variables and subroutines. Every object has an associated class that tells what
“type” of object it is. The class of an object specifies what subroutines and variables that
object contains. All objects defined by the same class are similar in that they contain similar
collections of variables and subroutines. For example, an object might represent a point in the
plane, and it might contain variables named x and y to represent the coordinates of that point.
Every point object would have an x and a y, but different points would have different values for
these variables. A class, named Point, for example, could exist to define the common structure
of all point objects, and all such objects would then be values of type Point.

As another example, let’s look again at System.out.println. System is a class, and out

is a static variable within that class. However, the value of System.out is an object, and
System.out.println is actually the full name of a subroutine that is contained in the ob-
ject System.out. You don’t need to understand it at this point, but the object referred to
by System.out is an object of the class PrintStream. PrintStream is another class that is a
standard part of Java. Any object of type PrintStream is a destination to which information
can be printed; any object of type PrintStream has a println subroutine that can be used
to send information to that destination. The object System.out is just one possible desti-
nation, and System.out.println is a subroutine that sends information to that particular
destination. Other objects of type PrintStream might send information to other destinations
such as files or across a network to other computers. This is object-oriented programming:
Many different things which have something in common—they can all be used as destina-
tions for information—can all be used in the same way—through a println subroutine. The
PrintStream class expresses the commonalities among all these objects.

The dual role of classes can be confusing, and in practice most classes are designed to
perform primarily or exclusively in only one of the two possible roles. Fortunately, you will not
need to worry too much about it until we start working with objects in a more serious way, in
Chapter 5.

By the way, since class names and variable names are used in similar ways, it might be hard
to tell which is which. Remember that all the built-in, predefined names in Java follow the rule
that class names begin with an upper case letter while variable names begin with a lower case
letter. While this is not a formal syntax rule, I strongly recommend that you follow it in your
own programming. Subroutine names should also begin with lower case letters. There is no
possibility of confusing a variable with a subroutine, since a subroutine name in a program is
always followed by a left parenthesis.

As one final general note, you should be aware that subroutines in Java are often referred
to as methods. Generally, the term “method” means a subroutine that is contained in a class
or in an object. Since this is true of every subroutine in Java, every subroutine in Java is a
method. The same is not true for other programming languages, and for the time being, I will
prefer to use the more general term, “subroutine.” However, I should note that some people
prefer to use the term “method” from the beginning.

CHAPTER 2. NAMES AND THINGS 34

2.3.3 Operations on Strings

String is a class, and a value of type String is an object. That object contains data, namely
the sequence of characters that make up the string. It also contains subroutines. All of these
subroutines are in fact functions. For example, every string object contains a function named
length that computes the number of characters in that string. Suppose that advice is a
variable that refers to a String. For example, advice might have been declared and assigned a
value as follows:

String advice;

advice = "Seize the day!";

Then advice.length() is a function call that returns the number of characters in the string
“Seize the day!”. In this case, the return value would be 14. In general, for any variable str

of type String, the value of str.length() is an int equal to the number of characters in the
string. Note that this function has no parameter; the particular string whose length is being
computed is the value of str. The length subroutine is defined by the class String, and it
can be used with any value of type String. It can even be used with String literals, which are,
after all, just constant values of type String. For example, you could have a program count the
characters in “Hello World” for you by saying

System.out.print("The number of characters in ");

System.out.print("the string \"Hello World\" is ");

System.out.println("Hello World".length());

The String class defines a lot of functions. Here are some that you might find useful. Assume
that s1 and s2 are variables of type String :

• s1.equals(s2) is a function that returns a boolean value. It returns true if s1 consists
of exactly the same sequence of characters as s2, and returns false otherwise.

• s1.equalsIgnoreCase(s2) is another boolean-valued function that checks whether s1

is the same string as s2, but this function considers upper and lower case letters
to be equivalent. Thus, if s1 is “cat”, then s1.equals("Cat") is false, while
s1.equalsIgnoreCase("Cat") is true.

• s1.length(), as mentioned above, is an integer-valued function that gives the number of
characters in s1.

• s1.charAt(N), where N is an integer, returns a value of type char. It returns the Nth
character in the string. Positions are numbered starting with 0, so s1.charAt(0) is
actually the first character, s1.charAt(1) is the second, and so on. The final position is
s1.length() - 1. For example, the value of "cat".charAt(1) is ’a’. An error occurs if
the value of the parameter is less than zero or is greater than or equal to s1.length().

• s1.substring(N,M), where N and M are integers, returns a value of type String. The
returned value consists of the characters of s1 in positions N, N+1,. . . , M-1. Note that the
character in position M is not included. The returned value is called a substring of s1. The
subroutine s1.substring(N) returns the substring of s1 consisting of characters starting
at position N up until the end of the string.

• s1.indexOf(s2) returns an integer. If s2 occurs as a substring of s1, then the returned
value is the starting position of that substring. Otherwise, the returned value is -1. You
can also use s1.indexOf(ch) to search for a char, ch, in s1. To find the first occurrence
of x at or after position N, you can use s1.indexOf(x,N). To find the last occurance of x
in s1, use s1.lastIndexOf(x).

CHAPTER 2. NAMES AND THINGS 35

• s1.compareTo(s2) is an integer-valued function that compares the two strings. If the
strings are equal, the value returned is zero. If s1 is less than s2, the value returned
is a number less than zero, and if s1 is greater than s2, the value returned is some
number greater than zero. (If both of the strings consist entirely of lower case letters, or
if they consist entirely of upper case letters, then “less than” and “greater than” refer to
alphabetical order. Otherwise, the ordering is more complicated.)

• s1.toUpperCase() is a String -valued function that returns a new string that is equal to s1,
except that any lower case letters in s1 have been converted to upper case. For example,
"Cat".toUpperCase() is the string "CAT". There is also a function s1.toLowerCase().

• s1.trim() is a String -valued function that returns a new string that is equal to s1 except
that any non-printing characters such as spaces and tabs have been trimmed from the
beginning and from the end of the string. Thus, if s1 has the value "fred ", then
s1.trim() is the string "fred", with the spaces at the end removed.

For the functions s1.toUpperCase(), s1.toLowerCase(), and s1.trim(), note that the
value of s1 is not changed. Instead a new string is created and returned as the value of
the function. The returned value could be used, for example, in an assignment statement
such as “smallLetters = s1.toLowerCase();”. To change the value of s1, you could use an
assignment “s1 = s1.toLowerCase();”.

∗ ∗ ∗

Here is another extremely useful fact about strings: You can use the plus operator, +, to
concatenate two strings. The concatenation of two strings is a new string consisting of all the
characters of the first string followed by all the characters of the second string. For example,
"Hello" + "World" evaluates to "HelloWorld". (Gotta watch those spaces, of course—if you
want a space in the concatenated string, it has to be somewhere in the input data, as in
"Hello " + "World".)

Let’s suppose that name is a variable of type String and that it already refers to the name
of the person using the program. Then, the program could greet the user by executing the
statement:

System.out.println("Hello, " + name + ". Pleased to meet you!");

Even more surprising is that you can actually concatenate values of any type onto a String
using the + operator. The value is converted to a string, just as it would be if you printed it to
the standard output, and then that string is concatenated with the other string. For example,
the expression "Number" + 42 evaluates to the string "Number42". And the statements

System.out.print("After ");

System.out.print(years);

System.out.print(" years, the value is ");

System.out.print(principal);

can be replaced by the single statement:

System.out.print("After " + years +

" years, the value is " + principal);

Obviously, this is very convenient. It would have shortened some of the examples presented
earlier in this chapter.

CHAPTER 2. NAMES AND THINGS 36

2.3.4 Introduction to Enums

Java comes with eight built-in primitive types and a large set of types that are defined by
classes, such as String. But even this large collection of types is not sufficient to cover all the
possible situations that a programmer might have to deal with. So, an essential part of Java,
just like almost any other programming language, is the ability to create new types. For the
most part, this is done by defining new classes; you will learn how to do that in Chapter 5. But
we will look here at one particular case: the ability to define enums (short for enumerated
types).

Technically, an enum is considered to be a special kind of class, but that is not important
for now. In this section, we will look at enums in a simplified form. In practice, most uses of
enums will only need the simplified form that is presented here.

An enum is a type that has a fixed list of possible values, which is specified when the enum
is created. In some ways, an enum is similar to the boolean data type, which has true and
false as its only possible values. However, boolean is a primitive type, while an enum is not.

The definition of an enum type has the (simplified) form:

enum 〈enum-type-name 〉 { 〈list-of-enum-values 〉 }

This definition cannot be inside a subroutine. You can place it outside the main() routine
of the program. The 〈enum-type-name〉 can be any simple identifier. This identifier becomes
the name of the enum type, in the same way that “boolean” is the name of the boolean type
and “String” is the name of the String type. Each value in the 〈list-of-enum-values〉 must be a
simple identifier, and the identifiers in the list are separated by commas. For example, here is
the definition of an enum type named Season whose values are the names of the four seasons
of the year:

enum Season { SPRING, SUMMER, FALL, WINTER }

By convention, enum values are given names that are made up of upper case letters, but that
is a style guideline and not a syntax rule. An enum value is a constant ; that is, it represents
a fixed value that cannot be changed. The possible values of an enum type are usually referred
to as enum constants.

Note that the enum constants of type Season are considered to be “contained in” Season,
which means—following the convention that compound identifiers are used for things that are
contained in other things—the names that you actually use in your program to refer to them
are Season.SPRING, Season.SUMMER, Season.FALL, and Season.WINTER.

Once an enum type has been created, it can be used to declare variables in exactly the same
ways that other types are used. For example, you can declare a variable named vacation of
type Season with the statement:

Season vacation;

After declaring the variable, you can assign a value to it using an assignment statement. The
value on the right-hand side of the assignment can be one of the enum constants of type Season.
Remember to use the full name of the constant, including “Season”! For example:

vacation = Season.SUMMER;

You can print out an enum value with an output statement such as System.out.print(vacation).
The output value will be the name of the enum constant (without the “Season.”). In this case,
the output would be “SUMMER”.

CHAPTER 2. NAMES AND THINGS 37

Because an enum is technically a class, the enum values are technically objects. As ob-
jects, they can contain subroutines. One of the subroutines in every enum value is named
ordinal(). When used with an enum value, it returns the ordinal number of the value in
the list of values of the enum. The ordinal number simply tells the position of the value in
the list. That is, Season.SPRING.ordinal() is the int value 0, Season.SUMMER.ordinal() is
1, Season.FALL.ordinal() is 2, and Season.WINTER.ordinal() is 3. (You will see over and
over again that computer scientists like to start counting at zero!) You can, of course, use the
ordinal() method with a variable of type Season, such as vacation.ordinal().

Using enums can make a program more readable, since you can use meaningful names for
the values. And it can prevent certain types of errors, since a compiler can check that the
values assigned to an enum variable are in fact legal values for that variable. However, we will
in fact use them only occasionally in this book. For now, you should just appreciate them as
the first example of an important concept: creating new types. Here is a little example that
shows enums being used in a complete program:

public class EnumDemo {

// Define two enum types -- remember that the definitions

// go OUTSIDE The main() routine!

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

enum Month { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }

public static void main(String[] args) {

Day tgif; // Declare a variable of type Day.

Month libra; // Declare a variable of type Month.

tgif = Day.FRIDAY; // Assign a value of type Day to tgif.

libra = Month.OCT; // Assign a value of type Month to libra.

System.out.print("My sign is libra, since I was born in ");

System.out.println(libra); // Output value will be: OCT

System.out.print("That’s the ");

System.out.print(libra.ordinal());

System.out.println("-th month of the year.");

System.out.println(" (Counting from 0, of course!)");

System.out.print("Isn’t it nice to get to ");

System.out.println(tgif); // Output value will be: FRIDAY

System.out.println(tgif + " is the " + tgif.ordinal()

+ "-th day of the week.");

}

}

2.4 Text Input and Output

We have seen that it is very easy to display text to the user with the functions
System.out.print and System.out.println. But there is more to say on the topic of out-
putting text. Furthermore, most programs use data that is input to the program at run time,
so you need to know how to do input as well as output. This section explains how to get data

CHAPTER 2. NAMES AND THINGS 38

from the user, and it covers output in more detail than we have seen so far. It also has a section
on using files for input and output.

2.4.1 Basic Output and Formatted Output

The most basic output function is System.out.print(x), where x can be a value or expression
of any type. If the parameter, x, is not already a string, it is converted to a value of type String,
and the string is then output to the destination called standard output . (Generally, this
means that the string is displayed to the user; however, in GUI programs, it outputs to a place
where a typical user is unlikely to see it. Furthermore, standard output can be “redirected”
to write to a different output destination. Nevertheless, for the type of program that we are
working with now, the purpose of System.out is to display text to the user.)

System.out.println(x) outputs the same text as System.out.print, but it follows that
text by a line feed, which means that any subsequent output will be on the next line. It is
possible to use this function with no parameter, System.out.println(), which outputs nothing
but a line feed. Note that System.out.println(x) is equivalent to

System.out.print(x);

System.out.println();

You might have noticed that System.out.print outputs real numbers with as many digits
after the decimal point as necessary, so that for example π is output as 3.141592653589793, and
numbers that are supposed to represent money might be output as 1050.0 or 43.575. You might
prefer to have these numbers output as, for example, 3.14159, 1050.00, and 43.58. Java has a
“formatted output” capability that makes it easy to control how real numbers and other values
are printed. A lot of formatting options are available. I will cover just a few of the simplest
and most commonly used possibilities here.

The function System.out.printf can be used to produce formatted output. (The name
“printf,” which stands for “print formatted,” is copied from the C and C++ programming
languages, where this type of output originated.) System.out.printf takes one or more pa-
rameters. The first parameter is a String that specifies the format of the output. This parameter
is called the format string . The remaining parameters specify the values that are to be out-
put. Here is a statement that will print a number in the proper format for a dollar amount,
where amount is a variable of type double:

System.out.printf("%1.2f", amount);

The output format of a value is specified by a format specifier . In this example, the format
specifier is %1.2f. The format string (in the simple cases that I cover here) contains one format
specifier for each of the values that is to be output. Some typical format specifiers are %d, %12d,
%10s, %1.2f, %15.8e and %1.8g. Every format specifier begins with a percent sign (%) and ends
with a letter, possibly with some extra formatting information in between. The letter specifies
the type of output that is to be produced. For example, in %d and %12d, the “d” specifies that
an integer is to be written. The “12” in %12d specifies the minimum number of spaces that
should be used for the output. If the integer that is being output takes up fewer than 12 spaces,
extra blank spaces are added in front of the integer to bring the total up to 12. We say that
the output is “right-justified in a field of length 12.” A very large value is not forced into 12
spaces; if the value has more than 12 digits, all the digits will be printed, with no extra spaces.
The specifier %d means the same as %1d—that is, an integer will be printed using just as many
spaces as necessary. (The “d,” by the way, stands for “decimal”—that is, base-10—numbers.
You can replace the “d” with an “x” to output an integer value in hexadecimal form.)

CHAPTER 2. NAMES AND THINGS 39

The letter “s” at the end of a format specifier can be used with any type of value. It
means that the value should be output in its default format, just as it would be in unformatted
output. A number, such as the “20” in %20s, can be added to specify the (minimum) number
of characters. The “s” stands for “string,” and it can be used for values of type String. It can
also be used for values of other types; in that case the value is converted into a String value in
the usual way.

The format specifiers for values of type double are more complicated. An “f”, as in %1.2f,
is used to output a number in “floating-point” form, that is with digits after a decimal point. In
%1.2f, the “2” specifies the number of digits to use after the decimal point. The “1” specifies
the (minimum) number of characters to output; a “1” in this position effectively means that
just as many characters as are necessary should be used. Similarly, %12.3f would specify a
floating-point format with 3 digits after the decimal point, right-justified in a field of length 12.

Very large and very small numbers should be written in exponential format, such as
6.00221415e23, representing “6.00221415 times 10 raised to the power 23.” A format speci-
fier such as %15.8e specifies an output in exponential form, with the “8” telling how many
digits to use after the decimal point. If you use “g” instead of “e”, the output will be in ex-
ponential form for very small values and very large values and in floating-point form for other
values. In %1.8g, the 8 gives the total number of digits in the answer, including both the digits
before the decimal point and the digits after the decimal point.

For numeric output, the format specifier can include a comma (“,”), which will cause the
digits of the number to be separated into groups, to make it easier to read big numbers. In
the United States, groups of three digits are separated by commas. For example, if x is one
billion, then System.out.printf("%,d",x) will output 1,000,000,000. In other countries, the
separator character and the number of digits per group might be different. The comma should
come at the beginning of the format specifier, before the field width; for example: %,12.3f.
If you want the output to be left-justified instead of right justified, add a minus sign to the
beginning of the format specifier: for example, %-20s.

In addition to format specifiers, the format string in a printf statement can include other
characters. These extra characters are just copied to the output. This can be a convenient way
to insert values into the middle of an output string. For example, if x and y are variables of
type int, you could say

System.out.printf("The product of %d and %d is %d", x, y, x*y);

When this statement is executed, the value of x is substituted for the first %d in the string, the
value of y for the second %d, and the value of the expression x*y for the third, so the output
would be something like “The product of 17 and 42 is 714” (quotation marks not included in
output!).

To output a percent sign, use the format specifier %% in the format string. You can use %n

to output a line feed. You can also use a backslash, \, as usual in strings to output special
characters such as tabs and double quote characters.

2.4.2 A First Text Input Example

For some unfathomable reason, Java has never made it very easy to read data typed in by the
user of a program. You’ve already seen that output can be displayed to the user using the sub-
routine System.out.print. This subroutine is part of a pre-defined object called System.out.
The purpose of this object is precisely to display output to the user. There is a correspond-
ing object called System.in that exists to read data input by the user, but it provides only

CHAPTER 2. NAMES AND THINGS 40

very primitive input facilities, and it requires some advanced Java programming skills to use it
effectively.

Java 5.0 finally made input a little easier with a new Scanner class. However, it requires
some knowledge of object-oriented programming to use this class, so it’s not ideal for use here
at the beginning of this course. Java 6 introduced the Console class for communicating with
the user, but Console has its own problems. (It is not always available, and it can only read
strings, not numbers.) Furthermore, in my opinion, Scanner and Console still don’t get things
quite right. Nevertheless, I will introduce Scanner briefly at the end of this section, in case you
want to start using it now. However, we start with my own version of text input.

Fortunately, it is possible to extend Java by creating new classes that provide subroutines
that are not available in the standard part of the language. As soon as a new class is available,
the subroutines that it contains can be used in exactly the same way as built-in routines. Along
these lines, I’ve written a class named TextIO that defines subroutines for reading values typed
by the user. The subroutines in this class make it possible to get input from the standard input
object, System.in, without knowing about the advanced aspects of Java that are needed to
use Scanner or to use System.in directly. TextIO also has a few other capabilities that I will
discuss later in this section.

To use the TextIO class, you must make sure that the class is available to your program.
What this means depends on the Java programming environment that you are using. In general,
you just have to add the source code file, TextIO.java, to the same directory that contains your
main program. See Section 2.6 for information about how to use TextIO.

The input routines in the TextIO class are static member functions. (Static member func-
tions were introduced in the previous section.) Let’s suppose that you want your program
to read an integer typed in by the user. The TextIO class contains a static member function
named getlnInt that you can use for this purpose. Since this function is contained in the
TextIO class, you have to refer to it in your program as TextIO.getlnInt. The function has
no parameters, so a complete call to the function takes the form “TextIO.getlnInt()”. This
function call represents the int value typed by the user, and you have to do something with
the returned value, such as assign it to a variable. For example, if userInput is a variable
of type int (created with a declaration statement “int userInput;”), then you could use the
assignment statement

userInput = TextIO.getlnInt();

When the computer executes this statement, it will wait for the user to type in an integer value.
The user must type a number and press return before the program can continue. The value
that the user typed will then be returned by the function, and it will be stored in the variable,
userInput. Here is a complete program that uses TextIO.getlnInt to read a number typed
by the user and then prints out the square of that number:

/**

* A program that reads an integer that is typed in by the

* user and computes and prints the square of that integer.

*/

public class PrintSquare {

public static void main(String[] args) {

int userInput; // The number input by the user.

int square; // The userInput, multiplied by itself.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java

CHAPTER 2. NAMES AND THINGS 41

System.out.print("Please type a number: ");

userInput = TextIO.getlnInt();

square = userInput * userInput;

System.out.println();

System.out.println("The number that you entered was " + userInput);

System.out.println("The square of that number is " + square);

System.out.println();

} // end of main()

} //end of class PrintSquare

When you run this program, it will display the message “Please type a number:” and will pause
until you type a response, including a carriage return after the number. Note that it is good
style to output a question or some other prompt to the user before reading input. Otherwise,
the user will have no way of knowing exactly what the computer is waiting for, or even that it
is waiting for the user to do something.

2.4.3 Basic TextIO Input Functions

TextIO includes a variety of functions for inputting values of various types. Here are the
functions that you are most likely to use:

j = TextIO.getlnInt(); // Reads a value of type int.

y = TextIO.getlnDouble(); // Reads a value of type double.

a = TextIO.getlnBoolean(); // Reads a value of type boolean.

c = TextIO.getlnChar(); // Reads a value of type char.

w = TextIO.getlnWord(); // Reads one "word" as a value of type String.

s = TextIO.getln(); // Reads an entire input line as a String.

For these statements to be legal, the variables on the left side of each assignment statement
must already be declared and must be of the same type as that returned by the function on
the right side. Note carefully that these functions do not have parameters. The values that
they return come from outside the program, typed in by the user as the program is running.
To “capture” that data so that you can use it in your program, you have to assign the return
value of the function to a variable. You will then be able to refer to the user’s input value by
using the name of the variable.

When you call one of these functions, you are guaranteed that it will return a legal value of
the correct type. If the user types in an illegal value as input—for example, if you ask for an
int and the user types in a non-numeric character or a number that is outside the legal range
of values that can be stored in a variable of type int—then the computer will ask the user to
re-enter the value, and your program never sees the first, illegal value that the user entered. For
TextIO.getlnBoolean(), the user is allowed to type in any of the following: true, false, t, f, yes,
no, y, n, 1, or 0. Furthermore, they can use either upper or lower case letters. In any case, the
user’s input is interpreted as a true/false value. It’s convenient to use TextIO.getlnBoolean()
to read the user’s response to a Yes/No question.

You’ll notice that there are two input functions that return Strings. The first, getlnWord(),
returns a string consisting of non-blank characters only. When it is called, it skips over any
spaces and carriage returns typed in by the user. Then it reads non-blank characters until
it gets to the next space or carriage return. It returns a String consisting of all the non-
blank characters that it has read. The second input function, getln(), simply returns a string
consisting of all the characters typed in by the user, including spaces, up to the next carriage

CHAPTER 2. NAMES AND THINGS 42

return. It gets an entire line of input text. The carriage return itself is not returned as part of
the input string, but it is read and discarded by the computer. Note that the String returned
by TextIO.getln() might be the empty string , "", which contains no characters at all. You
will get this return value if the user simply presses return, without typing anything else first.

TextIO.getln() does not skip blanks or end-of-lines before reading a value. But the
input functions getlnInt(), getlnDouble(), getlnBoolean(), and getlnChar() behave like
getlnWord() in that they will skip past any blanks and carriage returns in the input before
reading a value. When one of these functions skips over an end-of-line, it outputs a ’?’ to let
the user know that more input is expected.

Furthermore, if the user types extra characters on the line after the input value, all the
extra characters will be discarded, along with the carriage return at the end of the
line. If the program executes another input function, the user will have to type in another line
of input, even if they had typed more than one value on the previous line. It might not sound
like a good idea to discard any of the user’s input, but it turns out to be the safest thing to do
in most programs.

∗ ∗ ∗

Using TextIO for input and output, we can now improve the program from Section 2.2 for
computing the value of an investment. We can have the user type in the initial value of the
investment and the interest rate. The result is a much more useful program—for one thing, it
makes sense to run it more than once! Note that this program uses formatted output to print
out monetary values in their correct format.

/**

* This class implements a simple program that will compute

* the amount of interest that is earned on an investment over

* a period of one year. The initial amount of the investment

* and the interest rate are input by the user. The value of

* the investment at the end of the year is output. The

* rate must be input as a decimal, not a percentage (for

* example, 0.05 rather than 5).

*/

public class Interest2 {

public static void main(String[] args) {

double principal; // The value of the investment.

double rate; // The annual interest rate.

double interest; // The interest earned during the year.

System.out.print("Enter the initial investment: ");

principal = TextIO.getlnDouble();

System.out.print("Enter the annual interest rate (as a decimal): ");

rate = TextIO.getlnDouble();

interest = principal * rate; // Compute this year’s interest.

principal = principal + interest; // Add it to principal.

System.out.printf("The amount of interest is $%1.2f%n", interest);

System.out.printf("The value after one year is $%1.2f%n", principal);

} // end of main()

} // end of class Interest2

CHAPTER 2. NAMES AND THINGS 43

(You might be wondering why there is only one output routine, System.out.println, which
can output data values of any type, while there is a separate input routine for each data type.
For the output function, the computer can tell what type of value is being output by looking
at the parameter. However, the input routines don’t have parameters, so the different input
routines can only be distinguished by having different names.)

2.4.4 Introduction to File I/O

System.out sends its output to the output destination known as “standard output.” But stan-
dard output is just one possible output destination. For example, data can be written to a file
that is stored on the user’s hard drive. The advantage to this, of course, is that the data is saved
in the file even after the program ends, and the user can print the file, email it to someone else,
edit it with another program, and so on. Similarly, System.in has only one possible source for
input data.

TextIO has the ability to write data to files and to read data from files. TextIO includes
output functions TextIO.put, TextIO.putln, and TextIO.putf. Ordinarily, these functions
work exactly like System.out.print, System.out.println, and System.out.printf and are
interchangeable with them. However, they can also be used to output text to files and to other
destinations.

When you write output using TextIO.put, TextIO.putln, or TextIO.putf, the output
is sent to the current output destination. By default, the current output destination is
standard output. However, TextIO has subroutines that can be used to change the current
output destination. To write to a file named “result.txt”, for example, you would use the
statement:

TextIO.writeFile("result.txt");

After this statement is executed, any output from TextIO output statements will be sent to the
file named “result.txt” instead of to standard output. The file will be created if it does not
already exist. Note that if a file with the same name already exists, its previous contents will
be erased without any warning!

When you call TextIO.writeFile, TextIO remembers the file and automatically sends any
output from TextIO.put or other output functions to that file. If you want to go back to
writing to standard output, you can call

TextIO.writeStandardOutput();

Here is a simple program that asks the user some questions and outputs the user’s responses to
a file named “profile.txt.” As an example, it uses TextIO for output to standard output as well
as to the file, but System.out could also have been used for the output to standard output.

public class CreateProfile {

public static void main(String[] args) {

String name; // The user’s name.

String email; // The user’s email address.

double salary; // the user’s yearly salary.

String favColor; // The user’s favorite color.

TextIO.putln("Good Afternoon! This program will create");

TextIO.putln("your profile file, if you will just answer");

TextIO.putln("a few simple questions.");

CHAPTER 2. NAMES AND THINGS 44

TextIO.putln();

/* Gather responses from the user. */

TextIO.put("What is your name? ");

name = TextIO.getln();

TextIO.put("What is your email address? ");

email = TextIO.getln();

TextIO.put("What is your yearly income? ");

salary = TextIO.getlnDouble();

TextIO.put("What is your favorite color? ");

favColor = TextIO.getln();

/* Write the user’s information to the file named profile.txt. */

TextIO.writeFile("profile.txt"); // subsequent output goes to file

TextIO.putln("Name: " + name);

TextIO.putln("Email: " + email);

TextIO.putln("Favorite Color: " + favColor);

TextIO.putf("Yearly Income: %,1.2f%n", salary);

/* Print a final message to standard output. */

TextIO.writeStandardOutput();

TextIO.putln("Thank you. Your profile has been written to profile.txt.");

}

}

In many cases, you want to let the user select the file that will be used for output. You
could ask the user to type in the file name, but that is error-prone, and users are more familiar
with selecting a file from a file dialog box. The statement

TextIO.writeUserSelectedFile();

will open a typical graphical-user-interface file selection dialog where the user can specify the
output file. This also has the advantage of alerting the user if they are about to replace
an existing file. It is possible for the user to cancel the dialog box without selecting a file.
TextIO.writeUserSelectedFile is a function that returns a boolean value. The return value
is true if the user selected a file, and is false if the user canceled the dialog box. Your program
can check the return value if it needs to know whether it is actually going to write to a file or
not.

∗ ∗ ∗

TextIO can also read from files, as an alternative to reading from standard input. You can
specify an input source for TextIO’s various “get” functions. The default input source is standard
input. You can use the statement TextIO.readFile("data.txt") to read from a file named
“data.txt” instead, or you can let the user select the input file with a GUI-style dialog box by
saying TextIO.readUserSelectedFile(). After you have done this, any input will come from
the file instead of being typed by the user. You can go back to reading the user’s input with
TextIO.readStandardInput().

When your program is reading from standard input, the user gets a chance to correct any
errors in the input. This is not possible when the program is reading from a file. If illegal data
is found when a program tries to read from a file, an error occurs that will crash the program.

CHAPTER 2. NAMES AND THINGS 45

(Later, we will see that it is possible to “catch” such errors and recover from them.) Errors can
also occur, though more rarely, when writing to files.

A complete understanding of input/output in Java requires a knowledge of object oriented
programming. We will return to the topic later, in Chapter 11. The file I/O capabilities in Tex-
tIO are rather primitive by comparison. Nevertheless, they are sufficient for many applications,
and they will allow you to get some experience with files sooner rather than later.

2.4.5 Other TextIO Features

The TextIO input functions that we have seen so far can only read one value from a line of
input. Sometimes, however, you do want to read more than one value from the same line of
input. For example, you might want the user to be able to type something like “42 17” to input
the two numbers 42 and 17 on the same line. TextIO provides the following alternative input
functions to allow you to do this:

j = TextIO.getInt(); // Reads a value of type int.

y = TextIO.getDouble(); // Reads a value of type double.

a = TextIO.getBoolean(); // Reads a value of type boolean.

c = TextIO.getChar(); // Reads a value of type char.

w = TextIO.getWord(); // Reads one "word" as a value of type String.

The names of these functions start with “get” instead of “getln”. “Getln” is short for “get line”
and should remind you that the functions whose names begin with “getln” will consume an
entire line of data. A function without the “ln” will read an input value in the same way, but
will then save the rest of the input line in a chunk of internal memory called the input buffer .
The next time the computer wants to read an input value, it will look in the input buffer before
prompting the user for input. This allows the computer to read several values from one line
of the user’s input. Strictly speaking, the computer actually reads only from the input buffer.
The first time the program tries to read input from the user, the computer will wait while the
user types in an entire line of input. TextIO stores that line in the input buffer until the data
on the line has been read or discarded (by one of the “getln” functions). The user only gets to
type when the buffer is empty.

Note, by the way, that although the TextIO input functions will skip past blank spaces and
carriage returns while looking for input, they will not skip past other characters. For example,
if you try to read two ints and the user types “42,17”, the computer will read the first number
correctly, but when it tries to read the second number, it will see the comma. It will regard this
as an error and will force the user to retype the number. If you want to input several numbers
from one line, you should make sure that the user knows to separate them with spaces, not
commas. Alternatively, if you want to require a comma between the numbers, use getChar()

to read the comma before reading the second number.
There is another character input function, TextIO.getAnyChar(), which does not skip past

blanks or carriage returns. It simply reads and returns the next character typed by the user,
even if it’s a blank or carriage return. If the user typed a carriage return, then the char returned
by getAnyChar() is the special linefeed character ’\n’. There is also a function, TextIO.peek(),
that lets you look ahead at the next character in the input without actually reading it. After
you “peek” at the next character, it will still be there when you read the next item from input.
This allows you to look ahead and see what’s coming up in the input, so that you can take
different actions depending on what’s there.

The TextIO class provides a number of other functions. To learn more about them, you can
look at the comments in the source code file, TextIO.java.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java

CHAPTER 2. NAMES AND THINGS 46

Clearly, the semantics of input is much more complicated than the semantics of output!
Fortunately, for the majority of applications, it’s pretty straightforward in practice. You only
need to follow the details if you want to do something fancy. In particular, I strongly advise
you to use the “getln” versions of the input routines, rather than the “get” versions, unless you
really want to read several items from the same line of input, precisely because the semantics
of the “getln” versions is much simpler.

2.4.6 Using Scanner for Input

TextIO makes it easy to get input from the user. However, since it is not a standard class, you
have to remember to make TextIO.java available to any program that uses it. Another option
for input is the Scanner class. One advantage of using Scanner is that it’s a standard part of
Java and so is always there when you want it.

It’s not that hard to use a Scanner for user input, and it has some nice features, but using
it requires some syntax that will not be introduced until Chapter 4 and Chapter 5. I’ll tell you
how to do it here, without explaining why it works. You won’t understand all the syntax at
this point. (Scanners will be covered in more detail in Subsection 11.1.5.)

First, you should add the following line to your program at the beginning of the source code
file, before the “public class. . . ”:

import java.util.Scanner;

Then include the following statement at the beginning of your main() routine:

Scanner stdin = new Scanner(System.in);

This creates a variable named stdin of type Scanner. (You can use a different name for the
variable if you want; “stdin” stands for “standard input.”) You can then use stdin in your
program to access a variety of subroutines for reading user input. For example, the function
stdin.nextInt() reads one value of type int from the user and returns it. It is almost the
same as TextIO.getInt() except for two things: If the value entered by the user is not a legal
int, then stdin.nextInt() will crash rather than prompt the user to re-enter the value. And
the integer entered by the user must be followed by a blank space or by an end-of-line, whereas
TextIO.getInt() will stop reading at any character that is not a digit.

There are corresponding methods for reading other types of data, including
stdin.nextDouble(), stdin.nextLong(), and stdin.nextBoolean(). (stdin.nextBoolean()
will only accept “true” or “false” as input.) These subroutines can read more than one value
from a line, so they are more similar to the “get” versions of TextIO subroutines rather than
the “getln” versions. The method stdin.nextLine() is equivalent to TextIO.getln(), and
stdin.next(), like TextIO.getWord(), returns a string of non-blank characters.

As a simple example, here is a version of the sample program Interest2.java that uses Scanner
instead of TextIO for user input:

import java.util.Scanner; // Make the Scanner class available.

public class Interest2WithScanner {

public static void main(String[] args) {

Scanner stdin = new Scanner(System.in); // Create the Scanner.

double principal; // The value of the investment.

double rate; // The annual interest rate.

double interest; // The interest earned during the year.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest2.java

CHAPTER 2. NAMES AND THINGS 47

System.out.print("Enter the initial investment: ");

principal = stdin.nextDouble();

System.out.print("Enter the annual interest rate (as a decimal): ");

rate = stdin.nextDouble();

interest = principal * rate; // Compute this year’s interest.

principal = principal + interest; // Add it to principal.

System.out.printf("The amount of interest is $%1.2f%n", interest);

System.out.printf("The value after one year is $%1.2f%n", principal);

} // end of main()

} // end of class Interest2With Scanner

Note the inclusion of the two lines given above to import Scanner and create stdin.
Also note the substitution of stdin.nextDouble() for TextIO.getlnDouble(). (In fact,
stdin.nextDouble() is really equivalent to TextIO.getDouble() rather than to the “getln”
version, but this will not affect the behavior of the program as long as the user types just one
number on each line of input.)

I will continue to use TextIO for input for the time being, but I will give a few more examples
of using Scanner in the on-line solutions to the end-of-chapter exercises. There will be more
detailed coverage of Scanner later in the book.

2.5 Details of Expressions

This section takes a closer look at expressions. Recall that an expression is a piece of
program code that represents or computes a value. An expression can be a literal, a variable,
a function call, or several of these things combined with operators such as + and >. The value
of an expression can be assigned to a variable, used as a parameter in a subroutine call, or
combined with other values into a more complicated expression. (The value can even, in some
cases, be ignored, if that’s what you want to do; this is more common than you might think.)
Expressions are an essential part of programming. So far, this book has dealt only informally
with expressions. This section tells you the more-or-less complete story (leaving out some of
the less commonly used operators).

The basic building blocks of expressions are literals (such as 674, 3.14, true, and ’X’),
variables, and function calls. Recall that a function is a subroutine that returns a value. You’ve
already seen some examples of functions, such as the input routines from the TextIO class and
the mathematical functions from the Math class.

The Math class also contains a couple of mathematical constants that are useful in
mathematical expressions: Math.PI represents π (the ratio of the circumference of a cir-
cle to its diameter), and Math.E represents e (the base of the natural logarithms). These
“constants” are actually member variables in Math of type double. They are only ap-
proximations for the mathematical constants, which would require an infinite number of
digits to specify exactly. The standard class Integer contains a couple of constants re-
lated to the int data type: Integer.MAX VALUE is the largest possible int, 2147483647, and
Integer.MIN VALUE is the smallest int, -2147483648. Similarly, the class Double contains some
constants related to type double. Double.MAX VALUE is the largest value of type double, and
Double.MIN VALUE is the smallest positive value. It also has constants to represent infinite
values, Double.POSITIVE INFINITY and Double.NEGATIVE INFINITY, and the special value

CHAPTER 2. NAMES AND THINGS 48

Double.NaN to represent an undefined value. For example, the value of Math.sqrt(-1) is
Double.NaN.

Literals, variables, and function calls are simple expressions. More complex expressions
can be built up by using operators to combine simpler expressions. Operators include + for
adding two numbers, > for comparing two values, and so on. When several operators appear
in an expression, there is a question of precedence , which determines how the operators are
grouped for evaluation. For example, in the expression “A + B * C”, B*C is computed first
and then the result is added to A. We say that multiplication (*) has higher precedence
than addition (+). If the default precedence is not what you want, you can use parentheses to
explicitly specify the grouping you want. For example, you could use “(A + B) * C” if you
want to add A to B first and then multiply the result by C.

The rest of this section gives details of operators in Java. The number of operators in Java
is quite large. I will not cover them all here, but most of the important ones are here.

2.5.1 Arithmetic Operators

Arithmetic operators include addition, subtraction, multiplication, and division. They are
indicated by +, -, *, and /. These operations can be used on values of any numeric type: byte,
short, int, long, float, or double. (They can also be used with values of type char, which
are treated as integers in this context; a char is converted into its Unicode code number when
it is used with an arithmetic operator.) When the computer actually calculates one of these
operations, the two values that it combines must be of the same type. If your program tells
the computer to combine two values of different types, the computer will convert one of the
values from one type to another. For example, to compute 37.4 + 10, the computer will convert
the integer 10 to a real number 10.0 and will then compute 37.4 + 10.0. This is called a type
conversion . Ordinarily, you don’t have to worry about type conversion in expressions, because
the computer does it automatically.

When two numerical values are combined (after doing type conversion on one of them, if
necessary), the answer will be of the same type. If you multiply two ints, you get an int; if you
multiply two doubles, you get a double. This is what you would expect, but you have to be
very careful when you use the division operator /. When you divide two integers, the answer
will always be an integer; if the quotient has a fractional part, it is discarded. For example, the
value of 7/2 is 3, not 3.5. If N is an integer variable, then N/100 is an integer, and 1/N is equal
to zero for any N greater than one! This fact is a common source of programming errors. You
can force the computer to compute a real number as the answer by making one of the operands
real: For example, when the computer evaluates 1.0/N, it first converts N to a real number in
order to match the type of 1.0, so you get a real number as the answer.

Java also has an operator for computing the remainder when one number is divided by
another. This operator is indicated by %. If A and B are integers, then A % B represents the
remainder when A is divided by B. (However, for negative operands, % is not quite the same as
the usual mathematical “modulus” operator, since if one of A or B is negative, then the value
of A % B will be negative.) For example, 7 % 2 is 1, while 34577 % 100 is 77, and 50 % 8 is
2. A common use of % is to test whether a given integer is even or odd: N is even if N % 2 is
zero, and it is odd if N % 2 is 1. More generally, you can check whether an integer N is evenly
divisible by an integer M by checking whether N % M is zero.

The % operator also works with real numbers. In general, A % B is what is left over after
you remove as many copies of B as possible from A. For example, 7.52 % 0.5 is 0.02.

CHAPTER 2. NAMES AND THINGS 49

Finally, you might need the unary minus operator, which takes the negative of a number.
For example, -X has the same value as (-1)*X. For completeness, Java also has a unary plus
operator, as in +X, even though it doesn’t really do anything.

By the way, recall that the + operator can also be used to concatenate a value of any type
onto a String. When you use + to combine a string with a value of some other type, it is another
example of type conversion, since any type can be automatically converted into type String.

2.5.2 Increment and Decrement

You’ll find that adding 1 to a variable is an extremely common operation in programming.
Subtracting 1 from a variable is also pretty common. You might perform the operation of
adding 1 to a variable with assignment statements such as:

counter = counter + 1;

goalsScored = goalsScored + 1;

The effect of the assignment statement x = x + 1 is to take the old value of the variable
x, compute the result of adding 1 to that value, and store the answer as the new value of
x. The same operation can be accomplished by writing x++ (or, if you prefer, ++x). This
actually changes the value of x, so that it has the same effect as writing “x = x + 1”. The two
statements above could be written

counter++;

goalsScored++;

Similarly, you could write x-- (or --x) to subtract 1 from x. That is, x-- performs the same
computation as x = x - 1. Adding 1 to a variable is called incrementing that variable,
and subtracting 1 is called decrementing . The operators ++ and -- are called the increment
operator and the decrement operator, respectively. These operators can be used on variables
belonging to any of the numerical types and also on variables of type char. (’A’++ is ’B’.)

Usually, the operators ++ or -- are used in statements like “x++;” or “x--;”. These state-
ments are commands to change the value of x. However, it is also legal to use x++, ++x, x--,
or --x as expressions, or as parts of larger expressions. That is, you can write things like:

y = x++;

y = ++x;

TextIO.putln(--x);

z = (++x) * (y--);

The statement “y = x++;” has the effects of adding 1 to the value of x and, in addition, assigning
some value to y. The value assigned to y is the value of the expression x++, which is defined
to be the old value of x, before the 1 is added. Thus, if the value of x is 6, the statement “y
= x++;” will change the value of x to 7, but it will change the value of y to 6 since the value
assigned to y is the old value of x. On the other hand, the value of ++x is defined to be the
new value of x, after the 1 is added. So if x is 6, then the statement “y = ++x;” changes the
values of both x and y to 7. The decrement operator, --, works in a similar way.

Note in particular that the statement x = x++; does not change the value of x! This is
because the value that is being assigned to x is the old value of x, the one that it had before the
statement was executed. The net result is that x is incremented but then immediately changed
back to its previous value! You also need to remember that x++ is not the same as x + 1. The
expression x++ changes the value of x; the expression x + 1 does not.

CHAPTER 2. NAMES AND THINGS 50

This can be confusing, and I have seen many bugs in student programs resulting from the
confusion. My advice is: Don’t be confused. Use ++ and -- only as stand-alone statements,
not as expressions. I will follow this advice in almost all examples in these notes.

2.5.3 Relational Operators

Java has boolean variables and boolean-valued expressions that can be used to express con-
ditions that can be either true or false. One way to form a boolean-valued expression is
to compare two values using a relational operator . Relational operators are used to test
whether two values are equal, whether one value is greater than another, and so forth. The
relational operators in Java are: ==, !=, <, >, <=, and >=. The meanings of these operators are:

A == B Is A "equal to" B?

A != B Is A "not equal to" B?

A < B Is A "less than" B?

A > B Is A "greater than" B?

A <= B Is A "less than or equal to" B?

A >= B Is A "greater than or equal to" B?

These operators can be used to compare values of any of the numeric types. They can also be
used to compare values of type char. For characters, < and > are defined according the numeric
Unicode values of the characters. (This might not always be what you want. It is not the same
as alphabetical order because all the upper case letters come before all the lower case letters.)

When using boolean expressions, you should remember that as far as the computer is con-
cerned, there is nothing special about boolean values. In the next chapter, you will see how to
use them in loop and branch statements. But you can also assign boolean-valued expressions
to boolean variables, just as you can assign numeric values to numeric variables. And functions
can return boolean values.

By the way, the operators == and != can be used to compare boolean values too. This is
occasionally useful. For example, can you figure out what this does:

boolean sameSign;

sameSign = ((x > 0) == (y > 0));

One thing that you cannot do with the relational operators <, >, <=, and >= is to use them
to compare values of type String. You can legally use == and != to compare Strings, but
because of peculiarities in the way objects behave, they might not give the results you want.
(The == operator checks whether two objects are stored in the same memory location, rather
than whether they contain the same value. Occasionally, for some objects, you do want to make
such a check—but rarely for strings. I’ll get back to this in a later chapter.) Instead, you should
use the subroutines equals(), equalsIgnoreCase(), and compareTo(), which were described
in Subsection 2.3.3, to compare two Strings.

Another place where == and != don’t work as you would expect is with Double.NaN, the
constant that represents an undefined value of type double. The values of x == Double.NaN and
x != Double.NaN are both defined to be false in all cases, whether or not x is Double.NaN! To
test whether a real value x is the undefined value Double.NaN, use the boolean-valued function
Double.isNaN(x).

2.5.4 Boolean Operators

In English, complicated conditions can be formed using the words “and”, “or”, and “not.” For
example, “If there is a test and you did not study for it. . . ”. “And”, “or”, and “not” are

CHAPTER 2. NAMES AND THINGS 51

boolean operators, and they exist in Java as well as in English.
In Java, the boolean operator “and” is represented by &&. The && operator is used to

combine two boolean values. The result is also a boolean value. The result is true if both
of the combined values are true, and the result is false if either of the combined values is
false. For example, “(x == 0) && (y == 0)” is true if and only if both x is equal to 0 and
y is equal to 0.

The boolean operator “or” is represented by ||. (That’s supposed to be two of the vertical
line characters, |.) The expression “A || B” is true if either A is true or B is true, or if both
are true. “A || B” is false only if both A and B are false.

The operators && and || are said to be short-circuited versions of the boolean operators.
This means that the second operand of && or || is not necessarily evaluated. Consider the test

(x != 0) && (y/x > 1)

Suppose that the value of x is in fact zero. In that case, the division y/x is undefined math-
ematically. However, the computer will never perform the division, since when the computer
evaluates (x != 0), it finds that the result is false, and so it knows that ((x != 0) && any-
thing) has to be false. Therefore, it doesn’t bother to evaluate the second operand. The
evaluation has been short-circuited and the division by zero is avoided. (This may seem like a
technicality, and it is. But at times, it will make your programming life a little easier.)

The boolean operator “not” is a unary operator. In Java, it is indicated by ! and is written
in front of its single operand. For example, if test is a boolean variable, then

test = ! test;

will reverse the value of test, changing it from true to false, or from false to true.

2.5.5 Conditional Operator

Any good programming language has some nifty little features that aren’t really necessary but
that let you feel cool when you use them. Java has the conditional operator. It’s a ternary
operator—that is, it has three operands—and it comes in two pieces, ? and :, that have to be
used together. It takes the form

〈boolean-expression 〉 ? 〈expression1 〉 : 〈expression2 〉

The computer tests the value of 〈boolean-expression〉. If the value is true, it evaluates
〈expression1 〉; otherwise, it evaluates 〈expression2 〉. For example:

next = (N % 2 == 0) ? (N/2) : (3*N+1);

will assign the value N/2 to next if N is even (that is, if N % 2 == 0 is true), and it will assign
the value (3*N+1) to next if N is odd. (The parentheses in this example are not required, but
they do make the expression easier to read.)

2.5.6 Assignment Operators and Type Conversion

You are already familiar with the assignment statement, which uses the symbol “=” to assign
the value of an expression to a variable. In fact, = is really an operator in the sense that an
assignment can itself be used as an expression or as part of a more complex expression. The
value of an assignment such as A=B is the same as the value that is assigned to A. So, if you
want to assign the value of B to A and test at the same time whether that value is zero, you
could say:

CHAPTER 2. NAMES AND THINGS 52

if ((A=B) == 0)...

Usually, I would say, don’t do things like that!
In general, the type of the expression on the right-hand side of an assignment statement

must be the same as the type of the variable on the left-hand side. However, in some cases,
the computer will automatically convert the value computed by the expression to match the
type of the variable. Consider the list of numeric types: byte, short, int, long, float, double.
A value of a type that occurs earlier in this list can be converted automatically to a value that
occurs later. For example:

int A;

double X;

short B;

A = 17;

X = A; // OK; A is converted to a double

B = A; // illegal; no automatic conversion

// from int to short

The idea is that conversion should only be done automatically when it can be done without
changing the semantics of the value. Any int can be converted to a double with the same
numeric value. However, there are int values that lie outside the legal range of shorts. There
is simply no way to represent the int 100000 as a short, for example, since the largest value of
type short is 32767.

In some cases, you might want to force a conversion that wouldn’t be done automatically.
For this, you can use what is called a type cast . A type cast is indicated by putting a type
name, in parentheses, in front of the value you want to convert. For example,

int A;

short B;

A = 17;

B = (short)A; // OK; A is explicitly type cast

// to a value of type short

You can do type casts from any numeric type to any other numeric type. However, you should
note that you might change the numeric value of a number by type-casting it. For example,
(short)100000 is -31072. (The -31072 is obtained by taking the 4-byte int 100000 and throwing
away two of those bytes to obtain a short—you’ve lost the real information that was in those
two bytes.)

When you type-cast a real number to an integer, the fractional part is discarded. For
example, (int)7.9453 is 7. As another example of type casts, consider the problem of get-
ting a random integer between 1 and 6. The function Math.random() gives a real number
between 0.0 and 0.9999. . . , and so 6*Math.random() is between 0.0 and 5.999. . . . The type-
cast operator, (int), can be used to convert this to an integer: (int)(6*Math.random()).
Thus, (int)(6*Math.random()) is one of the integers 0, 1, 2, 3, 4, and 5. To get a number
between 1 and 6, we can add 1: “(int)(6*Math.random()) + 1”. (The parentheses around
6*Math.random() are necessary because of precedence rules; without the parentheses, the type
cast operator would apply only to the 6.)

The type char is almost an integer type. You can assign char values to int variables, and
you can assign numerical constants in the range 0 to 65535 to char variables. You can also
use explicit type-casts between char and the numeric types. For example, (char)97 is ’a’,
(int)’+’ is 43, and (char)(’A’ + 2) is ’C’.

∗ ∗ ∗

CHAPTER 2. NAMES AND THINGS 53

Type conversion between String and other types cannot be done with type-casts. One way to
convert a value of any type into a string is to concatenate it with an empty string. For example,
"" + 42 is the string "42". But a better way is to use the function String.valueOf(x), a static
member function in the String class. String.valueOf(x) returns the value of x, converted into
a string. For example, String.valueOf(42) is the string "42", and if ch is a char variable,
then String.valueOf(ch) is a string of length one containing the single character that is the
value of ch.

It is also possible to convert certain strings into values of other types. For example, the
string "10" should be convertible into the int value 10, and the string "17.42e-2" into the
double value 0.1742. In Java, these conversions are handled by built-in functions.

The standard class Integer contains a static member function for converting from String to
int. In particular, if str is any expression of type String, then Integer.parseInt(str) is a
function call that attempts to convert the value of str into a value of type int. For example, the
value of Integer.parseInt("10") is the int value 10. If the parameter to Integer.parseInt

does not represent a legal int value, then an error occurs.
Similarly, the standard class Double includes a function Double.parseDouble. If str is a

String, then the function call Double.parseDouble(str) tries to convert str into a value of
type double. An error occurs if str does not represent a legal double value.

∗ ∗ ∗

Getting back to assignment statements, Java has several variations on the assignment
operator, which exist to save typing. For example, “A += B” is defined to be the same as
“A = A + B”. Every operator in Java that applies to two operands, except for the relational
operators, gives rise to a similar assignment operator. For example:

x -= y; // same as: x = x - y;

x *= y; // same as: x = x * y;

x /= y; // same as: x = x / y;

x %= y; // same as: x = x % y;

q &&= p; // same as: q = q && p; (for booleans q and p)

The combined assignment operator += even works with strings. Recall that when the + operator
is used with a string as one of the operands, it represents concatenation. Since str += x is
equivalent to str = str + x, when += is used with a string on the left-hand side, it appends
the value on the right-hand side onto the string. For example, if str has the value “tire”, then
the statement str += ’d’; changes the value of str to “tired”.

2.5.7 Precedence Rules

If you use several operators in one expression, and if you don’t use parentheses to explicitly
indicate the order of evaluation, then you have to worry about the precedence rules that deter-
mine the order of evaluation. (Advice: don’t confuse yourself or the reader of your program;
use parentheses liberally.)

Here is a listing of the operators discussed in this section, listed in order from highest
precedence (evaluated first) to lowest precedence (evaluated last):

Unary operators: ++, --, !, unary -, unary +, type-cast

Multiplication and division: *, /, %

Addition and subtraction: +, -

Relational operators: <, >, <=, >=

Equality and inequality: ==, !=

CHAPTER 2. NAMES AND THINGS 54

Boolean and: &&

Boolean or: ||

Conditional operator: ?:

Assignment operators: =, +=, -=, *=, /=, %=

Operators on the same line have the same precedence. When operators of the same precedence
are strung together in the absence of parentheses, unary operators and assignment operators are
evaluated right-to-left, while the remaining operators are evaluated left-to-right. For example,
A*B/C means (A*B)/C, while A=B=C means A=(B=C). (Can you see how the expression A=B=C

might be useful, given that the value of B=C as an expression is the same as the value that is
assigned to B?)

2.6 Programming Environments

Although the Java language is highly standardized, the procedures for creating, compil-
ing, and editing Java programs vary widely from one programming environment to another.
There are two basic approaches: a command line environment , where the user types com-
mands and the computer responds, and an integrated development environment (IDE),
where the user uses the keyboard and mouse to interact with a graphical user interface. While
there is just one common command line environment for Java programming, there are several
common IDEs, including Eclipse, NetBeans, and BlueJ. I cannot give complete or definitive
information on Java programming environments in this section, but I will try to give enough
information to let you compile and run the examples from this textbook. (Readers are strongly
encouraged to read, compile, and run the examples. Source code can be downloaded from the
book’s web page, http://math.hws.edu/javanotes.)

One thing to keep in mind is that you do not have to pay any money to do Java programming
(aside from buying a computer, of course). Everything that you need can be downloaded for
free on the Internet.

2.6.1 Java Development Kit

The basic development system for Java programming is usually referred to as the JDK (Java
Development Kit). It is a part of Java SE, the Java “Standard Edition” (as opposed to Java
EE for servers or Java ME for mobile devices). Note that Java SE comes in two versions,
a Development Kit version (the JDK) and a Runtime Environment version (the JRE). The
Runtime can be used to run Java programs, but it does not allow you to compile your own Java
programs. The Development Kit includes the Runtime but also lets you compile programs.
You need a JDK for use with this textbook.

Java was developed by Sun Microsystems, Inc., which is now a part of the Oracle corporation.
Oracle makes the JDK for Windows, Mac OS, and Linux available for free download at its Java
Web site. Many Windows computers come with a Java Runtime already installed, but you
might need to install the JDK. Some versions of Linux come with the JDK either installed by
default or on the installation media. Mac OS does not currently come with Java pre-installed.
If you need to download and install the JDK, be sure to get the JDK for Java 7, Java 8, or
later. As of summer, 2014, it can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://math.hws.edu/javanotes
http://www.oracle.com/technetwork/java/javase/downloads/index.html

CHAPTER 2. NAMES AND THINGS 55

If a JDK is properly installed on your computer, you can use the command line environment
to compile and run Java programs. An IDE will also require a JDK, but it might be included
with the IDE download.

2.6.2 Command Line Environment

Many modern computer users find the command line environment to be pretty alien and unin-
tuitive. It is certainly very different from the graphical user interfaces that most people are used
to. However, it takes only a little practice to learn the basics of the command line environment
and to become productive using it.

To use a command line programming environment, you will have to open a window where
you can type in commands. In Windows, you can open such a command window by running the
program named cmd . (In Windows 7, click “Start / Program Files / Accessories / Command
Prompt.” In Windows 8, press the Windows and X keys together to bring up the “Power User
Menu,” and select “Command Prompt.”) In Mac OS, you want to run the Terminal program,
which can be found in the Utilities folder inside the Applications folder. In Linux, there are
several possibilities, including an old program called xterm ; try looking for “Terminal” in your
applications menu.

No matter what type of computer you are using, when you open a command window, it
will display a prompt of some sort. Type in a command at the prompt and press return. The
computer will carry out the command, displaying any output in the command window, and will
then redisplay the prompt so that you can type another command. One of the central concepts
in the command line environment is the current directory which contains files that can be
used by the commands that you type. (The words “directory” and “folder” mean the same
thing.) Often, the name of the current directory is part of the command prompt. You can
get a list of the files in the current directory by typing in the command dir (on Windows) or
ls (on Linux and Mac OS). When the window first opens, the current directory is your home
directory , where all your files are stored. You can change the current directory using the cd
command with the name of the directory that you want to use. For example, to change into
your Desktop directory, type in the command cd Desktop and press return.

You should create a directory (that is, a folder) to hold your Java work. For example, create
a directory named javawork in your home directory. You can do this using your computer’s
GUI; another way to do it is to open a command window, cd to the directory that you want to
contain the new dirctory, and enter the command mkdir javawork. When you want to work
on programming, open a command window and use the cd command to change into your work
directory. Of course, you can have more than one working directory for your Java work; you
can organize your files any way you like.

∗ ∗ ∗

The most basic commands for using Java on the command line are javac and java ; javac
is used to compile Java source code, and java is used to run Java stand-alone applications. If a
JDK is correctly installed on your computer, it should recognize these commands when you type
them in on the command line. Try typing the commands java -version and javac -version

which should tell you which version of Java is installed. If you get a message such as “Command
not found,” then Java is not correctly installed. If the “java” command works, but “javac” does
not, it means that a Java Runtime is installed rather than a Development Kit. (On Windows,
after installing the JDK, you need to modify the Windows PATH environment variable to make
this work. See the JDK installation instructions on Oracle’s download site for information about

CHAPTER 2. NAMES AND THINGS 56

how to do this.)
To test the javac command, place a copy of TextIO.java into your working directory. (If you

downloaded the Web site of this book, you can find it in the directory named source; you can
use your computer’s GUI to copy-and-paste this file into your working directory. Alternatively,
you can navigate to TextIO.java on the book’s Web site and use the “Save As” command in
your Web browser to save a copy of the file into your working directory.) Type the command:

javac TextIO.java

This will compile TextIO.java and will create a bytecode file named TextIO.class in the same
directory. Note that if the command succeeds, you will not get any response from the computer;
it will just redisplay the command prompt to tell you it’s ready for another command.

To test the java command, copy a sample program such as Interest2.java from this
book’s source directory into your working directory, or download it from the web site. First,
compile the program with the command

javac Interest2.java

Remember that for this to succeed, TextIO must already be in the same directory. Then you
can execute the program using the command

java Interest2

Be careful to use just the name of the program, Interest2, with the java command, not the
name of the Java source code file or the name of the compiled class file. When you give this
command, the program will run. You will be asked to enter some information, and you will
respond by typing your answers into the command window, pressing return at the end of the
line. When the program ends, you will see the command prompt, and you can enter another
command. (Note that “java TextIO” would not make sense, since TextIO does not have a
main() routine, and so it doesn’t make sense to try to execute it as a program.)

You can follow a similar procedure to run all of the examples in this book. Some examples
require additional classes, such as TextIO, in addition to the main program. Remember to place
any required classes in the same folder as the program that uses them. (You can use either the
.java or the .class files for the required classes.)

∗ ∗ ∗

To create your own programs, you will need a text editor . A text editor is a computer
program that allows you to create and save documents that contain plain text. It is important
that the documents be saved as plain text, that is without any special encoding or formatting
information. Word processor documents are not appropriate, unless you can get your word
processor to save as plain text. A good text editor can make programming a lot more pleasant.
Linux comes with several text editors. On Windows, you can use notepad in a pinch, but you
will probably want something better. For Mac OS, you might download the free TextWrangler
application. One possibility that will work on any platform is to use jedit , a good programmer’s
text editor that is itself written in Java and that can be downloaded for free from www.jedit.org.

To work on your programs, you can open a command line window and cd into the working
directory where you will store your source code files. Start up your text editor program, such
as by double-clicking its icon or selecting it from a Start menu. Type your code into the editor
window, or open an existing source code file that you want to modify. Save the file into your
working directory. Remember that the name of a Java source code file must end in “.java”, and
the rest of the file name must match the name of the class that is defined in the file. Once the
file is saved in your working directory, go to the command window and use the javac command

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/javanotes7/source/index.html
http://www.jedit.org

CHAPTER 2. NAMES AND THINGS 57

to compile it, as discussed above. If there are syntax errors in the code, they will be listed
in the command window. Each error message contains the line number in the file where the
computer found the error. Go back to the editor and try to fix one or more errors, save your
changes, and then try the javac command again. (It’s usually a good idea to just work on the
first few errors; sometimes fixing those will make other errors go away.) Remember that when
the javac command finally succeeds, you will get no message at all. Then you can use the java
command to run your program, as described above. Once you’ve compiled the program, you
can run it as many times as you like without recompiling it.

That’s really all there is to it: Keep both editor and command-line window open. Edit,
save, and compile until you have eliminated all the syntax errors. (Always remember to save
the file before compiling it—the compiler only sees the saved file, not the version in the editor
window.) When you run the program, you might find that it has semantic errors that cause it
to run incorrectly. In that case, you have to go back to the edit/save/compile loop to try to
find and fix the problem.

2.6.3 Eclipse

In an Integrated Development Environment, everything you need to create, compile, and run
programs is integrated into a single package, with a graphical user interface that will be familiar
to most computer users. There are a number of different IDEs for Java program development,
ranging from fairly simple wrappers around the JDK to highly complex applications with a
multitude of features. For a beginning programmer, there is a danger in using an IDE, since
the difficulty of learning to use the IDE, on top of the difficulty of learning to program, can
be overwhelming. However, for my own programming, I generally use the Eclipse IDE, and I
introduce my students to it after they have had some experience with the command line. I will
discuss Eclipse in some detail and two other IDEs, NetBeans and BlueJ, in much less detail.
All of these IDEs have features that are very useful even for a beginning programmer, although
a beginner will want to ignore many of their advanced features.

You can download an Eclipse IDE from eclipse.org. It is a free program. Eclipse is itself
written in Java. It requires a Java Runtime Environment, but not necessarily a JDK, since it
includes its own compiler. You should make sure that the JRE or JDK, Version 7 or higher is
installed on your computer, as described above, before you install Eclipse. There are several
versions of the Eclipse IDE; you can use the “Eclipse IDE for Java Developers.”

The first time you start Eclipse, you will be asked to specify a workspace , which is the
directory where all your work will be stored. You can accept the default name, or provide one
of your own. When startup is complete, the Eclipse window will be filled by a large “Welcome”
screen that includes links to extensive documentation and tutorials. You can close this screen,
by clicking the “X” next to the word “Welcome”; you can get back to it later by choosing
“Welcome” from the “Help” menu.

The Eclipse GUI consists of one large window that is divided into several sections. Each
section contains one or more views. For example, a view can be a text editor, it can be a place
where a program can do I/O, or it can contain a list of all your projects. If there are several
views in one section of the window, then there will be tabs at the top of the section to select the
view that is displayed in that section. Each view displays a different type of information. The
whole set of views is called a perspective . Eclipse uses different perspectives, that is different
sets of views of different types of information, for different tasks. For compiling and running
programs, the only perspective that you will need is the “Java Perspective,” which is the default.
As you become more experienced, you might want to the use the “Debug Perspective,” which

http://eclipse.org

CHAPTER 2. NAMES AND THINGS 58

has features designed to help you find semantic errors in programs.
The Java Perspective includes a large area in the center of the window that contains text

editor views. This is where you will create and edit your programs. To the left of this is the
Package Explorer view, which will contain a list of your Java projects and source code files.
To the right are some other views that I don’t find very useful, and I suggest that you close
them by clicking the small “X” next to the name of each one. Several other views that will
be useful appear in a section of the window below the editing area. If you accidently close one
of the important views, such as the Package Explorer, you can get it back by selecting it from
the “Show View” submenu of the “Window” menu. You can also reset the whole window to its
default contents by selecting “Reset Perspective” from the “Window” menu.

∗ ∗ ∗

To do any work in Eclipse, you need a project . To start a Java project, go to the “New”
submenu in the “File” menu, and select the “Java Project” command. In the window that
pops up, it is only necessary to fill in a “Project Name” for the project and click the “Finish”
button. The project name can be anything you like. The project should appear in the “Package
Explorer” view. Click on the small triangle or plus sign next to the project name to see the
contents of the project. Assuming that you use the default settings, there should be a directory
named “src,” which is where your Java source code files will go. It also contains the “JRE
System Library”; this is the collection of standard built-in classes that come with Java.

To run the TextIO based examples from this textbook, you must add the source code file
TextIO.java to your project. If you have downloaded the Web site of this book, you can find a
copy of TextIO.java in the source directory. Alternatively, you can navigate to the file on-line
and use the “Save As” command of your Web browser to save a copy of the file onto your
computer. The easiest way to get TextIO into your project is to locate the source code file on
your computer and drag the file icon onto the project name in the Eclipse window. If that
doesn’t work, you can try using copy-and-paste: Right-click the file icon (or control-click on
Mac OS), select “Copy” from the pop-up menu, right-click the project’s src folder in the Eclipse
window, and select “Paste”. (Be sure to paste it into the src folder, not into the project itself;
files outside the source folder are not treated as Java source code files.) Another option is to
add the file directly to the src folder inside your workspace directory. However, Eclipse will not
automatically recognize a file added in this way; to make Eclipse find the file, right-click the
project name in the Eclipse window and select “Refresh” from the pop-up menu. In any case,
TextIO should appear under “src” in your project, inside a package named “default package”.
Once a file is in this list, you can open it by double-clicking it; it will appear in the editing area
of the Eclipse window.

To run any of the Java programs from this textbook, copy the source code file into your
Eclipse Java project in the same way that you copied TextIO.java. To run the program, right-
click in the editor window, or on the file name in the Package Explorer view (or control-
click in Mac OS). In the menu that pops up, go to the “Run As” submenu, and select “Java
Application”. The program will be executed. If the program writes to standard output, the
output will appear in the “Console” view, in the area of the Eclipse window below the editing
area. If the program uses TextIO for input, you will have to type the required input into the
“Console” view—click the “Console” view before you start typing, so that the characters
that you type will be sent to the correct part of the window. (For an easier way to run a program,
find and click the small “Run” button in Eclipse’s tool bar.) Note that when you run a program
in Eclipse, it is compiled automatically. There is no separate compilation step.

You can have more than one program in the same Eclipse project, or you can create addi-

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java

CHAPTER 2. NAMES AND THINGS 59

tional projects to organize your work better. Remember to place a copy of TextIO.java in any
project that requires it.

∗ ∗ ∗

To create a new Java program in Eclipse, you must create a new Java class. To do that,
right-click the Java project name in the “Project Explorer” view. Go to the “New” submenu of
the popup menu, and select “Class”. (Alternatively, there is a small icon in the toolbar at the
top of the Eclipse window that you can click to create a new Java class.) In the window that
opens, type in the name of the class that you want to create. The class name must be a legal
Java identifier. Note that you want the name of the class, not the name of the source code file,
so don’t add “.java” at the end of the name. Examples in this book use the “default package,”
so you will also want to erase the contents of the box labeled “Package.” (See the last section of
this section for more information about packages.) Finally, click the “Finish” button to create
the class. The class should appear inside the “src” folder, in the “default package,” and it
should automatically open in the editing area so that you can start typing in your program.

Eclipse has several features that aid you as you type your code. It will underline any syntax
error with a jagged red line, and in some cases will place an error marker in the left border of
the edit window. If you hover the mouse cursor over the error marker or over the error itself,
a description of the error will appear. Note that you do not have to get rid of every error
immediately as you type; some errors will go away as you type in more of the program. If an
error marker displays a small “light bulb,” Eclipse is offering to try to fix the error for you.
Click the light bulb—or simply hover your mouse over the actual error—to get a list of possible
fixes, then double click the fix that you want to apply. For example, if you use an undeclared
variable in your program, Eclipse will offer to declare it for you. You can actually use this
error-correcting feature to get Eclipse to write certain types of code for you! Unfortunately,
you’ll find that you won’t understand a lot of the proposed fixes until you learn more about
the Java language, and it is not a good idea to apply a fix that you don’t understand—often
that will just make things worse in the end.

Eclipse will also look for spelling errors in comments and will underline them with jagged
red lines. Hover your mouse over the error to get a list of possible correct spellings.

Another essential Eclipse feature is content assist . Content assist can be invoked by typing
Control-Space. It will offer possible completions of whatever you are typing at the moment. For
example, if you type part of an identifier and hit Control-Space, you will get a list of identifiers
that start with the characters that you have typed; use the up and down arrow keys to select one
of the items in the list, and press Return or Enter. (You can also click an item with the mouse
to select it, or hit Escape to dismiss the list.) If there is only one possible completion when
you hit Control-Space, it will be inserted automatically. By default, Content Assist will also
pop up automatically, after a short delay, when you type a period or certain other characters.
For example, if you type “TextIO.” and pause for just a fraction of a second, you will get a
list of all the subroutines in the TextIO class. Personally, I find this auto-activation annoying.
You can disable it in the Eclipse Preferences. (Look under Java / Editor / Content Assist, and
turn off the “Enable auto activation” option.) You can still call up Code Assist manually with
Control-Space.

Once you have an error-free program, you can run it as described above. If you find a
problem when you run it, it’s very easy to go back to the editor, make changes, and run it
again. Note that using Eclipse, there is no explicit “compile” command. The source code files
in your project are automatically compiled, and are re-compiled whenever you modify them.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java

CHAPTER 2. NAMES AND THINGS 60

2.6.4 NetBeans

Another IDE for professional programming is NetBeans. It can be downloaded from net-
beans.org. Alternatively, a bundle containing both NetBeans and the JDK is available on
Oracle’s Java download page.

Using NetBeans is very similar to using Eclipse. Even the layout of its window is very
similar to the Eclipse window. Create a project in NetBeans with the “New Project” command.
You will have to select the type of project in a pop-up window. You want to create a “Java
Application.” The project creation dialog will have a suggested name for the project, which
you will want to change. It also has an option to create a main class for the project, which is
selected by default. If you use that option, you should change the class name. For use with
this book, the name should not be in a “package”; that is, it should not include a period.

A project will have a “Source Folder” where the source code files for the project are stored.
You can drag TextIO.java and other files onto that folder, or you can copy-and-paste them
from the file system. For running a file, you can right-click the file and select “Run File” from
the pop-up menu. There is also a “Run” button in the NetBeans toolbar. There is no explicit
compilation step. Input and ouput are done in an area below the edit window, just as in Eclipse.

When you are editing a file, NetBeans will mark errors as you type. (Remember, again, that
many errors will go away on their own as you continue to type.) If NetBeans displays an error
marker with a light bulb in the left-hand margin of the editor, you have to click the light bulb
to get a list of possible automatic fixes for the error. NetBeans also has a “Code Completion”
feature that is similar to Content Assist in Eclipse. Just press Control-Space as you are typing
to get a list of possible completions.

2.6.5 BlueJ

Finally, I will mention BlueJ, an IDE that is designed specifically for people who are learning
to program. It is much less complex than Eclipse or NetBeans, but it does have some features
that make it useful for education. BlueJ can be downloaded from bluej.org.

In BlueJ, you can begin a project with the “New Project” command in the “Project” menu.
A BlueJ project is simply a folder. When you create a project, you will have to select a folder
name that does not already exist. The folder will be created and a window will be opened to
show the contents of the folder. Files are shown as icons in the BlueJ window. You can drag
.java files from the file system onto that window to add files to the project; they will be copied
into the project folder as well as shown in the window. You can also copy files directly into
the project folder, but BlueJ won’t see them until the next time you open the project. For
example, you can do this with TextIO.java and the sample programs from this book. When
you restart BlueJ, it should show the last project you were working on, but you can open any
project with a command from the “Project” menu.

There is a button in the project window for creating a new class. An icon for the class is
added to the window, and a .java source code file is created in the project folder. The file is not
automatically opened for editing. To edit a file, double-click its icon in the project window. An
editor will be opened in a separate window. (A newly created class will contain some default
code that you probably don’t want; you can erase it and add a main() routine instead.) The
BlueJ editor does not show errors as you type. Errors will be reported when you compile the
program. Also, it does not offer automatic fixes for errors. It has a less capable version of
Eclipse’s Content Assist, which seems only to work for getting a list of available subroutines in
a class or object; call up the list by hitting Control-Space after typing the period following the

http://netbeans.org
http://bluej.org

CHAPTER 2. NAMES AND THINGS 61

name of a class or object.
An editor window contains a button for compiling the program in the window. There is

also a compile button in the project window, which compiles all the classes in the project.
To run a program, it must already be compiled. Right-click the icon of a compiled program.

In the menu that pops up, you will see “void main(String[] args)”. Select that option from
the menu to run the program. Just click “OK” in the dialog box that pops up. A separate
window will open for input/output.

One of the neatest features of BlueJ is that you can actually use it to run any subroutine,
not just main. If a class contains other subroutines, you will see them in the list that you get
by right-clicking its icon. A pop-up dialog allows you to enter any parameters required by the
routine, and if the routine is a function, you will get another dialog box after the routine has
been executed to tell you its return value. This allows easy testing of individual subroutines.
Furthermore, you can also use BlueJ to create new objects from a class. An icon for the object
will be added at the bottom of the project window, and you can right-click that icon to get
a list of subroutines in the object. This will, of course, not be useful to you until we get to
object-oriented programming in Chapter 5.

2.6.6 The Problem of Packages

Every class in Java is contained in something called a package . Classes that are not explicitly
put into a package are in the “default” package. Almost all the examples in this textbook are
in the default package, and I will not even discuss packages in any depth until Section 4.5.
However, some IDEs force you to pay attention to packages.

In fact, the use of the default package is discouraged, according to official Java style guide-
lines. Nevertheless, I have chosen to use it, since it seems easier for beginning programmers to
avoid the whole issue of packages, at least at first. If Eclipse or NetBeans tries to put a class
into a package, you can delete the package name from the class-creation dialog to get it to use
the default package instead. But if you do create a class in a package, the source code starts
with a line that specifies which package the class is in. For example, if the class is in a package
named test.pkg, then the first line of the source code will be

package test.pkg;

In an IDE, this will not cause any problem unless the program you are writing depends on
TextIO. A class that is in a non-default package cannot use a class from the default package. To
make TextIO available to such a class, you can move TextIO to a named, non-default package.
This means that the source code file TextIO.java has to be modified to specify the package: A
package statement like the one shown above must be added to the very beginning of the file,
with the appropriate package name. (The IDE might do this for you, if you drag TextIO.java
from the default package into a non-default package.) If you add TextIO to the same package
as the class that uses it, then TextIO will be automatically available to that class. If TextIO is
in a different named package, you have to add an “import” statement to the other class to make
TextIO available to it. For example, if TextIO is in the package textio, add the statement

import textio.TextIO;

to the top of the other source code file, just after its own package declaration.
By the way, if you use packages in a command-line environment, other complications arise.

For example, if a class is in a package named test.pkg, then the source code file must be in a
subdirectory named “pkg” inside a directory named “test” that is in turn inside your main Java

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java

CHAPTER 2. NAMES AND THINGS 62

working directory. Nevertheless, when you compile or execute the program, you should be in
the main directory, not in a subdirectory. When you compile the source code file, you have to
include the name of the directory in the command: Use “javac test/pkg/ClassName.java”
on Linux or Mac OS, or “javac test\pkg\ClassName.java” on Windows. The command
for executing the program is then “java test.pkg.ClassName”, with a period separating the
package name from the class name. However, you will not need to worry about any of that
when working with almost all of the examples in this book.

Exercises 63

Exercises for Chapter 2

1. Write a program that will print your initials to standard output in letters that are nine (solution)

lines tall. Each big letter should be made up of a bunch of *’s. For example, if your initials
were “DJE”, then the output would look something like:

****** ************* **********

** ** ** **

** ** ** **

** ** ** **

** ** ** ********

** ** ** ** **

** ** ** ** **

** ** ** ** **

***** **** **********

2. Write a program that simulates rolling a pair of dice. You can simulate rolling one die by (solution)

choosing one of the integers 1, 2, 3, 4, 5, or 6 at random. The number you pick represents
the number on the die after it is rolled. As pointed out in Section 2.5, the expression

(int)(Math.random()*6) + 1

does the computation to select a random integer between 1 and 6. You can assign this
value to a variable to represent one of the dice that are being rolled. Do this twice and
add the results together to get the total roll. Your program should report the number
showing on each die as well as the total roll. For example:

The first die comes up 3

The second die comes up 5

Your total roll is 8

3. Write a program that asks the user’s name, and then greets the user by name. Before (solution)

outputting the user’s name, convert it to upper case letters. For example, if the user’s
name is Fred, then the program should respond “Hello, FRED, nice to meet you!”.

4. Write a program that helps the user count his change. The program should ask how many (solution)

quarters the user has, then how many dimes, then how many nickels, then how many
pennies. Then the program should tell the user how much money he has, expressed in
dollars.

5. If you have N eggs, then you have N/12 dozen eggs, with N%12 eggs left over. (This is (solution)

essentially the definition of the / and % operators for integers.) Write a program that asks
the user how many eggs she has and then tells the user how many dozen eggs she has and
how many extra eggs are left over.

A gross of eggs is equal to 144 eggs. Extend your program so that it will tell the user
how many gross, how many dozen, and how many left over eggs she has. For example, if
the user says that she has 1342 eggs, then your program would respond with

Your number of eggs is 9 gross, 3 dozen, and 10

http://math.hws.edu/eck/cs124/javanotes7/c2/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c2/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c2/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c2/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c2/ex5-ans.html

Exercises 64

since 1342 is equal to 9*144 + 3*12 + 10.

6. This exercise asks you to write a program that tests some of the built-in subroutines for (solution)

working with Strings. The program should ask the user to enter their first name and their
last name, separated by a space. Read the user’s response using TextIO.getln(). Break
the input string up into two strings, one containing the first name and one containing the
last name. You can do that by using the indexOf() subroutine to find the position of the
space, and then using substring() to extract each of the two names. Also output the
number of characters in each name, and output the user’s initials. (The initials are the
first letter of the first name together with the first letter of the last name.) A sample run
of the program should look something like this:

Please enter your first name and last name, separated by a space.

? Mary Smith

Your first name is Mary, which has 4 characters

Your last name is Smith, which has 5 characters

Your initials are MS

7. Suppose that a file named “testdata.txt” contains the following information: The first (solution)

line of the file is the name of a student. Each of the next three lines contains an integer.
The integers are the student’s scores on three exams. Write a program that will read
the information in the file and display (on standard output) a message that contains the
name of the student and the student’s average grade on the three exams. The average is
obtained by adding up the individual exam grades and then dividing by the number of
exams.

http://math.hws.edu/eck/cs124/javanotes7/c2/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c2/ex7-ans.html

Quiz 65

Quiz on Chapter 2
(answers)

1. Briefly explain what is meant by the syntax and the semantics of a programming language.
Give an example to illustrate the difference between a syntax error and a semantics error.

2. What does the computer do when it executes a variable declaration statement. Give an
example.

3. What is a type, as this term relates to programming?

4. One of the primitive types in Java is boolean. What is the boolean type? Where are
boolean values used? What are its possible values?

5. Give the meaning of each of the following Java operators:

a) ++

b) &&

c) !=

6. Explain what is meant by an assignment statement, and give an example. What are
assignment statements used for?

7. What is meant by precedence of operators?

8. What is a literal?

9. In Java, classes have two fundamentally different purposes. What are they?

10. What is the difference between the statement “x = TextIO.getDouble();” and the state-
ment “x = TextIO.getlnDouble();”

11. Explain why the value of the expression 2 + 3 + "test" is the string "5test" while the
value of the expression "test" + 2 + 3 is the string "test23". What is the value of
"test" + 2 * 3 ?

12. Integrated Development Environments such as Eclipse often use syntax coloring , which
assigns various colors to the characters in a program to reflect the syntax of the language.
A student notices that Eclipse colors the word String differently from int, double, and
boolean. The student asks why String should be a different color, since all these words
are names of types. What’s the answer to the student’s question?

http://math.hws.edu/eck/cs124/javanotes7/c2/quiz_answers.html

Chapter 3

Programming in the Small II:
Control

The basic building blocks of programs—variables, expressions, assignment statements, and
subroutine call statements—were covered in the previous chapter. Starting with this chapter,
we look at how these building blocks can be put together to build complex programs with more
interesting behavior.

Since we are still working on the level of “programming in the small” in this chapter, we are
interested in the kind of complexity that can occur within a single subroutine. On this level,
complexity is provided by control structures. The two types of control structures, loops and
branches, can be used to repeat a sequence of statements over and over or to choose among two
or more possible courses of action. Java includes several control structures of each type, and
we will look at each of them in some detail.

Program complexity can be seen not just in control structures but also in data structures.
A data structure is an organized collection of data, chunked together so that it can be treated
as a unit. Section 3.8 in this chapter includes an introduction to one of the most common data
structures: arrays.

The chapter will also begin the study of program design. Given a problem, how can you
come up with a program to solve that problem? We’ll look at a partial answer to this question
in Section 3.2. Finally, Section 3.9 is a very brief first look at GUI programming.

3.1 Blocks, Loops, and Branches

The ability of a computer to perform complex tasks is built on just a few ways of
combining simple commands into control structures. In Java, there are just six such structures
that are used to determine the normal flow of control in a program—and, in fact, just three
of them would be enough to write programs to perform any task. The six control structures
are: the block , the while loop, the do..while loop, the for loop, the if statement , and the
switch statement . Each of these structures is considered to be a single “statement,” but a
structured statement that can contain one or more other statements inside itself.

3.1.1 Blocks

The block is the simplest type of structured statement. Its purpose is simply to group a
sequence of statements into a single statement. The format of a block is:

67

CHAPTER 3. CONTROL 68

{

〈statements 〉
}

That is, it consists of a sequence of statements enclosed between a pair of braces, “{” and “}”.
In fact, it is possible for a block to contain no statements at all; such a block is called an empty
block , and can actually be useful at times. An empty block consists of nothing but an empty
pair of braces. Block statements usually occur inside other statements, where their purpose is
to group together several statements into a unit. However, a block can be legally used wherever
a statement can occur. There is one place where a block is required: As you might have already
noticed in the case of the main subroutine of a program, the definition of a subroutine is a
block, since it is a sequence of statements enclosed inside a pair of braces.

I should probably note again at this point that Java is what is called a free-format language.
There are no syntax rules about how the language has to be arranged on a page. So, for example,
you could write an entire block on one line if you want. But as a matter of good programming
style, you should lay out your program on the page in a way that will make its structure as
clear as possible. In general, this means putting one statement per line and using indentation
to indicate statements that are contained inside control structures. This is the format that I
will generally use in my examples.

Here are two examples of blocks:

{

System.out.print("The answer is ");

System.out.println(ans);

}

{ // This block exchanges the values of x and y

int temp; // A temporary variable for use in this block.

temp = x; // Save a copy of the value of x in temp.

x = y; // Copy the value of y into x.

y = temp; // Copy the value of temp into y.

}

In the second example, a variable, temp, is declared inside the block. This is perfectly legal,
and it is good style to declare a variable inside a block if that variable is used nowhere else
but inside the block. A variable declared inside a block is completely inaccessible and invisible
from outside that block. When the computer executes the variable declaration statement, it
allocates memory to hold the value of the variable. When the block ends, that memory is
discarded (that is, made available for reuse). The variable is said to be local to the block.
There is a general concept called the “scope” of an identifier. The scope of an identifier is the
part of the program in which that identifier is valid. The scope of a variable defined inside a
block is limited to that block, and more specifically to the part of the block that comes after
the declaration of the variable.

3.1.2 The Basic While Loop

The block statement by itself really doesn’t affect the flow of control in a program. The five
remaining control structures do. They can be divided into two classes: loop statements and
branching statements. You really just need one control structure from each category in order to
have a completely general-purpose programming language. More than that is just convenience.

CHAPTER 3. CONTROL 69

In this section, I’ll introduce the while loop and the if statement. I’ll give the full details of
these statements and of the other three control structures in later sections.

A while loop is used to repeat a given statement over and over. Of course, it’s not likely
that you would want to keep repeating it forever. That would be an infinite loop, which is
generally a bad thing. (There is an old story about computer pioneer Grace Murray Hopper,
who read instructions on a bottle of shampoo telling her to “lather, rinse, repeat.” As the story
goes, she claims that she tried to follow the directions, but she ran out of shampoo. (In case
you don’t get it, this is a joke about the way that computers mindlessly follow instructions.))

To be more specific, a while loop will repeat a statement over and over, but only so long
as a specified condition remains true. A while loop has the form:

while (〈boolean-expression 〉)
〈statement 〉

Since the statement can be, and usually is, a block, most while loops have the form:

while (〈boolean-expression 〉) {

〈statements 〉
}

Some programmers think that the braces should always be included as a matter of style, even
when there is only one statement between them, but I don’t always follow that advice myself.

The semantics of the while statement go like this: When the computer comes to a while

statement, it evaluates the 〈boolean-expression〉, which yields either true or false as its value.
If the value is false, the computer skips over the rest of the while loop and proceeds to the
next command in the program. If the value of the expression is true, the computer executes
the 〈statement〉 or block of 〈statements〉 inside the loop. Then it returns to the beginning of
the while loop and repeats the process. That is, it re-evaluates the 〈boolean-expression〉, ends
the loop if the value is false, and continues it if the value is true. This will continue over and
over until the value of the expression is false when the computer evaluates it; if that never
happens, then there will be an infinite loop.

Here is an example of a while loop that simply prints out the numbers 1, 2, 3, 4, 5:

int number; // The number to be printed.

number = 1; // Start with 1.

while (number < 6) { // Keep going as long as number is < 6.

System.out.println(number);

number = number + 1; // Go on to the next number.

}

System.out.println("Done!");

The variable number is initialized with the value 1. So when the computer evaluates the
expression “number < 6” for the first time, it is asking whether 1 is less than 6, which is
true. The computer therefore proceeds to execute the two statements inside the loop. The
first statement prints out “1”. The second statement adds 1 to number and stores the result
back into the variable number; the value of number has been changed to 2. The computer has
reached the end of the loop, so it returns to the beginning and asks again whether number is
less than 6. Once again this is true, so the computer executes the loop again, this time printing
out 2 as the value of number and then changing the value of number to 3. It continues in this
way until eventually number becomes equal to 6. At that point, the expression “number < 6”
evaluates to false. So, the computer jumps past the end of the loop to the next statement
and prints out the message “Done!”. Note that when the loop ends, the value of number is 6,
but the last value that was printed was 5.

CHAPTER 3. CONTROL 70

By the way, you should remember that you’ll never see a while loop standing by itself
in a real program. It will always be inside a subroutine which is itself defined inside some
class. As an example of a while loop used inside a complete program, here is a little program
that computes the interest on an investment over several years. This is an improvement over
examples from the previous chapter that just reported the results for one year:

/**

* This class implements a simple program that will compute the amount of

* interest that is earned on an investment over a period of 5 years. The

* initial amount of the investment and the interest rate are input by the

* user. The value of the investment at the end of each year is output.

*/

public class Interest3 {

public static void main(String[] args) {

double principal; // The value of the investment.

double rate; // The annual interest rate.

/* Get the initial investment and interest rate from the user. */

System.out.print("Enter the initial investment: ");

principal = TextIO.getlnDouble();

System.out.println();

System.out.println("Enter the annual interest rate.");

System.out.print("Enter a decimal, not a percentage: ");

rate = TextIO.getlnDouble();

System.out.println();

/* Simulate the investment for 5 years. */

int years; // Counts the number of years that have passed.

years = 0;

while (years < 5) {

double interest; // Interest for this year.

interest = principal * rate;

principal = principal + interest; // Add it to principal.

years = years + 1; // Count the current year.

System.out.print("The value of the investment after ");

System.out.print(years);

System.out.print(" years is $");

System.out.printf("%1.2f", principal);

System.out.println();

} // end of while loop

} // end of main()

} // end of class Interest3

You should study this program, and make sure that you understand what the computer does
step-by-step as it executes the while loop.

CHAPTER 3. CONTROL 71

3.1.3 The Basic If Statement

An if statement tells the computer to take one of two alternative courses of action, depending
on whether the value of a given boolean-valued expression is true or false. It is an example of
a “branching” or “decision” statement. An if statement has the form:

if (〈boolean-expression 〉)

〈statement1 〉
else

〈statement2 〉

When the computer executes an if statement, it evaluates the boolean expression. If the value
is true, the computer executes the first statement and skips the statement that follows the
“else”. If the value of the expression is false, then the computer skips the first statement and
executes the second one. Note that in any case, one and only one of the two statements inside
the if statement is executed. The two statements represent alternative courses of action; the
computer decides between these courses of action based on the value of the boolean expression.

In many cases, you want the computer to choose between doing something and not doing
it. You can do this with an if statement that omits the else part:

if (〈boolean-expression 〉)

〈statement 〉

To execute this statement, the computer evaluates the expression. If the value is true, the
computer executes the 〈statement〉 that is contained inside the if statement; if the value is
false, the computer skips over that 〈statement〉. In either case, the computer then continues
with whatever follows the if statement in the program.

Sometimes, novice programmers confuse while statements with simple if statements (with
no else part), although their meanings are quite different. The 〈statement〉 in an if is executed
at most once, while the 〈statement〉 in a while can be executed any number of times. It can
be helpful to look at diagrams of the the flow of control for while and simple if statements:

Do statement

Yes

No

While Loop Flow of Control

Do statement

Yes

No

If Statement Flow of Control

Is condition true? Is condition true?

CHAPTER 3. CONTROL 72

In these diagrams, the arrows represent the flow of time as the statement is executed. Control
enters the diagram at the top and leaves at the bottom. Similarly, a flow control diagram for an
if..else statement makes it clear that exactly one of the two nested statements is executed:

Do statement 1

Yes No

If..Else Flow of Control

Is condition true?

∗ ∗ ∗

Of course, either or both of the 〈statements〉 in an if statement can be a block, and again
many programmers prefer to add the braces even when they contain just a single statement.
So an if statement often looks like:

if (〈boolean-expression 〉) {

〈statements 〉
}

else {

〈statements 〉
}

or:

if (〈boolean-expression 〉) {

〈statements 〉
}

As an example, here is an if statement that exchanges the value of two variables, x and y,
but only if x is greater than y to begin with. After this if statement has been executed, we
can be sure that the value of x is definitely less than or equal to the value of y:

if (x > y) {

int temp; // A temporary variable for use in this block.

temp = x; // Save a copy of the value of x in temp.

x = y; // Copy the value of y into x.

y = temp; // Copy the value of temp into y.

}

CHAPTER 3. CONTROL 73

Finally, here is an example of an if statement that includes an else part. See if you can
figure out what it does, and why it would be used:

if (years > 1) { // handle case for 2 or more years

System.out.print("The value of the investment after ");

System.out.print(years);

System.out.print(" years is $");

}

else { // handle case for 1 year

System.out.print("The value of the investment after 1 year is $");

} // end of if statement

System.out.printf("%1.2f", principal); // this is done in any case

I’ll have more to say about control structures later in this chapter. But you already know
the essentials. If you never learned anything more about control structures, you would already
know enough to perform any possible computing task. Simple looping and branching are all
you really need!

3.1.4 Definite Assignment

I will finish this introduction to control structures with a somewhat technical issue that you
might not fully understand the first time you encounter it. Consider the following two code
segments, which seem to be entirely equivalent:

int y; int y;

if (x < 0) { if (x < 0) {

y = 1; y = 1;

} }

else { if (x >= 0) {

y = 2; y = 2;

} }

System.out.println(y); System.out.println(y);

In the version on the left, y is assigned the value 1 if x < 0 and is assigned the value 2 otherwise,
that is, if x >= 0. Exactly the same is true of the version on the right. However, there is a
subtle difference. In fact, the Java compiler will report an error for the System.out.println

statement in the code on the right, while the code on the left is perfectly fine!
The problem is that in the code on the right, the computer can’t tell that the variable y has

definitely been assigned a value. When an if statement has no else part, the statement inside
the if might or might not be executed, depending on the value of the condition. The compiler
can’t tell whether it will be executed or not, since the condition will only be evaluated when
the program is running. For the code on the right above, as far as the compiler is concerned, it
is possible that neither statement, y = 1 or y = 2, will be evaluated, so it is possible that the
output statement is trying to print an undefined value. The compiler considers this to be an
error. The value of a variable can only be used if the compiler can verify that the variable will
have been assigned a value at that point when the program is running. This is called definite
assignment . (It doesn’t matter that you can tell that y will always be assigned a value in
this example. The question is whether the compiler can tell.)

Note that in the code on the left above, y is definitely assigned a value, since in an if..else

statement, one of the two alternatives will be executed no matter what the value of the condition
in the if. It is important that you understand that there is a difference between an if..else

CHAPTER 3. CONTROL 74

statement and a pair of plain if statements. Here is another pair of code segments that might
seem to do the same thing, but don’t. What’s the value of x after each code segment is executed?

int x; int x;

x = -1; x = -1;

if (x < 0) if (x < 0)

x = 1; x = 1;

else if (x >= 0)

x = 2; x = 2;

After the code on the left is executed, x is 1; after the code on the right, x is 2.

3.2 Algorithm Development

Programming is difficult (like many activities that are useful and worthwhile—and like
most of those activities, it can also be rewarding and a lot of fun). When you write a program,
you have to tell the computer every small detail of what to do. And you have to get everything
exactly right, since the computer will blindly follow your program exactly as written. How,
then, do people write any but the most simple programs? It’s not a big mystery, actually. It’s
a matter of learning to think in the right way.

A program is an expression of an idea. A programmer starts with a general idea of a task
for the computer to perform. Presumably, the programmer has some idea of how to perform
the task by hand, at least in general outline. The problem is to flesh out that outline into a
complete, unambiguous, step-by-step procedure for carrying out the task. Such a procedure is
called an “algorithm.” (Technically, an algorithm is an unambiguous, step-by-step procedure
that always terminates after a finite number of steps. We don’t want to count procedures that
might go on forever.) An algorithm is not the same as a program. A program is written in some
particular programming language. An algorithm is more like the idea behind the program, but
it’s the idea of the steps the program will take to perform its task, not just the idea of the
task itself. When describing an algorithm, the steps don’t necessarily have to be specified in
complete detail, as long as the steps are unambiguous and it’s clear that carrying out the steps
will accomplish the assigned task. An algorithm can be expressed in any language, including
English. Of course, an algorithm can only be expressed as an actual program if all the details
have been filled in.

So, where do algorithms come from? Usually, they have to be developed, often with a lot of
thought and hard work. Skill at algorithm development is something that comes with practice,
but there are techniques and guidelines that can help. I’ll talk here about some techniques and
guidelines that are relevant to “programming in the small,” and I will return to the subject
several times in later chapters.

3.2.1 Pseudocode and Stepwise Refinement

When programming in the small, you have a few basics to work with: variables, assignment
statements, and input/output routines. You might also have some subroutines, objects, or
other building blocks that have already been written by you or someone else. (Input/output
routines fall into this class.) You can build sequences of these basic instructions, and you can
also combine them into more complex control structures such as while loops and if statements.

Suppose you have a task in mind that you want the computer to perform. One way to
proceed is to write a description of the task, and take that description as an outline of the

CHAPTER 3. CONTROL 75

algorithm you want to develop. Then you can refine and elaborate that description, gradually
adding steps and detail, until you have a complete algorithm that can be translated directly
into programming language. This method is called stepwise refinement , and it is a type of
top-down design. As you proceed through the stages of stepwise refinement, you can write out
descriptions of your algorithm in pseudocode—informal instructions that imitate the structure
of programming languages without the complete detail and perfect syntax of actual program
code.

As an example, let’s see how one might develop the program from the previous section, which
computes the value of an investment over five years. The task that you want the program to
perform is: “Compute and display the value of an investment for each of the next five years,
where the initial investment and interest rate are to be specified by the user.” You might then
write—or more likely just think—that this can be expanded as:

Get the user’s input

Compute the value of the investment after 1 year

Display the value

Compute the value after 2 years

Display the value

Compute the value after 3 years

Display the value

Compute the value after 4 years

Display the value

Compute the value after 5 years

Display the value

This is correct, but rather repetitive. And seeing that repetition, you might notice an
opportunity to use a loop. A loop would take less typing. More important, it would be more
general: Essentially the same loop will work no matter how many years you want to process.
So, you might rewrite the above sequence of steps as:

Get the user’s input

while there are more years to process:

Compute the value after the next year

Display the value

Following this algorithm would certainly solve the problem, but for a computer we’ll have
to be more explicit about how to “Get the user’s input,” how to “Compute the value after the
next year,” and what it means to say “there are more years to process.” We can expand the
step, “Get the user’s input” into

Ask the user for the initial investment

Read the user’s response

Ask the user for the interest rate

Read the user’s response

To fill in the details of the step “Compute the value after the next year,” you have to
know how to do the computation yourself. (Maybe you need to ask your boss or professor for
clarification?) Let’s say you know that the value is computed by adding some interest to the
previous value. Then we can refine the while loop to:

while there are more years to process:

Compute the interest

Add the interest to the value

Display the value

CHAPTER 3. CONTROL 76

As for testing whether there are more years to process, the only way that we can do that is
by counting the years ourselves. This displays a very common pattern, and you should expect
to use something similar in a lot of programs: We have to start with zero years, add one each
time we process a year, and stop when we reach the desired number of years. This is sometimes
called a counting loop. So the while loop becomes:

years = 0

while years < 5:

years = years + 1

Compute the interest

Add the interest to the value

Display the value

We still have to know how to compute the interest. Let’s say that the interest is to be
computed by multiplying the interest rate by the current value of the investment. Putting
this together with the part of the algorithm that gets the user’s inputs, we have the complete
algorithm:

Ask the user for the initial investment

Read the user’s response

Ask the user for the interest rate

Read the user’s response

years = 0

while years < 5:

years = years + 1

Compute interest = value * interest rate

Add the interest to the value

Display the value

Finally, we are at the point where we can translate pretty directly into proper programming-
language syntax. We still have to choose names for the variables, decide exactly what we want
to say to the user, and so forth. Having done this, we could express our algorithm in Java as:

double principal, rate, interest; // declare the variables

int years;

System.out.print("Type initial investment: ");

principal = TextIO.getlnDouble();

System.out.print("Type interest rate: ");

rate = TextIO.getlnDouble();

years = 0;

while (years < 5) {

years = years + 1;

interest = principal * rate;

principal = principal + interest;

System.out.println(principal);

}

This still needs to be wrapped inside a complete program, it still needs to be commented,
and it really needs to print out more information in a nicer format for the user. But it’s
essentially the same program as the one in the previous section. (Note that the pseudocode
algorithm used indentation to show which statements are inside the loop. In Java, indentation
is completely ignored by the computer, so you need a pair of braces to tell the computer which
statements are in the loop. If you leave out the braces, the only statement inside the loop would
be “years = years + 1;". The other statements would only be executed once, after the loop

CHAPTER 3. CONTROL 77

ends. The nasty thing is that the computer won’t notice this error for you, like it would if you
left out the parentheses around “(years < 5)”. The parentheses are required by the syntax of
the while statement. The braces are only required semantically. The computer can recognize
syntax errors but not semantic errors.)

One thing you should have noticed here is that my original specification of the problem—
“Compute and display the value of an investment for each of the next five years”—was far from
being complete. Before you start writing a program, you should make sure you have a complete
specification of exactly what the program is supposed to do. In particular, you need to know
what information the program is going to input and output and what computation it is going
to perform. Here is what a reasonably complete specification of the problem might look like in
this example:

“Write a program that will compute and display the value of
an investment for each of the next five years. Each year, interest
is added to the value. The interest is computed by multiplying
the current value by a fixed interest rate. Assume that the initial
value and the rate of interest are to be input by the user when the
program is run.”

3.2.2 The 3N+1 Problem

Let’s do another example, working this time with a program that you haven’t already seen. The
assignment here is an abstract mathematical problem that is one of my favorite programming
exercises. This time, we’ll start with a more complete specification of the task to be performed:

“Given a positive integer, N, define the ’3N+1’ sequence start-
ing from N as follows: If N is an even number, then divide N by
two; but if N is odd, then multiply N by 3 and add 1. Continue
to generate numbers in this way until N becomes equal to 1. For
example, starting from N = 3, which is odd, we multiply by 3 and
add 1, giving N = 3*3+1 = 10. Then, since N is even, we divide
by 2, giving N = 10/2 = 5. We continue in this way, stopping
when we reach 1. The complete sequence is: 3, 10, 5, 16, 8, 4, 2,
1.

“Write a program that will read a positive integer from the
user and will print out the 3N+1 sequence starting from that
integer. The program should also count and print out the number
of terms in the sequence.”

A general outline of the algorithm for the program we want is:

Get a positive integer N from the user.

Compute, print, and count each number in the sequence.

Output the number of terms.

The bulk of the program is in the second step. We’ll need a loop, since we want to keep
computing numbers until we get 1. To put this in terms appropriate for a while loop, we need
to know when to continue the loop rather than when to stop it: We want to continue as long
as the number is not 1. So, we can expand our pseudocode algorithm to:

CHAPTER 3. CONTROL 78

Get a positive integer N from the user;

while N is not 1:

Compute N = next term;

Output N;

Count this term;

Output the number of terms;

In order to compute the next term, the computer must take different actions depending on
whether N is even or odd. We need an if statement to decide between the two cases:

Get a positive integer N from the user;

while N is not 1:

if N is even:

Compute N = N/2;

else

Compute N = 3 * N + 1;

Output N;

Count this term;

Output the number of terms;

We are almost there. The one problem that remains is counting. Counting means that you
start with zero, and every time you have something to count, you add one. We need a variable
to do the counting. The variable must be set to zero once, before the loop starts, and it must
be incremented within the loop. (Again, this is a common pattern that you should expect to
see over and over.) With the counter added, we get:

Get a positive integer N from the user;

Let counter = 0;

while N is not 1:

if N is even:

Compute N = N/2;

else

Compute N = 3 * N + 1;

Output N;

Add 1 to counter;

Output the counter;

We still have to worry about the very first step. How can we get a positive integer from the
user? If we just read in a number, it’s possible that the user might type in a negative number
or zero. If you follow what happens when the value of N is negative or zero, you’ll see that the
program will go on forever, since the value of N will never become equal to 1. This is bad. In
this case, the problem is probably no big deal, but in general you should try to write programs
that are foolproof. One way to fix this is to keep reading in numbers until the user types in a
positive number:

Ask user to input a positive number;

Let N be the user’s response;

while N is not positive:

Print an error message;

Read another value for N;

Let counter = 0;

while N is not 1:

if N is even:

Compute N = N/2;

else

CHAPTER 3. CONTROL 79

Compute N = 3 * N + 1;

Output N;

Add 1 to counter;

Output the counter;

The first while loop will end only when N is a positive number, as required. (A common
beginning programmer’s error is to use an if statement instead of a while statement here: “If
N is not positive, ask the user to input another value.” The problem arises if the second number
input by the user is also non-positive. The if statement is only executed once, so the second
input number is never tested, and the program proceeds into an infinite loop. With the while
loop, after the second number is input, the computer jumps back to the beginning of the loop
and tests whether the second number is positive. If not, it asks the user for a third number,
and it will continue asking for numbers until the user enters an acceptable input. After the
while loop ends, we can be absolutely sure that N is a positive number.)

Here is a Java program implementing this algorithm. It uses the operators <= to mean “is
less than or equal to” and != to mean “is not equal to.” To test whether N is even, it uses
“N % 2 == 0”. All the operators used here were discussed in Section 2.5.

/**

* This program prints out a 3N+1 sequence starting from a positive

* integer specified by the user. It also counts the number of

* terms in the sequence, and prints out that number.

*/

public class ThreeN1 {

public static void main(String[] args) {

int N; // for computing terms in the sequence

int counter; // for counting the terms

System.out.print("Starting point for sequence: ");

N = TextIO.getlnInt();

while (N <= 0) {

System.out.print(

"The starting point must be positive. Please try again: ");

N = TextIO.getlnInt();

}

// At this point, we know that N > 0

counter = 0;

while (N != 1) {

if (N % 2 == 0)

N = N / 2;

else

N = 3 * N + 1;

System.out.println(N);

counter = counter + 1;

}

System.out.println();

System.out.print("There were ");

System.out.print(counter);

System.out.println(" terms in the sequence.");

} // end of main()

CHAPTER 3. CONTROL 80

} // end of class ThreeN1

Two final notes on this program: First, you might have noticed that the first term of the
sequence—the value of N input by the user—is not printed or counted by this program. Is
this an error? It’s hard to say. Was the specification of the program careful enough to decide?
This is the type of thing that might send you back to the boss/professor for clarification. The
problem (if it is one!) can be fixed easily enough. Just replace the line “counter = 0” before
the while loop with the two lines:

System.out.println(N); // print out initial term

counter = 1; // and count it

Second, there is the question of why this problem might be interesting. Well, it’s interesting
to mathematicians and computer scientists because of a simple question about the problem that
they haven’t been able to answer: Will the process of computing the 3N+1 sequence finish after
a finite number of steps for all possible starting values of N? Although individual sequences are
easy to compute, no one has been able to answer the general question. To put this another
way, no one knows whether the process of computing 3N+1 sequences can properly be called
an algorithm, since an algorithm is required to terminate after a finite number of steps! (Note:
This discussion really applies to integers, not to values of type int! That is, it assumes that the
value of N can take on arbitrarily large integer values, which is not true for a variable of type
int in a Java program. When the value of N in the program becomes too large to be represented
as a 32-bit int, the values output by the program are no longer mathematically correct. So
the Java program does not compute the correct 3N+1 sequence if N becomes too large. See
Exercise 8.2.)

3.2.3 Coding, Testing, Debugging

It would be nice if, having developed an algorithm for your program, you could relax, press a
button, and get a perfectly working program. Unfortunately, the process of turning an algorithm
into Java source code doesn’t always go smoothly. And when you do get to the stage of a working
program, it’s often only working in the sense that it does something. Unfortunately not what
you want it to do.

After program design comes coding: translating the design into a program written in Java
or some other language. Usually, no matter how careful you are, a few syntax errors will creep
in from somewhere, and the Java compiler will reject your program with some kind of error
message. Unfortunately, while a compiler will always detect syntax errors, it’s not very good
about telling you exactly what’s wrong. Sometimes, it’s not even good about telling you where
the real error is. A spelling error or missing “{” on line 45 might cause the compiler to choke
on line 105. You can avoid lots of errors by making sure that you really understand the syntax
rules of the language and by following some basic programming guidelines. For example, I
never type a “{” without typing the matching “}”. Then I go back and fill in the statements
between the braces. A missing or extra brace can be one of the hardest errors to find in a large
program. Always, always indent your program nicely. If you change the program, change the
indentation to match. It’s worth the trouble. Use a consistent naming scheme, so you don’t
have to struggle to remember whether you called that variable interestrate or interestRate.
In general, when the compiler gives multiple error messages, don’t try to fix the second error
message from the compiler until you’ve fixed the first one. Once the compiler hits an error in
your program, it can get confused, and the rest of the error messages might just be guesses.

CHAPTER 3. CONTROL 81

Maybe the best advice is: Take the time to understand the error before you try to fix it.
Programming is not an experimental science.

When your program compiles without error, you are still not done. You have to test the
program to make sure it works correctly. Remember that the goal is not to get the right output
for the two sample inputs that the professor gave in class. The goal is a program that will
work correctly for all reasonable inputs. Ideally, when faced with an unreasonable input, it
should respond by gently chiding the user rather than by crashing. Test your program on a
wide variety of inputs. Try to find a set of inputs that will test the full range of functionality
that you’ve coded into your program. As you begin writing larger programs, write them in
stages and test each stage along the way. You might even have to write some extra code to
do the testing—for example to call a subroutine that you’ve just written. You don’t want to
be faced, if you can avoid it, with 500 newly written lines of code that have an error in there
somewhere.

The point of testing is to find bugs—semantic errors that show up as incorrect behavior
rather than as compilation errors. And the sad fact is that you will probably find them. Again,
you can minimize bugs by careful design and careful coding, but no one has found a way to
avoid them altogether. Once you’ve detected a bug, it’s time for debugging . You have to
track down the cause of the bug in the program’s source code and eliminate it. Debugging is a
skill that, like other aspects of programming, requires practice to master. So don’t be afraid of
bugs. Learn from them. One essential debugging skill is the ability to read source code—the
ability to put aside preconceptions about what you think it does and to follow it the way the
computer does—mechanically, step-by-step—to see what it really does. This is hard. I can still
remember the time I spent hours looking for a bug only to find that a line of code that I had
looked at ten times had a “1” where it should have had an “i”, or the time when I wrote a
subroutine named WindowClosing which would have done exactly what I wanted except that
the computer was looking for windowClosing (with a lower case “w”). Sometimes it can help
to have someone who doesn’t share your preconceptions look at your code.

Often, it’s a problem just to find the part of the program that contains the error. Most
programming environments come with a debugger , which is a program that can help you find
bugs. Typically, your program can be run under the control of the debugger. The debugger
allows you to set “breakpoints” in your program. A breakpoint is a point in the program where
the debugger will pause the program so you can look at the values of the program’s variables.
The idea is to track down exactly when things start to go wrong during the program’s execution.
The debugger will also let you execute your program one line at a time, so that you can watch
what happens in detail once you know the general area in the program where the bug is lurking.

I will confess that I only occasionally use debuggers myself. A more traditional approach to
debugging is to insert debugging statements into your program. These are output statements
that print out information about the state of the program. Typically, a debugging statement
would say something like

System.out.println("At start of while loop, N = " + N);

You need to be able to tell from the output where in your program the output is coming from,
and you want to know the value of important variables. Sometimes, you will find that the
computer isn’t even getting to a part of the program that you think it should be executing.
Remember that the goal is to find the first point in the program where the state is not what
you expect it to be. That’s where the bug is.

And finally, remember the golden rule of debugging: If you are absolutely sure that every-
thing in your program is right, and if it still doesn’t work, then one of the things that you are

CHAPTER 3. CONTROL 82

absolutely sure of is wrong.

3.3 The while and do..while Statements

Statements in Java can be either simple statements or compound statements. Simple
statements, such as assignment statements and subroutine call statements, are the basic building
blocks of a program. Compound statements, such as while loops and if statements, are used to
organize simple statements into complex structures, which are called control structures because
they control the order in which the statements are executed. The next five sections explore
the details of control structures that are available in Java, starting with the while statement
and the do..while statement in this section. At the same time, we’ll look at examples of
programming with each control structure and apply the techniques for designing algorithms
that were introduced in the previous section.

3.3.1 The while Statement

The while statement was already introduced in Section 3.1. A while loop has the form

while (〈boolean-expression 〉)

〈statement 〉

The 〈statement〉 can, of course, be a block statement consisting of several statements grouped
together between a pair of braces. This statement is called the body of the loop. The body
of the loop is repeated as long as the 〈boolean-expression〉 is true. This boolean expression is
called the continuation condition , or more simply the test , of the loop. There are a few
points that might need some clarification. What happens if the condition is false in the first
place, before the body of the loop is executed even once? In that case, the body of the loop is
never executed at all. The body of a while loop can be executed any number of times, including
zero. What happens if the condition is true, but it becomes false somewhere in the middle of
the loop body? Does the loop end as soon as this happens? It doesn’t, because the computer
continues executing the body of the loop until it gets to the end. Only then does it jump back
to the beginning of the loop and test the condition, and only then can the loop end.

Let’s look at a typical problem that can be solved using a while loop: finding the average
of a set of positive integers entered by the user. The average is the sum of the integers, divided
by the number of integers. The program will ask the user to enter one integer at a time. It
will keep count of the number of integers entered, and it will keep a running total of all the
numbers it has read so far. Here is a pseudocode algorithm for the program:

Let sum = 0 // The sum of the integers entered by the user.

Let count = 0 // The number of integers entered by the user.

while there are more integers to process:

Read an integer

Add it to the sum

Count it

Divide sum by count to get the average

Print out the average

But how can we test whether there are more integers to process? A typical solution is to
tell the user to type in zero after all the data have been entered. This will work because we
are assuming that all the data are positive numbers, so zero is not a legal data value. The zero
is not itself part of the data to be averaged. It’s just there to mark the end of the real data.

CHAPTER 3. CONTROL 83

A data value used in this way is sometimes called a sentinel value . So now the test in the
while loop becomes “while the input integer is not zero”. But there is another problem! The
first time the test is evaluated, before the body of the loop has ever been executed, no integer
has yet been read. There is no “input integer” yet, so testing whether the input integer is zero
doesn’t make sense. So, we have to do something before the while loop to make sure that the
test makes sense. Setting things up so that the test in a while loop makes sense the first time
it is executed is called priming the loop. In this case, we can simply read the first integer
before the beginning of the loop. Here is a revised algorithm:

Let sum = 0

Let count = 0

Read an integer

while the integer is not zero:

Add the integer to the sum

Count it

Read an integer

Divide sum by count to get the average

Print out the average

Notice that I’ve rearranged the body of the loop. Since an integer is read before the loop, the
loop has to begin by processing that integer. At the end of the loop, the computer reads a new
integer. The computer then jumps back to the beginning of the loop and tests the integer that
it has just read. Note that when the computer finally reads the sentinel value, the loop ends
before the sentinel value is processed. It is not added to the sum, and it is not counted. This
is the way it’s supposed to work. The sentinel is not part of the data. The original algorithm,
even if it could have been made to work without priming, was incorrect since it would have
summed and counted all the integers, including the sentinel. (Since the sentinel is zero, the sum
would still be correct, but the count would be off by one. Such so-called off-by-one errors
are very common. Counting turns out to be harder than it looks!)

We can easily turn the algorithm into a complete program. Note that the program cannot
use the statement “average = sum/count;” to compute the average. Since sum and count

are both variables of type int, the value of sum/count is an integer. The average should be
a real number. We’ve seen this problem before: we have to convert one of the int values to
a double to force the computer to compute the quotient as a real number. This can be done
by type-casting one of the variables to type double. The type cast “(double)sum” converts
the value of sum to a real number, so in the program the average is computed as “average =

((double)sum) / count;”. Another solution in this case would have been to declare sum to
be a variable of type double in the first place.

One other issue is addressed by the program: If the user enters zero as the first input value,
there are no data to process. We can test for this case by checking whether count is still equal
to zero after the while loop. This might seem like a minor point, but a careful programmer
should cover all the bases.

Here is the full source code for the program:

/**

* This program reads a sequence of positive integers input

* by the user, and it will print out the average of those

* integers. The user is prompted to enter one integer at a

* time. The user must enter a 0 to mark the end of the

* data. (The zero is not counted as part of the data to

* be averaged.) The program does not check whether the

CHAPTER 3. CONTROL 84

* user’s input is positive, so it will actually add up

* both positive and negative input values.

*/

public class ComputeAverage {

public static void main(String[] args) {

int inputNumber; // One of the integers input by the user.

int sum; // The sum of the positive integers.

int count; // The number of positive integers.

double average; // The average of the positive integers.

/* Initialize the summation and counting variables. */

sum = 0;

count = 0;

/* Read and process the user’s input. */

System.out.print("Enter your first positive integer: ");

inputNumber = TextIO.getlnInt();

while (inputNumber != 0) {

sum += inputNumber; // Add inputNumber to running sum.

count++; // Count the input by adding 1 to count.

System.out.print("Enter your next positive integer, or 0 to end: ");

inputNumber = TextIO.getlnInt();

}

/* Display the result. */

if (count == 0) {

System.out.println("You didn’t enter any data!");

}

else {

average = ((double)sum) / count;

System.out.println();

System.out.println("You entered " + count + " positive integers.");

System.out.printf("Their average is %1.3f.\n", average);

}

} // end main()

} // end class ComputeAverage

3.3.2 The do..while Statement

Sometimes it is more convenient to test the continuation condition at the end of a loop, instead
of at the beginning, as is done in the while loop. The do..while statement is very similar
to the while statement, except that the word “while,” along with the condition that it tests,
has been moved to the end. The word “do” is added to mark the beginning of the loop. A
do..while statement has the form

do

〈statement 〉
while (〈boolean-expression 〉);

CHAPTER 3. CONTROL 85

or, since, as usual, the 〈statement〉 can be a block,

do {

〈statements 〉
} while (〈boolean-expression 〉);

Note the semicolon, ’;’, at the very end. This semicolon is part of the statement, just as
the semicolon at the end of an assignment statement or declaration is part of the statement.
Omitting it is a syntax error. (More generally, every statement in Java ends either with a
semicolon or a right brace, ’}’.)

To execute a do loop, the computer first executes the body of the loop—that is, the statement
or statements inside the loop—and then it evaluates the boolean expression. If the value of
the expression is true, the computer returns to the beginning of the do loop and repeats the
process; if the value is false, it ends the loop and continues with the next part of the program.
Since the condition is not tested until the end of the loop, the body of a do loop is always
executed at least once.

For example, consider the following pseudocode for a game-playing program. The do loop
makes sense here instead of a while loop because with the do loop, you know there will be at
least one game. Also, the test that is used at the end of the loop wouldn’t even make sense at
the beginning:

do {

Play a Game

Ask user if he wants to play another game

Read the user’s response

} while (the user’s response is yes);

Let’s convert this into proper Java code. Since I don’t want to talk about game playing at the
moment, let’s say that we have a class named Checkers, and that the Checkers class contains
a static member subroutine named playGame() that plays one game of checkers against the
user. Then, the pseudocode “Play a game” can be expressed as the subroutine call statement
“Checkers.playGame();”. We need a variable to store the user’s response. The TextIO class
makes it convenient to use a boolean variable to store the answer to a yes/no question. The
input function TextIO.getlnBoolean() allows the user to enter the value as “yes” or “no”
(among other acceptable responses). “Yes” is considered to be true, and “no” is considered to
be false. So, the algorithm can be coded as

boolean wantsToContinue; // True if user wants to play again.

do {

Checkers.playGame();

System.out.print("Do you want to play again? ");

wantsToContinue = TextIO.getlnBoolean();

} while (wantsToContinue == true);

When the value of the boolean variable is set to false, it is a signal that the loop should end.
When a boolean variable is used in this way—as a signal that is set in one part of the program
and tested in another part—it is sometimes called a flag or flag variable (in the sense of a
signal flag).

By the way, a more-than-usually-pedantic programmer would sneer at the test
“while (wantsToContinue == true)”. This test is exactly equivalent to “while
(wantsToContinue)”. Testing whether “wantsToContinue == true” is true amounts to the
same thing as testing whether “wantsToContinue” is true. A little less offensive is an expression

CHAPTER 3. CONTROL 86

of the form “flag == false”, where flag is a boolean variable. The value of “flag == false”
is exactly the same as the value of “!flag”, where ! is the boolean negation operator. So
you can write “while (!flag)” instead of “while (flag == false)”, and you can write
“if (!flag)” instead of “if (flag == false)”.

Although a do..while statement is sometimes more convenient than a while statement,
having two kinds of loops does not make the language more powerful. Any problem that can be
solved using do..while loops can also be solved using only while statements, and vice versa.
In fact, if 〈doSomething〉 represents any block of program code, then

do {

〈doSomething 〉
} while (〈boolean-expression 〉);

has exactly the same effect as

〈doSomething 〉
while (〈boolean-expression 〉) {

〈doSomething 〉
}

Similarly,

while (〈boolean-expression 〉) {

〈doSomething 〉
}

can be replaced by

if (〈boolean-expression 〉) {

do {

〈doSomething 〉
} while (〈boolean-expression 〉);

}

without changing the meaning of the program in any way.

3.3.3 break and continue

The syntax of the while and do..while loops allows you to test the continuation condition at
either the beginning of a loop or at the end. Sometimes, it is more natural to have the test
in the middle of the loop, or to have several tests at different places in the same loop. Java
provides a general method for breaking out of the middle of any loop. It’s called the break

statement, which takes the form

break;

When the computer executes a break statement in a loop, it will immediately jump out
of the loop. It then continues on to whatever follows the loop in the program. Consider for
example:

while (true) { // looks like it will run forever!

System.out.print("Enter a positive number: ");

N = TextIO.getlnInt();

if (N > 0) // the input value is OK, so jump out of loop

break;

System.out.println("Your answer must be > 0.");

}

// continue here after break

CHAPTER 3. CONTROL 87

If the number entered by the user is greater than zero, the break statement will be executed
and the computer will jump out of the loop. Otherwise, the computer will print out “Your
answer must be > 0.” and will jump back to the start of the loop to read another input value.

The first line of this loop, “while (true)” might look a bit strange, but it’s perfectly
legitimate. The condition in a while loop can be any boolean-valued expression. The computer
evaluates this expression and checks whether the value is true or false. The boolean literal
“true” is just a boolean expression that always evaluates to true. So “while (true)” can be
used to write an infinite loop, or one that will be terminated by a break statement.

A break statement terminates the loop that immediately encloses the break statement. It
is possible to have nested loops, where one loop statement is contained inside another. If you
use a break statement inside a nested loop, it will only break out of that loop, not out of
the loop that contains the nested loop. There is something called a labeled break statement
that allows you to specify which loop you want to break. This is not very common, so I will
go over it quickly. Labels work like this: You can put a label in front of any loop. A label
consists of a simple identifier followed by a colon. For example, a while with a label might
look like “mainloop: while...”. Inside this loop you can use the labeled break statement
“break mainloop;” to break out of the labeled loop. For example, here is a code segment that
checks whether two strings, s1 and s2, have a character in common. If a common character is
found, the value of the flag variable nothingInCommon is set to false, and a labeled break is
used to end the processing at that point:

boolean nothingInCommon;

nothingInCommon = true; // Assume s1 and s2 have no chars in common.

int i,j; // Variables for iterating through the chars in s1 and s2.

i = 0;

bigloop: while (i < s1.length()) {

j = 0;

while (j < s2.length()) {

if (s1.charAt(i) == s2.charAt(j)) { // s1 and s2 have a common char.

nothingInCommon = false;

break bigloop; // break out of BOTH loops

}

j++; // Go on to the next char in s2.

}

i++; //Go on to the next char in s1.

}

∗ ∗ ∗

The continue statement is related to break, but less commonly used. A continue state-
ment tells the computer to skip the rest of the current iteration of the loop. However, instead
of jumping out of the loop altogether, it jumps back to the beginning of the loop and continues
with the next iteration (including evaluating the loop’s continuation condition to see whether
any further iterations are required). As with break, when a continue is in a nested loop, it
will continue the loop that directly contains it; a “labeled continue” can be used to continue
the containing loop instead.

break and continue can be used in while loops and do..while loops. They can also be
used in for loops, which are covered in the next section. In Section 3.6, we’ll see that break can
also be used to break out of a switch statement. A break can occur inside an if statement,
but only if the if statement is nested inside a loop or inside a switch statement. In that case,

CHAPTER 3. CONTROL 88

it does not mean to break out of the if. Instead, it breaks out of the loop or switch statement
that contains the if statement. The same consideration applies to continue statements inside
ifs.

3.4 The for Statement

We turn in this section to another type of loop, the for statement. Any for loop is
equivalent to some while loop, so the language doesn’t get any additional power by having for

statements. But for a certain type of problem, a for loop can be easier to construct and easier
to read than the corresponding while loop. It’s quite possible that in real programs, for loops
actually outnumber while loops.

3.4.1 For Loops

The for statement makes a common type of while loop easier to write. Many while loops have
the general form:

〈initialization 〉
while (〈continuation-condition 〉) {

〈statements 〉
〈update 〉

}

For example, consider this example, copied from an example in Section 3.2:

years = 0; // initialize the variable years

while (years < 5) { // condition for continuing loop

interest = principal * rate; //

principal += interest; // do three statements

System.out.println(principal); //

years++; // update the value of the variable, years

}

This loop can be written as the following equivalent for statement:

for (years = 0; years < 5; years++) {

interest = principal * rate;

principal += interest;

System.out.println(principal);

}

The initialization, continuation condition, and updating have all been combined in the first line
of the for loop. This keeps everything involved in the “control” of the loop in one place, which
helps make the loop easier to read and understand. The for loop is executed in exactly the
same way as the original code: The initialization part is executed once, before the loop begins.
The continuation condition is executed before each execution of the loop, and the loop ends
when this condition is false. The update part is executed at the end of each execution of the
loop, just before jumping back to check the condition.

The formal syntax of the for statement is as follows:

for (〈initialization 〉; 〈continuation-condition 〉; 〈update 〉)

〈statement 〉

CHAPTER 3. CONTROL 89

or, using a block statement:

for (〈initialization 〉; 〈continuation-condition 〉; 〈update 〉) {

〈statements 〉
}

The 〈continuation-condition〉 must be a boolean-valued expression. The 〈initialization〉 is usu-
ally a declaration or an assignment statement, but it can be any expression that would be
allowed as a statement in a program. The 〈update〉 can be any simple statement, but is usually
an increment, a decrement, or an assignment statement. Any of the three parts can be empty.
If the continuation condition is empty, it is treated as if it were “true,” so the loop will be
repeated forever or until it ends for some other reason, such as a break statement. (Some
people like to begin an infinite loop with “for (;;)” instead of “while (true)”.) Here’s a
flow control diagram for a for statement:

Do statement

Yes

No

For Loop Flow of Control

Is condition true?

Usually, the initialization part of a for statement assigns a value to some variable, and the
update changes the value of that variable with an assignment statement or with an increment
or decrement operation. The value of the variable is tested in the continuation condition, and
the loop ends when this condition evaluates to false. A variable used in this way is called a
loop control variable . In the example given above, the loop control variable was years.

Certainly, the most common type of for loop is the counting loop, where a loop control
variable takes on all integer values between some minimum and some maximum value. A
counting loop has the form

for (〈variable 〉 = 〈min 〉; 〈variable 〉 <= 〈max 〉; 〈variable 〉++) {

〈statements 〉
}

where 〈min〉 and 〈max 〉 are integer-valued expressions (usually constants). The 〈variable〉 takes
on the values 〈min〉, 〈min〉+1, 〈min〉+2, . . . , 〈max 〉. The value of the loop control variable is
often used in the body of the loop. The for loop at the beginning of this section is a counting

CHAPTER 3. CONTROL 90

loop in which the loop control variable, years, takes on the values 1, 2, 3, 4, 5. Here is an even
simpler example, in which the numbers 1, 2, . . . , 10 are displayed on standard output:

for (N = 1 ; N <= 10 ; N++)

System.out.println(N);

For various reasons, Java programmers like to start counting at 0 instead of 1, and they tend
to use a “<” in the condition, rather than a “<=”. The following variation of the above loop
prints out the ten numbers 0, 1, 2, . . . , 9:

for (N = 0 ; N < 10 ; N++)

System.out.println(N);

Using < instead of <= in the test, or vice versa, is a common source of off-by-one errors in
programs. You should always stop and think, Do I want the final value to be processed or not?

It’s easy to count down from 10 to 1 instead of counting up. Just start with 10, decrement
the loop control variable instead of incrementing it, and continue as long as the variable is
greater than or equal to one.

for (N = 10 ; N >= 1 ; N--)

System.out.println(N);

Now, in fact, the official syntax of a for statement actually allows both the initialization
part and the update part to consist of several expressions, separated by commas. So we can
even count up from 1 to 10 and count down from 10 to 1 at the same time!

for (i=1, j=10; i <= 10; i++, j--) {

System.out.printf("%5d", i); // Output i in a 5-character wide column.

System.out.printf("%5d", j); // Output j in a 5-character column

System.out.println(); // and end the line.

}

As a final introductory example, let’s say that we want to use a for loop that prints out
just the even numbers between 2 and 20, that is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. There are
several ways to do this. Just to show how even a very simple problem can be solved in many
ways, here are four different solutions (three of which would get full credit):

(1) // There are 10 numbers to print.

// Use a for loop to count 1, 2,

// ..., 10. The numbers we want

// to print are 2*1, 2*2, ... 2*10.

for (N = 1; N <= 10; N++) {

System.out.println(2*N);

}

(2) // Use a for loop that counts

// 2, 4, ..., 20 directly by

// adding 2 to N each time through

// the loop.

for (N = 2; N <= 20; N = N + 2) {

System.out.println(N);

}

(3) // Count off all the numbers

// 2, 3, 4, ..., 19, 20, but

CHAPTER 3. CONTROL 91

// only print out the numbers

// that are even.

for (N = 2; N <= 20; N++) {

if (N % 2 == 0) // is N even?

System.out.println(N);

}

(4) // Irritate the professor with

// a solution that follows the

// letter of this silly assignment

// while making fun of it.

for (N = 1; N <= 1; N++) {

System.out.println("2 4 6 8 10 12 14 16 18 20");

}

Perhaps it is worth stressing one more time that a for statement, like any statement except
for a variable declaration, never occurs on its own in a real program. A statement must be
inside the main routine of a program or inside some other subroutine. And that subroutine
must be defined inside a class. I should also remind you that every variable must be declared
before it can be used, and that includes the loop control variable in a for statement. In all
the examples that you have seen so far in this section, the loop control variables should be
declared to be of type int. It is not required that a loop control variable be an integer. Here,
for example, is a for loop in which the variable, ch, is of type char, using the fact that the ++
operator can be applied to characters as well as to numbers:

// Print out the alphabet on one line of output.

char ch; // The loop control variable;

// one of the letters to be printed.

for (ch = ’A’; ch <= ’Z’; ch++)

System.out.print(ch);

System.out.println();

3.4.2 Example: Counting Divisors

Let’s look at a less trivial problem that can be solved with a for loop. If N and D are positive
integers, we say that D is a divisor of N if the remainder when D is divided into N is zero.
(Equivalently, we could say that N is an even multiple of D.) In terms of Java programming, D
is a divisor of N if N % D is zero.

Let’s write a program that inputs a positive integer, N, from the user and computes how
many different divisors N has. The numbers that could possibly be divisors of N are 1, 2, . . . , N.
To compute the number of divisors of N, we can just test each possible divisor of N and count
the ones that actually do divide N evenly. In pseudocode, the algorithm takes the form

Get a positive integer, N, from the user

Let divisorCount = 0

for each number, testDivisor, in the range from 1 to N:

if testDivisor is a divisor of N:

Count it by adding 1 to divisorCount

Output the count

CHAPTER 3. CONTROL 92

This algorithm displays a common programming pattern that is used when some, but not all,
of a sequence of items are to be processed. The general pattern is

for each item in the sequence:

if the item passes the test:

process it

The for loop in our divisor-counting algorithm can be translated into Java code as

for (testDivisor = 1; testDivisor <= N; testDivisor++) {

if (N % testDivisor == 0)

divisorCount++;

}

On a modern computer, this loop can be executed very quickly. It is not impossible to run
it even for the largest legal int value, 2147483647. (If you wanted to run it for even larger
values, you could use variables of type long rather than int.) However, it does take a significant
amount of time for very large numbers. So when I implemented this algorithm, I decided to
output a dot every time the computer has tested one million possible divisors. In the improved
version of the program, there are two types of counting going on. We have to count the number
of divisors and we also have to count the number of possible divisors that have been tested.
So the program needs two counters. When the second counter reaches 1000000, the program
outputs a ’.’ and resets the counter to zero so that we can start counting the next group of one
million. Reverting to pseudocode, the algorithm now looks like

Get a positive integer, N, from the user

Let divisorCount = 0 // Number of divisors found.

Let numberTested = 0 // Number of possible divisors tested

// since the last period was output.

for each number, testDivisor, in the range from 1 to N:

if testDivisor is a divisor of N:

Count it by adding 1 to divisorCount

Add 1 to numberTested

if numberTested is 1000000:

print out a ’.’

Reset numberTested to 0

Output the count

Finally, we can translate the algorithm into a complete Java program:

/**

* This program reads a positive integer from the user.

* It counts how many divisors that number has, and

* then it prints the result.

*/

public class CountDivisors {

public static void main(String[] args) {

int N; // A positive integer entered by the user.

// Divisors of this number will be counted.

int testDivisor; // A number between 1 and N that is a

// possible divisor of N.

int divisorCount; // Number of divisors of N that have been found.

CHAPTER 3. CONTROL 93

int numberTested; // Used to count how many possible divisors

// of N have been tested. When the number

// reaches 1000000, a period is output and

// the value of numberTested is reset to zero.

/* Get a positive integer from the user. */

while (true) {

System.out.print("Enter a positive integer: ");

N = TextIO.getlnInt();

if (N > 0)

break;

System.out.println("That number is not positive. Please try again.");

}

/* Count the divisors, printing a "." after every 1000000 tests. */

divisorCount = 0;

numberTested = 0;

for (testDivisor = 1; testDivisor <= N; testDivisor++) {

if (N % testDivisor == 0)

divisorCount++;

numberTested++;

if (numberTested == 1000000) {

System.out.print(’.’);

numberTested = 0;

}

}

/* Display the result. */

System.out.println();

System.out.println("The number of divisors of " + N

+ " is " + divisorCount);

} // end main()

} // end class CountDivisors

3.4.3 Nested for Loops

Control structures in Java are statements that contain other, simpler statements. In particular,
control structures can contain control structures. You’ve already seen several examples of
if statements inside loops, and one example of a while loop inside another while, but any
combination of one control structure inside another is possible. We say that one structure is
nested inside another. You can even have multiple levels of nesting, such as a while loop
inside an if statement inside another while loop. The syntax of Java does not set a limit on
the number of levels of nesting. As a practical matter, though, it’s difficult to understand a
program that has more than a few levels of nesting.

Nested for loops arise naturally in many algorithms, and it is important to understand how
they work. Let’s look at a couple of examples. First, consider the problem of printing out a
multiplication table like this one:

CHAPTER 3. CONTROL 94

1 2 3 4 5 6 7 8 9 10 11 12

2 4 6 8 10 12 14 16 18 20 22 24

3 6 9 12 15 18 21 24 27 30 33 36

4 8 12 16 20 24 28 32 36 40 44 48

5 10 15 20 25 30 35 40 45 50 55 60

6 12 18 24 30 36 42 48 54 60 66 72

7 14 21 28 35 42 49 56 63 70 77 84

8 16 24 32 40 48 56 64 72 80 88 96

9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120

11 22 33 44 55 66 77 88 99 110 121 132

12 24 36 48 60 72 84 96 108 120 132 144

The data in the table are arranged into 12 rows and 12 columns. The process of printing them
out can be expressed in a pseudocode algorithm as

for each rowNumber = 1, 2, 3, ..., 12:

Print the first twelve multiples of rowNumber on one line

Output a carriage return

The first step in the for loop can itself be expressed as a for loop. We can expand “Print the
first twelve multiples of rowNumber on one line” as:

for N = 1, 2, 3, ..., 12:

Print N * rowNumber

so a refined algorithm for printing the table has one for loop nested inside another:

for each rowNumber = 1, 2, 3, ..., 12:

for N = 1, 2, 3, ..., 12:

Print N * rowNumber

Output a carriage return

We want to print the output in neat columns, with each output number taking up four spaces.
This can be done using formatted output with format specifier %4d. Assuming that rowNumber
and N have been declared to be variables of type int, the algorithm can be expressed in Java as

for (rowNumber = 1; rowNumber <= 12; rowNumber++) {

for (N = 1; N <= 12; N++) {

// print in 4-character columns

System.out.printf("%4d", N * rowNumber); // No carriage return !

}

System.out.println(); // Add a carriage return at end of the line.

}

This section has been weighed down with lots of examples of numerical processing. For our
next example, let’s do some text processing. Consider the problem of finding which of the 26
letters of the alphabet occur in a given string. For example, the letters that occur in “Hello
World” are D, E, H, L, O, R, and W. More specifically, we will write a program that will list all
the letters contained in a string and will also count the number of different letters. The string
will be input by the user. Let’s start with a pseudocode algorithm for the program.

Ask the user to input a string

Read the response into a variable, str

Let count = 0 (for counting the number of different letters)

for each letter of the alphabet:

if the letter occurs in str:

CHAPTER 3. CONTROL 95

Print the letter

Add 1 to count

Output the count

Since we want to process the entire line of text that is entered by the user, we’ll use
TextIO.getln() to read it. The line of the algorithm that reads “for each letter of the al-
phabet” can be expressed as “for (letter=’A’; letter<=’Z’; letter++)”. But the if

statement inside the for loop needs still more thought before we can write the program. How
do we check whether the given letter, letter, occurs in str? One idea is to look at each
character in the string in turn, and check whether that character is equal to letter. We can
get the i-th character of str with the function call str.charAt(i), where i ranges from 0 to
str.length() - 1.

One more difficulty: A letter such as ’A’ can occur in str in either upper or lower case, ’A’
or ’a’. We have to check for both of these. But we can avoid this difficulty by converting str

to upper case before processing it. Then, we only have to check for the upper case letter. We
can now flesh out the algorithm fully:

Ask the user to input a string

Read the response into a variable, str

Convert str to upper case

Let count = 0

for letter = ’A’, ’B’, ..., ’Z’:

for i = 0, 1, ..., str.length()-1:

if letter == str.charAt(i):

Print letter

Add 1 to count

break // jump out of the loop, to avoid counting letter twice

Output the count

Note the use of break in the nested for loop. It is required to avoid printing or counting a given
letter more than once (in the case where it occurs more than once in the string). The break

statement breaks out of the inner for loop, but not the outer for loop. Upon executing the
break, the computer continues the outer loop with the next value of letter. You should try
to figure out exactly what count would be at the end of this program, if the break statement
were omitted. Here is the complete program:

/**

* This program reads a line of text entered by the user.

* It prints a list of the letters that occur in the text,

* and it reports how many different letters were found.

*/

public class ListLetters {

public static void main(String[] args) {

String str; // Line of text entered by the user.

int count; // Number of different letters found in str.

char letter; // A letter of the alphabet.

System.out.println("Please type in a line of text.");

str = TextIO.getln();

str = str.toUpperCase();

count = 0;

CHAPTER 3. CONTROL 96

System.out.println("Your input contains the following letters:");

System.out.println();

System.out.print(" ");

for (letter = ’A’; letter <= ’Z’; letter++) {

int i; // Position of a character in str.

for (i = 0; i < str.length(); i++) {

if (letter == str.charAt(i)) {

System.out.print(letter);

System.out.print(’ ’);

count++;

break;

}

}

}

System.out.println();

System.out.println();

System.out.println("There were " + count + " different letters.");

} // end main()

} // end class ListLetters

In fact, there is actually an easier way to determine whether a given letter occurs in a string,
str. The built-in function str.indexOf(letter) will return -1 if letter does not occur in
the string. It returns a number greater than or equal to zero if it does occur. So, we could
check whether letter occurs in str simply by checking “if (str.indexOf(letter) >= 0)”.
If we used this technique in the above program, we wouldn’t need a nested for loop. This gives
you a preview of how subroutines can be used to deal with complexity.

3.5 The if Statement

The first of the two branching statements in Java is the if statement, which you
have already seen in Section 3.1. It takes the form

if (〈boolean-expression 〉)
〈statement-1 〉

else

〈statement-2 〉

As usual, the statements inside an if statement can be blocks. The if statement represents
a two-way branch. The else part of an if statement—consisting of the word “else” and the
statement that follows it—can be omitted.

3.5.1 The Dangling else Problem

Now, an if statement is, in particular, a statement. This means that either 〈statement-1 〉
or 〈statement-2 〉 in the above if statement can itself be an if statement. A problem arises,
however, if 〈statement-1 〉 is an if statement that has no else part. This special case is
effectively forbidden by the syntax of Java. Suppose, for example, that you type

CHAPTER 3. CONTROL 97

if (x > 0)

if (y > 0)

System.out.println("First case");

else

System.out.println("Second case");

Now, remember that the way you’ve indented this doesn’t mean anything at all to the computer.
You might think that the else part is the second half of your “if (x > 0)” statement, but
the rule that the computer follows attaches the else to “if (y > 0)”, which is closer. That
is, the computer reads your statement as if it were formatted:

if (x > 0)

if (y > 0)

System.out.println("First case");

else

System.out.println("Second case");

You can force the computer to use the other interpretation by enclosing the nested if in a
block:

if (x > 0) {

if (y > 0)

System.out.println("First case");

}

else

System.out.println("Second case");

These two if statements have different meanings: In the case when x <= 0, the first statement
doesn’t print anything, but the second statement prints “Second case”.

3.5.2 Multiway Branching

Much more interesting than this technicality is the case where 〈statement-2 〉, the else part
of the if statement, is itself an if statement. The statement would look like this (perhaps
without the final else part):

if (〈boolean-expression-1 〉)
〈statement-1 〉

else

if (〈boolean-expression-2 〉)
〈statement-2 〉

else

〈statement-3 〉

However, since the computer doesn’t care how a program is laid out on the page, this is almost
always written in the format:

if (〈boolean-expression-1 〉)
〈statement-1 〉

else if (〈boolean-expression-2 〉)
〈statement-2 〉

else

〈statement-3 〉

CHAPTER 3. CONTROL 98

You should think of this as a single statement representing a three-way branch. When the
computer executes this, one and only one of the three statements—〈statement-1 〉, 〈statement-
2 〉, or 〈statement-3 〉—will be executed. The computer starts by evaluating 〈boolean-expression-
1 〉. If it is true, the computer executes 〈statement-1 〉 and then jumps all the way to the end of
the outer if statement, skipping the other two 〈statements〉. If 〈boolean-expression-1 〉 is false,
the computer skips 〈statement-1 〉 and executes the second, nested if statement. To do this,
it tests the value of 〈boolean-expression-2 〉 and uses it to decide between 〈statement-2 〉 and
〈statement-3 〉.

Here is an example that will print out one of three different messages, depending on the
value of a variable named temperature:

if (temperature < 50)

System.out.println("It’s cold.");

else if (temperature < 80)

System.out.println("It’s nice.");

else

System.out.println("It’s hot.");

If temperature is, say, 42, the first test is true. The computer prints out the message “It’s
cold”, and skips the rest—without even evaluating the second condition. For a temperature of
75, the first test is false, so the computer goes on to the second test. This test is true, so
the computer prints “It’s nice” and skips the rest. If the temperature is 173, both of the tests
evaluate to false, so the computer says “It’s hot” (unless its circuits have been fried by the
heat, that is).

You can go on stringing together “else-if’s” to make multi-way branches with any number
of cases:

if (〈test-1 〉)
〈statement-1 〉

else if (〈test-2 〉)
〈statement-2 〉

else if (〈test-3 〉)
〈statement-3 〉

.

. // (more cases)

.

else if (〈test-N 〉)
〈statement-N 〉

else

〈statement-(N+1) 〉

The computer evaluates the tests, which are boolean expressions, one after the other until it
comes to one that is true. It executes the associated statement and skips the rest. If none
of the boolean expressions evaluate to true, then the statement in the else part is executed.
This statement is called a multi-way branch because one and only one of the statements will be
executed. The final else part can be omitted. In that case, if all the boolean expressions are
false, none of the statements are executed. Of course, each of the statements can be a block,
consisting of a number of statements enclosed between { and }. Admittedly, there is lot of
syntax here; as you study and practice, you’ll become comfortable with it. It might be useful
to look at a flow control diagram for the general “if..else if” statement shown above:

CHAPTER 3. CONTROL 99

Yes No

Do statement��
Yes No

Yes

Yes No

Do statement-2

Do statement-N Do statement-(N+1)

3.5.3 If Statement Examples

As an example of using if statements, let’s suppose that x, y, and z are variables of type int,
and that each variable has already been assigned a value. Consider the problem of printing out
the values of the three variables in increasing order. For example, if the values are 42, 17, and
20, then the output should be in the order 17, 20, 42.

One way to approach this is to ask, where does x belong in the list? It comes first if it’s
less than both y and z. It comes last if it’s greater than both y and z. Otherwise, it comes in
the middle. We can express this with a 3-way if statement, but we still have to worry about
the order in which y and z should be printed. In pseudocode,

if (x < y && x < z) {

output x, followed by y and z in their correct order

}

else if (x > y && x > z) {

output y and z in their correct order, followed by x

}

else {

output x in between y and z in their correct order

}

Determining the relative order of y and z requires another if statement, so this becomes

if (x < y && x < z) { // x comes first

if (y < z)

System.out.println(x + " " + y + " " + z);

else

System.out.println(x + " " + z + " " + y);

CHAPTER 3. CONTROL 100

}

else if (x > y && x > z) { // x comes last

if (y < z)

System.out.println(y + " " + z + " " + x);

else

System.out.println(z + " " + y + " " + x);

}

else { // x in the middle

if (y < z)

System.out.println(y + " " + x + " " + z);

else

System.out.println(z + " " + x + " " + y);

}

You might check that this code will work correctly even if some of the values are the same. If
the values of two variables are the same, it doesn’t matter which order you print them in.

Note, by the way, that even though you can say in English “if x is less than y and z,” you
can’t say in Java “if (x < y && z)”. The && operator can only be used between boolean
values, so you have to make separate tests, x<y and x<z, and then combine the two tests with
&&.

There is an alternative approach to this problem that begins by asking, “which order should
x and y be printed in?” Once that’s known, you only have to decide where to stick in z. This
line of thought leads to different Java code:

if (x < y) { // x comes before y

if (z < x) // z comes first

System.out.println(z + " " + x + " " + y);

else if (z > y) // z comes last

System.out.println(x + " " + y + " " + z);

else // z is in the middle

System.out.println(x + " " + z + " " + y);

}

else { // y comes before x

if (z < y) // z comes first

System.out.println(z + " " + y + " " + x);

else if (z > x) // z comes last

System.out.println(y + " " + x + " " + z);

else // z is in the middle

System.out.println(y + " " + z + " " + x);

}

Once again, we see how the same problem can be solved in many different ways. The two
approaches to this problem have not exhausted all the possibilities. For example, you might
start by testing whether x is greater than y. If so, you could swap their values. Once you’ve
done that, you know that x should be printed before y.

∗ ∗ ∗

Finally, let’s write a complete program that uses an if statement in an interesting way. I
want a program that will convert measurements of length from one unit of measurement to
another, such as miles to yards or inches to feet. So far, the problem is extremely under-
specified. Let’s say that the program will only deal with measurements in inches, feet, yards,
and miles. It would be easy to extend it later to deal with other units. The user will type in
a measurement in one of these units, such as “17 feet” or “2.73 miles”. The output will show

CHAPTER 3. CONTROL 101

the length in terms of each of the four units of measure. (This is easier than asking the user
which units to use in the output.) An outline of the process is

Read the user’s input measurement and units of measure

Express the measurement in inches, feet, yards, and miles

Display the four results

The program can read both parts of the user’s input from the same line by using
TextIO.getDouble() to read the numerical measurement and TextIO.getlnWord() to read
the unit of measure. The conversion into different units of measure can be simplified by first
converting the user’s input into inches. From there, the number of inches can easily be con-
verted into feet, yards, and miles. Before converting into inches, we have to test the input to
determine which unit of measure the user has specified:

Let measurement = TextIO.getDouble()

Let units = TextIO.getlnWord()

if the units are inches

Let inches = measurement

else if the units are feet

Let inches = measurement * 12 // 12 inches per foot

else if the units are yards

Let inches = measurement * 36 // 36 inches per yard

else if the units are miles

Let inches = measurement * 12 * 5280 // 5280 feet per mile

else

The units are illegal!

Print an error message and stop processing

Let feet = inches / 12.0

Let yards = inches / 36.0

Let miles = inches / (12.0 * 5280.0)

Display the results

Since units is a String, we can use units.equals("inches") to check whether the spec-
ified unit of measure is “inches”. However, it would be nice to allow the units to be spec-
ified as “inch” or abbreviated to “in”. To allow these three possibilities, we can check if

(units.equals("inches") || units.equals("inch") || units.equals("in")). It would
also be nice to allow upper case letters, as in “Inches” or “IN”. We can do this by converting
units to lower case before testing it or by substituting the function units.equalsIgnoreCase

for units.equals.
In my final program, I decided to make things more interesting by allowing the user to

repeat the process of entering a measurement and seeing the results of the conversion for each
measurement. The program will end only when the user inputs 0. To program that, I just had
to wrap the above algorithm inside a while loop, and make sure that the loop ends when the
user inputs a 0. Here’s the complete program:

/**

* This program will convert measurements expressed in inches,

* feet, yards, or miles into each of the possible units of

* measure. The measurement is input by the user, followed by

* the unit of measure. For example: "17 feet", "1 inch", or

* "2.73 mi". Abbreviations in, ft, yd, and mi are accepted.

* The program will continue to read and convert measurements

* until the user enters an input of 0.

*/

CHAPTER 3. CONTROL 102

public class LengthConverter {

public static void main(String[] args) {

double measurement; // Numerical measurement, input by user.

String units; // The unit of measure for the input, also

// specified by the user.

double inches, feet, yards, miles; // Measurement expressed in

// each possible unit of

// measure.

System.out.println("Enter measurements in inches, feet, yards, or miles.");

System.out.println("For example: 1 inch 17 feet 2.73 miles");

System.out.println("You can use abbreviations: in ft yd mi");

System.out.println("I will convert your input into the other units");

System.out.println("of measure.");

System.out.println();

while (true) {

/* Get the user’s input, and convert units to lower case. */

System.out.print("Enter your measurement, or 0 to end: ");

measurement = TextIO.getDouble();

if (measurement == 0)

break; // Terminate the while loop.

units = TextIO.getlnWord();

units = units.toLowerCase(); // convert units to lower case

/* Convert the input measurement to inches. */

if (units.equals("inch") || units.equals("inches")

|| units.equals("in")) {

inches = measurement;

}

else if (units.equals("foot") || units.equals("feet")

|| units.equals("ft")) {

inches = measurement * 12;

}

else if (units.equals("yard") || units.equals("yards")

|| units.equals("yd")) {

inches = measurement * 36;

}

else if (units.equals("mile") || units.equals("miles")

|| units.equals("mi")) {

inches = measurement * 12 * 5280;

}

else {

System.out.println("Sorry, but I don’t understand \""

+ units + "\".");

continue; // back to start of while loop

}

/* Convert measurement in inches to feet, yards, and miles. */

feet = inches / 12;

yards = inches / 36;

CHAPTER 3. CONTROL 103

miles = inches / (12*5280);

/* Output measurement in terms of each unit of measure. */

System.out.println();

System.out.println("That’s equivalent to:");

System.out.printf("%12.5g", inches);

System.out.println(" inches");

System.out.printf("%12.5g", feet);

System.out.println(" feet");

System.out.printf("%12.5g", yards);

System.out.println(" yards");

System.out.printf("%12.5g", miles);

System.out.println(" miles");

System.out.println();

} // end while

System.out.println();

System.out.println("OK! Bye for now.");

} // end main()

} // end class LengthConverter

(Note that this program uses formatted output with the “g” format specifier. In this pro-
gram, we have no control over how large or how small the numbers might be. It could easily
make sense for the user to enter very large or very small measurements. The “g” format will
print a real number in exponential form if it is very large or very small, and in the usual decimal
form otherwise. Remember that in the format specification %12.5g, the 5 is the total number
of significant digits that are to be printed, so we will always get the same number of significant
digits in the output, no matter what the size of the number. If we had used an “f” format
specifier such as %12.5f, the output would be in decimal form with 5 digits after the decimal
point. This would print the number 0.000000000745482 as 0.00000, with no significant digits
at all! With the “g” format specifier, the output would be 7.4549e-10.)

3.5.4 The Empty Statement

As a final note in this section, I will mention one more type of statement in Java: the empty
statement . This is a statement that consists simply of a semicolon and which tells the computer
to do nothing. The existence of the empty statement makes the following legal, even though
you would not ordinarily see a semicolon after a } :

if (x < 0) {

x = -x;

};

The semicolon is legal after the }, but the computer considers it to be an empty statement,
not part of the if statement. Occasionally, you might find yourself using the empty statement
when what you mean is, in fact, “do nothing.” For example, the rather contrived if statement

if (done)

; // Empty statement

else

System.out.println("Not done yet.");

CHAPTER 3. CONTROL 104

does nothing when the boolean variable done is true, and prints out “Not done yet” when
it is false. You can’t just leave out the semicolon in this example, since Java syntax requires
an actual statement between the if and the else. I prefer, though, to use an empty block,
consisting of { and } with nothing between, for such cases.

Occasionally, stray empty statements can cause annoying, hard-to-find errors in a program.
For example, the following program segment prints out “Hello” just once, not ten times:

for (i = 0; i < 10; i++);

System.out.println("Hello");

Why? Because the “;” at the end of the first line is a statement, and it is this empty statement
that is executed ten times. The System.out.println statement is not really inside the for

statement at all, so it is executed just once, after the for loop has completed. The for loop
just does nothing, ten times!

3.6 The switch Statement

The second branching statement in Java is the switch statement, which is introduced
in this section. The switch statement is used far less often than the if statement, but it is
sometimes useful for expressing a certain type of multiway branch.

3.6.1 The Basic switch Statement

A switch statement allows you to test the value of an expression and, depending on that value,
to jump directly to some location within the switch statement. Only expressions of certain
types can be used. The value of the expression can be one of the primitive integer types int,
short, or byte. It can be the primitive char type. It can be String. Or it can be an enum type
(see Subsection 2.3.4 for an introduction to enums). In particular, note that the expression
cannot be a double or float value.

The positions within a switch statement to which it can jump are marked with case labels
that take the form: “case 〈constant〉:”. The 〈constant〉 here is a literal of the same type as the
expression in the switch. A case label marks the position the computer jumps to when the
expression evaluates to the given 〈constant〉 value. As the final case in a switch statement you
can, optionally, use the label “default:”, which provides a default jump point that is used when
the value of the expression is not listed in any case label.

A switch statement, as it is most often used, has the form:

switch (〈expression 〉) {

case 〈constant-1 〉:
〈statements-1 〉
break;

case 〈constant-2 〉:
〈statements-2 〉
break;

.

. // (more cases)

.

case 〈constant-N 〉:
〈statements-N 〉
break;

default: // optional default case

CHAPTER 3. CONTROL 105

〈statements-(N+1) 〉
} // end of switch statement

This has exactly the same effect as the following multiway if statement, but the switch

statement can be more efficient because the computer can evaluate one expression and jump
directly to the correct case, whereas in the if statement, the computer must evaluate up to N

expressions before it knows which set of statements to execute:

if (〈expression 〉 == 〈constant-1 〉) { // but use .equals for String!!

〈statements-2 〉
}

else if (〈expression 〉 == 〈constant-2 〉) {

〈statements-3 〉
}

else

.

.

.

else if (〈expression 〉 == 〈constant-N 〉) {

〈statements-N 〉
}

else {

〈statements-(N+1) 〉
}

The break statements in the switch are technically optional. The effect of a break is to
make the computer jump past the end of the switch statement, skipping over all the remaining
cases. If you leave out the break statement, the computer will just forge ahead after completing
one case and will execute the statements associated with the next case label. This is rarely
what you want, but it is legal. (I will note here—although you won’t understand it until you
get to the next chapter—that inside a subroutine, the break statement is sometimes replaced
by a return statement, which terminates the subroutine as well as the switch.)

Note that you can leave out one of the groups of statements entirely (including the break).
You then have two case labels in a row, containing two different constants. This just means
that the computer will jump to the same place and perform the same action for each of the two
constants.

Here is an example of a switch statement. This is not a useful example, but it should be
easy for you to follow. Note, by the way, that the constants in the case labels don’t have to be
in any particular order, but they must all be different:

switch (N) { // (Assume N is an integer variable.)

case 1:

System.out.println("The number is 1.");

break;

case 2:

case 4:

case 8:

System.out.println("The number is 2, 4, or 8.");

System.out.println("(That’s a power of 2!)");

break;

case 3:

case 6:

case 9:

CHAPTER 3. CONTROL 106

System.out.println("The number is 3, 6, or 9.");

System.out.println("(That’s a multiple of 3!)");

break;

case 5:

System.out.println("The number is 5.");

break;

default:

System.out.println("The number is 7 or is outside the range 1 to 9.");

}

The switch statement is pretty primitive as control structures go, and it’s easy to make mis-
takes when you use it. Java takes all its control structures directly from the older programming
languages C and C++. The switch statement is certainly one place where the designers of Java
should have introduced some improvements.

3.6.2 Menus and switch Statements

One application of switch statements is in processing menus. A menu is a list of options.
The user selects one of the options. The computer has to respond to each possible choice in a
different way. If the options are numbered 1, 2, . . . , then the number of the chosen option can
be used in a switch statement to select the proper response.

In a TextIO-based program, the menu can be presented as a numbered list of options, and
the user can choose an option by typing in its number. Here is an example that could be used
in a variation of the LengthConverter example from the previous section:

int optionNumber; // Option number from menu, selected by user.

double measurement; // A numerical measurement, input by the user.

// The unit of measurement depends on which

// option the user has selected.

double inches; // The same measurement, converted into inches.

/* Display menu and get user’s selected option number. */

System.out.println("What unit of measurement does your input use?");

System.out.println();

System.out.println(" 1. inches");

System.out.println(" 2. feet");

System.out.println(" 3. yards");

System.out.println(" 4. miles");

System.out.println();

System.out.println("Enter the number of your choice: ");

optionNumber = TextIO.getlnInt();

/* Read user’s measurement and convert to inches. */

switch (optionNumber) {

case 1:

System.out.println("Enter the number of inches: ");

measurement = TextIO.getlnDouble();

inches = measurement;

break;

case 2:

System.out.println("Enter the number of feet: ");

measurement = TextIO.getlnDouble();

inches = measurement * 12;

CHAPTER 3. CONTROL 107

break;

case 3:

System.out.println("Enter the number of yards: ");

measurement = TextIO.getlnDouble();

inches = measurement * 36;

break;

case 4:

System.out.println("Enter the number of miles: ");

measurement = TextIO.getlnDouble();

inches = measurement * 12 * 5280;

break;

default:

System.out.println("Error! Illegal option number! I quit!");

System.exit(1);

} // end switch

/* Now go on to convert inches to feet, yards, and miles... */

This example could instead be written using a String in the switch statement:

String units; // Unit of measurement, entered by user.

double measurement; // A numerical measurement, input by the user.

double inches; // The same measurement, converted into inches.

/* Read the user’s unit of measurement. */

System.out.println("What unit of measurement does your input use?");

System.out.print("Legal responses: inches, feet, yards, or miles : ");

units = TextIO.getln().toLowerCase();

/* Read user’s measurement and convert to inches. */

System.out.print("Enter the number of " + units + ": ");

measurement = TextIO.getlnDouble();

switch (units) {

case "inches":

inches = measurement;

break;

case "feet":

inches = measurement * 12;

break;

case "yards":

inches = measurement * 36;

break;

case "miles":

inches = measurement * 12 * 5280;

break;

default:

System.out.println("Wait a minute! Illegal unit of measure! I quit!");

System.exit(1);

} // end switch

CHAPTER 3. CONTROL 108

3.6.3 Enums in switch Statements

The type of the expression in a switch can be an enumerated type. In that case, the constants
in the case labels must be values from the enumerated type. For example, suppose that the
type of the expression is the enumerated type Season defined by

enum Season { SPRING, SUMMER, FALL, WINTER }

and that the expression in a switch statement is an expression of type Season. The constants
in the case label must be chosen from among the values Season.SPRING, Season.SUMMER,
Season.FALL, or Season.WINTER. However, there is a quirk in the syntax: when an enum
constant is used in a case label, only the simple name, such as “SPRING” is used, not the full
name, such as “Season.SPRING”. Of course, the computer already knows that the value in the
case label must belong to the enumerated type, since it can tell that from the type of expression
used, so there is really no need to specify the type name in the constant. For example, assuming
that currentSeason is a variable of type Season, then we could have the switch statement:

switch (currentSeason) {

case WINTER: // (NOT Season.WINTER !)

System.out.println("December, January, February");

break;

case SPRING:

System.out.println("March, April, May");

break;

case SUMMER:

System.out.println("June, July, August");

break;

case FALL:

System.out.println("September, October, November");

break;

}

3.6.4 Definite Assignment and switch Statements

As a somewhat more realistic example, the following switch statement makes a ran-
dom choice among three possible alternatives. Recall that the value of the expression
(int)(3*Math.random()) is one of the integers 0, 1, or 2, selected at random with equal
probability, so the switch statement below will assign one of the values "Rock", "Paper",
"Scissors" to computerMove, with probability 1/3 for each case:

switch ((int)(3*Math.random())) {

case 0:

computerMove = "Rock";

break;

case 1:

computerMove = "Paper";

break;

case 2:

computerMove = "Scissors";

break;

}

Now, this switch statement is perfectly OK, but suppose that we use it in the following code
segment:

CHAPTER 3. CONTROL 109

String computerMove;

switch ((int)(3*Math.random())) {

case 0:

computerMove = "Rock";

break;

case 1:

computerMove = "Paper";

break;

case 2:

computerMove = "Scissors";

break;

}

System.out.println("The computer’s move is " + computerMove); // ERROR!

Now there is a subtle error on the last line! The problem here is due to definite assignment,
the idea that the Java compiler must be able to determine that a variable has definitely been
assigned a value before its value is used. Definite assignment was introduced in Subsection 3.1.4.
In this example, it’s true that the three cases in the switch cover all the possibilities, but the
compiler is not smart enough to figure that out; it just sees that there is an integer-valued
expression in the switch but not all possible integer values are covered by the given cases.

A simple solution is to replace the final case in the switch statement with default. With
a default case, all possible values of the expression in the switch are certainly covered, and
the compiler knows that computerMove is definitely assigned a value:

String computerMove;

switch ((int)(3*Math.random())) {

case 0:

computerMove = "Rock";

break;

case 1:

computerMove = "Paper";

break;

default:

computerMove = "Scissors";

break;

}

System.out.println("The computer’s move is " + computerMove); // OK!

3.7 Introduction to Exceptions and try..catch

In addition to the control structures that determine the normal flow of control in a
program, Java has a way to deal with “exceptional” cases that throw the flow of control off its
normal track. When an error occurs during the execution of a program, the default behavior
is to terminate the program and to print an error message. However, Java makes it possible to
“catch” such errors and program a response different from simply letting the program crash.
This is done with the try..catch statement. In this section, we will take a preliminary and
incomplete look the try..catch statement, leaving out a lot of the rather complex syntax of
this statement. Error handling is a complex topic, which we will return to in Chapter 8, and
we will cover the full syntax of try..catch at that time.

CHAPTER 3. CONTROL 110

3.7.1 Exceptions

The term exception is used to refer to the type of error that one might want to handle with
a try..catch. An exception is an exception to the normal flow of control in the program.
The term is used in preference to “error” because in some cases, an exception might not be
considered to be an error at all. You can sometimes think of an exception as just another way
to organize a program.

Exceptions in Java are represented as objects of type Exception. Actual exceptions are
usually defined by subclasses of Exception. Different subclasses represent different types of
exceptions. We will look at only two types of exception in this section: NumberFormatException
and IllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a string
into a number. Such conversions are done by the functions Integer.parseInt

and Double.parseDouble. (See Subsection 2.5.7.) Consider the function call
Integer.parseInt(str) where str is a variable of type String. If the value of str is the
string "42", then the function call will correctly convert the string into the int 42. However,
if the value of str is, say, "fred", the function call will fail because "fred" is not a legal
string representation of an int value. In this case, an exception of type NumberFormatException
occurs. If nothing is done to handle the exception, the program will crash.

An IllegalArgumentException can occur when an illegal value is passed as a parameter to a
subroutine. For example, if a subroutine requires that a parameter be greater than or equal to
zero, an IllegalArgumentException might occur when a negative value is passed to the subroutine.
How to respond to the illegal value is up to the person who wrote the subroutine, so we
can’t simply say that every illegal parameter value will result in an IllegalArgumentException.
However, it is a common response.

3.7.2 try..catch

When an exception occurs, we say that the exception is “thrown”. For example, we say that
Integer.parseInt(str) throws an exception of type NumberFormatException when the value
of str is illegal. When an exception is thrown, it is possible to “catch” the exception and
prevent it from crashing the program. This is done with a try..catch statement. In simplified
form, the syntax for a try..catch can be:

try {

〈statements-1 〉
}

catch (〈exception-class-name 〉 〈variable-name 〉) {

〈statements-2 〉
}

The 〈exception-class-name〉 could be NumberFormatException, IllegalArgumentException, or
some other exception class. When the computer executes this try..catch statement, it exe-
cutes the statements in the try part. If no exception occurs during the execution of 〈statements-
1 〉, then the computer just skips over the catch part and proceeds with the rest of the pro-
gram. However, if an exception of type 〈exception-class-name〉 occurs during the execution of
〈statements-1 〉, the computer immediately jumps from the point where the exception occurs to
the catch part and executes 〈statements-2 〉, skipping any remaining statements in 〈statements-
1 〉. Note that only one type of exception is caught; if some other type of exception occurs during
the execution of 〈statements-1 〉, it will crash the program as usual.

CHAPTER 3. CONTROL 111

During the execution of 〈statements-2 〉, the 〈variable-name〉 represents the exception object,
so that you can, for example, print it out. The exception object contains information about
the cause of the exception. This includes an error message, which will be displayed if you print
out the exception object.

After the end of the catch part, the computer proceeds with the rest of the program; the
exception has been caught and handled and does not crash the program.

By the way, note that the braces, { and }, are part of the syntax of the try..catch

statement. They are required even if there is only one statement between the braces. This is
different from the other statements we have seen, where the braces around a single statement
are optional.

As an example, suppose that str is a variable of type String whose value might or might
not represent a legal real number. Then we could say:

double x;

try {

x = Double.parseDouble(str);

System.out.println("The number is " + x);

}

catch (NumberFormatException e) {

System.out.println("Not a legal number.");

x = Double.NaN;

}

If an error is thrown by the call to Double.parseDouble(str), then the output statement in
the try part is skipped, and the statement in the catch part is executed. (In this example,
I set x to be the value Double.NaN when an exception occurs. Double.NaN is the special
“not-a-number” value for type double.)

It’s not always a good idea to catch exceptions and continue with the program. Often that
can just lead to an even bigger mess later on, and it might be better just to let the exception
crash the program at the point where it occurs. However, sometimes it’s possible to recover
from an error.

Suppose, for example, we want a program that will find the average of a sequence of real
numbers entered by the user, and we want the user to signal the end of the sequence by entering
a blank line. (This is similar to the sample program ComputeAverage.java from Section 3.3, but
in that program the user entered a zero to signal end-of-input.) If we use TextIO.getlnInt()
to read the user’s input, we will have no way of detecting the blank line, since that function
simply skips over blank lines. A solution is to use TextIO.getln() to read the user’s input.
This allows us to detect a blank input line, and we can convert non-blank inputs to numbers
using Double.parseDouble. And we can use try..catch to avoid crashing the program when
the user’s input is not a legal number. Here’s the program:

public class ComputeAverage2 {

public static void main(String[] args) {

String str; // The user’s input.

double number; // The input converted into a number.

double total; // The total of all numbers entered.

double avg; // The average of the numbers.

int count; // The number of numbers entered.

total = 0;

count = 0;

System.out.println("Enter your numbers, press return to end.");

http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ComputeAverage.java

CHAPTER 3. CONTROL 112

while (true) {

System.out.print("? ");

str = TextIO.getln();

if (str.equals("")) {

break; // Exit the loop, since the input line was blank.

}

try {

number = Double.parseDouble(str);

// If an error occurs, the next 2 lines are skipped!

total = total + number;

count = count + 1;

}

catch (NumberFormatException e) {

System.out.println("Not a legal number! Try again.");

}

}

avg = total/count;

System.out.printf("The average of %d numbers is %1.6g%n", count, avg);

}

}

3.7.3 Exceptions in TextIO

When TextIO reads a numeric value from the user, it makes sure that the user’s response is
legal, using a technique similar to the while loop and try..catch in the previous example.
However, TextIO can read data from other sources besides the user. (See Subsection 2.4.4.)
When it is reading from a file, there is no reasonable way for TextIO to recover from an illegal
value in the input, so it responds by throwing an exception. To keep things simple, TextIO only
throws exceptions of type IllegalArgumentException, no matter what type of error it encounters.
For example, an exception will occur if an attempt is made to read from a file after all the data
in the file has already been read. In TextIO, the exception is of type IllegalArgumentException. If
you have a better response to file errors than to let the program crash, you can use a try..catch
to catch exceptions of type IllegalArgumentException.

As an example, we will look at yet another number-averaging program. In this case, we will
read the numbers from a file. Assume that the file contains nothing but real numbers, and we
want a program that will read the numbers and find their sum and their average. Since it is
unknown how many numbers are in the file, there is the question of when to stop reading. One
approach is simply to try to keep reading indefinitely. When the end of the file is reached, an
exception occurs. This exception is not really an error—it’s just a way of detecting the end of
the data, so we can catch the exception and finish up the program. We can read the data in a
while (true) loop and break out of the loop when an exception occurs. This is an example of
the somewhat unusual technique of using an exception as part of the expected flow of control
in a program.

To read from the file, we need to know the file’s name. To make the program more general,
we can let the user enter the file name, instead of hard-coding a fixed file name in the program.
However, it is possible that the user will enter the name of a file that does not exist. When
we use TextIO.readfile to open a file that does not exist, an exception of type IllegalArgu-
mentException occurs. We can catch this exception and ask the user to enter a different file
name. Here is a complete program that uses all these ideas:

CHAPTER 3. CONTROL 113

/**

* This program reads numbers from a file. It computes the sum and

* the average of the numbers that it reads. The file should contain

* nothing but numbers of type double; if this is not the case, the

* output will be the sum and average of however many numbers were

* successfully read from the file. The name of the file will be

* input by the user.

*/

public class AverageNumbersFromFile {

public static void main(String[] args) {

while (true) {

String fileName; // The name of the file, to be input by the user.

System.out.print("Enter the name of the file: ");

fileName = TextIO.getln();

try {

TextIO.readFile(fileName); // Try to open the file for input.

break; // If that succeeds, break out of the loop.

}

catch (IllegalArgumentException e) {

System.out.println("Can’t read from the file \"" + fileName + "\".");

System.out.println("Please try again.\n");

}

}

/* At this point, TextIO is reading from the file. */

double number; // A number read from the data file.

double sum; // The sum of all the numbers read so far.

int count; // The number of numbers that were read.

sum = 0;

count = 0;

try {

while (true) { // Loop ends when an exception occurs.

number = TextIO.getDouble();

count++; // This is skipped when the exception occurs

sum += number;

}

}

catch (IllegalArgumentException e) {

// We expect this to occur when the end-of-file is encountered.

// We don’t consider this to be an error, so there is nothing to do

// in this catch clause. Just proceed with the rest of the program.

}

// At this point, we’ve read the entire file.

System.out.println();

System.out.println("Number of data values read: " + count);

System.out.println("The sum of the data values: " + sum);

if (count == 0)

System.out.println("Can’t compute an average of 0 values.");

else

System.out.println("The average of the values: " + (sum/count));

CHAPTER 3. CONTROL 114

}

}

3.8 Introduction to Arrays

In previous sections of this chapter, we have already covered all of Java’s control struc-
tures. But before moving on to the next chapter, we will take preliminary looks at two additional
topics that are at least somewhat related to control structures.

This section is an introduction to arrays. Arrays are a basic and very commonly used
data structure, and array processing is often an exercise in using control structures. The next
section will introduce computer graphics and will allow you to apply what you know about
control structures in another context.

3.8.1 Creating and Using Arrays

A data structure consists of a number of data items chunked together so that they can be
treated as a unit. An array is a data structure in which the items are arranged as a numbered
sequence, so that each individual item can be referred to by its position number. In Java—
but not in other programming languages—all the items must be of the same type, and the
numbering always starts at zero. You will need to learn several new terms to talk about arrays:
The number of items in an array is called the length of the array. The type of the individual
items in an array is called the base type of the array. And the position number of an item in
an array is called the index of that item.

Suppose that you want to write a program that will process the names of, say, one thousand
people. You will need a way to deal with all that data. Before you knew about arrays, you might
have thought that the program would need a thousand variables to hold the thousand names,
and if you wanted to print out all the names, you would need a thousand print statements.
Clearly, that would be ridiculous! In reality, you can put all the names into an array. The array
is a represented by a single variable, but it holds the entire list of names. The length of the
array would be 1000, since there are 1000 individual names. The base type of the array would
be String since the items in the array are strings. The first name would be at index 0 in the
array, the second name at index 1, and so on, up to the thousandth name at index 999.

The base type of an array can be any Java type, but for now, we will stick to arrays whose
base type is String or one of the eight primitive types. If the base type of an array is int, it
is referred to as an “array of ints.” An array with base type String is referred to as an “array
of Strings.” However, an array is not, properly speaking, a list of integers or strings or other
values. It is better thought of as a list of variables of type int, or a list of variables of type
String, or of some other type. As always, there is some potential for confusion between the two
uses of a variable: as a name for a memory location and as a name for the value stored in that
memory location. Each position in an array acts as a variable. Each position can hold a value
of a specified type (the base type of the array), just as a variable can hold a value. The value
can be changed at any time, just as the value of a variable can be changed. The items in an
array—really, the individual variables that make up the array—are more often referred to as
the elements of the array.

As I mentioned above, when you use an array in a program, you can use a variable to refer
to array as a whole. But you often need to refer to the individual elements of the array. The

CHAPTER 3. CONTROL 115

name for an element of an array is based on the name for the array and the index number of
the element. The syntax for referring to an element looks, for example, like this: namelist[7].
Here, namelist is the variable that names the array as a whole, and namelist[7] refers to
the element at index 7 in that array. That is, to refer to an element of an array, you use the
array name, followed by element index enclosed in square brackets. An element name of this
form can be used like any other variable: You can assign a value to it, print it out, use it in an
expression.

An array also contains a kind of variable representing its length. For example, you can refer
to the length of the array namelist as namelist.length. However, you cannot assign a value
to namelist.length, since the length of an array cannot be changed.

Before you can use a variable to refer to an array, that variable must be declared, and it
must have a type. For an array of Strings, for example, the type for the array variable would
be String[], and for an array of ints, it would be int[]. In general, an array type consists of the
base type of the array followed by a pair of empty square brackets. Array types can be used to
declare variables; for example,

String[] namelist;

int[] A;

double[] prices;

and variables declared in this way can refer to arrays. However, declaring a variable does not
make the actual array. Like all variables, an array variable has to be assigned a value before
it can be used. In this case, the value is an array. Arrays have to be created using a special
syntax. (The syntax is related to the fact that arrays in Java are actually objects, but that
doesn’t need to concern us here.) Arrays are created with an operator named new . Here are
some examples:

namelist = new String[1000];

A = new int[5];

prices = new double[100];

The general syntax is

〈array-variable 〉 = new 〈base-type 〉[〈array-length 〉];

The length of the array can be given as either an integer or an integer-valued expression. For
example, after the assignment statement “A = new int[5];”, A is an array containing the five
integer elements A[0], A[1], A[2], A[3], and A[4]. Also, A.length would have the value 5.
It’s useful to have a picture in mind:

(5)

0

0

0

0

00

A.length:

A[0]:

A[1]:

A[2]:

A[3]:

A[4]:

The statement

A = new int[5];

creates an array

that holds �ve

elements of type

int. A is a name

for the whole array.

A:
The array contains �ve

elements, which are

referred to as

A[0], A[1], A[2], A[3], A[4].

Each element is a variable

of type int. The array also

contains A.length, whose

value cannot be changed.

When you create an array of int, each element of the array is automatically initialized to
zero. Any array of numbers is filled with zeros when it is created. An array of boolean is filled
with the value false. And an array of char is filled with the character that has Unicode code

CHAPTER 3. CONTROL 116

number zero. (For an array of String, the initial value is null, a special value used for objects
that we won’t encounter officially until Section 5.1.)

3.8.2 Arrays and For Loops

A lot of the real power of arrays comes from the fact that the index of an element can be given
by an integer variable or even an integer-valued expression. For example, if list is an array
and i is a variable of type int, then you can use list[i] and even list[2*i+1] as variable
names. The meaning of list[i] depends on the value of i. This becomes especially useful
when we want to process all the elements of an array, since that can be done with a for loop.
For example, to print out all the items in an array, list, we can just write

int i; // the array index

for (i = 0; i < list.length; i++) {

System.out.println(list[i]);

}

The first time through the loop, i is 0, and list[i] refers to list[0]. So, it is the value
stored in the variable list[0] that is printed. The second time through the loop, i is 1, and
the value stored in list[1] is printed. The loop ends after printing the value of list[4],
when i becomes equal to 5 and the continuation condition “i < list.length” is no longer
true. This is a typical example of using a loop to process an array.

Let’s look at a few more examples. Suppose that A is an array of double, and we want to
find the average of all the elements of the array. We can use a for loop to add up the numbers,
and then divide by the length of the array to get the average:

double total; // The sum of the numbers in the array.

double average; // The average of the numbers.

int i; // The array index.

total = 0;

for (i = 0; i < A.length; i++) {

total = total + A[i]; // Add element number i to the total.

}

average = total / A.length; // A.length is the number of items

Another typical problem is to find the largest number in the array A. The strategy is to
go through the array, keeping track of the largest number found so far. We’ll store the largest
number found so far in a variable called max. As we look through the array, whenever we find
a number larger than the current value of max, we change the value of max to that larger value.
After the whole array has been processed, max is the largest item in the array overall. The only
question is, what should the original value of max be? One possibility is to start with max equal
to A[0], and then to look through the rest of the array, starting from A[1], for larger items:

double max; // The largest number seen so far.

max = A[0]; // At first, the largest number seen is A[0].

int i;

for (i = 1; i < A.length; i++) {

if (A[i] > max) {

max = A[i];

}

}

// at this point, max is the largest item in A

CHAPTER 3. CONTROL 117

Sometimes, you only want to process some elements of the array. In that case, you can use
an if statement inside the for loop to decide whether or not to process a given element. Let’s
look at the problem of averaging the elements of an array, but this time, suppose that we only
want to average the non-zero elements. In this case, the number of items that we add up can
be less than the length of the array, so we will need to keep a count of the number of items
added to the sum:

double total; // The sum of the non-zero numbers in the array.

int count; // The number of non-zero numbers.

double average; // The average of the non-zero numbers.

int i;

total = 0;

count = 0;

for (i = 0; i < A.length; i++) {

if (A[i] != 0) {

total = total + A[i]; // Add element to the total

count = count + 1; // and count it.

}

}

if (count == 0) {

System.out.println("There were no non-zero elements.");

}

else {

average = total / count; // Divide by number of items

System.out.printf("Average of %d elements is %1.5g%n",

count, average);

}

3.8.3 Random Access

So far, my examples of array processing have used sequential access. That is, the elements of
the array were processed one after the other in the sequence in which they occur in the array.
But one of the big advantages of arrays is that they allow random access. That is, every
element of the array is equally accessible at any given time.

As an example, let’s look at a well-known problem called the birthday problem: Suppose
that there are N people in a room. What’s the chance that there are two people in the room
who have the same birthday? (That is, they were born on the same day in the same month,
but not necessarily in the same year.) Most people severely underestimate the probability. We
will actually look at a different version of the question: Suppose you choose people at random
and check their birthdays. How many people will you check before you find one who has the
same birthday as someone you’ve already checked? Of course, the answer in a particular case
depends on random factors, but we can simulate the experiment with a computer program and
run the program several times to get an idea of how many people need to be checked on average.

To simulate the experiment, we need to keep track of each birthday that we find. There are
365 different possible birthdays. (We’ll ignore leap years.) For each possible birthday, we need
to keep track of whether or not we have already found a person who has that birthday. The
answer to this question is a boolean value, true or false. To hold the data for all 365 possible
birthdays, we can use an array of 365 boolean values:

boolean[] used;

used = new boolean[365];

CHAPTER 3. CONTROL 118

For this problem, the days of the year are numbered from 0 to 364. The value of used[i] is
true if someone has been selected whose birthday is day number i. Initially, all the values in the
array are false. (Remember that this is done automatically when the array is created.) When
we select someone whose birthday is day number i, we first check whether used[i] is true.
If it is true, then this is the second person with that birthday. We are done. On the other
hand, if used[i] is false, we set used[i] to be true to record the fact that we’ve encountered
someone with that birthday, and we go on to the next person. Here is a program that carries
out the simulated experiment (of course, in the program, there are no simulated people, only
simulated birthdays):

/**

* Simulate choosing people at random and checking the day of the year they

* were born on. If the birthday is the same as one that was seen previously,

* stop, and output the number of people who were checked.

*/

public class BirthdayProblem {

public static void main(String[] args) {

boolean[] used; // For recording the possible birthdays

// that have been seen so far. A value

// of true in used[i] means that a person

// whose birthday is the i-th day of the

// year has been found.

int count; // The number of people who have been checked.

used = new boolean[365]; // Initially, all entries are false.

count = 0;

while (true) {

// Select a birthday at random, from 0 to 364.

// If the birthday has already been used, quit.

// Otherwise, record the birthday as used.

int birthday; // The selected birthday.

birthday = (int)(Math.random()*365);

count++;

System.out.printf("Person %d has birthday number %d", count, birthday);

System.out.println();

if (used[birthday]) {

// This day was found before; it’s a duplicate. We are done.

break;

}

used[birthday] = true;

} // end while

System.out.println();

System.out.println("A duplicate birthday was found after "

+ count + " tries.");

}

} // end class BirthdayProblem

CHAPTER 3. CONTROL 119

You should study the program to understand how it works and how it uses the array. Also, try
it out! You will probably find that a duplicate birthday tends to occur sooner than you expect.

3.8.4 Partially Full Arrays

Consider an application where the number of items that we want to store in an array changes
as the program runs. Since the size of the array can’t be changed, a separate counter variable
must be used to keep track of how many spaces in the array are in use. (Of course, every space
in the array has to contain something; the question is, how many spaces contain useful or valid
items?)

Consider, for example, a program that reads positive integers entered by the user and stores
them for later processing. The program stops reading when the user inputs a number that is
less than or equal to zero. The input numbers can be kept in an array, numbers, of type int[].
Let’s say that no more than 100 numbers will be input. Then the size of the array can be fixed
at 100. But the program must keep track of how many numbers have actually been read and
stored in the array. For this, it can use an integer variable. Each time a number is stored in
the array, we have to count it; that is, value of the counter variable must be incremented by
one. One question is, when we add a new item to the array, where do we put it? Well, if the
number of items is count, then they would be stored in the array in positions number 0, 1, . . . ,
(count-1). The next open spot would be position number count, so that’s where we should put
the new item.

As a rather silly example, let’s write a program that will read the numbers input by the
user and then print them in the reverse of the order in which they were entered. Assume that
an input value equal to zero marks the end of the data. (This is, at least, a processing task
that requires that the numbers be saved in an array. Note that many types of processing, such
as finding the sum or average or maximum of the numbers, can be done without saving the
individual numbers.)

public class ReverseInputNumbers {

public static void main(String[] args) {

int[] numbers; // An array for storing the input values.

int count; // The number of numbers saved in the array.

int num; // One of the numbers input by the user.

int i; // for-loop variable.

numbers = new int[100]; // Space for 100 ints.

count = 0; // No numbers have been saved yet.

System.out.println("Enter up to 100 positive integers; enter 0 to end.");

while (true) { // Get the numbers and put them in the array.

System.out.print("? ");

num = TextIO.getlnInt();

if (num <= 0) {

// Zero marks the end of input; we have all the numbers.

break;

}

numbers[count] = num; // Put num in position count.

count++; // Count the number

}

CHAPTER 3. CONTROL 120

System.out.println("\nYour numbers in reverse order are:\n");

for (i = count - 1; i >= 0; i--) {

System.out.println(numbers[i]);

}

} // end main();

} // end class ReverseInputNumbers

It is especially important to note how the variable count plays a dual role. It is the number
of items that have been entered into the array. But it is also the index of the next available
spot in the array.

When the time comes to print out the numbers in the array, the last occupied spot in the
array is location count - 1, so the for loop prints out values starting from location count - 1

and going down to 0. This is also a nice example of processing the elements of an array in reverse
order.

∗ ∗ ∗

You might wonder what would happen in this program if the user tries to input more than
100 numbers. The result would be an error that would crash the program. When the user enters
the 101-st number, the program tries to store that number in an array element number[100].
However, there is no such array element. There are only 100 items in the array, and the
index of the last item is 99. The attempt to use number[100] generates an exception of type
ArrayIndexOutOfBoundsException. Exceptions of this type are a common source of run-time
errors in programs that use arrays.

3.8.5 Two-dimensional Arrays

The arrays that we have considered so far are “one-dimensional.” This means that the array
consists of a sequence of elements that can be thought of as being laid out along a line. It
is also possible to have two-dimensional arrays, where the elements can be laid out in a
rectangular grid. We consider them only briefly here, but will return to the topic in Section 7.5.

In a two-dimensional, or “2D,” array, the elements can be arranged in rows and columns.
Here, for example, is a 2D array of int that has five rows and seven columns:

1313

-3

44

43

2

7

0

78

-6

0

33

8

90

17

58

54

42

79

100

58

-5

18

-5

1

36

-1

0

72

-12

21

92

67

22

12

87

0

1

2

3

4

0 1 2 3 4 65

This 5-by-7 grid contains a total of 35 elements. The rows in a 2D array are numbered 0, 1, 2,
. . . , up to the number of rows minus one. Similarly, the columns are numbered from zero up
to the number of columns minus one. Each individual element in the array can be picked out
by specifying its row number and its column number. (The illustration shown here is not what
the array actually looks like in the computer’s memory, but it does show the logical structure
of the array.)

In Java, the syntax for two-dimensional arrays is similar to the syntax for one-dimensional
arrays, except that an extra index is involved, since picking out an element requires both a row

CHAPTER 3. CONTROL 121

number and a column number. For example, if A is a 2D array of int, then A[3][2] would be
the element in row 3, column 2. That would pick out the number 17 in the array shown above.
The type for A would be given as int[][], with two pairs of empty brackets. To declare the array
variable and create the array, you could say,

int[][] A;

A = new int[5][7];

The second line creates a 2D array with 5 rows and 7 columns. Two-dimensional arrays are
often processed using nested for loops. For example, the following code segment will print out
the elements of A in neat columns:

int row, col; // loop-control-variables for accessing rows and columns in A

for (row = 0; row < 5; row++) {

for (col = 0; col < 7; col++) {

System.out.printf("%7d", A[row][col]);

}

System.out.println();

}

The base type of a 2D array can be anything, so you can have arrays of type double[][],
String[][], and so on.

There are some natural uses for 2D arrays. For example, a 2D array can be used to store the
contents of the board in a game such as chess or checkers. And an example in Subsection 4.6.3
uses a 2D array to hold the colors of a grid of colored squares. But sometimes two-dimensional
arrays are used in problems in which the grid is not so visually obvious. Consider a company
that owns 25 stores. Suppose that the company has data about the profit earned at each store
for each month in the year 2014. If the stores are numbered from 0 to 24, and if the twelve
months from January 2014 through December 2014 are numbered from 0 to 11, then the profit
data could be stored in an array, profit, created as follows:

double[][] profit;

profit = new double[25][12];

profit[3][2] would be the amount of profit earned at store number 3 in March, and more
generally, profit[storeNum][monthNum] would be the amount of profit earned in store number
storeNum in month number monthNum (where the numbering, remember, starts from zero).

Let’s assume that the profit array has already been filled with data. This data can be
processed in a lot of interesting ways. For example, the total profit for the company—for the
whole year from all its stores—can be calculated by adding up all the entries in the array:

double totalProfit; // Company’s total profit in 2014.

int store, month; // variables for looping through the stores and the months

totalProfit = 0;

for (store = 0; store < 25; store++) {

for (month = 0; month < 12; month++)

totalProfit += profit[store][month];

}

Sometimes it is necessary to process a single row or a single column of an array, not the
entire array. For example, to compute the total profit earned by the company in December,
that is, in month number 11, you could use the loop:

CHAPTER 3. CONTROL 122

double decemberProfit;

int storeNum;

decemberProfit = 0.0;

for (storeNum = 0; storeNum < 25; storeNum++) {

decemberProfit += profit[storeNum][11];

}

Two-dimensional arrays are sometimes useful, but they are much less common than one-
dimensional arrays. Java actually allows arrays of even higher dimension, but they are only
rarely encountered in practice.

3.9 Introduction to GUI Programming

For the past two chapters, you’ve been learning the sort of programming that is done
inside a single subroutine, “programming in the small.” In the rest of this book, we’ll be more
concerned with the larger scale structure of programs, but the material that you’ve already
learned will be an important foundation for everything to come. In this section, we see how
techniques that you have learned so far can be applied in the context of graphical programming.

When you run a GUI program, it opens one or more windows on your computer screen. As
a programmer, you can have complete control over what appears in the window and how the
user can interact with it. For our first encounter, we look at one simple example: the ability
of a program to display simple shapes like rectangles and lines in the window, with no user
interaction. For now, the main point is to take a look at how programming-in-the-small can be
used in other contexts besides text-based, command-line-style programs. You will see that a
knowledge of programming-in-the-small applies to writing the guts of any subroutine, not just
main().

3.9.1 Drawing Shapes

To understand computer graphics, you need to know a little about pixels and coordinate sys-
tems. The computer screen is made up of small squares called pixels, arranged in rows and
columns, usually about 100 pixels per inch. The computer controls the color of the pixels, and
drawing is done by changing the colors of individual pixels. Each pixel has a pair of integer
coordinates, often called x and y, that specify the pixel’s horizontal and vertical position. For
a graphics context drawing to a rectangular area on the screen, the coordinates of the pixel
in the upper left corner of the rectangle are (0,0). The x coordinate increases from the left to
right, and the y coordinate increases from top to bottom. Shapes are specified using pixels. For
example, a rectangle is specified by the x and y coordinates of its upper left corner and by its
width and height measured in pixels. Here’s a picture of a rectangular drawing area, showing
the ranges of x and y coordinates. The “width” and “height” in this picture give the size of
the drawing area, in pixels:

CHAPTER 3. CONTROL 123

0 width

0

height

x

y

Hello World

Assuming that the drawing area is 800-by-500 pixels, the rectangle in the upper left of the
picture would have, approximately, width 200, height 150, and upper left corner at coordinates
(50,50).

∗ ∗ ∗

Drawing in Java is done using a graphics context . A graphics context is an object. As
an object, it can include subroutines and data. Among the subroutines in a graphics context
are routines for drawing basic shapes such as lines, rectangles, ovals, and text. (When text
appears on the screen, the characters have to be drawn there by the computer, just like the
computer draws any other shapes.) Among the data in a graphics context are the color and font
that are currently selected for drawing. (A font determines the style and size of characters.)
One other piece of data in a graphics context is the “drawing surface” on which the drawing
is done. Generally, the drawing surface is a rectangle on the computer screen, although it can
be other surfaces such as a page to be printed. Different graphics context objects can draw to
different drawing surfaces. For us, the drawing surface will be the content area of a window,
not including its border or title bar.

A graphics context is represented by a variable. The type for the variable is Graphics (just
like the type for a string variable is String). The variable is often named g, but the name of the
variable is of course up to the programmer. Here are a few of the subroutines that are available
in a graphics context g :

• g.setColor(c), is called to set the color to be used for drawing. The parameter, c is an
object belonging to a class named Color. There are about a dozen constants representing
standard colors that can be used as the parameter in this subroutine. The standard colors
include Color.BLACK, Color.WHITE, Color.LIGHT GRAY, Color.RED, Color.GREEN, and
Color.BLUE. (Later, we will see that it is also possible to create new colors.) For example,
if you want to draw in red, you would say “g.setColor(Color.RED);”. The specified
color is used for all subsequent drawing operations up until the next time g.setColor()

is called.

• g.drawLine(x1,y1,x2,y2) draws a line from the point with coordinates (x1,y1) to the
point with coordinates (x2,y2).

• g.drawRect(x,y,w,h) draws the outline of a rectangle with vertical and horizontal sides.
The parameters x, y, w, and h must be integers or integer-valued expressions. This sub-
routine draws the outline of the rectangle whose top-left corner is x pixels from the left
edge of the drawing area and y pixels down from the top. The width of the rectangle is w
pixels, and the height is h pixels. The color that is used is black, unless a different color
has been set by calling g.setColor().

CHAPTER 3. CONTROL 124

• g.fillRect(x,y,w,h) is similar to g.drawRect() except that it fills in the inside of the
rectangle instead of drawing an outline.

• g.drawOval(x,y,w,h) draws the outline of an oval. The oval just fits inside the rectangle
that would be drawn by g.drawRect(x,y,w,h). To get a circle, use the same values for
w and for h.

• g.fillOval(x,y,w,h) is similar to g.drawOval() except that it fills in the inside of the
oval instead of drawing an outline.

This is enough information to draw some pictures using Java graphics. To start with
something simple, let’s say that we want to draw a set of ten parallel lines, something like this:

Let’s say that the lines are 200 pixels long and that the distance from each line to the next
is 10 pixels, and let’s put the start of the first line at the pixel with coordinates (100,50). To
draw one line, we just have to call g.drawLine(x1,y1,x2,y2) with appropriate values for the
parameters. Now, all the lines start at x -coordinate 100, so we can use the constant 100 as
the value for x1. Since the lines are 200 pixels long, we can use the constant 300 as the value
for x2. The y-coordinates of the lines are different, but we can see that both endpoints of a
line have the same y-coordinates, so we can use a single variable as the value for y1 and for
y2. Using y as the name of that variable, the command for drawing one of the lines becomes
g.drawLine(100,y,300,y). The value of y is 50 for the top line and increases by 10 each time
we move down from one line to the next. We just need to make sure that y takes on the correct
sequence of values. We can use a for loop that counts from 1 to 10:

int y; // y-coordinate for the line

int i; // loop control variable

y = 50; // y starts at 50 for the first line

for (i = 1; i <= 10; i++) {

g.drawLine(100, y, 300, y);

y = y + 10; // increase y by 10 before drawing the next line.

}

Alternatively, we could use y itself as the loop control variable, noting that the value of y for
the last line is 140:

int y;

for (y = 50; y <= 140; y = y + 10)

g.drawLine(100, y, 300, y);

If we wanted to set the color of the lines, we could do that by calling g.setColor() before
drawing them. If we just draw the lines without setting the color, they will be black.

For something a little more complicated, let’s draw a large number of randomly colored,
randomly positioned, filled circles. Since we only know a few colors, I will randomly select the
color to be red, green, or blue. That can be done with a simple switch statement, similar to
the ones in Subsection 3.6.4:

CHAPTER 3. CONTROL 125

switch ((int)(3*Math.random())) {

case 0:

g.setColor(Color.RED);

break;

case 1:

g.setColor(Color.GREEN);

break;

case 2:

g.setColor(Color.BLUE);

break;

}

I will choose the center points of the circles at random. Let’s say that the width of the
drawing area is given by a variable, width. Then we want a random value in the range 0

to width-1 for the horizontal position of the center. Similarly, the vertical position of the
center will a random value in the range 0 to height-1. That leaves the size of the circle to be
determined; I will make the radius of each circle equal to 50 pixels. We can draw the circle with
a statement of the form g.fillOval(x,y,w,h). However, in this command, x and y are not
the coordinates of the center of the circle; they are the upper left corner of a rectangle drawn
around the circle. To get values for x and y, we have to move back from the center of the circle
by 50 pixels, an amount equal to the radius of the circle. The parameters w and h give the
width and height of the rectangle, which has to be twice the radius, or 100 pixels in this case.
Taking all this into account, here is a code segment for drawing a random circle:

centerX = (int)(width*Math.random());

centerY = (int)(height*Math.random());

g.fillOval(centerX - 50, centerY - 50, 100, 100);

This code comes after the color-setting code given above. In the end, I found that the picture
looks better if I also draw a black outline around each filled circle, so I added this code at the
end:

g.setColor(Color.BLACK);

g.drawOval(centerX - 50, centerY - 50, 100, 100);

Finally, to get a large number of circles, I put all of the above code into a for loop that runs
for 500 executions. Here’s a typical drawing from the program, shown at reduced size:

3.9.2 Drawing in a Program

Now, as you know, you can’t just have a bunch of Java code standing by itself. The code
has to be inside a subroutine definition that is itself inside a class definition. In fact, for my
circle-drawing program, the complete subroutine for drawing the picture looks like this:

CHAPTER 3. CONTROL 126

public void drawFrame(Graphics g, int frameNumber, int width, int height) {

int centerX; // The x-coord of the center of a disk.

int centerY; // The y-coord of the center of a disk.

int colorChoice; // Used to select a random color.

int count; // Loop control variable for counting disks.

for (count = 0; count < 500; count++) {

colorChoice = (int)(3*Math.random());

switch (colorChoice) {

case 0:

g.setColor(Color.RED);

break;

case 1:

g.setColor(Color.GREEN);

break;

case 2:

g.setColor(Color.BLUE);

break;

}

centerX = (int)(width*Math.random());

centerY = (int)(height*Math.random());

g.fillOval(centerX - 50, centerY - 50, 100, 100);

g.setColor(Color.BLACK);

g.drawOval(centerX - 50, centerY - 50, 100, 100);

}

}

This is the first subroutine definition that you have seen, other than main(), but you will
learn all about defining subroutines in the next chapter. The first line of the definition makes
available certain values that are used in the subroutine: the graphics context g and the width

and height of the drawing area. (Ignore frameNumber for now.) These values come from outside
the subroutine, but the subroutine can use them. The point here is that to draw something,
you just have to fill in the inside of the subroutine, just as you write a program by filling in the
inside of main().

The subroutine definition still has to go inside a class that defines the program. In this case,
the class is named RandomCircles, and the complete program is available in the sample source
code file RandomCircles.java. You can run that program to see the drawing.

There’s a lot in the program that you won’t understand. To make your own drawing,
all you have to do is erase the inside of the drawFrame() routine in the source code and
substitute your own drawing code. You don’t need to understand the rest. The source code file
SimpleAnimationStarter.java can be used as a basis for your own first graphics explorations.
It’s essentially the same as RandomCircles.java but with the drawing code omitted. You’ll
need it to do some of the exercises for this chapter.

(By the way, you might notice that the main() subroutine uses the word static in its
definition, but drawFrame() does not. This has to do with the fact that the drawing area in
this program is an object, and drawFrame is a subroutine in that object. The difference between
static and non-static subroutines is important but not something that we need to worry about
for the time being. It will become important for us in Chapter 5.)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/RandomCircles.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/SimpleAnimationStarter.java

CHAPTER 3. CONTROL 127

3.9.3 Animation

The name “SimpleAnimationStarter” should give you a clue that we are looking at the possi-
bility of more than just individual drawings here. A computer animation is simply a sequence
of individual pictures, displayed quickly one after the other. If the change from each picture
to the next is small, the user will perceive the sequence of images as a continuous animation.
Each picture in the animation is called a frame . SimpleAnimationStarter.java is configured
to draw fifty frames every second, although that can be changed. (In RandomCircles.java,
it has been changed to one frame every three seconds, so that the program actually draws a
new set of random circles every three seconds.) The frames in the animation are numbered
0, 1, 2, 3, . . . , and the value of frameNumber in the drawFrame() subroutine tells you which
frame you are drawing. The key to programming the animation is to base what you draw on
the frameNumber.

As an example of animation, we look at drawing a set of nested rectangles. The rectangles
will shrink towards the center of the drawing, giving an illusion of infinite motion. Here’s one
frame from the animation:

Consider how to draw a picture like this one. The rectangles can be drawn with a while

loop, which draws the rectangles starting from the one on the outside and moving in. Think
about what variables will be needed and how they change from one iteration of the while loop to
the next. Each time through the loop, the rectangle that is drawn is smaller than the previous
one and is moved down and over a bit. The difference between two rectangles is in their size
and in the coordinates of the upper left corner. We need a variable to represent the size. The
x and y-coordinates are the same, and they can be represented by the same variable. I call
that variable inset, since it is the amount by which the edges of the rectangle are inset from
the edges of the drawing area. The size decreases from one rectangle to the next, while the
inset increases. The while loop ends when size becomes less than or equal to zero. In general
outline, the algorithm for drawing one frame is

Set the drawing color to light gray (using the g.setColor subroutine)

Fill in the entire picture (using the g.fillRect subroutine)

Set the drawing color to black

Set the amount of inset for the first rectangle

Set the rectangle width and height for the first rectangle

while the width and height are both greater than zero:

draw a rectangle (using the g.drawRect subroutine)

increase the inset (to move the next rectangle over and down)

decrease width the height (the make the next rectangle smaller)

In my program, each rectangle is 15 pixels away from the rectangle that surrounds it, so the
inset is increased by 15 each time through the while loop. The rectangle shrinks by 15 pixels

CHAPTER 3. CONTROL 128

on the left and by 15 pixels on the right, so the width of the rectangle shrinks by 30 before
drawing the next rectangle. The height also shrinks by 30 pixels each time through the loop.

The pseudocode is then easy to translate into Java, except that we need to know what
initial values to use for the inset, width, and height of the first rectangle. To figure that out,
we have to think about the fact that the picture is animated, so that what we draw will depend
in some way on the frame number. From one frame to the next frame of the animation, the
top-left corner of the outer rectangle moves over and down; that is, the inset for the outer
rectangle increases from one frame to the next. We can make this happen by setting the inset
for frame number 0 to 0, the inset for frame number 1 to 1, and so on. But that can’t go on
forever, or eventually all the rectangles would disappear. In fact, when the animation gets to
frame 15, a new rectangle should appear at the outside of the drawing area—but it’s not really
a “new rectangle,” it’s just that the inset for the outer rectangle goes back to zero. So, as the
animation proceeds, the inset should go through the sequence of values 0, 1, 2, . . . , 14 over and
over. We can accomplish that very easily by setting

inset = frameNumber % 15;

Finally, note that the first rectangle fills the drawing area except for a border of size inset

around the outside of the rectangle. This means that the the width of the rectangle is the width
of the drawing area minus two times the inset, and similarly for the height. Here, then is the
drawFrame() subroutine for the moving rectangle example:

public void drawFrame(Graphics g, int frameNumber, int width, int height) {

int inset; // Gap between edges of drawing area and the outer rectangle.

int rectWidth, rectHeight; // The size of one of the rectangles.

g.setColor(Color.LIGHT GRAY);

g.fillRect(0,0,width,height); // Fill drawing area with light gray.

g.setColor(Color.BLACK); // Draw the rectangles in black.

inset = frameNumber % 15; // inset for the outer rectangle

rectWidth = width - 2*inset; // drawing area width minus two insets

rectHeight = height - 2*inset; // drawing area height minus two insets

while (rectWidth >= 0 && rectHeight >= 0) {

g.drawRect(inset, inset, rectWidth, rectHeight);

inset += 15; // rectangles are 15 pixels apart

rectWidth -= 30;

rectHeight -= 30;

}

}

You can find the full source code for the program is in the sample program MovingRects.java.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/MovingRects.java

Exercises 129

Exercises for Chapter 3

1. How many times do you have to roll a pair of dice before they come up snake eyes? You (solution)

could do the experiment by rolling the dice by hand. Write a computer program that
simulates the experiment. The program should report the number of rolls that it makes
before the dice come up snake eyes. (Note: “Snake eyes” means that both dice show a
value of 1.) Exercise 2.2 explained how to simulate rolling a pair of dice.

2. Which integer between 1 and 10000 has the largest number of divisors, and how many (solution)

divisors does it have? Write a program to find the answers and print out the results. It is
possible that several integers in this range have the same, maximum number of divisors.
Your program only has to print out one of them. An example in Subsection 3.4.2 discussed
divisors. The source code for that example is CountDivisors.java.

You might need some hints about how to find a maximum value. The basic idea is
to go through all the integers, keeping track of the largest number of divisors that you’ve
seen so far. Also, keep track of the integer that had that number of divisors.

3. Write a program that will evaluate simple expressions such as 17 + 3 and 3.14159 * 4.7. (solution)

The expressions are to be typed in by the user. The input always consists of a number,
followed by an operator, followed by another number. The operators that are allowed are
+, -, *, and /. You can read the numbers with TextIO.getDouble() and the operator
with TextIO.getChar(). Your program should read an expression, print its value, read
another expression, print its value, and so on. The program should end when the user
enters 0 as the first number on the line.

4. Write a program that reads one line of input text and breaks it up into words. The (solution)

words should be output one per line. A word is defined to be a sequence of letters. Any
characters in the input that are not letters should be discarded. For example, if the user
inputs the line

He said, "That’s not a good idea."

then the output of the program should be

He

said

That

s

not

a

good

idea

An improved version of the program would list “that’s” as a single word. An apostrophe
can be considered to be part of a word if there is a letter on each side of the apostrophe.

To test whether a character is a letter, you might use (ch >= ’a’ && ch <= ’z’) ||

(ch >= ’A’ && ch <= ’Z’). However, this only works in English and similar languages.
A better choice is to call the standard function Character.isLetter(ch), which returns
a boolean value of true if ch is a letter and false if it is not. This works for any Unicode
character.

http://math.hws.edu/eck/cs124/javanotes7/c3/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c3/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/CountDivisors.java
http://math.hws.edu/eck/cs124/javanotes7/c3/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c3/ex4-ans.html

Exercises 130

5. Suppose that a file contains information about sales figures for a company in various cities. (solution)

Each line of the file contains a city name, followed by a colon (:) followed by the data for
that city. The data is a number of type double. However, for some cities, no data was
available. In these lines, the data is replaced by a comment explaining why the data is
missing. For example, several lines from the file might look like:

San Francisco: 19887.32

Chicago: no report received

New York: 298734.12

Write a program that will compute and print the total sales from all the cities together.
The program should also report the number of cities for which data was not available.
The name of the file is “sales.dat”.

To complete this program, you’ll need one fact about file input with TextIO that was
not covered in Subsection 2.4.4. Since you don’t know in advance how many lines there
are in the file, you need a way to tell when you have gotten to the end of the file. When
TextIO is reading from a file, the function TextIO.eof() can be used to test for end of
file . This boolean-valued function returns true if the file has been entirely read and
returns false if there is more data to read in the file. This means that you can read the
lines of the file in a loop while (TextIO.eof() == false).... The loop will end when
all the lines of the file have been read.

Suggestion: For each line, read and ignore characters up to the colon. Then read the
rest of the line into a variable of type String. Try to convert the string into a number, and
use try..catch to test whether the conversion succeeds.

6. Exercise 3.2 asked you to find the number in the range 1 to 10000 that has the largest (solution)

number of divisors. You only had to print out one such number. Revise the program so
that it will print out all numbers that have the maximum number of divisors. Use an array
as follows: As you count the divisors for each number, store each count in an array. Then
at the end of the program, you can go through the array and print out all the numbers
that have the maximum count. The output from the program should look something like
this:

Among integers between 1 and 10000,

The maximum number of divisors was 64

Numbers with that many divisors include:

7560

9240

7. An example in Subsection 3.8.3 tried to answer the question, How many random people do (solution)

you have to select before you find a duplicate birthday? The source code for that program
can be found in the file BirthdayProblem.java. Here are some related questions:

• How many random people do you have to select before you find three people who
share the same birthday? (That is, all three people were born on the same day in
the same month, but not necessarily in the same year.)

• Suppose you choose 365 people at random. How many different birthdays will they
have? (The number could theoretically be anywhere from 1 to 365).

• How many different people do you have to check before you’ve found at least one
person with a birthday on each of the 365 days of the year?

http://math.hws.edu/eck/cs124/javanotes7/c3/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c3/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c3/ex7-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/BirthdayProblem.java

Exercises 131

Write three programs to answer these questions. Each of your programs should sim-
ulate choosing people at random and checking their birthdays. (In each case, ignore the
possibility of leap years.)

8. Write a GUI program that draws a checkerboard. Base your solution on the sample (solution)

program SimpleAnimationStarter.java, even though you are creating only a static picture
rather than an animation. You will draw the checkerboard in the drawFrame() subroutine.
You should read the comments in the file to discover other changes that you might need
to make.

Assume that the size of the drawing area is 400-by-400 pixels. A checkerboard contains
8 rows and 8 columns of squares. If the size of the drawing area is 400, that means that
each square can be 50-by-50 pixels. The squares are red and black (or whatever other
colors you choose). Here is a tricky way to determine whether a given square should be
red or black: The rows and columns can be thought of as numbered from 0 to 7. If the row
number of the square and the column number of the square are either both even or both
odd, then the square is red. Otherwise, it is black. Note that a square is just a rectangle
in which the height is equal to the width, so you can use the subroutine g.fillRect()

to draw the squares. Here is a reduced-size image of the checkerboard that you want to
draw:

9. Often, some element of an animation repeats over and over, every so many frames. Some- (solution)

times, the repetition is “cyclic,” meaning that at the end it jumps back to the start.
Sometimes the repetition is “oscillating,” like a back-and-forth motion where the second
half is the same as the first half played in reverse.

Write an animation that demonstrates both cyclic and oscillating motions at various
speeds. For cyclic motion, you can use a square that moves across the drawing area, then
jumps back to the start, and then repeats the same motion over and over. For oscillating
motion, you can do something similar, but the square should move back and forth between
the two edges of the drawing area; that is, it moves left-to-right during the first half of
the animation and then backwards from right-to-left during the second half. To write the
program, you can start with a copy of the sample program SimpleAnimationStarter.java,
as in the previous exercise.

A cyclic motion has to repeat every N frames for some value of N. What you draw in
some frame of the animation depends on the frameNumber. The frameNumber just keeps

http://math.hws.edu/eck/cs124/javanotes7/c3/ex8-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/SimpleAnimationStarter.java
http://math.hws.edu/eck/cs124/javanotes7/c3/ex9-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/SimpleAnimationStarter.java

Exercises 132

increasing forever. To implement cyclic motion, what you really want is a “cyclic frame
number” that takes on the values 0, 1, 2, . . . , (N-1), 0, 1, 2, . . . , (N-1), 0, 1, 2, You
can derive the value that you need from frameNumber simply by saying

cyclicFrameNumber = frameNumber % N;

Then, you just have to base what you draw on cyclicFrameNumber instead of on
frameNumber. Similarly, for an oscillating animation, you need an “oscillation frame
number” that takes on the values 0, 1, 2, . . . (N-1), N, (N-1), (N-2), . . . 2, 1, 0, 1, 2, and
so on, repeating the back and forth motion forever. You can compute the value that you
need with

oscilationFrameNumber = frameNumber % (2*N);

if (oscillationFrameNumber > N)

oscillationFrameNumber = (2*N) - oscillationFrameNumber;

Here is a screen shot from my version of the program. I use six squares. The top three
do cyclic motion at various speeds, while the bottom three do oscillating motion. I drew
black lines across the drawing area to separate the squares and to give them “channels”
to move in.

Quiz 133

Quiz on Chapter 3
(answers)

1. What is an algorithm?

2. Explain briefly what is meant by “pseudocode” and how is it useful in the development
of algorithms.

3. What is a block statement? How are block statements used in Java programs?

4. What is the main difference between a while loop and a do..while loop?

5. What does it mean to prime a loop?

6. Explain what is meant by an animation and how a computer displays an animation.

7. Write a for loop that will print out all the multiples of 3 from 3 to 36, that is: 3 6 9 12
15 18 21 24 27 30 33 36.

8. Fill in the following main() routine so that it will ask the user to enter an integer, read
the user’s response, and tell the user whether the number entered is even or odd. (You can
use TextIO.getInt() to read the integer. Recall that an integer n is even if n % 2 == 0.)

public static void main(String[] args) {

// Fill in the body of this subroutine!

}

9. Write a code segment that will print out two different random integers selected from the
range 1 to 10. All possible outputs should have the same probability. Hint: You can easily
select two random numbers, but you have to account for the fact that the two numbers
that you pick might be the same.

10. Suppose that s1 and s2 are variables of type String, whose values are expected to be
string representations of values of type int. Write a code segment that will compute and
print the integer sum of those values, or will print an error message if the values cannot
successfully be converted into integers. (Use a try..catch statement.)

11. Show the exact output that would be produced by the following main() routine:

public static void main(String[] args) {

int N;

N = 1;

while (N <= 32) {

N = 2 * N;

System.out.println(N);

}

}

12. Show the exact output produced by the following main() routine:

http://math.hws.edu/eck/cs124/javanotes7/c3/quiz_answers.html

Quiz 134

public static void main(String[] args) {

int x,y;

x = 5;

y = 1;

while (x > 0) {

x = x - 1;

y = y * x;

System.out.println(y);

}

}

13. What output is produced by the following program segment? Why? (Recall that
name.charAt(i) is the i-th character in the string, name.)

String name;

int i;

boolean startWord;

name = "Richard M. Nixon";

startWord = true;

for (i = 0; i < name.length(); i++) {

if (startWord)

System.out.println(name.charAt(i));

if (name.charAt(i) == ’ ’)

startWord = true;

else

startWord = false;

}

14. Suppose that numbers is an array of type int[]. Write a code segment that will count and
output the number of times that the number 42 occurs in the array.

15. Define the range of an array of numbers to be the maximum value in the array minus
the minimum value. Suppose that raceTimes is an array of type double[]. Write a code
segment that will find and print the range of raceTimes.

Chapter 4

Programming in the Large I:
Subroutines

One way to break up a complex program into manageable pieces is to use subroutines.
A subroutine consists of the instructions for carrying out a certain task, grouped together and
given a name. Elsewhere in the program, that name can be used as a stand-in for the whole set
of instructions. As a computer executes a program, whenever it encounters a subroutine name,
it executes all the instructions necessary to carry out the task associated with that subroutine.

Subroutines can be used over and over, at different places in the program. A subroutine
can even be used inside another subroutine. This allows you to write simple subroutines and
then use them to help write more complex subroutines, which can then be used in turn in other
subroutines. In this way, very complex programs can be built up step-by-step, where each step
in the construction is reasonably simple.

Subroutines in Java can be either static or non-static. This chapter covers static subroutines.
Non-static subroutines, which are used in true object-oriented programming, will be covered in
the next chapter.

4.1 Black Boxes

A subroutine consists of instructions for performing some task, chunked together and
given a name. “Chunking” allows you to deal with a potentially very complicated task as
a single concept. Instead of worrying about the many, many steps that the computer might
have to go though to perform that task, you just need to remember the name of the subroutine.
Whenever you want your program to perform the task, you just call the subroutine. Subroutines
are a major tool for dealing with complexity.

A subroutine is sometimes said to be a “black box” because you can’t see what’s “inside”
it (or, to be more precise, you usually don’t want to see inside it, because then you would
have to deal with all the complexity that the subroutine is meant to hide). Of course, a black
box that has no way of interacting with the rest of the world would be pretty useless. A black
box needs some kind of interface with the rest of the world, which allows some interaction
between what’s inside the box and what’s outside. A physical black box might have buttons
on the outside that you can push, dials that you can set, and slots that can be used for passing
information back and forth. Since we are trying to hide complexity, not create it, we have the
first rule of black boxes:

135

CHAPTER 4. SUBROUTINES 136

The interface of a black box should be fairly straight-
forward, well-defined, and easy to understand.

Are there any examples of black boxes in the real world? Yes; in fact, you are surrounded
by them. Your television, your car, your mobile phone, your refrigerator. . . . You can turn your
television on and off, change channels, and set the volume by using elements of the television’s
interface—dials, remote control, don’t forget to plug in the power—without understanding
anything about how the thing actually works. The same goes for a mobile phone, although the
interface in that case is a lot more complicated.

Now, a black box does have an inside—the code in a subroutine that actually performs the
task, or all the electronics inside your television set. The inside of a black box is called its
implementation . The second rule of black boxes is that:

To use a black box, you shouldn’t need to know any-
thing about its implementation; all you need to know is
its interface.

In fact, it should be possible to change the implementation, as long as the behavior of the
box, as seen from the outside, remains unchanged. For example, when the insides of TV sets
went from using vacuum tubes to using transistors, the users of the sets didn’t need to know
about it—or even know what it means. Similarly, it should be possible to rewrite the inside of
a subroutine, to use more efficient code, for example, without affecting the programs that use
that subroutine.

Of course, to have a black box, someone must have designed and built the implementation
in the first place. The black box idea works to the advantage of the implementor as well as
the user of the black box. After all, the black box might be used in an unlimited number of
different situations. The implementor of the black box doesn’t need to know about any of that.
The implementor just needs to make sure that the box performs its assigned task and interfaces
correctly with the rest of the world. This is the third rule of black boxes:

The implementor of a black box should not need to
know anything about the larger systems in which the box
will be used.

In a way, a black box divides the world into two parts: the inside (implementation) and the
outside. The interface is at the boundary, connecting those two parts.

∗ ∗ ∗

By the way, you should not think of an interface as just the physical connection between
the box and the rest of the world. The interface also includes a specification of what the
box does and how it can be controlled by using the elements of the physical interface. It’s not
enough to say that a TV set has a power switch; you need to specify that the power switch is
used to turn the TV on and off!

To put this in computer science terms, the interface of a subroutine has a semantic as well
as a syntactic component. The syntactic part of the interface tells you just what you have
to type in order to call the subroutine. The semantic component specifies exactly what task
the subroutine will accomplish. To write a legal program, you need to know the syntactic
specification of the subroutine. To understand the purpose of the subroutine and to use it
effectively, you need to know the subroutine’s semantic specification. I will refer to both parts
of the interface—syntactic and semantic—collectively as the contract of the subroutine.

CHAPTER 4. SUBROUTINES 137

The contract of a subroutine says, essentially, “Here is what you have to do to use me,
and here is what I will do for you, guaranteed.” When you write a subroutine, the comments
that you write for the subroutine should make the contract very clear. (I should admit that
in practice, subroutines’ contracts are often inadequately specified, much to the regret and
annoyance of the programmers who have to use them.)

For the rest of this chapter, I turn from general ideas about black boxes and subroutines
in general to the specifics of writing and using subroutines in Java. But keep the general ideas
and principles in mind. They are the reasons that subroutines exist in the first place, and they
are your guidelines for using them. This should be especially clear in Section 4.6, where I will
discuss subroutines as a tool in program development.

∗ ∗ ∗

You should keep in mind that subroutines are not the only example of black boxes in
programming. For example, a class is also a black box. We’ll see that a class can have a
“public” part, representing its interface, and a “private” part that is entirely inside its hidden
implementation. All the principles of black boxes apply to classes as well as to subroutines.

4.2 Static Subroutines and Static Variables

Every subroutine in Java must be defined inside some class. This makes Java rather
unusual among programming languages, since most languages allow free-floating, independent
subroutines. One purpose of a class is to group together related subroutines and variables.
Perhaps the designers of Java felt that everything must be related to something. As a less
philosophical motivation, Java’s designers wanted to place firm controls on the ways things are
named, since a Java program potentially has access to a huge number of subroutines created by
many different programmers. The fact that those subroutines are grouped into named classes
(and classes are grouped into named “packages,” as we will see later) helps control the confusion
that might result from so many different names.

There is a basic distinction in Java between static and non-static subroutines. A class
definition can contain the source code for both types of subroutine, but what’s done with them
when the program runs is very different. Static subroutines are easier to understand: In a
running program, a static subroutine is a member of the class itself. Non-static subroutine
definitions, on the other hand, are only there to be used when objects are created, and the
subroutines themselves become members of the objects. Non-static subroutines only become
relevant when you are working with objects. The distinction between static and non-static also
applies to variables and to other things that can occur in class definitions. This chapter will
deal with static subroutines and static variables almost exclusively. We’ll turn to non-static
stuff and to object-oriented programming in the next chapter.

A subroutine that is in a class or object is often called a method , and “method” is the term
that most people prefer for subroutines in Java. I will start using the term “method” occa-
sionally; however, I will continue to prefer the more general term “subroutine” in this chapter,
at least for static subroutines. However, you should start thinking of the terms “method” and
“subroutine” as being essentially synonymous as far as Java is concerned.

4.2.1 Subroutine Definitions

A subroutine must be defined somewhere. The definition has to include the name of the
subroutine, enough information to make it possible to call the subroutine, and the code that

CHAPTER 4. SUBROUTINES 138

will be executed each time the subroutine is called. A subroutine definition in Java takes the
form:

〈modifiers 〉 〈return-type 〉 〈subroutine-name 〉 (〈parameter-list 〉) {

〈statements 〉
}

It will take us a while—most of the chapter—to get through what all this means in detail. Of
course, you’ve already seen examples of subroutines in previous chapters, such as the main()

routine of a program and the drawFrame() routine of the animation programs in Section 3.9.
So you are familiar with the general format.

The 〈statements〉 between the braces, { and }, in a subroutine definition make up the body
of the subroutine. These statements are the inside, or implementation part, of the “black box,”
as discussed in the previous section. They are the instructions that the computer executes when
the method is called. Subroutines can contain any of the statements discussed in Chapter 2
and Chapter 3.

The 〈modifiers〉 that can occur at the beginning of a subroutine definition are words that
set certain characteristics of the subroutine, such as whether it is static or not. The modifiers
that you’ve seen so far are “static” and “public”. There are only about a half-dozen possible
modifiers altogether.

If the subroutine is a function, whose job is to compute some value, then the 〈return-type〉
is used to specify the type of value that is returned by the function. It can be a type name such
as String or int or even an array type such as double[]. We’ll be looking at functions and return
types in some detail in Section 4.4. If the subroutine is not a function, then the 〈return-type〉 is
replaced by the special value void, which indicates that no value is returned. The term “void”
is meant to indicate that the return value is empty or non-existent.

Finally, we come to the 〈parameter-list〉 of the method. Parameters are part of the interface
of a subroutine. They represent information that is passed into the subroutine from outside,
to be used by the subroutine’s internal computations. For a concrete example, imagine a class
named Television that includes a method named changeChannel(). The immediate question
is: What channel should it change to? A parameter can be used to answer this question. Since
the channel number is an integer, the type of the parameter would be int, and the declaration
of the changeChannel() method might look like

public void changeChannel(int channelNum) { ... }

This declaration specifies that changeChannel() has a parameter named channelNum of type
int. However, channelNum does not yet have any particular value. A value for channelNum is
provided when the subroutine is called; for example: changeChannel(17);

The parameter list in a subroutine can be empty, or it can consist of one or more parameter
declarations of the form 〈type〉 〈parameter-name〉. If there are several declarations, they are
separated by commas. Note that each declaration can name only one parameter. For example,
if you want two parameters of type double, you have to say “double x, double y”, rather
than “double x, y”.

Parameters are covered in more detail in the next section.
Here are a few examples of subroutine definitions, leaving out the statements that define

what the subroutines do:

public static void playGame() {

// "public" and "static" are modifiers; "void" is the

// return-type; "playGame" is the subroutine-name;

CHAPTER 4. SUBROUTINES 139

// the parameter-list is empty.

. . . // Statements that define what playGame does go here.

}

int getNextN(int N) {

// There are no modifiers; "int" in the return-type;

// "getNextN" is the subroutine-name; the parameter-list

// includes one parameter whose name is "N" and whose

// type is "int".

. . . // Statements that define what getNextN does go here.

}

static boolean lessThan(double x, double y) {

// "static" is a modifier; "boolean" is the

// return-type; "lessThan" is the subroutine-name;

// the parameter-list includes two parameters whose names are

// "x" and "y", and the type of each of these parameters

// is "double".

. . . // Statements that define what lessThan does go here.

}

In the second example given here, getNextN is a non-static method, since its definition does
not include the modifier “static”—and so it’s not an example that we should be looking at in
this chapter! The other modifier shown in the examples is “public”. This modifier indicates
that the method can be called from anywhere in a program, even from outside the class where
the method is defined. There is another modifier, “private”, which indicates that the method
can be called only from inside the same class. The modifiers public and private are called
access specifiers. If no access specifier is given for a method, then by default, that method
can be called from anywhere in the “package” that contains the class, but not from outside
that package. (Packages were mentioned in Subsection 2.6.6, and you’ll learn more about them
later in this chapter, in Section 4.5.) There is one other access modifier, protected, which will
only become relevant when we turn to object-oriented programming in Chapter 5.

Note, by the way, that the main() routine of a program follows the usual syntax rules for
a subroutine. In

public static void main(String[] args) { ... }

the modifiers are public and static, the return type is void, the subroutine name is main,
and the parameter list is “String[] args”. In this case, the type for the parameter is the
array type String[].

You’ve already had some experience with filling in the implementation of a subroutine. In
this chapter, you’ll learn all about writing your own complete subroutine definitions, including
the interface part.

4.2.2 Calling Subroutines

When you define a subroutine, all you are doing is telling the computer that the subroutine
exists and what it does. The subroutine doesn’t actually get executed until it is called. (This
is true even for the main() routine in a class—even though you don’t call it, it is called by the
system when the system runs your program.) For example, the playGame() method given as
an example above could be called using the following subroutine call statement:

playGame();

CHAPTER 4. SUBROUTINES 140

This statement could occur anywhere in the same class that includes the definition of
playGame(), whether in a main() method or in some other subroutine. Since playGame()

is a public method, it can also be called from other classes, but in that case, you have to tell
the computer which class it comes from. Since playGame() is a static method, its full name
includes the name of the class in which it is defined. Let’s say, for example, that playGame() is
defined in a class named Poker. Then to call playGame() from outside the Poker class, you
would have to say

Poker.playGame();

The use of the class name here tells the computer which class to look in to find the method. It
also lets you distinguish between Poker.playGame() and other potential playGame() methods
defined in other classes, such as Roulette.playGame() or Blackjack.playGame().

More generally, a subroutine call statement for a static subroutine takes the form

〈subroutine-name 〉(〈parameters 〉);

if the subroutine that is being called is in the same class, or

〈class-name 〉.〈subroutine-name 〉(〈parameters 〉);

if the subroutine is defined elsewhere, in a different class. (Non-static methods belong to objects
rather than classes, and they are called using objects instead of class names. More on that later.)
Note that the parameter list can be empty, as in the playGame() example, but the parentheses
must be there even if there is nothing between them. The number of parameters that you
provide when you call a subroutine must match the number listed in the parameter list in the
subroutine definition, and the types of the parameters in the call statement must match the
types in the subroutine definition.

4.2.3 Subroutines in Programs

It’s time to give an example of what a complete program looks like, when it includes other
subroutines in addition to the main() routine. Let’s write a program that plays a guessing
game with the user. The computer will choose a random number between 1 and 100, and the
user will try to guess it. The computer tells the user whether the guess is high or low or correct.
If the user gets the number after six guesses or fewer, the user wins the game. After each game,
the user has the option of continuing with another game.

Since playing one game can be thought of as a single, coherent task, it makes sense to write
a subroutine that will play one guessing game with the user. The main() routine will use a
loop to call the playGame() subroutine over and over, as many times as the user wants to play.
We approach the problem of designing the playGame() subroutine the same way we write a
main() routine: Start with an outline of the algorithm and apply stepwise refinement. Here is
a short pseudocode algorithm for a guessing game routine:

Pick a random number

while the game is not over:

Get the user’s guess

Tell the user whether the guess is high, low, or correct.

The test for whether the game is over is complicated, since the game ends if either the user
makes a correct guess or the number of guesses is six. As in many cases, the easiest thing to
do is to use a “while (true)” loop and use break to end the loop whenever we find a reason
to do so. Also, if we are going to end the game after six guesses, we’ll have to keep track of the
number of guesses that the user has made. Filling out the algorithm gives:

CHAPTER 4. SUBROUTINES 141

Let computersNumber be a random number between 1 and 100

Let guessCount = 0

while (true):

Get the user’s guess

Count the guess by adding 1 to guess count

if the user’s guess equals computersNumber:

Tell the user he won

break out of the loop

if the number of guesses is 6:

Tell the user he lost

break out of the loop

if the user’s guess is less than computersNumber:

Tell the user the guess was low

else if the user’s guess is higher than computersNumber:

Tell the user the guess was high

With variable declarations added and translated into Java, this becomes the definition of the
playGame() routine. A random integer between 1 and 100 can be computed as (int)(100 *

Math.random()) + 1. I’ve cleaned up the interaction with the user to make it flow better.

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

System.out.println();

System.out.print("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

System.out.println("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

break; // The game is over; the user has won.

}

if (guessCount == 6) {

System.out.println("You didn’t get the number in 6 guesses.");

System.out.println("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

System.out.print("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

System.out.print("That’s too high. Try again: ");

}

System.out.println();

} // end of playGame()

CHAPTER 4. SUBROUTINES 142

Now, where exactly should you put this? It should be part of the same class as the main()
routine, but not inside the main routine. It is not legal to have one subroutine physically nested
inside another. The main() routine will call playGame(), but not contain its definition, only
a call statement. You can put the definition of playGame() either before or after the main()

routine. Java is not very picky about having the members of a class in any particular order.
It’s pretty easy to write the main routine. You’ve done things like this before. Here’s what

the complete program looks like (except that a serious program needs more comments than I’ve
included here).

public class GuessingGame {

public static void main(String[] args) {

System.out.println("Let’s play a game. I’ll pick a number between");

System.out.println("1 and 100, and you try to guess it.");

boolean playAgain;

do {

playGame(); // call subroutine to play one game

System.out.print("Would you like to play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

System.out.println("Thanks for playing. Goodbye.");

} // end of main()

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

System.out.println();

System.out.print("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

System.out.println("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

break; // The game is over; the user has won.

}

if (guessCount == 6) {

System.out.println("You didn’t get the number in 6 guesses.");

System.out.println("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

System.out.print("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

System.out.print("That’s too high. Try again: ");

}

System.out.println();

CHAPTER 4. SUBROUTINES 143

} // end of playGame()

} // end of class GuessingGame

Take some time to read the program carefully and figure out how it works. And try to
convince yourself that even in this relatively simple case, breaking up the program into two
methods makes the program easier to understand and probably made it easier to write each
piece.

4.2.4 Member Variables

A class can include other things besides subroutines. In particular, it can also include variable
declarations. Of course, you can declare variables inside subroutines. Those are called local
variables. However, you can also have variables that are not part of any subroutine. To
distinguish such variables from local variables, we call them member variables, since they
are members of a class. Another term for them is global variable .

Just as with subroutines, member variables can be either static or non-static. In this chapter,
we’ll stick to static variables. A static member variable belongs to the class as a whole, and it
exists as long as the class exists. Memory is allocated for the variable when the class is first
loaded by the Java interpreter. Any assignment statement that assigns a value to the variable
changes the content of that memory, no matter where that assignment statement is located in
the program. Any time the variable is used in an expression, the value is fetched from that
same memory, no matter where the expression is located in the program. This means that the
value of a static member variable can be set in one subroutine and used in another subroutine.
Static member variables are “shared” by all the static subroutines in the class. A local variable
in a subroutine, on the other hand, exists only while that subroutine is being executed, and is
completely inaccessible from outside that one subroutine.

The declaration of a member variable looks just like the declaration of a local variable
except for two things: The member variable is declared outside any subroutine (although it
still has to be inside a class), and the declaration can be marked with modifiers such as static,
public, and private. Since we are only working with static member variables for now, every
declaration of a member variable in this chapter will include the modifier static. They might
also be marked as public or private. For example:

static String usersName;

public static int numberOfPlayers;

private static double velocity, time;

A static member variable that is not declared to be private can be accessed from outside
the class where it is defined, as well as inside. When it is used in some other class, it must be
referred to with a compound identifier of the form 〈class-name〉.〈variable-name〉. For example,
the System class contains the public static member variable named out, and you use this variable
in your own classes by referring to System.out. Similarly, Math.PI is a public static member
variable in the Math. If numberOfPlayers is a public static member variable in a class named
Poker, then code in the Poker class would refer to it simply as numberOfPlayers, while code
in another class would refer to it as Poker.numberOfPlayers.

As an example, let’s add a couple static member variable to the GuessingGame class that
we wrote earlier in this section. We add a variable named gamesPlayed to keep track of how
many games the user has played and another variable named gamesWon to keep track of the
number of games that the user has won. The variables are declared as static member variables:

CHAPTER 4. SUBROUTINES 144

static int gamesPlayed;

static int gamesWon;

In the playGame() routine, we always add 1 to gamesPlayed, and we add 1 to gamesWon if the
user wins the game. At the end of the main() routine, we print out the values of both variables.
It would be impossible to do the same thing with local variables, since both subroutines need
to access the variables, and local variables exist in only one subroutine.

When you declare a local variable in a subroutine, you have to assign a value to that variable
before you can do anything with it. Member variables, on the other hand are automatically
initialized with a default value. The default values are the same as those that are used when
initializing the elements of an array: For numeric variables, the default value is zero; for boolean
variables, the default is false; for char variables, it’s the character that has Unicode code
number zero; and for objects, such as Strings, the default initial value is the special value null.

Since they are of type int, the static member variables gamesPlayed and gamesWon au-
tomatically get zero as their initial value. This happens to be the correct initial value for a
variable that is being used as a counter. You can, of course, assign a value to a variable at the
beginning of the main() routine if you are not satisfied with the default initial value, or if you
want to emphasize that you are depending on the default.

Here’s the revised version of GuessingGame.java. The changes from the above version are
shown in italic:

public class GuessingGame2 {

static int gamesPlayed; // The number of games played.

static int gamesWon; // The number of games won.

public static void main(String[] args) {

gamesPlayed = 0;

gamesWon = 0; // This is actually redundant, since 0 is

// the default initial value.

System.out.println("Let’s play a game. I’ll pick a number between");

System.out.println("1 and 100, and you try to guess it.");

boolean playAgain;

do {

playGame(); // call subroutine to play one game

System.out.print("Would you like to play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

System.out.println();

System.out.println("You played " + gamesPlayed + " games,");

System.out.println("and you won " + gamesWon + " of those games.");

System.out.println("Thanks for playing. Goodbye.");

} // end of main()

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

gamesPlayed++; // Count this game.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

System.out.println();

CHAPTER 4. SUBROUTINES 145

System.out.print("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

System.out.println("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

gamesWon++; // Count this win.

break; // The game is over; the user has won.

}

if (guessCount == 6) {

System.out.println("You didn’t get the number in 6 guesses.");

System.out.println("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

System.out.print("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

System.out.print("That’s too high. Try again: ");

}

System.out.println();

} // end of playGame()

} // end of class GuessingGame2

∗ ∗ ∗

(By the way, notice that in my example programs, I didn’t mark the static subroutines or
variables as being public or private. You might wonder what it means to leave out both
modifiers. Recall that global variables and subroutines with no access modifier can be used
anywhere in the same package as the class where they are defined, but not in other packages.
Classes that don’t declare a package are in the default package. So, any class in the default
package would have access to gamesPlayed, gamesWon, and playGame()—and that includes
pretty much every class in this book. In fact, it is considered to be good practice to make
member variables and subroutines private, unless there is a reason for doing otherwise.)

4.3 Parameters

If a subroutine is a black box, then a parameter is something that provides a mechanism
for passing information from the outside world into the box. Parameters are part of the interface
of a subroutine. They allow you to customize the behavior of a subroutine to adapt it to a
particular situation.

As an analogy, consider a thermostat—a black box whose task it is to keep your house
at a certain temperature. The thermostat has a parameter, namely the dial that is used to
set the desired temperature. The thermostat always performs the same task: maintaining a
constant temperature. However, the exact task that it performs—that is, which temperature
it maintains—is customized by the setting on its dial.

CHAPTER 4. SUBROUTINES 146

4.3.1 Using Parameters

As an example, let’s go back to the “3N+1” problem that was discussed in Subsection 3.2.2.
(Recall that a 3N+1 sequence is computed according to the rule, “if N is odd, multiply it by 3
and add 1; if N is even, divide it by 2; continue until N is equal to 1.” For example, starting from
N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1.) Suppose that we want to write a subroutine
to print out such sequences. The subroutine will always perform the same task: Print out a
3N+1 sequence. But the exact sequence it prints out depends on the starting value of N. So,
the starting value of N would be a parameter to the subroutine. The subroutine can be written
like this:

/**

* This subroutine prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number

* of terms in the sequence. The value of the parameter, startingValue,

* must be a positive integer.

*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms.

N = startingValue; // The first term is whatever value

// is passed to the subroutine as

// a parameter.

count = 1; // We have one term, the starting value, so far.

System.out.println("The 3N+1 sequence starting from " + N);

System.out.println();

System.out.println(N); // print initial term of sequence

while (N > 1) {

if (N % 2 == 1) // is N odd?

N = 3 * N + 1;

else

N = N / 2;

count++; // count this term

System.out.println(N); // print this term

}

System.out.println();

System.out.println("There were " + count + " terms in the sequence.");

} // end print3NSequence

The parameter list of this subroutine, “(int startingValue)”, specifies that the subroutine
has one parameter, of type int. Within the body of the subroutine, the parameter name can
be used in the same way as a variable name. But notice that there is nothing in the subroutine
definition that gives a value to the parameter! The parameter gets its initial value from outside
the subroutine. When the subroutine is called, a value must be provided for the parameter in
the subroutine call statement. This value will be assigned to startingValue before the body
of the subroutine is executed. For example, the subroutine could be called using the subroutine
call statement “print3NSequence(17);”. When the computer executes this statement, the
computer first assigns the value 17 to startingValue and then executes the statements in the

CHAPTER 4. SUBROUTINES 147

subroutine. This prints the 3N+1 sequence starting from 17. If K is a variable of type int,
then the subroutine can be called by saying “print3NSequence(K);”. When the computer
executes this subroutine call statement, it takes the value of the variable K, assigns that value
to startingValue, and then executes the body of the subroutine.

The class that contains print3NSequence can contain a main() routine (or other subrou-
tines) that call print3NSequence. For example, here is a main() program that prints out 3N+1
sequences for various starting values specified by the user:

public static void main(String[] args) {

System.out.println("This program will print out 3N+1 sequences");

System.out.println("for starting values that you specify.");

System.out.println();

int K; // Input from user; loop ends when K < 0.

do {

System.out.println("Enter a starting value.");

System.out.print("To end the program, enter 0: ");

K = TextIO.getInt(); // Get starting value from user.

if (K > 0) // Print sequence, but only if K is > 0.

print3NSequence(K);

} while (K > 0); // Continue only if K > 0.

} // end main

Remember that before you can use this program, the definitions of main and of
print3NSequence must both be wrapped inside a class definition.

4.3.2 Formal and Actual Parameters

Note that the term “parameter” is used to refer to two different, but related, concepts. There
are parameters that are used in the definitions of subroutines, such as startingValue in the
above example. And there are parameters that are used in subroutine call statements, such
as the K in the statement “print3NSequence(K);”. Parameters in a subroutine definition are
called formal parameters or dummy parameters. The parameters that are passed to a
subroutine when it is called are called actual parameters or arguments. When a subroutine
is called, the actual parameters in the subroutine call statement are evaluated and the values
are assigned to the formal parameters in the subroutine’s definition. Then the body of the
subroutine is executed.

A formal parameter must be a name, that is, a simple identifier. A formal parameter is very
much like a variable, and—like a variable—it has a specified type such as int, boolean, String, or
double[]. An actual parameter is a value, and so it can be specified by any expression, provided
that the expression computes a value of the correct type. The type of the actual parameter must
be one that could legally be assigned to the formal parameter with an assignment statement.
For example, if the formal parameter is of type double, then it would be legal to pass an int as
the actual parameter since ints can legally be assigned to doubles. When you call a subroutine,
you must provide one actual parameter for each formal parameter in the subroutine’s definition.
Consider, for example, a subroutine

static void doTask(int N, double x, boolean test) {

// statements to perform the task go here

}

This subroutine might be called with the statement

doTask(17, Math.sqrt(z+1), z >= 10);

CHAPTER 4. SUBROUTINES 148

When the computer executes this statement, it has essentially the same effect as the block of
statements:

{

int N; // Allocate memory locations for the formal parameters.

double x;

boolean test;

N = 17; // Assign 17 to the first formal parameter, N.

x = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to

// the second formal parameter, x.

test = (z >= 10); // Evaluate "z >= 10" and assign the resulting

// true/false value to the third formal

// parameter, test.

// statements to perform the task go here

}

(There are a few technical differences between this and “doTask(17,Math.sqrt(z+1),z>=10);”
—besides the amount of typing—because of questions about scope of variables and what hap-
pens when several variables or parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing. Call-
ing a subroutine that already exists is not a problem—the idea of providing information to the
subroutine in a parameter is clear enough. Writing the subroutine definition is another matter.
A common beginner’s mistake is to assign values to the formal parameters at the beginning of
the subroutine, or to ask the user to input their values. This represents a fundamental
misunderstanding. When the statements in the subroutine are executed, the formal param-
eters have already been assigned initial values! The computer automatically assigns values to
the parameters before it starts executing the code inside the subroutine. The values come
from the subroutine call statement. Remember that a subroutine is not independent. It is
called by some other routine, and it is the subroutine call statement’s responsibility to provide
appropriate values for the parameters.

4.3.3 Overloading

In order to call a subroutine legally, you need to know its name, you need to know how many
formal parameters it has, and you need to know the type of each parameter. This information is
called the subroutine’s signature . The signature of the subroutine doTask, used as an example
above, can be expressed as: doTask(int,double,boolean). Note that the signature does not
include the names of the parameters; in fact, if you just want to use the subroutine, you don’t
even need to know what the formal parameter names are, so the names are not part of the
interface.

Java is somewhat unusual in that it allows two different subroutines in the same class to
have the same name, provided that their signatures are different. When this happens, we say
that the name of the subroutine is overloaded because it has several different meanings. The
computer doesn’t get the subroutines mixed up. It can tell which one you want to call by the
number and types of the actual parameters that you provide in the subroutine call statement.
You have already seen overloading used with System.out. This object includes many different
methods named println, for example. These methods all have different signatures, such as:

println(int) println(double)

println(char) println(boolean)

println()

CHAPTER 4. SUBROUTINES 149

The computer knows which of these subroutines you want to use based on the type of the
actual parameter that you provide. System.out.println(17) calls the subroutine with sig-
nature println(int), while System.out.println(’A’) calls the subroutine with signature
println(char). Of course all these different subroutines are semantically related, which is
why it is acceptable programming style to use the same name for them all. But as far as the
computer is concerned, printing out an int is very different from printing out a char, which is
different from printing out a boolean, and so forth—so that each of these operations requires
a different subroutine.

Note, by the way, that the signature does not include the subroutine’s return type. It is
illegal to have two subroutines in the same class that have the same signature but that have
different return types. For example, it would be a syntax error for a class to contain two
subroutines defined as:

int getln() { ... }

double getln() { ... }

This is why in the TextIO class, the subroutines for reading different types are not all named
getln(). In a given class, there can only be one routine that has the name getln with no
parameters. So, the input routines in TextIO are distinguished by having different names, such
as getlnInt() and getlnDouble().

4.3.4 Subroutine Examples

Let’s do a few examples of writing small subroutines to perform assigned tasks. Of course,
this is only one side of programming with subroutines. The task performed by a subroutine is
always a subtask in a larger program. The art of designing those programs—of deciding how to
break them up into subtasks—is the other side of programming with subroutines. We’ll return
to the question of program design in Section 4.6.

As a first example, let’s write a subroutine to compute and print out all the divisors of a
given positive integer. The integer will be a parameter to the subroutine. Remember that the
syntax of any subroutine is:

〈modifiers 〉 〈return-type 〉 〈subroutine-name 〉 (〈parameter-list 〉) {

〈statements 〉
}

Writing a subroutine always means filling out this format. In this case, the statement of the
problem tells us that there is one parameter, of type int, and it tells us what the statements
in the body of the subroutine should do. Since we are only working with static subroutines
for now, we’ll need to use static as a modifier. We could add an access modifier (public or
private), but in the absence of any instructions, I’ll leave it out. Since we are not told to
return a value, the return type is void. Since no names are specified, we’ll have to make up
names for the formal parameter and for the subroutine itself. I’ll use N for the parameter and
printDivisors for the subroutine name. The subroutine will look like

static void printDivisors(int N) {

〈statements 〉
}

and all we have left to do is to write the statements that make up the body of the routine. This
is not difficult. Just remember that you have to write the body assuming that N already has
a value! The algorithm is: “For each possible divisor D in the range from 1 to N, if D evenly
divides N, then print D.” Written in Java, this becomes:

CHAPTER 4. SUBROUTINES 150

/**

* Print all the divisors of N.

* We assume that N is a positive integer.

*/

static void printDivisors(int N) {

int D; // One of the possible divisors of N.

System.out.println("The divisors of " + N + " are:");

for (D = 1; D <= N; D++) {

if (N % D == 0) // Dose D evenly divide N?

System.out.println(D);

}

}

I’ve added a comment before the subroutine definition indicating the contract of the
subroutine—that is, what it does and what assumptions it makes. The contract includes the
assumption that N is a positive integer. It is up to the caller of the subroutine to make sure
that this assumption is satisfied.

As a second short example, consider the problem: Write a private subroutine named
printRow. It should have a parameter ch of type char and a parameter N of type int. The
subroutine should print out a line of text containing N copies of the character ch.

Here, we are told the name of the subroutine and the names of the two parameters, and we
are told that the subroutine is private, so we don’t have much choice about the first line of
the subroutine definition. The task in this case is pretty simple, so the body of the subroutine
is easy to write. The complete subroutine is given by

/**

* Write one line of output containing N copies of the

* character ch. If N <= 0, an empty line is output.

*/

private static void printRow(char ch, int N) {

int i; // Loop-control variable for counting off the copies.

for (i = 1; i <= N; i++) {

System.out.print(ch);

}

System.out.println();

}

Note that in this case, the contract makes no assumption about N, but it makes it clear what
will happen in all cases, including the unexpected case that N < 0.

Finally, let’s do an example that shows how one subroutine can build on another. Let’s write
a subroutine that takes a String as a parameter. For each character in the string, it should
print a line of output containing 25 copies of that character. It should use the printRow()

subroutine to produce the output.
Again, we get to choose a name for the subroutine and a name for the parameter. I’ll call

the subroutine printRowsFromString and the parameter str. The algorithm is pretty clear:
For each position i in the string str, call printRow(str.charAt(i),25) to print one line of
the output. So, we get:

/**

* For each character in str, write a line of output

* containing 25 copies of that character.

*/

private static void printRowsFromString(String str) {

CHAPTER 4. SUBROUTINES 151

int i; // Loop-control variable for counting off the chars.

for (i = 0; i < str.length(); i++) {

printRow(str.charAt(i), 25);

}

}

We could use printRowsFromString in a main() routine such as

public static void main(String[] args) {

String inputLine; // Line of text input by user.

System.out.print("Enter a line of text: ");

inputLine = TextIO.getln();

System.out.println();

printRowsFromString(inputLine);

}

Of course, the three routines, main(), printRowsFromString(), and printRow(), would
have to be collected together inside the same class. The program is rather useless, but it does
demonstrate the use of subroutines. You’ll find the program in the file RowsOfChars.java, if
you want to take a look.

4.3.5 Array Parameters

It’s possible for the type of a parameter to be an array type. This means that an entire array
of values can be passed to the subroutine as a single parameter. For example, we might want
a subroutine to print all the values in an integer array in a neat format, separated by commas
and enclosed in a pair of square brackets. To tell it which array to print, the subroutine would
have a parameter of type int[]:

static void printValuesInList(int[] list) {

System.out.print(’[’);

int i;

for (i = 0; i < list.length; i++) {

if (i > 0)

System.out.print(’,’); // No comma in front of list[0]

System.out.print(list[i]);

}

System.out.println((’]’);

}

To use this subroutine, you need an actual array. Here is a legal, though not very realistic, code
segment that creates an array just to pass it as an argument to the subroutine:

int[] numbers;

numbers = new int[3];

numbers[0] = 42;

numbers[1] = 17;

numbers[2] = 256;

printValuesInList(numbers);

The output produced by the last statement would be [42,17,256].

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RowsOfChars.java

CHAPTER 4. SUBROUTINES 152

4.3.6 Command-line Arguments

The main routine of a program has a parameter of type String[]. When the main routine is
called, some actual array of String must be passed to main() as the value of the parameter. The
system provides the actual parameter when it calls main(), so the values come from outside the
program. Where do the strings in the array come from, and what do they mean? The strings
in the array are command-line arguments from the command that was used to run the
program. When using a command-line interface, the user types a command to tell the system
to execute a program. The user can include extra input in this command, beyond the name of
the program. This extra input becomes the command-line arguments. The system takes the
command-line arguments, puts them into an array of strings, and passes that array to main().

For example, if the name of the program is myProg, then the user can type “java myProg”
to execute the program. In this case, there are no command-line arguments. But if the user
types the command

java myProg one two three

then the command-line arguments are the strings “one”, “two”, and “three”. The system puts
these strings into an array of Strings and passes that array as a parameter to the main() routine.
Here, for example, is a short program that simply prints out any command line arguments
entered by the user:

public class CLDemo {

public static void main(String[] args) {

System.out.println("You entered " + args.length

+ " command-line arguments");

if (args.length > 0) {

System.out.println("They were:");

int i;

for (i = 0; i < args.length; i++)

System.out.println(" " + args[i]);

}

} // end main()

} // end class CLDemo

Note that the parameter, args, can be an array of length zero. This just means that the user
did not include any command-line arguments when running the program.

In practice, command-line arguments are often used to pass the names of files to a program.
For example, consider the following program for making a copy of a text file. It does this
by copying one line at a time from the original file to the copy, using TextIO. The function
TextIO.eof() is a boolean-valued function that is true if the end of the file has been reached.

/**

* Requires two command line arguments, which must be file names. The

* the first must be the name of an existing file. The second is the name

* of a file to be created by the program. The contents of the first file

* are copied into the second. WARNING: If the second file already

* exists when the program is run, its previous contents will be lost!

* This program only works for plain text files.

*/

public class CopyTextFile {

public static void main(String[] args) {

CHAPTER 4. SUBROUTINES 153

if (args.length < 2) {

System.out.println("Two command-line arguments are required!");

System.exit(1);

}

TextIO.readFile(args[0]); // Open the original file for reading.

TextIO.writeFile(args[1]); // Open the copy file for writing.

int lineCount; // Number of lines copied

lineCount = 0;

while (TextIO.eof() == false) {

// Read one line from the original file and write it to the copy.

String line;

line = TextIO.getln();

TextIO.putln(line);

lineCount++;

}

System.out.printf("%d lines copied from %s to %s%n",

lineCount, args[0], args[1]);

}

}

Since most programs are run in a GUI environment these days, command-line arguments
aren’t as important as they used to be. But at least they provide a nice example of how array
parameters can be used.

4.3.7 Throwing Exceptions

I have been talking about the “contract” of a subroutine. The contract says what the subroutine
will do, provided that the caller of the subroutine provides acceptable values for the subroutine’s
parameters. The question arises, though, what should the subroutine do when the caller violates
the contract by providing bad parameter values?

We’ve already seen that some subroutines respond to bad parameter values by throw-
ing exceptions. (See Section 3.7.) For example, the contract of the built-in subroutine
Double.parseDouble says that the parameter should be a string representation of a num-
ber of type double; if this is true, then the subroutine will convert the string into the equivalent
numeric value. If the caller violates the contract by passing an invalid string as the actual
parameter, the subroutine responds by throwing an exception of type NumberFormatException.

Many subroutines throw IllegalArgumentExceptions in response to bad parameter values.
You might want to do the same in your own subroutines. This can be done with a throw
statement . An exception is an object, and in order to throw an exception, you must create
an exception object. You won’t officially learn how to do this until Chapter 5, but for now, you
can use the following syntax for a throw statement that throws an IllegalArgumentException:

throw new IllegalArgumentException(〈error-message 〉);

where 〈error-message〉 is a string that describes the error that has been detected. (The word
“new” in this statement is what creates the object.) To use this statement in a subroutine,
you would check whether the values of the parameters are legal. If not, you would throw the
exception. For example, consider the print3NSequence subroutine from the beginning of this
section. The parameter of print3NSequence is supposed to be a positive integer. We can
modify the subroutine definition to make it throw an exception when this condition is violated:

CHAPTER 4. SUBROUTINES 154

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!

throw new IllegalArgumentException("Starting value must be positive.");

.

. // (The rest of the subroutine is the same as before.)

.

If the start value is bad, the computer executes the throw statement. This will immediately
terminate the subroutine, without executing the rest of the body of the subroutine. Further-
more, the program as a whole will crash unless the exception is “caught” and handled elsewhere
in the program by a try..catch statement, as discussed in Section 3.7. For this to work, the
subroutine call would have to be in the “try” part of the statement.

4.3.8 Global and Local Variables

I’ll finish this section on parameters by noting that we now have three different sorts of vari-
ables that can be used inside a subroutine: local variables declared in the subroutine, formal
parameter names, and static member variables that are declared outside the subroutine.

Local variables have no connection to the outside world; they are purely part of the internal
working of the subroutine.

Parameters are used to “drop” values into the subroutine when it is called, but once the
subroutine starts executing, parameters act much like local variables. Changes made inside
a subroutine to a formal parameter have no effect on the rest of the program (at least if the
type of the parameter is one of the primitive types—things are more complicated in the case of
arrays and objects, as we’ll see later).

Things are different when a subroutine uses a variable that is defined outside the subroutine.
That variable exists independently of the subroutine, and it is accessible to other parts of the
program as well. Such a variable is said to be global to the subroutine, as opposed to the
local variables defined inside the subroutine. A global variable can be used in the entire class
in which it is defined and, if it not private, in other classes as well. Changes made to a
global variable can have effects that extend outside the subroutine where the changes are made.
You’ve seen how this works in the last example in the previous section, where the values of the
global variables, gamesPlayed and gamesWon, are computed inside a subroutine and are used
in the main() routine.

It’s not always bad to use global variables in subroutines, but you should realize that the
global variable then has to be considered part of the subroutine’s interface. The subroutine
uses the global variable to communicate with the rest of the program. This is a kind of sneaky,
back-door communication that is less visible than communication done through parameters,
and it risks violating the rule that the interface of a black box should be straightforward and
easy to understand. So before you use a global variable in a subroutine, you should consider
whether it’s really necessary.

I don’t advise you to take an absolute stand against using global variables inside subroutines.
There is at least one good reason to do it: If you think of the class as a whole as being a kind
of black box, it can be very reasonable to let the subroutines inside that box be a little sneaky
about communicating with each other, if that will make the class as a whole look simpler from
the outside.

CHAPTER 4. SUBROUTINES 155

4.4 Return Values

A subroutine that returns a value is called a function . A given function can only
return a value of a specified type, called the return type of the function. A function call
generally occurs in a position where the computer is expecting to find a value, such as the right
side of an assignment statement, as an actual parameter in a subroutine call, or in the middle
of some larger expression. A boolean-valued function can even be used as the test condition in
an if, while, for or do..while statement.

(It is also legal to use a function call as a stand-alone statement, just as if it were a
regular subroutine. In this case, the computer ignores the value computed by the subrou-
tine. Sometimes this makes sense. For example, the function TextIO.getln(), with a return
type of String, reads and returns a line of input typed in by the user. Usually, the line that
is returned is assigned to a variable to be used later in the program, as in the statement
“name = TextIO.getln();”. However, this function is also useful as a subroutine call state-
ment “TextIO.getln();”, which still reads all input up to and including the next carriage
return. Since the return value is not assigned to a variable or used in an expression, it is simply
discarded. So, the effect of the subroutine call is to read and discard some input. Sometimes,
discarding unwanted input is exactly what you need to do.)

4.4.1 The return statement

You’ve already seen how functions such as Math.sqrt() and TextIO.getInt() can be used.
What you haven’t seen is how to write functions of your own. A function takes the same form
as a regular subroutine, except that you have to specify the value that is to be returned by the
subroutine. This is done with a return statement , which has the following syntax:

return 〈expression 〉 ;

Such a return statement can only occur inside the definition of a function, and the type
of the 〈expression〉 must match the return type that was specified for the function. (More
exactly, it must be legal to assign the expression to a variable whose type is specified by the
return type.) When the computer executes this return statement, it evaluates the expression,
terminates execution of the function, and uses the value of the expression as the returned value
of the function.

For example, consider the function definition

static double pythagoras(double x, double y) {

// Computes the length of the hypotenuse of a right

// triangle, where the sides of the triangle are x and y.

return Math.sqrt(x*x + y*y);

}

Suppose the computer executes the statement “totalLength = 17 + pythagoras(12,5);”.
When it gets to the term pythagoras(12,5), it assigns the actual parameters 12 and 5 to
the formal parameters x and y in the function. In the body of the function, it evaluates
Math.sqrt(12.0*12.0 + 5.0*5.0), which works out to 13.0. This value is “returned” by the
function, so the 13.0 essentially replaces the function call in the assignment statement, which
then has the same effect as the statement “totalLength = 17+13.0 ”. The return value is
added to 17, and the result, 30.0, is stored in the variable, totalLength.

Note that a return statement does not have to be the last statement in the function
definition. At any point in the function where you know the value that you want to return, you

CHAPTER 4. SUBROUTINES 156

can return it. Returning a value will end the function immediately, skipping any subsequent
statements in the function. However, it must be the case that the function definitely does return
some value, no matter what path the execution of the function takes through the code.

You can use a return statement inside an ordinary subroutine, one with declared return
type “void”. Since a void subroutine does not return a value, the return statement does not
include an expression; it simply takes the form “return;”. The effect of this statement is to
terminate execution of the subroutine and return control back to the point in the program from
which the subroutine was called. This can be convenient if you want to terminate execution
somewhere in the middle of the subroutine, but return statements are optional in non-function
subroutines. In a function, on the other hand, a return statement, with expression, is always
required.

Note that a return inside a loop will end the loop as well as the subroutine that contains
it. Similarly, a return in a switch statement breaks out of the switch statement as well as
the subroutine. So, you will sometimes use return in contexts where you are used to seeing a
break.

4.4.2 Function Examples

Here is a very simple function that could be used in a program to compute 3N+1 sequences.
(The 3N+1 sequence problem is one we’ve looked at several times already, including in the
previous section.) Given one term in a 3N+1 sequence, this function computes the next term
of the sequence:

static int nextN(int currentN) {

if (currentN % 2 == 1) // test if current N is odd

return 3*currentN + 1; // if so, return this value

else

return currentN / 2; // if not, return this instead

}

This function has two return statements. Exactly one of the two return statements is executed
to give the value of the function. Some people prefer to use a single return statement at the
very end of the function when possible. This allows the reader to find the return statement
easily. You might choose to write nextN() like this, for example:

static int nextN(int currentN) {

int answer; // answer will be the value returned

if (currentN % 2 == 1) // test if current N is odd

answer = 3*currentN+1; // if so, this is the answer

else

answer = currentN / 2; // if not, this is the answer

return answer; // (Don’t forget to return the answer!)

}

Here is a subroutine that uses this nextN function. In this case, the improvement from the
version of the subroutine in Section 4.3 is not great, but if nextN() were a long function that
performed a complex computation, then it would make a lot of sense to hide that complexity
inside a function:

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms found.

CHAPTER 4. SUBROUTINES 157

N = startingValue; // Start the sequence with startingValue.

count = 1;

System.out.println("The 3N+1 sequence starting from " + N);

System.out.println();

System.out.println(N); // print initial term of sequence

while (N > 1) {

N = nextN(N); // Compute next term, using the function nextN.

count++; // Count this term.

System.out.println(N); // Print this term.

}

System.out.println();

System.out.println("There were " + count + " terms in the sequence.");

}

∗ ∗ ∗

Here are a few more examples of functions. The first one computes a letter grade corre-
sponding to a given numerical grade, on a typical grading scale:

/**

* Returns the letter grade corresponding to the numerical

* grade that is passed to this function as a parameter.

*/

static char letterGrade(int numGrade) {

if (numGrade >= 90)

return ’A’; // 90 or above gets an A

else if (numGrade >= 80)

return ’B’; // 80 to 89 gets a B

else if (numGrade >= 65)

return ’C’; // 65 to 79 gets a C

else if (numGrade >= 50)

return ’D’; // 50 to 64 gets a D

else

return ’F’; // anything else gets an F

} // end of function letterGrade

The type of the return value of letterGrade() is char. Functions can return values of any
type at all. Here’s a function whose return value is of type boolean. It demonstrates some
interesting programming points, so you should read the comments:

/**

* This function returns true if N is a prime number. A prime number

* is an integer greater than 1 that is not divisible by any positive

* integer, except itself and 1. If N has any divisor, D, in the range

* 1 < D < N, then it has a divisor in the range 2 to Math.sqrt(N), namely

* either D itself or N/D. So we only test possible divisors from 2 to

* Math.sqrt(N).

*/

static boolean isPrime(int N) {

int divisor; // A number we will test to see whether it evenly divides N.

CHAPTER 4. SUBROUTINES 158

if (N <= 1)

return false; // No number <= 1 is a prime.

int maxToTry; // The largest divisor that we need to test.

maxToTry = (int)Math.sqrt(N);

// We will try to divide N by numbers between 2 and maxToTry.

// If N is not evenly divisible by any of these numbers, then

// N is prime. (Note that since Math.sqrt(N) is defined to

// return a value of type double, the value must be typecast

// to type int before it can be assigned to maxToTry.)

for (divisor = 2; divisor <= maxToTry; divisor++) {

if (N % divisor == 0) // Test if divisor evenly divides N.

return false; // If so, we know N is not prime.

// No need to continue testing!

}

// If we get to this point, N must be prime. Otherwise,

// the function would already have been terminated by

// a return statement in the previous loop.

return true; // Yes, N is prime.

} // end of function isPrime

Finally, here is a function with return type String. This function has a String as parameter.
The returned value is a reversed copy of the parameter. For example, the reverse of “Hello
World” is “dlroW olleH”. The algorithm for computing the reverse of a string, str, is to
start with an empty string and then to append each character from str, starting from the last
character of str and working backwards to the first:

static String reverse(String str) {

String copy; // The reversed copy.

int i; // One of the positions in str,

// from str.length() - 1 down to 0.

copy = ""; // Start with an empty string.

for (i = str.length() - 1; i >= 0; i--) {

// Append i-th char of str to copy.

copy = copy + str.charAt(i);

}

return copy;

}

A palindrome is a string that reads the same backwards and forwards, such as “radar”. The
reverse() function could be used to check whether a string, word, is a palindrome by testing
“if (word.equals(reverse(word)))”.

By the way, a typical beginner’s error in writing functions is to print out the answer, instead
of returning it. This represents a fundamental misunderstanding. The task of a function
is to compute a value and return it to the point in the program where the function was called.
That’s where the value is used. Maybe it will be printed out. Maybe it will be assigned to a
variable. Maybe it will be used in an expression. But it’s not for the function to decide.

CHAPTER 4. SUBROUTINES 159

4.4.3 3N+1 Revisited

I’ll finish this section with a complete new version of the 3N+1 program. This will give me a
chance to show the function nextN(), which was defined above, used in a complete program.
I’ll also take the opportunity to improve the program by getting it to print the terms of the
sequence in columns, with five terms on each line. This will make the output more presentable.
The idea is this: Keep track of how many terms have been printed on the current line; when
that number gets up to 5, start a new line of output. To make the terms line up into neat
columns, I use formatted output.

/**

* A program that computes and displays several 3N+1 sequences. Starting

* values for the sequences are input by the user. Terms in the sequence

* are printed in columns, with five terms on each line of output.

* After a sequence has been displayed, the number of terms in that

* sequence is reported to the user.

*/

public class ThreeN2 {

public static void main(String[] args) {

System.out.println("This program will print out 3N+1 sequences");

System.out.println("for starting values that you specify.");

System.out.println();

int K; // Starting point for sequence, specified by the user.

do {

System.out.println("Enter a starting value;");

System.out.print("To end the program, enter 0: ");

K = TextIO.getlnInt(); // get starting value from user

if (K > 0) // print sequence, but only if K is > 0

print3NSequence(K);

} while (K > 0); // continue only if K > 0

} // end main

/**

* print3NSequence prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number

* of terms in the sequence. The value of the parameter, startingValue,

* must be a positive integer.

*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms found.

int onLine; // The number of terms that have been output

// so far on the current line.

N = startingValue; // Start the sequence with startingValue;

count = 1; // We have one term so far.

System.out.println("The 3N+1 sequence starting from " + N);

System.out.println();

System.out.printf("%8d", N); // Print initial term, using 8 characters.

onLine = 1; // There’s now 1 term on current output line.

CHAPTER 4. SUBROUTINES 160

while (N > 1) {

N = nextN(N); // compute next term

count++; // count this term

if (onLine == 5) { // If current output line is full

System.out.println(); // ...then output a carriage return

onLine = 0; // ...and note that there are no terms

// on the new line.

}

System.out.printf("%8d", N); // Print this term in an 8-char column.

onLine++; // Add 1 to the number of terms on this line.

}

System.out.println(); // end current line of output

System.out.println(); // and then add a blank line

System.out.println("There were " + count + " terms in the sequence.");

} // end of print3NSequence

/**

* nextN computes and returns the next term in a 3N+1 sequence,

* given that the current term is currentN.

*/

static int nextN(int currentN) {

if (currentN % 2 == 1)

return 3 * currentN + 1;

else

return currentN / 2;

} // end of nextN()

} // end of class ThreeN2

You should read this program carefully and try to understand how it works.

4.5 APIs, Packages, and Javadoc

As computers and their user interfaces have become easier to use, they have also
become more complex for programmers to deal with. You can write programs for a simple
console-style user interface using just a few subroutines that write output to the console and
read the user’s typed replies. A modern graphical user interface, with windows, buttons, scroll
bars, menus, text-input boxes, and so on, might make things easier for the user, but it forces
the programmer to cope with a hugely expanded array of possibilities. The programmer sees
this increased complexity in the form of great numbers of subroutines that are provided for
managing the user interface, as well as for other purposes.

4.5.1 Toolboxes

Someone who wanted to program for Macintosh computers—and to produce programs that
look and behave the way users expect them to—had to deal with the Macintosh Toolbox, a
collection of well over a thousand different subroutines. There are routines for opening and
closing windows, for drawing geometric figures and text to windows, for adding buttons to
windows, and for responding to mouse clicks on the window. There are other routines for

CHAPTER 4. SUBROUTINES 161

creating menus and for reacting to user selections from menus. Aside from the user interface,
there are routines for opening files and reading data from them, for communicating over a
network, for sending output to a printer, for handling communication between programs, and
in general for doing all the standard things that a computer has to do. Microsoft Windows
provides its own set of subroutines for programmers to use, and they are quite a bit different
from the subroutines used on the Mac. Linux has several different GUI toolboxes for the
programmer to choose from.

The analogy of a “toolbox” is a good one to keep in mind. Every programming project
involves a mixture of innovation and reuse of existing tools. A programmer is given a set of
tools to work with, starting with the set of basic tools that are built into the language: things
like variables, assignment statements, if statements, and loops. To these, the programmer can
add existing toolboxes full of routines that have already been written for performing certain
tasks. These tools, if they are well-designed, can be used as true black boxes: They can be called
to perform their assigned tasks without worrying about the particular steps they go through to
accomplish those tasks. The innovative part of programming is to take all these tools and apply
them to some particular project or problem (word-processing, keeping track of bank accounts,
processing image data from a space probe, Web browsing, computer games, . . .). This is called
applications programming .

A software toolbox is a kind of black box, and it presents a certain interface to the pro-
grammer. This interface is a specification of what routines are in the toolbox, what parameters
they use, and what tasks they perform. This information constitutes the API , or Application
Programming Interface , associated with the toolbox. The Macintosh API is a specification
of all the routines available in the Macintosh Toolbox. A company that makes some hard-
ware device—say a card for connecting a computer to a network—might publish an API for
that device consisting of a list of routines that programmers can call in order to communicate
with and control the device. Scientists who write a set of routines for doing some kind of
complex computation—such as solving “differential equations,” say—would provide an API to
allow others to use those routines without understanding the details of the computations they
perform.

∗ ∗ ∗

The Java programming language is supplemented by a large, standard API. You’ve seen
part of this API already, in the form of mathematical subroutines such as Math.sqrt(), the
String data type and its associated routines, and the System.out.print() routines. The
standard Java API includes routines for working with graphical user interfaces, for network
communication, for reading and writing files, and more. It’s tempting to think of these routines
as being built into the Java language, but they are technically subroutines that have been
written and made available for use in Java programs.

Java is platform-independent. That is, the same program can run on platforms as diverse as
Mac OS, Windows, Linux, and others. The same Java API must work on all these platforms.
But notice that it is the interface that is platform-independent; the implementation varies
from one platform to another. A Java system on a particular computer includes implementations
of all the standard API routines. A Java program includes only calls to those routines. When
the Java interpreter executes a program and encounters a call to one of the standard routines,
it will pull up and execute the implementation of that routine which is appropriate for the
particular platform on which it is running. This is a very powerful idea. It means that you only
need to learn one API to program for a wide variety of platforms.

CHAPTER 4. SUBROUTINES 162

4.5.2 Java’s Standard Packages

Like all subroutines in Java, the routines in the standard API are grouped into classes. To
provide larger-scale organization, classes in Java can be grouped into packages, which were
introduced briefly in Subsection 2.6.6. You can have even higher levels of grouping, since
packages can also contain other packages. In fact, the entire standard Java API is implemented
in several packages. One of these, which is named “java”, contains several non-GUI packages
as well as the original AWT graphics user interface classes. Another package, “javax”, was
added in Java version 1.2 and contains the classes used by the Swing graphical user interface
and other additions to the API.

A package can contain both classes and other packages. A package that is contained in
another package is sometimes called a “sub-package.” Both the java package and the javax

package contain sub-packages. One of the sub-packages of java, for example, is called “awt”.
Since awt is contained within java, its full name is actually java.awt. This package contains
classes that represent GUI components such as buttons and menus in the AWT. AWT is the
older of the two Java GUI toolboxes and is no longer widely used. However, java.awt also
contains a number of classes that form the foundation for all GUI programming, such as the
Graphics class which provides routines for drawing on the screen, the Color class which repre-
sents colors, and the Font class which represents the fonts that are used to display characters
on the screen. Since these classes are contained in the package java.awt, their full names
are actually java.awt.Graphics, java.awt.Color, and java.awt.Font. (I hope that by now
you’ve gotten the hang of how this naming thing works in Java.) Similarly, javax contains a
sub-package named javax.swing, which includes such GUI classes as javax.swing.JButton,
javax.swing.JMenu, and javax.swing.JFrame. The GUI classes in javax.swing, together
with the foundational classes in java.awt, are all part of the API that makes it possible to
program graphical user interfaces in Java.

The java package includes several other sub-packages, such as java.io, which provides fa-
cilities for input/output, java.net, which deals with network communication, and java.util,
which provides a variety of “utility” classes. The most basic package is called java.lang. This
package contains fundamental classes such as String, Math, Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting in the
java package, its sub-packages, the classes in those sub-packages, and the subroutines in those
classes. This is not a complete picture, since it shows only a very few of the many items in each
element:

drawRect()

setColor()

sqrt()

random()

GraphicsMath

Color

Font

String

Integer

awtlang util

java

Subroutines nested in classes nested in two layers of packages.

The full name of sqrt() is java.lang.Math.sqrt().

CHAPTER 4. SUBROUTINES 163

The official documentation for the standard Java 7 API lists 209 different packages, including
sub-packages, and it lists 4024 classes in these packages. Many of these are rather obscure or
very specialized, but you might want to browse through the documentation to see what is
available. As I write this, the documentation for the complete API can be found at

http://download.oracle.com/javase/7/docs/api/

Even an expert programmer won’t be familiar with the entire API, or even a majority of it. In
this book, you’ll only encounter several dozen classes, and those will be sufficient for writing a
wide variety of programs.

4.5.3 Using Classes from Packages

Let’s say that you want to use the class java.awt.Color in a program that you are writing.
Like any class, java.awt.Color is a type, which means that you can use it to declare variables
and parameters and to specify the return type of a function. One way to do this is to use the
full name of the class as the name of the type. For example, suppose that you want to declare
a variable named rectColor of type java.awt.Color. You could say:

java.awt.Color rectColor;

This is just an ordinary variable declaration of the form “〈type-name〉 〈variable-name〉;”. Of
course, using the full name of every class can get tiresome, and you will hardly ever see full
names like java.awt.Color used in a program. Java makes it possible to avoid using the full
name of a class by importing the class. If you put

import java.awt.Color;

at the beginning of a Java source code file, then, in the rest of the file, you can abbreviate the
full name java.awt.Color to just the simple name of the class, which is Color. Note that the
import line comes at the start of a file (after the package statement, if there is one) and is
not inside any class. Although it is sometimes referred to as a statement, it is more properly
called an import directive since it is not a statement in the usual sense. The import directive
“import java.awt.Color” would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow you to use
simple class names instead of full “package.class” names. You aren’t really importing anything
substantial; if you leave out the import directive, you can still access the class—you just have
to use its full name. There is a shortcut for importing all the classes from a given package. You
can import all the classes from java.awt by saying

import java.awt.*;

The “*” is a wildcard that matches every class in the package. (However, it does not match
sub-packages; for example, you cannot import the entire contents of all the sub-packages of
the java package by saying import java.*.)

Some programmers think that using a wildcard in an import statement is bad style, since
it can make a large number of class names available that you are not going to use and might
not even know about. They think it is better to explicitly import each individual class that
you want to use. In my own programming, I often use wildcards to import all the classes from
the most relevant packages, and use individual imports when I am using just one or two classes
from a given package.

http://download.oracle.com/javase/7/docs/api/

CHAPTER 4. SUBROUTINES 164

In fact, any Java program that uses a graphical user interface is likely to use many
classes from the java.awt and javax.swing packages as well as from another package named
java.awt.event, and I often begin such programs with

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

A program that works with networking might include the line “import java.net.*;”, while
one that reads or writes files might use “import java.io.*;”. But when you start importing
lots of packages in this way, you have to be careful about one thing: It’s possible for two classes
that are in different packages to have the same name. For example, both the java.awt package
and the java.util package contain a class named List. If you import both java.awt.* and
java.util.*, the simple name List will be ambiguous. If you try to declare a variable of
type List, you will get a compiler error message about an ambiguous class name. You can
still use both classes in your program: Use the full name of the class, either java.awt.List or
java.util.List. Another solution, of course, is to use import to import the individual classes
you need, instead of importing entire packages.

Because the package java.lang is so fundamental, all the classes in java.lang are auto-
matically imported into every program. It’s as if every program began with the statement
“import java.lang.*;”. This is why we have been able to use the class name String instead
of java.lang.String, and Math.sqrt() instead of java.lang.Math.sqrt(). It would still,
however, be perfectly legal to use the longer forms of the names.

Programmers can create new packages. Suppose that you want some classes that you are
writing to be in a package named utilities. Then the source code file that defines those
classes must begin with the line

package utilities;

This would come even before any import directive in that file. Furthermore, the source code
file would be placed in a folder with the same name as the package, “utilities” in this example.
And a class that is in a subpackage must be in a subfolder. For example, a class in a package
named utilities.net would be in folder named “net” inside a folder named “utilities”. A
class that is in a package automatically has access to other classes in the same package; that
is, a class doesn’t have to import the package in which it is defined.

In projects that define large numbers of classes, it makes sense to organize those classes
into packages. It also makes sense for programmers to create new packages as toolboxes that
provide functionality and APIs for dealing with areas not covered in the standard Java API.
(And in fact such “toolmaking” programmers often have more prestige than the applications
programmers who use their tools.)

However, with just a couple of exceptions, I will not be creating packages in this textbook.
For the purposes of this book, you need to know about packages mainly so that you will be able
to import the standard packages. These packages are always available to the programs that
you write. You might wonder where the standard classes are actually located. Again, that can
depend to some extent on the version of Java that you are using, but in recent standard versions,
they are stored in jar files in a subdirectory named lib inside the Java Runtime Environment
installation directory. A jar (or “Java archive”) file is a single file that can contain many classes.
Most of the standard classes can be found in a jar file named rt.jar. In fact, Java programs
are generally distributed in the form of jar files, instead of as individual class files.

Although we won’t be creating packages explicitly, every class is actually part of a package.
If a class is not specifically placed in a package, then it is put in something called the default

CHAPTER 4. SUBROUTINES 165

package , which has no name. Almost all the examples that you see in this book are in the
default package.

4.5.4 Javadoc

To use an API effectively, you need good documentation for it. The documentation for most
Java APIs is prepared using a system called Javadoc. For example, this system is used to
prepare the documentation for Java’s standard packages. And almost everyone who creates a
toolbox in Java publishes Javadoc documentation for it.

Javadoc documentation is prepared from special comments that are placed in the Java
source code file. Recall that one type of Java comment begins with /* and ends with */. A
Javadoc comment takes the same form, but it begins with /** rather than simply /*. You have
already seen comments of this form in many of the examples in this book.

Note that a Javadoc comment must be placed just before the subroutine that it is com-
menting on. This rule is always followed. You can have Javadoc comments for subroutines, for
member variables, and for classes. The Javadoc comment always immediately precedes the
thing it is commenting on.

Like any comment, a Javadoc comment is ignored by the computer when the file is compiled.
But there is a tool called javadoc that reads Java source code files, extracts any Javadoc
comments that it finds, and creates a set of Web pages containing the comments in a nicely
formatted, interlinked form. By default, javadoc will only collect information about public
classes, subroutines, and member variables, but it allows the option of creating documentation
for non-public things as well. If javadoc doesn’t find any Javadoc comment for something, it
will construct one, but the comment will contain only basic information such as the name and
type of a member variable or the name, return type, and parameter list of a subroutine. This
is syntactic information. To add information about semantics and pragmatics, you have to
write a Javadoc comment.

As an example, you can look at the documentation Web page for TextIO. The documentation
page was created by applying the javadoc tool to the source code file, TextIO.java. If you
have downloaded the on-line version of this book, the documentation can be found in the
TextIO Javadoc directory, or you can find a link to it in the on-line version of this section.

In a Javadoc comment, the *’s at the start of each line are optional. The javadoc tool
will remove them. In addition to normal text, the comment can contain certain special codes.
For one thing, the comment can contain HTML mark-up commands. HTML is the language
that is used to create web pages, and Javadoc comments are meant to be shown on web pages.
The javadoc tool will copy any HTML commands in the comments to the web pages that it
creates. The book will not teach you HTML, but as an example, you can add <p> to indicate
the start of a new paragraph. (Generally, in the absence of HTML commands, blank lines and
extra spaces in the comment are ignored. Furthermore, the characters & and < have special
meaning in HTML and should not be used in Javadoc comments except with those meanings;
they can be written as & and <.)

In addition to HTML commands, Javadoc comments can include doc tags, which are
processed as commands by the javadoc tool. A doc tag has a name that begins with the
character @. I will only discuss four tags: @author, @param, @return, and @throws. The
@author tag can be used only for a class, and should be followed by the name of the author.
The other three tags are used in Javadoc comments for a subroutine to provide information
about its parameters, its return value, and the exceptions that it might throw. These tags

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/TextIO.java

CHAPTER 4. SUBROUTINES 166

must be placed at the end of the comment, after any description of the subroutine itself. The
syntax for using them is:

@param 〈parameter-name 〉 〈description-of-parameter 〉

@return 〈description-of-return-value 〉

@throws 〈exception-class-name 〉 〈description-of-exception 〉

The 〈descriptions〉 can extend over several lines. The description ends at the next doc tag or at
the end of the comment. You can include a @param tag for every parameter of the subroutine
and a @throws for as many types of exception as you want to document. You should have
a @return tag only for a non-void subroutine. These tags do not have to be given in any
particular order.

Here is an example that doesn’t do anything exciting but that does use all three types of
doc tag:

/**

* This subroutine computes the area of a rectangle, given its width

* and its height. The length and the width should be positive numbers.

* @param width the length of one side of the rectangle

* @param height the length the second side of the rectangle

* @return the area of the rectangle

* @throws IllegalArgumentException if either the width or the height

* is a negative number.

*/

public static double areaOfRectangle(double length, double width) {

if (width < 0 || height < 0)

throw new IllegalArgumentException("Sides must have positive length.");

double area;

area = width * height;

return area;

}

I use Javadoc comments for many of my examples. I encourage you to use them in your
own code, even if you don’t plan to generate Web page documentation of your work, since it’s
a standard format that other Java programmers will be familiar with.

If you do want to create Web-page documentation, you need to run the javadoc tool. This
tool is available as a command in the Java Development Kit that was discussed in Section 2.6.
You can use javadoc in a command line interface similarly to the way that the javac and java

commands are used. Javadoc can also be applied in the integrated development environments
that were also discussed in Section 2.6. I won’t go into any of the details here; consult the
documentation for your programming environment.

4.5.5 Static Import

Before ending this section, I will mention an extension of the import directive. We have seen
that import makes it possible to refer to a class such as java.awt.Color using its simple name,
Color. But you still have to use compound names to refer to static member variables such as
System.out and to static methods such as Math.sqrt.

There is another form of the import directive that can be used to import static members
of a class in the same way that the ordinary import directive imports classes from a package.
That form of the directive is called a static import , and it has syntax

CHAPTER 4. SUBROUTINES 167

import static 〈package-name 〉.〈class-name 〉.〈static-member-name 〉;

to import one static member name from a class, or

import static 〈package-name 〉.〈class-name 〉.*;

to import all the public static members from a class. For example, if you preface a class
definition with

import static java.lang.System.out;

then you can use the simple name out instead of the compound name System.out. This means
you can say out.println instead of System.out.println. If you are going to work extensively
with the Math class, you can preface your class definition with

import static java.lang.Math.*;

This would allow you to say sqrt instead of Math.sqrt, log instead of Math.log, PI instead
of Math.PI, and so on.

Note that the static import directive requires a 〈package-name〉, even for classes in the
standard package java.lang. One consequence of this is that you can’t do a static import from
a class in the default package. In particular, it is not possible to do a static import from my
TextIO class—if you want to do that, you have to move TextIO into a package.

4.6 More on Program Design

Understanding how programs work is one thing. Designing a program to perform some
particular task is another thing altogether. In Section 3.2, I discussed how pseudocode and
stepwise refinement can be used to methodically develop an algorithm. We can now see how
subroutines can fit into the process.

Stepwise refinement is inherently a top-down process, but the process does have a “bottom,”
that is, a point at which you stop refining the pseudocode algorithm and translate what you
have directly into proper program code. In the absence of subroutines, the process would
not bottom out until you get down to the level of assignment statements and very primitive
input/output operations. But if you have subroutines lying around to perform certain useful
tasks, you can stop refining as soon as you’ve managed to express your algorithm in terms of
those tasks.

This allows you to add a bottom-up element to the top-down approach of stepwise re-
finement. Given a problem, you might start by writing some subroutines that perform tasks
relevant to the problem domain. The subroutines become a toolbox of ready-made tools that
you can integrate into your algorithm as you develop it. (Alternatively, you might be able to
buy or find a software toolbox written by someone else, containing subroutines that you can
use in your project as black boxes.)

Subroutines can also be helpful even in a strict top-down approach. As you refine your
algorithm, you are free at any point to take any sub-task in the algorithm and make it into a
subroutine. Developing that subroutine then becomes a separate problem, which you can work
on separately. Your main algorithm will merely call the subroutine. This, of course, is just
a way of breaking your problem down into separate, smaller problems. It is still a top-down
approach because the top-down analysis of the problem tells you what subroutines to write.
In the bottom-up approach, you start by writing or obtaining subroutines that are relevant to
the problem domain, and you build your solution to the problem on top of that foundation of
subroutines.

CHAPTER 4. SUBROUTINES 168

4.6.1 Preconditions and Postconditions

When working with subroutines as building blocks, it is important to be clear about how a
subroutine interacts with the rest of the program. This interaction is specified by the contract
of the subroutine, as discussed in Section 4.1. A convenient way to express the contract of a
subroutine is in terms of preconditions and postconditions.

A precondition of a subroutine is something that must be true when the subroutine is called,
if the subroutine is to work correctly. For example, for the built-in function Math.sqrt(x), a
precondition is that the parameter, x, is greater than or equal to zero, since it is not possible
to take the square root of a negative number. In terms of a contract, a precondition represents
an obligation of the caller of the subroutine. If you call a subroutine without meeting its
precondition, then there is no reason to expect it to work properly. The program might crash
or give incorrect results, but you can only blame yourself, not the subroutine.

A postcondition of a subroutine represents the other side of the contract. It is something
that will be true after the subroutine has run (assuming that its preconditions were met—and
that there are no bugs in the subroutine). The postcondition of the function Math.sqrt() is
that the square of the value that is returned by this function is equal to the parameter that is
provided when the subroutine is called. Of course, this will only be true if the precondition—
that the parameter is greater than or equal to zero—is met. A postcondition of the built-in
subroutine System.out.print(x) is that the value of the parameter has been displayed on the
screen.

Preconditions most often give restrictions on the acceptable values of parameters, as in the
example of Math.sqrt(x). However, they can also refer to global variables that are used in the
subroutine. Or if it only makes sense to call the subroutine at certain times, the precondition
might refer to the state that the program must be in when the subroutine is called.

The postcondition of a subroutine, on the other hand, specifies the task that it performs.
For a function, the postcondition should specify the value that the function returns.

Subroutines are sometimes described by comments that explicitly specify their preconditions
and postconditions. When you are given a pre-written subroutine, a statement of its precon-
ditions and postconditions tells you how to use it and what it does. When you are assigned
to write a subroutine, the preconditions and postconditions give you an exact specification of
what the subroutine is expected to do. I will use this approach in the example that constitutes
the rest of this section. The comments are given in the form of Javadoc comments, but I will
explicitly label the preconditions and postconditions. (Many computer scientists think that
new doc tags @precondition and @postcondition should be added to the Javadoc system for
explicit labeling of preconditions and postconditions, but that has not yet been done.)

4.6.2 A Design Example

Let’s work through an example of program design using subroutines. In this example, we will
use pre-written subroutines as building blocks and we will also design new subroutines that we
need to complete the project. The API that I will use here is defined in Mosaic.java, which
in turns depends on MosaicPanel.java. To compile and run a program that uses the API,
the classes Mosaic and MosaicPanel must be available. That is, the files Mosaic.java and
MosaicPanel.java, or the the corresponding compiled class files, must be in the same folder
as the class that defines the program.

So, suppose that I have found an already-written class called Mosaic. This class allows a
program to work with a window that displays little colored rectangles arranged in rows and

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java

CHAPTER 4. SUBROUTINES 169

columns. The window can be opened, closed, and otherwise manipulated with static member
subroutines defined in the Mosaic class. In fact, the class defines a toolbox or API that can be
used for working with such windows. Here are some of the available routines in the API, with
Javadoc-style comments. (Remeber that a Javadoc comment comes before the thing that it is
commenting on.)

/**

* Opens a "mosaic" window on the screen.

*

* Precondition: The parameters rows, cols, w, and h are positive integers.

* Postcondition: A window is open on the screen that can display rows and

* columns of colored rectangles. Each rectangle is w pixels

* wide and h pixels high. The number of rows is given by

* the first parameter and the number of columns by the

* second. Initially, all rectangles are black.

*

* Note: The rows are numbered from 0 to rows - 1, and the columns are

* numbered from 0 to cols - 1.

*/

public static void open(int rows, int cols, int w, int h)

/**

* Sets the color of one of the rectangles in the window.

*

* Precondition: row and col are in the valid range of row and column numbers,

* and r, g, and b are in the range 0 to 255, inclusive.

* Postcondition: The color of the rectangle in row number row and column

* number col has been set to the color specified by r, g,

* and b. r gives the amount of red in the color with 0

* representing no red and 255 representing the maximum

* possible amount of red. The larger the value of r, the

* more red in the color. g and b work similarly for the

* green and blue color components.

*/

public static void setColor(int row, int col, int r, int g, int b)

/**

* Gets the red component of the color of one of the rectangles.

*

* Precondition: row and col are in the valid range of row and column numbers.

* Postcondition: The red component of the color of the specified rectangle is

* returned as an integer in the range 0 to 255 inclusive.

*/

public static int getRed(int row, int col)

/**

* Like getRed, but returns the green component of the color.

*/

public static int getGreen(int row, int col)

/**

* Like getRed, but returns the blue component of the color.

*/

CHAPTER 4. SUBROUTINES 170

public static int getBlue(int row, int col)

/**

* Tests whether the mosaic window is currently open.

*

* Precondition: None.

* Postcondition: The return value is true if the window is open when this

* function is called, and it is false if the window is

* closed.

*/

public static boolean isOpen()

/**

* Inserts a delay in the program (to regulate the speed at which the colors

* are changed, for example).

*

* Precondition: milliseconds is a positive integer.

* Postcondition: The program has paused for at least the specified number

* of milliseconds, where one second is equal to 1000

* milliseconds.

*/

public static void delay(int milliseconds)

Remember that these subroutines are members of the Mosaic class, so when they are called
from outside Mosaic, the name of the class must be included as part of the name of the routine.
For example, we’ll have to use the name Mosaic.isOpen() rather than simply isOpen().

You’ll notice that the comments on the subroutine don’t specify what happens when the
preconditions are not met. Although a subroutine is not really obligated by its contract to
do anything particular in that case, it would be good to know what happens. For example,
if the precondition, “row and col are in the valid range of row and column numbers,” on
the setColor() or getRed() routine is violated, an IllegalArgumentException will be thrown.
Knowing that fact would allow you to write programs that catch and handle the exception,
and it would be good to document it with a @throws doc tag in the Javadoc comment. Other
questions remain about the behavior of the subroutines. For example, what happens if you call
Mosaic.open() and there is already a mosaic window open on the screen? (In fact, the old one
will be closed, and a new one will be created.) It’s difficult to fully document the behavior of
a piece of software—sometimes, you just have to experiment or look at the full source code.

∗ ∗ ∗

My idea for a program is to use the Mosaic class as the basis for a neat animation. I want
to fill the window with randomly colored squares, and then randomly change the colors in a
loop that continues as long as the window is open. “Randomly change the colors” could mean
a lot of different things, but after thinking for a while, I decide it would be interesting to have
a “disturbance” that wanders randomly around the window, changing the color of each square
that it encounters. Here’s a picture showing what the contents of the window might look like
at one point in time:

CHAPTER 4. SUBROUTINES 171

With basic routines for manipulating the window as a foundation, I can turn to the specific
problem at hand. A basic outline for my program is

Open a Mosaic window

Fill window with random colors

Move around, changing squares at random

Filling the window with random colors seems like a nice coherent task that I can work on
separately, so let’s decide to write a separate subroutine to do it. The third step can be
expanded a bit more, into the steps: Start in the middle of the window, then keep moving
to new squares and changing the color of those squares. This should continue as long as the
mosaic window is still open. Thus we can refine the algorithm to:

Open a Mosaic window

Fill window with random colors

Set the current position to the middle square in the window

As long as the mosaic window is open:

Randomly change color of the square at the current position

Move current position up, down, left, or right, at random

I need to represent the current position in some way. That can be done with two int variables
named currentRow and currentColumn that hold the row number and the column number of
the square where the disturbance is currently located. I’ll use 16 rows and 20 columns of squares
in my mosaic, so setting the current position to be in the center means setting currentRow to 8
and currentColumn to 10. I already have a subroutine, Mosaic.open(), to open the window,
and I have a function, Mosaic.isOpen(), to test whether the window is open. To keep the
main routine simple, I decide that I will write two more subroutines of my own to carry out
the two tasks in the while loop. The algorithm can then be written in Java as:

Mosaic.open(16,20,25,25)

fillWithRandomColors();

currentRow = 8; // Middle row, halfway down the window.

currentColumn = 10; // Middle column.

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

}

CHAPTER 4. SUBROUTINES 172

With the proper wrapper, this is essentially the main() routine of my program. It turns out I
have to make one small modification: To prevent the animation from running much, much too
fast, the line “Mosaic.delay(1);” is added to the while loop.

The main() routine is taken care of, but to complete the program, I still have to write the
subroutines fillWithRandomColors(), changeToRandomColor(int,int), and randomMove().
Writing each of these subroutines is a separate, small task. The fillWithRandomColors()

routine is defined by the postcondition that “each of the rectangles in the mosaic has been
changed to a random color.” Pseudocode for an algorithm to accomplish this task can be given
as:

For each row:

For each column:

set the square in that row and column to a random color

“For each row” and “for each column” can be implemented as for loops. We’ve already planned
to write a subroutine changeToRandomColor that can be used to set the color. (The possi-
bility of reusing subroutines in several places is one of the big payoffs of using them!) So,
fillWithRandomColors() can be written in proper Java as:

static void fillWithRandomColors() {

int row, column;

for (row = 0; row < 16; row++)

for (column = 0; column < 20; column++)

changeToRandomColor(row,column);

}

Turning to the changeToRandomColor subroutine, we already have a method in the Mosaic
class, Mosaic.setColor(), that can be used to change the color of a square. If we want a ran-
dom color, we just have to choose random values for r, g, and b. According to the precondition
of the Mosaic.setColor() subroutine, these random values must be integers in the range from
0 to 255. A formula for randomly selecting such an integer is “(int)(256*Math.random())”.
So the random color subroutine becomes:

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random());

int green = (int)(256*Math.random());

int blue = (int)(256*Math.random());

Mosaic.setColor(rowNum,colNum,red,green,blue);

}

Finally, consider the randomMove subroutine, which is supposed to randomly move the
disturbance up, down, left, or right. To make a random choice among four directions, we
can choose a random integer in the range 0 to 3. If the integer is 0, move in one direction;
if it is 1, move in another direction; and so on. The position of the disturbance is given
by the variables currentRow and currentColumn. To “move up” means to subtract 1 from
currentRow. This leaves open the question of what to do if currentRow becomes -1, which
would put the disturbance above the window (which would violate a precondition of several
of the Mosaic subroutines). Rather than let this happen, I decide to move the disturbance to
the opposite edge of the grid by setting currentRow to 15. (Remember that the 16 rows are
numbered from 0 to 15.) An alternative to jumping to the opposite edge would be to simply
do nothing in this case. Moving the disturbance down, left, or right is handled similarly. If we
use a switch statement to decide which direction to move, the code for randomMove becomes:

CHAPTER 4. SUBROUTINES 173

int directionNum;

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

currentRow--;

if (currentRow < 0) // CurrentRow is outside the mosaic;

currentRow = 15; // move it to the opposite edge.

break;

case 1: // move right

currentColumn++;

if (currentColumn >= 20)

currentColumn = 0;

break;

case 2: // move down

currentRow++;

if (currentRow >= 16)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = 19;

break;

}

4.6.3 The Program

Putting this all together, we get the following complete program. Note that I’ve added Javadoc-
style comments for the class itself and for each of the subroutines. The variables currentRow
and currentColumn are defined as static members of the class, rather than local variables,
because each of them is used in several different subroutines. You can find a copy of the source
code in RandomMosaicWalk.java. Remember that this program actually depends on two other
files, Mosaic.java and MosaicPanel.java.

/**

* This program opens a window full of randomly colored squares. A "disturbance"

* moves randomly around in the window, randomly changing the color of each

* square that it visits. The program runs until the user closes the window.

*/

public class RandomMosaicWalk {

static int currentRow; // Row currently containing the disturbance.

static int currentColumn; // Column currently containing disturbance.

/**

* The main program creates the window, fills it with random colors,

* and then moves the disturbance in a random walk around the window

* as long as the window is open.

*/

public static void main(String[] args) {

Mosaic.open(16,20,25,25);

fillWithRandomColors();

currentRow = 8; // start at center of window

currentColumn = 10;

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java

CHAPTER 4. SUBROUTINES 174

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

Mosaic.delay(1);

}

} // end main

/**

* Fills the window with randomly colored squares.

* Precondition: The mosaic window is open.

* Postcondition: Each square has been set to a random color.

*/

static void fillWithRandomColors() {

int row, column;

for (row=0; row < 16; row++) {

for (column=0; column < 20; column++) {

changeToRandomColor(row, column);

}

}

} // end fillWithRandomColors

/**

* Changes one square to a new randomly selected color.

* Precondition: The specified rowNum and colNum are in the valid range

* of row and column numbers.

* Postcondition: The square in the specified row and column has

* been set to a random color.

* @param rowNum the row number of the square, counting rows down

* from 0 at the top

* @param colNum the column number of the square, counting columns over

* from 0 at the left

*/

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random()); // Choose random levels in range

int green = (int)(256*Math.random()); // 0 to 255 for red, green,

int blue = (int)(256*Math.random()); // and blue color components.

Mosaic.setColor(rowNum,colNum,red,green,blue);

} // end changeToRandomColor

/**

* Move the disturbance.

* Precondition: The global variables currentRow and currentColumn

* are within the legal range of row and column numbers.

* Postcondition: currentRow or currentColumn is changed to one of the

* neighboring positions in the grid -- up, down, left, or

* right from the current position. If this moves the

* position outside of the grid, then it is moved to the

* opposite edge of the grid.

*/

static void randomMove() {

int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

currentRow--;

CHAPTER 4. SUBROUTINES 175

if (currentRow < 0)

currentRow = 15;

break;

case 1: // move right

currentColumn++;

if (currentColumn >= 20)

currentColumn = 0;

break;

case 2: // move down

currentRow ++;

if (currentRow >= 16)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = 19;

break;

}

} // end randomMove

} // end class RandomMosaicWalk

4.7 The Truth About Declarations

Names are fundamental to programming, as I said a few chapters ago. There are a lot
of details involved in declaring and using names. I have been avoiding some of those details. In
this section, I’ll reveal most of the truth (although still not the full truth) about declaring and
using variables in Java. The material in the subsections “Initialization in Declarations” and
“Named Constants” is particularly important, since I will be using it regularly from now on.

4.7.1 Initialization in Declarations

When a variable declaration is executed, memory is allocated for the variable. This memory
must be initialized to contain some definite value before the variable can be used in an expres-
sion. In the case of a local variable, the declaration is often followed closely by an assignment
statement that does the initialization. For example,

int count; // Declare a variable named count.

count = 0; // Give count its initial value.

However, the truth about declaration statements is that it is legal to include the initializa-
tion of the variable in the declaration statement. The two statements above can therefore be
abbreviated as

int count = 0; // Declare count and give it an initial value.

The computer still executes this statement in two steps: Declare the variable count, then assign
the value 0 to the newly created variable. The initial value does not have to be a constant. It
can be any expression. It is legal to initialize several variables in one declaration statement.
For example,

CHAPTER 4. SUBROUTINES 176

char firstInitial = ’D’, secondInitial = ’E’;

int x, y = 1; // OK, but only y has been initialized!

int N = 3, M = N+2; // OK, N is initialized

// before its value is used.

This feature is especially common in for loops, since it makes it possible to declare a loop control
variable at the same point in the loop where it is initialized. Since the loop control variable
generally has nothing to do with the rest of the program outside the loop, it’s reasonable to
have its declaration in the part of the program where it’s actually used. For example:

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

You should remember that this is simply an abbreviation for the following, where I’ve added
an extra pair of braces to show that i is considered to be local to the for statement and no
longer exists after the for loop ends:

{

int i;

for (i = 0; i < 10; i++) {

System.out.println(i);

}

}

A member variable can also be initialized at the point where it is declared, just as for a
local variable. For example:

public class Bank {

private static double interestRate = 0.05;

private static int maxWithdrawal = 200;

.

. // More variables and subroutines.

.

}

A static member variable is created as soon as the class is loaded by the Java interpreter, and
the initialization is also done at that time. In the case of member variables, this is not simply
an abbreviation for a declaration followed by an assignment statement. Declaration statements
are the only type of statement that can occur outside of a subroutine. Assignment statements
cannot, so the following is illegal:

public class Bank {

private static double interestRate;

interestRate = 0.05; // ILLEGAL:

. // Can’t be outside a subroutine!:

.

.

Because of this, declarations of member variables often include initial values. In fact, as
mentioned in Subsection 4.2.4, if no initial value is provided for a member variable, then a
default initial value is used. For example, when declaring an integer member variable, count,
“static int count;” is equivalent to “static int count = 0;”.

Even array variables can be initialized. An array contains several elements, not just a single
value. To initialize an array variable, you can provide a list of values, separated by commas,
and enclosed between a pair of braces. For example:

CHAPTER 4. SUBROUTINES 177

int[] smallPrimes = { 2, 3, 5, 7, 11, 13, 17, 23, 29 };

In this statement, an array of int of length 9 is created and filled with the values in the list.
The length of the array is determined by the number of items in the list.

Note that this syntax for initializing arrays cannot be used in assignment statements. It
can only be used in a declaration statement at the time when the array variable is declared.

It is also possible to initialize an array variable with an array created using the new operator
(which can also be used in assignment statements). For example:

String[] namelist = new String[100];

but in that case, of course, all the array elements will have their default value.

4.7.2 Named Constants

Sometimes, the value of a variable is not supposed to change after it is initialized. For example,
in the above example where interestRate is initialized to the value 0.05, it’s quite possible
that 0.05 is meant to be the value throughout the entire program. In that case, the programmer
is probably defining the variable, interestRate, to give a meaningful name to the otherwise
meaningless number, 0.05. It’s easier to understand what’s going on when a program says
“principal += principal*interestRate;” rather than “principal += principal*0.05;”.

In Java, the modifier “final” can be applied to a variable declaration to ensure that the
value stored in the variable cannot be changed after the variable has been initialized. For
example, if the member variable interestRate is declared with

public final static double interestRate = 0.05;

then it would be impossible for the value of interestRate to change anywhere else in the
program. Any assignment statement that tries to assign a value to interestRate will be
rejected by the computer as a syntax error when the program is compiled. (A “final” modifier
on a public interest rate makes a lot of sense—a bank might want to publish its interest rate,
but it certainly wouldn’t want to let random people make changes to it!)

It is legal to apply the final modifier to local variables and even to formal parameters,
but it is most useful for member variables. I will often refer to a static member variable that
is declared to be final as a named constant , since its value remains constant for the whole
time that the program is running. The readability of a program can be greatly enhanced by
using named constants to give meaningful names to important quantities in the program. A
recommended style rule for named constants is to give them names that consist entirely of
upper case letters, with underscore characters to separate words if necessary. For example, the
preferred style for the interest rate constant would be

public final static double INTEREST RATE = 0.05;

This is the style that is generally used in Java’s standard classes, which define many named
constants. For example, we have already seen that the Math class contains a variable Math.PI.
This variable is declared in the Math class as a “public final static” variable of type double.
Similarly, the Color class contains named constants such as Color.RED and Color.YELLOW

which are public final static variables of type Color. Many named constants are created just to
give meaningful names to be used as parameters in subroutine calls. For example, the standard
class named Font contains named constants Font.PLAIN, Font.BOLD, and Font.ITALIC. These
constants are used for specifying different styles of text when calling various subroutines in the
Font class.

CHAPTER 4. SUBROUTINES 178

Enumerated type constants (see Subsection 2.3.3) are also examples of named constants.
The enumerated type definition

enum Alignment { LEFT, RIGHT, CENTER }

defines the constants Alignment.LEFT, Alignment.RIGHT, and Alignment.CENTER. Technically,
Alignment is a class, and the three constants are public final static members of that class.
Defining the enumerated type is similar to defining three constants of type, say, int:

public static final int ALIGNMENT LEFT = 0;

public static final int ALIGNMNENT RIGHT = 1;

public static final int ALIGNMENT CENTER = 2;

In fact, this is how things were generally done before the introduction of enumerated types,
and it is what is done with the constants Font.PLAIN, Font.BOLD, and Font.ITALIC mentioned
above. Using the integer constants, you could define a variable of type int and assign it the
values ALIGNMENT LEFT, ALIGNMENT RIGHT, or ALIGNMENT CENTER to represent different types
of alignment. The only problem with this is that the computer has no way of knowing that you
intend the value of the variable to represent an alignment, and it will not raise any objection if
the value that is assigned to the variable is not one of the three valid alignment values. With
the enumerated type, on the other hand, the only values that can be assigned to a variable of
type Alignment are the constant values that are listed in the definition of the enumerated type.
Any attempt to assign an invalid value to the variable is a syntax error which the computer
will detect when the program is compiled. This extra safety is one of the major advantages of
enumerated types.

∗ ∗ ∗

Curiously enough, one of the major reasons to use named constants is that it’s easy to
change the value of a named constant. Of course, the value can’t change while the program
is running. But between runs of the program, it’s easy to change the value in the source code
and recompile the program. Consider the interest rate example. It’s quite possible that the
value of the interest rate is used many times throughout the program. Suppose that the bank
changes the interest rate and the program has to be modified. If the literal number 0.05 were
used throughout the program, the programmer would have to track down each place where
the interest rate is used in the program and change the rate to the new value. (This is made
even harder by the fact that the number 0.05 might occur in the program with other meanings
besides the interest rate, as well as by the fact that someone might have, say, used 0.025 to
represent half the interest rate.) On the other hand, if the named constant INTEREST RATE is
declared and used consistently throughout the program, then only the single line where the
constant is initialized needs to be changed.

As an extended example, I will give a new version of the RandomMosaicWalk program from
the previous section. This version uses named constants to represent the number of rows in
the mosaic, the number of columns, and the size of each little square. The three constants are
declared as final static member variables with the lines:

final static int ROWS = 20; // Number of rows in mosaic.

final static int COLUMNS = 30; // Number of columns in mosaic.

final static int SQUARE SIZE = 15; // Size of each square in mosaic.

The rest of the program is carefully modified to use the named constants. For example, in
the new version of the program, the Mosaic window is opened with the statement

Mosaic.open(ROWS, COLUMNS, SQUARE SIZE, SQUARE SIZE);

CHAPTER 4. SUBROUTINES 179

Sometimes, it’s not easy to find all the places where a named constant needs to be used. If
you don’t use the named constant consistently, you’ve more or less defeated the purpose. It’s
always a good idea to run a program using several different values for any named constant, to
test that it works properly in all cases.

Here is the complete new program, RandomMosaicWalk2, with all modifications from the
previous version shown in italic. I’ve left out some of the comments to save space.

public class RandomMosaicWalk2 {

final static int ROWS = 20; // Number of rows in mosaic.

final static int COLUMNS = 30; // Number of columns in mosaic.

final static int SQUARE SIZE = 15; // Size of each square in mosaic.

static int currentRow; // Row currently containing the disturbance.

static int currentColumn; // Column currently containing the disturbance.

public static void main(String[] args) {

Mosaic.open(ROWS, COLUMNS, SQUARE SIZE, SQUARE SIZE);

fillWithRandomColors();

currentRow = ROWS / 2; // start at center of window

currentColumn = COLUMNS / 2;

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

Mosaic.delay(1);

}

} // end main

static void fillWithRandomColors() {

for (int row=0; row < ROWS; row++) {

for (int column=0; column < COLUMNS; column++) {

changeToRandomColor(row, column);

}

}

} // end fillWithRandomColors

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random()); // Choose random levels in range

int green = (int)(256*Math.random()); // 0 to 255 for red, green,

int blue = (int)(256*Math.random()); // and blue color components.

Mosaic.setColor(rowNum,colNum,red,green,blue);

} // end changeToRandomColor

static void randomMove() {

int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

currentRow--;

if (currentRow < 0)

currentRow = ROWS - 1;

break;

case 1: // move right

currentColumn++;

if (currentColumn >= COLUMNS)

currentColumn = 0;

CHAPTER 4. SUBROUTINES 180

break;

case 2: // move down

currentRow++;

if (currentRow >= ROWS)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = COLUMNS - 1;

break;

}

} // end randomMove

} // end class RandomMosaicWalk2

4.7.3 Naming and Scope Rules

When a variable declaration is executed, memory is allocated for that variable. The variable
name can be used in at least some part of the program source code to refer to that memory
or to the data that is stored in the memory. The portion of the program source code where
the variable is valid is called the scope of the variable. Similarly, we can refer to the scope of
subroutine names and formal parameter names.

For static member subroutines, scope is straightforward. The scope of a static subroutine
is the entire source code of the class in which it is defined. That is, it is possible to call the
subroutine from any point in the class, including at a point in the source code before the point
where the definition of the subroutine appears. It is even possible to call a subroutine from
within itself. This is an example of something called “recursion,” a fairly advanced topic that
we will return to in Chapter 9. If the subroutine is not private, it can also be accessed from
outside the class where it is defined, using its full name.

For a variable that is declared as a static member variable in a class, the situation is similar,
but with one complication. It is legal to have a local variable or a formal parameter that has
the same name as a member variable. In that case, within the scope of the local variable or
parameter, the member variable is hidden . Consider, for example, a class named Game that
has the form:

public class Game {

static int count; // member variable

static void playGame() {

int count; // local variable

.

. // Some statements to define playGame()

.

}

.

. // More variables and subroutines.

.

} // end Game

CHAPTER 4. SUBROUTINES 181

In the statements that make up the body of the playGame() subroutine, the name “count”
refers to the local variable. In the rest of the Game class, “count” refers to the member variable
(unless hidden by other local variables or parameters named count). However, the member vari-
able named count can also be referred to by the full name Game.count. Usually, the full name
is only used outside the class where count is defined. However, there is no rule against using
it inside the class. The full name, Game.count, can be used inside the playGame() subroutine
to refer to the member variable instead of the local variable. So, the full scope rule is that the
scope of a static member variable includes the entire class in which it is defined, but where the
simple name of the member variable is hidden by a local variable or formal parameter name, the
member variable must be referred to by its full name of the form 〈className〉.〈variableName〉.
(Scope rules for non-static members are similar to those for static members, except that, as we
shall see, non-static members cannot be used in static subroutines.)

The scope of a formal parameter of a subroutine is the block that makes up the body of the
subroutine. The scope of a local variable extends from the declaration statement that defines
the variable to the end of the block in which the declaration occurs. As noted above, it is
possible to declare a loop control variable of a for loop in the for statement, as in “for (int

i=0; i < 10; i++)”. The scope of such a declaration is considered as a special case: It is
valid only within the for statement and does not extend to the remainder of the block that
contains the for statement.

It is not legal to redefine the name of a formal parameter or local variable within its scope,
even in a nested block. For example, this is not allowed:

void badSub(int y) {

int x;

while (y > 0) {

int x; // ERROR: x is already defined.

.

.

.

}

}

In many languages, this would be legal; the declaration of x in the while loop would hide
the original declaration. It is not legal in Java; however, once the block in which a variable is
declared ends, its name does become available for reuse in Java. For example:

void goodSub(int y) {

while (y > 10) {

int x;

.

.

.

// The scope of x ends here.

}

while (y > 0) {

int x; // OK: Previous declaration of x has expired.

.

.

.

}

}

CHAPTER 4. SUBROUTINES 182

You might wonder whether local variable names can hide subroutine names. This can’t
happen, for a reason that might be surprising. There is no rule that variables and subroutines
have to have different names. The computer can always tell whether a name refers to a variable
or to a subroutine, because a subroutine name is always followed by a left parenthesis. It’s
perfectly legal to have a variable called count and a subroutine called count in the same class.
(This is one reason why I often write subroutine names with parentheses, as when I talk about
the main() routine. It’s a good idea to think of the parentheses as part of the name.) Even
more is true: It’s legal to reuse class names to name variables and subroutines. The syntax
rules of Java guarantee that the computer can always tell when a name is being used as a class
name. A class name is a type, and so it can be used to declare variables and formal parameters
and to specify the return type of a function. This means that you could legally have a class
called Insanity in which you declare a function

static Insanity Insanity(Insanity Insanity) { ... }

The first Insanity is the return type of the function. The second is the function name, the
third is the type of the formal parameter, and the fourth is the name of the formal parameter.
However, please remember that not everything that is possible is a good idea!

Exercises 183

Exercises for Chapter 4

1. To “capitalize” a string means to change the first letter of each word in the string to upper (solution)

case (if it is not already upper case). For example, a capitalized version of “Now is the time
to act!” is “Now Is The Time To Act!”. Write a subroutine named printCapitalized

that will print a capitalized version of a string to standard output. The string to be printed
should be a parameter to the subroutine. Test your subroutine with a main() routine that
gets a line of input from the user and applies the subroutine to it.

Note that a letter is the first letter of a word if it is not immediately preceded in the
string by another letter. Recall from Exercise 3.4 that there is a standard boolean-valued
function Character.isLetter(char) that can be used to test whether its parameter is a
letter. There is another standard char-valued function, Character.toUpperCase(char),
that returns a capitalized version of the single character passed to it as a parameter. That
is, if the parameter is a letter, it returns the upper-case version. If the parameter is not a
letter, it just returns a copy of the parameter.

2. The hexadecimal digits are the ordinary, base-10 digits ’0’ through ’9’ plus the letters ’A’ (solution)

through ’F’. In the hexadecimal system, these digits represent the values 0 through 15,
respectively. Write a function named hexValue that uses a switch statement to find the
hexadecimal value of a given character. The character is a parameter to the function, and
its hexadecimal value is the return value of the function. You should count lower case
letters ’a’ through ’f’ as having the same value as the corresponding upper case letters.
If the parameter is not one of the legal hexadecimal digits, return -1 as the value of the
function.

A hexadecimal integer is a sequence of hexadecimal digits, such as 34A7, ff8, 174204, or
FADE. If str is a string containing a hexadecimal integer, then the corresponding base-10
integer can be computed as follows:

value = 0;

for (i = 0; i < str.length(); i++)

value = value*16 + hexValue(str.charAt(i));

Of course, this is not valid if str contains any characters that are not hexadecimal digits.
Write a program that reads a string from the user. If all the characters in the string are
hexadecimal digits, print out the corresponding base-10 value. If not, print out an error
message.

3. Write a function that simulates rolling a pair of dice until the total on the dice comes up (solution)

to be a given number. The number that you are rolling for is a parameter to the function.
The number of times you have to roll the dice is the return value of the function. The
parameter should be one of the possible totals: 2, 3, . . . , 12. The function should throw
an IllegalArgumentException if this is not the case. Use your function in a program that
computes and prints the number of rolls it takes to get snake eyes. (Snake eyes means
that the total showing on the dice is 2.)

4. This exercise builds on Exercise 4.3. Every time you roll the dice repeatedly, trying to (solution)

get a given total, the number of rolls it takes can be different. The question naturally
arises, what’s the average number of rolls to get a given total? Write a function that
performs the experiment of rolling to get a given total 10000 times. The desired total is

http://math.hws.edu/eck/cs124/javanotes7/c4/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c4/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c4/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c4/ex4-ans.html

Exercises 184

a parameter to the subroutine. The average number of rolls is the return value. Each
individual experiment should be done by calling the function you wrote for Exercise 4.3.
Now, write a main program that will call your function once for each of the possible totals
(2, 3, ..., 12). It should make a table of the results, something like:

Total On Dice Average Number of Rolls

------------- -----------------------

2 35.8382

3 18.0607

. .

. .

5. The sample program RandomMosaicWalk.java from Section 4.6 shows a “disturbance” (solution)

that wanders around a grid of colored squares. When the disturbance visits a square,
the color of that square is changed. Here’s an idea for a variation on that program. In
the new version, all the squares start out with the default color, black. Every time the
disturbance visits a square, a small amount is added to the green component of the color
of that square. The result will be a visually interesting effect, as the path followed by the
disturbance gradually turns a brighter and brighter green.

Write a subroutine that will add 25 to the green component of one of the squares in the
mosaic. (But don’t let the green component go over 255, since that’s the largest legal value
for a color component.) The row and column numbers of the square should be given as
parameters to the subroutine. Recall that you can discover the current green component
of the square in row r and column c with the function call Mosaic.getGreen(r,c). Use
your subroutine as a substitute for the changeToRandomColor() subroutine in the program
RandomMosaicWalk2.java. (This is the improved version of the program from Section 4.7
that uses named constants for the number of rows, number of columns, and square size.)
Set the number of rows and the number of columns to 80. Set the square size to 5.

By default, the rectangles in the mosaic have a “3D” appearance and a gray border
that makes them look nicer in the random walk program. But for this program, you
want to turn off that effect. To do so, call Mosaic.setUse3DEffect(false) in the main
program.

Don’t forget that you will need Mosaic.java and MosaicPanel.java to compile and run
your program, since they define non-standard classes that are required by the program.

6. For this exercise, you will do something even more interesting with the Mosaic class that (solution)

was discussed in Section 4.6. (Again, don’t forget that you will need Mosaic.java and
MosaicPanel.java to compile and run your program.)

The program that you write for this exercise should start by filling a mosaic with
random colors. Then repeat the following until the user closes the mosaic window: Se-
lect one of the rectangles in the mosaic at random. Then select one of the neighboring
rectangles—above it, below it, to the left of it, or to the right of it. Copy the color of the
originally selected rectangle to the selected neighbor, so that the two rectangles now have
the same color.

As this process is repeated over and over, it becomes more and more likely that neigh-
boring squares will have the same color. The result is to build up larger color patches. On
the other hand, once the last square of a given color disappears, there is no way for that
color to ever reappear. (Extinction is forever!) If you let the program run long enough,
eventually the entire mosaic will be one uniform color.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/eck/cs124/javanotes7/c4/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RandomMosaicWalk2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/c4/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java

Exercises 185

7. Write a program that administers a basic addition quiz to the user. There should be (solution)

ten questions. Each question is a simple addition problem such as 17 + 42, where the
numbers in the problem are chosen at random (and are not too big). The program should
ask the user all ten questions and get the user’s answers. After asking all the questions, the
user should print each question again, with the user’s answer. If the user got the answer
right, the program should say so; if not, the program should give the correct answer. At
the end, tell the user their score on the quiz, where each correct answer counts for ten
points.

The program should use three subroutines, one to create the quiz, one to administer
the quiz, and one to grade the quiz. It can use three arrays, with three global variables
of type int[], to refer to the arrays. The first array holds the first number from every
question, the second holds the second number from every questions, and the third holds
the user’s answers.

http://math.hws.edu/eck/cs124/javanotes7/c4/ex7-ans.html

Quiz 186

Quiz on Chapter 4
(answers)

1. A “black box” has an interface and an implementation. Explain what is meant by the
terms interface and implementation.

2. A subroutine is said to have a contract. What is meant by the contract of a subroutine?
When you want to use a subroutine, why is it important to understand its contract? The
contract has both “syntactic” and “semantic” aspects. What is the syntactic aspect?
What is the semantic aspect?

3. Briefly explain how subroutines can be useful in the top-down design of programs.

4. Discuss the concept of parameters. What are parameters for? What is the difference
between formal parameters and actual parameters?

5. Give two different reasons for using named constants (declared with the final modifier).

6. What is an API? Give an example.

7. Write a subroutine named “stars” that will output a line of stars to standard output. (A
star is the character “*”.) The number of stars should be given as a parameter to the
subroutine. Use a for loop. For example, the command “stars(20)” would output

8. Write a main() routine that uses the subroutine that you wrote for Question 7 to output
10 lines of stars with 1 star in the first line, 2 stars in the second line, and so on, as shown
below.

*

**

9. Write a function named countChars that has a String and a char as parameters. The
function should count the number of times the character occurs in the string, and it should
return the result as the value of the function.

10. Write a subroutine with three parameters of type int. The subroutine should determine
which of its parameters is smallest. The value of the smallest parameter should be returned
as the value of the subroutine.

11. Write a function that finds the average of the first N elements of an array of type double.
The array and N are parameters to the subroutine.

12. Explain the purpose of the following function, and explain how it works:

http://math.hws.edu/eck/cs124/javanotes7/c4/quiz_answers.html

Quiz 187

static int[] stripZeros(int[] list) {

int count = 0;

for (int i = 0; i < list.length; i++) {

if (list[i] != 0)

count++;

}

int[] newList;

newList = new int[count];

int j = 0;

for (int i = 0; i < list.length; i++) {

if (list[i] != 0) {

newList[j] = list[i];

j++;

}

}

return newList;

}

Chapter 5

Programming in the Large II:
Objects and Classes

Whereas a subroutine represents a single task, an object can encapsulate both data (in
the form of instance variables) and a number of different tasks or “behaviors” related to that
data (in the form of instance methods). Therefore objects provide another, more sophisticated
type of structure that can be used to help manage the complexity of large programs.

The first four sections of this chapter introduce the basic things you need to know to work
with objects and to define simple classes. The remaining sections cover more advanced topics;
you might not understand them fully the first time through. In particular, Section 5.5 covers the
most central ideas of object-oriented programming: inheritance and polymorphism. However,
in this textbook, we will generally use these ideas in a limited form, by creating independent
classes and building on existing classes rather than by designing entire hierarchies of classes
from scratch.

5.1 Objects, Instance Methods, and Instance Variables

Object-oriented programming (OOP) represents an attempt to make programs more
closely model the way people think about and deal with the world. In the older styles of
programming, a programmer who is faced with some problem must identify a computing task
that needs to be performed in order to solve the problem. Programming then consists of
finding a sequence of instructions that will accomplish that task. But at the heart of object-
oriented programming, instead of tasks we find objects—entities that have behaviors, that hold
information, and that can interact with one another. Programming consists of designing a set
of objects that somehow model the problem at hand. Software objects in the program can
represent real or abstract entities in the problem domain. This is supposed to make the design
of the program more natural and hence easier to get right and easier to understand.

To some extent, OOP is just a change in point of view. We can think of an object in standard
programming terms as nothing more than a set of variables together with some subroutines for
manipulating those variables. In fact, it is possible to use object-oriented techniques in any
programming language. However, there is a big difference between a language that makes OOP
possible and one that actively supports it. An object-oriented programming language such as
Java includes a number of features that make it very different from a standard language. In
order to make effective use of those features, you have to “orient” your thinking correctly.

As I have mentioned before, in the context of object-oriented programming, subroutines are

189

CHAPTER 5. OBJECTS AND CLASSES 190

often referred to as methods. Now that we are starting to use objects, I will be using the term
“method” more often than “subroutine.”

5.1.1 Objects, Classes, and Instances

Objects are closely related to classes. We have already been working with classes for several
chapters, and we have seen that a class can contain variables and methods (that is, subroutines).
If an object is also a collection of variables and methods, how do they differ from classes? And
why does it require a different type of thinking to understand and use them effectively? In the
one section where we worked with objects rather than classes, Section 3.9, it didn’t seem to
make much difference: We just left the word “static” out of the subroutine definitions!

I have said that classes “describe” objects, or more exactly that the non-static portions of
classes describe objects. But it’s probably not very clear what this means. The more usual
terminology is to say that objects belong to classes, but this might not be much clearer. (There
is a real shortage of English words to properly distinguish all the concepts involved. An object
certainly doesn’t “belong” to a class in the same way that a member variable “belongs” to a
class.) From the point of view of programming, it is more exact to say that classes are used
to create objects. A class is a kind of factory—or blueprint—for constructing objects. The
non-static parts of the class specify, or describe, what variables and methods the objects will
contain. This is part of the explanation of how objects differ from classes: Objects are created
and destroyed as the program runs, and there can be many objects with the same structure, if
they are created using the same class.

Consider a simple class whose job is to group together a few static member variables. For
example, the following class could be used to store information about the person who is using
the program:

class UserData {

static String name;

static int age;

}

In a program that uses this class, there is only one copy of each of the variables UserData.name
and UserData.age. When the class is loaded into the computer, there is a section of memory
devoted to the class, and that section of memory includes space for the values of the variables
name and age. We can picture the class in memory as looking like this:

class UserDa�a

na���

a���

An important point is that the static member variables are part of the representation of
the class in memory. Their full names, UserData.name and UserData.age, use the name of
the class, since they are part of the class. When we use class UserData to represent the user
of the program, there can only be one user, since we only have memory space to store data
about one user. Note that the class, UserData, and the variables it contains exist as long as
the program runs. (That is essentially what it means to be “static.”) Now, consider a similar
class that includes some non-static variables:

CHAPTER 5. OBJECTS AND CLASSES 191

class PlayerData {

static int playerCount;

String name;

int age;

}

I’ve also included a static variable in the PlayerData class. Here, the static variable
playerCount is stored as part of the representation of the class in memory. It’s full name
is PlayerData.playerCount, and there is only one of it, which exists as long as the program
runs. However, the other two variables in the class definition are non-static. There is no such
variable as PlayerData.name or PlayerData.age, since non-static variables do not become
part of the class itself. But the PlayerData class can be used to create objects. There can be
many objects created using the class, and each one will have its own variables called name and
age. This is what it means for the non-static parts of the class to be a template for objects:
Every object gets its own copy of the non-static part of the class. We can visualize the situation
in the computer’s memory after several object have been created like this:

class �	
��	�	

playerCount:

(constructor)

instanceof PlayerData

name:

age:
instanceof PlayerData

name:

age:

instanceof PlayerData

name:

age:

3

Note that the static variable playerCount is part of the class, and there is only one copy.
On the other hand, every object contains a name and an age. An object that is created from
a class is called an instance of that class, and as the picture shows every object “knows”
which class was used to create it. I’ve shown class PlayerData as containing something called a
“constructor;” the constructor is a subroutine that creates objects.

Now there can be many “players” because we can make new objects to represent new players
on demand. A program might use the PlayerData class to store information about multiple
players in a game. Each player has a name and an age. When a player joins the game, a new
PlayerData object can be created to represent that player. If a player leaves the game, the
PlayerData object that represents that player can be destroyed. A system of objects in the
program is being used to dynamically model what is happening in the game. You can’t do
this with static variables! “Dynamic” is the opposite of “static.”

∗ ∗ ∗

An object that is created using a class is said to be an instance of that class. We will
sometimes say that the object belongs to the class. The variables that the object contains are

CHAPTER 5. OBJECTS AND CLASSES 192

called instance variables. The methods (that is, subroutines) that the object contains are
called instance methods. For example, if the PlayerData class, as defined above, is used to
create an object, then that object is an instance of the PlayerData class, and name and age

are instance variables in the object.
My examples here don’t include any methods, but methods work similarly to variables.

Static methods are part of the class; non-static, or instance, methods become part of objects
created from the class. It’s not literally true that each object contains its own copy of the actual
compiled code for an instance method. But logically an instance method is part of the object,
and I will continue to say that the object “contains” the instance method.

Note that you should distinguish between the source code for the class, and the class itself
(in memory). The source code determines both the class and the objects that are created from
that class. The “static” definitions in the source code specify the things that are part of the
class itself (in the computer’s memory), whereas the non-static definitions in the source code
specify things that will become part of every instance object that is created from the class.
By the way, static member variables and static member subroutines in a class are sometimes
called class variables and class methods, since they belong to the class itself, rather than
to instances of that class.

As you can see, the static and the non-static portions of a class are very different things and
serve very different purposes. Many classes contain only static members, or only non-static,
and we will see only a few examples of classes that contain a mixture of the two.

5.1.2 Fundamentals of Objects

So far, I’ve been talking mostly in generalities, and I haven’t given you much of an idea about
what you have to put in a program if you want to work with objects. Let’s look at a specific
example to see how it works. Consider this extremely simplified version of a Student class,
which could be used to store information about students taking a course:

public class Student {

public String name; // Student’s name.

public double test1, test2, test3; // Grades on three tests.

public double getAverage() { // compute average test grade

return (test1 + test2 + test3) / 3;

}

} // end of class Student

None of the members of this class are declared to be static, so the class exists only for
creating objects. This class definition says that any object that is an instance of the Student

class will include instance variables named name, test1, test2, and test3, and it will include an
instance method named getAverage(). The names and tests in different objects will generally
have different values. When called for a particular student, the method getAverage() will
compute an average using that student’s test grades. Different students can have different
averages. (Again, this is what it means to say that an instance method belongs to an individual
object, not to the class.)

In Java, a class is a type, similar to the built-in types such as int and boolean. So, a class
name can be used to specify the type of a variable in a declaration statement, or the type of
a formal parameter, or the return type of a function. For example, a program could define a
variable named std of type Student with the statement

CHAPTER 5. OBJECTS AND CLASSES 193

Student std;

However, declaring a variable does not create an object! This is an important point, which is
related to this Very Important Fact:

In Java, no variable can ever hold an object.
A variable can only hold a reference to an object.

You should think of objects as floating around independently in the computer’s memory. In
fact, there is a special portion of memory called the heap where objects live. Instead of holding
an object itself, a variable holds the information necessary to find the object in memory. This
information is called a reference or pointer to the object. In effect, a reference to an object
is the address of the memory location where the object is stored. When you use a variable of
object type, the computer uses the reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an object and
returns a reference to that object. (In fact, the new operator calls a special subroutine called
a “constructor” in the class.) For example, assuming that std is a variable of type Student,
declared as above, the assignment statement

std = new Student();

would create a new object which is an instance of the class Student, and it would store a
reference to that object in the variable std. The value of the variable is a reference, or pointer,
to the object. The object itself is somewhere in the heap. It is not quite true, then, to say that
the object is the “value of the variable std” (though sometimes it is hard to avoid using this
terminology). It is certainly not at all true to say that the object is “stored in the variable
std.” The proper terminology is that “the variable std refers to or points to the object,”
and I will try to stick to that terminology as much as possible. If I ever say something like “std
is an object,” you should read it as meaning “std is a variable that refers to an object.”

So, suppose that the variable std refers to an object that is an instance of class Student.
That object contains instance variables name, test1, test2, and test3. These instance vari-
ables can be referred to as std.name, std.test1, std.test2, and std.test3. This follows the
usual naming convention that when B is part of A, then the full name of B is A.B. For example,
a program might include the lines

System.out.println("Hello, " + std.name + ". Your test grades are:");

System.out.println(std.test1);

System.out.println(std.test2);

System.out.println(std.test3);

This would output the name and test grades from the object to which std refers. Simi-
larly, std can be used to call the getAverage() instance method in the object by saying
std.getAverage(). To print out the student’s average, you could say:

System.out.println("Your average is " + std.getAverage());

More generally, you could use std.name any place where a variable of type String is legal.
You can use it in expressions. You can assign a value to it. You can even use it to call subroutines
from the String class. For example, std.name.length() is the number of characters in the
student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no object at
all. We say in this case that std holds a null pointer or null reference . The null pointer is
written in Java as “null”. You can store a null reference in the variable std by saying

CHAPTER 5. OBJECTS AND CLASSES 194

std = null;

null is an actual value that is stored in the variable, not a pointer to something else. It is not
correct to say that the variable “points to null”; in fact, the variable is null. For example, you
can test whether the value of std is null by testing

if (std == null) . . .

If the value of a variable is null, then it is, of course, illegal to refer to instance variables
or instance methods through that variable—since there is no object, and hence no instance
variables to refer to! For example, if the value of the variable std is null, then it would be
illegal to refer to std.test1. If your program attempts to use a null pointer illegally in this
way, the result is an error called a null pointer exception . When this happens while the
program is running, an exception of type NullPointerException is thrown.

Let’s look at a sequence of statements that work with objects:

Student std, std1, // Declare four variables of

std2, std3; // type Student.

std = new Student(); // Create a new object belonging

// to the class Student, and

// store a reference to that

// object in the variable std.

std1 = new Student(); // Create a second Student object

// and store a reference to

// it in the variable std1.

std2 = std1; // Copy the reference value in std1

// into the variable std2.

std3 = null; // Store a null reference in the

// variable std3.

std.name = "John Smith"; // Set values of some instance variables.

std1.name = "Mary Jones";

// (Other instance variables have default

// initial values of zero.)

After the computer executes these statements, the situation in the computer’s memory looks
like this:

CHAPTER 5. OBJECTS AND CLASSES 195

instanceof Student

name:

test1:

test2:

test3:

getAverage()

0

0

0

instanceof Student

name:

test1:

test2:

test3:

getAverage()

0

0

0

instanceof String

"Mary Jones"

instanceof String

"John Smith"

std:

std1:

std2:

std3: null

In this picture, when a variable contains a reference to an object, the value of that variable is
shown as an arrow pointing to the object. Note, by the way, that the Strings are objects! The
variable std3, with a value of null, doesn’t point anywhere. The arrows from std1 and std2

both point to the same object. This illustrates a Very Important Point:

When one object variable is assigned
to another, only a reference is copied.
The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created. Instead, std2
was set to refer to the very same object that std1 refers to. This is to be expected, since the
assignment statement just copies the value that is stored in std1 into std2, and that value
is a pointer, not an object. But this has some consequences that might be surprising. For
example, std1.name and std2.name are two different names for the same variable, namely
the instance variable in the object that both std1 and std2 refer to. After the string "Mary

Jones" is assigned to the variable std1.name, it is also true that the value of std2.name is
"Mary Jones". There is a potential for a lot of confusion here, but you can help protect yourself
from it if you keep telling yourself, “The object is not in the variable. The variable just holds
a pointer to the object.”

You can test objects for equality and inequality using the operators == and !=, but
here again, the semantics are different from what you are used to. When you make a test
“if (std1 == std2)”, you are testing whether the values stored in std1 and std2 are the
same. But the values that you are comparing are references to objects; they are not objects.
So, you are testing whether std1 and std2 refer to the same object, that is, whether they point
to the same location in memory. This is fine, if it’s what you want to do. But sometimes,
what you want to check is whether the instance variables in the objects have the same values.
To do that, you would need to ask whether “std1.test1 == std2.test1 && std1.test2 ==

std2.test2 && std1.test3 == std2.test3 && std1.name.equals(std2.name)”.

CHAPTER 5. OBJECTS AND CLASSES 196

I’ve remarked previously that Strings are objects, and I’ve shown the strings "Mary Jones"

and "John Smith" as objects in the above illustration. (Strings are special objects, treated
by Java in a special way, and I haven’t attempted to show the actual internal structure of the
String objects.) Since strings are objects, a variable of type String can only hold a reference to a
string, not the string itself. This explains why using the == operator to test strings for equality
is not a good idea. Suppose that greeting is a variable of type String, and that it refers to
the string "Hello". Then would the test greeting == "Hello" be true? Well, maybe, maybe
not. The variable greeting and the String literal "Hello" each refer to a string that contains
the characters H-e-l-l-o. But the strings could still be different objects, that just happen to
contain the same characters; in that case, greeting == "Hello" would be false. The function
greeting.equals("Hello") tests whether greeting and "Hello" contain the same characters,
which is almost certainly the question you want to ask. The expression greeting == "Hello"

tests whether greeting and "Hello" contain the same characters stored in the same mem-
ory location. (Of course, a String variable such as greeting can also contain the special value
null, and it would make sense to use the == operator to test whether “greeting == null”.)

∗ ∗ ∗

The fact that variables hold references to objects, not objects themselves, has a couple of
other consequences that you should be aware of. They follow logically, if you just keep in mind
the basic fact that the object is not stored in the variable. The object is somewhere else; the
variable points to it.

Suppose that a variable that refers to an object is declared to be final. This means that
the value stored in the variable can never be changed, once the variable has been initialized.
The value stored in the variable is a reference to the object. So the variable will continue to
refer to the same object as long as the variable exists. However, this does not prevent the data
in the object from changing. The variable is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = "John Doe"; // Change data in the object;

// The value stored in stu is not changed!

// It still refers to the same object.

Next, suppose that obj is a variable that refers to an object. Let’s consider what happens
when obj is passed as an actual parameter to a subroutine. The value of obj is assigned to
a formal parameter in the subroutine, and the subroutine is executed. The subroutine has no
power to change the value stored in the variable, obj. It only has a copy of that value. However,
the value is a reference to an object. Since the subroutine has a reference to the object, it can
change the data stored in the object. After the subroutine ends, obj still points to the same
object, but the data stored in the object might have changed. Suppose x is a variable of type
int and stu is a variable of type Student. Compare:

void dontChange(int z) { void change(Student s) {

z = 42; s.name = "Fred";

} }

The lines: The lines:

x = 17; stu.name = "Jane";

dontChange(x); change(stu);

System.out.println(x); System.out.println(stu.name);

output the value 17. output the value "Fred".

CHAPTER 5. OBJECTS AND CLASSES 197

The value of x is not The value of stu is not

changed by the subroutine, changed, but stu.name is changed.

which is equivalent to This is equivalent to

z = x; s = stu;

z = 42; s.name = "Fred";

5.1.3 Getters and Setters

When writing new classes, it’s a good idea to pay attention to the issue of access control. Recall
that making a member of a class public makes it accessible from anywhere, including from
other classes. On the other hand, a private member can only be used in the class where it is
defined.

In the opinion of many programmers, almost all member variables should be declared
private. This gives you complete control over what can be done with the variable. Even
if the variable itself is private, you can allow other classes to find out what its value is by pro-
viding a public accessor method that returns the value of the variable. For example, if your
class contains a private member variable, title, of type String, you can provide a method

public String getTitle() {

return title;

}

that returns the value of title. By convention, the name of an accessor method for a variable
is obtained by capitalizing the name of variable and adding “get” in front of the name. So, for
the variable title, we get an accessor method named “get” + “Title”, or getTitle(). Because
of this naming convention, accessor methods are more often referred to as getter methods. A
getter method provides “read access” to a variable. (Sometimes for boolean variables, “is” is
used in place of “get”. For example, a getter for a boolean member variable named done might
be called isDone().)

You might also want to allow “write access” to a private variable. That is, you might
want to make it possible for other classes to specify a new value for the variable. This is done
with a setter method . (If you don’t like simple, Anglo-Saxon words, you can use the fancier
term mutator method .) The name of a setter method should consist of “set” followed by a
capitalized copy of the variable’s name, and it should have a parameter with the same type as
the variable. A setter method for the variable title could be written

public void setTitle(String newTitle) {

title = newTitle;

}

It is actually very common to provide both a getter and a setter method for a private
member variable. Since this allows other classes both to see and to change the value of the
variable, you might wonder why not just make the variable public? The reason is that getters
and setters are not restricted to simply reading and writing the variable’s value. In fact, they
can take any action at all. For example, a getter method might keep track of the number of
times that the variable has been accessed:

public String getTitle() {

titleAccessCount++; // Increment member variable titleAccessCount.

return title;

}

CHAPTER 5. OBJECTS AND CLASSES 198

and a setter method might check that the value that is being assigned to the variable is legal:

public void setTitle(String newTitle) {

if (newTitle == null) // Don’t allow null strings as titles!

title = "(Untitled)"; // Use an appropriate default value instead.

else

title = newTitle;

}

Even if you can’t think of any extra chores to do in a getter or setter method, you might change
your mind in the future when you redesign and improve your class. If you’ve used a getter and
setter from the beginning, you can make the modification to your class without affecting any of
the classes that use your class. The private member variable is not part of the public interface
of your class; only the public getter and setter methods are, and you are free to change their
implementations without changing the public interface of your class. If you haven’t used get
and set from the beginning, you’ll have to contact everyone who uses your class and tell them,
“Sorry people, you’ll have to track down every use that you’ve made of this variable and change
your code to use my new get and set methods instead.”

A couple of final notes: Some advanced aspects of Java rely on the naming convention
for getter and setter methods, so it’s a good idea to follow the convention rigorously. And
though I’ve been talking about using getter and setter methods for a variable, you can define
get and set methods even if there is no variable. A getter and/or setter method defines a
property of the class, that might or might not correspond to a variable. For example, if a class
includes a public void instance method with signature setValue(double), then the class has
a “property” named value of type double, and it has this property whether or not the class
has a member variable named value.

5.1.4 Arrays and Objects

As I noted in Subsection 3.8.1, arrays are objects. Like Strings they are special objects, with
their own unique syntax. An array type such as int[] or String[] is actually a class, and arrays
are created using a special version of the new operator. As in the case for other object variables,
an array variable can never hold an actual array—only a reference to an array object. The array
object itself exists in the heap. It is possible for an array variable to hold the value null, which
means there is no actual array.

For example, suppose that list is a variable of type int[]. If the value of list is null,
then any attempt to access list.length or an array element list[i] would be an error and
would cause an exception of type NullPointerException. If newlist is another variable of type
int[], then the assignment statement

newlist = list;

only copies the reference value in list into newlist. If list is null, the result is that newlist
will also be null. If list points to an array, the assignment statement does not make a copy
of the array. It just sets newlist to refer to the same array as list. For example, the output
of the following code segment

list = new int[3];

list[1] = 17;

newlist = list; // newlist points to the same array as list!

newlist[1] = 42;

System.out.println(list[1]);

CHAPTER 5. OBJECTS AND CLASSES 199

would be 42, not 17, since list[1] and newlist[1] are just different names for the same
element in the array. All this is very natural, once you understand that arrays are objects and
array variables hold pointers to arrays.

This fact also comes into play when an array is passed as a parameter to a subroutine. The
value that is copied into the subroutine is a pointer to the array. The array is not copied. Since
the subroutine has a reference to the original array, any changes that it makes to elements of
the array are being made to the original and will persist after the subroutine returns.

∗ ∗ ∗

Arrays are objects. They can also hold objects. The base type of an array can be a class.
We have already seen this when we used arrays of type String[], but any class can be used as
the base type. For example, suppose Student is the class defined earlier in this section. Then
we can have arrays of type Student[]. For an array of type Student[], each element of the array
is a variable of type Student. To store information about 30 students, we could use an array

Student[] classlist; // Declare a variable of type Student[].

classlist = new Student[30]; // The variable now points to an array.

The array has 30 elements, classlist[0], classlist[1], . . . classlist[29]. When the array
is created, it is filled with the default initial value, which for an object type is null. So, although
we have 30 array elements of type Student, we don’t yet have any actual Student objects! All
we have is 30 nulls. If we want student objects, we have to create them:

Student[] classlist;

classlist = new Student[30];

for (int i = 0; i < 30; i++) {

classlist[i] = new Student();

}

Once we have done this, each classlist[i] points to an object of type Student. If we want
to talk about the name of student number 3, we can use classlist[3].name. The average
for student number i can be computed by calling classlist[i].getAverage(). You can do
anything with classlist[i] that you could do with any other variable of type Student.

5.2 Constructors and Object Initialization

Object types in Java are very different from the primitive types. Simply declaring a variable
whose type is given as a class does not automatically create an object of that class. Objects
must be explicitly constructed . For the computer, the process of constructing an object means,
first, finding some unused memory in the heap that can be used to hold the object and, second,
filling in the object’s instance variables. As a programmer, you don’t care where in memory
the object is stored, but you will usually want to exercise some control over what initial values
are stored in a new object’s instance variables. In many cases, you will also want to do more
complicated initialization or bookkeeping every time an object is created.

5.2.1 Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any other
variable. For example, consider a class named PairOfDice. An object of this class will represent
a pair of dice. It will contain two instance variables to represent the numbers showing on the
dice and an instance method for rolling the dice:

CHAPTER 5. OBJECTS AND CLASSES 200

public class PairOfDice {

public int die1 = 3; // Number showing on the first die.

public int die2 = 4; // Number showing on the second die.

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

The instance variables die1 and die2 are initialized to the values 3 and 4 respectively. These
initializations are executed whenever a PairOfDice object is constructed. It’s important to
understand when and how this happens. There can be many PairOfDice objects. Each time one
is created, it gets its own instance variables, and the assignments “die1 = 3” and “die2 = 4”
are executed to fill in the values of those variables. To make this clearer, consider a variation
of the PairOfDice class:

public class PairOfDice {

public int die1 = (int)(Math.random()*6) + 1;

public int die2 = (int)(Math.random()*6) + 1;

public void roll() {

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

Here, every time a new PairOfDice is created, the dice are initialized to random values, as if a
new pair of dice were being thrown onto the gaming table. Since the initialization is executed
for each new object, a set of random initial values will be computed for each new pair of dice.
Different pairs of dice can have different initial values. For initialization of static member
variables, of course, the situation is quite different. There is only one copy of a static variable,
and initialization of that variable is executed just once, when the class is first loaded.

If you don’t provide any initial value for an instance variable, a default initial value is pro-
vided automatically. Instance variables of numerical type (int, double, etc.) are automatically
initialized to zero if you provide no other values; boolean variables are initialized to false; and
char variables, to the Unicode character with code number zero. An instance variable can also
be a variable of object type. For such variables, the default initial value is null. (In particular,
since Strings are objects, the default initial value for String variables is null.)

5.2.2 Constructors

Objects are created with the operator, new. For example, a program that wants to use a
PairOfDice object could say:

PairOfDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(); // Construct a new object and store a

// reference to it in the variable.

CHAPTER 5. OBJECTS AND CLASSES 201

In this example, “new PairOfDice()” is an expression that allocates memory for the object,
initializes the object’s instance variables, and then returns a reference to the object. This
reference is the value of the expression, and that value is stored by the assignment statement in
the variable, dice, so that after the assignment statement is executed, dice refers to the newly
created object. Part of this expression, “PairOfDice()”, looks like a subroutine call, and that
is no accident. It is, in fact, a call to a special type of subroutine called a constructor . This
might puzzle you, since there is no such subroutine in the class definition. However, every class
has at least one constructor. If the programmer doesn’t write a constructor definition in a class,
then the system will provide a default constructor for that class. This default constructor
does nothing beyond the basics: allocate memory and initialize instance variables. If you want
more than that to happen when an object is created, you can include one or more constructors
in the class definition.

The definition of a constructor looks much like the definition of any other subroutine, with
three exceptions. A constructor does not have any return type (not even void). The name
of the constructor must be the same as the name of the class in which it is defined. And the
only modifiers that can be used on a constructor definition are the access modifiers public,
private, and protected. (In particular, a constructor can’t be declared static.)

However, a constructor does have a subroutine body of the usual form, a block of statements.
There are no restrictions on what statements can be used. And a constructor can have a list
of formal parameters. In fact, the ability to include parameters is one of the main reasons for
using constructors. The parameters can provide data to be used in the construction of the
object. For example, a constructor for the PairOfDice class could provide the values that are
initially showing on the dice. Here is what the class would look like in that case:

public class PairOfDice {

public int die1; // Number showing on the first die.

public int die2; // Number showing on the second die.

public PairOfDice(int val1, int val2) {

// Constructor. Creates a pair of dice that

// are initially showing the values val1 and val2.

die1 = val1; // Assign specified values

die2 = val2; // to the instance variables.

}

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

The constructor is declared as “public PairOfDice(int val1, int val2) ...”, with no
return type and with the same name as the name of the class. This is how the Java com-
piler recognizes a constructor. The constructor has two parameters, and values for these
parameters must be provided when the constructor is called. For example, the expression
“new PairOfDice(3,4)” would create a PairOfDice object in which the values of the instance
variables die1 and die2 are initially 3 and 4. Of course, in a program, the value returned by
the constructor should be used in some way, as in

CHAPTER 5. OBJECTS AND CLASSES 202

PairOfDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(1,1); // Let dice refer to a new PairOfDice

// object that initially shows 1, 1.

Now that we’ve added a constructor to the PairOfDice class, we can no longer create an
object by saying “new PairOfDice()”! The system provides a default constructor for a class
only if the class definition does not already include a constructor. In this version of PairOfDice,
there is only one constructor in the class, and it requires two actual parameters. However,
this is not a big problem, since we can add a second constructor to the class, one that has
no parameters. In fact, you can have as many different constructors as you want, as long as
their signatures are different, that is, as long as they have different numbers or types of formal
parameters. In the PairOfDice class, we might have a constructor with no parameters which
produces a pair of dice showing random numbers:

public class PairOfDice {

public int die1; // Number showing on the first die.

public int die2; // Number showing on the second die.

public PairOfDice() {

// Constructor. Rolls the dice, so that they initially

// show some random values.

roll(); // Call the roll() method to roll the dice.

}

public PairOfDice(int val1, int val2) {

// Constructor. Creates a pair of dice that

// are initially showing the values val1 and val2.

die1 = val1; // Assign specified values

die2 = val2; // to the instance variables.

}

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

Now we have the option of constructing a PairOfDice object either with “new PairOfDice()”
or with “new PairOfDice(x,y)”, where x and y are int-valued expressions.

This class, once it is written, can be used in any program that needs to work with one
or more pairs of dice. None of those programs will ever have to use the obscure incantation
“(int)(Math.random()*6)+1”, because it’s done inside the PairOfDice class. And the pro-
grammer, having once gotten the dice-rolling thing straight will never have to worry about it
again. Here, for example, is a main program that uses the PairOfDice class to count how many
times two pairs of dice are rolled before the two pairs come up showing the same value. This
illustrates once again that you can create several instances of the same class:

public class RollTwoPairs {

public static void main(String[] args) {

PairOfDice firstDice; // Refers to the first pair of dice.

CHAPTER 5. OBJECTS AND CLASSES 203

firstDice = new PairOfDice();

PairOfDice secondDice; // Refers to the second pair of dice.

secondDice = new PairOfDice();

int countRolls; // Counts how many times the two pairs of

// dice have been rolled.

int total1; // Total showing on first pair of dice.

int total2; // Total showing on second pair of dice.

countRolls = 0;

do { // Roll the two pairs of dice until totals are the same.

firstDice.roll(); // Roll the first pair of dice.

total1 = firstDice.die1 + firstDice.die2; // Get total.

System.out.println("First pair comes up " + total1);

secondDice.roll(); // Roll the second pair of dice.

total2 = secondDice.die1 + secondDice.die2; // Get total.

System.out.println("Second pair comes up " + total2);

countRolls++; // Count this roll.

System.out.println(); // Blank line.

} while (total1 != total2);

System.out.println("It took " + countRolls

+ " rolls until the totals were the same.");

} // end main()

} // end class RollTwoPairs

∗ ∗ ∗

Constructors are subroutines, but they are subroutines of a special type. They are certainly
not instance methods, since they don’t belong to objects. Since they are responsible for creating
objects, they exist before any objects have been created. They are more like static member
subroutines, but they are not and cannot be declared to be static. In fact, according to the
Java language specification, they are technically not members of the class at all! In particular,
constructors are not referred to as “methods.”

Unlike other subroutines, a constructor can only be called using the new operator, in an
expression that has the form

new 〈class-name 〉 (〈parameter-list 〉)

where the 〈parameter-list〉 is possibly empty. I call this an expression because it computes and
returns a value, namely a reference to the object that is constructed. Most often, you will store
the returned reference in a variable, but it is also legal to use a constructor call in other ways,
for example as a parameter in a subroutine call or as part of a more complex expression. Of
course, if you don’t save the reference in a variable, you won’t have any way of referring to the
object that was just created.

A constructor call is more complicated than an ordinary subroutine or function call. It is
helpful to understand the exact steps that the computer goes through to execute a constructor
call:

CHAPTER 5. OBJECTS AND CLASSES 204

1. First, the computer gets a block of unused memory in the heap, large enough to hold an
object of the specified type.

2. It initializes the instance variables of the object. If the declaration of an instance variable
specifies an initial value, then that value is computed and stored in the instance variable.
Otherwise, the default initial value is used.

3. The actual parameters in the constructor, if any, are evaluated, and the values are assigned
to the formal parameters of the constructor.

4. The statements in the body of the constructor, if any, are executed.

5. A reference to the object is returned as the value of the constructor call.

The end result of this is that you have a reference to a newly constructed object.

∗ ∗ ∗

For another example, let’s rewrite the Student class that was used in Section 1. I’ll add a
constructor, and I’ll also take the opportunity to make the instance variable, name, private.

public class Student {

private String name; // Student’s name.

public double test1, test2, test3; // Grades on three tests.

Student(String theName) {

// Constructor for Student objects;

// provides a name for the Student.

// The name can’t be null.

if (theName == null)

throw new IllegalArgumentException("name can’t be null");

name = theName;

}

public String getName() {

// Getter method for reading the value of the private

// instance variable, name.

return name;

}

public double getAverage() {

// Compute average test grade.

return (test1 + test2 + test3) / 3;

}

} // end of class Student

An object of type Student contains information about some particular student. The con-
structor in this class has a parameter of type String, which specifies the name of that student.
Objects of type Student can be created with statements such as:

std = new Student("John Smith");

std1 = new Student("Mary Jones");

In the original version of this class, the value of name had to be assigned by a program after it
created the object of type Student. There was no guarantee that the programmer would always
remember to set the name properly. In the new version of the class, there is no way to create
a Student object except by calling the constructor, and that constructor automatically sets the
name. Furthermore, the constructor makes it impossible to have a student object whose name is

CHAPTER 5. OBJECTS AND CLASSES 205

null. The programmer’s life is made easier, and whole hordes of frustrating bugs are squashed
before they even have a chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance variable,
name, is private, there is no way for any part of the program outside the Student class to get at
the name directly. The program sets the value of name, indirectly, when it calls the constructor.
I’ve provided a getter function, getName(), that can be used from outside the class to find out
the name of the student. But I haven’t provided any setter method or other way to change the
name. Once a student object is created, it keeps the same name as long as it exists.

Note that it would be legal, and good style, to declare the variable name to be “final”
in this class. An instance variable can be final provided it is either assigned a value in its
declaration or is assigned a value in every constructor in the class. It is illegal to assign a value
to a final instance variable, except inside a constructor.

∗ ∗ ∗

Let’s take this example a little farther to illustrate one more aspect of classes: What happens
when you mix static and non-static in the same class? In that case, it’s legal for an instance
method in the class to use static member variables or call static member subroutines. An object
knows what class it belongs to, and it can refer to static members of that class. But there it
only one copy of the static member, in the class itself. Effectively, all the objects share one
copy of the static member.

As an example, consider a version of the Student class to which I’ve added an ID for each
student and a static member called nextUniqueID. Although there is an ID variable in each
student object, there is only one nextUniqueID variable.

public class Student {

private String name; // Student’s name.

public double test1, test2, test3; // Grades on three tests.

private int ID; // Unique ID number for this student.

private static int nextUniqueID = 0;

// keep track of next available unique ID number

Student(String theName) {

// Constructor for Student objects; provides a name for the Student,

// and assigns the student a unique ID number.

name = theName;

nextUniqueID++;

ID = nextUniqueID;

}

public String getName() {

// Getter method for reading the value of the private

// instance variable, name.

return name;

}

public int getID() {

// Getter method for reading the value of ID.

return ID;

}

public double getAverage() {

// Compute average test grade.

CHAPTER 5. OBJECTS AND CLASSES 206

return (test1 + test2 + test3) / 3;

}

} // end of class Student

Since nextUniqueID is a static variable, the initialization “nextUniqueID = 0” is done
only once, when the class is first loaded. Whenever a Student object is constructed and the
constructor says “nextUniqueID++;”, it’s always the same static member variable that is being
incremented. When the very first Student object is created, nextUniqueID becomes 1. When
the second object is created, nextUniqueID becomes 2. After the third object, it becomes 3.
And so on. The constructor stores the new value of nextUniqueID in the ID variable of the
object that is being created. Of course, ID is an instance variable, so every object has its own
individual ID variable. The class is constructed so that each student will automatically get a
different value for its ID variable. Furthermore, the ID variable is private, so there is no way
for this variable to be tampered with after the object has been created. You are guaranteed,
just by the way the class is designed, that every student object will have its own permanent,
unique identification number. Which is kind of cool if you think about it.

(Unfortunately, if you think about it a bit more, it turns out that the guarantee isn’t quite
absolute. The guarantee is valid in programs that use a single thread. But, as a preview of the
difficulties of parallel programming, I’ll note that in multi-threaded programs, where several
things can be going on at the same time, things can get a bit strange. In a multi-threaded
program, it is possible that two threads are creating Student objects at exactly the same time,
and it becomes possible for both objects to get the same ID number. We’ll come back to this
in Subsection 12.1.3, where you will learn how to fix the problem.)

5.2.3 Garbage Collection

So far, this section has been about creating objects. What about destroying them? In Java,
the destruction of objects takes place automatically.

An object exists in the heap, and it can be accessed only through variables that hold
references to the object. What should be done with an object if there are no variables that
refer to it? Such things can happen. Consider the following two statements (though in reality,
you’d never do anything like this in consecutive statements!):

Student std = new Student("John Smith");

std = null;

In the first line, a reference to a newly created Student object is stored in the variable std. But
in the next line, the value of std is changed, and the reference to the Student object is gone. In
fact, there are now no references whatsoever to that object, in any variable. So there is no way
for the program ever to use the object again! It might as well not exist. In fact, the memory
occupied by the object should be reclaimed to be used for another purpose.

Java uses a procedure called garbage collection to reclaim memory occupied by objects
that are no longer accessible to a program. It is the responsibility of the system, not the
programmer, to keep track of which objects are “garbage.” In the above example, it was very
easy to see that the Student object had become garbage. Usually, it’s much harder. If an object
has been used for a while, there might be several references to the object stored in several
variables. The object doesn’t become garbage until all those references have been dropped.

In many other programming languages, it’s the programmer’s responsibility to delete the
garbage. Unfortunately, keeping track of memory usage is very error-prone, and many serious

CHAPTER 5. OBJECTS AND CLASSES 207

program bugs are caused by such errors. A programmer might accidently delete an object even
though there are still references to that object. This is called a dangling pointer error , and
it leads to problems when the program tries to access an object that is no longer there. Another
type of error is a memory leak , where a programmer neglects to delete objects that are no
longer in use. This can lead to filling memory with objects that are completely inaccessible,
and the program might run out of memory even though, in fact, large amounts of memory are
being wasted.

Because Java uses garbage collection, such errors are simply impossible. Garbage collection
is an old idea and has been used in some programming languages since the 1960s. You might
wonder why all languages don’t use garbage collection. In the past, it was considered too slow
and wasteful. However, research into garbage collection techniques combined with the incredible
speed of modern computers have combined to make garbage collection feasible. Programmers
should rejoice.

5.3 Programming with Objects

There are several ways in which object-oriented concepts can be applied to the process
of designing and writing programs. The broadest of these is object-oriented analysis and
design which applies an object-oriented methodology to the earliest stages of program devel-
opment, during which the overall design of a program is created. Here, the idea is to identify
things in the problem domain that can be modeled as objects. On another level, object-oriented
programming encourages programmers to produce generalized software components that
can be used in a wide variety of programming projects.

Of course, for the most part, you will experience “generalized software components” by
using the standard classes that come along with Java. We begin this section by looking at some
built-in classes that are used for creating objects. At the end of the section, we will get back
to generalities.

5.3.1 Some Built-in Classes

Although the focus of object-oriented programming is generally on the design and implementa-
tion of new classes, it’s important not to forget that the designers of Java have already provided
a large number of reusable classes. Some of these classes are meant to be extended to produce
new classes, while others can be used directly to create useful objects. A true mastery of Java
requires familiarity with a large number of built-in classes—something that takes a lot of time
and experience to develop. Let’s take a moment to look at a few built-in classes that you might
find useful.

A string can be built up from smaller pieces using the + operator, but this is not always effi-
cient. If str is a String and ch is a character, then executing the command “str = str + ch;”
involves creating a whole new string that is a copy of str, with the value of ch appended onto
the end. Copying the string takes some time. Building up a long string letter by letter would
require a surprising amount of processing. The class StringBuilder makes it possible to be ef-
ficient about building up a long string from a number of smaller pieces. To do this, you must
make an object belonging to the StringBuilder class. For example:

StringBuilder builder = new StringBuilder();

(This statement both declares the variable builder and initializes it to refer to a newly created
StringBuilder object. Combining declaration with initialization was covered in Subsection 4.7.1

CHAPTER 5. OBJECTS AND CLASSES 208

and works for objects just as it does for primitive types.)
Like a String, a StringBuilder contains a sequence of characters. However, it is possible

to add new characters onto the end of a StringBuilder without continually making copies
of the data that it already contains. If x is a value of any type and builder is the variable
defined above, then the command builder.append(x) will add x, converted into a string
representation, onto the end of the data that was already in the builder. This can be done more
efficiently than copying the data every time something is appended. A long string can be built
up in a StringBuilder using a sequence of append() commands. When the string is complete,
the function builder.toString() will return a copy of the string in the builder as an ordinary
value of type String. The StringBuilder class is in the standard package java.lang, so you can
use its simple name without importing it.

A number of useful classes are collected in the package java.util. For example, this
package contains classes for working with collections of objects. We will study such collection
classes extensively in Chapter 10. Another class in this package, java.util.Date, is used to
represent times. When a Date object is constructed without parameters, the result represents
the current date and time, so an easy way to display this information is:

System.out.println(new Date());

Of course, since it is in the package java.util, in order to use the Date class in
your program, you must make it available by importing it with one of the statements
“import java.util.Date;” or “import java.util.*;” at the beginning of your program.
(See Subsection 4.5.3 for a discussion of packages and import.)

I will also mention the class java.util.Random. An object belonging to this class is a
source of random numbers (or, more precisely pseudorandom numbers). The standard function
Math.random() uses one of these objects behind the scenes to generate its random numbers.
An object of type Random can generate random integers, as well as random real numbers. If
randGen is created with the command:

Random randGen = new Random();

and if N is a positive integer, then randGen.nextInt(N) generates a random integer in the range
from 0 to N-1. For example, this makes it a little easier to roll a pair of dice. Instead of say-
ing “die1 = (int)(6*Math.random())+1;”, one can say “die1 = randGen.nextInt(6)+1;”.
(Since you also have to import the class java.util.Random and create the Random object, you
might not agree that it is actually easier.) An object of type Random can also be used to generate
so-called Gaussian distributed random real numbers.

Many of Java’s standard classes are used in GUI programming. You will encounter a number
of them in the Chapter 6. Here, I will mention only the class Color, from the package java.awt,
so that I can use it in the next example. A Color object represents a color that can be used for
drawing. In Section 3.9, you encountered color constants such as Color.RED. These constants
are final, static member variables in the Color class, and their values are objects of type Color. It
is also possible to create new color objects. Class Color has several constructors. One of them,
which is called as new Color(r,g,b), takes three integer parameters to specify the red, green,
and blue components of the color. The parameters must be in the range 0 to 255. Another
constructor, new Color(r,g,b,t), adds a fourth integer parameter, which must also be in the
range 0 to 255. The fourth parameter determines how transparent or opaque the color is. When
you draw with a transparent color, the background shows through the color to some extent.
A larger value of the parameter t gives a color that is less transparent and more opaque. (If
you know hexadecimal color codes, there is a constructor for you. It takes one parameter of

CHAPTER 5. OBJECTS AND CLASSES 209

type int that encodes all the color components. For example, new Color(0x8B5413) creates a
brown color.)

A Color object has only a few instance methods that you are likely to use. Mainly, there
are functions like getRed() to get the individual color components of the color. There are no
“setter” methods to change the color components. In fact, a Color is an immutable object,
meaning that all of its instance variables are final and cannot be changed after the object is
created. Strings are another example of immutable objects, and we will make some of our own
later in this section.

The main point of all this, again, is that many problems have already been solved, and the
solutions are available in Java’s standard classes. If you are faced with a task that looks like
it should be fairly common, it might be worth looking through a Java reference to see whether
someone has already written a class that you can use.

5.3.2 The class “Object”

We have already seen that one of the major features of object-oriented programming is the
ability to create subclasses of a class. The subclass inherits all the properties or behaviors of
the class, but can modify and add to what it inherits. In Section 5.5, you’ll learn how to create
subclasses. What you don’t know yet is that every class in Java (with just one exception) is
a subclass of some other class. If you create a class and don’t explicitly make it a subclass of
some other class, then it automatically becomes a subclass of the special class named Object.
(Object is the one class that is not a subclass of any other class.)

Class Object defines several instance methods that are inherited by every other class. These
methods can be used with any object whatsoever. I will mention just one of them here. You
will encounter more of them later in the book.

The instance method toString() in class Object returns a value of type String that is
supposed to be a string representation of the object. You’ve already used this method implicitly,
any time you’ve printed out an object or concatenated an object onto a string. When you use
an object in a context that requires a string, the object is automatically converted to type
String by calling its toString() method.

The version of toString that is defined in Object just returns the name of the class that
the object belongs to, concatenated with a code number called the hash code of the object;
this is not very useful. When you create a class, you can write a new toString() method for
it, which will replace the inherited version. For example, we might add the following method
to any of the PairOfDice classes from the previous section:

/**

* Return a String representation of a pair of dice, where die1

* and die2 are instance variables containing the numbers that are

* showing on the two dice.

*/

public String toString() {

if (die1 == die2)

return "double " + die1;

else

return die1 + " and " + die2;

}

If dice refers to a PairOfDice object, then dice.toString() will return strings such as
“3 and 6”, “5 and 1”, and “double 2”, depending on the numbers showing on the dice. This

CHAPTER 5. OBJECTS AND CLASSES 210

method would be used automatically to convert dice to type String in a statement such as

System.out.println("The dice came up " + dice);

so this statement might output, “The dice came up 5 and 1” or “The dice came up double 2”.
You’ll see another example of a toString() method in the next section.

5.3.3 Writing and Using a Class

As an example, we will write an animation program, based on the same animation framework
that was used in Subsection 3.9.3. The animation shows a number of semi-transparent disk
that grow in size as the animation plays. The disks have random colors and locations. When a
disk gets too big, or sometimes just at random, the disk disappears and is replaced with a new
disk at a random location. Here is a screenshot from the program:

A disk in this program can be represented as an object. A disk has properties—color, location,
and size—that can be instance variables in the object. As for instance methods, we need to think
about what we might want to do with a disk. An obvious candidate is that we need to be able to
draw it, so we can include an instance method draw(g), where g is a graphics context that will
be used to do the drawing. The class can also include one or more constructors. A constructor
initializes the object. It’s not always clear what data should be provided as parameters to the
constructors. In this case, as an example, the constructor’s parameters specify the location and
size for the circle, but the constructor makes up a color using random values for the red, green,
and blue components. Here’s the complete class:

import java.awt.Color; // import some standard GUI classes

import java.awt.Graphics;

/**

* A simple class that holds the size, color, and location of a colored disk,

* with a method for drawing the filled circle in a graphics context. The

* circle is drawn as a filled oval, with a black outline.

*/

public class CircleInfo {

public int radius; // The radius of the circle.

public int x,y; // The location of the center of the circle.

public Color color; // The color of the circle.

/**

* Create a CircleInfo with a given location and radius and with a

CHAPTER 5. OBJECTS AND CLASSES 211

* randomly selected, semi-transparent color.

* @param centerX The x coordinate of the center.

* @param centerY The y coordinate of the center.

* @param rad The radius of the circle.

*/

public CircleInfo(int centerX, int centerY, int rad) {

x = centerX;

y = centerY;

radius = rad;

int red = (int)(255*Math.random());

int green = (int)(255*Math.random());

int blue = (int)(255*Math.random());

color = new Color(red,green,blue, 100);

}

/**

* Draw the disk in graphics context g, with a black outline.

*/

public void draw(Graphics g) {

g.setColor(color);

g.fillOval(x - radius, y - radius, 2*radius, 2*radius);

g.setColor(Color.BLACK);

g.drawOval(x - radius, y - radius, 2*radius, 2*radius);

}

}

It would probably be better style to write getters and setters for the instance variables, but to
keep things simple, I made them public.

The main program for my animation is a class GrowingCircleAnimation. The program uses
100 disks, each one represented by an object of type CircleInfo. To make that manageable, the
program uses an array of objects. The array variable is a member variable in the class:

private CircleInfo[] circleData; // holds the data for all 100 circles

Note that it is not static. GUI programming generally uses objects rather than static variables
and methods. Basically, this is because we can imagine having several GrowingCircleAnimations
going on at the same time, each with its own array of disks. Each animation would be repre-
sented by an object, and each object will need to have its own circleData instance variable.
If circleData were static, there would only be one array and all the animations would show
exactly the same thing.

The array must be created and filled with data. The array is created using
new CircleInfo[100], and then 100 objects of type CircleInfo are created to fill the array.
The new objects are created with random locations and sizes. In the program, this is done
before drawing the first frame of the animation. Here is the code, where width and height are
the size of the drawing area:

circleData = new CircleInfo[100]; // create the array

for (int i = 0; i < circleData.length; i++) { // create the objects

circleData[i] = new CircleInfo(

(int)(width*Math.random()),

(int)(height*Math.random()),

(int)(100*Math.random()));

}

CHAPTER 5. OBJECTS AND CLASSES 212

In each frame, the radius of the disk is increased and the disk is drawn using the code

circleData[i].radius++;

circleData[i].draw(g);

These statements look complicated, so let’s unpack them. Now, circleData[i] is an ele-
ment of the array circleData. That means that it is a variable of type CircleInfo. This
variable refers to an object of type CircleInfo, which contains a public instance variable named
radius. This means that circleData[i].radius is the full name for that variable. Since it
is a variable of type int, we can use the ++ operator to increment its value. So the effect of
circleData[i].radius++ is to increase the radius of the circle by one. The second line of code
is similar, but in that statement, circleData[i].draw is an instance method in the CircleInfo
object. The statement circleData[i].draw(g) calls that instance method with parameter g.

The source code example GrowingCircleAnimation.java contains the full source code for the
program, if you are interested. Since the program uses class CircleInfo, you will also need a copy
of CircleInfo.java in order to compile and run the program.

5.3.4 Object-oriented Analysis and Design

Every programmer builds up a stock of techniques and expertise expressed as snippets of code
that can be reused in new programs using the tried-and-true method of cut-and-paste: The old
code is physically copied into the new program and then edited to customize it as necessary.
The problem is that the editing is error-prone and time-consuming, and the whole enterprise is
dependent on the programmer’s ability to pull out that particular piece of code from last year’s
project that looks like it might be made to fit. (On the level of a corporation that wants to
save money by not reinventing the wheel for each new project, just keeping track of all the old
wheels becomes a major task.)

Well-designed classes are software components that can be reused without editing. A well-
designed class is not carefully crafted to do a particular job in a particular program. Instead,
it is crafted to model some particular type of object or a single coherent concept. Since objects
and concepts can recur in many problems, a well-designed class is likely to be reusable without
modification in a variety of projects.

Furthermore, in an object-oriented programming language, it is possible to make subclasses
of an existing class. This makes classes even more reusable. If a class needs to be customized,
a subclass can be created, and additions or modifications can be made in the subclass without
making any changes to the original class. This can be done even if the programmer doesn’t
have access to the source code of the class and doesn’t know any details of its internal, hidden
implementation.

∗ ∗ ∗

The PairOfDice class in the previous section is already an example of a generalized software
component, although one that could certainly be improved. The class represents a single,
coherent concept, “a pair of dice.” The instance variables hold the data relevant to the state
of the dice, that is, the number showing on each of the dice. The instance method represents
the behavior of a pair of dice, that is, the ability to be rolled. This class would be reusable in
many different programming projects.

On the other hand, the Student class from the previous section is not very reusable. It
seems to be crafted to represent students in a particular course where the grade will be based
on three tests. If there are more tests or quizzes or papers, it’s useless. If there are two people
in the class who have the same name, we are in trouble (one reason why numerical student ID’s

http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/GrowingCircleAnimation.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/CircleInfo.java

CHAPTER 5. OBJECTS AND CLASSES 213

are often used). Admittedly, it’s much more difficult to develop a general-purpose student class
than a general-purpose pair-of-dice class. But this particular Student class is good mostly as
an example in a programming textbook.

∗ ∗ ∗

A large programming project goes through a number of stages, starting with specification
of the problem to be solved, followed by analysis of the problem and design of a program
to solve it. Then comes coding , in which the program’s design is expressed in some actual
programming language. This is followed by testing and debugging of the program. After that
comes a long period of maintenance , which means fixing any new problems that are found
in the program and modifying it to adapt it to changing requirements. Together, these stages
form what is called the software life cycle . (In the real world, the ideal of consecutive stages
is seldom if ever achieved. During the analysis stage, it might turn out that the specifications
are incomplete or inconsistent. A problem found during testing requires at least a brief return
to the coding stage. If the problem is serious enough, it might even require a new design.
Maintenance usually involves redoing some of the work from previous stages. . . .)

Large, complex programming projects are only likely to succeed if a careful, systematic
approach is adopted during all stages of the software life cycle. The systematic approach to
programming, using accepted principles of good design, is called software engineering . The
software engineer tries to efficiently construct programs that verifiably meet their specifications
and that are easy to modify if necessary. There is a wide range of “methodologies” that can
be applied to help in the systematic design of programs. (Most of these methodologies seem to
involve drawing little boxes to represent program components, with labeled arrows to represent
relationships among the boxes.)

We have been discussing object orientation in programming languages, which is relevant to
the coding stage of program development. But there are also object-oriented methodologies for
analysis and design. The question in this stage of the software life cycle is, How can one discover
or invent the overall structure of a program? As an example of a rather simple object-oriented
approach to analysis and design, consider this advice: Write down a description of the problem.
Underline all the nouns in that description. The nouns should be considered as candidates for
becoming classes or objects in the program design. Similarly, underline all the verbs. These
are candidates for methods. This is your starting point. Further analysis might uncover the
need for more classes and methods, and it might reveal that subclassing can be used to take
advantage of similarities among classes.

This is perhaps a bit simple-minded, but the idea is clear and the general approach can be
effective: Analyze the problem to discover the concepts that are involved, and create classes to
represent those concepts. The design should arise from the problem itself, and you should end
up with a program whose structure reflects the structure of the problem in a natural way.

5.4 Programming Example: Card, Hand, Deck

In this section, we look at some specific examples of object-oriented design in a domain that
is simple enough that we have a chance of coming up with something reasonably reusable.
Consider card games that are played with a standard deck of playing cards (a so-called “poker”
deck, since it is used in the game of poker).

CHAPTER 5. OBJECTS AND CLASSES 214

5.4.1 Designing the classes

In a typical card game, each player gets a hand of cards. The deck is shuffled and cards are
dealt one at a time from the deck and added to the players’ hands. In some games, cards can
be removed from a hand, and new cards can be added. The game is won or lost depending
on the value (ace, 2, . . . , king) and suit (spades, diamonds, clubs, hearts) of the cards that a
player receives. If we look for nouns in this description, there are several candidates for objects:
game, player, hand, card, deck, value, and suit. Of these, the value and the suit of a card are
simple values, and they might just be represented as instance variables in a Card object. In a
complete program, the other five nouns might be represented by classes. But let’s work on the
ones that are most obviously reusable: card, hand, and deck.

If we look for verbs in the description of a card game, we see that we can shuffle a deck and
deal a card from a deck. This gives use us two candidates for instance methods in a Deck class:
shuffle() and dealCard(). Cards can be added to and removed from hands. This gives two
candidates for instance methods in a Hand class: addCard() and removeCard(). Cards are
relatively passive things, but we at least need to be able to determine their suits and values.
We will discover more instance methods as we go along.

First, we’ll design the deck class in detail. When a deck of cards is first created, it contains
52 cards in some standard order. The Deck class will need a constructor to create a new deck.
The constructor needs no parameters because any new deck is the same as any other. There will
be an instance method called shuffle() that will rearrange the 52 cards into a random order.
The dealCard() instance method will get the next card from the deck. This will be a function
with a return type of Card, since the caller needs to know what card is being dealt. It has no
parameters—when you deal the next card from the deck, you don’t provide any information to
the deck; you just get the next card, whatever it is. What will happen if there are no more
cards in the deck when its dealCard() method is called? It should probably be considered an
error to try to deal a card from an empty deck, so the deck can throw an exception in that case.
But this raises another question: How will the rest of the program know whether the deck is
empty? Of course, the program could keep track of how many cards it has used. But the deck
itself should know how many cards it has left, so the program should just be able to ask the
deck object. We can make this possible by specifying another instance method, cardsLeft(),
that returns the number of cards remaining in the deck. This leads to a full specification of all
the subroutines in the Deck class:

Constructor and instance methods in class Deck:

/**

* Constructor. Create an unshuffled deck of cards.

*/

public Deck()

/**

* Put all the used cards back into the deck,

* and shuffle it into a random order.

*/

public void shuffle()

/**

* As cards are dealt from the deck, the number of

* cards left decreases. This function returns the

* number of cards that are still left in the deck.

*/

CHAPTER 5. OBJECTS AND CLASSES 215

public int cardsLeft()

/**

* Deals one card from the deck and returns it.

* @throws IllegalStateException if no more cards are left.

*/

public Card dealCard()

This is everything you need to know in order to use the Deck class. Of course, it doesn’t tell us
how to write the class. This has been an exercise in design, not in coding. You can look at the
source code, Deck.java, if you want. It should not be a surprise that the class includes an array
of Cards as an instance variable, but there are a few things you might not understand at this
point. Of course, you can use the class in your programs as a black box, without understanding
the implementation.

We can do a similar analysis for the Hand class. When a hand object is first created, it
has no cards in it. An addCard() instance method will add a card to the hand. This method
needs a parameter of type Card to specify which card is being added. For the removeCard()

method, a parameter is needed to specify which card to remove. But should we specify the
card itself (“Remove the ace of spades”), or should we specify the card by its position in the
hand (“Remove the third card in the hand”)? Actually, we don’t have to decide, since we can
allow for both options. We’ll have two removeCard() instance methods, one with a parameter
of type Card specifying the card to be removed and one with a parameter of type int specifying
the position of the card in the hand. (Remember that you can have two methods in a class
with the same name, provided they have different numbers or types of parameters.) Since a
hand can contain a variable number of cards, it’s convenient to be able to ask a hand object
how many cards it contains. So, we need an instance method getCardCount() that returns
the number of cards in the hand. When I play cards, I like to arrange the cards in my hand so
that cards of the same value are next to each other. Since this is a generally useful thing to be
able to do, we can provide instance methods for sorting the cards in the hand. Here is a full
specification for a reusable Hand class:

Constructor and instance methods in class Hand:

/**

* Constructor. Create a Hand object that is initially empty.

*/

public Hand()

/**

* Discard all cards from the hand, making the hand empty.

*/

public void clear()

/**

* Add the card c to the hand. c should be non-null.

* @throws NullPointerException if c is null.

*/

public void addCard(Card c)

/**

* If the specified card is in the hand, it is removed.

*/

public void removeCard(Card c)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Deck.java

CHAPTER 5. OBJECTS AND CLASSES 216

/**

* Remove the card in the specified position from the

* hand. Cards are numbered counting from zero.

* @throws IllegalArgumentException if the specified

* position does not exist in the hand.

*/

public void removeCard(int position)

/**

* Return the number of cards in the hand.

*/

public int getCardCount()

/**

* Get the card from the hand in given position, where

* positions are numbered starting from 0.

* @throws IllegalArgumentException if the specified

* position does not exist in the hand.

*/

public Card getCard(int position)

/**

* Sorts the cards in the hand so that cards of the same

* suit are grouped together, and within a suit the cards

* are sorted by value.

*/

public void sortBySuit()

/**

* Sorts the cards in the hand so that cards are sorted into

* order of increasing value. Cards with the same value

* are sorted by suit. Note that aces are considered

* to have the lowest value.

*/

public void sortByValue()

Again, there are a few things in the implementation of the class that you won’t understand at
this point, but that doesn’t stop you from using the class in your projects. The source code
can be found in the file Hand.java

5.4.2 The Card Class

We will look at the design and implementation of a Card class in full detail. The class will
have a constructor that specifies the value and suit of the card that is being created. There
are four suits, which can be represented by the integers 0, 1, 2, and 3. It would be tough
to remember which number represents which suit, so I’ve defined named constants in the Card
class to represent the four possibilities. For example, Card.SPADES is a constant that represents
the suit, “spades”. (These constants are declared to be public final static ints. It might
be better to use an enumerated type, but I will stick here to integer-valued constants.) The
possible values of a card are the numbers 1, 2, . . . , 13, with 1 standing for an ace, 11 for a jack,
12 for a queen, and 13 for a king. Again, I’ve defined some named constants to represent the
values of aces and face cards. (When you read the Card class, you’ll see that I’ve also added
support for Jokers.)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Hand.java

CHAPTER 5. OBJECTS AND CLASSES 217

A Card object can be constructed knowing the value and the suit of the card. For example,
we can call the constructor with statements such as:

card1 = new Card(Card.ACE, Card.SPADES); // Construct ace of spades.

card2 = new Card(10, Card.DIAMONDS); // Construct 10 of diamonds.

card3 = new Card(v, s); // This is OK, as long as v and s

// are integer expressions.

A Card object needs instance variables to represent its value and suit. I’ve made these
private so that they cannot be changed from outside the class, and I’ve provided getter methods
getSuit() and getValue() so that it will be possible to discover the suit and value from outside
the class. The instance variables are initialized in the constructor, and are never changed after
that. In fact, I’ve declared the instance variables suit and value to be final, since they are
never changed after they are initialized. An instance variable can be declared final provided
it is either given an initial value in its declaration or is initialized in every constructor in the
class. Since all its instance variables are final, a Card is an immutable object.

Finally, I’ve added a few convenience methods to the class to make it easier to print out
cards in a human-readable form. For example, I want to be able to print out the suit of a
card as the word “Diamonds”, rather than as the meaningless code number 2, which is used
in the class to represent diamonds. Since this is something that I’ll probably have to do in
many programs, it makes sense to include support for it in the class. So, I’ve provided instance
methods getSuitAsString() and getValueAsString() to return string representations of the
suit and value of a card. Finally, I’ve defined the instance method toString() to return a
string with both the value and suit, such as “Queen of Hearts”. Recall that this method will
be used automatically whenever a Card needs to be converted into a String, such as when the
card is concatenated onto a string with the + operator. Thus, the statement

System.out.println("Your card is the " + card);

is equivalent to

System.out.println("Your card is the " + card.toString());

If the card is the queen of hearts, either of these will print out “Your card is the Queen of
Hearts”.

Here is the complete Card class. It is general enough to be highly reusable, so the work that
went into designing, writing, and testing it pays off handsomely in the long run.

/**

* An object of type Card represents a playing card from a

* standard Poker deck, including Jokers. The card has a suit, which

* can be spades, hearts, diamonds, clubs, or joker. A spade, heart,

* diamond, or club has one of the 13 values: ace, 2, 3, 4, 5, 6, 7,

* 8, 9, 10, jack, queen, or king. Note that "ace" is considered to be

* the smallest value. A joker can also have an associated value;

* this value can be anything and can be used to keep track of several

* different jokers.

*/

public class Card {

public final static int SPADES = 0; // Codes for the 4 suits, plus Joker.

public final static int HEARTS = 1;

public final static int DIAMONDS = 2;

public final static int CLUBS = 3;

CHAPTER 5. OBJECTS AND CLASSES 218

public final static int JOKER = 4;

public final static int ACE = 1; // Codes for the non-numeric cards.

public final static int JACK = 11; // Cards 2 through 10 have their

public final static int QUEEN = 12; // numerical values for their codes.

public final static int KING = 13;

/**

* This card’s suit, one of the constants SPADES, HEARTS, DIAMONDS,

* CLUBS, or JOKER. The suit cannot be changed after the card is

* constructed.

*/

private final int suit;

/**

* The card’s value. For a normal card, this is one of the values

* 1 through 13, with 1 representing ACE. For a JOKER, the value

* can be anything. The value cannot be changed after the card

* is constructed.

*/

private final int value;

/**

* Creates a Joker, with 1 as the associated value. (Note that

* "new Card()" is equivalent to "new Card(1,Card.JOKER)".)

*/

public Card() {

suit = JOKER;

value = 1;

}

/**

* Creates a card with a specified suit and value.

* @param theValue the value of the new card. For a regular card (non-joker),

* the value must be in the range 1 through 13, with 1 representing an Ace.

* You can use the constants Card.ACE, Card.JACK, Card.QUEEN, and Card.KING.

* For a Joker, the value can be anything.

* @param theSuit the suit of the new card. This must be one of the values

* Card.SPADES, Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER.

* @throws IllegalArgumentException if the parameter values are not in the

* permissible ranges

*/

public Card(int theValue, int theSuit) {

if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS &&

theSuit != CLUBS && theSuit != JOKER)

throw new IllegalArgumentException("Illegal playing card suit");

if (theSuit != JOKER && (theValue < 1 || theValue > 13))

throw new IllegalArgumentException("Illegal playing card value");

value = theValue;

suit = theSuit;

}

/**

* Returns the suit of this card.

* @returns the suit, which is one of the constants Card.SPADES,

* Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER

CHAPTER 5. OBJECTS AND CLASSES 219

*/

public int getSuit() {

return suit;

}

/**

* Returns the value of this card.

* @return the value, which is one of the numbers 1 through 13, inclusive for

* a regular card, and which can be any value for a Joker.

*/

public int getValue() {

return value;

}

/**

* Returns a String representation of the card’s suit.

* @return one of the strings "Spades", "Hearts", "Diamonds", "Clubs"

* or "Joker".

*/

public String getSuitAsString() {

switch (suit) {

case SPADES: return "Spades";

case HEARTS: return "Hearts";

case DIAMONDS: return "Diamonds";

case CLUBS: return "Clubs";

default: return "Joker";

}

}

/**

* Returns a String representation of the card’s value.

* @return for a regular card, one of the strings "Ace", "2",

* "3", ..., "10", "Jack", "Queen", or "King". For a Joker, the

* string is always numerical.

*/

public String getValueAsString() {

if (suit == JOKER)

return "" + value;

else {

switch (value) {

case 1: return "Ace";

case 2: return "2";

case 3: return "3";

case 4: return "4";

case 5: return "5";

case 6: return "6";

case 7: return "7";

case 8: return "8";

case 9: return "9";

case 10: return "10";

case 11: return "Jack";

case 12: return "Queen";

default: return "King";

}

}

CHAPTER 5. OBJECTS AND CLASSES 220

}

/**

* Returns a string representation of this card, including both

* its suit and its value (except that for a Joker with value 1,

* the return value is just "Joker"). Sample return values

* are: "Queen of Hearts", "10 of Diamonds", "Ace of Spades",

* "Joker", "Joker #2"

*/

public String toString() {

if (suit == JOKER) {

if (value == 1)

return "Joker";

else

return "Joker #" + value;

}

else

return getValueAsString() + " of " + getSuitAsString();

}

} // end class Card

5.4.3 Example: A Simple Card Game

I will finish this section by presenting a complete program that uses the Card and Deck classes.
The program lets the user play a very simple card game called HighLow. A deck of cards is
shuffled, and one card is dealt from the deck and shown to the user. The user predicts whether
the next card from the deck will be higher or lower than the current card. If the user predicts
correctly, then the next card from the deck becomes the current card, and the user makes
another prediction. This continues until the user makes an incorrect prediction. The number
of correct predictions is the user’s score.

My program has a static method that plays one game of HighLow. This method has a
return value that represents the user’s score in the game. The main() routine lets the user play
several games of HighLow. At the end, it reports the user’s average score.

I won’t go through the development of the algorithms used in this program, but I encourage
you to read it carefully and make sure that you understand how it works. Note in particular
that the subroutine that plays one game of HighLow returns the user’s score in the game as its
return value. This gets the score back to the main program, where it is needed. Here is the
program:

/**

* This program lets the user play HighLow, a simple card game

* that is described in the output statements at the beginning of

* the main() routine. After the user plays several games,

* the user’s average score is reported.

*/

public class HighLow {

public static void main(String[] args) {

System.out.println("This program lets you play the simple card game,");

System.out.println("HighLow. A card is dealt from a deck of cards.");

CHAPTER 5. OBJECTS AND CLASSES 221

System.out.println("You have to predict whether the next card will be");

System.out.println("higher or lower. Your score in the game is the");

System.out.println("number of correct predictions you make before");

System.out.println("you guess wrong.");

System.out.println();

int gamesPlayed = 0; // Number of games user has played.

int sumOfScores = 0; // The sum of all the scores from

// all the games played.

double averageScore; // Average score, computed by dividing

// sumOfScores by gamesPlayed.

boolean playAgain; // Record user’s response when user is

// asked whether he wants to play

// another game.

do {

int scoreThisGame; // Score for one game.

scoreThisGame = play(); // Play the game and get the score.

sumOfScores += scoreThisGame;

gamesPlayed++;

System.out.print("Play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

averageScore = ((double)sumOfScores) / gamesPlayed;

System.out.println();

System.out.println("You played " + gamesPlayed + " games.");

System.out.printf("Your average score was %1.3f.\n", averageScore);

} // end main()

/**

* Lets the user play one game of HighLow, and returns the

* user’s score in that game. The score is the number of

* correct guesses that the user makes.

*/

private static int play() {

Deck deck = new Deck(); // Get a new deck of cards, and

// store a reference to it in

// the variable, deck.

Card currentCard; // The current card, which the user sees.

Card nextCard; // The next card in the deck. The user tries

// to predict whether this is higher or lower

// than the current card.

int correctGuesses ; // The number of correct predictions the

// user has made. At the end of the game,

// this will be the user’s score.

char guess; // The user’s guess. ’H’ if the user predicts that

// the next card will be higher, ’L’ if the user

// predicts that it will be lower.

deck.shuffle(); // Shuffle the deck into a random order before

CHAPTER 5. OBJECTS AND CLASSES 222

// starting the game.

correctGuesses = 0;

currentCard = deck.dealCard();

System.out.println("The first card is the " + currentCard);

while (true) { // Loop ends when user’s prediction is wrong.

/* Get the user’s prediction, ’H’ or ’L’ (or ’h’ or ’l’). */

System.out.print("Will the next card be higher (H) or lower (L)? ");

do {

guess = TextIO.getlnChar();

guess = Character.toUpperCase(guess);

if (guess != ’H’ && guess != ’L’)

System.out.print("Please respond with H or L: ");

} while (guess != ’H’ && guess != ’L’);

/* Get the next card and show it to the user. */

nextCard = deck.dealCard();

System.out.println("The next card is " + nextCard);

/* Check the user’s prediction. */

if (nextCard.getValue() == currentCard.getValue()) {

System.out.println("The value is the same as the previous card.");

System.out.println("You lose on ties. Sorry!");

break; // End the game.

}

else if (nextCard.getValue() > currentCard.getValue()) {

if (guess == ’H’) {

System.out.println("Your prediction was correct.");

correctGuesses++;

}

else {

System.out.println("Your prediction was incorrect.");

break; // End the game.

}

}

else { // nextCard is lower

if (guess == ’L’) {

System.out.println("Your prediction was correct.");

correctGuesses++;

}

else {

System.out.println("Your prediction was incorrect.");

break; // End the game.

}

}

/* To set up for the next iteration of the loop, the nextCard

becomes the currentCard, since the currentCard has to be

the card that the user sees, and the nextCard will be

set to the next card in the deck after the user makes

his prediction. */

currentCard = nextCard;

CHAPTER 5. OBJECTS AND CLASSES 223

System.out.println();

System.out.println("The card is " + currentCard);

} // end of while loop

System.out.println();

System.out.println("The game is over.");

System.out.println("You made " + correctGuesses

+ " correct predictions.");

System.out.println();

return correctGuesses;

} // end play()

} // end class HighLow

5.5 Inheritance, Polymorphism, and Abstract Classes

A class represents a set of objects which share the same structure and behaviors.
The class determines the structure of objects by specifying variables that are contained in each
instance of the class, and it determines behavior by providing the instance methods that express
the behavior of the objects. This is a powerful idea. However, something like this can be done
in most programming languages. The central new idea in object-oriented programming—the
idea that really distinguishes it from traditional programming—is to allow classes to express
the similarities among objects that share some, but not all, of their structure and behavior.
Such similarities can be expressed using inheritance and polymorphism .

5.5.1 Extending Existing Classes

The topics covered in later subsections of this section are relatively advanced aspects of object-
oriented programming. Any programmer should know what is meant by subclass, inheritance,
and polymorphism. However, it will probably be a while before you actually do anything with
inheritance except for extending classes that already exist. In the first part of this section, we
look at how that is done.

In day-to-day programming, especially for programmers who are just beginning to work
with objects, subclassing is used mainly in one situation: There is an existing class that can be
adapted with a few changes or additions. This is much more common than designing groups of
classes and subclasses from scratch. The existing class can be extended to make a subclass.
The syntax for this is

public class 〈subclass-name 〉 extends 〈existing-class-name 〉 {

.

. // Changes and additions.

.

}

As an example, suppose you want to write a program that plays the card game, Blackjack.
You can use the Card, Hand, and Deck classes developed in Section 5.4. However, a hand in the
game of Blackjack is a little different from a hand of cards in general, since it must be possible
to compute the “value” of a Blackjack hand according to the rules of the game. The rules are
as follows: The value of a hand is obtained by adding up the values of the cards in the hand.

CHAPTER 5. OBJECTS AND CLASSES 224

The value of a numeric card such as a three or a ten is its numerical value. The value of a Jack,
Queen, or King is 10. The value of an Ace can be either 1 or 11. An Ace should be counted
as 11 unless doing so would put the total value of the hand over 21. Note that this means that
the second, third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method that
computes the Blackjack value of the hand. Here’s the definition of such a class:

public class BlackjackHand extends Hand {

/**

* Computes and returns the value of this hand in the game

* of Blackjack.

*/

public int getBlackjackValue() {

int val; // The value computed for the hand.

boolean ace; // This will be set to true if the

// hand contains an ace.

int cards; // Number of cards in the hand.

val = 0;

ace = false;

cards = getCardCount(); // (method defined in class Hand.)

for (int i = 0; i < cards; i++) {

// Add the value of the i-th card in the hand.

Card card; // The i-th card;

int cardVal; // The blackjack value of the i-th card.

card = getCard(i);

cardVal = card.getValue(); // The normal value, 1 to 13.

if (cardVal > 10) {

cardVal = 10; // For a Jack, Queen, or King.

}

if (cardVal == 1) {

ace = true; // There is at least one ace.

}

val = val + cardVal;

}

// Now, val is the value of the hand, counting any ace as 1.

// If there is an ace, and if changing its value from 1 to

// 11 would leave the score less than or equal to 21,

// then do so by adding the extra 10 points to val.

if (ace == true && val + 10 <= 21)

val = val + 10;

return val;

} // end getBlackjackValue()

} // end class BlackjackHand

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand contains
all the instance variables and instance methods defined in Hand, plus the new in-
stance method named getBlackjackValue(). For example, if bjh is a variable of type
BlackjackHand, then the following are all legal: bjh.getCardCount(), bjh.removeCard(0),

CHAPTER 5. OBJECTS AND CLASSES 225

and bjh.getBlackjackValue(). The first two methods are defined in Hand, but are inherited
by BlackjackHand.

Variables and methods from the Hand class are inherited by BlackjackHand, and they can
be used in the definition of BlackjackHand just as if they were actually defined in that class—
except for any that are declared to be private, which prevents access even by subclasses. The
statement “cards = getCardCount();” in the above definition of getBlackjackValue() calls
the instance method getCardCount(), which was defined in Hand.

Extending existing classes is an easy way to build on previous work. We’ll see that many
standard classes have been written specifically to be used as the basis for making subclasses.

∗ ∗ ∗

Access modifiers such as public and private are used to control access to members of a
class. There is one more access modifier, protected , that comes into the picture when subclasses
are taken into consideration. When protected is applied as an access modifier to a method or
member variable in a class, that member can be used in subclasses—direct or indirect—of the
class in which it is defined, but it cannot be used in non-subclasses. (There is an exception:
A protected member can also be accessed by any class in the same package as the class that
contains the protected member. Recall that using no access modifier makes a member accessible
to classes in the same package, and nowhere else. Using the protected modifier is strictly more
liberal than using no modifier at all: It allows access from classes in the same package and from
subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying that it
is part of the implementation of the class, rather than part of the public interface of the class.
However, you are allowing subclasses to use and modify that part of the implementation.

For example, consider a PairOfDice class that has instance variables die1 and die2 to
represent the numbers appearing on the two dice. We could make those variables private to
make it impossible to change their values from outside the class, while still allowing read access
through getter methods. However, if we think it possible that PairOfDice will be used to create
subclasses, we might want to make it possible for subclasses to change the numbers on the dice.
For example, a GraphicalDice subclass that draws the dice might want to change the numbers
at other times besides when the dice are rolled. In that case, we could make die1 and die2

protected, which would allow the subclass to change their values without making them public
to the rest of the world. (An even better idea would be to define protected setter methods for
the variables. A setter method could, for example, ensure that the value that is being assigned
to the variable is in the legal range 1 through 6.)

5.5.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of its structure
and behavior from another class. The class that does the inheriting is said to be a subclass of
the class from which it inherits. If class B is a subclass of class A, we also say that class A is a
superclass of class B. (Sometimes the terms derived class and base class are used instead
of subclass and superclass; this is the common terminology in C++.) A subclass can add to the
structure and behavior that it inherits. It can also replace or modify inherited behavior (though
not inherited structure). The relationship between subclass and superclass is sometimes shown
by a diagram in which the subclass is shown below, and connected to, its superclass, as shown
on the left below:

CHAPTER 5. OBJECTS AND CLASSES 226

class A

(superclass)

c���� �
(subclass)

class A

class Cclass B class D

class E

In Java, to create a class named “B” as a subclass of a class named “A”, you would write

class B extends A {

.

. // additions to, and modifications of,

. // stuff inherited from class A

.

}

Several classes can be declared as subclasses of the same superclass. The subclasses, which
might be referred to as “sibling classes,” share some structures and behaviors—namely, the ones
they inherit from their common superclass. The superclass expresses these shared structures
and behaviors. In the diagram shown on the right above, classes B, C, and D are sibling classes.
Inheritance can also extend over several “generations” of classes. This is shown in the diagram,
where class E is a subclass of class D which is itself a subclass of class A. In this case, class E
is considered to be a subclass of class A, even though it is not a direct subclass. This whole set
of classes forms a small class hierarchy .

5.5.3 Example: Vehicles

Let’s look at an example. Suppose that a program has to deal with motor vehicles, including
cars, trucks, and motorcycles. (This might be a program used by a Department of Motor
Vehicles to keep track of registrations.) The program could use a class named Vehicle to
represent all types of vehicles. Since cars, trucks, and motorcycles are types of vehicles, they
would be represented by subclasses of the Vehicle class, as shown in this class hierarchy diagram:

Ve����e

T����C�� M��������e

The Vehicle class would include instance variables such as registrationNumber and owner and
instance methods such as transferOwnership(). These are variables and methods common
to all vehicles. The three subclasses of Vehicle—Car, Truck, and Motorcycle—could then be
used to hold variables and methods specific to particular types of vehicles. The Car class
might add an instance variable numberOfDoors, the Truck class might have numberOfAxles,
and the Motorcycle class could have a boolean variable hasSidecar. (Well, it could in theory
at least, even if it might give a chuckle to the people at the Department of Motor Vehicles.)
The declarations of these classes in a Java program would look, in outline, like this (although
they are likely to be defined in separate files and declared as public classes):

CHAPTER 5. OBJECTS AND CLASSES 227

class Vehicle {

int registrationNumber;

Person owner; // (Assuming that a Person class has been defined!)

void transferOwnership(Person newOwner) {

. . .

}

. . .

}

class Car extends Vehicle {

int numberOfDoors;

. . .

}

class Truck extends Vehicle {

int numberOfAxles;

. . .

}

class Motorcycle extends Vehicle {

boolean hasSidecar;

. . .

}

Suppose that myCar is a variable of type Car that has been declared and initialized with the
statement

Car myCar = new Car();

Given this declaration, a program could refer to myCar.numberOfDoors, since numberOfDoors

is an instance variable in the class Car. But since class Car extends class Vehicle, a car also
has all the structure and behavior of a vehicle. This means that myCar.registrationNumber,
myCar.owner, and myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The same is true
in a program. That is, an object of type Car or Truck or Motorcycle is automatically an object
of type Vehicle too. This brings us to the following Important Fact:

A variable that can hold a reference
to an object of class A can also hold a reference
to an object belonging to any subclass of A.

The practical effect of this in our example is that an object of type Car can be assigned to a
variable of type Vehicle. That is, it would be legal to say

Vehicle myVehicle = myCar;

or even

Vehicle myVehicle = new Car();

After either of these statements, the variable myVehicle holds a reference to a Vehicle object
that happens to be an instance of the subclass, Car. The object “remembers” that it is in fact
a Car, and not just a Vehicle. Information about the actual class of an object is stored as part
of that object. It is even possible to test whether a given object belongs to a given class, using
the instanceof operator. The test:

if (myVehicle instanceof Car) ...

CHAPTER 5. OBJECTS AND CLASSES 228

determines whether the object referred to by myVehicle is in fact a car.
On the other hand, the assignment statement

myCar = myVehicle;

would be illegal because myVehicle could potentially refer to other types of vehicles that are
not cars. This is similar to a problem we saw previously in Subsection 2.5.6: The computer
will not allow you to assign an int value to a variable of type short, because not every int is a
short. Similarly, it will not allow you to assign a value of type Vehicle to a variable of type Car
because not every vehicle is a car. As in the case of ints and shorts, the solution here is to use
type-casting. If, for some reason, you happen to know that myVehicle does in fact refer to a
Car, you can use the type cast (Car)myVehicle to tell the computer to treat myVehicle as if
it were actually of type Car. So, you could say

myCar = (Car)myVehicle;

and you could even refer to ((Car)myVehicle).numberOfDoors. (The parentheses are
necessary because of precedence. The “.” has higher precedence than the type-cast, so
(Car)myVehicle.numberOfDoors would be read as (Car)(myVehicle.numberOfDoors), an at-
tempt to type-cast the int myVehicle.numberOfDoors into a Vehicle, which is impossible.)

As an example of how this could be used in a program, suppose that you want to print out
relevant data about the Vehicle referred to by myVehicle. If it’s a Car, you will want to print
out the car’s numberOfDoors, but you can’t say myVehicle.numberOfDoors, since there is no
numberOfDoors in the Vehicle class. But you could say:

System.out.println("Vehicle Data:");

System.out.println("Registration number: "

+ myVehicle.registrationNumber);

if (myVehicle instanceof Car) {

System.out.println("Type of vehicle: Car");

Car c;

c = (Car)myVehicle; // Type-cast to get access to numberOfDoors!

System.out.println("Number of doors: " + c.numberOfDoors);

}

else if (myVehicle instanceof Truck) {

System.out.println("Type of vehicle: Truck");

Truck t;

t = (Truck)myVehicle; // Type-cast to get access to numberOfAxles!

System.out.println("Number of axles: " + t.numberOfAxles);

}

else if (myVehicle instanceof Motorcycle) {

System.out.println("Type of vehicle: Motorcycle");

Motorcycle m;

m = (Motorcycle)myVehicle; // Type-cast to get access to hasSidecar!

System.out.println("Has a sidecar: " + m.hasSidecar);

}

Note that for object types, when the computer executes a program, it checks whether
type-casts are valid. So, for example, if myVehicle refers to an object of type Truck, then
the type cast (Car)myVehicle would be an error. When this happens, an exception of type
ClassCastException is thrown. This check is done at run time, not compile time, because the
actual type of the object referred to by myVehicle is not known when the program is compiled.

CHAPTER 5. OBJECTS AND CLASSES 229

5.5.4 Polymorphism

As another example, consider a program that deals with shapes drawn on the screen. Let’s say
that the shapes include rectangles, ovals, and roundrects of various colors. (A “roundrect” is
just a rectangle with rounded corners.)

Rectangles Ovals RoundRects

Three classes, Rectangle, Oval, and RoundRect, could be used to represent the three types of
shapes. These three classes would have a common superclass, Shape, to represent features that
all three shapes have in common. The Shape class could include instance variables to represent
the color, position, and size of a shape, and it could include instance methods for changing the
values of those properties. Changing the color, for example, might involve changing the value
of an instance variable, and then redrawing the shape in its new color:

class Shape {

Color color; // (must be imported from package java.awt)

void setColor(Color newColor) {

// Method to change the color of the shape.

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

void redraw() {

// method for drawing the shape

? ? ? // what commands should go here?

}

. . . // more instance variables and methods

} // end of class Shape

Now, you might see a problem here with the method redraw(). The problem is that each
different type of shape is drawn differently. The method setColor() can be called for any type
of shape. How does the computer know which shape to draw when it executes the redraw()?
Informally, we can answer the question like this: The computer executes redraw() by asking
the shape to redraw itself. Every shape object knows what it has to do to redraw itself.

In practice, this means that each of the specific shape classes has its own redraw() method:

class Rectangle extends Shape {

void redraw() {

. . . // commands for drawing a rectangle

}

. . . // possibly, more methods and variables

}

class Oval extends Shape {

void redraw() {

CHAPTER 5. OBJECTS AND CLASSES 230

. . . // commands for drawing an oval

}

. . . // possibly, more methods and variables

}

class RoundRect extends Shape {

void redraw() {

. . . // commands for drawing a rounded rectangle

}

. . . // possibly, more methods and variables

}

Suppose that someShape is a variable of type Shape. Then it could refer to an object
of any of the types Rectangle, Oval, or RoundRect. As a program executes, and the value of
someShape changes, it could even refer to objects of different types at different times! Whenever
the statement

someShape.redraw();

is executed, the redraw method that is actually called is the one appropriate for the type of
object to which someShape actually refers. There may be no way of telling, from looking at the
text of the program, what shape this statement will draw, since it depends on the value that
someShape happens to have when the program is executed. Even more is true. Suppose the
statement is in a loop and gets executed many times. If the value of someShape changes as the
loop is executed, it is possible that the very same statement “someShape.redraw();” will call
different methods and draw different shapes as it is executed over and over. We say that the
redraw() method is polymorphic. A method is polymorphic if the action performed by the
method depends on the actual type of the object to which the method is applied. Polymorphism
is one of the major distinguishing features of object-oriented programming. This can be seen
most vividly, perhaps, if we have an array of shapes. Suppose that shapelist is an a variable
of type Shape[], and that the array has already been created and filled with data. Some of the
elements in the array might be Rectangles, some might be Ovals, and some might be RoundRects.
We can draw all the shapes in the array by saying

for (int i = 0; i < shapelist.length; i++) {

Shape shape = shapelist[i];

shape.redraw();

}

As the computer goes through this loop, the statement shape.redraw() will sometimes draw
a rectangle, sometimes an oval, and sometimes a roundrect, depending on the type of object to
which array element number i refers.

Perhaps this becomes more understandable if we change our terminology a bit: In object-
oriented programming, calling a method is often referred to as sending a message to an object.
The object responds to the message by executing the appropriate method. The statement
“someShape.redraw();” is a message to the object referred to by someShape. Since that
object knows what type of object it is, it knows how it should respond to the message. From
this point of view, the computer always executes “someShape.redraw();” in the same way: by
sending a message. The response to the message depends, naturally, on who receives it. From
this point of view, objects are active entities that send and receive messages, and polymorphism
is a natural, even necessary, part of this view. Polymorphism just means that different objects
can respond to the same message in different ways.

CHAPTER 5. OBJECTS AND CLASSES 231

One of the most beautiful things about polymorphism is that it lets code that you write do
things that you didn’t even conceive of, at the time you wrote it. Suppose that I decide to add
beveled rectangles to the types of shapes my program can deal with. A beveled rectangle has
a triangle cut off each corner:

BeveledRects

To implement beveled rectangles, I can write a new subclass, BeveledRect, of class Shape
and give it its own redraw() method. Automatically, code that I wrote previously—such as
the statement someShape.redraw()—can now suddenly start drawing beveled rectangles, even
though the beveled rectangle class didn’t exist when I wrote the statement!

∗ ∗ ∗

In the statement “someShape.redraw();”, the redraw message is sent to the object
someShape. Look back at the method in the Shape class for changing the color of a shape:

void setColor(Color newColor) {

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

A redraw message is sent here, but which object is it sent to? Well, the setColor method is
itself a message that was sent to some object. The answer is that the redraw message is sent to
that same object, the one that received the setColor message. If that object is a rectangle,
then it contains a redraw() method for drawing rectangles, and that is the one that is executed.
If the object is an oval, then it is the redraw() method from the Oval class. This is what you
should expect, but it means that the “redraw();” statement in the setColor() method does
not necessarily call the redraw() method in the Shape class! The redraw() method that is
executed could be in any subclass of Shape. This is just another case of polymorphism.

5.5.5 Abstract Classes

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw()method in
the appropriate class that is executed. This leaves open the question, What does the redraw()
method in the Shape class do? How should it be defined?

The answer may be surprising: We should leave it blank! The fact is that the class Shape
represents the abstract idea of a shape, and there is no way to draw such a thing. Only
particular, concrete shapes like rectangles and ovals can be drawn. So, why should there
even be a redraw() method in the Shape class? Well, it has to be there, or it would be
illegal to call it in the setColor() method of the Shape class, and it would be illegal to write
“someShape.redraw();”. The compiler would complain that someShape is a variable of type
Shape and there’s no redraw() method in the Shape class.

CHAPTER 5. OBJECTS AND CLASSES 232

Nevertheless the version of redraw() in the Shape class itself will never actually be called.
In fact, if you think about it, there can never be any reason to construct an actual object of
type Shape! You can have variables of type Shape, but the objects they refer to will always
belong to one of the subclasses of Shape. We say that Shape is an abstract class. An abstract
class is one that is not used to construct objects, but only as a basis for making subclasses. An
abstract class exists only to express the common properties of all its subclasses. A class that
is not abstract is said to be concrete . You can create objects belonging to a concrete class,
but not to an abstract class. A variable whose type is given by an abstract class can only refer
to objects that belong to concrete subclasses of the abstract class.

Similarly, we say that the redraw() method in class Shape is an abstract method , since
it is never meant to be called. In fact, there is nothing for it to do—any actual redrawing is
done by redraw() methods in the subclasses of Shape. The redraw() method in Shape has
to be there. But it is there only to tell the computer that all Shapes understand the redraw

message. As an abstract method, it exists merely to specify the common interface of all the
actual, concrete versions of redraw() in the subclasses. There is no reason for the abstract
redraw() in class Shape to contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the computer,
syntactically, that they are abstract by adding the modifier “abstract” to their definitions.
For an abstract method, the block of code that gives the implementation of an ordinary method
is replaced by a semicolon. An implementation must then be provided for the abstract method
in any concrete subclass of the abstract class. Here’s what the Shape class would look like as
an abstract class:

public abstract class Shape {

Color color; // color of shape.

void setColor(Color newColor) {

// method to change the color of the shape

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

abstract void redraw();

// abstract method---must be defined in

// concrete subclasses

. . . // more instance variables and methods

} // end of class Shape

Once you have declared the class to be abstract, it becomes illegal to try to create actual
objects of type Shape, and the computer will report a syntax error if you try to do so.

Note, by the way, that the Vehicle class discussed above would probably also be an abstract
class. There is no way to own a vehicle as such—the actual vehicle has to be a car or a truck
or a motorcycle, or some other “concrete” type of vehicle.

∗ ∗ ∗

Recall from Subsection 5.3.2 that a class that is not explicitly declared to be a subclass of
some other class is automatically made a subclass of the standard class Object. That is, a class
declaration with no “extends” part such as

public class myClass { . . .

CHAPTER 5. OBJECTS AND CLASSES 233

is exactly equivalent to

public class myClass extends Object { . . .

This means that class Object is at the top of a huge class hierarchy that includes every
other class. (Semantically, Object is an abstract class, in fact the most abstract class of all.
Curiously, however, it is not declared to be abstract syntactically, which means that you can
create objects of type Object. However, there is not much that you can do with them.)

Since every class is a subclass of Object, a variable of type Object can refer to any object
whatsoever, of any type. Similarly, an array of type Object[] can hold objects of any type.

∗ ∗ ∗

The sample source code file ShapeDraw.java uses an abstract Shape class and an array of
type Shape[] to hold a list of shapes. You might want to look at this file, even though you
won’t be able to understand all of it at this time. Even the definitions of the shape classes are
somewhat different from those that I have described in this section. (For example, the draw()
method has a parameter of type Graphics. This parameter is required because drawing in Java
requires a graphics context.) I’ll return to similar examples in later chapters when you know
more about GUI programming. However, it would still be worthwhile to look at the definition
of the Shape class and its subclasses in the source code. You might also check how an array is
used to hold the list of shapes. Here is a screenshot from the program:

If you run the ShapeDraw program, you can click one of the buttons along the bottom to
add a shape to the picture. The new shape will appear in the upper left corner of the drawing
area. The color of the shape is given by the “pop-up menu” in the lower right. Once a shape
is on the screen, you can drag it around with the mouse. A shape will maintain the same
front-to-back order with respect to other shapes on the screen, even while you are dragging it.
However, you can move a shape out in front of all the other shapes if you hold down the shift
key as you click on it.

In the program, the only time when the actual class of a shape is used is when that shape is
added to the screen. Once the shape has been created, it is manipulated entirely as an abstract
shape. The routine that implements dragging, for example, works with variables of type Shape
and makes no reference to any of its subclasses. As the shape is being dragged, the dragging
routine just calls the shape’s draw method each time the shape has to be drawn, so it doesn’t
have to know how to draw the shape or even what type of shape it is. The object is responsible

http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/ShapeDraw.java

CHAPTER 5. OBJECTS AND CLASSES 234

for drawing itself. If I wanted to add a new type of shape to the program, I would define a
new subclass of Shape, add another button, and program the button to add the correct type of
shape to the screen. No other changes in the programming would be necessary.

5.6 this and super

Although the basic ideas of object-oriented programming are reasonably simple and clear,
they are subtle, and they take time to get used to. And unfortunately, beyond the basic ideas
there are a lot of details. The rest of this chapter covers more of those annoying details.
Remember that you don’t need to master everything in this chapter the first time through. In
this section, we’ll look at two variables, this and super, that are automatically defined in any
instance method.

5.6.1 The Special Variable this

What does it mean when you use a simple identifier such as amount or process() to refer to a
variable or method? The answer depends on scope rules that tell where and how each declared
variable and method can be accessed in a program. Inside the definition of a method, a simple
variable name might refer to a local variable or parameter, if there is one “in scope,” that is,
one whose declaration is in effect at the point in the source code where the reference occurs. If
not, it must refer to a member variable of the class in which the reference occurs. Similarly, a
simple method name must refer to a method in the same class.

A static member of a class has a simple name that can only be used inside the class
definition; for use outside the class, it has a full name of the form 〈class-name〉.〈simple-name〉.
For example, “Math.PI” is a static member variable with simple name “PI” in the class “Math”.
It’s always legal to use the full name of a static member, even within the class where it’s defined.
Sometimes it’s even necessary, as when the simple name of a static member variable is hidden
by a local variable or parameter of the same name.

Instance variables and instance methods also have simple names. The simple name of such
an instance member can be used in instance methods in the class where the instance member
is defined (but not in static methods). Instance members also have full names—but remember
that an instance variable or instance method is actually contained in an object rather than in
a class, and each object has its own version. A full name of an instance member starts with
a reference to the object that contains the instance member. For example, if std is a variable
that refers to an object of type Student, then std.test1 could be a full name for an instance
variable named test1 that is contained in that object.

But when we are working inside a class and use a simple name to refer to an instance
variable like test1, where is the object that contains the variable? The solution to this riddle
is simple: Suppose that a reference to “test1” occurs in the definition of some instance method.
The actual method that gets executed is part of some particular object of type Student. When
that method gets executed, the occurrence of the name “test1” refers to the test1 variable in
that same object. (This is why simple names of instance members cannot be used in static
methods—when a static method is executed, it is not part of an object, and hence there are no
instance members in sight!)

This leaves open the question of full names for instance members inside the same class
where they are defined. We need a way to refer to “the object that contains this method.” Java
defines a special variable named this for just this purpose. The variable this can be used in

CHAPTER 5. OBJECTS AND CLASSES 235

the source code of an instance method to refer to the object that contains the method. This
intent of the name, “this,” is to refer to “this object,” the one right here that this very method
is in. If var is an instance variable in the same object as the method, then “this.var” is a
full name for that variable. If otherMethod() is an instance method in the same object, then
this.otherMethod() could be used to call that method. Whenever the computer executes an
instance method, it automatically sets the variable this to refer to the object that contains the
method.

(Some object oriented languages use the name “self” instead of “this.” Here, an object is seen
as an entity that receives messages and responds by performing some action. From the point
of view of that entity, an instance variable such as self.name refers to the entity’s own name,
something that is part of the entity itself. Calling an instance method such as self.redraw()
is like saying “message to self: redraw!”)

One common use of this is in constructors. For example:

public class Student {

private String name; // Name of the student.

public Student(String name) {

// Constructor. Create a student with specified name.

this.name = name;

}

.

. // More variables and methods.

.

}

In the constructor, the instance variable called name is hidden by a formal parameter that is also
called “name.” However, the instance variable can still be referred to by its full name, which
is this.name. In the assignment statement “this.name = name”, the value of the formal
parameter, name, is assigned to the instance variable, this.name. This is considered to be
acceptable style: There is no need to dream up cute new names for formal parameters that are
just used to initialize instance variables. You can use the same name for the parameter as for
the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method, you
need to pass the object that contains the method to a subroutine, as an actual parameter. In
that case, you can use this as the actual parameter. For example, if you wanted to print out
a string representation of the object, you could say “System.out.println(this);”. Or you
could assign the value of this to another variable in an assignment statement. You can store it
in an array. In fact, you can do anything with this that you could do with any other variable,
except change its value. (Consider it to be a final variable.)

5.6.2 The Special Variable super

Java also defines another special variable, named “super”, for use in the definitions of instance
methods. The variable super is for use in a subclass. Like this, super refers to the object
that contains the method. But it’s forgetful. It forgets that the object belongs to the class you
are writing, and it remembers only that it belongs to the superclass of that class. The point is
that the class can contain additions and modifications to the superclass. super doesn’t know
about any of those additions and modifications; it can only be used to refer to methods and
variables in the superclass.

CHAPTER 5. OBJECTS AND CLASSES 236

Let’s say that the class that you are writing contains an instance method named
doSomething(). Consider the subroutine call statement super.doSomething(). Now, super
doesn’t know anything about the doSomething() method in the subclass. It only knows
about things in the superclass, so it tries to execute a method named doSomething() from
the superclass. If there is none—if the doSomething() method was an addition rather than a
modification—you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are hidden
by things in the subclass. For example, super.var always refers to an instance variable named
var in the superclass. This can be useful for the following reason: If a class contains an instance
variable with the same name as an instance variable in its superclass, then an object of that
class will actually contain two variables with the same name: one defined as part of the class
itself and one defined as part of the superclass. The variable in the subclass does not replace
the variable of the same name in the superclass; it merely hides it. The variable from the
superclass can still be accessed, using super.

When a subclass contains an instance method that has the same signature as a method in
its superclass, the method from the superclass is hidden in the same way. We say that the
method in the subclass overrides the method from the superclass. Again, however, super can
be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends the
behavior of the inherited method, instead of replacing that behavior entirely. The new method
can use super to call the method from the superclass, and then it can add additional code to
provide additional behavior. As an example, suppose you have a PairOfDice class that includes
a roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of
dice drawn on the computer screen. The roll() method in the GraphicalDice class should do
everything that the roll() method in the PairOfDice class does. We can express this with a
call to super.roll(), which calls the method in the superclass. But in addition to that, the
roll() method for a GraphicalDice object has to redraw the dice to show the new values. The
GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {

// Roll the dice, and redraw them.

super.roll(); // Call the roll method from PairOfDice.

redraw(); // Call a method to draw the dice.

}

.

. // More stuff, including definition of redraw().

.

}

Note that this allows you to extend the behavior of the roll() method even if you don’t know
how the method is implemented in the superclass!

5.6.3 super and this As Constructors

Constructors are not inherited. That is, if you extend an existing class to make a subclass, the
constructors in the superclass do not become part of the subclass. If you want constructors in
the subclass, you have to define new ones from scratch. If you don’t define any constructors
in the subclass, then the computer will make up a default constructor, with no parameters, for
you.

CHAPTER 5. OBJECTS AND CLASSES 237

This could be a problem, if there is a constructor in the superclass that does a lot of necessary
work. It looks like you might have to repeat all that work in the subclass! This could be a
real problem if you don’t have the source code to the superclass, and don’t even know how it
is implemented. It might look like an impossible problem, if the constructor in the superclass
uses private member variables that you don’t even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special variable,
super. As the very first statement in a constructor, you can use super to call a constructor
from the superclass. The notation for this is a bit ugly and misleading, and it can only be used
in this one particular circumstance: It looks like you are calling super as a subroutine (even
though super is not a subroutine and you can’t call constructors the same way you call other
subroutines anyway). As an example, assume that the PairOfDice class has a constructor that
takes two integers as parameters. Consider a subclass:

public class GraphicalDice extends PairOfDice {

public GraphicalDice() { // Constructor for this class.

super(3,4); // Call the constructor from the

// PairOfDice class, with parameters 3, 4.

initializeGraphics(); // Do some initialization specific

// to the GraphicalDice class.

}

.

. // More constructors, methods, variables...

.

}

The statement “super(3,4);” calls the constructor from the superclass. This call must
be the first line of the constructor in the subclass. Note that if you don’t explicitly call a
constructor from the superclass in this way, then the default constructor from the superclass,
the one with no parameters, will be called automatically. (And if no such constructor exists in
the superclass, the compiler will consider it to be a syntax error.)

You can use the special variable this in exactly the same way to call another constructor
in the same class. That is, the very first line of a constructor can look like a subroutine call
with “this” as the name of the subroutine. The result is that the body of another constructor
in the same class is executed. This can be very useful since it can save you from repeating the
same code in several different constructors. As an example, consider MosaicPanel.java, which
was used indirectly in Section 4.6. A MosaicPanel represents a grid of colored rectangles. It has
a constructor with many parameters:

public MosaicPanel(int rows, int columns,

int preferredBlockWidth, int preferredBlockHeight,

Color borderColor, int borderWidth)

This constructor provides a lot of options and does a lot of initialization. I wanted to provide
easier-to-use constructors with fewer options, but all the initialization still has to be done. The
class also contains these constructors:

public MosaicPanel() {

this(42,42,16,16);

}

public MosaicPanel(int rows, int columns) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java

CHAPTER 5. OBJECTS AND CLASSES 238

this(rows,columns,16,16);

}

public MosaicPanel(int rows, int columns,

int preferredBlockWidth, int preferredBlockHeight) {

this(rows, columns, preferredBlockWidth, preferredBlockHeight, null, 0);

}

Each of these constructors exists just to call another constructor, while providing constant
values for some of the parameters. For example, this(42,42,16,16) calls the last constructor
listed here, while that constructor in turn calls the main, six-parameter constructor. That main
constructor is eventually called in all cases, so that all the essential initialization gets done in
every case.

5.7 Interfaces

Some object-oriented programming languages, such as C++, allow a class to extend two or
more superclasses. This is called multiple inheritance . In the illustration below, for example,
class E is shown as having both class A and class B as direct superclasses, while class F has
three direct superclasses.

class A

class C

class D

class F

class B

class E

��!"#$!% inherit&'(%)NOT &!!*+%, #' -&.&/

Such multiple inheritance is not allowed in Java. The designers of Java wanted to keep the
language reasonably simple, and felt that the benefits of multiple inheritance were not worth the
cost in increased complexity. However, Java does have a feature that can be used to accomplish
many of the same goals as multiple inheritance: interfaces.

5.7.1 Defining and Implementing Interfaces

We’ve encountered the term “interface” before, in connection with black boxes in general and
subroutines in particular. The interface of a subroutine consists of the name of the subroutine,
its return type, and the number and types of its parameters. This is the information you need
to know if you want to call the subroutine. A subroutine also has an implementation: the block
of code which defines it and which is executed when the subroutine is called.

In Java, interface is a reserved word with an additional, technical meaning. An
“interface” in this sense consists of a set of instance method interfaces, without any as-
sociated implementations. (Actually, a Java interface can contain other things as well, as we’ll
see later.) A class can implement an interface by providing an implementation for each of
the methods specified by the interface. Here is an example of a very simple Java interface:

CHAPTER 5. OBJECTS AND CLASSES 239

public interface Drawable {

public void draw(Graphics g);

}

This looks much like a class definition, except that the implementation of the draw() method is
omitted. A class that implements the interface Drawable must provide an implementation for
this method. Of course, the class can also include other methods and variables. For example,

public class Line implements Drawable {

public void draw(Graphics g) {

. . . // do something---presumably, draw a line

}

. . . // other methods and variables

}

Note that to implement an interface, a class must do more than simply provide an implemen-
tation for each method in the interface; it must also state that it implements the interface,
using the reserved word implements as in this example: “public class Line implements

Drawable”. Any concrete class that implements the Drawable interface must define a draw()

instance method. Any object created from such a class includes a draw() method. We say that
an object implements an interface if it belongs to a class that implements the interface. For
example, any object of type Line implements the Drawable interface.

While a class can extend only one other class, it can implement any number of interfaces.
In fact, a class can both extend one other class and implement one or more interfaces. So, we
can have things like

class FilledCircle extends Circle

implements Drawable, Fillable {

. . .

}

The point of all this is that, although interfaces are not classes, they are something very
similar. An interface is very much like an abstract class, that is, a class that can never be used
for constructing objects, but can be used as a basis for making subclasses. The subroutines
in an interface are abstract methods, which must be implemented in any concrete class that
implements the interface. You can compare the Drawable interface with the abstract class

public abstract class AbstractDrawable {

public abstract void draw(Graphics g);

}

The main difference is that a class that extends AbstractDrawable cannot extend any other class,
while a class that implements Drawable can also extend some class, as well as implement other
interfaces. Of course, an abstract class can contain non-abstract methods as well as abstract
methods. An interface is like a “pure” abstract class, which contains only abstract methods.

Note that the methods declared in an interface must be public. In fact, since that is the
only option, it is not necessary to specify the access modifier in the declaration.

In addition to method declarations, an interface can also include variable declarations. The
variables must be "public static final" and effectively become public static final variables
in every class that implements the interface. In fact, since the variables can only be public and
static and final, specifying the modifiers is optional. For example,

CHAPTER 5. OBJECTS AND CLASSES 240

public interface ConversionFactors {

int INCHES PER FOOT = 12;

int FEET PER YARD = 3;

int YARDS PER MILE = 1760;

}

This is a convenient way to define named constants that can be used in several classes. A class
that implements ConversionFactors can use the constants defined in the interface as if they were
defined in the class.

You are not likely to need to write your own interfaces until you get to the point of writing
fairly complex programs. However, there are several interfaces that are used in important ways
in Java’s standard packages. You’ll learn about some of these standard interfaces in the next
few chapters, and you will write classes that implement them.

5.7.2 Interfaces as Types

As with abstract classes, even though you can’t construct an object from an interface, you can
declare a variable whose type is given by the interface. For example, if Drawable is the interface
given above, and if Line and FilledCircle are classes that implement Drawable, as above, then
you could say:

Drawable figure; // Declare a variable of type Drawable. It can

// refer to any object that implements the

// Drawable interface.

figure = new Line(); // figure now refers to an object of class Line

figure.draw(g); // calls draw() method from class Line

figure = new FilledCircle(); // Now, figure refers to an object

// of class FilledCircle.

figure.draw(g); // calls draw() method from class FilledCircle

A variable of type Drawable can refer to any object of any class that implements the Drawable
interface. A statement like figure.draw(g), above, is legal because figure is of type Drawable,
and any Drawable object has a draw() method. So, whatever object figure refers to, that
object must have a draw() method.

Note that a type is something that can be used to declare variables. A type can also be
used to specify the type of a parameter in a subroutine, or the return type of a function. In
Java, a type can be either a class, an interface, or one of the eight built-in primitive types.
These are the only possibilities. Of these, however, only classes can be used to construct new
objects.

An interface can also be the base type of an array. For example, we can use an array type
Drawable[] to declare variables and create arrays. The elements of the array can refer to any
objects that implement the Drawable interface:

Drawable[] listOfFigures;

listOfFigures = new Drawable[10];

listOfFigures[0] = new Line();

listOfFigures[1] = new FilledCircle();

listOfFigures[2] = new Line();

.

.

.

CHAPTER 5. OBJECTS AND CLASSES 241

Every element of the array will then have a draw() method, so that we can say things like
listOfFigures[i].draw(g).

5.7.3 Interfaces in Java 8

The newest version of Java, Java 8, makes a few useful additions to interfaces. The one that
I will discuss here is default methods. Unlike the usual abstract methods in interfaces, a
default method has an implementation. When a class implements the interface, it does not
have to provide an implementation for the default method—although it can do so if it wants to
provide a different implementation. Essentially, default methods are inherited from interfaces
in much the same way that ordinary methods are inherited from classes. This moves Java
partway towards supporting multiple inheritance. It’s not true multiple inheritance, however,
since interfaces still cannot define instance variables.

A default method in an interface must be marked with the modifier default. It can op-
tionally be marked public but, as for everything else in interfaces, default methods are auto-
matically public and the public modifier can be omitted. Here is an example.:

public interface Readable { // represents a source of input

public char readChar(); // read the next character from the input

default public String readLine() { // read up to the next line feed

StringBuilder line = new StringBuilder();

char ch = readChar();

while (ch != ’\n’) {

line.append(ch);

ch = readChar();

}

return line.toString();

}

}

A concrete class that implements this interface must provide an implementation for readChar().
It will inherit a definition for readLine() from the interface, but can provide a new definition
if necessary. Note that the default readLine() calls the abstract method readChar(), whose
definition will only be provided in the implementing class. The reference to readChar() in the
definition is polymorphic. The default implementation of readLine() is one that would make
sense in almost any class that implements Readable. Here’s a rather silly example of a class
that implements Readable, including a main() routine that tests the class. Can you figure out
what it does?

public class Stars implements Readable {

public char readChar() {

if (Math.random() > 0.02)

return ’*’;

else

return ’\n’;

}

public static void main(String[] args) {

Stars stars = new Stars();

for (int i = 0 ; i < 10; i++) {

CHAPTER 5. OBJECTS AND CLASSES 242

String line = stars.readLine();

System.out.println(line);

}

}

}

Default methods provide Java with a capability similar to something called a “mixin” in
other programming languages, namely the ability to mix functionality from another source into
a class. Since a class can implement several interfaces, it is possible to mix in functionality
from several different sources.

5.8 Nested Classes

A class seems like it should be a pretty important thing. A class is a high-level building
block of a program, representing a potentially complex idea and its associated data and behav-
iors. I’ve always felt a bit silly writing tiny little classes that exist only to group a few scraps of
data together. However, such trivial classes are often useful and even essential. Fortunately, in
Java, I can ease the embarrassment, because one class can be nested inside another class. My
trivial little class doesn’t have to stand on its own. It becomes part of a larger more respectable
class. This is particularly useful when you want to create a little class specifically to support
the work of a larger class. And, more seriously, there are other good reasons for nesting the
definition of one class inside another class.

In Java, a nested class is any class whose definition is inside the definition of another class.
(In fact, a class can even be nested inside a subroutine, which must, of course, itself be inside
a class). Nested classes can be either named or anonymous. I will come back to the topic
of anonymous classes later in this section. A named nested class, like most other things that
occur in classes, can be either static or non-static.

5.8.1 Static Nested Classes

The definition of a static nested class looks just like the definition of any other class, except
that it is nested inside another class and it has the modifier static as part of its declaration.
A static nested class is part of the static structure of the containing class. It can be used inside
that class to create objects in the usual way. If it is used outside the containing class, its name
must indicate its membership in the containing class. That is, the full name of the static nested
class consists of the name of the class in which it is nested, followed by a period, followed by
the name of the nested class. This is similar to other static components of a class: A static
nested class is part of the class itself in the same way that static member variables are parts of
the class itself.

For example, suppose a class named WireFrameModel represents a set of lines in three-
dimensional space. (Such models are used to represent three-dimensional objects in graphics
programs.) Suppose that the WireFrameModel class contains a static nested class, Line, that
represents a single line. Then, outside of the class WireFrameModel, the Line class would be
referred to as WireFrameModel.Line. Of course, this just follows the normal naming convention
for static members of a class. The definition of the WireFrameModel class with its nested Line
class would look, in outline, like this:

public class WireFrameModel {

CHAPTER 5. OBJECTS AND CLASSES 243

. . . // other members of the WireFrameModel class

static public class Line {

// Represents a line from the point (x1,y1,z1)

// to the point (x2,y2,z2) in 3-dimensional space.

double x1, y1, z1;

double x2, y2, z2;

} // end class Line

. . . // other members of the WireFrameModel class

} // end WireFrameModel

The full name of the nested class is WireFrameModel.Line. That name can be used, for example,
to declare variables. Inside the WireFrameModel class, a Line object would be created with the
constructor “new Line()”. Outside the class, “new WireFrameModel.Line()” would be used.

A static nested class has full access to the static members of the containing class, even to the
private members. Similarly, the containing class has full access to the members of the nested
class, even if they are marked private. This can be another motivation for declaring a nested
class, since it lets you give one class access to the private members of another class without
making those members generally available to other classes. Note also that a nested class can
itself be private, meaning that it can only be used inside the class in which it is nested.

When you compile the above class definition, two class files will be created. Even though
the definition of Line is nested inside WireFrameModel, the compiled Line class is stored in a
separate file. The name of the class file for Line will be WireFrameModel$Line.class.

5.8.2 Inner Classes

Non-static nested classes are referred to as inner classes. Inner classes are not, in practice,
very different from static nested classes, but a non-static nested class is actually associated
with an object rather than with the class in which its definition is nested. This can take some
getting used to.

Any non-static member of a class is not really part of the class itself (although its source
code is contained in the class definition). This is true for inner classes, just as it is for any other
non-static part of a class. The non-static members of a class specify what will be contained in
objects that are created from that class. The same is true—at least logically—for inner classes.
It’s as if each object that belongs to the containing class has its own copy of the nested class
(although it does not literally contain a copy of the compiled code for the nested class). This
copy has access to all the instance methods and instance variables of the object, even to those
that are declared private. The two copies of the inner class in two different objects differ
because the instance variables and methods they refer to are in different objects. In fact, the
rule for deciding whether a nested class should be static or non-static is simple: If the nested
class needs to use any instance variable or instance method from the containing class, make the
nested class non-static. Otherwise, it might as well be static.

In most cases, an inner class is used only within the class where it is defined. When that
is true, using the inner class is really not much different from using any other class. You can
create variables and declare objects using the simple name of the inner class in the usual way.

From outside the containing class, however, an inner class has to be referred to using a name
of the form 〈variableName〉.〈NestedClassName〉, where 〈variableName〉 is a variable that refers
to the object that contains the inner class. In order to create an object that belongs to an inner

CHAPTER 5. OBJECTS AND CLASSES 244

class, you must first have an object that belongs to the containing class. (When working inside
the class, the object “this” is used implicitly.)

Looking at an example will help, and will hopefully convince you that inner classes are
really very natural. Consider a class that represents poker games. This class might include a
nested class to represent the players of the game. The structure of the PokerGame class could
be:

public class PokerGame { // Represents a game of poker.

class Player { // Represents one of the players in this game.

.

.

.

} // end class Player

private Deck deck; // A deck of cards for playing the game.

private int pot; // The amount of money that has been bet.

.

.

.

} // end class PokerGame

If game is a variable of type PokerGame, then, conceptually, game contains its own copy of
the Player class. In an instance method of a PokerGame object, a new Player object would
be created by saying “new Player()”, just as for any other class. (A Player object could be
created outside the PokerGame class with an expression such as “game.new Player()”. Again,
however, this is rare.) The Player object will have access to the deck and pot instance variables
in the PokerGame object. Each PokerGame object has its own deck and pot and Players.
Players of that poker game use the deck and pot for that game; players of another poker game
use the other game’s deck and pot. That’s the effect of making the Player class non-static.
This is the most natural way for players to behave. A Player object represents a player of one
particular poker game. If Player were an independent class or a static nested class, on the
other hand, it would represent the general idea of a poker player, independent of a particular
poker game.

5.8.3 Anonymous Inner Classes

In some cases, you might find yourself writing an inner class and then using that class in just a
single line of your program. Is it worth creating such a class? Indeed, it can be, but for cases
like this you have the option of using an anonymous inner class. An anonymous class is
created with a variation of the new operator that has the form

new 〈superclass-or-interface 〉 (〈parameter-list 〉) {

〈methods-and-variables 〉
}

This constructor defines a new class, without giving it a name, and it simultaneously creates
an object that belongs to that class. This form of the new operator can be used in any statement
where a regular “new” could be used. The intention of this expression is to create: “a new object
belonging to a class that is the same as 〈superclass-or-interface〉 but with these 〈methods-and-
variables〉 added.” The effect is to create a uniquely customized object, just at the point in

CHAPTER 5. OBJECTS AND CLASSES 245

the program where you need it. Note that it is possible to base an anonymous class on an
interface, rather than a class. In this case, the anonymous class must implement the interface
by defining all the methods that are declared in the interface. If an interface is used as a base,
the 〈parameter-list〉 must be empty. Otherwise, it can contain parameters for a constructor in
the 〈superclass〉.

Anonymous classes are often used for handling events in graphical user interfaces, and we
will encounter them several times in the chapters on GUI programming. For now, we will look
at one not-very-plausible example. Consider the Drawable interface, which is defined earlier in
this section. Suppose that we want a Drawable object that draws a filled, red, 100-pixel square.
Rather than defining a new, separate class and then using that class to create the object, we
can use an anonymous class to create the object in one statement:

Drawable redSquare = new Drawable() {

void draw(Graphics g) {

g.setColor(Color.RED);

g.fillRect(10,10,100,100);

}

};

Then redSquare refers to an object that implements Drawable and that draws a red square
when its draw() method is called. By the way, the semicolon at the end of the statement is not
part of the class definition; it’s the semicolon that is required at the end of every declaration
statement.

Anonymous classes are often used for actual parameters. For example, consider the following
simple method, which draws a Drawable in two different graphics contexts:

void drawTwice(Graphics g1, Graphics g2, Drawable figure) {

figure.draw(g1);

figure.draw(g2);

}

When calling this method, the third parameter can be created using an anonymous inner class.
For example:

drawTwice(firstG, secondG, new Drawable() {

void draw(Graphics g) {

g.drawOval(10,10,100,100);

}

});

When a Java class is compiled, each anonymous nested class will produce a separate
class file. If the name of the main class is MainClass, for example, then the names of the
class files for the anonymous nested classes will be MainClass$1.class, MainClass$2.class,
MainClass$3.class, and so on.

5.8.4 Java 8 Lambda Expressions

The syntax for anonymous classes is cumbersome. In many cases, an anonymous class imple-
ments an interface that defines just one method. Java 8 introduces a new syntax that can be
used in place of the anonymous class in that circumstance: the lambda expression. Here is
what the previous subroutine call looks like using a lambda expression:

drawTwice(firstG, secondG, g -> g.drawOval(10,10,100,100))

CHAPTER 5. OBJECTS AND CLASSES 246

The lambda expression is g -> g.drawOval(10,10,100,100). Its meaning is, “the method
that has a parameter g and executes the code g.drawOval(10,10,100,100).” The computer
knows that g is of type Graphics because it is expecting a Drawable as the actual parameter,
and the only method in the Drawable interface has a parameter of type Graphics. Lambda
expressions can only be used in places where this kind of type inference can be made. The
general syntax of a lambda expression is

〈formal-parameter-list 〉 -> 〈method-body 〉

where the 〈method body〉 can be a single expression, a single subroutine call, or a block of
statements enclosed between { and }. When the body is a single expression or function call,
the value of the expression is automatically used as the return value of the method that is
being defined. The parameter list in the lambda expression does not have to specify the types
of the parameters, although it can. Parentheses around the parameter list are optional if there
is exactly one parameter and no type is specified for the parameter; this is the form seen in the
example above. For a method with no parameters, the parameter list is just an empty set of
parentheses. Here are a few more examples of lambda expressions:

() -> System.out.println("Hello World")

g -> { g.setColor(Color.RED); g.drawRect(10,10,100,100); }

(a, b) -> a + b

(int n) -> {

while (n > 0) {

System.out.println(n);

n = n/2;

}

} // lambda expressions ends here

As you can see, the syntax can still get pretty complicated. There is quite a lot more to say
about lambda expressions, but my intention here is only to briefly introduce one of the most
interesting new features in Java 8.

Exercises 247

Exercises for Chapter 5

1. In all versions of the PairOfDice class in Section 5.2, the instance variables die1 and die2 (solution)

are declared to be public. They really should be private, so that they would be protected
from being changed from outside the class. Write another version of the PairOfDice class
in which the instance variables die1 and die2 are private. Your class will need “getter”
methods that can be used to find out the values of die1 and die2. (The idea is to protect
their values from being changed from outside the class, but still to allow the values to be
read.) Include other improvements in the class, including at least a toString() method.
Test your class with a short program that counts how many times a pair of dice is rolled,
before the total of the two dice is equal to two.

2. A common programming task is computing statistics of a set of numbers. (A statistic is (solution)

a number that summarizes some property of a set of data.) Common statistics include
the mean (also known as the average) and the standard deviation (which tells how spread
out the data are from the mean). I have written a little class called StatCalc that can be
used to compute these statistics, as well as the sum of the items in the dataset and the
number of items in the dataset. You can read the source code for this class in the file
StatCalc.java. If calc is a variable of type StatCalc, then the following instance methods
are available:

• calc.enter(item) where item is a number, adds the item to the dataset.

• calc.getCount() is a function that returns the number of items that have been
added to the dataset.

• calc.getSum() is a function that returns the sum of all the items that have been
added to the dataset.

• calc.getMean() is a function that returns the average of all the items.

• calc.getStandardDeviation() is a function that returns the standard deviation
of the items.

Typically, all the data are added one after the other by calling the enter() method
over and over, as the data become available. After all the data have been entered, any
of the other methods can be called to get statistical information about the data. The
methods getMean() and getStandardDeviation() should only be called if the number
of items is greater than zero.

Modify the current source code, StatCalc.java, to add instance methods getMax() and
getMin(). The getMax() method should return the largest of all the items that have been
added to the dataset, and getMin() should return the smallest. You will need to add two
new instance variables to keep track of the largest and smallest items that have been seen
so far.

Test your new class by using it in a program to compute statistics for a set of non-zero
numbers entered by the user. Start by creating an object of type StatCalc :

StatCalc calc; // Object to be used to process the data.

calc = new StatCalc();

Read numbers from the user and add them to the dataset. Use 0 as a sentinel value
(that is, stop reading numbers when the user enters 0). After all the user’s non-zero

http://math.hws.edu/eck/cs124/javanotes7/c5/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c5/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/StatCalc.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/StatCalc.java

Exercises 248

numbers have been entered, print out each of the six statistics that are available from
calc.

3. This problem uses the PairOfDice class from Exercise 5.1 and the StatCalc class from (solution)

Exercise 5.2.
The program in Exercise 4.4 performs the experiment of counting how many times a

pair of dice is rolled before a given total comes up. It repeats this experiment 10000 times
and then reports the average number of rolls. It does this whole process for each possible
total (2, 3, . . . , 12).

Redo that exercise. But instead of just reporting the average number of rolls, you
should also report the standard deviation and the maximum number of rolls. Use a
PairOfDice object to represent the dice. Use a StatCalc object to compute the statistics.
(You’ll need a new StatCalc object for each possible total, 2, 3, . . . , 12. You can use a
new pair of dice if you want, but it’s not required.)

4. The BlackjackHand class from Subsection 5.5.1 is an extension of the Hand class from Sec- (solution)

tion 5.4. The instance methods in the Hand class are discussed in that section. In addition
to those methods, BlackjackHand includes an instance method, getBlackjackValue(),
which returns the value of the hand for the game of Blackjack. For this exercise, you will
also need the Deck and Card classes from Section 5.4.

A Blackjack hand typically contains from two to six cards. Write a program to test the
BlackjackHand class. You should create a BlackjackHand object and a Deck object. Pick
a random number between 2 and 6. Deal that many cards from the deck and add them to
the hand. Print out all the cards in the hand, and then print out the value computed for
the hand by getBlackjackValue(). Repeat this as long as the user wants to continue.

In addition to TextIO.java, your program will depend on Card.java, Deck.java,
Hand.java, and BlackjackHand.java.

5. Write a program that lets the user play Blackjack. The game will be a simplified version (solution)

of Blackjack as it is played in a casino. The computer will act as the dealer. As in
the previous exercise, your program will need the classes defined in Card.java, Deck.java,
Hand.java, and BlackjackHand.java. (This is the longest and most complex program that
has come up so far in the exercises.)

You should first write a subroutine in which the user plays one game. The subroutine
should return a boolean value to indicate whether the user wins the game or not. Return
true if the user wins, false if the dealer wins. The program needs an object of class
Deck and two objects of type BlackjackHand, one for the dealer and one for the user.
The general object in Blackjack is to get a hand of cards whose value is as close to 21 as
possible, without going over. The game goes like this.

• First, two cards are dealt into each player’s hand. If the dealer’s hand has a value of
21 at this point, then the dealer wins. Otherwise, if the user has 21, then the user
wins. (This is called a “Blackjack”.) Note that the dealer wins on a tie, so if both
players have Blackjack, then the dealer wins.

• Now, if the game has not ended, the user gets a chance to add some cards to her
hand. In this phase, the user sees her own cards and sees one of the dealer’s two
cards. (In a casino, the dealer deals himself one card face up and one card face down.
All the user’s cards are dealt face up.) The user makes a decision whether to “Hit”,

http://math.hws.edu/eck/cs124/javanotes7/c5/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c5/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/BlackjackHand.java
http://math.hws.edu/eck/cs124/javanotes7/c5/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/BlackjackHand.java

Exercises 249

which means to add another card to her hand, or to “Stand”, which means to stop
taking cards.

• If the user Hits, there is a possibility that the user will go over 21. In that case, the
game is over and the user loses. If not, then the process continues. The user gets to
decide again whether to Hit or Stand.

• If the user Stands, the game will end, but first the dealer gets a chance to draw cards.
The dealer only follows rules, without any choice. The rule is that as long as the
value of the dealer’s hand is less than or equal to 16, the dealer Hits (that is, takes
another card). The user should see all the dealer’s cards at this point. Now, the
winner can be determined: If the dealer has gone over 21, the user wins. Otherwise,
if the dealer’s total is greater than or equal to the user’s total, then the dealer wins.
Otherwise, the user wins.

Two notes on programming: At any point in the subroutine, as soon as you know who
the winner is, you can say “return true;” or “return false;” to end the subroutine
and return to the main program. To avoid having an overabundance of variables in your
subroutine, remember that a function call such as userHand.getBlackjackValue() can
be used anywhere that a number could be used, including in an output statement or in
the condition of an if statement.

Write a main program that lets the user play several games of Blackjack. To make
things interesting, give the user 100 dollars, and let the user make bets on the game. If
the user loses, subtract the bet from the user’s money. If the user wins, add an amount
equal to the bet to the user’s money. End the program when the user wants to quit or
when she runs out of money.

6. Exercise 4.7 asked you to write a program that administers a 10-question addition quiz. (solution)

Rewrite that program so that it uses the following class to represent addition questions:

public class AdditionQuestion {

private int a, b; // The numbers in the problem.

public AdditionQuestion() { // constructor

a = (int)(Math.random() * 50 + 1);

b = (int)(Math.random() * 50);

}

public String getQuestion() {

return "What is " + a + " + " + b + " ?";

}

public int getCorrectAnswer() {

return a + b;

}

}

7. Rewrite the program from the previous exercise so that it administers a quiz with several (solution)

different kinds of questions. In the previous exercise, you used a class to represent addition
questions. For this exercise, you will use the following interface, or an equivalent abstract
class, to represent the more general idea of a question that has an integer as its answer:

http://math.hws.edu/eck/cs124/javanotes7/c5/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c5/ex7-ans.html

Exercises 250

public interface IntQuestion {

public String getQuestion();

public int getCorrectAnswer();

}

You can make the AdditionQuestion class implement the interface simply by adding
“implements IntQuestion” to its definition. Write a similar class to represent subtrac-
tion questions. When creating a subtraction problem, you should make sure that the
answer is not negative.

For the new program, use an array of type IntQuestion[] to hold the quiz questions.
Include some addition questions and some subtraction questions in the quiz. You can also
add a couple non-math questions, including this one, created as an anonymous class:

IntQuestion bigQuestion = new IntQuestion() {

public String getQuestion() {

return "What is the answer to the ultimate question " +

" of life, the universe, and everything?";

}

public int getCorrectAnswer() {

return 42;

}

};

Quiz 251

Quiz on Chapter 5
(answers)

1. Object-oriented programming uses classes and objects. What are classes and what are
objects? What is the relationship between classes and objects?

2. What are instance variables and instance methods?

3. Explain carefully what null means in Java, and why this special value is necessary.

4. What is a constructor? What is the purpose of a constructor in a class?

5. Suppose that Kumquat is the name of a class and that fruit is a variable of type Kumquat.
What is the meaning of the statement “fruit = new Kumquat();”? That is, what does
the computer do when it executes this statement? (Try to give a complete answer. The
computer does several things.)

6. What is meant by the terms instance variable and instance method?

7. Explain what is meant by the terms subclass and superclass.

8. Modify the following class so that the two instance variables are private and there is a
getter method and a setter method for each instance variable:

public class Player {

String name;

int score;

}

9. Explain why the class Player that is defined in the previous question has an instance
method named toString(), even though no definition of this method appears in the
definition of the class.

10. Explain the term polymorphism.

11. Java uses “garbage collection” for memory management. Explain what is meant here by
garbage collection. What is the alternative to garbage collection?

12. What is an abstract class, and how can you recognize an abstract class in Java.

13. What is this?

14. For this problem, you should write a very simple but complete class. The class represents
a counter that counts 0, 1, 2, 3, 4, The name of the class should be Counter. It has
one private instance variable representing the value of the counter. It has two instance
methods: increment() adds one to the counter value, and getValue() returns the current
counter value. Write a complete definition for the class, Counter.

15. This problem uses the Counter class from the previous question. The following program
segment is meant to simulate tossing a coin 100 times. It should use two Counter objects,
headCount and tailCount, to count the number of heads and the number of tails. Fill in
the blanks so that it will do so:

http://math.hws.edu/eck/cs124/javanotes7/c5/quiz_answers.html

Quiz 252

Counter headCount, tailCount;

tailCount = new Counter();

headCount = new Counter();

for (int flip = 0; flip < 100; flip++) {

if (Math.random() < 0.5) // There’s a 50/50 chance that this is true.

; // Count a "head".

else

; // Count a "tail".

}

System.out.println("There were " + + " heads.");

System.out.println("There were " + + " tails.");

Chapter 6

Introduction to GUI Programming

Computer users today expect to interact with their computers using a graphical user
interface (GUI). Java can be used to write GUI programs ranging from simple applets which
run on a Web page to sophisticated stand-alone applications.

GUI programs differ from traditional “straight-through” programs that you have encoun-
tered in the first few chapters of this book. One big difference is that GUI programs are
event-driven . That is, user actions such as clicking on a button or pressing a key on the
keyboard generate events, and the program must respond to these events as they occur.

Event-driven programming builds on all the skills you have learned in the first five chapters
of this text. You need to be able to write the methods that respond to events. Inside those
methods, you are doing the kind of programming-in-the-small that was covered in Chapter 2
and Chapter 3. And of course, objects are everywhere in GUI programming. Events are
objects. Colors and fonts are objects. GUI components such as buttons and menus are objects.
Events are handled by instance methods contained in objects. In Java, GUI programming is
object-oriented programming.

This chapter covers the basics of GUI programming. The discussion will continue in Chap-
ter 13 with more details and with more advanced techniques.

6.1 The Basic GUI Application

The command-line programs that you have learned how to program would seem very alien
to most computer users. The style of interaction where the user and the computer take turns
typing strings of text seems like something out of the early days of computing, although it was
only in the mid 1980s that home computers with graphical user interfaces started to become
available. Today, most people interact with their computers exclusively through a GUI. A GUI
program offers a much richer type of user interface, where the user uses a mouse and keyboard
to interact with GUI components such as windows, menus, buttons, check boxes, text input
boxes, scroll bars, and so on.

A GUI program still has a main() subroutine, but in general, that main routine just creates
one or more GUI components and displays them on the computer screen. Once the GUI
components have been created, they follow their own programming—programming that tells
them how to draw themselves on the screen and how to respond to events such as being clicked
on by the user.

A GUI program doesn’t have to be immensely complex. We can, for example, write a very
simple GUI “Hello World” program that says “Hello” to the user, but does it by opening a

253

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 254

window where the greeting is displayed:

import javax.swing.JOptionPane;

public class HelloWorldGUI1 {

public static void main(String[] args) {

JOptionPane.showMessageDialog(null, "Hello World!");

}

}

When this program is run, a window appears on the screen that contains the message
“Hello World!”. The window also contains an “OK” button for the user to click after reading
the message. When the user clicks this button, the window closes and the program ends. This
program can be placed in a file named HelloWorldGUI1.java, compiled, and run using the java
command on the command line just like any other Java program.

Now, this program is already doing some pretty fancy stuff. It creates a window, it draws
the contents of that window, and it handles the event that is generated when the user clicks
the button. The reason the program was so easy to write is that all the work is done by
showMessageDialog(), a static method in the built-in class JOptionPane. (Note that the
source code “imports” the class javax.swing.JOptionPane to make it possible to refer to the
JOptionPane class using its simple name. See Subsection 4.5.3 for information about importing
classes from Java’s standard packages.)

If you want to display a message to the user in a GUI program, this is a good way to do it:
Just use a standard class that already knows how to do the work! And in fact, JOptionPane is
regularly used for just this purpose (but as part of a larger program, usually). Of course, if you
want to do anything serious in a GUI program, there is a lot more to learn. To give you an idea
of the types of things that are involved, we’ll look at a short GUI program that does the same
things as the previous program—open a window containing a message and an OK button, and
respond to a click on the button by ending the program—but does it all by hand instead of by
using the built-in JOptionPane class. Mind you, this is not a good way to write the program,
but it will illustrate some important aspects of GUI programming in Java.

Here is the source code for the program. You are not expected to understand it yet. I
will explain how it works below, but it will take the rest of the chapter before you will really
understand completely. In this section, you will just get a brief overview of GUI programming.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class HelloWorldGUI2 {

private static class HelloWorldDisplay extends JPanel {

public void paintComponent(Graphics g) {

super.paintComponent(g);

g.drawString("Hello World!", 20, 30);

}

}

private static class ButtonHandler implements ActionListener {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HelloWorldGUI1.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 255

}

public static void main(String[] args) {

HelloWorldDisplay displayPanel = new HelloWorldDisplay();

JButton okButton = new JButton("OK");

ButtonHandler listener = new ButtonHandler();

okButton.addActionListener(listener);

JPanel content = new JPanel();

content.setLayout(new BorderLayout());

content.add(displayPanel, BorderLayout.CENTER);

content.add(okButton, BorderLayout.SOUTH);

JFrame window = new JFrame("GUI Test");

window.setContentPane(content);

window.setSize(250,100);

window.setLocation(100,100);

window.setVisible(true);

}

}

6.1.1 JFrame and JPanel

In a Java GUI program, each GUI component in the interface is represented by an object in
the program. One of the most fundamental types of component is the window . Windows have
many behaviors. They can be opened and closed. They can be resized. They have “titles” that
are displayed in the title bar above the window. And most important, they can contain other
GUI components such as buttons and menus.

Java, of course, has a built-in class to represent windows. There are actually several different
types of window, but the most common type is represented by the JFrame class (which is
included in the package javax.swing). A JFrame is an independent window that can, for
example, act as the main window of an application. One of the most important things to
understand is that a JFrame object comes with many of the behaviors of windows already
programmed in. In particular, it comes with the basic properties shared by all windows, such
as a titlebar and the ability to be opened and closed. Since a JFrame comes with these behaviors,
you don’t have to program them yourself! This is, of course, one of the central ideas of object-
oriented programming. What a JFrame doesn’t come with, of course, is content , the stuff that
is contained in the window. If you don’t add any other content to a JFrame, it will just display
a blank area—or, if you don’t set its size, it will be so tiny that it will be hard to find on the
screen. You can add content either by creating a JFrame object and then adding the content
to it or by creating a subclass of JFrame and adding the content in the constructor of that
subclass.

The main program above declares a variable, window, of type JFrame and sets it to refer to
a new window object with the statement:

JFrame window = new JFrame("GUI Test");

The parameter (the string “GUI test”) in the constructor specifies the title that will be displayed
in the titlebar of the window. This line creates the window object, but the window itself is not
yet visible on the screen. Before making the window visible, some of its properties are set with
these statements:

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 256

window.setContentPane(content);

window.setSize(250,100);

window.setLocation(100,100);

The first line here sets the content of the window. (The content itself was created earlier in the
main program.) The second line says that the window will be 250 pixels wide and 100 pixels
high. The third line says that the upper left corner of the window will be 100 pixels over from
the left edge of the screen and 100 pixels down from the top. Once all this has been set up, the
window is actually made visible on the screen with the command:

window.setVisible(true);

It might look as if the program ends at that point, and, in fact, the main() routine does end.
However, the window is still on the screen and the program as a whole does not end until the
user clicks the OK button. Once the window was opened, a new thread was created to manage
the graphical user interface, and that thread continues to run even after main() has finished.

∗ ∗ ∗

The content that is displayed in a JFrame is called its content pane . (In addition to its
content pane, a JFrame can also have a menu bar, which is a separate thing that I will talk
about later.) A basic JFrame already has a blank content pane; you can either add things
to that pane or you can replace the basic content pane entirely. In my sample program,
the line window.setContentPane(content) replaces the original blank content pane with a
different component. (Remember that a “component” is just a visual element of a graphical
user interface.) In this case, the new content is a component of type JPanel.

JPanel is another of the fundamental classes in Swing. The basic JPanel is, again, just
a blank rectangle. There are two ways to make a useful JPanel : The first is to add other
components to the panel; the second is to draw something in the panel. Both of these
techniques are illustrated in the sample program. In fact, you will find two JPanels in the
program: content, which is used to contain other components, and displayPanel, which is
used as a drawing surface.

Let’s look more closely at displayPanel. This variable is of type HelloWorldDisplay, which
is a static nested class inside the HelloWorldGUI2 class. (Nested classes were introduced in
Section 5.8.) This class defines just one instance method, paintComponent(), which overrides
a method of the same name in the JPanel class:

private static class HelloWorldDisplay extends JPanel {

public void paintComponent(Graphics g) {

super.paintComponent(g);

g.drawString("Hello World!", 20, 30);

}

}

The paintComponent() method is called by the system when a component needs to be painted
on the screen. In the JPanel class, the paintComponent method simply fills the panel with the
panel’s background color. The paintComponent() method in HelloWorldDisplay begins by call-
ing super.paintComponent(g). This calls the version of paintComponent() that is defined in
the superclass, JPanel ; that is, it fills the panel with the background color. (See Subsection 5.6.2
for a discussion of the special variable super.) Then it calls g.drawString() to paint the string
“Hello World!” onto the panel. The net result is that whenever a HelloWorldDisplay is shown
on the screen, it displays the string “Hello World!”.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 257

We will often use JPanels in this way, as drawing surfaces. Usually, when we do this, we will
define a class that is a subclass of JPanel and we will write a paintComponent method in that
class to draw the desired content in the panel. The subclass of JPanel can be defined either as
a separate class in its own file or as a nested class. In simple cases, I will tend to use a nested
class for the convenience.

6.1.2 Components and Layout

Another way of using a JPanel is as a container to hold other components. Java has many
classes that define GUI components. Except for top-level components like windows, components
must be added to a container before they can appear on the screen. In the sample program, the
variable named content refers to a JPanel that is used as a container. Two other components
are added to that container. This is done in the statements:

content.add(displayPanel, BorderLayout.CENTER);

content.add(okButton, BorderLayout.SOUTH);

Here, content refers to an object of type JPanel ; later in the program, this panel becomes the
content pane of the window. The first component that is added to content is displayPanel
which, as discussed above, displays the message, “Hello World!”. The second is okButton which
represents the button that the user clicks to close the window. The variable okButton is of
type JButton, the Java class that represents push buttons.

The “BorderLayout” stuff in these statements has to do with how the two components are
arranged in the container. When components are added to a container, there has to be some way
of deciding how those components are arranged inside the container. This is called “laying out”
the components in the container, and the most common technique for laying out components
is to use a layout manager . A layout manager is an object that implements some policy for
how to arrange the components in a container; different types of layout manager implement
different policies. One type of layout manager is defined by the BorderLayout class. In the
program, the statement

content.setLayout(new BorderLayout());

creates a new BorderLayout object and tells the content panel to use the new object as its layout
manager. Essentially, this line determines how components that are added to the content panel
will be arranged inside the panel. We will cover layout managers in much more detail later, but
for now all you need to know is that adding okButton in the BorderLayout.SOUTH position puts
the button at the bottom of the panel, and putting displayPanel in the BorderLayout.CENTER
position makes it fill any space that is not taken up by the button.

This example shows a general technique for setting up a GUI: Create a container and assign
a layout manager to it, create components and add them to the container, and use the container
as the content pane of a window. A container is itself a component, so it is possible that some
of the components that are added to the top-level container are themselves containers, with
their own layout managers and components. This makes it possible to build up complex user
interfaces in a hierarchical fashion, with containers inside containers inside containers. . .

6.1.3 Events and Listeners

The structure of containers and components sets up the physical appearance of a GUI, but
it doesn’t say anything about how the GUI behaves. That is, what can the user do to the
GUI and how will it respond? GUIs are largely event-driven ; that is, the program waits

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 258

for events that are generated by the user’s actions (or by some other cause). When an event
occurs, the program responds by executing an event-handling method . In order to program
the behavior of a GUI, you have to write event-handling methods to respond to the events that
you are interested in.

The most common technique for handling events in Java is to use event listeners. A
listener is an object that includes one or more event-handling methods. When an event is
detected by another object, such as a button or menu, the listener object is notified and it
responds by running the appropriate event-handling method. An event is detected or generated
by an object. Another object, the listener, has the responsibility of responding to the event.
The event itself is actually represented by a third object, which carries information about the
type of event, when it occurred, and so on. This division of responsibilities makes it easier to
organize large programs.

OK

0i1i234 button,

represented by

a J567789 82:4;7

User clicks button,

button generates event

instanceof ButtonHandler

actionPerformed()

Event-handling object

of type ActionListener

responds to the event

ActionEvent object is

sent to listener

As an example, consider the OK button in the sample program. When the user clicks the
button, an event is generated. This event is represented by an object belonging to the class
ActionEvent. The event that is generated is associated with the button; we say that the button
is the source of the event. The listener object in this case is an object belonging to the class
ButtonHandler, which is defined as a nested class inside HelloWorldGUI2 :

private static class ButtonHandler implements ActionListener {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}

}

This class implements the ActionListener interface—a requirement for listener objects that
handle events from buttons. (Interfaces were introduced in Section 5.7.) The event-handling
method is named actionPerformed, as specified by the ActionListener interface. This method
contains the code that is executed when the user clicks the button; in this case, the code is
simply a call to System.exit(), which will terminate the program.

There is one more ingredient that is necessary to get the event from the button to the
listener object: The listener object must register itself with the button as an event listener.
This is done with the statement:

okButton.addActionListener(listener);

This statement tells okButton that when the user clicks the button, the ActionEvent that is
generated should be sent to listener. Without this statement, the button has no way of
knowing that there is something that would like to listen for events from the button.

This example shows a general technique for programming the behavior of a GUI: Write
classes that include event-handling methods. Create objects that belong to these classes and
register them as listeners with the objects that will actually detect or generate the events. When

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 259

an event occurs, the listener is notified, and the code that you wrote in one of its event-handling
methods is executed. At first, this might seem like a very roundabout and complicated way to
get things done, but as you gain experience with it, you will find that it is very flexible and
that it goes together very well with object oriented programming.

This section has introduced some of the fundamentals of GUI programming. We will spend
the rest of the chapter exploring them in more detail.

6.1.4 Some Java GUI History

The original GUI toolkit for Java was the AWT, the “Abstract Windowing Toolkit.” It provided
a common interface to the GUI components already built into various operating systems. At
the very beginning, it used a simpler event model that did not require listener objects, but that
model was abandoned in favor of listeners very quickly in Java 1.1.

When Java was first introduced, one of the important applications was applets. An applet
is a GUI program that can run on a web page in a web browser. Applets were covered in
previous versions of this textbook, but they have become much less widely used and have been
dropped from this seventh edition of the book.

The Swing GUI toolkit was introduced in Java 1.2 as an improved alternative to the AWT,
with a larger variety of sophisticated components and a more logical structure. Although Swing
uses some aspects of the AWT, most of its components are written in Java rather than being
based on operating system components. Swing has been the standard toolkit for writing GUI
programs in Java for over ten years, and it is the toolkit that I cover in this book.

More recently, however, another GUI toolkit called JavaFX has been introduced. It uses
many of the same core ideas as Swing, including components, layout, and events, but uses
a different structure for its applications and a different set of classes. With Java 8, JavaFX
becomes the preferred approach to writing GUI applications. However, I do not cover JavaFX
in this book. JavaFX is compatible with Swing and can use Swing components, and Swing
will continue to be supported in Java. (Indeed, the AWT is still supported!) And as I’ve said,
JavaFX is built on the same core ideas as Swing.

6.2 Graphics and Painting

Everything you see on a computer screen has to be drawn there, even the text. The
Java API includes a range of classes and methods that are devoted to drawing. In this section,
I’ll look at some of the most basic of these. Some of this material was already covered in
preliminary form in Section 3.9.

The physical structure of a GUI is built of components. The term component refers to a
visual element in a GUI, including buttons, menus, text-input boxes, scroll bars, check boxes,
and so on. In Java, GUI components are represented by objects belonging to subclasses of the
class java.awt.Component. Most components in the Swing GUI toolkit—although not top-level
components like JFrame—belong to subclasses of the class javax.swing.JComponent, which is
itself a subclass of java.awt.Component. Every component is responsible for drawing itself. If
you want to use a standard component, you only have to add it to your program. You don’t
have to worry about painting it on the screen. That will happen automatically, since it already
knows how to draw itself.

Sometimes, however, you do want to draw on a component. You will have to do this
whenever you want to display something that is not included among the standard, pre-defined

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 260

component classes. When you want to do this, you have to define your own component class
and provide a method in that class for drawing the component. I will always use a subclass
of JPanel when I need a drawing surface of this kind, as I did for the HelloWorldDisplay class
in the example HelloWorldGUI2.java in the previous section. A JPanel, like any JComponent,
draws its content in the method

public void paintComponent(Graphics g)

To create a drawing surface, you should define a subclass of JPanel and provide a custom
paintComponent() method. Create an object belonging to this class and use it in your pro-
gram. When the time comes for your component to be drawn on the screen, the system
will call its paintComponent() to do the drawing. That is, the code that you put into the
paintComponent() method will be executed whenever the panel needs to be drawn on the
screen; by writing this method, you determine the picture that will be displayed in the panel.
Note that you are not likely to call a paintComponent() method any more than you are likely
to call a main() routine. The system calls the method. You write the method to say what will
happen when the system calls it.

Note that the paintComponent() method has a parameter of type Graphics. The Graphics
object will be provided by the system when it calls your method. You need this object to
do the actual drawing. To do any drawing at all in Java, you need a graphics context . A
graphics context is an object belonging to the class java.awt.Graphics. Instance methods
are provided in this class for drawing shapes, text, and images. Any given Graphics object
can draw to only one location. In this chapter, that location will always be a GUI component
belonging to some subclass of JPanel. The Graphics class is an abstract class, which means
that it is impossible to create a graphics context directly, with a constructor. There are actually
two ways to get a graphics context for drawing on a component: First of all, of course, when
the paintComponent() method of a component is called by the system, the parameter to that
method is a graphics context for drawing on the component. Second, every component has
an instance method called getGraphics(). This method is a function that returns a graphics
context that can be used for drawing on the component outside its paintComponent() method.
The official line is that you should not do this, and I will almost always avoid it. But I have
found it convenient to use getGraphics() in a few examples. (Note that if g is a graphics
context created with getGraphics(), it is good form to call g.dispose() when finished using
it. This releases any operating system resources that might be held by g.)

The paintComponent() method in the JPanel class simply fills the panel with the panel’s
background color. When defining a subclass of JPanel for use as a drawing surface, you will
usually want to fill the panel with the background color before drawing other content onto
the panel (although it is not necessary to do this if the drawing commands in the method
cover the background of the component completely). This is traditionally done with a call to
super.paintComponent(g), so most paintComponent() methods that you write will have the
form:

public void paintComponent(g) {

super.paintComponent(g);

. . . // Draw the content of the component.

}

∗ ∗ ∗

In general, a component should do all drawing operations in its paintComponent() method.
What happens if, in the middle of some other method, you realize that the content of the

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HelloWorldGUI2.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 261

component needs to be changed? You should not call paintComponent() directly to make the
change. Instead, you have to inform the system that the component needs to be redrawn, and
let the system do its job by calling paintComponent(). You do this by calling the component’s
repaint() method. The method

public void repaint();

is defined in the Component class, and so can be used with any component. You should call
repaint() to inform the system that the component needs to be redrawn. It is important to
understand that the repaint() method returns immediately, without doing any painting itself.
The system will call the component’s paintComponent() method later, as soon as it gets a
chance to do so, after processing other pending events if there are any. It is even possible that
many calls to repaint() will all be handled by one call to paintComponent(), if the calls to
repaint() occur in a very short timespan.

Note that the system can also call paintComponent() for other reasons. It is called when
the component first appears on the screen. It will also be called if the size of the component
changes, which can happen when the user resizes the window that contains the component. This
means that paintComponent() should be capable of redrawing the content of the component
on demand. As you will see, however, some of our early examples will not be able to do this
correctly.

This means that, to work properly, the paintComponent() method must be smart enough
to correctly redraw the component at any time. To make this possible, a program should store
data in its instance variables about the state of the component. These variables should contain
all the information necessary to redraw the component completely. The paintComponent()

method should use the data in these variables to decide what to draw. When the program
wants to change the content of the component, it should not simply draw the new content.
It should change the values of the relevant variables and call repaint(). When the system
calls paintComponent(), that method will use the new values of the variables and will draw
the component with the desired modifications. This might seem a roundabout way of doing
things. Why not just draw the modifications directly? There are at least two reasons. First of
all, it really does turn out to be easier to get things right if all drawing is done in one method.
Second, even if you could directly draw the modifications, you would still have to save enough
information about the modifications to enable paintComponent() to redraw the component
correctly on demand.

You will see how all this works in practice as we work through examples in the rest of this
chapter. For now, we will spend the rest of this section looking at how to get some actual
drawing done.

6.2.1 Coordinates

The screen of a computer is a grid of little squares called pixels. The color of each pixel can be
set individually, and drawing on the screen just means setting the colors of individual pixels.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 262

y = 0

x < =>?@A

y < AB>DA@

x < E

A graphics context draws in a rectangle made up of pixels. A position in the rectangle
is specified by a pair of integer coordinates, (x,y). The upper left corner has coordinates
(0,0). The x coordinate increases from left to right, and the y coordinate increases from top
to bottom. The illustration shows a 20-pixel by 12-pixel component (with very large pixels). A
small line, rectangle, and oval are shown as they would be drawn by coloring individual pixels.
(Note that, properly speaking, the coordinates don’t belong to the pixels but to the grid lines
between them.)

For any component, you can find out the size of the rectangle that it occupies by calling
the instance methods getWidth() and getHeight(), which return the number of pixels in the
horizontal and vertical directions, respectively. In general, it’s not a good idea to assume that
you know the size of a component, since the size is often set by a layout manager and can
even change if the component is in a window and that window is resized by the user. This
means that it’s good form to check the size of a component before doing any drawing on that
component. For example, you can use a paintComponent() method that looks like:

public void paintComponent(Graphics g) {

super.paintComponent(g);

int width = getWidth(); // Find out the width of this component.

int height = getHeight(); // Find out its height.

. . . // Draw the content of the component.

}

Of course, your drawing commands will have to take the size into account. That is, they
will have to use (x,y) coordinates that are calculated based on the actual height and width of
the component. (However, if you are sure that you know the size, using constants for the width
and height can make the drawing easier.)

6.2.2 Colors

You will probably want to use some color when you draw. Java is designed to work with
the RGB color system . An RGB color is specified by three numbers that give the level
of red, green, and blue, respectively, in the color. A color in Java is an object of the class,
java.awt.Color. You can construct a new color by specifying its red, blue, and green compo-
nents. For example,

Color myColor = new Color(r,g,b);

There are two constructors that you can call in this way. In the one that I almost al-
ways use, r, g, and b are integers in the range 0 to 255. In the other, they are num-
bers of type float in the range 0.0F to 1.0F. (Recall that a literal of type float is written

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 263

with an “F” to distinguish it from a double number.) Often, you can avoid constructing
new colors altogether, since the Color class defines several named constants representing com-
mon colors: Color.WHITE, Color.BLACK, Color.RED, Color.GREEN, Color.BLUE, Color.CYAN,
Color.MAGENTA, Color.YELLOW, Color.PINK, Color.ORANGE, Color.LIGHT GRAY, Color.GRAY,
and Color.DARK GRAY. (There are older, alternative names for these constants that use lower
case rather than upper case constants, such as Color.red instead of Color.RED, but the upper
case versions are preferred because they follow the convention that constant names should be
upper case.)

An alternative to RGB is theHSB color system . In the HSB system, a color is specified by
three numbers called the hue , the saturation , and the brightness. The hue is the basic color,
ranging from red through orange through all the other colors of the rainbow. The brightness is
pretty much what it sounds like. A fully saturated color is a pure color tone. Decreasing the
saturation is like mixing white or gray paint into the pure color. In Java, the hue, saturation
and brightness are always specified by values of type float in the range from 0.0F to 1.0F. The
Color class has a static member function named getHSBColor for creating HSB colors. To
create the color with HSB values given by h, s, and b, you can say:

Color myColor = Color.getHSBColor(h,s,b);

For example, to make a color with a random hue that is as bright and as saturated as possible,
you could use:

Color randomColor = Color.getHSBColor((float)Math.random(), 1.0F, 1.0F);

The type cast is necessary because the value returned by Math.random() is of type double,
and Color.getHSBColor() requires values of type float. (By the way, you might ask why
RGB colors are created using a constructor while HSB colors are created using a static member
function. The problem is that we would need two different constructors, both of them with
three parameters of type float. Unfortunately, this is impossible. You can have two constructors
only if the number of parameters or the parameter types differ.)

The RGB system and the HSB system are just different ways of describing the same set of
colors. It is possible to translate between one system and the other. The best way to understand
the color systems is to experiment with them. (The sample program SimpleColorChooser.java
lets you do that. You won’t understand the source code at this time, but you can run it to play
with color selection or to find the RGB or HSB values for the color that want.)

∗ ∗ ∗

One of the properties of a Graphics object is the current drawing color, which is used for
all drawing of shapes and text. If g is a graphics context, you can change the current drawing
color for g using the method g.setColor(c), where c is a Color. For example, if you want
to draw in green, you would just say g.setColor(Color.GREEN) before doing the drawing.
The graphics context continues to use the color until you explicitly change it with another
setColor() command. If you want to know what the current drawing color is, you can call the
function g.getColor(), which returns an object of type Color. This can be useful if you want
to change to another drawing color temporarily and then restore the previous drawing color.

Every component has an associated foreground color and background color . Generally,
the component is filled with the background color before anything else is drawn (although some
components are “transparent,” meaning that the background color is ignored). When a new
graphics context is created for a component, the current drawing color is set to the foreground
color. Note that the foreground color and background color are properties of the component,
not of a graphics context.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleColorChooser.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 264

The foreground and background colors of a component can be set by calling instance meth-
ods component.setForeground(color) and component.setBackground(color), which are
defined in the Component class and therefore are available for use with any component. This
can be useful even for standard components, if you want them to use colors that are different
from the defaults.

6.2.3 Fonts

A font represents a particular size and style of text. The same character will appear different
in different fonts. In Java, a font is characterized by a font name, a style, and a size. The
available font names are system dependent, but you can always use the following four strings as
font names: “Serif”, “SansSerif”, “Monospaced”, and “Dialog”. (A “serif” is a little decoration
on a character, such as a short horizontal line at the bottom of the letter i. “SansSerif” means
“without serifs.” “Monospaced” means that all the characters in the font have the same width.
The “Dialog” font is the one that is typically used in dialog boxes.)

The style of a font is specified using named constants that are defined in the Font class.
You can specify the style as one of the four values:

• Font.PLAIN,

• Font.ITALIC,

• Font.BOLD, or

• Font.BOLD + Font.ITALIC.

The size of a font is an integer. Size typically ranges from about 9 to 36, although larger
sizes can also be used. The size of a font is usually about equal to the height of the largest
characters in the font, in pixels, but this is not an exact rule. The size of the default font is 12.

Java uses the class named java.awt.Font for representing fonts. You can construct a new
font by specifying its font name, style, and size in a constructor:

Font plainFont = new Font("Serif", Font.PLAIN, 12);

Font bigBoldFont = new Font("SansSerif", Font.BOLD, 24);

Every graphics context has a current font, which is used for drawing text. You can change
the current font with the setFont() method. For example, if g is a graphics context and
bigBoldFont is a font, then the command g.setFont(bigBoldFont) will set the current font
of g to bigBoldFont. The new font will be used for any text that is drawn after the setFont()
command is given. You can find out the current font of g by calling the method g.getFont(),
which returns an object of type Font.

Every component also has an associated font. It can be set with the instance method
component.setFont(font), which is defined in the Component class. When a graphics context
is created for drawing on a component, the graphic context’s current font is set equal to the
font of the component.

6.2.4 Shapes

The Graphics class includes a large number of instance methods for drawing various shapes,
such as lines, rectangles, and ovals. The shapes are specified using the (x,y) coordinate system
described above. They are drawn in the current drawing color of the graphics context. The
current drawing color is set to the foreground color of the component when the graphics context
is created, but it can be changed at any time using the setColor() method.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 265

Some drawing methods were already listed in Subsection 3.9.1. Here, I describe those
methods in more detail and add a few more. With all these commands, any drawing that is
done outside the boundaries of the component is ignored. Note that all these methods are in
the Graphics class, so they all must be called through an object of type Graphics. It is shown
here as g, but of course the name of the graphics context is up to the programmer.

• g.drawString(String str, int x, int y) — Draws the text given by the string str.
The string is drawn using the current color and font of the graphics context. x specifies
the x-coordinate of the left end of the string. y is the y-coordinate of the baseline of the
string. The baseline is a horizontal line on which the characters rest. Some parts of the
characters, such as the tail on a y or g, extend below the baseline.

• g.drawLine(int x1, int y1, int x2, int y2) — Draws a line from the point
(x1,y1) to the point (x2,y2). The line is drawn as if with a pen that extends one pixel to
the right and one pixel down from the (x,y) point where the pen is located. For example,
if g refers to an object of type Graphics, then the command g.drawLine(x,y,x,y), which
corresponds to putting the pen down at a point, colors the single pixel with upper left
corner at the point (x,y). Remember that coordinates really refer to the lines between
the pixels.

• g.drawRect(int x, int y, int width, int height) — Draws the outline of a rect-
angle. The upper left corner is at (x,y), and the width and height of the rectangle are
as specified. If width equals height, then the rectangle is a square. If the width or the
height is negative, then nothing is drawn. The rectangle is drawn with the same pen
that is used for drawLine(). This means that the actual width of the rectangle as drawn
is width+1, and similarly for the height. There is an extra pixel along the right edge
and the bottom edge. For example, if you want to draw a rectangle around the edges of
the component, you can say “g.drawRect(0, 0, getWidth()-1, getHeight()-1);”. If
you use “g.drawRect(0, 0, getWidth(), getHeight());”, then the right and bottom
edges of the rectangle will be drawn outside the component and will not appear on the
screen.

• g.drawOval(int x, int y, int width, int height) — Draws the outline of an oval.
The oval is one that just fits inside the rectangle specified by x, y, width, and height. If
width equals height, the oval is a circle.

• g.drawRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)—
Draws the outline of a rectangle with rounded corners. The basic rectangle is specified by
x, y, width, and height, but the corners are rounded. The degree of rounding is given by
xdiam and ydiam. The corners are arcs of an ellipse with horizontal diameter xdiam and
vertical diameter ydiam. A typical value for xdiam and ydiam is 16, but the value used
should really depend on how big the rectangle is.

• g.draw3DRect(int x, int y, int width, int height, boolean raised) — Draws
the outline of a rectangle that is supposed to have a three-dimensional effect, as if it
is raised from the screen or pushed into the screen. The basic rectangle is specified by
x, y, width, and height. The raised parameter tells whether the rectangle seems to be
raised from the screen or pushed into it. The 3D effect is achieved by using brighter and
darker versions of the drawing color for different edges of the rectangle. The documen-
tation recommends setting the drawing color equal to the background color before using
this method. The effect won’t work well for some colors.

• g.drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 266

— Draws part of the oval that just fits inside the rectangle specified by x, y, width, and
height. The part drawn is an arc that extends arcAngle degrees from a starting angle
at startAngle degrees. Angles are measured with 0 degrees at the 3 o’clock position (the
positive direction of the horizontal axis). Positive angles are measured counterclockwise
from zero, and negative angles are measured clockwise. To get an arc of a circle, make
sure that width is equal to height.

• g.fillRect(int x, int y, int width, int height) — Draws a filled-in rectan-
gle. This fills in the interior of the rectangle that would be drawn by
drawRect(x,y,width,height). The extra pixel along the bottom and right edges is
not included. The width and height parameters give the exact width and height of the
rectangle. For example, if you wanted to fill in the entire component, you could say
“g.fillRect(0, 0, getWidth(), getHeight());”

• g.fillOval(int x, int y, int width, int height) — Draws a filled-in oval.

• g.fillRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)—
Draws a filled-in rounded rectangle.

• g.fill3DRect(int x, int y, int width, int height, boolean raised) — Draws
a filled-in three-dimensional rectangle.

• g.fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

— Draw a filled-in arc. This looks like a wedge of pie, whose crust is the arc that would
be drawn by the drawArc method.

6.2.5 Graphics2D

All drawing in Java is done through an object of type Graphics. The Graphics class provides
basic commands for such things as drawing shapes and text and for selecting a drawing color.
These commands are adequate in many cases, but they fall far short of what’s needed in a
serious computer graphics program. Java has another class, Graphics2D, that provides a larger
set of drawing operations. Graphics2D is a sub-class of Graphics, so all the methods from the
Graphics class are also available in a Graphics2D.

The paintComponent() method of a JComponent gives you a graphics context of type
Graphics that you can use for drawing on the component. In fact, the graphics context actu-
ally belongs to the sub-class Graphics2D, and can be type-cast to gain access to the advanced
Graphics2D drawing methods:

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2;

g2 = (Graphics2D)g;

.

. // Draw on the component using g2.

.

}

I mention Graphics2D here for completeness. I will cover some important aspects of Graph-
ics2D in Section 13.2, but a full treatment is more than we will have time for in this book.
However, there are two simple applications that I would like to start using now, without ex-
plaining how they work. If g2 is a variable of type Graphics2D, as in the paintComponent()

method above, then the intimidating-looking command

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 267

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);

turns on antialiasing in the graphics context. Aliasing is a jagged appearance that can be seen
when shapes are drawn using pixels. Antialiasing tries to reduce the jaggedness. It can make
diagonal lines and the outlines of ovals look much nicer. It can also improve the appearance of
text. Another useful command is

g2.setStroke(new BasicStroke(lineWidth));

where lineWidth is an integer or a float. This command can be used to draw thicker lines.
Lines drawn after the command will be lineWidth pixels wide. This also affects the thickness
of the outlined shapes drawn by methods such as g.drawRect and g.drawOval().

6.2.6 An Example

Let’s use some of the material covered in this section to write a subclass of JPanel for use as a
drawing surface. All the drawing will be done in the paintComponent() method of the panel
class. The panel will draw multiple copies of a message on a black background. Each copy of
the message is in a random color. Five different fonts are used, with different sizes and styles.
The message can be specified in the constructor; if the default constructor is used, the message
is the string “Java!”. The panel works OK no matter what its size.

There is one problem with the way this class works. When the panel’s paintComponent()
method is called, it chooses random colors, fonts, and locations for the messages. The informa-
tion about which colors, fonts, and locations are used is not stored anywhere. The next time
paintComponent() is called, it will make different random choices and will draw a different
picture. If you resize a window containing the panel, the picture will be continually redrawn as
the size of the window is changed! To avoid that, you would store enough information about
the picture in instance variables to enable the paintComponent() method to draw the same
picture each time it is called.

The source code for the panel class is shown below. I use an instance variable called message

to hold the message that the panel will display. There are five instance variables of type Font
that represent different sizes and styles of text. These variables are initialized in the constructor
and are used in the paintComponent() method.

The paintComponent() method for the panel simply draws 25 copies of the message. For
each copy, it chooses one of the five fonts at random, and it uses g.setFont() to select that
font for drawing. It creates a random HSB color and uses g.setColor() to select that color
for drawing. It then chooses random (x,y) coordinates for the location of the message. The x
coordinate gives the horizontal position of the left end of the string. The formula used for the
x coordinate is “-50 + (int)(Math.random() * (width+40))”. This gives a random integer
in the range from -50 to width-10. This makes it possible for the string to extend beyond the
left edge or the right edge of the panel. Similarly, the formula for y allows the string to extend
beyond the top and bottom.

Here is the complete source code for the RandomStringsPanel :

import java.awt.*;

import javax.swing.JPanel;

/**

* This panel displays 25 copies of a message. The color and

* position of each message is selected at random. The font

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 268

* of each message is randomly chosen from among five possible

* fonts. The messages are displayed on a black background.

* Note: The style of drawing used here is poor, because every

* time the paintComponent() method is called, new random values are

* used. This means that a different picture will be drawn each time.

*/

public class RandomStringsPanel extends JPanel {

private String message; // The message to be displayed. This can be set in

// the constructor. If no value is provided in the

// constructor, then the string "Java!" is used.

private Font font1, font2, font3, font4, font5; // The five fonts.

/**

* Default constructor creates a panel that displays the message "Java!".

*/

public RandomStringsPanel() {

this(null); // Call the other constructor, with parameter null.

}

/**

* Constructor creates a panel to display 25 copies of a specified message.

* @param messageString The message to be displayed. If this is null,

* then the default message "Java!" is displayed.

*/

public RandomStringsPanel(String messageString) {

message = messageString;

if (message == null)

message = "Java!";

font1 = new Font("Serif", Font.BOLD, 14);

font2 = new Font("SansSerif", Font.BOLD + Font.ITALIC, 24);

font3 = new Font("Monospaced", Font.PLAIN, 30);

font4 = new Font("Dialog", Font.PLAIN, 36);

font5 = new Font("Serif", Font.ITALIC, 48);

setBackground(Color.BLACK);

}

/**

* The paintComponent method is responsible for drawing the content of the panel.

* It draws 25 copies of the message string, using a random color, font, and

* position for each string.

*/

public void paintComponent(Graphics g) {

super.paintComponent(g); // Call the paintComponent method from the

// superclass, JPanel. This simply fills the

// entire panel with the background color, black.

Graphics2D g2 = (Graphics2D)g; // (To make the text smoother.)

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);

int width = getWidth();

int height = getHeight();

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 269

for (int i = 0; i < 25; i++) {

// Draw one string. First, set the font to be one of the five

// available fonts, at random.

int fontNum = (int)(5*Math.random()) + 1;

switch (fontNum) {

case 1:

g.setFont(font1);

break;

case 2:

g.setFont(font2);

break;

case 3:

g.setFont(font3);

break;

case 4:

g.setFont(font4);

break;

case 5:

g.setFont(font5);

break;

} // end switch

// Set the color to a bright, saturated color, with random hue.

float hue = (float)Math.random();

g.setColor(Color.getHSBColor(hue, 1.0F, 1.0F));

// Select the position of the string, at random.

int x,y;

x = -50 + (int)(Math.random()*(width+40));

y = (int)(Math.random()*(height+20));

// Draw the message.

g.drawString(message,x,y);

} // end for

} // end paintComponent()

} // end class RandomStringsPanel

6.2.7 Where is main()?

The source code for the RandomStringsPanel class can be found in the example file Random-
StringsPanel.java. You can compile that file, but you won’t be able to run the compiled class.
The problem is that the class doesn’t have a main() routine. Only a class that has a main()

routine can be run as a program.
Another problem is that a JPanel is not something that can stand on its own. It has to

be placed into a container such as another panel or a window. In general, to make a complete
program, we need a main() routine that will create a window of type JFrame. It can then create

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStringsPanel.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 270

a panel and place the panel in the window. Here is a class with a main() routine that does
this:

import javax.swing.JFrame;

public class RandomStrings {

public static void main(String[] args) {

JFrame window = new JFrame("Java!");

RandomStringsPanel content = new RandomStringsPanel();

window.setContentPane(content);

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

window.setLocation(120,70);

window.setSize(350,250);

window.setVisible(true);

}

}

This class is defined by the file RandomStrings.java. You can compile and run the program, as
long as the RandomStringsPanel class is also available.

The main routine is not logically a part of the panel class. It is just one way of using a
panel. However, it’s possible to include main() as part of the panel class, even if it doesn’t
logically belong there. This makes it possible to run the panel class as a program, and it has
the advantage of keeping everything in one file. For an example, you can look at Random-
StringsPanelWithMain.java, which is identical to the original class except for the addition of a
main() routine. Although it might not be great style, I will usually take a similar approach in
future examples.

I am not going to discuss the details of using JFrame here, but you can look ahead and find
them in Subsection 6.7.3. You won’t completely understand my main() routines until you read
that section.

6.3 Mouse Events

Events are central to programming for a graphical user interface. A GUI program doesn’t
have a main() routine that outlines what will happen when the program is run, in a step-by-step
process from beginning to end. Instead, the program must be prepared to respond to various
kinds of events that can happen at unpredictable times and in an order that the program doesn’t
control. The most basic kinds of events are generated by the mouse and keyboard. The user
can press any key on the keyboard, move the mouse, or press a button on the mouse. The user
can do any of these things at any time, and the computer has to respond appropriately.

In Java, events are represented by objects. When an event occurs, the system collects all
the information relevant to the event and constructs an object to contain that information.
Different types of events are represented by objects belonging to different classes. For example,
when the user presses one of the buttons on a mouse, an object belonging to a class called
MouseEvent is constructed. The object contains information such as the source of the event
(that is, the component on which the user clicked), the (x,y) coordinates of the point in the
component where the click occurred, the exact time of the click, and which button on the mouse
was pressed. When the user presses a key on the keyboard, a KeyEvent is created. After the
event object is constructed, it can be passed as a parameter to a designated method. By writing
that method, the programmer says what should happen when the event occurs.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStrings.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStringsPanelWithMain.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 271

As a Java programmer, you get a fairly high-level view of events. There is a lot of processing
that goes on between the time that the user presses a key or moves the mouse and the time
that a subroutine in your program is called to respond to the event. Fortunately, you don’t
need to know much about that processing. But you should understand this much: Even though
you didn’t write it, there is a routine running somewhere that executes a loop of the form

while the program is still running:

Wait for the next event to occur

Call a subroutine to handle the event

This loop is called an event loop. Every GUI program has an event loop. In Java, you
don’t have to write the loop. It’s part of “the system.” If you write a GUI program in some
other language, you might have to provide a main routine that runs the event loop.

In this section, we’ll look at handling mouse events in Java, and we’ll cover the framework
for handling events in general. The next section will cover keyboard-related events and timer
events. Java also has other types of events, which are produced by GUI components. These
will be introduced in Section 6.5.

6.3.1 Event Handling

For an event to have any effect, a program must detect the event and react to it. In order to
detect an event, the program must “listen” for it. Listening for events is something that is done
by an object called an event listener . An event listener object must contain instance methods
for handling the events for which it listens. For example, if an object is to serve as a listener for
events of type MouseEvent, then it must contain the following method (among several others):

public void mousePressed(MouseEvent evt) { . . . }

The body of the method defines how the object responds when it is notified that a mouse button
has been pressed. The parameter, evt, contains information about the event. This information
can be used by the listener object to determine its response.

The methods that are required in a mouse event listener are specified in an interface

named MouseListener. To be used as a listener for mouse events, an object must implement
this MouseListener interface. Java interfaces were covered in Section 5.7. (To review briefly:
An interface in Java is just a list of instance methods. A class can “implement” an in-
terface by doing two things: First, the class must be declared to implement the interface, as
in “class MouseHandler implements MouseListener” or “class MyPanel extends JPanel

implements MouseListener”; and second, the class must include a definition for each instance
method specified in the interface. An interface can be used as the type for a variable or
formal parameter. We say that an object implements the MouseListener interface if it belongs
to a class that implements the MouseListener interface. Note that it is not enough for the object
to include the specified methods. It must also belong to a class that is specifically declared to
implement the interface.)

Many events in Java are associated with GUI components. For example, when the user
presses a button on the mouse, the associated component is the one that the user clicked on.
Before a listener object can “hear” events associated with a given component, the listener object
must be registered with the component. If a MouseListener object, mListener, needs to hear
mouse events associated with a Component object, comp, the listener must be registered with
the component by calling

comp.addMouseListener(mListener);

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 272

The addMouseListener() method is an instance method in class Component, and so can be
used with any GUI component object. In our first few examples, we will listen for events on a
JPanel that is being used as a drawing surface.

The event classes, such as MouseEvent, and the listener interfaces, such as MouseListener, are
defined in the package java.awt.event. This means that if you want to work with events, you
should either include the line “import java.awt.event.*;” at the beginning of your source
code file or import the individual classes and interfaces.

Admittedly, there is a large number of details to tend to when you want to use events. To
summarize, you must

1. Put the import specification “import java.awt.event.*;” (or individual imports) at
the beginning of your source code;

2. Declare that some class implements the appropriate listener interface, such as MouseLis-
tener ;

3. Provide definitions in that class for the methods specified by the interface;

4. Register an object that belongs to the listener class with the component that will generate
the events by calling a method such as addMouseListener() in the component.

Any object can act as an event listener, provided that it implements the appropriate in-
terface. A component can listen for the events that it itself generates. A panel can listen for
events from components that are contained in the panel. A special class can be created just
for the purpose of defining a listening object. Many people consider it to be good form to use
anonymous inner classes to define listening objects (see Subsection 5.8.3), and named nested
classes can also be appropriate. You will see all of these patterns in examples in this textbook.

6.3.2 MouseEvent and MouseListener

The MouseListener interface specifies these five instance methods:

public void mousePressed(MouseEvent evt);

public void mouseReleased(MouseEvent evt);

public void mouseClicked(MouseEvent evt);

public void mouseEntered(MouseEvent evt);

public void mouseExited(MouseEvent evt);

The mousePressed method is called as soon as the user presses down on one of the mouse
buttons, and mouseReleased is called when the user releases a button. These are the two
methods that are most commonly used, but any mouse listener object must define all five
methods; you can leave the body of a method empty if you don’t want to define a response.
The mouseClicked method is called if the user presses a mouse button and then releases
it, without moving the mouse. (When the user does this, all three routines—mousePressed,
mouseReleased, and mouseClicked—will be called in that order.) In most cases, you should
define mousePressed instead of mouseClicked. The mouseEntered and mouseExited methods
are called when the mouse cursor enters or leaves the component. For example, if you want the
component to change appearance whenever the user moves the mouse over the component, you
could define these two methods.

As a first example, we will look at a small addition to the RandomStringsPanel example from
the previous section. In the new version, the panel will repaint itself when the user clicks on it.
In order for this to happen, a mouse listener should listen for mouse events on the panel, and

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 273

when the listener detects a mousePressed event, it should respond by calling the repaint()

method of the panel.
For the new version of the program, we need an object that implements the MouseListener

interface. One way to create the object is to define a separate class, such as:

import java.awt.Component;

import java.awt.event.*;

/**

* An object of type RepaintOnClick is a MouseListener that

* will respond to a mousePressed event by calling the repaint()

* method of the source of the event. That is, a RepaintOnClick

* object can be added as a mouse listener to any Component;

* when the user clicks that component, the component will be

* repainted.

*/

public class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {

Component source = (Component)evt.getSource();

source.repaint(); // Call repaint() on the Component that was clicked.

}

public void mouseClicked(MouseEvent evt) { }

public void mouseReleased(MouseEvent evt) { }

public void mouseEntered(MouseEvent evt) { }

public void mouseExited(MouseEvent evt) { }

}

This class does three of the four things that we need to do in order to handle mouse events: First,
it imports java.awt.event.* for easy access to event-related classes. Second, it is declared
that the class “implements MouseListener”. And third, it provides definitions for the five
methods that are specified in the MouseListener interface. (Note that four of the methods have
empty bodies, since we don’t want to do anything in response to those events.)

We must do one more thing to set up the event handling for this example: We must register
an event-handling object as a listener with the component that will generate the events. In
this case, the mouse events that we are interested in will be generated by an object of type
RandomStringsPanel. If panel is a variable that refers to the panel object, we can create a
mouse listener object and register it with the panel with the statements:

RepaintOnClick listener = new RepaintOnClick(); // Create MouseListener object.

panel.addMouseListener(listener); // Register MouseListener with the panel.

This could be done, for example, in the main() routine where the panel is created. Once the
listener has been registered in this way, it will be notified of mouse events on the panel. When
a mousePressed event occurs, the mousePressed() method in the listener will be called. The
code in this method calls the repaint() method in the component that is the source of the
event, that is, in the panel. The result is that the RandomStringsPanel is repainted with its
strings in new random colors, fonts, and positions.

Although we have written the RepaintOnClick class for use with our RandomStringsPanel
example, the event-handling class contains no reference at all to the RandomStringsPanel class.
How can this be? The mousePressed() method in class RepaintOnClick looks at the source
of the event, and calls its repaint() method. If we have registered the RepaintOnClick object

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 274

as a listener on a RandomStringsPanel, then it is that panel that is repainted. But the listener
object could be used with any type of component, and it would work in the same way.

Similarly, the RandomStringsPanel class contains no reference to the RepaintOnClick class—
in fact, RandomStringsPanel was written before we even knew anything about mouse events!
The panel will send mouse events to any object that has registered with it as a mouse listener.
It does not need to know anything about that object except that it is capable of receiving mouse
events.

The relationship between an object that generates an event and an object that responds
to that event is rather loose. The relationship is set up by registering one object to listen for
events from the other object. This is something that can potentially be done from outside
both objects. Each object can be developed independently, with no knowledge of the internal
operation of the other object. This is the essence of modular design : Build a complex system
out of modules that interact only in straightforward, easy to understand ways. Then each
module is a separate design problem that can be tackled independently. Java’s event-handling
framework is designed to offer strong support for modular design.

To make this clearer, let’s look at a new version of RandomStrings.java, the program
from Subsection 6.2.7 that uses RandomStringsPanel. The new version is ClickableRandom-
Strings.java. For convenience, I have added RepaintOnClick as a static nested class, although it
would work just as well as a separate class:

import java.awt.Component;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import javax.swing.JFrame;

/**

* Displays a window that shows 25 copies of the string "Java!" in

* random colors, fonts, and positions. The content of the window

* is an object of type RandomStringsPanel. When the user clicks

* the window, the content of the window is repainted, with the

* strings in newly selected random colors, fonts, and positions.

*/

public class ClickableRandomStrings {

public static void main(String[] args) {

JFrame window = new JFrame("Click Me to Redraw!");

RandomStringsPanel content = new RandomStringsPanel();

content.addMouseListener(new RepaintOnClick());

window.setContentPane(content);

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

window.setLocation(120,70);

window.setSize(350,250);

window.setVisible(true);

}

private static class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {

Component source = (Component)evt.getSource();

source.repaint();

}

public void mouseClicked(MouseEvent evt) { }

public void mouseReleased(MouseEvent evt) { }

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStrings.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/ClickableRandomStrings.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 275

public void mouseEntered(MouseEvent evt) { }

public void mouseExited(MouseEvent evt) { }

}

} end class ClickableRandomStrings

6.3.3 MouseEvent Data

Often, when a mouse event occurs, you want to know the location of the mouse cursor. This
information is available from the MouseEvent parameter to the event-handling method, which
contains instance methods that return information about the event. If evt is the parame-
ter, then you can find out the coordinates of the mouse cursor by calling evt.getX() and
evt.getY(). These methods return integers which give the x and y coordinates where the
mouse cursor was positioned at the time when the event occurred. The coordinates are ex-
pressed in the coordinate system of the component that generated the event, where the top left
corner of the component is (0,0).

The user can hold down certainmodifier keys while using the mouse. The possible modifier
keys include: the Shift key, the Control key, the Alt key (called the Option key on the Mac),
and the Meta key (called the Command or Apple key on the Mac). You might want to respond
to a mouse event differently when the user is holding down a modifier key. The boolean-
valued instance methods evt.isShiftDown(), evt.isControlDown(), evt.isAltDown(), and
evt.isMetaDown() can be called to test whether the modifier keys are pressed.

You might also want to have different responses depending on whether the user presses
the left mouse button, the middle mouse button, or the right mouse button. For events
triggered by a mouse button, you can determine which button was pressed or released by
calling evt.getButton(), which returns one of the integer constants MouseEvent.BUTTON1,
MouseEvent.BUTTON2, or MouseEvent.BUTTON3 for the left, middle, and right buttons.
For events such as mouseEntered and mouseExited that are not triggered by buttons,
evt.getButton() returns MouseEvent.NOBUTTON.

Now, not every mouse has a middle button and a right button, and Java deals with
that fact in a somewhat peculiar way. If the user clicks with the right mouse button, then
evt.isMetaDown() will return true, even if the user was not holding down the Meta key. Sim-
ilarly, if the user clicks with the middle mouse button, then evt.isAltDown() will return true,
even if the user is not holding down the Alt/Option key. By using these functions, you can
design an interface that will work even on computers that lack a middle or right mouse but-
ton. Note that there is a subtle difference between these functions and evt.getButton():
evt.getButton() really only applies to mousePressed, mouseReleased, and mouseClicked
events, while evt.isMetaDown() and evt.isAltDown() are useful in any mouse event. I will
often use them instead of evt.getButton().

As an example, consider a JPanel that does the following: Clicking on the panel with the
left mouse button will place a red rectangle on the panel at the point where the mouse was
clicked. Clicking with the right mouse button will place a blue oval on the panel. Holding
down the Shift key while clicking will clear the panel by removing all the shapes that have been
placed. You can try the sample program SimpleStamper.java. Here is what the panel looks like
after some shapes have been added:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleStamper.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 276

There are several ways to write this example. There could be a separate class to handle
mouse events, as in the previous example. However, in this case, I decided to let the panel itself
respond to mouse events. Any object can be a mouse listener, as long as it implements the
MouseListener interface. In this case, the panel class implements the MouseListener interface,
so the object that represents the main panel of the program can be the mouse listener for the
program. The constructor for the panel class contains the statement

addMouseListener(this);

which is equivalent to saying this.addMouseListener(this). Now, the ordinary way to reg-
ister a mouse listener is to say X.addMouseListener(Y) where Y is the listener and X is the
component that will generate the mouse events. In the statement addMouseListener(this),
both roles are played by this; that is, “this object” (the panel) is generating mouse events
and is also listening for those events. Although this might seem a little strange, you should get
used to seeing things like this. In a large program, however, it’s usually a better idea to write a
separate class to do the listening in order to have a more organized division of responsibilities.

The source code for the panel class is shown below. I have included a main() routine to
allow the class to be run as a program, as discussed in Subsection 6.2.7. You should check how
the instance methods in the MouseEvent object are used. You can also check for the Four Steps
of Event Handling (“import java.awt.event.*”, “implements MouseListener”, definitions
for the event-handling methods, and “addMouseListener”):

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/**

* A simple demonstration of MouseEvents. Shapes are drawn

* on a black background when the user clicks the panel. If

* the user Shift-clicks, the panel is cleared. If the user

* right-clicks the panel, a blue oval is drawn. Otherwise,

* when the user clicks, a red rectangle is drawn. The contents of

* the panel are not persistent. For example, they might disappear

* if the panel is resized.

* This class has a main() routine to allow it to be run as an application.

*/

public class SimpleStamper extends JPanel implements MouseListener {

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 277

public static void main(String[] args) {

JFrame window = new JFrame("Simple Stamper");

SimpleStamper content = new SimpleStamper();

window.setContentPane(content);

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

window.setLocation(120,70);

window.setSize(450,350);

window.setVisible(true);

}

// --

/**

* This constructor simply sets the background color of the panel to be black

* and sets the panel to listen for mouse events on itself.

*/

public SimpleStamper() {

setBackground(Color.BLACK);

addMouseListener(this);

}

/**

* Since this panel has been set to listen for mouse events on itself,

* this method will be called when the user clicks the mouse on the panel.

* This method is part of the MouseListener interface.

*/

public void mousePressed(MouseEvent evt) {

if (evt.isShiftDown()) {

// The user was holding down the Shift key. Just repaint the panel.

// Since this class does not define a paintComponent() method, the

// method from the superclass, JPanel, is called. That method simply

// fills the panel with its background color, which is black. The

// effect is to clear the panel.

repaint();

return;

}

int x = evt.getX(); // x-coordinate where user clicked.

int y = evt.getY(); // y-coordinate where user clicked.

Graphics g = getGraphics(); // Graphics context for drawing directly.

// NOTE: This is considered to be bad style!

if (evt.isMetaDown()) {

// User right-clicked at the point (x,y). Draw a blue oval centered

// at the point (x,y). (A black outline around the oval will make it

// more distinct when shapes overlap.)

g.setColor(Color.BLUE); // Blue interior.

g.fillOval(x - 30, y - 15, 60, 30);

g.setColor(Color.BLACK); // Black outline.

g.drawOval(x - 30, y - 15, 60, 30);

}

else {

// User left-clicked (or middle-clicked) at (x,y).

// Draw a red rectangle centered at (x,y).

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 278

g.setColor(Color.RED); // Red interior.

g.fillRect(x - 30, y - 15, 60, 30);

g.setColor(Color.BLACK); // Black outline.

g.drawRect(x - 30, y - 15, 60, 30);

}

g.dispose(); // We are finished with the graphics context, so dispose of it.

} // end mousePressed();

// The next four empty routines are required by the MouseListener interface.

// They don’t do anything in this class, so their definitions are empty.

public void mouseEntered(MouseEvent evt) { }

public void mouseExited(MouseEvent evt) { }

public void mouseClicked(MouseEvent evt) { }

public void mouseReleased(MouseEvent evt) { }

} // end class SimpleStamper

Note, by the way, that this class violates the rule that all drawing should be done
in a paintComponent() method. The rectangles and ovals are drawn directly in the
mousePressed() routine. To make this possible, I need to obtain a graphics context by saying
“g = getGraphics()”. After using g for drawing, I call g.dispose() to inform the operating
system that I will no longer be using g for drawing. I do not advise doing this type of direct
drawing if it can be avoided, but you can see that it does work in this case.

6.3.4 MouseMotionListeners and Dragging

Whenever the mouse is moved, it generates events. The operating system of the computer
detects these events and uses them to move the mouse cursor on the screen. It is also possible
for a program to listen for these “mouse motion” events and respond to them. The most
common reason to do so is to implement dragging . Dragging occurs when the user moves the
mouse while holding down a mouse button.

The methods for responding to mouse motion events are defined in an interface named
MouseMotionListener. This interface specifies two event-handling methods:

public void mouseDragged(MouseEvent evt);

public void mouseMoved(MouseEvent evt);

The mouseDragged method is called if the mouse is moved while a button on the mouse
is pressed. If the mouse is moved while no mouse button is down, then mouseMoved is called
instead. The parameter, evt, is an object of type MouseEvent, which contains the x and y

coordinates of the mouse’s location, as usual. As long as the user continues to move the mouse,
one of these methods will be called over and over. (So many events are generated that it would
be inefficient for a program to hear them all, if it doesn’t want to do anything in response. This is
why the mouse motion event-handlers are defined in a separate interface from the other mouse
events: You can listen for the mouse events defined in MouseListener without automatically
hearing all mouse motion events as well.)

If you want your program to respond to mouse motion events, you must create an object
that implements the MouseMotionListener interface, and you must register that object to listen
for events. The registration is done by calling a component’s addMouseMotionListener()

method. The object will then listen for mouseDragged and mouseMoved events associated with

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 279

that component. In most cases, the listener object will also implement the MouseListener
interface so that it can respond to the other mouse events as well.

(To get a better idea of how mouse events work, you should try the sample program Sim-
pleTrackMouse.java. This program responds to any of the seven different kinds of mouse events
by displaying the coordinates of the mouse, the type of event, and a list of the modifier keys
that are down (Shift, Control, Meta, and Alt). You can experiment with the program to see
what happens as you do various things with the mouse. I also encourage you to read the source
code. You should now be familiar with all the techniques that it uses.)

It is interesting to look at what a program needs to do in order to respond to dragging op-
erations. In general, the response involves three methods: mousePressed(), mouseDragged(),
and mouseReleased(). The dragging gesture starts when the user presses a mouse button,
it continues while the mouse is dragged, and it ends when the user releases the button. This
means that the programming for the response to one dragging gesture must be spread out over
the three methods! Furthermore, the mouseDragged() method can be called many times as the
mouse moves. To keep track of what is going on between one method call and the next, you
need to set up some instance variables. In many applications, for example, in order to process
a mouseDragged event, you need to remember the previous coordinates of the mouse. You can
store this information in two instance variables prevX and prevY of type int. It can also be
useful to save the starting coordinates, where the original mousePressed event occurred, in
instance variables. And I suggest having a boolean variable, dragging, which is set to true

while a dragging gesture is being processed. This is necessary because in many applications,
not every mousePressed event starts a dragging operation to which you want to respond. The
mouseDragged and mouseReleased methods can use the value of dragging to check whether
a drag operation is actually in progress. You might need other instance variables as well, but
in general outline, a class that handles mouse dragging looks like this:

import java.awt.event.*;

public class MouseDragHandler implements MouseListener, MouseMotionListener {

private int startX, startY; // Point where the original mousePress occurred.

private int prevX, prevY; // Most recently processed mouse coords.

private boolean dragging; // Set to true when dragging is in process.

. . . // other instance variables for use in dragging

public void mousePressed(MouseEvent evt) {

if (we-want-to-start-dragging) {

dragging = true;

startX = evt.getX(); // Remember starting position.

startY = evt.getY();

prevX = startX; // Remember most recent coords.

prevY = startY;

.

. // Other processing.

.

}

}

public void mouseDragged(MouseEvent evt) {

if (dragging == false) // First, check if we are

return; // processing a dragging gesture.

int x = evt.getX(); // Current position of Mouse.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleTrackMouse.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 280

int y = evt.getY();

.

. // Process a mouse movement from (prevX, prevY) to (x,y).

.

prevX = x; // Remember the current position for the next call.

prevY = y;

}

public void mouseReleased(MouseEvent evt) {

if (dragging == false) // First, check if we are

return; // processing a dragging gesture.

dragging = false; // We are done dragging.

.

. // Other processing and clean-up.

.

}

}

As an example, let’s look at a typical use of dragging: allowing the user to sketch a curve by
dragging the mouse. This example also shows many other features of graphics and mouse pro-
cessing. In the program, you can draw a curve by dragging the mouse on a large white drawing
area, and you can select a color for drawing by clicking on one of several colored rectangles
to the right of the drawing area. The complete source code can be found in SimplePaint.java.
Here is a picture of the program after some drawing has been done:

I will discuss a few aspects of the source code here, but I encourage you to read it carefully
in its entirety. There are lots of informative comments in the source code.

The panel for this example is designed to work for any reasonable size, that is, unless the
panel is too small. This means that coordinates are computed in terms of the actual width
and height of the panel. (The width and height are obtained by calling getWidth() and
getHeight().) This makes things quite a bit harder than they would be if we assumed some
particular fixed size for the panel. Let’s look at some of these computations in detail. For
example, the large white drawing area extends from y = 3 to y = height - 3 vertically and
from x = 3 to x = width - 56 horizontally. These numbers are needed in order to interpret
the meaning of a mouse click. They take into account a gray border around the panel and the
color palette along the right edge of the panel. The gray border is 3 pixels wide. The colored
rectangles are 50 pixels wide. Together with the 3-pixel border around the panel and a 3-pixel

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimplePaint.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 281

divider between the drawing area and the colored rectangles, this adds up to put the right edge
of the drawing area 56 pixels from the right edge of the panel.

A white square labeled “CLEAR” occupies a 50-by-50 pixel region beneath the colored rectan-
gles on the right edge of the panel. Allowing for this square, we can figure out how much vertical
space is available for the seven colored rectangles, and then divide that space by 7 to get the ver-
tical space available for each rectangle. This quantity is represented by a variable, colorSpace.
Out of this space, 3 pixels are used as spacing between the rectangles, so the height of each
rectangle is colorSpace - 3. The top of the N-th rectangle is located (N*colorSpace + 3)

pixels down from the top of the panel, assuming that we count the rectangles starting with zero.
This is because there are N rectangles above the N-th rectangle, each of which uses colorSpace
pixels. The extra 3 is for the border at the top of the panel. After all that, we can write down
the command for drawing the N-th rectangle:

g.fillRect(width - 53, N*colorSpace + 3, 50, colorSpace - 3);

That was not easy! But it shows the kind of careful thinking and precision graphics that are
sometimes necessary to get good results.

The mouse in this program is used to do three different things: Select a color, clear the
drawing, and draw a curve. Only the third of these involves dragging, so not every mouse
click will start a dragging operation. The mousePressed() method has to look at the (x,y)

coordinates where the mouse was clicked and decide how to respond. If the user clicked on
the CLEAR rectangle, the drawing area is cleared by calling repaint(). If the user clicked
somewhere in the strip of colored rectangles, the corresponding color is selected for drawing.
This involves computing which color the user clicked on, which is done by dividing the y

coordinate by colorSpace. Finally, if the user clicked on the drawing area, a drag operation is
initiated. In this case, a boolean variable, dragging, is set to true so that the mouseDragged

and mouseReleased methods will know that a curve is being drawn. The code for this follows
the general form given above. The actual drawing of the curve is done in the mouseDragged()
method, which draws a line from the previous location of the mouse to its current location.
Some effort is required to make sure that the line does not extend beyond the white drawing area
of the panel. This is not automatic, since as far as the computer is concerned, the border and
the color bar are part of the drawing surface. If the user drags the mouse outside the drawing
area while drawing a line, the mouseDragged() routine changes the x and y coordinates to
make them lie within the drawing area.

6.3.5 Anonymous Event Handlers and Adapter Classes

As I mentioned above, it is a fairly common practice to use anonymous inner classes to define
listener objects. As discussed in Subsection 5.8.3, a special form of the new operator is used to
create an object that belongs to an anonymous class. For example, a mouse listener object can
be created with an expression of the form:

new MouseListener() {

public void mousePressed(MouseEvent evt) { . . . }

public void mouseReleased(MouseEvent evt) { . . . }

public void mouseClicked(MouseEvent evt) { . . . }

public void mouseEntered(MouseEvent evt) { . . . }

public void mouseExited(MouseEvent evt) { . . . }

}

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 282

This is all just one long expression that both defines an unnamed class and creates an object
that belongs to that class. To use the object as a mouse listener, it can be passed as the
parameter to some component’s addMouseListener() method in a command of the form:

component.addMouseListener(new MouseListener() {

public void mousePressed(MouseEvent evt) { . . . }

public void mouseReleased(MouseEvent evt) { . . . }

public void mouseClicked(MouseEvent evt) { . . . }

public void mouseEntered(MouseEvent evt) { . . . }

public void mouseExited(MouseEvent evt) { . . . }

});

Now, in a typical application, most of the method definitions in this class will be empty.
A class that implements an interface must provide definitions for all the methods in that
interface, even if the definitions are empty. To avoid the tedium of writing empty method
definitions in cases like this, Java provides adapter classes. An adapter class implements a
listener interface by providing empty definitions for all the methods in the interface. An adapter
class is useful only as a basis for making subclasses. In the subclass, you can define just those
methods that you actually want to use. For the remaining methods, the empty definitions that
are provided by the adapter class will be used. The adapter class MouseAdapter implements
both the MouseListener interface and the MouseMotionListener interface, so it can be used as a
basis for creating a listener for any mouse event. As an example, if you want a mouse listener
that only responds to mouse-pressed events, you can use a command of the form:

component.addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) { . . . }

});

To see how this works in a real example, let’s write another version of the ClickableRandomStrings
program from Subsection 6.3.2. This version uses an anonymous class based on MouseAdapter
to handle mouse events:

import java.awt.Component;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import javax.swing.JFrame;

public class ClickableRandomStrings2 {

public static void main(String[] args) {

JFrame window = new JFrame("Random Strings");

RandomStringsPanel content = new RandomStringsPanel();

content.addMouseListener(new MouseAdapter() {

// Register a mouse listener that is defined by an anonymous subclass

// of MouseAdapter. This replaces the RepaintOnClick class that was

// used in the original version.

public void mousePressed(MouseEvent evt) {

Component source = (Component)evt.getSource();

source.repaint();

}

});

window.setContentPane(content);

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 283

window.setLocation(100,75);

window.setSize(300,240);

window.setVisible(true);

}

}

Anonymous inner classes can be used for other purposes besides event handling. For exam-
ple, suppose that you want to define a subclass of JPanel to represent a drawing surface. The
subclass will only be used once. It will redefine the paintComponent() method, but will make
no other changes to JPanel. It might make sense to define the subclass as an anonymous inner
class. You will see this pattern used in some future examples.

6.4 Timers, KeyEvents, and State Machines

Not every event is generated by an action on the part of the user. Events can also be
generated by objects as part of their regular programming, and these events can be monitored
by other objects so that they can take appropriate actions when the events occur. One example
of this is the class javax.swing.Timer. A Timer generates events at regular intervals. These
events can be used to drive an animation or to perform some other task at regular intervals.
We will begin this section with a look at timer events and animation. We will then look at
another type of basic user-generated event: the KeyEvents that are generated when the user
types on the keyboard. The example at the end of the section uses both a timer and keyboard
events to implement a simple game and introduces the important idea of state machines.

6.4.1 Timers and Animation

An object belonging to the class javax.swing.Timer exists only to generate events. A Timer,
by default, generates a sequence of events with a fixed delay between each event and the next.
(It is also possible to set a Timer to emit a single event after a specified time delay; in that case,
the timer is being used as an “alarm.”) Each event belongs to the class ActionEvent. An object
that is to listen for the events must implement the interface ActionListener, which defines just
one method:

public void actionPerformed(ActionEvent evt)

To use a Timer, you must create an object that implements the ActionListener interface. That
is, the object must belong to a class that is declared to “implement ActionListener”, and
that class must define the actionPerformed method. Then, if the object is set to listen for
events from the timer, the code in the listener’s actionPerformed method will be executed
every time the timer generates an event.

Since there is no point to having a timer without having a listener to respond to its events,
the action listener for a timer is specified as a parameter in the timer’s constructor. The time
delay between timer events is also specified in the constructor. If timer is a variable of type
Timer, then the statement

timer = new Timer(millisDelay, listener);

creates a timer with a delay of millisDelay milliseconds between events (where 1000 millisec-
onds equal one second). Events from the timer are sent to the listener. (millisDelay must
be of type int, and listener must be of type ActionListener.) The listener’s actionPerfomed()
will be executed every time the timer emits an event. Note that a timer is not guaranteed to

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 284

deliver events at precisely regular intervals. If the computer is busy with some other task, an
event might be delayed or even dropped altogether.

A timer does not automatically start generating events when the timer object is created.
The start() method in the timer must be called to tell the timer to start running. The timer’s
stop() method can be used to turn the stream of events off. It can be restarted later by calling
start() again.

∗ ∗ ∗

One application of timers is computer animation. A computer animation is just a sequence
of still images, presented to the user one after the other. If the time between images is short,
and if the change from one image to another is not too great, then the user perceives continuous
motion. The easiest way to do animation in Java is to use a Timer to drive the animation. Each
time the timer generates an event, the next frame of the animation is computed and drawn on
the screen—the code that implements this goes in the actionPerformed method of an object
that listens for events from the timer.

Our first example of using a timer is not exactly an animation, but it does display a new
image for each timer event. The program shows randomly generated images that vaguely
resemble works of abstract art. In fact, the program draws a new random image every time
its paintComponent() method is called, and the response to a timer event is simply to call
repaint(), which in turn triggers a call to paintComponent. The work of the program is done
in a subclass of JPanel, which starts like this:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class RandomArtPanel extends JPanel {

/**

* A RepaintAction object calls the repaint method of this panel each

* time its actionPerformed() method is called. An object of this

* type is used as an action listener for a Timer that generates an

* ActionEvent every four seconds. The result is that the panel is

* redrawn every four seconds.

*/

private class RepaintAction implements ActionListener {

public void actionPerformed(ActionEvent evt) {

repaint(); // Call the repaint() method in the panel class.

}

}

/**

* The constructor creates a timer with a delay time of four seconds

* (4000 milliseconds), and with a RepaintAction object as its

* ActionListener. It also starts the timer running.

*/

public RandomArtPanel() {

RepaintAction action = new RepaintAction();

Timer timer = new Timer(4000, action);

timer.start();

}

/**

* The paintComponent() method fills the panel with a random shade of

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 285

* gray and then draws one of three types of random "art". The type

* of art to be drawn is chosen at random.

*/

public void paintComponent(Graphics g) {

.

. // The rest of the class is omitted

.

You can find the full source code for this class in the file RandomArt.java. I will only note that
the very short RepaintAction class is a natural candidate to be replaced by an anonymous inner
class. That can be done where the timer is created:

Timer timer = new timer(4000, new ActionListener() {

public void actionPerformed(ActionEvent evt) {

repaint();

}

});

Later in this section, we will use a timer to drive the animation in a simple computer game.

6.4.2 Keyboard Events

In Java, user actions become events in a program. These events are associated with GUI
components. When the user presses a button on the mouse, the event that is generated is
associated with the component that contains the mouse cursor. What about keyboard events?
When the user presses a key, what component is associated with the key event that is generated?

A GUI uses the idea of input focus to determine the component associated with keyboard
events. At any given time, exactly one interface element on the screen has the input focus,
and that is where all keyboard events are directed. If the interface element happens to be a
Java component, then the information about the keyboard event becomes a Java object of type
KeyEvent, and it is delivered to any listener objects that are listening for KeyEvents associated
with that component. The necessity of managing input focus adds an extra twist to working
with keyboard events.

It’s a good idea to give the user some visual feedback about which component has the input
focus. For example, if the component is the typing area of a word-processor, the feedback is
usually in the form of a blinking text cursor. Another possible visual clue is to draw a brightly
colored border around the edge of a component when it has the input focus, as I do in the
examples given later in this section.

If comp is any component, and you would like it to have the input focus, you can call
requestFocusInWindow(), which should work as long as the window that contains the compo-
nent is active and there is only one component that is requesting focus. In some cases, when
there is only one component involved, it is enough to call this method once, just after opening
the window, and the component will retain the focus for the rest of the program. (Note that
there is also a requestFocus() method that might work even when the window is not active,
but the newer method requestFocusInWindow() is preferred in most cases.)

In a typical user interface, the user can choose to give the focus to a component by clicking
on that component with the mouse. And pressing the tab key will often move the focus from
one component to another. This is handled automatically by the components involved, without
any programming on your part. However, some components do not automatically request the
input focus when the user clicks on them. To solve this problem, a program can register

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomArt.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 286

a mouse listener with the component to detect user clicks. In response to a user click, the
mousePressed() method should call requestFocusInWindow() for the component. This is
true, in particular, for JPanels that are used as drawing surfaces, since JPanel objects do not
receive the input focus automatically.

As our first example of processing key events, we look at a simple program in which the user
moves a square up, down, left, and right by pressing arrow keys. When the user hits the ’R’, ’G’,
’B’, or ’K’ key, the color of the square is set to red, green, blue, or black, respectively. Of course,
none of these key events are delivered to the panel unless it has the input focus. The panel in
the program changes its appearance when it has the input focus: When it does, a cyan-colored
border is drawn around the panel; when it does not, a gray-colored border is drawn. The
complete source code for this example can be found in the file KeyboardAndFocusDemo.java.
I will discuss some aspects of it below. After reading this section, you should be able to
understand the source code in its entirety. I suggest running the program to see how it works.

In Java, keyboard event objects belong to a class called KeyEvent. An object that needs to
listen for KeyEvents must implement the interface named KeyListener. Furthermore, the object
must be registered with a component by calling the component’s addKeyListener() method.
The registration is done with the command “component.addKeyListener(listener);” where
listener is the object that is to listen for key events, and component is the object that will
generate the key events (when it has the input focus). It is possible for component and listener

to be the same object. All this is, of course, directly analogous to what you learned about mouse
events in the previous section. The KeyListener interface defines the following methods, which
must be included in any class that implements KeyListener :

public void keyPressed(KeyEvent evt);

public void keyReleased(KeyEvent evt);

public void keyTyped(KeyEvent evt);

Java makes a careful distinction between the keys that you press and the characters that
you type. There are lots of keys on a keyboard: letter keys, number keys, modifier keys such as
Control and Shift, arrow keys, page up and page down keys, keypad keys, function keys, and
so on. In some cases, such as the shift key, pressing a key does not type a character. On the
other hand, typing a character sometimes involves pressing several keys. For example, to type
an uppercase ’A’, you have to press the Shift key and then press the A key before releasing the
Shift key. On my Mac OS computer, I can type an accented e, by holding down the Option
key, pressing the E key, releasing the Option key, and pressing E again. Only one character
was typed, but I had to perform three key-presses and I had to release a key at the right time.
In Java, there are three types of KeyEvent. The types correspond to pressing a key, releasing a
key, and typing a character. The keyPressed method is called when the user presses a key, the
keyReleased method is called when the user releases a key, and the keyTyped method is called
when the user types a character (whether that’s done with one key press or several). Note that
one user action, such as pressing the E key, can be responsible for two events, a keyPressed

event and a keyTyped event. Typing an upper case ’A’ can generate two keyPressed events,
two keyReleased events, and one keyTyped event.

Usually, it is better to think in terms of two separate streams of events, one consisting of
keyPressed and keyReleased events and the other consisting of keyTyped events. For some
applications, you want to monitor the first stream; for other applications, you want to monitor
the second one. Of course, the information in the keyTyped stream could be extracted from
the keyPressed/keyReleased stream, but it would be difficult (and also system-dependent
to some extent). Some user actions, such as pressing the Shift key, can only be detected as

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/KeyboardAndFocusDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 287

keyPressed events. I used to have a computer solitaire game that highlighted every card that
could be moved, when I held down the Shift key. You can do something like that in Java by
highlighting the cards when the Shift key is pressed and removing the highlight when the Shift
key is released.

There is one more complication. Usually, when you hold down a key on the keyboard, that
key will auto-repeat . This means that it will generate multiple keyPressed events with just
one keyReleased at the end of the sequence. It can also generate multiple keyTyped events.
For the most part, this will not affect your programming, but you should not expect every
keyPressed event to have a corresponding keyReleased event.

Every key on the keyboard has an integer code number. (Actually, this is only true
for keys that Java knows about. Many keyboards have extra keys that can’t be used with
Java.) When the keyPressed or keyReleased method is called, the parameter, evt, contains
the code of the key that was pressed or released. The code can be obtained by calling the
function evt.getKeyCode(). Rather than asking you to memorize a table of code numbers,
Java provides a named constant for each key. These constants are defined in the KeyEvent
class. For example the constant for the shift key is KeyEvent.VK SHIFT. If you want to test
whether the key that the user pressed is the Shift key, you could say “if (evt.getKeyCode()

== KeyEvent.VK SHIFT)”. The key codes for the four arrow keys are KeyEvent.VK LEFT,
KeyEvent.VK RIGHT, KeyEvent.VK UP, and KeyEvent.VK DOWN. Other keys have similar codes.
(The “VK” stands for “Virtual Keyboard”. In reality, different keyboards use different key
codes, but Java translates the actual codes from the keyboard into its own “virtual” codes.
Your program only sees these virtual key codes, so it will work with various keyboards on
various platforms without modification.)

In the case of a keyTyped event, you want to know which character was typed. This
information can be obtained from the parameter, evt, in the keyTyped method by calling
the function evt.getKeyChar(). This function returns a value of type char representing the
character that was typed.

In the KeyboardAndFocusDemo program, I use the keyPressed routine to respond when the
user presses one of the arrow keys. The program includes instance variables, squareLeft and
squareTop, that give the position of the upper left corner of the movable square. When the
user presses one of the arrow keys, the keyPressed routine modifies the appropriate instance
variable and calls repaint() to redraw the panel with the square in its new position. Note
that the values of squareLeft and squareTop are restricted so that the square never moves
outside the white area of the panel:

/**

* This is called each time the user presses a key while the panel has

* the input focus. If the key pressed was one of the arrow keys,

* the square is moved (except that it is not allowed to move off the

* edge of the panel, allowing for a 3-pixel border).

*/

public void keyPressed(KeyEvent evt) {

int key = evt.getKeyCode(); // keyboard code for the pressed key

if (key == KeyEvent.VK LEFT) { // left-arrow key; move the square left

squareLeft -= 8;

if (squareLeft < 3)

squareLeft = 3;

repaint();

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 288

}

else if (key == KeyEvent.VK RIGHT) { // right-arrow key; move the square right

squareLeft += 8;

if (squareLeft > getWidth() - 3 - SQUARE SIZE)

squareLeft = getWidth() - 3 - SQUARE SIZE;

repaint();

}

else if (key == KeyEvent.VK UP) { // up-arrow key; move the square up

squareTop -= 8;

if (squareTop < 3)

squareTop = 3;

repaint();

}

else if (key == KeyEvent.VK DOWN) { // down-arrow key; move the square down

squareTop += 8;

if (squareTop > getHeight() - 3 - SQUARE SIZE)

squareTop = getHeight() - 3 - SQUARE SIZE;

repaint();

}

} // end keyPressed()

Color changes—which happen when the user types the characters ’R’, ’G’, ’B’, and ’K’, or
the lower case equivalents—are handled in the keyTyped method. I won’t include it here, since
it is so similar to the keyPressed method. Finally, to complete the KeyListener interface, the
keyReleased method must be defined. In the sample program, the body of this method is
empty since the program does nothing in response to keyReleased events.

6.4.3 Focus Events

If a component is to change its appearance when it has the input focus, it needs some way to
know when it has the focus. In Java, objects are notified about changes of input focus by events
of type FocusEvent. An object that wants to be notified of changes in focus can implement the
FocusListener interface. This interface declares two methods:

public void focusGained(FocusEvent evt);

public void focusLost(FocusEvent evt);

Furthermore, the addFocusListener() method must be used to set up a listener for the
focus events. When a component gets the input focus, it calls the focusGained() method of
any registered with FocusListener. When it loses the focus, it calls the listener’s focusLost()
method.

In the sample KeyboardAndFocusDemo program, the response to a focus event is simply
to redraw the panel. The paintComponent() method checks whether the panel has the input
focus by calling the boolean-valued function hasFocus(), which is defined in the Component
class, and it draws a different picture depending on whether or not the panel has the input
focus. The net result is that the appearance of the panel changes when the panel gains or loses
focus. The methods from the FocusListener interface are defined simply as:

public void focusGained(FocusEvent evt) {

// The panel now has the input focus.

repaint(); // will redraw with a new message and a cyan border

}

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 289

public void focusLost(FocusEvent evt) {

// The panel has now lost the input focus.

repaint(); // will redraw with a new message and a gray border

}

The other aspect of handling focus is to make sure that the panel actually gets the focus.
In this case, I called requestFocusInWindow() for the panel in the program’s main() routine,
just after opening the window. This approach works because there is only one component in
the window, and it should have focus as long as the window is active. If the user clicks over
to another window while using the program, the window becomes inactive and the panel loses
focus temporarily, but gets is back when the user clicks back to the program window.

There are still decisions to be made about the overall structure of the program. In this case,
I decided to use a nested class named Listener to define an object that listens for both focus
and key events. In the constructor for the panel, I create an object of type Listener and register
it to listen for both key events and focus events from the panel. See the source code for full
details.

6.4.4 State Machines

The information stored in an object’s instance variables is said to represent the state of that
object. When one of the object’s methods is called, the action taken by the object can depend
on its state. (Or, in the terminology we have been using, the definition of the method can look
at the instance variables to decide what to do.) Furthermore, the state can change. (That
is, the definition of the method can assign new values to the instance variables.) In computer
science, there is the idea of a state machine , which is just something that has a state and
can change state in response to events or inputs. The response of a state machine to an event
depends on what state it’s in when the event occurs. An object is a kind of state machine.
Sometimes, this point of view can be very useful in designing classes.

The state machine point of view can be especially useful in the type of event-oriented
programming that is required by graphical user interfaces. When designing a GUI program,
you can ask yourself: What information about state do I need to keep track of? What events
can change the state of the program? How will my response to a given event depend on the
current state? Should the appearance of the GUI be changed to reflect a change in state? How
should the paintComponent() method take the state into account? All this is an alternative to
the top-down, step-wise-refinement style of program design, which does not apply to the overall
design of an event-oriented program.

In the KeyboardAndFocusDemo program, shown above, the state of the program is recorded
in the instance variables squareColor, squareLeft, and squareTop. These state variables are
used in the paintComponent() method to decide how to draw the panel. Their values are
changed in the two key-event-handling methods.

In the rest of this section, we’ll look at another example, where the state plays an even
bigger role. In this example, the user plays a simple arcade-style game by pressing the arrow
keys. The program is defined in the source code file SubKiller.java. As usual, it would be a
good idea to compile and run the program as well as read the full source code. Here is a picture:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/KeyboardAndFocusDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SubKiller.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 290

The program shows a black “submarine” near the bottom of the panel. While the panel
has the input focus, this submarine moves back and forth erratically near the bottom. Near
the top, there is a blue “boat.” You can move this boat back and forth by pressing the left and
right arrow keys. Attached to the boat is a red “bomb” (or “depth charge”). You can drop
the bomb by hitting the down arrow key. The objective is to blow up the submarine by hitting
it with the bomb. If the bomb falls off the bottom of the screen, you get a new one. If the
submarine explodes, a new sub is created and you get a new bomb. Try it! Make sure to hit
the sub at least once, so you can see the explosion.

Let’s think about how this game can be programmed. First of all, since we are doing object-
oriented programming, I decided to represent the boat, the depth charge, and the submarine
as objects. Each of these objects is defined by a separate nested class inside the main panel
class, and each object has its own state which is represented by the instance variables in the
corresponding class. I use variables boat, bomb, and sub in the panel class to refer to the boat,
bomb, and submarine objects.

Now, what constitutes the “state” of the program? That is, what things change from time
to time and affect the appearance or behavior of the program? Of course, the state includes the
positions of the boat, submarine, and bomb, so those objects have instance variables to store
the positions. Anything else, possibly less obvious? Well, sometimes the bomb is falling, and
sometimes it’s not. That is a difference in state. Since there are two possibilities, I represent
this aspect of the state with a boolean variable in the bomb object, bomb.isFalling. Sometimes
the submarine is moving left and sometimes it is moving right. The difference is represented
by another boolean variable, sub.isMovingLeft. Sometimes, the sub is exploding. This is
also part of the state, and it is represented by a boolean variable, sub.isExploding. However,
the explosions require a little more thought. An explosion is something that takes place over
a series of frames. While an explosion is in progress, the sub looks different in each frame,
as the size of the explosion increases. Also, I need to know when the explosion is over so
that I can go back to moving and drawing the sub as usual. So, I use an integer variable,
sub.explosionFrameNumber to record how many frames have been drawn since the explosion
started; the value of this variable is used only when an explosion is in progress.

How and when do the values of these state variables change? Some of them seem to change
on their own: For example, as the sub moves left and right, the state variables that specify
its position change. Of course, these variables are changing because of an animation, and that
animation is driven by a timer. Each time an event is generated by the timer, some of the state
variables have to change to get ready for the next frame of the animation. The changes are
made by the action listener that listens for events from the timer. The boat, bomb, and sub

objects each contain an updateForNextFrame() method that updates the state variables of the

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 291

object to get ready for the next frame of the animation. The action listener for the timer calls
these methods with the statements

boat.updateForNewFrame();

bomb.updateForNewFrame();

sub.updateForNewFrame();

The action listener also calls repaint(), so that the panel will be redrawn to reflect its new
state. There are several state variables that change in these update methods, in addition to
the position of the sub: If the bomb is falling, then its y-coordinate increases from one frame
to the next. If the bomb hits the sub, then the isExploding variable of the sub changes to
true, and the isFalling variable of the bomb becomes false. The isFalling variable also
becomes false when the bomb falls off the bottom of the screen. If the sub is exploding, then
its explosionFrameNumber increases from one frame to the next, and when it reaches a certain
value, the explosion ends and isExploding is reset to false. At random times, the sub switches
between moving to the left and moving to the right. Its direction of motion is recorded in the
sub’s isMovingLeft variable. The sub’s updateForNewFrame() method includes these lines to
change the value of isMovingLeft at random times:

if (Math.random() < 0.04)

isMovingLeft = ! isMovingLeft;

There is a 1 in 25 chance that Math.random() will be less than 0.04, so the statement
“isMovingLeft = ! isMovingLeft” is executed in one in every twenty-five frames, on av-
erage. The effect of this statement is to reverse the value of isMovingLeft, from false to true
or from true to false. That is, the direction of motion of the sub is reversed.

In addition to changes in state that take place from one frame to the next, a few state
variables change when the user presses certain keys. In the program, this is checked in a
method that responds to user keystrokes. If the user presses the left or right arrow key, the
position of the boat is changed. If the user presses the down arrow key, the bomb changes
from not-falling to falling. This is coded in the keyPressed()method of a KeyListener that is
registered to listen for key events on the panel; that method reads as follows:

public void keyPressed(KeyEvent evt) {

int code = evt.getKeyCode(); // which key was pressed.

if (code == KeyEvent.VK LEFT) {

// Move the boat left. (If this moves the boat out of the frame, its

// position will be adjusted in the boat.updateForNewFrame() method.)

boat.centerX -= 15;

}

else if (code == KeyEvent.VK RIGHT) {

// Move the boat right. (If this moves boat out of the frame, its

// position will be adjusted in the boat.updateForNewFrame() method.)

boat.centerX += 15;

}

else if (code == KeyEvent.VK DOWN) {

// Start the bomb falling, if it is not already falling.

if (bomb.isFalling == false)

bomb.isFalling = true;

}

}

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 292

Note that it’s not necessary to call repaint() in this method, since this panel shows an anima-
tion that is constantly being redrawn anyway. Any changes in the state will become visible to
the user as soon as the next frame is drawn. At some point in the program, I have to make sure
that the user does not move the boat off the screen. I could have done this in keyPressed(),
but I choose to check for this in another routine, in the boat object.

The program uses four listeners, to respond to action events from the timer, key events from
the user, focus events, and mouse events. In this program, the user must click the panel to start
the game. The game is programmed to run as long as the panel has the input focus. In this
example, the program does not automatically request the focus; the user has to do it. When
the user clicks the panel, the mouse listener requests the input focus and the game begins. The
timer runs only when the panel has the input focus; this is programmed by having the focus
listener start the timer when the panel gains the input focus and stop the timer when the panel
loses the input focus. All four listeners are created in the constructor of the SubKillerPanel class
using anonymous inner classes. (See Subsection 6.3.5.)

I encourage you to read the source code in SubKiller.java. Although a few points are
tricky, you should with some effort be able to read and understand the entire program. Try to
understand the program in terms of state machines. Note how the state of each of the three
objects in the program changes in response to events from the timer and from the user.

While it’s not at all sophisticated as arcade games go, the SubKiller game does use some
interesting programming. And it nicely illustrates how to apply state-machine thinking in
event-oriented programming.

6.5 Basic Components

In preceding sections, you’ve seen how to use a graphics context to draw on the screen
and how to handle mouse events and keyboard events. In one sense, that’s all there is to
GUI programming. If you’re willing to program all the drawing and handle all the mouse and
keyboard events, you have nothing more to learn. However, you would either be doing a lot
more work than you need to do, or you would be limiting yourself to very simple user interfaces.
A typical user interface uses standard GUI components such as buttons, scroll bars, text-input
boxes, and menus. These components have already been written for you, so you don’t have to
duplicate the work involved in developing them. They know how to draw themselves, and they
can handle the details of processing the mouse and keyboard events that concern them.

Consider one of the simplest user interface components, a push button. The button has a
border, and it displays some text. This text can be changed. Sometimes the button is disabled,
so that clicking on it doesn’t have any effect. When it is disabled, its appearance changes. When
the user clicks on the push button, the button changes appearance while the mouse button is
pressed and changes back when the mouse button is released. In fact, it’s more complicated
than that. If the user moves the mouse outside the push button before releasing the mouse
button, the button changes to its regular appearance. To implement this, it is necessary to
respond to mouse exit or mouse drag events. Furthermore, on many platforms, a button can
receive the input focus. The button changes appearance when it has the focus. If the button
has the focus and the user presses the space bar, the button is triggered. This means that the
button must respond to keyboard and focus events as well.

Fortunately, you don’t have to program any of this, provided you use an object belonging
to the standard class javax.swing.JButton. A JButton object draws itself and processes
mouse, keyboard, and focus events on its own. You only hear from the JButton when the

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SubKiller.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 293

user triggers it by clicking on it or pressing the space bar while the button has the input
focus. When this happens, the JButton object creates an event object belonging to the class
java.awt.event.ActionEvent. The event object is sent to any registered listeners to tell them
that the button has been pushed. Your program gets only the information it needs—the fact
that a button was pushed.

∗ ∗ ∗

The standard components that are defined as part of the Swing graphical user interface
API are defined by subclasses of the class JComponent, which is itself a subclass of Component.
(Note that this includes the JPanel class that we have already been working with extensively.)
Many useful methods are defined in the Component and JComponent classes and so can be used
with any Swing component. We begin by looking at a few of these methods. Suppose that comp
is a variable that refers to some JComponent. Then the following methods can be used:

• comp.getWidth() and comp.getHeight() are functions that give the current size of the
component, in pixels. One warning: When a component is first created, its size is zero.
The size will be set later, probably by a layout manager. A common mistake is to check
the size of a component before that size has been set, such as in a constructor.

• comp.setEnabled(true) and comp.setEnabled(false) can be used to enable and disable
the component. When a component is disabled, its appearance might change, and the user
cannot do anything with it. There is a boolean-valued function, comp.isEnabled() that
you can call to discover whether the component is enabled.

• comp.setVisible(true) and comp.setVisible(false) can be called to hide or show the
component.

• comp.setFont(font) sets the font that is used for text displayed on the component. See
Subsection 6.2.3 for a discussion of fonts.

• comp.setBackground(color) and comp.setForeground(color) set the background and
foreground colors for the component. See Subsection 6.2.2.

• comp.setOpaque(true) tells the component that the area occupied by the component
should be filled with the component’s background color before the content of the compo-
nent is painted. By default, only JLabels are non-opaque. A non-opaque, or “transparent”,
component ignores its background color and simply paints its content over the content of
its container. This usually means that it inherits the background color from its container.

• comp.setToolTipText(string) sets the specified string as a “tool tip” for the component.
The tool tip is displayed if the mouse cursor is in the component and the mouse is not
moved for a few seconds. The tool tip should give some information about the meaning
of the component or how to use it.

• comp.setPreferredSize(size) sets the size at which the component should be displayed,
if possible. The parameter is of type java.awt.Dimension, where an object of type Di-
mension has two public integer-valued instance variables, width and height. A call to this
method usually looks something like “setPreferredSize(new Dimension(100,50))”.
The preferred size is used as a hint by layout managers, but will not be respected in all
cases. Standard components generally compute a correct preferred size automatically, but
it can be useful to set it in some cases. For example, if you use a JPanel as a drawing
surface, it is usually a good idea to set a preferred size for it, since its default preferred
size is zero.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 294

Note that using any component is a multi-step process. The component object must be
created with a constructor. It must be added to a container. In many cases, a listener must
be registered to respond to events from the component. And in some cases, a reference to the
component must be saved in an instance variable so that the component can be manipulated by
the program after it has been created. In this section, we will look at a few of the basic standard
components that are available in Swing. In the next section we will consider the problem of
laying out components in containers.

6.5.1 JButton

An object of class JButton is a push button that the user can click to trigger some action.
You’ve already seen buttons used in Section 6.1, but we consider them in much more detail
here. To use any component effectively, there are several aspects of the corresponding class
that you should be familiar with. For JButton, as an example, I list these aspects explicitly:

• Constructors: The JButton class has a constructor that takes a string as a parameter.
This string becomes the text displayed on the button. For example: stopGoButton =

new JButton("Go"). This creates a button object that will display the text, “Go” (but
remember that the button must still be added to a container before it can appear on the
screen).

• Events: When the user clicks on a button, the button generates an event of type Action-
Event. This event is sent to any listener that has been registered with the button as an
ActionListener.

• Listeners: An object that wants to handle events generated by buttons must imple-
ment the ActionListener interface. This interface defines just one method, “public void

actionPerformed(ActionEvent evt)”, which is called to notify the object of an action
event.

• Registration of Listeners: In order to actually receive notification of an event from a
button, an ActionListener must be registered with the button. This is done with the but-
ton’s addActionListener() method. For example: stopGoButton.addActionListener(
buttonHandler);

• Event methods: When actionPerformed(evt) is called by the button, the parameter,
evt, contains information about the event. This information can be retrieved by calling
methods in the ActionEvent class. In particular, evt.getActionCommand() returns a
String giving the command associated with the button. By default, this command is the
text that is displayed on the button, but it is possible to set it to some other string. The
method evt.getSource() returns a reference to the object that produced the event, that
is, to the JButton that was pressed. The return value is of type Object, not JButton,
because other types of components can also produce ActionEvents.

• Component methods: Several useful methods are defined in the JBut-
ton class, in addition to the standard Component methods. For example,
stopGoButton.setText("Stop") changes the text displayed on the button to “Stop”.
And stopGoButton.setActionCommand("sgb") changes the action command associated
with this button for action events. The setEnabled() and setText() methods are par-
ticularly useful for giving the user information about what is going on in the program.
A disabled button is better than a button that gives an obnoxious error message such as
“Sorry, you can’t click on me now!”

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 295

6.5.2 JLabel

JLabel is certainly the simplest type of component. An object of type JLabel exists just to
display a line of text. The text cannot be edited by the user, although it can be changed by
your program. The constructor for a JLabel specifies the text to be displayed:

JLabel message = new JLabel("Hello World!");

There is another constructor that specifies where in the label the text is located, if there is
extra space. The possible alignments are given by the constants JLabel.LEFT, JLabel.CENTER,
and JLabel.RIGHT. For example,

JLabel message = new JLabel("Hello World!", JLabel.CENTER);

creates a label whose text is centered in the available space. You can change the text displayed
in a label by calling the label’s setText() method:

message.setText("Goodbye World!");

Since the JLabel class is a subclass of JComponent, you can use methods such as
setForeground() and setFont() with labels. If you want the background color to have any
effect, you should call setOpaque(true) on the label, since otherwise the JLabel might not fill
in its background. For example:

JLabel message = new JLabel("Hello World!", JLabel.CENTER);

message.setForeground(Color.RED); // Display red text...

message.setBackground(Color.BLACK); // on a black background...

message.setFont(new Font("Serif",Font.BOLD,18)); // in a big bold font.

message.setOpaque(true); // Make sure background is filled in.

6.5.3 JCheckBox

A JCheckBox is a component that has two states: selected or unselected. The user can change
the state of a check box by clicking on it. The state of a checkbox is represented by a boolean

value that is true if the box is selected and is false if the box is unselected. A checkbox has
a label, which is specified when the box is constructed:

JCheckBox showTime = new JCheckBox("Show Current Time");

Usually, it’s the user who sets the state of a JCheckBox, but you can also set the state
programmatically. The current state of a checkbox is set using its setSelected(boolean)

method. For example, if you want the checkbox showTime to be checked, you would say
“showTime.setSelected(true)". To uncheck the box, say “showTime.setSelected(false)".
You can determine the current state of a checkbox by calling its isSelected() method, which
returns a boolean value.

In many cases, you don’t need to worry about events from checkboxes. Your program can
just check the state whenever it needs to know it by calling the isSelected()method. However,
a checkbox does generate an event when its state is changed by the user, and you can detect this
event and respond to it if you want something to happen at the moment the state changes. When
the state of a checkbox is changed by the user, it generates an event of type ActionEvent. If you
want something to happen when the user changes the state, you must register an ActionListener
with the checkbox by calling its addActionListener() method. (Note that if you change
the state by calling the setSelected() method, no ActionEvent is generated. However, there

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 296

is another method in the JCheckBox class, doClick(), which simulates a user click on the
checkbox and does generate an ActionEvent.)

When handling an ActionEvent, you can call evt.getSource() in the actionPerformed()
method to find out which object generated the event. (Of course, if you are only listening for
events from one component, you don’t have to do this.) The returned value is of type Object,
but you can type-cast it to another type if you want. Once you know the object that generated
the event, you can ask the object to tell you its current state. For example, if you know that
the event had to come from one of two checkboxes, cb1 or cb2, then your actionPerformed()
method might look like this:

public void actionPerformed(ActionEvent evt) {

Object source = evt.getSource();

if (source == cb1) {

boolean newState = cb1.isSelected();

... // respond to the change of state

}

else if (source == cb2) {

boolean newState = cb2.isSelected();

... // respond to the change of state

}

}

Alternatively, you can use evt.getActionCommand() to retrieve the action command asso-
ciated with the source. For a JCheckBox, the action command is, by default, the label of the
checkbox.

6.5.4 JTextField and JTextArea

The JTextField and JTextArea classes represent components that contain text that can be edited
by the user. A JTextField holds a single line of text, while a JTextArea can hold multiple lines.
It is also possible to set a JTextField or JTextArea to be read-only so that the user can read the
text that it contains but cannot edit the text. Both classes are subclasses of an abstract class,
JTextComponent, which defines their common properties.

JTextField and JTextArea have many methods in common. The instance method setText(),
which takes a parameter of type String, can be used to change the text that is displayed in an
input component. The contents of the component can be retrieved by calling its getText()

instance method, which returns a value of type String. If you want to stop the user from
modifying the text, you can call setEditable(false). Call the same method with a parameter
of true to make the input component user-editable again.

The user can only type into a text component when it has the input focus. The user can
give the input focus to a text component by clicking it with the mouse, but sometimes it is
useful to give the input focus to a text field programmatically. You can do this by calling its
requestFocusInWindow() method. For example, when I discover an error in the user’s input,
I usually call requestFocusInWindow() on the text field that contains the error. This helps
the user see where the error occurred and lets the user start typing the correction immediately.

By default, there is no space between the text in a text component and the edge of the
component, which usually doesn’t look very good. You can use the setMargin() method of
the component to add some blank space between the edge of the component and the text.
This method takes a parameter of type java.awt.Insets which contains four integer instance

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 297

variables that specify the margins on the top, left, bottom, and right edge of the component.
For example,

textComponent.setMargin(new Insets(5,5,5,5));

adds a five-pixel margin between the text in textComponent and each edge of the component.

∗ ∗ ∗

The JTextField class has a constructor

public JTextField(int columns)

where columns is an integer that specifies the number of characters that should be visible in the
text field. This is used to determine the preferred width of the text field. (Because characters
can be of different sizes and because the preferred width is not always respected, the actual
number of characters visible in the text field might not be equal to columns.) You don’t have to
specify the number of columns; for example, you might use the text field in a context where it
will expand to fill whatever space is available. In that case, you can use the default constructor
JTextField(), with no parameters. You can also use the following constructors, which specify
the initial contents of the text field:

public JTextField(String contents);

public JTextField(String contents, int columns);

The constructors for a JTextArea are

public JTextArea()

public JTextArea(int rows, int columns)

public JTextArea(String contents)

public JTextArea(String contents, int rows, int columns)

The parameter rows specifies how many lines of text should be visible in the text area. This
determines the preferred height of the text area, just as columns determines the preferred width.
However, the text area can actually contain any number of lines; the text area can be scrolled
to reveal lines that are not currently visible. It is common to use a JTextArea as the CENTER

component of a BorderLayout. In that case, it is less useful to specify the number of lines and
columns, since the TextArea will expand to fill all the space available in the center area of the
container.

The JTextArea class adds a few useful methods to those inherited from JTextComponent.
For example, the instance method append(moreText), where moreText is of type String, adds
the specified text at the end of the current content of the text area. (When using append()

or setText() to add text to a JTextArea, line breaks can be inserted in the text by using the
newline character, ’\n’.) And setLineWrap(wrap), where wrap is of type boolean, tells what
should happen when a line of text is too long to be displayed in the text area. If wrap is true,
then any line that is too long will be “wrapped” onto the next line; if wrap is false, the line will
simply extend outside the text area, and the user will have to scroll the text area horizontally
to see the entire line. The default value of wrap is false.

Since it might be necessary to scroll a text area to see all the text that it contains, you might
expect a text area to come with scroll bars. Unfortunately, this does not happen automatically.
To get scroll bars for a text area, you have to put the JTextArea inside another component,
called a JScrollPane. This can be done as follows:

JTextArea inputArea = new JTextArea();

JScrollPane scroller = new JScrollPane(inputArea);

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 298

The scroll pane provides scroll bars that can be used to scroll the text in the text area. The
scroll bars will appear only when needed, that is when the size of the text exceeds the size of
the text area. Note that when you want to put the text area into a container, you should add
the scroll pane, not the text area itself, to the container. See the program TextAreaDemo.java
for a very short example of using a text area in a scroll pane.

∗ ∗ ∗

When the user is typing in a JTextField and presses return, an ActionEvent is generated.
If you want to respond to such events, you can register an ActionListener with the text field,
using the text field’s addActionListener() method. (Since a JTextArea can contain multiple
lines of text, pressing return in a text area does not generate an event; it simply begins a new
line of text.)

JTextField has a subclass, JPasswordField, which is identical except that it does not reveal
the text that it contains. The characters in a JPasswordField are all displayed as asterisks (or
some other fixed character). A password field is, obviously, designed to let the user enter a
password without showing that password on the screen.

Text components are actually quite complex, and I have covered only their most basic
properties here. I will return to the topic of text components in Chapter 13.

6.5.5 JSlider

A JSlider provides a way for the user to select an integer value from a range of possible values.
The user does this by dragging a “knob” along a bar. A slider can, optionally, be decorated
with tick marks and with labels. This picture, from the sample program SliderDemo.java, shows
three sliders with different decorations and with different ranges of values:

Here, the second slider is decorated with tick marks, and the third one is decorated with labels.
It’s possible for a single slider to have both types of decorations.

The most commonly used constructor for JSliders specifies the start and end of the range
of values for the slider and its initial value when it first appears on the screen:

public JSlider(int minimum, int maximum, int value)

If the parameters are omitted, the values 0, 100, and 50 are used. By default, a slider is horizon-
tal, but you can make it vertical by calling its method setOrientation(JSlider.VERTICAL).
The current value of a JSlider can be read at any time with its getValue() method, which
returns a value of type int. If you want to change the value, you can do so with the method
setValue(n), which takes a parameter of type int.

If you want to respond immediately when the user changes the value of a slider, you can
register a listener with the slider. JSliders, unlike other components we have seen, do not
generate ActionEvents. Instead, they generate events of type ChangeEvent. ChangeEvent and

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/TextAreaDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SliderDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 299

related classes are defined in the package javax.swing.event rather than java.awt.event, so
if you want to use ChangeEvents, you should import javax.swing.event.* at the beginning
of your program. You must also define some object to implement the ChangeListener interface,
and you must register the change listener with the slider by calling its addChangeListener()
method. A ChangeListener must provide a definition for the method:

public void stateChanged(ChangeEvent evt)

This method will be called whenever the value of the slider changes. Note that it will be called
when you change the value with the setValue() method, as well as when the user changes the
value. In the stateChanged() method, you can call evt.getSource() to find out which object
generated the event. If you want to know whether the user generated the change event, call the
slider’s getValueIsAdjusting() method, which returns true if the user is dragging the knob
on the slider.

Using tick marks on a slider is a two-step process: Specify the interval between the tick
marks, and tell the slider that the tick marks should be displayed. There are actually two
types of tick marks, “major” tick marks and “minor” tick marks. You can have one or
the other or both. Major tick marks are a bit longer than minor tick marks. The method
setMinorTickSpacing(i) indicates that there should be a minor tick mark every i units along
the slider. The parameter is an integer. (The spacing is in terms of values on the slider, not
pixels.) For the major tick marks, there is a similar command, setMajorTickSpacing(i).
Calling these methods is not enough to make the tick marks appear. You also have to call
setPaintTicks(true). For example, the second slider in the above illustration was created
and configured using the commands:

slider2 = new JSlider(); // (Uses default min, max, and value.)

slider2.addChangeListener(this);

slider2.setMajorTickSpacing(25);

slider2.setMinorTickSpacing(5);

slider2.setPaintTicks(true);

Labels on a slider are handled similarly. You have to specify the labels and tell the slider to
paint them. Specifying labels is a tricky business, but the JSlider class has a method to simplify
it. You can create a set of labels and add them to a slider named sldr with the command:

sldr.setLabelTable(sldr.createStandardLabels(i));

where i is an integer giving the spacing between the labels. To arrange for the labels to be
displayed, call setPaintLabels(true). For example, the third slider in the above illustration
was created and configured with the commands:

slider3 = new JSlider(2000,2100,2014);

slider3.addChangeListener(this);

slider3.setLabelTable(slider3.createStandardLabels(50));

slider3.setPaintLabels(true);

6.6 Basic Layout

Components are the fundamental building blocks of a graphical user interface. But you have
to do more with components besides create them. Another aspect of GUI programming is
laying out components on the screen, that is, deciding where they are drawn and how big
they are. You have probably noticed that computing coordinates can be a difficult problem,

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 300

especially if you don’t assume a fixed size for the drawing area. Java has a solution for this, as
well.

Components are the visible objects that make up a GUI. Some components are containers,
which can hold other components. Containers in Java are objects that belong to some subclass
of java.awt.Container. The content pane of a JFrame is an example of a container. The
standard class JPanel, which we have mostly used as a drawing surface up until now, is another
example of a container.

Because a JPanel object is a container, it can hold other components. Because a JPanel is
itself a component, you can add a JPanel to another JPanel. This makes complex nesting of
components possible. JPanels can be used to organize complicated user interfaces, as shown in
this illustration:

In this picture, a large panel holds two smaller panels. Each of the two smaller panels in turn
holds three components.

The components in a container must be “laid out,” which means setting their sizes and
positions. It’s possible to program the layout yourself, but layout is ordinarily done by a
layout manager . A layout manager is an object associated with a container that implements
some policy for laying out the components in that container. Different types of layout manager
implement different policies. In this section, we will cover the three most common types of
layout manager, and then we will look at several programming examples that use components
and layout.

Every container has a default layout manager and has an instance method, setLayout(),
that takes a parameter of type LayoutManager and that is used to specify a different layout
manager for the container. Components are added to a container by calling an instance method
named add() in the container object. There are actually several versions of the add() method,
with different parameter lists. Different versions of add() are appropriate for different layout
managers, as we will see below.

6.6.1 Basic Layout Managers

Java has a variety of standard layout managers that can be used as parameters in the
setLayout() method. They are defined by classes in the package java.awt. Here, we will
look at just three of these layout manager classes: FlowLayout, BorderLayout, and GridLayout.

A FlowLayout simply lines up components in a row across the container. The size of each
component is equal to that component’s “preferred size.” After laying out as many items as will
fit in a row across the container, the layout manager will move on to the next row. The default

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 301

layout for a JPanel is a FlowLayout; that is, a JPanel uses a FlowLayout unless you specify a
different layout manager by calling the panel’s setLayout() method.

The components in a given row can be either left-aligned, right-aligned, or centered within
that row, and there can be horizontal and vertical gaps between components. If the default
constructor, “new FlowLayout()”, is used, then the components on each row will be centered
and both the horizontal and the vertical gaps will be five pixels. The constructor

public FlowLayout(int align, int hgap, int vgap)

can be used to specify alternative alignment and gaps. The possible values of align are
FlowLayout.LEFT, FlowLayout.RIGHT, and FlowLayout.CENTER.

Suppose that container is a container object that is using a FlowLayout as its layout
manager. Then, a component, comp, can be added to the container with the statement

container.add(comp);

The FlowLayout will line up all the components that have been added to the container in this
way. They will be lined up in the order in which they were added. For example, this picture
shows five buttons in a panel that uses a FlowLayout:

Note that since the five buttons will not fit in a single row across the panel, they are arranged
in two rows. In each row, the buttons are grouped together and are centered in the row. The
buttons were added to the panel using the statements:

panel.add(button1);

panel.add(button2);

panel.add(button3);

panel.add(button4);

panel.add(button5);

When a container uses a layout manager, the layout manager is ordinarily responsible for
computing the preferred size of the container (although a different preferred size could be
set by calling the container’s setPreferredSize method). A FlowLayout prefers to put its
components in a single row, so the preferred width is the total of the preferred widths of all
the components, plus the horizontal gaps between the components. The preferred height is the
maximum preferred height of all the components.

∗ ∗ ∗

A BorderLayout layout manager is designed to display one large, central component, with up
to four smaller components arranged around the edges of the central component. If a container,
cntr, is using a BorderLayout, then a component, comp, should be added to the container using
a statement of the form

cntr.add(comp, borderLayoutPosition);

where borderLayoutPosition specifies what position the component should occupy in the
layout and is given as one of the constants BorderLayout.CENTER, BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout.EAST, or BorderLayout.WEST. The meaning of the five
positions is shown in this diagram:

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 302

Center

NFGHI

SFKHI

E
a
s
t

W

e
s
t

Note that a border layout can contain fewer than five components, so that not all five of the
possible positions need to be filled. It would be very unusual, however, to have no center
component.

A BorderLayout sets the sizes of its components as follows: The NORTH and SOUTH components
(if present) are shown at their preferred heights, but their width is set equal to the full width of
the container. The EAST and WEST components are shown at their preferred widths, but their
height is set to the height of the container, minus the space occupied by the NORTH and SOUTH

components. Finally, the CENTER component takes up any remaining space. The preferred
size of the CENTER component is ignored when the layout is done, but it is taken into account
when the preferred size of the container as a whole is computed. You should make sure that
the components that you put into a BorderLayout are suitable for the positions that they will
occupy. A horizontal slider or text field, for example, would work well in the NORTH or SOUTH
position, but wouldn’t make much sense in the EAST or WEST position.

The default constructor, new BorderLayout(), leaves no space between components. If you
would like to leave some space, you can specify horizontal and vertical gaps in the constructor
of the BorderLayout object. For example, if you say

panel.setLayout(new BorderLayout(5,7));

then the layout manager will insert horizontal gaps of 5 pixels between components and vertical
gaps of 7 pixels between components. The background color of the container will show through
in these gaps. The default layout for the original content pane that comes with a JFrame is a
BorderLayout with no horizontal or vertical gap.

∗ ∗ ∗

Finally, we consider the GridLayout layout manager. A grid layout lays out components in
a grid containing rows and columns of equal sized rectangles. This illustration shows how the
components would be arranged in a grid layout with 4 rows and 3 columns:

LOLO

LP

LQ

LOR

LU

LX

LY

LOO

LZ

L[

L\

LOU

If a container uses a GridLayout, the appropriate add method for the container takes a single
parameter of type Component (for example: cntr.add(comp)). Components are added to the
grid in the order shown; that is, each row is filled from left to right before going on the next
row.

The constructor for a GridLayout takes the form “new GridLayout(R,C)”, where R is the
number of rows and C is the number of columns. If you want to leave horizontal gaps of H pixels

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 303

between columns and vertical gaps of V pixels between rows, use “new GridLayout(R,C,H,V)”
instead.

When you use a GridLayout, it’s probably good form to add just enough components to fill
the grid. However, this is not required. In fact, as long as you specify a non-zero value for the
number of rows, then the number of columns is essentially ignored. The system will use just as
many columns as are necessary to hold all the components that you add to the container. If you
want to depend on this behavior, you should probably specify zero as the number of columns.
You can also specify the number of rows as zero. In that case, you must give a non-zero number
of columns. The system will use the specified number of columns, with just as many rows as
necessary to hold the components that are added to the container.

Horizontal grids, with a single row, and vertical grids, with a single column, are very com-
mon. For example, suppose that button1, button2, and button3 are buttons and that you’d
like to display them in a horizontal row in a panel. If you use a horizontal grid for the panel,
then the buttons will completely fill that panel and will all be the same size. The panel can be
created as follows:

JPanel buttonBar = new JPanel();

buttonBar.setLayout(new GridLayout(1,3));

// (Note: The "3" here is pretty much ignored, and

// you could also say "new GridLayout(1,0)".

// To leave gaps between the buttons, you could use

// "new GridLayout(1,0,5,5)".)

buttonBar.add(button1);

buttonBar.add(button2);

buttonBar.add(button3);

You might find this button bar to be more attractive than the one that uses the default FlowLay-
out layout manager.

6.6.2 Borders

We have seen how to leave gaps between the components in a container, but what if you would
like to leave a border around the outside of the container? This problem is not handled by
layout managers. Instead, borders in Swing are represented by objects. A Border object can be
added to any JComponent, not just to containers. Borders can be more than just empty space.
The class javax.swing.BorderFactory contains a large number of static methods for creating
border objects. For example, the function

BorderFactory.createLineBorder(Color.BLACK)

returns an object that represents a one-pixel wide black line around the outside of a component.
If comp is a JComponent, a border can be added to comp using its setBorder() method. For
example:

comp.setBorder(BorderFactory.createLineBorder(Color.BLACK));

Once a border has been set for a JComponent, the border is drawn automatically, without
any further effort on the part of the programmer. The border is drawn along the edges of the
component, just inside its boundary. The layout manager of a JPanel or other container will
take the space occupied by the border into account. The components that are added to the
container will be displayed in the area inside the border. I don’t recommend using a border on
a JPanel that is being used as a drawing surface. However, if you do this, you should take the

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 304

border into account. If you draw in the area occupied by the border, that part of your drawing
will be covered by the border.

Here are some of the static methods that can be used to create borders:

• BorderFactory.createEmptyBorder(top,left,bottom,right) — leaves an empty bor-
der around the edges of a component. Nothing is drawn in this space, so the background
color of the component will appear in the area occupied by the border. The parameters
are integers that give the width of the border along the top, left, bottom, and right edges
of the component. This is actually very useful when used on a JPanel that contains other
components. It puts some space between the components and the edge of the panel. It
can also be useful on a JLabel, which otherwise would not have any space between the
text and the edge of the label.

• BorderFactory.createLineBorder(color,thickness) — draws a line around all four
edges of a component. The first parameter is of type Color and specifies the color of the
line. The second parameter is an integer that specifies the thickness of the border, in
pixels. If the second parameter is omitted, a line of thickness 1 is drawn.

• BorderFactory.createMatteBorder(top,left,bottom,right,color) — is similar to
createLineBorder, except that you can specify individual thicknesses for the top, left,
bottom, and right edges of the component.

• BorderFactory.createEtchedBorder() — creates a border that looks like a groove
etched around the boundary of the component. The effect is achieved using lighter and
darker shades of the component’s background color, and it does not work well with every
background color.

• BorderFactory.createLoweredBevelBorder()—gives a component a three-dimensional
effect that makes it look like it is lowered into the computer screen. As with an Etched-
Border, this only works well for certain background colors.

• BorderFactory.createRaisedBevelBorder()—similar to a LoweredBevelBorder, but
the component looks like it is raised above the computer screen.

• BorderFactory.createTitledBorder(title)—creates a border with a title. The title is
a String, which is displayed in the upper left corner of the border.

There are many other methods in the BorderFactory class, most of them providing vari-
ations of the basic border styles given here. The following illustration shows six components
with six different border styles. The text in each component is the command that created the
border for that component:

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 305

(The source code for the program that produced this picture can be found in BorderDemo.java.)

6.6.3 SliderAndButtonDemo

Now that we have looked at components and layouts, it’s time to put them together into some
complete programs. We start with a simple demo that uses a JLabel, three JButtons, and a
couple of JSliders, all laid out in a GridLayout, as shown in this picture:

The sliders in this program control the foreground and background color of the label, and the
buttons control its font style. Writing this program is a matter of creating the components,
laying them out, and programming listeners to respond to events from the sliders and buttons.
My program is defined as a subclass of JPanel that implements ChangeListener and ActionLis-
tener, so that the panel itself can act as the listener for change events from the sliders and action
events from the buttons. In the constructor, the six components are created and configured, a
GridLayout is installed as the layout manager for the panel, and the components are added to
the panel:

/* Create the display label, with properties to match the

values of the sliders and the setting of the combo box. */

displayLabel = new JLabel("Hello World!", JLabel.CENTER);

displayLabel.setOpaque(true);

displayLabel.setBackground(new Color(100,100,100));

displayLabel.setForeground(Color.RED);

displayLabel.setFont(new Font("Serif", Font.BOLD, 30));

displayLabel.setBorder(BorderFactory.createEmptyBorder(0,8,0,8));

/* Create the sliders, and set up the panel to listen for

ChangeEvents that are generated by the sliders. */

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/BorderDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 306

bgColorSlider = new JSlider(0,255,100);

bgColorSlider.addChangeListener(this);

fgColorSlider = new JSlider(0,100,0);

fgColorSlider.addChangeListener(this);

/* Create three buttons to control the font style, and set up the

panel to listen for ActionEvents from the buttons. */

JButton plainButton = new JButton("Plain Font");

plainButton.addActionListener(this);

JButton italicButton = new JButton("Italic Font");

italicButton.addActionListener(this);

JButton boldButton = new JButton("Bold Font");

boldButton.addActionListener(this);

/* Set the layout for the panel, and add the six components.

Use a GridLayout with 3 rows and 2 columns, and with

5 pixels between components. */

setLayout(new GridLayout(3,2,5,5));

add(displayLabel);

add(plainButton);

add(bgColorSlider);

add(italicButton);

add(fgColorSlider);

add(boldButton);

The class also defines the methods required by the ActionListener and ChangeListener inter-
faces. The actionPerformed() method is called when the user clicks one of the buttons. This
method changes the font in the JLabel, where the font depends on which button was clicked. To
determine which button was clicked, the method uses evt.getActionCommand(), which returns
the text from the button:

public void actionPerformed(ActionEvent evt) {

String cmd = evt.getActionCommand();

if (cmd.equals("Plain Font")) {

displayLabel.setFont(new Font("Serif", Font.PLAIN, 30));

}

else if (cmd.equals("Italic Font")) {

displayLabel.setFont(new Font("Serif", Font.ITALIC, 30));

}

else if (cmd.equals("Bold Font")) {

displayLabel.setFont(new Font("Serif", Font.BOLD, 30));

}

}

And the stateChanged() method, which is called when the user manipulates one of the sliders,
uses the value on the slider to compute a new foreground or background color for the label.
The method checks evt.getSource() to determine which slider was changed:

public void stateChanged(ChangeEvent evt) {

if (evt.getSource() == bgColorSlider) {

int bgVal = bgColorSlider.getValue();

displayLabel.setBackground(new Color(bgVal,bgVal,bgVal));

// NOTE: The background color is a shade of gray,

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 307

// determined by the setting on the slider.

}

else {

float hue = fgColorSlider.getValue()/100.0f;

displayLabel.setForeground(Color.getHSBColor(hue, 1.0f, 1.0f));

// Note: The foreground color ranges through all the colors

// of the spectrum.

}

}

Note that the slider variables are global variables in the program because they are referenced
in the stateChanged() method as well as in the constructor. On the other hand, the button
variables are local variables in the constructor because that is the only place where they are
used. The complete source code for this example is in the file SliderAndButtonDemo.java.

6.6.4 A Simple Calculator

As our next example, we look briefly at an example that uses nested subpanels to build a more
complex user interface. The program has two JTextFields where the user can enter two numbers,
four JButtons that the user can click to add, subtract, multiply, or divide the two numbers, and
a JLabel that displays the result of the operation. Here is a picture from the program:

This example uses a panel with a GridLayout that has four rows and one column. In this case,
the layout is created with the statement:

setLayout(new GridLayout(4,1,3,3));

which allows a 3-pixel gap between the rows where the gray background color of the panel is
visible.

The first row of the grid layout actually contains two components, a JLabel displaying the
text “x =” and a JTextField. A grid layout can only have one component in each position. In
this case, the component in the first row is a JPanel, a subpanel that is nested inside the main
panel. This subpanel in turn contains the label and text field. This can be programmed as
follows:

xInput = new JTextField("0", 10); // Create a text field sized to hold 10 chars.

JPanel xPanel = new JPanel(); // Create the subpanel.

xPanel.add(new JLabel(" x = ")); // Add a label to the subpanel.

xPanel.add(xInput); // Add the text field to the subpanel

add(xPanel); // Add the subpanel to the main panel.

The subpanel uses the default FlowLayout layout manager, so the label and text field are simply
placed next to each other in the subpanel at their preferred size, and are centered in the
subpanel.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SliderAndButtonDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 308

Similarly, the third row of the grid layout is a subpanel that contains four buttons. In this
case, the subpanel uses a GridLayout with one row and four columns, so that the buttons are
all the same size and completely fill the subpanel.

One other point of interest in this example is the actionPerformed() method that responds
when the user clicks one of the buttons. This method must retrieve the user’s numbers from
the text fields, perform the appropriate arithmetic operation on them (depending on which
button was clicked), and set the text of the JLabel (named answer) to represent the result.
However, the contents of the text fields can only be retrieved as strings, and these strings must
be converted into numbers. If the conversion fails, the label is set to display an error message:

public void actionPerformed(ActionEvent evt) {

double x, y; // The numbers from the input boxes.

try {

String xStr = xInput.getText();

x = Double.parseDouble(xStr);

}

catch (NumberFormatException e) {

// The string xStr is not a legal number.

answer.setText("Illegal data for x.");

xInput.requestFocusInWindow();

return;

}

try {

String yStr = yInput.getText();

y = Double.parseDouble(yStr);

}

catch (NumberFormatException e) {

// The string yStr is not a legal number.

answer.setText("Illegal data for y.");

yInput.requestFocusInWindow();

return;

}

/* Perform the operation based on the action command from the

button. The action command is the text displayed on the button.

Note that division by zero produces an error message. */

String op = evt.getActionCommand();

if (op.equals("+"))

answer.setText("x + y = " + (x+y));

else if (op.equals("-"))

answer.setText("x - y = " + (x-y));

else if (op.equals("*"))

answer.setText("x * y = " + (x*y));

else if (op.equals("/")) {

if (y == 0)

answer.setText("Can’t divide by zero!");

else

answer.setText("x / y = " + (x/y));

}

} // end actionPerformed()

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 309

The complete source code for this example can be found in SimpleCalc.java.

6.6.5 Using a null Layout

As mentioned above, it is possible to do without a layout manager altogether. For our next
example, we’ll look at a panel that does not use a layout manager. If you set the layout manager
of a container to be null, by calling container.setLayout(null), then you assume complete
responsibility for positioning and sizing the components in that container.

If comp is any component, then the statement

comp.setBounds(x, y, width, height);

puts the top left corner of the component at the point (x,y), measured in the coordinate system
of the container that contains the component, and it sets the width and height of the component
to the specified values. You should only set the bounds of a component if the container that
contains it has a null layout manager. In a container that has a non-null layout manager, the
layout manager is responsible for setting the bounds, and you should not interfere with its job.

Assuming that you have set the layout manager to null, you can call the setBounds()

method any time you like. (You can even make a component that moves or changes size while
the user is watching.) If you are writing a panel that has a known, fixed size, then you can
set the bounds of each component in the panel’s constructor. Note that you must also add the
components to the panel, using the panel’s add(component) instance method; otherwise, the
component will not appear on the screen.

Our example contains four components: two buttons, a label, and a panel that displays a
checkerboard pattern:

This is just an example of using a null layout; it doesn’t do anything, except that clicking the
buttons changes the text of the label. (We will use this example in Section 7.5 as a starting
point for a checkers game.)

The panel in this program is defined by the class NullLayoutDemo, which is created as a
subclass of JPanel. The four components are created and added to the panel in the constructor.
Then the setBounds() method of each component is called to set the size and position of the
component:

public NullLayoutDemo() {

setLayout(null); // I will do the layout myself!

setBackground(new Color(0,120,0)); // A dark green background.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleCalc.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 310

setBorder(BorderFactory.createEtchedBorder());

setPreferredSize(new Dimension(350,240));

/* Create the components and add them to the content pane. If you

don’t add them to a container, they won’t appear, even if

you set their bounds! */

board = new Checkerboard();

// (Checkerboard is a subclass of JPanel, defined below as a static

// nested class inside the main class.)

add(board);

newGameButton = new JButton("New Game");

newGameButton.addActionListener(this);

add(newGameButton);

resignButton = new JButton("Resign");

resignButton.addActionListener(this);

add(resignButton);

message = new JLabel("Click \"New Game\" to begin.");

message.setForeground(new Color(100,255,100)); // Light green.

message.setFont(new Font("Serif", Font.BOLD, 14));

add(message);

/* Set the position and size of each component by calling

its setBounds() method. */

board.setBounds(20,20,164,164);

newGameButton.setBounds(210, 60, 120, 30);

resignButton.setBounds(210, 120, 120, 30);

message.setBounds(20, 200, 330, 30);

} // end constructor

It’s fairly easy in this case to get a reasonable layout. It’s much more difficult to do your own
layout if you want to allow for changes of size. In that case, you have to respond to changes in
the container’s size by recomputing the sizes and positions of all the components that it contains.
If you want to respond to changes in a container’s size, you can register an appropriate listener
with the container. Any component generates an event of type ComponentEvent when its size
changes (and also when it is moved, hidden, or shown). You can register a ComponentListener
with the container and respond to resize events by recomputing the sizes and positions of
all the components in the container. Consult a Java reference for more information about
ComponentEvents. However, my real advice is that if you want to allow for changes in the
container’s size, try to find a layout manager to do the work for you.

The complete source code for this example is in NullLayoutDemo.java.

6.6.6 A Little Card Game

For a final example, let’s look at something a little more interesting as a program. The example
is a simple card game in which you look at a playing card and try to predict whether the next
card will be higher or lower in value. (Aces have the lowest value in this game.) You’ve seen a
text-oriented version of the same game in Subsection 5.4.3. Section 5.4 also introduced Deck,
Hand, and Card classes that are used by the program. In this GUI version of the game, you click
on a button to make your prediction. If you predict wrong, you lose. If you make three correct

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/NullLayoutDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 311

predictions, you win. After completing one game, you can click the “New Game” button to
start a new game. Here is what the program looks like in the middle of a game:

The complete source code for the panel can be found in the file HighLowGUI.java. I encourage
you to compile and run it. Remember that you also need Card.java, Deck.java, and Hand.java,
since they define classes that are used in the program.

The overall structure of the main panel in this example should be reasonably clear: It
has three buttons in a subpanel at the bottom of the main panel and a large drawing surface
that displays the cards and a message. (The cards and message are not components in this
example; they are drawn using the graphics context in the panel’s paintComponent() method.)
The main panel uses a BorderLayout. The drawing surface occupies the CENTER position of the
border layout. The subpanel that contains the buttons occupies the SOUTH position of the
border layout, and the other three positions of the borderlayout are empty.

The drawing surface is defined by a nested class named CardPanel, which is subclass of
JPanel. I have chosen to let the drawing surface object do most of the work of the game: It
listens for events from the three buttons and responds by taking the appropriate actions. The
main panel is defined by HighLowGUI itself, which is also a subclass of JPanel. The constructor
of the HighLowGUI class creates all the other components, sets up event handling, and lays out
the components:

public HighLowGUI() { // The constructor.

setBackground(new Color(130,50,40));

setLayout(new BorderLayout(3,3)); // BorderLayout with 3-pixel gaps.

CardPanel board = new CardPanel(); // Where the cards are drawn.

add(board, BorderLayout.CENTER);

JPanel buttonPanel = new JPanel(); // The subpanel that holds the buttons.

buttonPanel.setBackground(new Color(220,200,180));

add(buttonPanel, BorderLayout.SOUTH);

JButton higher = new JButton("Higher");

higher.addActionListener(board); // The CardPanel listens for events.

buttonPanel.add(higher);

JButton lower = new JButton("Lower");

lower.addActionListener(board);

buttonPanel.add(lower);

JButton newGame = new JButton("New Game");

newGame.addActionListener(board);

buttonPanel.add(newGame);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Hand.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 312

setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

} // end constructor

The programming of the drawing surface class, CardPanel, is a nice example of thinking
in terms of a state machine. (See Subsection 6.4.4.) It is important to think in terms of the
states that the game can be in, how the state can change, and how the response to events
can depend on the state. The approach that produced the original, text-oriented game in
Subsection 5.4.3 is not appropriate here. Trying to think about the game in terms of a process
that goes step-by-step from beginning to end is more likely to confuse you than to help you.

The state of the game includes the cards and the message. The cards are stored in an
object of type Hand. The message is a String. These values are stored in instance variables.
There is also another, less obvious aspect of the state: Sometimes a game is in progress, and
the user is supposed to make a prediction about the next card. Sometimes we are between
games, and the user is supposed to click the “New Game” button. It’s a good idea to keep
track of this basic difference in state. The CardPanel class uses a boolean instance variable
named gameInProgress for this purpose.

The state of the game can change whenever the user clicks on a button. The CardPanel
class implements the ActionListener interface and defines an actionPerformed() method to
respond to the user’s clicks. This method simply calls one of three other methods, doHigher(),
doLower(), or newGame(), depending on which button was pressed. It’s in these three event-
handling methods that the action of the game takes place.

We don’t want to let the user start a new game if a game is currently in progress. That would
be cheating. So, the response in the newGame() method is different depending on whether the
state variable gameInProgress is true or false. If a game is in progress, the message instance
variable should be set to be an error message. If a game is not in progress, then all the state
variables should be set to appropriate values for the beginning of a new game. In any case, the
board must be repainted so that the user can see that the state has changed. The complete
newGame() method is as follows:

/**

* Called by the CardPanel constructor, and called by actionPerformed() if

* the user clicks the "New Game" button. Start a new game.

*/

void doNewGame() {

if (gameInProgress) {

// If the current game is not over, it is an error to try

// to start a new game.

message = "You still have to finish this game!";

repaint();

return;

}

deck = new Deck(); // Create the deck and hand to use for this game.

hand = new Hand();

deck.shuffle();

hand.addCard(deck.dealCard()); // Deal the first card into the hand.

message = "Is the next card higher or lower?";

gameInProgress = true;

repaint();

} // end doNewGame()

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 313

The doHigher() and doLower() methods are almost identical to each other (and could
probably have been combined into one method with a parameter, if I were more clever). Let’s
look at the doHigher() routine. This is called when the user clicks the “Higher” button. This
only makes sense if a game is in progress, so the first thing doHigher() should do is check the
value of the state variable gameInProgress. If the value is false, then doHigher() should just
set up an error message. If a game is in progress, a new card should be added to the hand and
the user’s prediction should be tested. The user might win or lose at this time. If so, the value
of the state variable gameInProgress must be set to false because the game is over. In any
case, the board is repainted to show the new state. Here is the doHigher() method:

/**

* Called by actionPerformed() when user clicks the "Higher" button.

* Check the user’s prediction. Game ends if user guessed

* wrong or if the user has made three correct predictions.

*/

void doHigher() {

if (gameInProgress == false) {

// If the game has ended, it was an error to click "Higher",

// So set up an error message and abort processing.

message = "Click \"New Game\" to start a new game!";

repaint();

return;

}

hand.addCard(deck.dealCard()); // Deal a card to the hand.

int cardCt = hand.getCardCount();

Card thisCard = hand.getCard(cardCt - 1); // Card just dealt.

Card prevCard = hand.getCard(cardCt - 2); // The previous card.

if (thisCard.getValue() < prevCard.getValue()) {

gameInProgress = false;

message = "Too bad! You lose.";

}

else if (thisCard.getValue() == prevCard.getValue()) {

gameInProgress = false;

message = "Too bad! You lose on ties.";

}

else if (cardCt == 4) { // The hand is full, after three correct guesses.

gameInProgress = false;

message = "You win! You made three correct guesses.";

}

else {

message = "Got it right! Try for " + cardCt + ".";

}

repaint();

} // end doHigher()

The paintComponent() method of the CardPanel class uses the values in the state variables
to decide what to show. It displays the string stored in the message variable. It draws each
of the cards in the hand. There is one little tricky bit: If a game is in progress, it draws an
extra face-down card, which is not in the hand, to represent the next card in the deck. Drawing
the cards requires some care and computation. I wrote a method, “void drawCard(Graphics

g, Card card, int x, int y)”, which draws a card with its upper left corner at the point
(x,y). The paintComponent() routine decides where to draw each card and calls this routine

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 314

to do the drawing. You can check out all the details in the source code, HighLowGUI.java.
(The playing cards used in this program are not very impressive. A version of the program
with images that actually look like cards can be found in Subsection 13.1.3.)

6.7 Menus and Dialogs

We have already encountered many of the basic aspects of GUI programming, but
professional programs use many additional features. We will cover some of the advanced features
of Java GUI programming in Chapter 13, but in this section we look briefly at a few more
features that are essential for writing GUI programs. I will discuss these features in the context
of a “MosaicDraw” program that is shown in this picture:

The source code for the program is in the file MosaicDraw.java. The program also requires
MosaicPanel.java and MosaicDrawController.java. You will want to try it out!

As the user clicks-and-drags the mouse in the large drawing area of this program, it leaves
a trail of little colored squares. There is some random variation in the color of the squares.
(This is meant to make the picture look a little more like a real mosaic, which is a picture made
out of small colored stones in which there would be some natural color variation.) There is
a menu bar above the drawing area. The “Control” menu contains commands for filling and
clearing the drawing area, along with a few options that affect the appearance of the picture.
The “Color” menu lets the user select the color that will be used when the user draws. The
“Tools” menu affects the behavior of the mouse. Using the default “Draw” tool, the mouse
leaves a trail of single squares. Using the “Draw 3x3” tool, the mouse leaves a swath of colored
squares that is three squares wide. There are also “Erase” tools, which let the user set squares
back to their default black color.

The drawing area of the program is a panel that belongs to the MosaicPanel class, a subclass
of JPanel that is defined in MosaicPanel.java. MosaicPanel is a highly reusable class for repre-
senting mosaics of colored rectangles. It was also used behind the scenes in the sample program
in Subsection 4.6.3. The MosaicPanel class does not directly support drawing on the mosaic, but
it does support setting the color of each individual square. The MosaicDraw program installs a
mouse listener on the panel; the mouse listener responds to mousePressed and mouseDragged
events on the panel by setting the color of the square that contains the mouse. This is a nice

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDraw.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDrawController.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicPanel.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 315

example of applying a listener to an object to do something that was not programmed into the
object itself.

The file MosaicDraw.java is a simple class that contains only the main() routine for the pro-
gram. Most of the programming for MosaicDraw can be found in MosaicDrawController.java.
(It might have gone into the MosaicPanel class, if I had not decided to use that pre-existing
class in unmodified form.) It is the MosaicDrawController class that creates a MosaicPanel ob-
ject and adds a mouse listener to it. It also creates the menu bar that is shown at the top of
the program, and it implements all the commands in the menu bar. It has an instance method
getMosaicPanel() that returns a reference to the mosaic panel that it has created, and it
has another instance method getMenuBar() that returns a menu bar for the program. These
methods are used to obtain the panel and menu bar so that they can be added to the program’s
window.

I urge you to study MosaicDrawController.java and MosaicDraw.java. I will not be dis-
cussing all aspects of the code here, but you should be able to understand it all after reading
this section. As for MosaicPanel.java, it uses some techniques that you would not understand
at this point, but I encourage you to at least read the comments in this file to learn about the
API for mosaic panels.

6.7.1 Menus and Menubars

MosaicDraw is the first example that we have seen that uses a menu bar. Fortunately, menus
are very easy to use in Java. The items in a menu are represented by the class JMenuItem (this
class and other menu-related classes are in package javax.swing). Menu items are used in
almost exactly the same way as buttons. In fact, JMenuItem and JButton are both subclasses
of a class, AbstractButton, that defines their common behavior. In particular, a JMenuItem is
created using a constructor that specifies the text of the menu item, such as:

JMenuItem fillCommand = new JMenuItem("Fill");

You can add an ActionListener to a JMenuItem by calling the menu item’s addActionListener()
method. The actionPerformed() method of the action listener is called when the user selects
the item from the menu. You can change the text of the item by calling its setText(String)
method, and you can enable it and disable it using the setEnabled(boolean) method. All this
works in exactly the same way as for a JButton.

The main difference between a menu item and a button, of course, is that a menu item
is meant to appear in a menu rather than in a panel. A menu in Java is represented by
the class JMenu. A JMenu has a name, which is specified in the constructor, and it has an
add(JMenuItem) method that can be used to add a JMenuItem to the menu. For example, the
“Tools” menu in the MosaicDraw program could be created as follows, where listener is a
variable of type ActionListener:

JMenu toolsMenu = new JMenu("Tools"); // Create a menu with name "Tools"

JMenuItem drawCommand = new JMenuItem("Draw"); // Create a menu item.

drawCommand.addActionListener(listener); // Add listener to menu item.

toolsMenu.add(drawCommand); // Add menu item to menu.

JMenuItem eraseCommand = new JMenuItem("Erase"); // Create a menu item.

eraseCommand.addActionListener(listener); // Add listener to menu item.

toolsMenu.add(eraseCommand); // Add menu item to menu.

.

. // Create and add other menu items.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDraw.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDrawController.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 316

.

Once a menu has been created, it must be added to a menu bar. A menu bar is represented
by the class JMenuBar. A menu bar is just a container for menus. It does not have a name,
and its constructor does not have any parameters. It has an add(JMenu) method that can
be used to add menus to the menu bar. The name of the menu then appears in the menu
bar. For example, the MosaicDraw program uses three menus, controlMenu, colorMenu, and
toolsMenu. We could create a menu bar and add the menus to it with the statements:

JMenuBar menuBar = new JMenuBar();

menuBar.add(controlMenu);

menuBar.add(colorMenu);

menuBar.add(toolsMenu);

The final step in using menus is to use the menu bar in a window such as a JFrame. We
have already seen that a frame has a “content pane.” The menu bar is another component of
the frame, not contained inside the content pane. The JFrame class has an instance method
setMenuBar(JMenuBar) that can be used to set the menu bar. (There can only be one, so
this is a “set” method rather than an “add” method.) In the MosaicDraw program, the menu
bar is created by a MosaicDrawController object and can be obtained by calling that object’s
getMenuBar() method. The main() routine in MosaicDraw.java gets the menu bar from the
controller and adds it to the window. Here is the basic code that is used (in somewhat modified
form) to set up the interface:

MosaicDrawController controller = new MosaicDrawController();

MosaicPanel content = controller.getMosaicPanel();

window.setContentPane(content); // Use panel from controller as content pane.

JMenuBar menuBar = controller.getMenuBar();

window.setJMenuBar(menuBar); // Use the menu bar from the controller.

Using menus always follows the same general pattern: Create a menu bar. Create menus
and add them to the menu bar. Create menu items and add them to the menus (and set up
listening to handle action events from the menu items). Use the menu bar in a window by
calling the window’s setJMenuBar() method.

∗ ∗ ∗

There are other kinds of menu items, defined by subclasses of JMenuItem, that can be added
to menus. One of these is JCheckBoxMenuItem, which represents menu items that can be in one
of two states, selected or not selected. A JCheckBoxMenuItem has the same functionality and
is used in the same way as a JCheckBox (see Subsection 6.5.3). Three JCheckBoxMenuItems
are used in the “Control” menu of the MosaicDraw program. One is used to turn the random
color variation of the squares on and off. Another turns a symmetry feature on and off; when
symmetry is turned on, the user’s drawing is reflected horizontally and vertically to produce a
symmetric pattern. And the third checkbox menu item shows and hides the “grouting” in the
mosaic; the grouting is the gray lines that are drawn around each of the little squares in the
mosaic. The menu item that corresponds to the “Use Randomness” option in the “Control”
menu could be set up with the statements:

JMenuItem useRandomnessToggle = new JCheckBoxMenuItem("Use Randomness");

useRandomnessToggle.addActionListener(listener); // Set up a listener.

useRandomnessToggle.setSelected(true); // Randomness is initially turned on.

controlMenu.add(useRandomnessToggle); // Add the menu item to the menu.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 317

In my program, the “Use Randomness” JCheckBoxMenuItem corresponds to a boolean-
valued instance variable named useRandomness in the MosaicDrawController class. This vari-
able is part of the state of the controller object. Its value is tested whenever the user draws
one of the squares, to decide whether or not to add a random variation to the color of the
square. When the user selects the “Use Randomness” command from the menu, the state of
the JCheckBoxMenuItem is reversed, from selected to not-selected or from not-selected to se-
lected. The ActionListener for the menu item checks whether the menu item is selected or not,
and it changes the value of useRandomness to match. Note that selecting the menu command
does not have any immediate effect on the picture that is shown in the window. It just changes
the state of the program so that future drawing operations on the part of the user will have a
different effect. The “Use Symmetry” option in the “Control” menu works in much the same
way. The “Show Grouting” option is a little different. Selecting the “Show Grouting” option
does have an immediate effect: The picture is redrawn with or without the grouting, depending
on the state of the menu item.

My program uses a single ActionListener to respond to all of the menu items in all the
menus. This is not a particularly good design, but it is easy to implement for a small program
like this one. The actionPerformed() method of the listener object uses the statement

String command = evt.getActionCommand();

to get the action command of the source of the event; this will be the text of the menu item.
The listener tests the value of command to determine which menu item was selected by the user.
If the menu item is a JCheckBoxMenuItem, the listener must check the state of the menu item.
The menu item is the source of the event that is being processed. The listener can get its hands
on the menu item object by calling evt.getSource(). Since the return value of getSource()
is of type Object, the return value must be type-cast to the correct type. Here, for example, is
the code that handles the “Use Randomness” command:

if (command.equals("Use Randomness")) {

// Set the value of useRandomness depending on the menu item’s state.

JCheckBoxMenuItem toggle = (JCheckBoxMenuItem)evt.getSource();

useRandomness = toggle.isSelected();

}

(The actionPerformed() method uses a rather long if..then..else statement to check all
the possible action commands. It might be more natural and efficient use a switch statement
with command as the selector and all the possible action commands as cases.)

∗ ∗ ∗

In addition to menu items, a menu can contain lines that separate the menu items into
groups. In the MosaicDraw program, the “Control” menu contains such a separator. A JMenu
has an instance method addSeparator() that can be used to add a separator to the menu. For
example, the separator in the “Control” menu was created with the statement:

controlMenu.addSeparator();

A menu can also contain a submenu. The name of the submenu appears as an item in the
main menu. When the user moves the mouse over the submenu name, the submenu pops up.
(There is no example of this in the MosaicDraw program.) It is very easy to do this in Java:
You can add one JMenu to another JMenu using a statement such as mainMenu.add(submenu),
and it becomes a submenu.

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 318

6.7.2 Dialogs

One of the commands in the “Color” menu of the MosaicDraw program is “Custom Color. . . ”.
When the user selects this command, a new window appears where the user can select a color.
This window is an example of a dialog or dialog box . A dialog is a type of window that is
generally used for short, single purpose interactions with the user. For example, a dialog box
can be used to display a message to the user, to ask the user a question, to let the user select a
file to be opened, or to let the user select a color. In Swing, a dialog box is represented by an
object belonging to the class JDialog or to a subclass.

The JDialog class is very similar to JFrame and is used in much the same way. Like a
frame, a dialog box is a separate window. Unlike a frame, however, a dialog is not completely
independent. Every dialog is associated with a frame (or another dialog), which is called
its parent window . The dialog box is dependent on its parent. For example, if the parent is
closed, the dialog box will also be closed. It is possible to create a dialog box without specifying
a parent, but in that case an invisible frame is created by the system to serve as the parent.

Dialog boxes can be either modal or modeless. When a modal dialog is created, its parent
frame is blocked. That is, the user will not be able to interact with the parent until the dialog
box is closed. Modeless dialog boxes do not block their parents in the same way, so they seem
a lot more like independent windows. In practice, modal dialog boxes are easier to use and are
much more common than modeless dialogs. All the examples we will look at are modal.

Aside from having a parent, a JDialog can be created and used in the same way as a
JFrame. However, I will not give any examples here of using JDialog directly. Swing has many
convenient methods for creating common types of dialog boxes. For example, the color choice
dialog that appears when the user selects the “Custom Color” command in the MosaicDraw
program belongs to the class JColorChooser, which is a subclass of JDialog. The JColorChooser
class has a static method that makes color choice dialogs very easy to use:

Color JColorChooser.showDialog(Component parentComp,

String title, Color initialColor)

When you call this method, a dialog box appears that allows the user to select a color. The
first parameter specifies the parent of the dialog; the parent window of the dialog will be the
window (if any) that contains parentComp; this parameter can be null and it can itself be a
frame or dialog object. The second parameter is a string that appears in the title bar of the
dialog box. And the third parameter, initialColor, specifies the color that is selected when
the color choice dialog first appears. The dialog has a sophisticated interface that allows the
user to select a color. When the user presses an “OK” button, the dialog box closes and the
selected color is returned as the value of the method. The user can also click a “Cancel” button
or close the dialog box in some other way; in that case, null is returned as the value of the
method. This is a modal dialog, and showDialog() does not return until the user dismisses
the dialog box in some way. By using this predefined color chooser dialog, you can write one
line of code that will let the user select an arbitrary color. Swing also has a JFileChooser class
that makes it almost as easy to show a dialog box that lets the user select a file to be opened
or saved.

∗ ∗ ∗

The JOptionPane class includes a variety of methods for making simple dialog boxes that
are variations on three basic types: a “message” dialog, a “confirm” dialog, and an “input”
dialog. (The variations allow you to provide a title for the dialog box, to specify the icon that

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 319

appears in the dialog, and to add other components to the dialog box. I will only cover the
most basic forms here.)

A message dialog simply displays a message string to the user. The user (hopefully) reads
the message and dismisses the dialog by clicking the “OK” button. A message dialog can be
shown by calling the static method:

void JOptionPane.showMessageDialog(Component parentComp, String message)

The message can be more than one line long. Lines in the message should be separated by
newline characters, \n. New lines will not be inserted automatically, even if the message is very
long. For example, assuming that the special variable this refers to a Component:

JOptionPane.showMessageDialog(this, "This program is about to crash!\n"

+ "Sorry about that.");

An input dialog displays a question or request and lets the user type in a string as a response.
You can show an input dialog by calling:

String JOptionPane.showInputDialog(Component parentComp, String question)

Again, parentComp can be null, and the question can include newline characters. The dialog
box will contain an input box, an “OK” button, and a “Cancel” button. If the user clicks
“Cancel”, or closes the dialog box in some other way, then the return value of the method is
null. If the user clicks “OK”, then the return value is the string that was entered by the user.
Note that the return value can be an empty string (which is not the same as a null value), if
the user clicks “OK” without typing anything in the input box. If you want to use an input
dialog to get a numerical value from the user, you will have to convert the return value into a
number (see Subsection 3.7.2). As an example,

String name;

name = JOptionPanel.showInputDialog(null, "Hi! What’s your name?");

if (name == null)

JOptionPane.showMessageDialog(null, "Well, I’ll call you Grumpy.");

else

JOptionPane.showMessageDialog(null, "Pleased to meet you, " + name);

Finally, a confirm dialog presents a question and three response buttons: “Yes”, “No”, and
“Cancel”. A confirm dialog can be shown by calling:

int JOptionPane.showConfirmDialog(Component parentComp, String question)

The return value tells you the user’s response. It is one of the following constants:

• JOptionPane.YES OPTION — the user clicked the “Yes” button

• JOptionPane.NO OPTION — the user clicked the “No” button

• JOptionPane.CANCEL OPTION — the user clicked the “Cancel” button

• JOptionPane.CLOSE OPTION — the dialog was closed in some other way.

By the way, it is possible to omit the Cancel button from a confirm dialog by calling one of
the other methods in the JOptionPane class. Just call:

JOptionPane.showConfirmDialog(

parent, question, title, JOptionPane.YES NO OPTION)

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 320

The final parameter is a constant which specifies that only a “Yes” button and a “No” button
should be used. The third parameter is a string that will be displayed as the title of the dialog
box window.

A small demo program, SimpleDialogDemo.java is available to demonstrate JColorChooser
and several JOptionPane dialogs.

6.7.3 Fine Points of Frames

In previous sections, whenever I used a frame, I created a JFrame object in a main() routine
and installed a panel as the content pane of that frame. This works fine, but a more object-
oriented approach is to define a subclass of JFrame and to set up the contents of the frame
in the constructor of that class. This is what I did in the case of the MosaicDraw program.
MosaicDraw is defined as a subclass of JFrame. The definition of this class is very short, but it
illustrates several new features of frames that I want to discuss:

public class MosaicDraw extends JFrame {

public static void main(String[] args) {

JFrame window = new MosaicDraw();

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

window.setVisible(true);

}

public MosaicDraw() {

super("Mosaic Draw");

MosaicDrawController controller = new MosaicDrawController();

setContentPane(controller.getMosaicPanel());

setJMenuBar(controller.getMenuBar());

pack();

Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();

setLocation((screensize.width - getWidth())/2,

(screensize.height - getHeight())/2);

}

}

The constructor in this class begins with the statement super("Mosaic Draw"), which calls
the constructor in the superclass, JFrame. The parameter specifies a title that will appear in
the title bar of the window. The next three lines of the constructor set up the contents of the
window; a MosaicDrawController is created, and the content pane and menu bar of the window
are obtained from the controller. The next line is something new. If window is a variable of
type JFrame (or JDialog), then the statement window.pack() will resize the window so that its
size matches the preferred size of its contents. (In this case, of course, “pack()” is equivalent
to “this.pack()”; that is, it refers to the window that is being created by the constructor.)
The pack() method is usually the best way to set the size of a window. Note that it will only
work correctly if every component in the window has a correct preferred size. This is only a
problem in two cases: when a panel is used as a drawing surface and when a panel is used as
a container with a null layout manager. In both these cases there is no way for the system to
determine the correct preferred size automatically, and you should set a preferred size by hand.
For example:

panel.setPreferredSize(new Dimension(400, 250));

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleDialogDemo.java

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 321

The last two lines in the constructor position the window so that it is exactly centered on
the screen. The line

Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();

determines the size of the screen. The size of the screen is screensize.width pixels in the hor-
izontal direction and screensize.height pixels in the vertical direction. The setLocation()
method of the frame sets the position of the upper left corner of the frame on the screen. The
expression “screensize.width - getWidth()” is the amount of horizontal space left on the
screen after subtracting the width of the window. This is divided by 2 so that half of the empty
space will be to the left of the window, leaving the other half of the space to the right of the
window. Similarly, half of the extra vertical space is above the window, and half is below.

Note that the constructor has created the window and set its size and position, but that
at the end of the constructor, the window is not yet visible on the screen. (More exactly, the
constructor has created the window object, but the visual representation of that object on the
screen has not yet been created.) To show the window on the screen, it will be necessary to
call its instance method, window.setVisible(true).

In addition to the constructor, the MosaicDraw class includes a main() routine. This makes
it possible to run MosaicDraw as a stand-alone application. (The main() routine, as a static

method, has nothing to do with the function of a MosaicDraw object, and it could (and perhaps
should) be in a separate class.) The main() routine creates a MosaicDraw and makes it visible
on the screen. It also calls

window.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

which means that the program will end when the user closes the window. Note that this is
not done in the constructor because doing it there would make MosaicDraw less flexible. It is
possible, for example, to write a program that lets the user open multiple MosaicDraw windows.
In that case, we don’t want to shut down the whole program just because the user has closed
one of the windows. There are other possible values for the default close operation of a window:

• JFrame.DO NOTHING ON CLOSE — the user’s attempts to close the window by clicking its
close box will be ignored, except that it will generate a WindowEvent. A program can
listen for this event and take any action it wants when the user attempts to close the
window.

• JFrame.HIDE ON CLOSE — when the user clicks its close box, the window will be hidden
just as if window.setVisible(false) were called. The window can be made visible again
by calling window.setVisible(true). This is the value that is used if you do not specify
another value by calling setDefaultCloseOperation.

• JFrame.DISPOSE ON CLOSE — the window is closed and any operating system resources
used by the window are released. It is not possible to make the window visible again.
(This is the proper way to permanently get rid of a window without ending the program.
You can accomplish the same thing programmatically by calling the instance method
window.dispose().)

6.7.4 Creating Jar Files

As the final topic for this chapter, we look again at jar files. Recall that a jar file is a “java
archive” that can contain a number of class files. When creating a program that uses more
than one class, it’s usually a good idea to place all the classes that are required by the program

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 322

into a jar file. If that is done, then a user will only need that one file to run the program. In
fact, it is possible to make a so-called executable jar file . A user can run an executable jar
file in much the same way as any other application, usually by double-clicking the icon of the
jar file. (The user’s computer must have a correct version of Java installed, and the computer
must be configured correctly for this to work. The configuration is usually done automatically
when Java is installed, at least on Windows and Mac OS.)

The question, then, is how to create a jar file. The answer depends on what programming
environment you are using. The two basic types of programming environment—command line
and IDE—were discussed in Section 2.6. Any IDE (Integrated Programming Environment) for
Java should have a command for creating jar files. In the Eclipse IDE, for example, it can be
done as follows: In the Package Explorer pane, select the programming project (or just all the
individual source code files that you need). Right-click on the selection, and choose “Export”
from the menu that pops up. In the window that appears, select “JAR file” and click “Next”.
In the window that appears next, enter a name for the jar file in the box labeled “JAR file”.
(Click the “Browse” button next to this box to select the file name using a file dialog box.) The
name of the file should end with “.jar”. If you are creating a regular jar file, not an executable
one, you can hit “Finish” at this point, and the jar file will be created. To create an executable
file, hit the “Next” button twice to get to the “Jar Manifest Specification” screen. At the
bottom of this screen is an input box labeled “Main class”. You have to enter the name of the
class that contains the main() routine that will be run when the jar file is executed. If you
hit the “Browse” button next to the “Main class” box, you can select the class from a list of
classes that contain main() routines. Once you’ve selected the main class, you can click the
“Finish” button to create the executable jar file. (Note that newer versions of Eclipse also have
an option for exporting an executable Jar file in fewer steps.)

It is also possible to create jar files on the command line. The Java Development Kit includes
a command-line program named jar that can be used to create jar files. If all your classes are
in the default package (like most of the examples in this book), then the jar command is easy
to use. To create a non-executable jar file on the command line, change to the directory that
contains the class files that you want to include in the jar. Then give the command

jar cf JarFileName.jar *.class

where JarFileName can be any name that you want to use for the jar file. The “*” in “*.class”
is a wildcard that makes *.class match every class file in the current directory. This means
that all the class files in the directory will be included in the jar file. If you want to include
only certain class files, you can name them individually, separated by spaces. (Things get more
complicated if your classes are not in the default package. In that case, the class files must be
in subdirectories of the directory in which you issue the jar command. See Subsection 2.6.6.)

Making an executable jar file on the command line is more complicated. There has to be
some way of specifying which class contains the main() routine. This is done by creating a
manifest file . The manifest file can be a plain text file containing a single line of the form

Main-Class: ClassName

where ClassName should be replaced by the name of the class that contains the main() routine.
For example, if the main() routine is in the class MosaicDraw, then the manifest file should
read “Main-Class: MosaicDraw”. You can give the manifest file any name you like. Put it
in the same directory where you will issue the jar command, and use a command of the form

jar cmf ManifestFileName JarFileName.jar *.class

CHAPTER 6. INTRODUCTION TO GUI PROGRAMMING 323

to create the jar file. (The jar command is capable of performing a variety of different opera-
tions. The first parameter to the command, such as “cf” or “cmf”, tells it which operation to
perform.)

By the way, if you have successfully created an executable jar file, you can run it on the
command line using the command “java -jar”. For example:

java -jar JarFileName.jar

Exercises 324

Exercises for Chapter 6

1. In the SimpleStamper example from Subsection 6.3.3, a rectangle or oval is drawn on (solution)

the panel when the user clicks the mouse. Except, when the user shift-clicks, the panel
is cleared instead. Modify this class so that the modified version will continue to draw
figures as the user drags the mouse. That is, the mouse will leave a trail of figures as the
user drags. However, if the user shift-clicks, the panel should simply be cleared and no
figures should be drawn even if the user drags the mouse after shift-clicking. Here is a
picture of my solution:

The source code for the original program is SimpleStamper.java. See the discussion
of dragging in Subsection 6.3.4. (Note that the original version uses a black background,
with a black border around each shape. That didn’t work well with a lot of closely spaced
shapes, so the new version uses a white background.)

If you want to make the problem a little more challenging, when drawing shapes during
a drag operation, make sure that the shapes that are drawn are at least, say, 5 pixels apart.
To implement this, you have to keep track of the position of the last shape that was drawn.

2. Write a program that shows a small red square and a small blue square. The user should be (solution)

able to drag either square with the mouse. (You’ll need an instance variable to remember
which square the user is dragging.) The user can drag the square out of the panel if she
wants; if she does this, there is no way to get it back.

Note that for this exercise, you should do all the drawing in the paintComponent()

method (as indeed you should whenever possible).

3. Write a program that shows a pair of dice. When the user clicks on the panel in the (solution)

program, the dice should be rolled (that is, the dice should be assigned newly computed
random values). Each die should be drawn as a square showing from 1 to 6 dots. Since you
have to draw two dice, its a good idea to write a subroutine, “void drawDie(Graphics

g, int val, int x, int y)”, to draw a die at the specified (x,y) coordinates. The
second parameter, val, specifies the value that is showing on the die. Assume that the
size of the panel is 100 by 100 pixels. Here is a picture of the panel that displays the dice:

http://math.hws.edu/eck/cs124/javanotes7/c6/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleStamper.java
http://math.hws.edu/eck/cs124/javanotes7/c6/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c6/ex3-ans.html

Exercises 325

4. In Exercise 6.3, you wrote a pair-of-dice panel where the dice are rolled when the user (solution)

clicks on the panel. Now make a pair-of-dice program in which the user rolls the dice
by clicking a button. The button should appear under the panel that shows the dice.
Also make the following change: When the dice are rolled, instead of just showing the
new value, show a short animation during which the values on the dice are changed in
every frame. The animation is supposed to make the dice look more like they are actually
rolling.

5. In Exercise 3.8, you drew a checkerboard. For this exercise, write a program where the (solution)

user can select a square by clicking on it. (Use a JPanel for the checkerboard.) Highlight
the selected square by drawing a colored border around it. When the program starts,
no square is selected. When the user clicks on a square that is not currently selected, it
becomes selected (and the previously selected square, if any, is unselected). If the user
clicks the square that is selected, it becomes unselected. Assume that the size of the panel
is exactly 160 by 160 pixels, so that each square on the checkerboard is 20 by 20 pixels.
Here is my checkerboard, with the square in row 3, column 3 selected:

6. For this exercise, you should modify the SubKiller game from Subsection 6.4.4. You can (solution)

start with the existing source code, from the file SubKiller.java. Modify the game so it
keeps track of the number of hits and misses and displays these quantities. That is, every
time the depth charge blows up the sub, the number of hits goes up by one. Every time
the depth charge falls off the bottom of the screen without hitting the sub, the number of
misses goes up by one. There is room at the top of the panel to display these numbers.
To do this exercise, you only have to add a half-dozen lines to the source code. But you
have to figure out what they are and where to add them. To do this, you’ll have to read
the source code closely enough to understand how it works.

7. Exercise 5.2 involved a class, StatCalc.java, that could compute some statistics of a set (solution)

of numbers. Write a GUI program that uses the StatCalc class to compute and display

http://math.hws.edu/eck/cs124/javanotes7/c6/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c6/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c6/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SubKiller.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/StatCalc.java
http://math.hws.edu/eck/cs124/javanotes7/c6/ex7-ans.html

Exercises 326

statistics of numbers entered by the user. The panel will have an instance variable of
type StatCalc that does the computations. The panel should include a JTextField where
the user enters a number. It should have four labels that display four statistics for the
numbers that have been entered: the number of numbers, the sum, the mean, and the
standard deviation. Every time the user enters a new number, the statistics displayed on
the labels should change. The user enters a number by typing it into the JTextField and
pressing return. There should be a “Clear” button that clears out all the data. This means
creating a new StatCalc object and resetting the displays on the labels. My panel also has
an “Enter” button that does the same thing as pressing the return key in the JTextField.
(Recall that a JTextField generates an ActionEvent when the user presses return, so your
panel should register itself to listen for ActionEvents from the JTextField as well as the
buttons.) Here is a picture of my solution to this problem:

8. Write a program that has a JTextArea where the user can enter some text. Then program (solution)

should have a button such that when the user clicks on the button, the panel will count
the number of lines in the user’s input, the number of words in the user’s input, and the
number of characters in the user’s input. This information should be displayed on three
labels. Recall that if textInput is a JTextArea, then you can get the contents of the
JTextArea by calling the function textInput.getText(). This function returns a String
containing all the text from the text area. The number of characters is just the length
of this String. Lines in the String are separated by the new line character, ’\n’, so the
number of lines is just the number of new line characters in the String, plus one. Words
are a little harder to count. Exercise 3.4 has some advice about finding the words in a
String. Essentially, you want to count the number of characters that are first characters
in words. Don’t forget to put your JTextArea in a JScrollPane, and add the scroll pane to
the container, not the text area. Scrollbars should appear when the user types more text
than will fit in the available area. Here is a picture of my solution:

http://math.hws.edu/eck/cs124/javanotes7/c6/ex8-ans.html

Exercises 327

9. A polygon is a geometric figure made up of a sequence of connected line segments. The (solution)

points where the line segments meet are called the vertices of the polygon. The Graph-
ics class includes commands for drawing and filling polygons. For these commands, the
coordinates of the vertices of the polygon are stored in arrays. If g is a variable of type
Graphics then

• g.drawPolygon(xCoords, yCoords, pointCt) will draw the outline of the polygon
with vertices at the points (xCoords[0],yCoords[0]), (xCoords[1],yCoords[1]),
. . . , (xCoords[pointCt-1],yCoords[pointCt-1]). The third parameter, pointCt,
is an int that specifies the number of vertices of the polygon. Its value
should be 3 or greater. The first two parameters are arrays of type
int[]. Note that the polygon automatically includes a line from the last
point, (xCoords[pointCt-1],yCoords[pointCt-1]), back to the starting point
(xCoords[0],yCoords[0]).

• g.fillPolygon(xCoords, yCoords, pointCt) fills the interior of the polygon with
the current drawing color. The parameters have the same meaning as in the
drawPolygon() method. Note that it is OK for the sides of the polygon to cross
each other, but the interior of a polygon with self-intersections might not be exactly
what you expect.

Write a program that lets the user draw polygons. As the user clicks a sequence of
points, count them and store their x- and y-coordinates in two arrays. These points will be
the vertices of the polygon. As the user is creating the polygon, you should just connect
all the points with line segments. When the user clicks near the starting point, draw the
complete polygon. Draw it with a red interior and a black border. Once the user has
completed a polygon, the next click will clear the data and start a new polygon from
scratch. All drawing should be done in the paintComponent() method.

Here is a picture of my solution after the user has drawn a fairly complex polygon:

http://math.hws.edu/eck/cs124/javanotes7/c6/ex9-ans.html

Exercises 328

10. Write a GUI Blackjack program that lets the user play a game of Blackjack, with the (solution)

computer as the dealer. The program should draw the user’s cards and the dealer’s cards,
just as was done for the graphical HighLow card game in Subsection 6.6.6. You can use
the source code for that game, HighLowGUI.java, for some ideas about how to write
your Blackjack game. The structures of the HighLow panel and the Blackjack panel are
very similar. You will certainly want to use the drawCard() method from the HighLow
program.

You can find a description of the game of Blackjack in Exercise 5.5. Add the following
rule to that description: If a player takes five cards without going over 21, that player wins
immediately. This rule is used in some casinos. For your program, it means that you only
have to allow room for five cards. You should assume that the panel is just wide enough
to show five cards, and that it is tall enough show the user’s hand and the dealer’s hand.

Note that the design of a GUI Blackjack game is very different from the design of the
text-oriented program that you wrote for Exercise 5.5. The user should play the game by
clicking on “Hit” and “Stand” buttons. There should be a “New Game” button that can
be used to start another game after one game ends. You have to decide what happens
when each of these buttons is pressed. You don’t have much chance of getting this right
unless you think in terms of the states that the game can be in and how the state can
change.

Your program will need the classes defined in Card.java, Hand.java, Deck.java, and
BlackjackHand.java.

The next exercise has a picture of a blackjack game that you can use a guide, except
that the version for this exercise does not allow betting.

11. In the Blackjack game from Exercise 6.10, the user can click on the “Hit”, “Stand”, and (solution)

“NewGame” buttons even when it doesn’t make sense to do so. It would be better if the
buttons were disabled at the appropriate times. The “New Game” button should be dis-
abled when there is a game in progress. The “Hit” and “Stand” buttons should be disabled
when there is not a game in progress. The instance variable gameInProgress tells whether
or not a game is in progress, so you just have to make sure that the buttons are properly
enabled and disabled whenever this variable changes value. I strongly advise writing a sub-
routine that can be called whenever it is necessary to set the value of the gameInProgress
variable. Then the subroutine can take responsibility for enabling and disabling the but-
tons. Recall that if bttn is a variable of type JButton, then bttn.setEnabled(false)

disables the button and bttn.setEnabled(true) enables the button.

http://math.hws.edu/eck/cs124/javanotes7/c6/ex10-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/BlackjackHand.java
http://math.hws.edu/eck/cs124/javanotes7/c6/ex11-ans.html

Exercises 329

As a second (and more difficult) improvement, make it possible for the user to place bets
on the Blackjack game. When the program starts, give the user $100. Add a JTextField
to the strip of controls along the bottom of the panel. The user can enter the bet in this
JTextField. When the game begins, check the amount of the bet. You should do this when
the game begins, not when it ends, because several errors can occur: The contents of the
JTextField might not be a legal number, the bet that the user places might be more money
than the user has, or the bet might be <= 0. You should detect these errors and show an
error message instead of starting the game. The user’s bet should be an integral number
of dollars.

It would be a good idea to make the JTextField uneditable while the game is in progress.
If betInput is the JTextField, you can make it editable and uneditable by the user with
the commands betInput.setEditable(true) and betInput.setEditable(false).

In the paintComponent() method, you should include commands to display the
amount of money that the user has left.

There is one other thing to think about: Ideally, the program should not start a new
game when it is first created. The user should have a chance to set a bet amount before
the game starts. So, in the constructor for the drawing surface class, you should not call
doNewGame(). You might want to display a message such as “Welcome to Blackjack”
before the first game starts.

Here is a picture of my program:

Quiz 330

Quiz on Chapter 6
(answers)

1. Programs written for a graphical user interface have to deal with “events.” Explain what
is meant by the term event. Give at least two different examples of events, and discuss
how a program might respond to those events.

2. Explain carefully what the repaint() method does.

3. Java has a standard class called JPanel. Discuss two ways in which JPanels can be used.

4. Draw the picture that will be produced by the following paintComponent() method:

public static void paintComponent(Graphics g) {

super.paintComponent(g);

for (int i=10; i <= 210; i = i + 50)

for (int j = 10; j <= 210; j = j + 50)

g.drawLine(i,10,j,60);

}

5. Suppose you would like a panel that displays a green square inside a red circle, as illus-
trated. Write a paintComponent() method for the panel class that will draw the image.

6. Java has a standard class called MouseEvent. What is the purpose of this class? What
does an object of type MouseEvent do?

7. One of the main classes in Swing is the JComponent class. What is meant by a component?
What are some examples?

8. What is the function of a LayoutManager in Java?

9. Consider the illustration of nested panels from the beginning of Section 6.6. What type
of layout manager is being used for each of the three panels in that picture?

10. Explain how Timers are used to do animation.

11. What is a JCheckBox and how is it used?

12. How is the preferred size of a component set, and how is it used?

http://math.hws.edu/eck/cs124/javanotes7/c6/quiz_answers.html

Chapter 7

Arrays and ArrayLists

Computers get a lot of their power from working with data structures. A data
structure is an organized collection of related data. An object is a data structure, but this
type of data structure—consisting of a fairly small number of named instance variables—is just
the beginning. In many cases, programmers build complicated data structures by hand, by
linking objects together. We’ll look at these custom-built data structures in Chapter 9. But
there is one type of data structure that is so important and so basic that it is built into every
programming language: the array.

You have already encountered arrays in Section 3.8 and Subsection 5.1.4. We continue the
study of arrays in this chapter, including some new details of their use and some additional
array-processing techniques. In particular, we will look at the important topic of algorithms
for searching and sorting an array.

An array has a fixed size that can’t be changed after the array is created. But in many cases,
it is useful to have a data structure that can grow and shrink as necessary. In this chapter, we
will look at a standard class, ArrayList, that represents such a data structure.

7.1 Array Details

Array basics have been discussed in previous chapters, but there are still details of Java
syntax to be filled in, and there is a lot more to say about using arrays. This section looks at
some of the syntactic details, with more information about array processing to come in the rest
of the chapter.

To briefly review some of the basics. . . . An array is a numbered sequence of elements, and
each element acts like a separate variable. All of the elements are of the same type, which is
called the base type of the array. The array as a whole also has a type. If the base type is
btype, then the array is of type btype[]. Each element in the array has an index, which is just
its numerical position in the sequence of elements. If the array is A, then the i-th element of the
array is A[i]. The number of elements in an array is called its length. The length of an array A

is A.length. The length of an array can’t be changed after the array is created. The elements of
the array A are A[0], A[1], . . . , A[A.length-1]. An attempt to refer to an array element with
an index outside the range from zero to A.length-1 causes an ArrayIndexOutOfBoundsException.

Arrays in Java are objects, so an array variable can only refer to an array, it does not
contain the array. The value of an array variable can also be null. In that case, it does
not refer to any array, and an attempt to refer to an array element such as A[i] will cause a
NullPointerException. Arrays are created using a special form of the new operator. For example,

331

CHAPTER 7. ARRAYS AND ARRAYLISTS 332

int[] A = new int[10];

creates a new array with base type int and length 10, and it sets the variable A to refer to the
newly created array.

7.1.1 For-each Loops

Arrays are often processed using for loops. A for loop makes it easy to process each element
in an array from beginning to end. For example, if namelist is an array of Strings, then all the
values in the list can be printed using

for (int i = 0; i < namelist.length; i++) {

System.out.println(namelist[i]);

}

This type of processing is so common that there is an alternative form of the for loop that
makes it easier to write. The alternative is called a for-each loop. It is probably easiest to
start with an example. Here is a for-each loop for printing all the values in an array of Strings:

for (String name : namelist) {

System.out.println(name);

}

The meaning of “for (String name : namelist)” is “for each string, name, in the array,
namelist, do the following”. The effect is that the variable name takes on each of the values
in namelist in turn, and the body of the loop is executed for each of those values. Note that
there is no array index in the loop. The loop control variable, name, represents one of the values
in the array, not the index of one of the values.

The for-each loop is meant specifically for processing all the values in a data structure, and
we will see in Chapter 10 that it applies to other data structures besides arrays. The for-each
loop makes it possible to process the values without even knowing the details of how the data
is structured. In the case of arrays, it lets you avoid the complications of using array indices.

A for-each loop will perform the same operation for each value that is stored in an array. If
itemArray is an array of type BaseType[], then a for-each loop for itemArray has the form:

for (BaseType item : itemArray) {

.

. // process the item

.

}

As usual, the braces are optional if there is only one statement inside the loop. In this loop,
item is the loop control variable. It is declared as a variable of type BaseType, where BaseType
is the base type of the array. (In a for-each loop, the loop control variable must be declared
in the loop; it cannot be a variable that already exists outside the loop.) When this loop is
executed, each value from the array is assigned to item in turn and the body of the loop is
executed for each value. Thus, the above loop is exactly equivalent to:

for (int index = 0; index < itemArray.length; index++) {

BaseType item;

item = itemArray[index]; // Get one of the values from the array

.

. // process the item

.

}

CHAPTER 7. ARRAYS AND ARRAYLISTS 333

For example, if A is an array of type int[], then we could print all the values from A with
the for-each loop:

for (int item : A)

System.out.println(item);

and we could add up all the positive integers in A with:

int sum = 0; // This will be the sum of all the positive numbers in A

for (int item : A) {

if (item > 0)

sum = sum + item;

}

The for-each loop is not always appropriate. For example, there is no simple way to use
it to process the items in just a part of an array, or to process the elements in reverse order.
However, it does make the code a little simpler when you do want to process all the values, in
order. since it eliminates any need to use array indices.

It’s important to note that a for-each loop processes the values in the array, not the
elements (where an element means the actual memory location that is part of the array). For
example, consider the following incorrect attempt to fill an array of integers with 17’s:

int[] intList = new int[10];

for (int item : intList) { // INCORRECT! DOES NOT MODIFY THE ARRAY!

item = 17;

}

The assignment statement item = 17 assigns the value 17 to the loop control variable, item.
However, this has nothing to do with the array. When the body of the loop is executed, the
value from one of the elements of the array is copied into item. The statement item = 17

replaces that copied value but has no effect on the array element from which it was copied; the
value in the array is not changed. The loop is equivalent to

int[] intList = new int[10];

for (int i = 0; i < intList.length; i++) {

int item = intList[i];

item = 17;

}

which certainly does not change the value of any element in the array.

7.1.2 Variable Arity Methods

Before Java 5, every method in Java had a fixed arity. (The arity of a method is defined as
the number of parameters in a call to the method.) In a fixed arity method, the number of
parameters must be the same in every call to the method and must be the same as the number
of formal parameters in the method’s definition. Java 5 introduced variable arity methods.
In a variable arity method, different calls to the method can have different numbers of parame-
ters. For example, the formatted output method System.out.printf, which was introduced in
Subsection 2.4.1, is a variable arity method. The first parameter of System.out.printf must
be a String, but it can have any number of additional parameters, of any types.

Calling a variable arity method is no different from calling any other sort of method, but
writing one requires some new syntax. As an example, consider a method that can compute

CHAPTER 7. ARRAYS AND ARRAYLISTS 334

the average of any number of values of type double. The definition of such a method could
begin with:

public static double average(double... numbers) {

Here, the ... after the type name, double, is what makes this a variable arity method. It
indicates that any number of values of type double can be provided when the subroutine is
called, so that for example average(1,4,9,16), average(3.14,2.17), average(0.375), and
even average() are all legal calls to this method. Note that actual parameters of type int can
be passed to average. The integers will, as usual, be automatically converted to real numbers.

When the method is called, the values of all the actual parameters that correspond to the
variable arity parameter are placed into an array, and it is this array that is actually passed to
the method. That is, in the body of a method, a variable arity parameter of type T actually
looks like an ordinary parameter of type T[]. The length of the array tells you how many
actual parameters were provided in the method call. In the average example, the body of the
method would see an array named numbers of type double[]. The number of actual parameters
in the method call would be numbers.length, and the values of the actual parameters would
be numbers[0], numbers[1], and so on. A complete definition of the method would be:

public static double average(double... numbers) {

// Inside this method, numbers if of type double[].

double sum; // The sum of all the actual parameters.

double average; // The average of all the actual parameters.

sum = 0;

for (int i = 0; i < numbers.length; i++) {

sum = sum + numbers[i]; // Add one of the actual parameters to the sum.

}

average = sum / numbers.length;

return average;

}

By the way, it is possible to pass a single array to a variable arity method, instead of a list
of individual values. For example, suppose that salesData is a variable of type double[]. Then
it would be legal to call average(salesData), and this would compute the average of all the
numbers in the array.

The formal parameter list in the definition of a variable-arity method can include more than
one parameter, but the ... can only be applied to the very last formal parameter.

As an example, consider a method that can draw a polygon through any number of points.
The points are given as values of type Point, where an object of type Point has two instance
variables, x and y, of type int. In this case, the method has one ordinary parameter—the
graphics context that will be used to draw the polygon—in addition to the variable arity
parameter. Remember that inside the definition of the method, the parameter points becomes
an array of Points:

public static void drawPolygon(Graphics g, Point... points) {

if (points.length > 1) { // (Need at least 2 points to draw anything.)

for (int i = 0; i < points.length - 1; i++) {

// Draw a line from i-th point to (i+1)-th point

g.drawLine(points[i].x, points[i].y, points[i+1].x, points[i+1].y);

}

// Now, draw a line back to the starting point.

g.drawLine(points[points.length-1].x, points[points.length-1].y,

points[0].x, points[0].y);

CHAPTER 7. ARRAYS AND ARRAYLISTS 335

}

}

When this method is called, the subroutine call statement must have one actual parameter of
type Graphics, which can be followed by any number of actual parameters of type Point.

For a final example, let’s look at a method that strings together all of the values in a list of
strings into a single, long string. This example uses a for-each loop to process the array:

public static String concat(String... values) {

StringBuffer buffer; // Use a StringBuffer for more efficient concatenation.

buffer = new StringBuffer(); // Start with an empty buffer.

for (String str : values) { // A "for each" loop for processing the values.

buffer.append(str); // Add string to the buffer.

}

return buffer.toString(); // return the contents of the buffer

}

Given this method definition, concat("Hello", "World") would return the string “Hel-
loWorld”, and concat() would return an empty string. Since a variable arity method can
also accept an array as actual parameter, we could also call concat(lines) where lines is of
type String[]. This would concatenate all the elements of the array into a single string.

7.1.3 Array Literals

We have seen that it is possible to initialize an array variable with a list of values at the time
it is declared. For example,

int[] squares = { 1, 4, 9, 16, 25, 36, 49 };

This initializes squares to refer to a newly created array that contains the seven values in the
list

A list initializer of this form can be used only in a declaration statement, to give an initial
value to a newly declared array variable. It cannot be used in an assignment statement to
assign a value to a variable that already existed. However, there is another, similar notation for
creating a new array that can be used in other places. The notation uses another form of the
new operator to both create a new array object and fill it with values. (The rather odd syntax
is similar to the syntax for anonymous inner classes, which were discussed in Subsection 5.8.3.)
As an example, to assign a new value to an array variable, cubes, of type int[], you could use:

cubes = new int[] { 1, 8, 27, 64, 125, 216, 343 };

This is an assignment statement rather than a declaration, so the array initializer syntax,
without “new int[],” would not be legal here. The general syntax for this form of the new

operator is

new 〈base-type 〉 [] { 〈list-of-values 〉 }

This is actually an expression whose value is a reference to a newly created array object. In this
sense, it is an “array literal,” since it is something that you can type in a program to represent
a value. This means that it can be used in any context where an object of type 〈base-type〉[]
is legal. For example, you could pass the newly created array as an actual parameter to a
subroutine. Consider the following utility method for creating a menu from an array of strings:

CHAPTER 7. ARRAYS AND ARRAYLISTS 336

/**

* Creates a JMenu. The names for the JMenuItems in the menu are

* given as an array of strings.

* @param menuName the name for the JMenu that is to be created.

* @param handler the listener that will respond to items in the menu.

* This ActionListener is added as a listener for each JMenuItem.

* @param itemNames an array holding the text that appears in each

* JMenuItem. If a null value appears in the array, the corresponding

* item in the menu will be a separator rather than a JMenuItem.

* @return the menu that has been created and filled with items.

*/

public static JMenu createMenu(

String menuName, ActionListener handler, String[] itemNames) {

JMenu menu = new JMenu(menuName);

for (String itemName : itemNames) {

if (itemName == null) {

menu.addSeparator();

}

else {

JMenuItem item = new JMenuItem(itemName);

item.addActionListener(handler);

menu.add(item);

}

}

return menu;

}

The third parameter in a call to createMenu is an array of strings. The array that is passed as
an actual parameter could be created in place, using the new operator. For example, assuming
that listener is of type ActionListener, we can use the following statement to create an entire
File menu:

JMenu fileMenu = createMenu("File", listener

new String[] { "New", "Open", "Close", null, "Quit" });

This should convince you that being able to create and use an array “in place” in this way can
be very convenient, in the same way that anonymous inner classes are convenient.

By the way, it is perfectly legal to use the “new BaseType[] { ... }” syntax instead of
the array initializer syntax in the declaration of an array variable. For example, instead of
saying:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };

you can say, equivalently,

int[] primes = new int[] { 2, 3, 5, 7, 11, 17, 19 };

In fact, rather than use a special notation that works only in the context of declaration state-
ments, I sometimes prefer to use the second form.

∗ ∗ ∗

One final note: For historical reasons, an array declaration such as

int[] list;

can also be written as

CHAPTER 7. ARRAYS AND ARRAYLISTS 337

int list[];

which is a syntax used in the languages C and C++. However, this alternative syntax does not
really make much sense in the context of Java, and it is probably best avoided. After all, the
intent is to declare a variable of a certain type, and the name of that type is “int[]”. It makes
sense to follow the “〈type-name〉 〈variable-name〉;” syntax for such declarations.

7.2 Array Processing

Most examples of array processing that we have looked at have actually been fairly
straightforward: processing the elements of the array in order from beginning to end, or random
access to an arbitrary element of the array. In this section and later in the chapter, you’ll see
some of the more interesting things that you can do with arrays.

7.2.1 Some Processing Examples

To begin, here’s an example to remind you to be careful about avoiding array indices outside the
legal range. Suppose that lines is an array of type String[], and we want to know whether
lines contains any duplicate elements in consecutive locations. That is, we want to know
whether lines[i].equals(lines[i+1]) for any index i. Here is a failed attempt to check
that condition:

boolean dupp = false; // Assume there are no duplicates

for (int i = 0; i < list.length; i++) {

if (lines[i].equals(lines[i+1])) { // THERE IS AN ERROR HERE!

dupp = true; // we have found a duplicate!

break;

}

}

This for loop looks like many others that we have written, so what’s the problem? The error
occurs when i takes on its final value in the loop, i equal to lines.length-1. In that case,
i+1 is equal to lines.length. But the last element in the array has index lines.length-1,
so lines.length is not a legal index. This means that the reference to lines[i+1] causes an
ArrayIndexOutOfBoundsException. This is easy to fix; we just need to stop the loop before
i+1 goes out of range:

boolean dupp = false; // Assume there are no duplicates

for (int i = 0; i < list.length - 1 ; i++) {

if (lines[i].equals(lines[i+1])) {

dupp = true; // we have found a duplicate!

break;

}

}

This type of error can be even more insidious when working with partially full arrays (see
Subsection 3.8.4), where usually only part of the array is in use, and a counter is used to keep
track of how many spaces in the array are used. With a partially full array, the problem is
not looking beyond the end of the array, but looking beyond the part of the array that is in
use. When your program tries to look beyond the end of an array, at least the program will
crash to let you know that there is a problem. With a partially full array, the problem can go
undetected.

CHAPTER 7. ARRAYS AND ARRAYLISTS 338

∗ ∗ ∗

For the next example, let’s continue with partially full arrays. We have seen how to add
an item to a partially full array, but suppose that we also want to be able to remove items?
Suppose that you write a game program, and that players can join the game and leave the game
as it progresses. As a good object-oriented programmer, you probably have a class named Player
to represent the individual players in the game. A list of all players who are currently in the
game could be stored in an array, playerList, of type Player[]. Since the number of players can
change, you will follow the partially full array pattern, and you will need a variable, playerCt,
to record the number of players currently in the game. Assuming that there will never be more
than 10 players in the game, you could declare the variables as:

Player[] playerList = new Player[10]; // Up to 10 players.

int playerCt = 0; // At the start, there are no players.

After some players have joined the game, playerCt will be greater than 0, and
the player objects representing the players will be stored in the array elements
playerList[0], playerList[1], . . . , playerList[playerCt-1]. Note that the array element
playerList[playerCt] is not in use. The procedure for adding a new player, newPlayer, to
the game is simple:

playerList[playerCt] = newPlayer; // Put new player in next

// available spot.

playerCt++; // And increment playerCt to count the new player.

But deleting a player from the game is a little harder, since you don’t want to leave a “hole”
in the array where the deleted player used to be. Suppose you want to delete the player at
index k in playerList. The number of players goes down by one, so one fewer space is used
in the array. If you are not worried about keeping the players in any particular order, then one
way to do this is to move the player from the last occupied position in the array into position
k and then to decrement the value of playerCt:

playerList[k] = playerList[playerCt - 1];

playerCt--;

The player previously in position k is no longer in the array, so we have deleted that player
from the list. The player previously in position playerCt - 1 is now in the array twice. But
it’s only in the occupied or valid part of the array once, since playerCt has decreased by one.
Remember that every element of the array has to hold some value, but only the values in
positions 0 through playerCt - 1 will be looked at or processed in any way. (By the way, you
should think about what happens if the player that is being deleted is in the last position in
the list. The code does still work in this case. What exactly happens?)

Suppose that when deleting the player in position k, you’d like to keep the remaining players
in the same order. (Maybe because they take turns in the order in which they are stored in the
array.) To do this, all the players in positions k+1 and above must move down one position in
the array. Player k+1 replaces player k, who is out of the game. Player k+2 fills the spot left
open when player k+1 is moved. And so on. The code for this is

for (int i = k+1; i < playerCt; i++) {

playerList[i-1] = playerList[i];

}

playerCt--;

CHAPTER 7. ARRAYS AND ARRAYLISTS 339

Here is an illustration of the two ways of deleting an item from a partially full array. Here,
player “C” is being deleted:

A

B

C

D

E

F

playerList

playerCt]

^̂
^

_
F

`o delete "bd from
the arrayg hjklmobp
drops forq s pr u
kvw pzm { qoves

into the space

|zmom b }~mw pr �m�
`zm ~hace that

used to hrjw pzm {
is no longer in u~m�

Alternatively, all

the items that

frjjr| b �v the

array can move

up one spk�m�
� omhjk�m~ b�
E replaces ��
{ omhjk�m~ ��

A

B

�
�
E

�

playerList

playerCt]

^̂
^

_

�
E

�

∗ ∗ ∗

This leaves open the question of what happens when a partially full array becomes full, but
you still want to add more items to it? We can’t change the size of the array—but we can make
a new, bigger array and copy the data from the old array into the new array. But what does it
mean to copy an array in the first place?

Suppose that A and B are array variables, with the same base type, and that A already refers
to an array. Suppose that we want B to refer to a copy of A. The first thing to note is that the
assignment statement

B = A;

does not make a copy of A. Arrays are objects, and an array variable can only hold a pointer
to an array. The assignment statement copies the pointer from A into B, and the result is that
A and B now point to the same array. For example, A[0] and B[0] are just different names for
exactly the same array element. To make B refer to a copy of A, we need to make an entirely
new array and copy all the items from A into B. Let’s say that A and B are of type double[].
Then to make a copy of A, we can say

double B;

B = new double[A.length]; // Make a new array with the same length as A.

for (int i = 0; i < A.length; i++) {

B[i] = A[i];

}

To solve the problem of adding to a partially full array that has become full, we just need
to make a new array that is bigger than the existing array. The usual choice is to make a
new array twice as big as the old. We need to meet one more requirement: At the end, the
variable that referred to the old array must now point to the new array. That variable is what
gives us access to the data, and at the end that data is in the new array. Fortunately, a simple
assignment statement will make the variable point to the correct array. Let’s suppose that we
are using playerList and playerCt to store the players in a game, as in the example above,
and we want to add newPlayer to the game. Here is how we can do that even if the playerList
array is full:

if (playerCt == playerList.length) {

// The number of players is already equal to the size of the array.

// The array is full. Make a new array that has more space.

Player[] temp; // A variable to point to the new array.

CHAPTER 7. ARRAYS AND ARRAYLISTS 340

temp = new Player[2*playerList.length]; // Twice as big as the old array.

for (int i = 0; i < playerList.length; i++) {

temp[i] = playerList[i]; // Copy item from old array into new array.

}

playerList = temp; // playerList now points to the new, bigger array.

}

// At this point, we know that there is room in the array for newPlayer.

playerList[playerCt] = newPlayer;

playerCt++;

After the new array has been created, there is no longer any variable that points to the old
array, so it will be garbage collected.

7.2.2 Some Standard Array Methods

Copying an array seems like such a common method that you might expect Java to have a built-
in method already defined to do it. In fact, Java comes with several standard array-processing
methods. The methods are defined as static methods in a class named Arrays, which is in the
package java.util. For example, for any array, list,

Arrays.copyOf(list, lengthOfCopy)

is a function that returns a new array whose length is given by lengthOfCopy, containing items
copied from list. If lengthOfCopy is greater than list.length, then extra spaces in the new
array will have their default value (zero for numeric arrays, null for object arrays, and so on).
If lengthOfCopy is less than or equal to list.length, then only as many items are copied
from list as will fit in the new array. So if A is any array, then

B = Arrays.copyOf(A, A.length);

sets B to refer to an exact copy of A, and

playerList = Arrays.copyOf(playerList, 2*playerList.length);

could be used to double the amount of space available in a partially full array with just one
line of code. We can also use Arrays.copyOf to decrease the size of a partially full array. We
might want to do that to avoid having a lot of excess, unused spaces. To implement this idea,
the code for deleting player number k from the list of players might become

playerList[k] = playerList[playerCt-1];

playerCt--;

if (playerCt < playerList.length/2) {

// More than half the spaces are empty. Cut the array size in half.

playerList = Arrays.copyOf(playerList, playerList.length/2);

}

I should mention that class Arrays actually contains a bunch of copyOf methods, one for
each of the primitive types and one for objects. I should also note that when an array of objects
is copied, it is only pointers to objects that are copied into the new array. The contents of the
objects are not copied. This is the usual rule for assignment of pointers.

∗ ∗ ∗

The Arrays class contains other useful methods. I’ll mention a few of them. As with
Arrays.copyOf, there are actually multiple versions of all of these methods, for different array
types.

CHAPTER 7. ARRAYS AND ARRAYLISTS 341

• Arrays.fill(array, value) — Fill an entire array with a specified value. The type
of value must be compatible with the base type of the array. For example, assuming
that numlist is an array of type double[], then Arrays.fill(numlist,17) will set every
element of numlist to have the value 17.

• Arrays.fill(array, fromIndex, toIndex, value) — Fills part of the array with
value, starting at index number fromIndex and ending with index number toIndex-1.
Note that toIndex itself is not included.

• Arrays.toString(array) — A function that returns a String containing all the values
from array, separated by commas and enclosed between square brackets. The values in
the array are converted into strings in the same way they would be if they were printed
out.

• Arrays.sort(array) — Sorts the entire array. To sort an array means to rearrange
the values in the array so that they are in increasing order. This method works for arrays
of String and arrays of primitive type values (except for boolean, which would be kind of
silly). But it does not work for all arrays, since it must be meaningful to compare any two
values in the array, to see which is “smaller.” We will discuss array-sorting algorithms in
Section 7.4.

• Arrays.sort(array, fromIndex, toIndex) — Sorts just the elements from
array[fromIndex] up to array[toIndex-1]

• Arrays.binarySearch(array, value) — Searches for value in the array. The array
must already be sorted into increasing order. This is a function that returns an int. If the
value is found in the array, the return value is the index of an element that contains that
value. If the value does not occur in the array, the return value is -1. We will discuss the
binary search algorithm in Section 7.4.

7.2.3 RandomStrings Revisited

One of the examples in Subsection 6.3.2 was a GUI program that shows multiple copies of a
message in random positions, colors, and fonts. When the user clicks the program window, the
positions, colors, and fonts are changed to new random values. Like several other examples
from that chapter, the program had a flaw: It didn’t have any way of storing the data that it
would need to redraw itself. Arrays provide us with one possible solution to this problem. We
can write a new version of RandomStrings that uses an array to store the position, font, and
color of each string. When the panel is painted, this information is used to draw the strings, so
that the panel will paint itself correctly whenever it has to be redrawn. When the user clicks,
the array is filled with new random values and the panel is repainted using the new data. So,
the only time that the picture will change is in response to a mouse click. The new version of
the program is RandomStringsWithArray.java.

In the program, the number of copies of the message is given by a named constant,
MESSAGE COUNT. One way to store the position, color, and font of MESSAGE COUNT strings would
be to use four arrays:

int[] x = new int[MESSAGE COUNT];

int[] y = new int[MESSAGE COUNT];

Color[] color = new Color[MESSAGE COUNT];

Font[] font = new Font[MESSAGE COUNT];

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/RandomStringsWithArray.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 342

These arrays would be filled with random values. In the paintComponent() method, the i-th
copy of the string would be drawn at the point (x[i],y[i]). Its color would be given by
color[i]. And it would be drawn in the font font[i]. This would be accomplished by the
paintComponent() method

public void paintComponent(Graphics g) {

super.paintComponent(); // (Fill with background color.)

for (int i = 0; i < MESSAGE COUNT; i++) {

g.setColor(color[i]);

g.setFont(font[i]);

g.drawString(message, x[i], y[i]);

}

}

This approach is said to use parallel arrays. The data for a given copy of the message is
spread out across several arrays. If you think of the arrays as laid out in parallel columns—
array x in the first column, array y in the second, array color in the third, and array font

in the fourth—then the data for the i-th string can be found along the i-th row. There is
nothing wrong with using parallel arrays in this simple example, but it does go against the
object-oriented philosophy of keeping related data in one object. If we follow this rule, then we
don’t have to imagine the relationship among the data, because all the data for one copy of
the message is physically in one place. So, when I wrote the program, I made a simple class to
represent all the data that is needed for one copy of the message:

/**

* An object of this type holds the position, color, and font

* of one copy of the string.

*/

private static class StringData {

int x, y; // The coordinates of the left end of baseline of string.

Color color; // The color in which the string is drawn.

Font font; // The font that is used to draw the string.

}

To store the data for multiple copies of the message, I use an array of type StringData[]. The
array is declared as an instance variable, with the name stringData:

StringData[] stringData;

Of course, the value of stringData is null until an actual array is created and assigned to
it. The array has to be created and filled with data. Furthermore, each element of the array
is an object of type StringData which has to be created before it can be used. The following
subroutine is used to create the array and fill it with random data:

private void createStringData() {

int width = getWidth();

int height = getHeight();

stringData = new StringData[MESSAGE COUNT];

for (int i = 0; i < MESSAGE COUNT; i++) {

// Create an object to represent the data for string number i,

// and fill it with random values.

stringData[i] = new StringData();

int fontIndex = (int)(Math.random() * 5);

stringData[i].font = fonts[fontIndex]; // one of 5 fonts, selected at random

float hue = (float)Math.random();

CHAPTER 7. ARRAYS AND ARRAYLISTS 343

stringData[i].color = Color.getHSBColor(hue, 1.0F, 1.0F); // random color

stringData[i].x = -50 + (int)(Math.random()*(width+40)); // random x-coord

stringData[i].y = (int)(Math.random()*(height+20)); // random y-coord

}

}

This method is called before the panel is painted for the first time. It is also called when
the user clicks the panel with the mouse, so that a mouse click will cause new random data
to be created. Those are the only times when the picture can change. For example, resizing
the window will cause paintComponent() to be called, but since the data hasn’t changed,
paintComponent() will just redraw the same picture. Here is the code from paintComponent()

that draws all the strings, using the data from the array:

for (int i = 0; i < MESSAGE COUNT; i++) {

g.setColor(stringData[i].color);

g.setFont(stringData[i].font);

g.drawString(message, stringData[i].x, stringData[i]. y);

}

Note that I could also have used a for-each loop here, which might be easier to understand:

for (StringData data : stringData) {

g.setColor(data.color);

g.setFont(data.font);

g.drawString(message, data.x, data.y);

}

In this loop, the loop control variable, data, holds a copy of one of the values from the array.
That value is a reference to an object of type StringData, which has instance variables named
color, font, x, and y. Once again, the use of a for-each loop has eliminated the need to work
with array indices.

∗ ∗ ∗

RandomStringsWithArray uses one other array of objects. The font for a given copy of the
message is chosen at random from a set of five possible fonts. In the original version, there
were five variables of type Font to represent the fonts. The variables were named font1, font2,
font3, font4, and font5. To select one of these fonts at random, a switch statement can be
used:

Font randomFont; // One of the 5 fonts, chosen at random.

int rand; // A random integer in the range 0 to 4.

fontNum = (int)(Math.random() * 5);

switch (fontNum) {

case 0:

randomFont = font1;

break;

case 1:

randomFont = font2;

break;

case 2:

randomFont = font3;

break;

case 3:

randomFont = font4;

CHAPTER 7. ARRAYS AND ARRAYLISTS 344

break;

case 4:

randomFont = font5;

break;

}

In the new version of the program, the five fonts are stored in an array, which is named fonts.
This array is declared as an instance variable of type Font[]

Font[] fonts;

The array is created in the constructor, and each element of the array is set to refer to a new
Font object:

fonts = new Font[5]; // Create the array to hold the five fonts.

fonts[0] = new Font("Serif", Font.BOLD, 14);

fonts[1] = new Font("SansSerif", Font.BOLD + Font.ITALIC, 24);

fonts[2] = new Font("Monospaced", Font.PLAIN, 20);

fonts[3] = new Font("Dialog", Font.PLAIN, 30);

fonts[4] = new Font("Serif", Font.ITALIC, 36);

This makes it much easier to select one of the fonts at random. It can be done with the
statements

Font randomFont; // One of the 5 fonts, chosen at random.

int fontIndex; // A random number in the range 0 to 4.

fontIndex = (int)(Math.random() * 5);

randomFont = fonts[fontIndex];

The switch statement has been replaced by a single line of code. In fact, the preceding four
lines can be replaced by the single line:

Font randomFont = fonts[(int)(Math.random() * 5)];

This is a very typical application of arrays. Note that this example uses the random access
property of arrays: We can pick an array index at random and go directly to the array element
at that index.

Here is another example of the same sort of thing. Months are often stored as numbers 1, 2,
3, . . . , 12. Sometimes, however, these numbers have to be translated into the names January,
February, . . . , December. The translation can be done very easily with an array. The array
can be declared and initialized as

static String[] monthName = { "January", "February", "March",

"April", "May", "June",

"July", "August", "September",

"October", "November", "December" };

If mnth is a variable that holds one of the integers 1 through 12, then monthName[mnth-1] is the
name of the corresponding month. We need the “-1” because months are numbered starting
from 1, while array elements are numbered starting from 0. Simple array indexing does the
translation for us!

CHAPTER 7. ARRAYS AND ARRAYLISTS 345

7.2.4 Dynamic Arrays

Earlier, we discussed how a partially full array can be used to store a list of players in a game,
allowing the list to grow and shrink over the course of the game. The list is “dynamic” in the
sense that its size changes while the program is running. Dynamic lists are very common, and
we might think about trying to write a class to represent the concept. By writing a class, we can
avoid having to repeat the same code every time we want to use a similar data structure. We
want something that is like an array, except that its size can change. Think about operations
that we might want to perform on a dynamic array. Some essential and useful operations would
include

• add an item to the end of the array

• remove the item at a specified position in the array

• get the value of one of the elements in the array

• set the value of one of the elements in the array

• get the number of items currently in the array

When we design our class, these operations will become instance methods in that class. The
items in the dynamic array will actually be stored in a normal array, using the partially full
array pattern. Using what we know, the class is not difficult to write. We do have to decide
what to do when an attempt is made to access an array element that doesn’t exist. It seems
natural to throw an index-out-of-bounds exception in that case. Let’s suppose that the items
in the array will be of type int.

import java.util.Arrays;

/**

* Represents a list of int values that can grow and shrink.

*/

public class DynamicArrayOfInt {

private int[] items = new int[8]; // partially full array holding the ints

private int itemCt;

/**

* Return the item at a given index in the array.

* Throws ArrayIndexOutOfBoundsException if the index is not valid.

*/

public int get(int index) {

if (index < 0 || index >= itemCt)

throw new ArrayIndexOutOfBoundsException("Illegal index, " + index);

return items[index];

}

/**

* Set the value of the array element at a given index.

* Throws ArrayIndexOutOfBoundsException if the index is not valid.

*/

public void set(int index, int item) {

if (index < 0 || index >= itemCt)

throw new ArrayIndexOutOfBoundsException("Illegal index, " + index);

items[index] = item;

}

CHAPTER 7. ARRAYS AND ARRAYLISTS 346

/**

* Returns the number of items currently in the array.

*/

public int size() {

return itemCt;

}

/**

* Adds a new item to the end of the array. The size increases by one.

*/

public void add(int item) {

if (itemCt == items.length)

items = Arrays.copyOf(items, 2*items.length);

items[itemCt] = item;

itemCt++;

}

/**

* Removes the item at a given index in the array. The size of the array

* decreases by one. Items following the removed item are moved up one

* space in the array.

* Throws ArrayIndexOutOfBoundsException if the index is not valid.

*/

public void remove(int index) {

if (index < 0 || index >= itemCt)

throw new ArrayIndexOutOfBoundsException("Illegal index, " + index);

for (int j = index+1; j < itemCt; j++)

items[j-1] = items[j];

itemCt--;

}

} // end class DynamicArrayOfInt

Everything here should be clear, except possibly why the original size of the items array is 8. In
fact, the number 8 is arbitrary and has no effect on the functionality of the class. Any positive
integer would work, but it doesn’t make sense for the array to start off very big. The array will
grow as needed if the number of items turns out to be large.

The example ReverseInputNumbers.java used a partially full array of int to print a list of
input numbers in the reverse of the order in which they are input. In that case, an ordinary
array of length 100 was used to hold the numbers. In any given run of the program, the size
of the array could be much too large, or it could be too small, resulting in an exception. The
program can now be written using a DynamicArrayOfInt, which will adapt itself to any number
of inputs. For the program, see ReverseWithDynamicArray.java. It’s a silly program, but the
principle holds in any application where the amount of data cannot be predicted in advance:
The size of a dynamic data structure can adapt itself to any amount of data.

This is a nice example, but there is a real problem with it. Suppose that we want to have a
dynamic array of String. We can’t use a DynamicArrayOfInt object to hold strings, so it looks
like we need to write a whole new class, DynamicArrayOfString. If we want a dynamic array to
store players in a game, we would need a class DynamicArrayOfPlayer. And so on. It looks like
we have to write a dynamic array class for every possible type of data! That can’t be right! In
fact, Java has a solution to this problem, a standard class that implements dynamic arrays and
can work with any type of data. The class is called ArrayList, and we’ll see how it works in the
next section.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ReverseInputNumbers.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/ReverseWithDynamicArray.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 347

7.3 ArrayList

As we have just seen in Subsection 7.2.4, we can easily encode the dynamic array pattern
into a class, but it looks like we need a different class for each data type. In fact, Java has a
feature called “parameterized types” that makes it possible to avoid the multitude of classes,
and Java has a single class named ArrayList that implements the dynamic array pattern for all
data types.

7.3.1 ArrayList and Parameterized Types

Java has a standard type ArrayList<String> that represents dynamic arrays of Strings. Similarly,
there is a type ArrayList<JButton> that can be used to represent dynamic arrays of JButtons.
And if Player is a class representing players in a game, then the type ArrayList<Player> can be
used to represent a dynamic array of Players.

It might look like we still have a multitude of classes here, but in fact there is only one class,
the ArrayList class, defined in the package java.util. But ArrayList is a parameterized type .
A parameterized type can take a type parameter, so that from the single class ArrayList, we get
a multitude of types including ArrayList<String>, ArrayList<JButton>, and in fact ArrayList<T>
for any object type T. The type parameter T must be an object type such as a class name or
an interface name. It cannot be a primitive type. This means that, unfortunately, you can not
have an ArrayList of int or an ArrayList of char.

Consider the type ArrayList<String>. As a type, it can be used to declare variables, such as

ArrayList<String> namelist;

It can also be used as the type of a formal parameter in a subroutine definition, or as the return
type of a subroutine. It can be used with the new operator to create objects:

namelist = new ArrayList<String>();

The object created in this way is of type ArrayList<String> and represents a dynamic list of
strings. It has instance methods such as namelist.add(str) for adding a String to the list,
namelist.get(i) for getting the string at index i, and namelist.size() for getting the
number of items currently in the list.

But we can also use ArrayList with other types. If Player is a class representing players in a
game, we can create a list of players with

ArrayList<Player> playerList = new ArrayList<Player>();

Then to add a player, plr, to the game, we just have to say playerList.add(plr). And we
can remove player number k with playerList.remove(k).

When you use a type such as ArrayList<T>, the compiler will ensure that only objects of
type T can be added to the list. An attempt to add an object that is not of type T will be
a syntax error, and the program will not compile. However, note that objects belonging to
a subclass of T can be added to the list, since objects belonging to a subclass of T are still
considered to be of type T. Thus, for example, a variable of type ArrayList<JComponent> can be
used to hold objects of type JButton, JPanel, JTextField, or any other subclass of JComponent.
(Of course, this is the same way arrays work: An object of type T[] can hold objects belonging
to any subclass of T.) Similarly, if T is an interface, then any object that implements interface
T can be added to the list.

CHAPTER 7. ARRAYS AND ARRAYLISTS 348

An object of type ArrayList<T> has all of the instance methods that you would expect in
a dynamic array implementation. Here are some of the most useful. Suppose that list is a
variable of type ArrayList<T>. Then we have:

• list.size() — This function returns the current size of the list, that is, the number of
items currently in the list. The only valid positions in the list are numbers in the range
0 to list.size()-1. Note that the size can be zero. A call to the default constructor
new ArrayList<T>() creates a list of size zero.

• list.add(obj) — Adds an object onto the end of the list, increasing the size by 1. The
parameter, obj, can refer to an object of type T, or it can be null.

• list.get(N) — This function returns the value stored at position N in the list. The
return type of this function is T. N must be an integer in the range 0 to list.size()-1.
If N is outside this range, an error of type IndexOutOfBoundsException occurs. Calling
this function is similar to referring to A[N] for an array, A, except that you can’t use
list.get(N) on the left side of an assignment statement.

• list.set(N, obj) — Assigns the object, obj, to position N in the ArrayList, replacing the
item previously stored at position N. The parameter obj must be of type T. The integer
N must be in the range from 0 to list.size()-1. A call to this function is equivalent to
the command A[N] = obj for an array A.

• list.remove(N) — For an integer, N, this removes the N-th item in the ArrayList. N must
be in the range 0 to list.size()-1. Any items in the list that come after the removed
item are moved down one position. The size of the list decreases by 1.

• list.remove(obj) — If the specified object occurs somewhere in the list, it is removed
from the list. Any items in the list that come after the removed item are moved down one
position. The size of the ArrayList decreases by 1. If obj occurs more than once in the
list, only the first copy is removed.

• list.indexOf(obj) — A function that searches for the object, obj, in the list. If the
object is found in the list, then the position number where it is found is returned. If the
object is not found, then -1 is returned.

For the last two methods listed here, obj is compared to an item in the list by calling
obj.equals(item), unless obj is null. This means, for example, that strings are tested for
equality by checking the contents of the strings, not their location in memory.

Java comes with several parameterized classes representing different data structures. Those
classes make up the Java Collection Framework . Here we consider only ArrayList, but we
will return to this important topic in much more detail in Chapter 10.

By the way, ArrayList can also be used as a non-parametrized type. This means that you
can declare variables and create objects of type ArrayList such as

ArrayList list = new ArrayList();

The effect of this is similar to declaring list to be of type ArrayList<Object>. That is, list can
hold any object that belongs to a subclass of Object. Since every class is a subclass of Object,
this means that any object can be stored in list.

7.3.2 Wrapper Classes

As I have already noted, parameterized types don’t work with the primitive types. There is no
such thing as “ArrayList<int>”. However, this limitation turns out not to be very limiting after
all, because of the so-called wrapper classes such as Integer and Character.

CHAPTER 7. ARRAYS AND ARRAYLISTS 349

We have already briefly encountered the classes Double and Integer in Section 2.5. These
classes contain the static methods Double.parseDouble and Integer.parseInteger that
are used to convert strings to numerical values, and constants such as Integer.MAX VALUE and
Double.NaN. We have also encountered the Character class in some examples, with the static
method Character.isLetter, that can be used to test whether a given value of type char is
a letter. There is a similar class for each of the other primitive types, Long, Short, Byte, Float,
and Boolean. These classes are wrapper classes. Although they contain useful static members,
they have another use as well: They are used for creating objects that represent primitive type
values.

Remember that the primitive types are not classes, and values of primitive type are not
objects. However, sometimes it’s useful to treat a primitive value as if it were an object. This
is true, for example, when you would like to store primitive type values in an ArrayList. You
can’t do that literally, but you can “wrap” the primitive type value in an object belonging to
one of the wrapper classes.

For example, an object of type Double contains a single instance variable, of type double.
The object is a “wrapper” for the double value. You can create an object that wraps the double
value 6.0221415e23 with

Double d = new Double(6.0221415e23);

The value of d contains the same information as the value of type double, but it is an object. If
you want to retrieve the double value that is wrapped in the object, you can call the function
d.doubleValue(). Similarly, you can wrap an int in an object of type Integer, a boolean value
in an object of type Boolean, and so on.

Furthermore, to make these classes even easier to use, there is automatic conversion between
a primitive type and the corresponding wrapper class. For example, if you use a value of type
int in a context that requires an object of type Integer, the int will automatically be wrapped
in an Integer object. If you say

Integer answer = 42;

and the computer will silently read this as if it were

Integer answer = new Integer(42);

This is called autoboxing . It works in the other direction, too. For example, if d refers to an
object of type Double, you can use d in a numerical expression such as 2*d. The double value
inside d is automatically unboxed and multiplied by 2. Autoboxing and unboxing also apply
to subroutine calls. For example, you can pass an actual parameter of type int to a subroutine
that has a formal parameter of type Integer. In fact, autoboxing and unboxing make it possible
in many circumstances to ignore the difference between primitive types and objects.

This is true in particular for parameterized types. Although there is no such thing as
“ArrayList<int>”, there is ArrayList<Integer>. An ArrayList<Integer> holds objects of type Integer,
but any object of type Integer really just represents an int value in a rather thin wrapper.
Suppose that we have an object of type ArrayList<Integer>:

ArrayList<Integer> integerList;

integerList = new ArrayList<Integer>();

Then we can, for example, add an object to integerList that represents the number 42:

integerList.add(new Integer(42));

but because of autoboxing, we can actually say

CHAPTER 7. ARRAYS AND ARRAYLISTS 350

integerList.add(42);

and the compiler will automatically wrap 42 in an object of type Integer before adding it to the
list. Similarly, we can say

int num = integerList.get(3);

The value returned by integerList.get(3) is of type Integer but because of unboxing, the
compiler will automatically convert the return value into an int, as if we had said

int num = integerList.get(3).intValue();

So, in effect, we can pretty much use integerList as if it were a dynamic array of int rather
than a dynamic array of Integer. Of course, a similar statement holds for lists of other wrapper
classes such as ArrayList<Double> and ArrayList<Character>. (There is one issue that sometimes
causes problems: A list can hold null values, and a null does not correspond to any primitive
type value. This means, for example, that the statement “int num = integerList.get(3);”
can produce a null pointer exception in the case where integerList.get(3) returns null.
Unless you are sure that all the values in your list are non-null, you need to take this possibility
into account.)

7.3.3 Programming With ArrayList

As a simple first example, we can redo ReverseWithDynamicArray.java, from the previous
section, using an ArrayList instead of a custom dynamic array class. In this case, we want to
store integers in the list, so we should use ArrayList<Integer>. Here is the complete program:

import java.util.ArrayList;

/**

* Reads a list of non-zero numbers from the user, then prints

* out the input numbers in the reverse of the order in which

* the were entered. There is no limit on the number of inputs.

*/

public class ReverseWithArrayList {

public static void main(String[] args) {

ArrayList<Integer> list;

list = new ArrayList<Integer>();

System.out.println("Enter some non-zero integers. Enter 0 to end.");

while (true) {

System.out.print("? ");

int number = TextIO.getlnInt();

if (number == 0)

break;

list.add(number);

}

System.out.println();

System.out.println("Your numbers in reverse are:");

for (int i = list.size() - 1; i >= 0; i--) {

System.out.printf("%10d%n", list.get(i));

}

}

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/ReverseWithDynamicArray.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 351

As illustrated in this example, ArrayLists are commonly processed using for loops, in much
the same way that arrays are processed. for example, the following loop prints out all the items
for a variable namelist of type ArrayList<String>:

for (int i = 0; i < namelist.size(); i++) {

String item = namelist.get(i);

System.out.println(item);

}

You can also use for-each loops with ArrayLists, so this example could also be written

for (String item : namelist) {

System.out.println(item);

}

When working with wrapper classes, the loop control variable in the for-each loop can be
a primitive type variable. This works because of unboxing. For example, if numbers is of type
ArrayList<Double>, then the following loop can be used to add up all the values in the list:

double sum = 0;

for (double num : numbers) {

sum = sum + num;

}

This will work as long as none of the items in the list are null. If there is a possibility of null
values, then you will want to use a loop control variable of type Double and test for nulls. For
example, to add up all the non-null values in the list:

double sum;

for (Double num : numbers) {

if (num != null) {

sum = sum + num; // Here, num is SAFELY unboxed to get a double.

}

}

∗ ∗ ∗

For a more complete and useful example, we will look at the program SimplePaint2.java.
This is a much improved version of SimplePaint.java from Subsection 6.3.4. In the new program,
the user can sketch curves in a drawing area by clicking and dragging with the mouse. The
curves can be of any color, and the user can select the drawing color using a menu. The
background color of the drawing area can also be selected using a menu. And there is a
“Control” menu that contains several commands: An “Undo” command, which removes the
most recently drawn curve from the screen, a “Clear” command that removes all the curves,
and a “Use Symmetry” checkbox that turns a symmetry feature on and off. Curves that are
drawn by the user when the symmetry option is on are reflected horizontally and vertically to
produce a symmetric pattern. (Symmetry is there just to look pretty.)

Unlike the original SimplePaint program, this new version uses a data structure to store
information about the picture that has been drawn by the user. This data is used in the
paintComponent() method to redraw the picture whenever necessary. The data structure is
implemented using ArrayLists.

The main data for a curve consists of a list of the points on the curve. This data can be
stored in an object of type ArrayList<Point>, where java.awt.Point is one of Java’s standard
classes. (A Point object contains two public integer variables x and y that represent the pixel
coordinates of a point.) However, to redraw the curve, we also need to know its color, and we

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimplePaint.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 352

need to know whether the symmetry option should be applied to the curve. All the data that
is needed to redraw the curve can be grouped into an object of type CurveData that is defined
as

private static class CurveData {

Color color; // The color of the curve.

boolean symmetric; // Are horizontal and vertical reflections also drawn?

ArrayList<Point> points; // The points on the curve.

}

However, a picture can contain many curves, not just one, so to store all the data necessary to
redraw the entire picture, we need a list of objects of type CurveData. For this list, we can use
a variable curves declared as

ArrayList<CurveData> curves = new ArrayList<CurveData>();

Here we have a list of objects, where each object contains a list of points as part of its data!
Let’s look at a few examples of processing this data structure. When the user clicks the mouse
on the drawing surface, it’s the start of a new curve, and a new CurveData object must be
created and added to the list of curves. The instance variables in the new CurveData object
must also be initialized. Here is the code from the mousePressed() routine that does this:

currentCurve = new CurveData(); // Create a new CurveData object.

currentCurve.color = currentColor; // The color of the curve is taken from an

// instance variable that represents the

// currently selected drawing color.

currentCurve.symmetric = useSymmetry; // The "symmetric" property of the curve

// is also copied from the current value

// of an instance variable, useSymmetry.

currentCurve.points = new ArrayList<Point>(); // Create a new point list object.

currentCurve.points.add(new Point(evt.getX(), evt.getY()));

// The point where the user pressed the mouse is the first point on

// the curve. A new Point object is created to hold the coordinates

// of that point and is added to the list of points for the curve.

curves.add(currentCurve); // Add the CurveData object to the list of curves.

As the user drags the mouse, new points are added to currentCurve, and repaint() is called.
When the picture is redrawn, the new point will be part of the picture.

The paintComponent() method has to use the data in curves to draw all the curves. The
basic structure is a for-each loop that processes the data for each individual curve in turn. This
has the form:

for (CurveData curve : curves) {

.

. // Draw the curve represented by the object, curve, of type CurveData.

.

}

In the body of this loop, curve.points is a variable of type ArrayList<Point> that holds the
list of points on the curve. The i-th point on the curve can be obtained by calling the get()

method of this list: curve.points.get(i). This returns a value of type Point which contains
instance variables named x and y. We can refer directly to the x-coordinate of the i-th point
as:

CHAPTER 7. ARRAYS AND ARRAYLISTS 353

curve.points.get(i).x

This might seem rather complicated, but it’s a nice example of a complex name that specifies
a path to a desired piece of data: Go to the object, curve. Inside curve, go to points. Inside
points, get the i-th item. And from that item, get the instance variable named x. Here is the
complete definition of the paintComponent() method:

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);

for (CurveData curve : curves) {

g.setColor(curve.color);

for (int i = 1; i < curve.points.size(); i++) {

// Draw a line segment from point number i-1 to point number i.

int x1 = curve.points.get(i-1).x;

int y1 = curve.points.get(i-1).y;

int x2 = curve.points.get(i).x;

int y2 = curve.points.get(i).y;

g.drawLine(x1,y1,x2,y2);

if (curve.symmetric) {

// Also draw the horizontal and vertical reflections

// of the line segment.

int w = getWidth();

int h = getHeight();

g.drawLine(w-x1,y1,w-x2,y2);

g.drawLine(x1,h-y1,x2,h-y2);

g.drawLine(w-x1,h-y1,w-x2,h-y2);

}

}

}

} // end paintComponent()

I encourage you to read the full source code, SimplePaint2.java, and to try out the program.
In addition to serving as an example of using parameterized types, it also serves as another
example of creating and using menus.

7.3.4 Vectors

Early versions of Java did not include ArrayList, but they did have a very similar class named
java.util.Vector that serves much the same purpose. You can still see Vectors used in older
code and in many of Java’s standard classes, so it’s worth knowing about them. Vector is a
parameterized class, so that you can use types such as Vector<String> and Vector<Integer>, but
you will often see it used without the type parameter, which is essentially equivalent to using
Vector<Object>.

Using a Vector is similar to using an ArrayList, except that different names are used for some
commonly used instance methods, and some instance methods in one class don’t correspond
to any instance method in the other class. Suppose that vec is a variable of type Vector<T>.
Then we have instance methods:

• vec.size() — a function that returns the number of elements currently in the vector.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 354

• vec.elementAt(N) — returns the N-th element of the vector, for an integer N. N must be
in the range 0 to vec.size()-1. This is the same as get(N) for an ArrayList.

• vec.setElementAt(obj,N) — sets the N-th element in the vector to be obj. N must be
in the range 0 to vec.size()-1. This is the same as set(N,obj) for an ArrayList.

• vec.addElement(obj) — adds the Object, obj, to the end of the vector. This is the same
as the add() method of an ArrayList.

• vec.removeElement(obj) — removes obj from the vector, if it occurs. Only the first
occurrence is removed. This is the same as remove(obj) for an ArrayList.

• vec.removeElementAt(N) — removes the N-th element, for an integer N. N must be in
the range 0 to vec.size()-1. This is the same as remove(N) for an ArrayList.

• vec.setSize(N) — sets the size of the vector to N. If there were more than N elements
in vec, the extra elements are removed. If there were fewer than N elements, extra spaces
are filled with null. The ArrayList class, unfortunately, does not have a corresponding
setSize() method.

7.4 Searching and Sorting

Two array processing techniques that are particularly common are searching and sort-
ing . Searching here refers to finding an item in the array that meets some specified criterion.
Sorting refers to rearranging all the items in the array into increasing or decreasing order (where
the meaning of increasing and decreasing can depend on the context). We have seen in Sub-
section 7.2.2 that Java has some built-in methods for searching and sorting arrays. However, a
computer science student should be familiar with the algorithms that are used in those methods.
In this section, you will learn some algorithms for searching and sorting.

Sorting and searching are often discussed, in a theoretical sort of way, using an array of
numbers as an example. In practical situations, though, more interesting types of data are
usually involved. For example, the array might be a mailing list, and each element of the array
might be an object containing a name and address. Given the name of a person, you might
want to look up that person’s address. This is an example of searching, since you want to find
the object in the array that contains the given name. It would also be useful to be able to sort
the array according to various criteria. One example of sorting would be ordering the elements
of the array so that the names are in alphabetical order. Another example would be to order
the elements of the array according to zip code before printing a set of mailing labels. (This
kind of sorting can get you a cheaper postage rate on a large mailing.)

This example can be generalized to a more abstract situation in which we have an array
that contains objects, and we want to search or sort the array based on the value of one of the
instance variables in the objects. We can use some terminology here that originated in work
with “databases,” which are just large, organized collections of data. We refer to each of the
objects in the array as a record . The instance variables in an object are then called fields of
the record. In the mailing list example, each record would contain a name and address. The
fields of the record might be the first name, last name, street address, state, city and zip code.
For the purpose of searching or sorting, one of the fields is designated to be the key field.
Searching then means finding a record in the array that has a specified value in its key field.
Sorting means moving the records around in the array so that the key fields of the record are
in increasing (or decreasing) order.

CHAPTER 7. ARRAYS AND ARRAYLISTS 355

In this section, most of my examples follow the tradition of using arrays of numbers. But
I’ll also give a few examples using records and keys, to remind you of the more practical
applications.

7.4.1 Searching

There is an obvious algorithm for searching for a particular item in an array: Look at each
item in the array in turn, and check whether that item is the one you are looking for. If so,
the search is finished. If you look at every item without finding the one you want, then you
can be sure that the item is not in the array. It’s easy to write a subroutine to implement this
algorithm. Let’s say the array that you want to search is an array of ints. Here is a method
that will search the array for a specified integer. If the integer is found, the method returns
the index of the location in the array where it is found. If the integer is not in the array, the
method returns the value -1 as a signal that the integer could not be found:

/**

* Searches the array A for the integer N. If N is not in the array,

* then -1 is returned. If N is in the array, then the return value is

* the first integer i that satisfies A[i] == N.

*/

static int find(int[] A, int N) {

for (int index = 0; index < A.length; index++) {

if (A[index] == N)

return index; // N has been found at this index!

}

// If we get this far, then N has not been found

// anywhere in the array. Return a value of -1.

return -1;

}

This method of searching an array by looking at each item in turn is called linear search .
If nothing is known about the order of the items in the array, then there is really no better
alternative algorithm. But if the elements in the array are known to be in increasing or decreas-
ing order, then a much faster search algorithm can be used. An array in which the elements are
in order is said to be sorted . Of course, it takes some work to sort an array, but if the array
is to be searched many times, then the work done in sorting it can really pay off.

Binary search is a method for searching for a given item in a sorted array. Although
the implementation is not trivial, the basic idea is simple: If you are searching for an item in
a sorted list, then it is possible to eliminate half of the items in the list by inspecting a single
item. For example, suppose that you are looking for the number 42 in a sorted array of 1000
integers. Let’s assume that the array is sorted into increasing order. Suppose you check item
number 500 in the array, and find that the item is 93. Since 42 is less than 93, and since the
elements in the array are in increasing order, we can conclude that if 42 occurs in the array
at all, then it must occur somewhere before location 500. All the locations numbered 500 or
above contain values that are greater than or equal to 93. These locations can be eliminated
as possible locations of the number 42.

The next obvious step is to check location 250. If the number at that location is, say, -21,
then you can eliminate locations before 250 and limit further search to locations between 251

CHAPTER 7. ARRAYS AND ARRAYLISTS 356

and 499. The next test will limit the search to about 125 locations, and the one after that to
about 62. After just 10 steps, there is only one location left. This is a whole lot better than
looking through every element in the array. If there were a million items, it would still take
only 20 steps for binary search to search the array! (Mathematically, the number of steps is
approximately equal to the logarithm, in the base 2, of the number of items in the array.)

In order to make binary search into a Java subroutine that searches an array A for an item
N, we just have to keep track of the range of locations that could possibly contain N. At each
step, as we eliminate possibilities, we reduce the size of this range. The basic operation is to
look at the item in the middle of the range. If this item is greater than N, then the second
half of the range can be eliminated. If it is less than N, then the first half of the range can
be eliminated. If the number in the middle just happens to be N exactly, then the search is
finished. If the size of the range decreases to zero, then the number N does not occur in the
array. Here is a subroutine that returns the location of N in a sorted array A. If N cannot be
found in the array, then a value of -1 is returned instead:

/**

* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, i,

* satisfies A[i] == N. If N is not in the array, then the

* return value is -1.

*/

static int binarySearch(int[] A, int N) {

int lowestPossibleLoc = 0;

int highestPossibleLoc = A.length - 1;

while (highestPossibleLoc >= lowestPossibleLoc) {

int middle = (lowestPossibleLoc + highestPossibleLoc) / 2;

if (A[middle] == N) {

// N has been found at this index!

return middle;

}

else if (A[middle] > N) {

// eliminate locations >= middle

highestPossibleLoc = middle - 1;

}

else {

// eliminate locations <= middle

lowestPossibleLoc = middle + 1;

}

}

// At this point, highestPossibleLoc < LowestPossibleLoc,

// which means that N is known to be not in the array. Return

// a -1 to indicate that N could not be found in the array.

return -1;

}

CHAPTER 7. ARRAYS AND ARRAYLISTS 357

7.4.2 Association Lists

One particularly common application of searching is with association lists. The standard
example of an association list is a dictionary. A dictionary associates definitions with words.
Given a word, you can use the dictionary to look up its definition. We can think of the dictionary
as being a list of pairs of the form (w,d), where w is a word and d is its definition. A general
association list is a list of pairs (k,v), where k is some “key” value, and v is a value associated
to that key. In general, we want to assume that no two pairs in the list have the same key.
There are two basic operations on association lists: Given a key, k, find the value v associated
with k, if any. And given a key, k, and a value v, add the pair (k,v) to the association list
(replacing the pair, if any, that had the same key value). The two operations are usually called
get and put .

Association lists are very widely used in computer science. For example, a compiler has
to keep track of the location in memory associated with each variable. It can do this with an
association list in which each key is a variable name and the associated value is the address of
that variable in memory. Another example would be a mailing list, if we think of it as associating
an address to each name on the list. As a related example, consider a phone directory that
associates a phone number to each name. We’ll look at a highly simplified version of this
example. (This is not meant to be a realistic way to implement a phone directory.)

The items in the phone directory’s association list could be objects belonging to the class:

class PhoneEntry {

String name;

String phoneNum;

}

The data for a phone directory consists of an array of type PhoneEntry[] and an integer
variable to keep track of how many entries are actually stored in the directory. The technique
of dynamic arrays (Subsection 7.2.4) can be used in order to avoid putting an arbitrary limit on
the number of entries that the phone directory can hold. Using an ArrayList would be another
possibility. A PhoneDirectory class should include instance methods that implement the “get”
and “put” operations. Here is one possible simple definition of the class:

/**

* A PhoneDirectory holds a list of names with a phone number for

* each name. It is possible to find the number associated with

* a given name, and to specify the phone number for a given name.

*/

public class PhoneDirectory {

/**

* An object of type PhoneEntry holds one name/number pair.

*/

private static class PhoneEntry {

String name; // The name.

String number; // The associated phone number.

}

private PhoneEntry[] data; // Array that holds the name/number pairs.

private int dataCount; // The number of pairs stored in the array.

/**

* Constructor creates an initially empty directory.

*/

CHAPTER 7. ARRAYS AND ARRAYLISTS 358

public PhoneDirectory() {

data = new PhoneEntry[1];

dataCount = 0;

}

/**

* Looks for a name/number pair with a given name. If found, the index

* of the pair in the data array is returned. If no pair contains the

* given name, then the return value is -1. This private method is

* used internally in getNumber() and putNumber().

*/

private int find(String name) {

for (int i = 0; i < dataCount; i++) {

if (data[i].name.equals(name))

return i; // The name has been found in position i.

}

return -1; // The name does not exist in the array.

}

/**

* Finds the phone number, if any, for a given name.

* @return The phone number associated with the name; if the name does

* not occur in the phone directory, then the return value is null.

*/

public String getNumber(String name) {

int position = find(name);

if (position == -1)

return null; // There is no phone entry for the given name.

else

return data[position].number;

}

/**

* Associates a given name with a given phone number. If the name

* already exists in the phone directory, then the new number replaces

* the old one. Otherwise, a new name/number pair is added. The

* name and number should both be non-null. An IllegalArgumentException

* is thrown if this is not the case.

*/

public void putNumber(String name, String number) {

if (name == null || number == null)

throw new IllegalArgumentException("name and number cannot be null");

int i = find(name);

if (i >= 0) {

// The name already exists, in position i in the array.

// Just replace the old number at that position with the new.

data[i].number = number;

}

else {

// Add a new name/number pair to the array. If the array is

// already full, first create a new, larger array.

if (dataCount == data.length) {

data = Arrays.copyOf(data, 2*data.length);

}

PhoneEntry newEntry = new PhoneEntry(); // Create a new pair.

CHAPTER 7. ARRAYS AND ARRAYLISTS 359

newEntry.name = name;

newEntry.number = number;

data[dataCount] = newEntry; // Add the new pair to the array.

dataCount++;

}

}

} // end class PhoneDirectory

The class defines a private instance method, find(), that uses linear search to find the
position of a given name in the array of name/number pairs. The find() method is used
both in the getNumber() method and in the putNumber() method. Note in particular that
putNumber(name,number) has to check whether the name is in the phone directory. If so, it
just changes the number in the existing entry; if not, it has to create a new phone entry and
add it to the array.

This class could use a lot of improvement. For one thing, it would be nice to use binary
search instead of simple linear search in the getNumber method. However, we could only do
that if the list of PhoneEntries were sorted into alphabetical order according to name. In fact,
it’s really not all that hard to keep the list of entries in sorted order, as you’ll see in the next
subsection.

I will mention that association lists are also called “maps,” and Java has a standard param-
eterized type name Map that implements association lists for keys and values of any type. You
will encounter this class in Chapter 10.

7.4.3 Insertion Sort

We’ve seen that there are good reasons for sorting arrays. There are many algorithms available
for doing so. One of the easiest to understand is the insertion sort algorithm. This technique
is also applicable to the problem of keeping a list in sorted order as you add new items to the
list. Let’s consider that case first:

Suppose you have a sorted list and you want to add an item to that list. If you want to
make sure that the modified list is still sorted, then the item must be inserted into the right
location, with all the smaller items coming before it and all the bigger items after it. This will
mean moving each of the bigger items up one space to make room for the new item.

/*

* Precondition: itemsInArray is the number of items that are

* stored in A. These items must be in increasing order

* (A[0] <= A[1] <= ... <= A[itemsInArray-1]).

* The array size is at least one greater than itemsInArray.

* Postcondition: The number of items has increased by one,

* newItem has been added to the array, and all the items

* in the array are still in increasing order.

* Note: To complete the process of inserting an item in the

* array, the variable that counts the number of items

* in the array must be incremented, after calling this

* subroutine.

*/

static void insert(int[] A, int itemsInArray, int newItem) {

int loc = itemsInArray - 1; // Start at the end of the array.

/* Move items bigger than newItem up one space;

CHAPTER 7. ARRAYS AND ARRAYLISTS 360

Stop when a smaller item is encountered or when the

beginning of the array (loc == 0) is reached. */

while (loc >= 0 && A[loc] > newItem) {

A[loc + 1] = A[loc]; // Bump item from A[loc] up to loc+1.

loc = loc - 1; // Go on to next location.

}

A[loc + 1] = newItem; // Put newItem in last vacated space.

}

Conceptually, this could be extended to a sorting method if we were to take all the items
out of an unsorted array, and then insert them back into the array one-by-one, keeping the list
in sorted order as we do so. Each insertion can be done using the insert routine given above.
In the actual algorithm, we don’t really take all the items from the array; we just remember
what part of the array has been sorted:

static void insertionSort(int[] A) {

// Sort the array A into increasing order.

int itemsSorted; // Number of items that have been sorted so far.

for (itemsSorted = 1; itemsSorted < A.length; itemsSorted++) {

// Assume that items A[0], A[1], ... A[itemsSorted-1]

// have already been sorted. Insert A[itemsSorted]

// into the sorted part of the list.

int temp = A[itemsSorted]; // The item to be inserted.

int loc = itemsSorted - 1; // Start at end of list.

while (loc >= 0 && A[loc] > temp) {

A[loc + 1] = A[loc]; // Bump item from A[loc] up to loc+1.

loc = loc - 1; // Go on to next location.

}

A[loc + 1] = temp; // Put temp in last vacated space.

}

}

Here is an illustration of one stage in insertion sort. It shows what happens during one
execution of the for loop in the above method, when itemsSorted is 5:

CHAPTER 7. ARRAYS AND ARRAYLISTS 361

Sorted items Items still to be sorted

����� ���� a partially

sorted list of items.

T�������� ��� ���t unsorted item into

�emp, leaving a hole in the array�

���� ����� �� the unsorted part of

the array to m��� ���� ��� ����� �emp:

35

35

Sorted items Items still to be sorted ��, the sorted part

of the list has

increased �� ��¡e
by one item�

7.4.4 Selection Sort

Another typical sorting method uses the idea of finding the biggest item in the list and moving
it to the end—which is where it belongs if the list is to be in increasing order. Once the biggest
item is in its correct location, you can then apply the same idea to the remaining items. That is,
find the next-biggest item, and move it into the next-to-last space, and so forth. This algorithm
is called selection sort . It’s easy to write:

static void selectionSort(int[] A) {

// Sort A into increasing order, using selection sort

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace--) {

// Find the largest item among A[0], A[1], ...,

// A[lastPlace], and move it into position lastPlace

// by swapping it with the number that is currently

// in position lastPlace.

int maxLoc = 0; // Location of largest item seen so far.

for (int j = 1; j <= lastPlace; j++) {

if (A[j] > A[maxLoc]) {

// Since A[j] is bigger than the maximum we’ve seen

// so far, j is the new location of the maximum value

// we’ve seen so far.

maxLoc = j;

}

}

int temp = A[maxLoc]; // Swap largest item with A[lastPlace].

A[maxLoc] = A[lastPlace];

A[lastPlace] = temp;

} // end of for loop

}

CHAPTER 7. ARRAYS AND ARRAYLISTS 362

∗ ∗ ∗

A variation of selection sort is used in the Hand class that was introduced in Subsection 5.4.1.
(By the way, you are finally in a position to fully understand the source code for Hand class
class from that section; note that it uses ArrayList. The source file is Hand.java.)

In the Hand class, a hand of playing cards is represented by an ArrayList<Card>. The objects
stored in the list are of type Card. A Card object contains instance methods getSuit() and
getValue() that can be used to determine the suit and value of the card. In my sorting method,
I actually create a new list and move the cards one-by-one from the old list to the new list.
The cards are selected from the old list in increasing order. In the end, the new list becomes
the hand and the old list is discarded. This is not the most efficient procedure. But hands of
cards are so small that the inefficiency is negligible. Here is the code for sorting cards by suit:

/**

* Sorts the cards in the hand so that cards of the same suit are

* grouped together, and within a suit the cards are sorted by value.

* Note that aces are considered to have the lowest value, 1.

*/

public void sortBySuit() {

ArrayList<Card> newHand = new ArrayList<Card>();

while (hand.size() > 0) {

int pos = 0; // Position of minimal card.

Card c = hand.get(0); // Minimal card.

for (int i = 1; i < hand.size(); i++) {

Card c1 = hand.get(i);

if (c1.getSuit() < c.getSuit() ||

(c1.getSuit() == c.getSuit() && c1.getValue() < c.getValue())) {

pos = i;

c = c1;

}

}

hand.remove(pos);

newHand.add(c);

}

hand = newHand;

}

This example illustrates the fact that comparing items in a list is not usually as simple as
using the operator “<”. In this case, we consider one card to be less than another if the suit
of the first card is less than the suit of the second, and also if the suits are the same and the
value of the second card is less than the value of the first. The second part of this test ensures
that cards with the same suit will end up sorted by value.

Sorting a list of Strings raises a similar problem: the “<” operator is not defined for strings.
However, the String class does define a compareTo method. If str1 and str2 are of type String,
then

str1.compareTo(str2)

returns an int that is 0 when str1 is equal to str2, is less than 0 when str1 precedes str2,
and is greater than 0 when str1 follows str2. The definition of “precedes” and “follows” for
strings uses what is called lexicographic ordering , which is based on the Unicode values of
the characters in the strings. Lexicographic ordering is not the same as alphabetical ordering,
even for strings that consist entirely of letters (because in lexicographic ordering, all the upper

http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Hand.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 363

case letters come before all the lower case letters). However, for words consisting strictly of
the 26 lower case letters in the English alphabet, lexicographic and alphabetic ordering are
the same. (The same holds true for uppercase letters.) Thus, if str1 and str2 are strings
containing only letters from the English alphabet, then the test

str1.toLowerCase().compareTo(str2.toLowerCase()) < 0

is true if and only if str1 comes before str2 in alphabetical order.

∗ ∗ ∗

Insertion sort and selection sort are suitable for sorting fairly small arrays (up to a few
hundred elements, say). There are more complicated sorting algorithms that are much faster
than insertion sort and selection sort for large arrays, to the same degree that binary search is
faster than linear search. The standard method Arrays.sort uses these fast sorting algorithms.
I’ll discuss one such algorithm in Chapter 9.

7.4.5 Unsorting

I can’t resist ending this section on sorting with a related problem that is much less common,
but is a bit more fun. That is the problem of putting the elements of an array into a random
order. The typical case of this problem is shuffling a deck of cards. A good algorithm for
shuffling is similar to selection sort, except that instead of moving the biggest item to the end
of the list, an item is selected at random and moved to the end of the list. Here is a subroutine
to shuffle an array of ints:

/**

* Postcondition: The items in A have been rearranged into a random order.

*/

static void shuffle(int[] A) {

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace--) {

// Choose a random location from among 0,1,...,lastPlace.

int randLoc = (int)(Math.random()*(lastPlace+1));

// Swap items in locations randLoc and lastPlace.

int temp = A[randLoc];

A[randLoc] = A[lastPlace];

A[lastPlace] = temp;

}

}

7.5 Two-dimensional Arrays

Two-dimensional arrays were introduced in Subsection 3.8.5, but we haven’t done much
with them since then. A 2D array has a type such as int[][] or String[][], with two pairs of
square brackets. The elements of a 2D array are arranged in rows and columns, and the new

operator for 2D arrays specifies both the number of rows and the number of columns. For
example,

int[][] A;

A = new int[3][4];

This creates a 2D array of int that has 12 elements arranged in 3 rows and 4 columns. Although
I haven’t mentioned it, there are initializers for 2D arrays. For example, this statement creates
the 4-by-3 array that is shown in the picture below:

CHAPTER 7. ARRAYS AND ARRAYLISTS 364

int[][] A = { { 1, 0, 12, -1 },

{ 7, -3, 2, 5 },

{ -5, -2, 2, -9 }

};

An array initializer for a 2D array contains the rows of A, separated by commas and enclosed
between braces. Each row, in turn, is a list of values separated by commas and enclosed between
braces. There are also 2D array literals with a similar syntax that can be used anywhere, not
just in declarations. For example,

A = new int[][] { { 1, 0, 12, -1 },

{ 7, -3, 2, 5 },

{ -5, -2, 2, -9 }

};

All of this extends naturally to three-dimensional, four-dimensional, and even higher-
dimensional arrays, but they are not used very often in practice.

7.5.1 The Truth About 2D Arrays

But before we go any farther, there is a little surprise. Java does not actually have two-
dimensional arrays. In a true 2D array, all the elements of the array occupy a continuous block
of memory, but that’s not true in Java. The syntax for array types is a clue: For any type
BaseType, we should be able to form the type BaseType[], meaning “array of BaseType.” If we
use int[] as the base type, the type that we get is “int[][] meaning “array of int[]” or “array of
array of int.” And in fact, that’s what happens. The elements in a 2D array of type int[][] are
variables of type int[]. And remember that a variable of type int[] can only hold a pointer to
an array of int. So, a 2D array is really an array of pointers, where each pointer can refer to a
one-dimensional array. Those one-dimensional arrays are the rows of the 2D array. A picture
will help to explain this. Consider the 4-by-3 array A defined above.

A:

¢£ ¤¥¦ §¨©ª«© ª¬ array A = new int[3][4],

you should think of i« ª ª ®¯ª«¨°±® ²°«³
3 rows and 4 columns.

But in reality, A holds a reference to

ª¬ ª¨¨ª¤ ¥£ ´ °tems, ²³©¨© ©ª§³ °«em

is a reference to an ª¨¨ª¤ ¥£ µ ints¶

For the most part, you can ignore the reality and keep the picture of a grid in mind.
Sometimes, though, you will need to remember that each row in the grid is really an array in

CHAPTER 7. ARRAYS AND ARRAYLISTS 365

itself. These arrays can be referred to as A[0], A[1], and A[2]. Each row is in fact a value of
type int[]. It could, for example, be passed to a subroutine that asks for a parameter of type
int[].

Some of the consequences of this structure are a little subtle. For example, thinking of a 2D
array, A, as an array of arrays, we see that A.length makes sense and is equal to the number
of rows of A. If A has the usual shape for a 2D array, then the number of columns in A would
be the same as the number of elements in the first row, that is, A[0].length. But there is no
rule that says that all of the rows of A must have the same length (although an array created
with new BaseType[rows][columns] will always have that form). Each row in a 2D array is
a separate one-dimensional array, and each of those arrays can have a different length. In fact,
it’s even possible for a row to be null. For example, the statement

A = new int[3][];

with no number in the second set of brackets, creates an array of 3 elements where all the
elements are null. There are places for three rows, but no actual rows have been created. You
can then create the rows A[0], A[1], and A[2] individually.

As an example, consider a symmetric matrix . A symmetric matrix, M, is a two-
dimensional array in which the number of rows is equal to the number of columns and satisfying
M[i][j] equals M[j][i] for all i and j. Because of this equality, we only really need to store
M[i][j] for i >= j. We can store the data in a “triangular matrix”:

3

·¸
12

¹
º
17

21

-7

-1

5

-2

9

11

2

12

5

-3

12

22

15

30

13

-2

12

15

13

4

-4

0

9

22

13

35

1

24

17

11

15

4

1

8

-5

21

2

30

4

24

-5

16

3

-7

12

6

0

17

21

-1

5

-2

9

11

2

-3

12

22

15

30

15

13

4

-4

35

1

24

8

-5 16

»¼ ½ ¾¿ÀÀÁÂric m½ÂÃÄÅÆ
the elements above the

diagonal (¾ÇÈÉ¼ Ä¼ Ãed)

duplicate elements

ÊÁËÈÉ ÂÇÁ ÌÄagonal

(blueÍÎ ÏÈ ½ ¾ymmetric

À½ÂÃÄÅ can be stored

½¾ ½ ÐÂÃÄangular m½ÂÃÄÅÐ
ÉÄÂÇ ÃÈÉ¾ ÈÑ diÒerent

lengthsÎ

It’s easy enough to make a triangular array, if we create each row separately. To create a 7-by-7
triangular array of double, we can use the code segment

double[][] matrix = new double[7][]; // rows have not yet been created!

for (int i = 0; i < 7; i++) {

matrix[i] = new double[i+1]; // Create row i with i + 1 elements.

}

We just have to remember that if we want to know the value of the matrix at (i,j), and if
i < j, then we actually have to get the value of matrix[j][i] in the triangular matrix. And
similarly for setting values. It’s easy to write a class to represent symmetric matrices:

/**

* Represents symmetric n-by-n matrices of real numbers.

*/

public class SymmetricMatrix {

private double[][] matrix; // A triangular matrix to hold the data.

/**

* Creates an n-by-n symmetric matrix in which all entries are 0.

*/

public SymmetricMatrix(int n) {

CHAPTER 7. ARRAYS AND ARRAYLISTS 366

matrix = new double[n][];

for (int i = 0; i < n; i++)

matrix[i] = new double[i+1];

}

/**

* Returns the matrix entry at position (row,col).

*/

public double get(int row, int col) {

if (row >= col)

return matrix[row][col];

else

return matrix[col][row];

}

/**

* Sets the value of the matrix entries at (row,col) and (col,row).

*/

public void set(int row, int col, double value) {

if (row >= col)

matrix[row][col] = value;

else

matrix[col][row] = value;

}

/**

* Returns the number of rows and columns in the matrix.

*/

public int size() {

return matrix.length; // The size is the number of rows.

}

} // end class SymmetricMatrix

This class is in the file SymmetricMatrix.java, and a small program to test it can be found in
TestSymmetricMatrix.java.

By the way, the standard function Arrays.copyOf() can’t make a full copy of a 2D array
in a single step. To do that, you need to copy each row separately. To make a copy of a
two-dimensional array of int, for example:

int[][] B = new int[A.length][]; // B has as many rows as A.

for (int i = 0; i < A.length; i++) {

B[i] = Arrays.copyOf(A[i], A[i].length)); // Copy row i.

}

7.5.2 Conway’s Game Of Life

As an example of more typical 2D array processing, let’s look at a very well-known example:
John Conway’s Game of Life, invented by mathematician John Horton Conway in 1970. This
Game of Life is not really a game (although sometimes it’s referred to as a “zero-person game”
that plays itself). It’s a “two-dimensional cellular automaton.” This just means that it’s a grid
of cells whose content changes over time according to definite, deterministic rules. In Life, a
cell can only have two possible contents: It can be “alive” or “dead.” We will use a 2D array
to represent the grid, with each element of the array representing the content of one cell in

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SymmetricMatrix.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/TestSymmetricMatrix.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 367

the grid. In the game, an initial grid is set up in which each cell is marked as either alive
or dead. After that, the game “plays itself.” The grid evolves through a series of time steps.
The contents of the grid at each time step are completely determined by the contents at the
previous time step, according to simple rules. Each cell in the grid looks at its eight neighbors
(horizontal, vertical, and diagonal) and counts how many of its neighbors are alive. Then the
state of the cell in the next step is determined by the rules:

• If the cell is alive in the current time step: If the cell has 2 or 3 living neighbors, then the
cell remains alive in the next time step; otherwise, it dies. (A living cell dies of loneliness
if it has 0 or 1 living neighbor, and of overcrowding if it has more than 3 living neighbors.)

• If the cell is dead the current time step: If the cell has 3 living neighbors, then the cell
becomes alive in the next time step; otherwise, it remains dead. (Three living cells give
birth to a new living cell.)

Here’s a picture of part of a Life board, showing the same board before and after the rules have
been applied. The rules are applied to every cell in the grid. The picture shows how they apply
to four of the cells:

ÓÔÕÖ ×ÔØØ with 3 live

neighbors comes to life

Living cell with 1 live

neighbor dies.

Living cell with 5 live

neighbors dies.

Living cell with 3 live

neighbors stays alive.Step N Step N+1

The Game of Life is interesting because it gives rise to many interesting and surprising
patterns. (Look it up on Wikipedia.) Here, we are just interested in writing a program to
simulate the game. The complete program can be found in the file Life.java. In the program,
the life grid is shown as an array of squares. Dead squares are black, and living squares are
white. (The program uses MosaicPanel.java from Section 4.6 to represent the grid, so you will
also need that file to compile and run the program.) In the program, you can fill the life board
randomly with dead and alive cells, or you can use the mouse to set up the game board. There
is a “Step” button that will compute one time-step of the game, and a “Start” button that will
run time steps as an animation.

We’ll look at some of the array processing involved in implementing the Game of Life for
this program. Since a cell can only be alive or dead, it is natural to use a two-dimensional
array of boolean[][] to represent the states of all the cells. The array is named alive, and
alive[r][c] is true when the cell in row r, column c is alive. The number of rows and the
number of columns are equal and are given by a constant, GRID SIZE. So, for example, to fill
the Life grid with random values, the program uses simple nested for loops:

for (int r = 0; r < GRID SIZE; r++) {

for (int c = 0; c < GRID SIZE; c++) {

// Use a 25% probability that the cell is alive.

alive[r][c] = (Math.random() < 0.25);

}

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Life.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/MosaicPanel.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 368

Note that the expression (Math.random() < 0.25) is a true/false value that can be assigned
to a boolean array element. The array is also used to set the color of the cells on the screen.
Since the grid of cells is displayed on screen as a MosaicPanel, setting the colors is done using
the MosaicPanel API. Note that the actual drawing is done in the paintComponent() method
of the MosaicPanel (which has its own 2D array of type Color[][] to keep track of the colors
of each cell). The Life program just has to set the colors in the mosaic. This is done in the
program in a method named showBoard() that is called each time the board changes. Again,
simple nested for loops are used to set the color of each square in the grid:

for (int r = 0; r < GRID SIZE; r++) {

for (int c = 0; c < GRID SIZE; c++) {

if (alive[r][c])

display.setColor(r,c,Color.WHITE);

else

display.setColor(r,c,null); // Shows the background color, black.

}

}

Of course, the most interesting part of the program is computing the new state of the board
by applying the rules to the current state. The rules apply to each individual cell, so again we
can use nested for loops to work through all the cells on the board, but this time the processing
is more complicated. Note first that we can’t make changes to the values in the array as we work
through it, since we will need to know the old state of a cell when processing its neighboring
cells. In fact, the program uses a second array to hold the new board as it is being created.
When the new board is finished, it can be substituted for the old board. The algorithm goes
like this in pseudocode:

let newboard be a new boolean[][] array

for each row r:

for each column c:

Let N be the number of neighbors of cell (r,c) in the alive array

if ((N is 3) or (N is 2 and alive[r][c]))

newboard[r][c] = true;

else

newboard[r][c] = false;

alive = newboard

Note that at the end of the process, alive is pointing to a new array. This doesn’t matter
as long as the contents of the array represent the new state of the game. The old array will
be garbage collected. The test for whether newboard[r][c] should be true or false might
not be obvious, but it implements the rules correctly. We still need to work on counting the
neighbors. Consider the cell in row r and column c. If it’s not at an edge of the board, then
it’s clear where its neighbors are:

ÙÚÛ ÜÝ

ÙÚÛ ÜÞßÝ

ÙÚÛ ÜàßÝ

áÚâãäå c

áÚâãäå c-1

áÚâãäå c+1

CHAPTER 7. ARRAYS AND ARRAYLISTS 369

The row above row number r is row number r-1, and the row below is r+1. Similarly
for the columns. We just have to look at the values of alive[r-1][c-1], alive[r-1][c],
alive[r-1][c+1], alive[r][c-1], alive[r][c+1], alive[r+1][c-1], alive[r+1][c], and
alive[r+1][c+1], and count the number that are true. (You should make sure that you
understand how the array indexing works here.)

But there is a problem when the cell is along one of the edges of the grid. In that case, some
of the array elements in the list don’t exist, and an attempt to use them will cause an exception.
To avoid the exception, we have to give special consideration to cells along the edges. One idea
is that before referencing any array element, check that the array element actually exists. In
that case, the code for neighbor counting becomes

if (r-1 >= 0 && c-1 >= 0 && alive[r-1][c-1])

N++; // A cell at position (r-1,c-1) exists and is alive.

if (r-1 >= 0 && alive[r-1][c])

N++; // A cell at position (r-1,c) exists and is alive.

if (r-1 >= 0 && c+1 <= GRID SIZE && alive[r-1][c+1])

N++; // A cell at position (r-1,c+1) exists and is alive.

// and so on...

All the possible exceptions are avoided. But in my program, I actually do something that is
common in 2D computer games—I pretend that the left edge of the board is attached to the
right edge and the top edge to the bottom edge. For example, for a cell in row 0, we say that the
row “above” is actually the bottom row, row number GRID SIZE-1. I use variables to represent
the positions above, below, left, and right of a given cell. The code turns out to be simpler
than the code shown above. Here is the complete method for computing the new board:

private void doFrame() { // Compute the new state of the Life board.

boolean[][] newboard = new boolean[GRID SIZE][GRID SIZE];

for (int r = 0; r < GRID SIZE; r++) {

int above, below; // rows considered above and below row number r

int left, right; // columns considered left and right of column c

above = r > 0 ? r-1 : GRID SIZE-1; // (for "?:" see Subsection 2.5.5)

below = r < GRID SIZE-1 ? r+1 : 0;

for (int c = 0; c < GRID SIZE; c++) {

left = c > 0 ? c-1 : GRID SIZE-1;

right = c < GRID SIZE-1 ? c+1 : 0;

int n = 0; // number of alive cells in the 8 neighboring cells

if (alive[above][left])

n++;

if (alive[above][c])

n++;

if (alive[above][right])

n++;

if (alive[r][left])

n++;

if (alive[r][right])

n++;

if (alive[below][left])

n++;

if (alive[below][c])

n++;

if (alive[below][right])

n++;

CHAPTER 7. ARRAYS AND ARRAYLISTS 370

if (n == 3 || (alive[r][c] && n == 2))

newboard[r][c] = true;

else

newboard[r][c] = false;

}

}

alive = newboard;

}

Again, I urge you to check out the source code, Life.java, and try the program. Don’t forget
that you will also need MosaicPanel.java.

7.5.3 Checkers

As a final example for this chapter, we’ll look at a more substantial example of using a 2D
array. This is the longest program that we have encountered so far, with 727 lines of code.
The program lets two users play checkers against each other. The checkers game is played on
an eight-by-eight board, which is based on an example from Subsection 6.6.5. The players are
called “red” and “black,” after the color of their checkers. I’m not going to explain the rules of
checkers here; possibly you can learn them by trying out the program.

In the program, a player moves by clicking on the piece that they want to move, and then
clicking on the empty square to which it is to be moved. As an aid to the players, the squares
that the current player can legally click are highlighted. The square containing a piece that
has been selected to be moved, if any, is surrounded by a white border. Other pieces that can
legally be moved are surrounded by a cyan-colored border. If a piece has has already been
selected, each empty square that it can legally move to is highlighted with a green border. The
game enforces the rule that if the current player can jump one of the opponent’s pieces, then
the player must jump. When a player’s piece becomes a king, by reaching the opposite end
of the board, a big white “K” is drawn on the piece. Here is a picture of the program in the
middle of a game. It is black’s turn to move, and the pieces that black can legally move are
highlighted with a cyan border. The next step is for black to click on one of those pieces.

I will only cover a part of the programming for this example. I encourage you to read the
complete source code, Checkers.java. It’s long and complex, but you should understand all
the techniques that it uses with some study. The program is a good example of state-based,
event-driven, object-oriented programming.

∗ ∗ ∗

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Life.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Checkers.java

CHAPTER 7. ARRAYS AND ARRAYLISTS 371

The data about the pieces on the board are stored in a two-dimensional array. Because of
the complexity of the program, I wanted to divide it into several classes. In addition to the
main class, there are several nested classes. One of these classes is CheckersData, which handles
the data for the board. It is mainly this class that I want to talk about.

The CheckersData class has an instance variable named board of type int[][]. The value
of board is set to “new int[8][8]”, an 8-by-8 grid of integers. The values stored in the grid
are defined as constants representing the possible contents of a square on a checkerboard:

static final int

EMPTY = 0, // Value representing an empty square.

RED = 1, // A regular red piece.

RED KING = 2, // A red king.

BLACK = 3, // A regular black piece.

BLACK KING = 4; // A black king.

The constants RED and BLACK are also used in my program (or, perhaps, misused) to represent
the two players in the game. When a game is started, the values in the array are set to represent
the initial state of the board. The grid of values looks like

æçèéê

 ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

 ðëñ

æçèéê

 ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

 ðëñ

æçèéê

 ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

 ðëñ

æçèéê

 ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

ëìíîï

 æçèéê

 ëìíîï

 ëìíîï

 ëìíîï

 ðëñ

 ëìíîï

 ðëñ

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

A regular black piece can only move “down” the grid. That is, the row number of the square
it moves to must be greater than the row number of the square it comes from. A regular red
piece can only move up the grid. Kings of either color, of course, can move in both directions.

One function of the CheckersData class is to take care of all the details of making moves
on the board. An instance method named makeMove() is provided to do this. When a player
moves a piece from one square to another, the values of two elements in the array are changed.
But that’s not all. If the move is a jump, then the piece that was jumped is removed from the
board. (The method checks whether the move is a jump by checking if the square to which the
piece is moving is two rows away from the square where it starts.) Furthermore, a RED piece
that moves to row 0 or a BLACK piece that moves to row 7 becomes a king. Putting all that
into a subroutine is good programming: the rest of the program doesn’t have to worry about
any of these details. It just calls this makeMove() method:

/**

* Make the move from (fromRow,fromCol) to (toRow,toCol). It is

* ASSUMED that this move is legal! If the move is a jump, the

* jumped piece is removed from the board. If a piece moves

* to the last row on the opponent’s side of the board, the

* piece becomes a king.

*/

void makeMove(int fromRow, int fromCol, int toRow, int toCol) {

CHAPTER 7. ARRAYS AND ARRAYLISTS 372

board[toRow][toCol] = board[fromRow][fromCol]; // Move the piece.

board[fromRow][fromCol] = EMPTY; // The square it moved from is now empty.

if (fromRow - toRow == 2 || fromRow - toRow == -2) {

// The move is a jump. Remove the jumped piece from the board.

int jumpRow = (fromRow + toRow) / 2; // Row of the jumped piece.

int jumpCol = (fromCol + toCol) / 2; // Column of the jumped piece.

board[jumpRow][jumpCol] = EMPTY;

}

if (toRow == 0 && board[toRow][toCol] == RED)

board[toRow][toCol] = RED KING; // Red piece becomes a king.

if (toRow == 7 && board[toRow][toCol] == BLACK)

board[toRow][toCol] = BLACK KING; // Black piece becomes a king.

} // end makeMove()

An even more important function of the CheckersData class is to find legal moves on the
board. In my program, a move in a Checkers game is represented by an object belonging to
the following class:

/**

* A CheckersMove object represents a move in the game of

* Checkers. It holds the row and column of the piece that is

* to be moved and the row and column of the square to which

* it is to be moved. (This class makes no guarantee that

* the move is legal.)

*/

private static class CheckersMove {

int fromRow, fromCol; // Position of piece to be moved.

int toRow, toCol; // Square it is to move to.

CheckersMove(int r1, int c1, int r2, int c2) {

// Constructor. Set the values of the instance variables.

fromRow = r1;

fromCol = c1;

toRow = r2;

toCol = c2;

}

boolean isJump() {

// Test whether this move is a jump. It is assumed that

// the move is legal. In a jump, the piece moves two

// rows. (In a regular move, it only moves one row.)

return (fromRow - toRow == 2 || fromRow - toRow == -2);

}

} // end class CheckersMove.

The CheckersData class has an instance method which finds all the legal moves that are
currently available for a specified player. This method is a function that returns an array
of type CheckersMove[]. The array contains all the legal moves, represented as CheckersMove
objects. The specification for this method reads

CHAPTER 7. ARRAYS AND ARRAYLISTS 373

/**

* Return an array containing all the legal CheckersMoves

* for the specified player on the current board. If the player

* has no legal moves, null is returned. The value of player

* should be one of the constants RED or BLACK; if not, null

* is returned. If the returned value is non-null, it consists

* entirely of jump moves or entirely of regular moves, since

* if the player can jump, only jumps are legal moves.

*/

CheckersMove[] getLegalMoves(int player)

A brief pseudocode algorithm for the method is

Start with an empty list of moves

Find any legal jumps and add them to the list

if there are no jumps:

Find any other legal moves and add them to the list

if the list is empty:

return null

else:

return the list

Now, what is this “list”? We have to return the legal moves in an array. But since an array has
a fixed size, we can’t create the array until we know how many moves there are, and we don’t
know that until near the end of the method, after we’ve already made the list! A neat solution
is to use an ArrayList instead of an array to hold the moves as we find them. In fact, I use an
object defined by the parameterized type ArrayList<CheckersMove> so that the list is restricted
to holding objects of type CheckersMove. As we add moves to the list, it will grow just as large
as necessary. At the end of the method, we can create the array that we really want and copy
the data into it:

Let "moves" be an empty ArrayList<CheckersMove>

Find any legal jumps and add them to moves

if moves.size() is 0: // There are no legal jumps!

Find any other legal moves and add them to moves

if moves.size() is 0: // There are no legal moves at all!

return null

else:

Let moveArray be an array of CheckersMoves of length moves.size()

Copy the contents of moves into moveArray

return moveArray

Now, how do we find the legal jumps or the legal moves? The information we need is in the
board array, but it takes some work to extract it. We have to look through all the positions
in the array and find the pieces that belong to the current player. For each piece, we have to
check each square that it could conceivably move to, and check whether that would be a legal
move. If we are looking for legal jumps, we want to look at squares that are two rows and
two columns away from the piece. There are four squares to consider. Thus, the line in the
algorithm that says “Find any legal jumps and add them to moves” expands to:

For each row of the board:

For each column of the board:

if one of the player’s pieces is at this location:

if it is legal to jump to row + 2, column + 2

add this move to moves

CHAPTER 7. ARRAYS AND ARRAYLISTS 374

if it is legal to jump to row - 2, column + 2

add this move to moves

if it is legal to jump to row + 2, column - 2

add this move to moves

if it is legal to jump to row - 2, column - 2

add this move to moves

The line that says “Find any other legal moves and add them to moves” expands to some-
thing similar, except that we have to look at the four squares that are one column and one
row away from the piece. Testing whether a player can legally move from one given square to
another given square is itself non-trivial. The square the player is moving to must actually be
on the board, and it must be empty. Furthermore, regular red and black pieces can only move
in one direction. I wrote the following utility method to check whether a player can make a
given non-jump move:

/**

* This is called by the getLegalMoves() method to determine

* whether the player can legally move from (r1,c1) to (r2,c2).

* It is ASSUMED that (r1,c1) contains one of the player’s

* pieces and that (r2,c2) is a neighboring square.

*/

private boolean canMove(int player, int r1, int c1, int r2, int c2) {

if (r2 < 0 || r2 >= 8 || c2 < 0 || c2 >= 8)

return false; // (r2,c2) is off the board.

if (board[r2][c2] != EMPTY)

return false; // (r2,c2) already contains a piece.

if (player == RED) {

if (board[r1][c1] == RED && r2 > r1)

return false; // Regular red piece can only move down.

return true; // The move is legal.

}

else {

if (board[r1][c1] == BLACK && r2 < r1)

return false; // Regular black piece can only move up.

return true; // The move is legal.

}

} // end canMove()

This method is called by my getLegalMoves() method to check whether one of the possible
moves that it has found is actually legal. I have a similar method that is called to check whether
a jump is legal. In this case, I pass to the method the square containing the player’s piece,
the square that the player might move to, and the square between those two, which the player
would be jumping over. The square that is being jumped must contain one of the opponent’s
pieces. This method has the specification:

/**

* This is called by other methods to check whether

* the player can legally jump from (r1,c1) to (r3,c3).

* It is assumed that the player has a piece at (r1,c1), that

* (r3,c3) is a position that is 2 rows and 2 columns distant

* from (r1,c1) and that (r2,c2) is the square between (r1,c1)

* and (r3,c3).

CHAPTER 7. ARRAYS AND ARRAYLISTS 375

*/

private boolean canJump(int player, int r1, int c1,

int r2, int c2, int r3, int c3) { . . .

Given all this, you should be in a position to understand the complete getLegalMoves()

method. It’s a nice way to finish off this chapter, since it combines several topics that we’ve
looked at: one-dimensional arrays, ArrayLists, and two-dimensional arrays:

CheckersMove[] getLegalMoves(int player) {

if (player != RED && player != BLACK)

return null;

int playerKing; // The constant for a King belonging to the player.

if (player == RED)

playerKing = RED KING;

else

playerKing = BLACK KING;

ArrayList<CheckersMove> moves = new ArrayList<CheckersMove>();

// Moves will be stored in this list.

/* First, check for any possible jumps. Look at each square on

the board. If that square contains one of the player’s pieces,

look at a possible jump in each of the four directions from that

square. If there is a legal jump in that direction, put it in

the moves ArrayList.

*/

for (int row = 0; row < 8; row++) {

for (int col = 0; col < 8; col++) {

if (board[row][col] == player || board[row][col] == playerKing) {

if (canJump(player, row, col, row+1, col+1, row+2, col+2))

moves.add(new CheckersMove(row, col, row+2, col+2));

if (canJump(player, row, col, row-1, col+1, row-2, col+2))

moves.add(new CheckersMove(row, col, row-2, col+2));

if (canJump(player, row, col, row+1, col-1, row+2, col-2))

moves.add(new CheckersMove(row, col, row+2, col-2));

if (canJump(player, row, col, row-1, col-1, row-2, col-2))

moves.add(new CheckersMove(row, col, row-2, col-2));

}

}

}

/* If any jump moves were found, then the user must jump, so we

don’t add any regular moves. However, if no jumps were found,

check for any legal regular moves. Look at each square on

the board. If that square contains one of the player’s pieces,

look at a possible move in each of the four directions from

that square. If there is a legal move in that direction,

put it in the moves ArrayList.

*/

if (moves.size() == 0) {

for (int row = 0; row < 8; row++) {

for (int col = 0; col < 8; col++) {

if (board[row][col] == player || board[row][col] == playerKing) {

CHAPTER 7. ARRAYS AND ARRAYLISTS 376

if (canMove(player,row,col,row+1,col+1))

moves.add(new CheckersMove(row,col,row+1,col+1));

if (canMove(player,row,col,row-1,col+1))

moves.add(new CheckersMove(row,col,row-1,col+1));

if (canMove(player,row,col,row+1,col-1))

moves.add(new CheckersMove(row,col,row+1,col-1));

if (canMove(player,row,col,row-1,col-1))

moves.add(new CheckersMove(row,col,row-1,col-1));

}

}

}

}

/* If no legal moves have been found, return null. Otherwise, create

an array just big enough to hold all the legal moves, copy the

legal moves from the ArrayList into the array, and return the array.

*/

if (moves.size() == 0)

return null;

else {

CheckersMove[] moveArray = new CheckersMove[moves.size()];

for (int i = 0; i < moves.size(); i++)

moveArray[i] = moves.get(i);

return moveArray;

}

} // end getLegalMoves

The checkers program is complex, and you can be sure that it didn’t just fall together.
It took a good deal of design work to decide what classes and objects would be used, what
methods should be written, and what algorithms the methods should use. The complete source
code is in the file Checkers.java. Take a look!

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Checkers.java

Exercises 377

Exercises for Chapter 7

1. Write a subroutine that creates an ArrayList containing several different random integers (solution)

in the range from 1 up to some specified maximum. The number of integers and the
maximum allowed value for the integers should be parameters to the subroutine. Write a
main() routine to test your subroutine.

2. Suppose that M is a two-dimensional array that has R rows and C columns. The trans- (solution)

pose of M is defined to be an array T that has C rows and R columns such that
T[i][j] = M[j][i] for each i and j. Write a function that takes an array of type int[][]
as a parameter, and returns the transpose of that array. (Assume that the parameter is a
typical 2D array in which all the rows have the same length.) Also write a subroutine to
print a 2D array of integers in neat rows and columns, and include a main() routine to
test your work.

3. In Subsection 7.4.4, it is mentioned that the standard sorting method Arrays.sort() is (solution)

much faster and efficient than selection sort. Write a program to test this claim. To be spe-
cific, your program should create a large array filled with random real numbers. It should
use both Arrays.sort() and selectionSort() to sort the array, and it should time how
long it takes to perform each sort. Furthermore, it should do the same thing for a large
array of random Strings. To find the times, you can use System.currentTimeMillis()

(see Subsection 2.3.1 and the example TimedComputation.java).

4. In Exercise 6.1, you wrote a program SimpleStamperWithDrag that allows the user to place (solution)

red rectangles and blue ovals in a panel by clicking and dragging the mouse. However,
that program does not store any information about what has been drawn, so the panel
cannot repaint itself correctly. Revise the program to use an ArrayList to store data about
the contents of the panel. All drawing should be done in a paintComponent() method.

5. Write a program that will read a sequence of positive real numbers entered by the user (solution)

and will print the same numbers in sorted order from smallest to largest. The user will
input a zero to mark the end of the input. Assume that at most 100 positive numbers
will be entered. Do not use any built-in function such as Arrays.sort(). Do the sorting
yourself.

6. The sample program RandomArt.java from Subsection 6.4.1 shows a different random (solution)

“artwork” every four seconds. There are three types of “art”, one made from lines, one
from circles, and one from filled squares. However, the program does not save the data for
the picture that is shown on the screen. As a result, the picture cannot be redrawn when
necessary. In fact, every time paintComponent() is called, a new picture is drawn.

Write a new version of RandomArt.java that saves the data needed to redraw its
pictures. The paintComponent() method should simply use the data to draw the picture.
New data should be recomputed only every four seconds, in response to an event from the
timer that drives the program.

To make this interesting, write a separate class for each of the three different types of
art. Also write an abstract class to serve as the common base class for the three classes.
Since all three types of art use a random gray background, the background color can be

http://math.hws.edu/eck/cs124/javanotes7/c7/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c7/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c7/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TimedComputation.java
http://math.hws.edu/eck/cs124/javanotes7/c7/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c7/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomArt.java
http://math.hws.edu/eck/cs124/javanotes7/c7/ex6-ans.html

Exercises 378

defined in their superclass. The superclass also contains a draw() method that draws the
picture; this is an abstract method because its implementation depends on the particular
type of art that is being drawn. The abstract class can be defined as:

private abstract class ArtData {

Color backgroundColor; // The background color for the art.

ArtData() { // Constructor sets background color to be a random gray.

int x = (int)(256*Math.random());

backgroundColor = new Color(x, x, x);

}

abstract void draw(Graphics g); // Draws this artwork.

}

Each of the three subclasses of ArtData must define its own draw() method. It must
also define instance variables to hold the data necessary to draw the picture. I suggest
that you should create random data for the picture in the constructor of the class, so that
constructing the object will automatically create the data for the random artwork. (One
problem with this is that you can’t create the data until you know the size of the panel,
so you can’t create an ArtData object in the constructor of the panel. One solution is to
create an ArtData object at the beginning of the paintComponent() method, if the object
has not already been created.) In each of the three subclasses, you will need to use one or
more arrays or ArrayLists to store the data.

7. Write a program that will read a text file selected by the user, and will make an alphabetical (solution)

list of all the different words in that file. All words should be converted to lower case, and
duplicates should be eliminated from the list. The list should be written to an output file
selected by the user. As discussed in Subsection 2.4.4, you can use TextIO to read and
write files. Use a variable of type ArrayList<String> to store the words. It is not easy to
separate a file into words as you are reading it. You can use the following method:

/**

* Read the next word from TextIO, if there is one. First, skip past

* any non-letters in the input. If an end-of-file is encountered before

* a word is found, return null. Otherwise, read and return the word.

* A word is defined as a sequence of letters. Also, a word can include

* an apostrophe if the apostrophe is surrounded by letters on each side.

* @return the next word from TextIO, or null if an end-of-file is

* encountered

*/

private static String readNextWord() {

char ch = TextIO.peek(); // Look at next character in input.

while (ch != TextIO.EOF && ! Character.isLetter(ch)) {

// Skip past non-letters.

TextIO.getAnyChar(); // Read the character.

ch = TextIO.peek(); // Look at the next character.

}

if (ch == TextIO.EOF) // Encountered end-of-file

return null;

// At this point, we know the next character is a letter, so read a word.

String word = ""; // This will be the word that is read.

while (true) {

word += TextIO.getAnyChar(); // Append the letter onto word.

ch = TextIO.peek(); // Look at next character.

http://math.hws.edu/eck/cs124/javanotes7/c7/ex7-ans.html

Exercises 379

if (ch == ’\’’) {

// The next character is an apostrophe. Read it, and

// if the following character is a letter, add both the

// apostrophe and the letter onto the word and continue

// reading the word. If the character after the apostrophe

// is not a letter, the word is done, so break out of the loop.

TextIO.getAnyChar(); // Read the apostrophe.

ch = TextIO.peek(); // Look at char that follows apostrophe.

if (Character.isLetter(ch)) {

word += "\’" + TextIO.getAnyChar();

ch = TextIO.peek(); // Look at next char.

}

else

break;

}

if (! Character.isLetter(ch)) {

// If the next character is not a letter, the word is

// finished, so break out of the loop.

break;

}

// If we haven’t broken out of the loop, next char is a letter.

}

return word; // Return the word that has been read.

}

Note that this method will return null when the file has been entirely read. You can use
this as a signal to stop processing the input file.

8. The game of Go Moku (also known as Pente or Five Stones) is similar to Tic-Tac-Toe, (solution)

except that it is played on a much larger board and the object is to get five squares in a
row rather than three. Players take turns placing pieces on a board. A piece can be placed
in any empty square. The first player to get five pieces in a row—horizontally, vertically,
or diagonally—wins. If all squares are filled before either player wins, then the game is a
draw. Write a program that lets two players play Go Moku against each other.

Your program will be simpler than the Checkers program from Subsection 7.5.3. Play
alternates strictly between the two players, and there is no need to highlight the legal
moves. You will only need two classes, a short panel class to set up the interface and a
Board class to draw the board and do all the work of the game. Nevertheless, you will
probably want to look at the source code for the checkers program, Checkers.java, for
ideas about the general outline of the program.

The hardest part of the program is checking whether the move that a player makes is
a winning move. To do this, you have to look in each of the four possible directions from
the square where the user has placed a piece. You have to count how many pieces that
player has in a row in that direction. If the number is five or more in any direction, then
that player wins. As a hint, here is part of the code from my program. This code counts
the number of pieces that the user has in a row in a specified direction. The direction is
specified by two integers, dirX and dirY. The values of these variables are 0, 1, or -1, and
at least one of them is non-zero. For example, to look in the horizontal direction, dirX is
1 and dirY is 0.

http://math.hws.edu/eck/cs124/javanotes7/c7/ex8-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Checkers.java

Exercises 380

int ct = 1; // Number of pieces in a row belonging to the player.

int r, c; // A row and column to be examined

r = row + dirX; // Look at square in specified direction.

c = col + dirY;

while (r >= 0 && r < 13 && c >= 0 && c < 13

&& board[r][c] == player) {

// Square is on the board, and it

// contains one of the players’ pieces.

ct++;

r += dirX; // Go on to next square in this direction.

c += dirY;

}

r = row - dirX; // Now, look in the opposite direction.

c = col - dirY;

while (r >= 0 && r < 13 && c >= 0 && c < 13

&& board[r][c] == player) {

ct++;

r -= dirX; // Go on to next square in this direction.

c -= dirY;

}

Here is a picture of my program, just after black has won the game.

Quiz 381

Quiz on Chapter 7
(answers)

1. What is meant by the basetype of an array?

2. What is the purpose of the following variable-arity method? What are the values of
same(1,2,3), same(17,17,17,17), and same(2)? Why?

static double same(int... value) {

for (int i = 1; i < value.length; i++) {

if (value[i-1] != value[i])

return false;

}

return true;

}

3. What does it mean to sort an array?

4. What is the main advantage of binary search over linear search? What is the main
disadvantage?

5. What is meant by a dynamic array? What is the advantage of a dynamic array over a
regular array?

6. What does it mean to say that ArrayList is a parameterized type?

7. Suppose that a variable strlst has been declared as

ArrayList<String> strlst = new ArrayList<String>();

Assume that the list is not empty and that all the items in the list are non-null. Write a
code segment that will find and print the string in the list that comes first in lexicographic
order.

8. Show the exact output produced by the following code segment.

char[][] pic = new char[6][6];

for (int i = 0; i < 6; i++)

for (int j = 0; j < 6; j++) {

if (i == j || i == 0 || i == 5)

pic[i][j] = ’*’;

else

pic[i][j] = ’.’;

}

for (int i = 0; i < 6; i++) {

for (int j = 0; j < 6; j++)

System.out.print(pic[i][j]);

System.out.println();

}

http://math.hws.edu/eck/cs124/javanotes7/c7/quiz_answers.html

Quiz 382

9. Write a complete static method that finds the largest value in an array of ints. The
method should have one parameter, which is an array of type int[]. The largest number
in the array should be returned as the value of the method.

10. Suppose that temperature measurements were made on each day of 2014 in each of 100
cities. The measurements have been stored in an array

int[][] temps = new int[100][365];

where temps[c][d] holds the measurement for city number c on the dth day of the year.
Write a code segment that will print out the average temperature, over the course of the
whole year, for each city. The average temperature for a city can be obtained by adding
up all 365 measurements for that city and dividing the answer by 365.0.

11. Suppose that a class, Employee, is defined as follows:

class Employee {

String lastName;

String firstName;

double hourlyWage;

int yearsWithCompany;

}

Suppose that data about 100 employees is already stored in an array:

Employee[] employeeData = new Employee[100];

Write a code segment that will output the first name, last name, and hourly wage of each
employee who has been with the company for 20 years or more. Write two versions of the
code segment, one that uses a regular for loop, and one that uses a for-each loop.

12. What is the purpose of the following subroutine? What is the meaning of the value that
it returns, in terms of the value of its parameter?

static double[] sums(double[][] data) {

double[] answers = new double[data.length];

for (int i = 0; i < data.length; i++) {

double sum = 0;

for (int j = 0; j < data[i].length; i++)

sum = sum + data[i][j];

answers[i] = sum;

}

return answers;

}

Chapter 8

Correctness, Robustness, Efficiency

In previous chapters, we have covered the fundamentals of programming. The chapters that
follow this one will cover more advanced aspects of programming. The ideas that are presented
will generally be more complex and the programs that use them a little more complicated. This
relatively short chapter is a kind of turning point in which we look at the problem of getting
such complex programs right.

Computer programs that fail are much too common. Programs are fragile. A tiny error
can cause a program to misbehave or crash. Most of us are familiar with this from our own
experience with computers. And we’ve all heard stories about software glitches that cause
spacecraft to crash, telephone service to fail, and, in a few cases, people to die.

Programs don’t have to be as bad as they are. It might well be impossible to guarantee
that programs are problem-free, but careful programming and well-designed programming tools
can help keep the problems to a minimum. This chapter will look at issues of correctness and
robustness of programs. It also looks more closely at exceptions and the try..catch statement,
and it introduces assertions, another of the tools that Java provides as an aid in writing correct
programs.

We will also look at another issue that is important for programs in the real world: efficiency.
Even a completely correct program is not very useful if it takes an unreasonable amount of
time to run. The last section of this chapter introduces techniques for analyzing the run time
efficiency of algorithms.

8.1 Introduction to Correctness and Robustness

A program is correct if it accomplishes the task that it was designed to perform. It is robust
if it can handle illegal inputs and other unexpected situations in a reasonable way. For example,
consider a program that is designed to read some numbers from the user and then print the
same numbers in sorted order. The program is correct if it works for any set of input numbers.
It is robust if it can also deal with non-numeric input by, for example, printing an error message
and ignoring the bad input. A non-robust program might crash or give nonsensical output in
the same circumstance.

Every program should be correct. (A sorting program that doesn’t sort correctly is pretty
useless.) It’s not the case that every program needs to be completely robust. It depends on
who will use it and how it will be used. For example, a small utility program that you write
for your own use doesn’t have to be particularly robust.

The question of correctness is actually more subtle than it might appear. A programmer

383

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 384

works from a specification of what the program is supposed to do. The programmer’s work is
correct if the program meets its specification. But does that mean that the program itself is
correct? What if the specification is incorrect or incomplete? A correct program should be a
correct implementation of a complete and correct specification. The question is whether the
specification correctly expresses the intention and desires of the people for whom the program
is being written. This is a question that lies largely outside the domain of computer science.

8.1.1 Horror Stories

Most computer users have personal experience with programs that don’t work or that crash. In
many cases, such problems are just annoyances, but even on a personal computer there can be
more serious consequences, such as lost work or lost money. When computers are given more
important tasks, the consequences of failure can be proportionately more serious.

About fifteen years ago, the failure of two multi-million dollar space missions to Mars was
prominent in the news. Both failures were probably due to software problems, but in both
cases the problem was not with an incorrect program as such. In September 1999, the Mars
Climate Orbiter burned up in the Martian atmosphere because data that was expressed in
English units of measurement (such as feet and pounds) was entered into a computer program
that was designed to use metric units (such as centimeters and grams). A few months later,
the Mars Polar Lander probably crashed because its software turned off its landing engines too
soon. The program was supposed to detect the bump when the spacecraft landed and turn
off the engines then. It has been determined that deployment of the landing gear might have
jarred the spacecraft enough to activate the program, causing it to turn off the engines when
the spacecraft was still in the air. The unpowered spacecraft would then have fallen to the
Martian surface. A more robust system would have checked the altitude before turning off the
engines!

There are many equally dramatic stories of problems caused by incorrect or poorly written
software. Let’s look at a few incidents recounted in the book Computer Ethics by Tom Forester
and Perry Morrison. (This book covers various ethical issues in computing. It, or something
like it, is essential reading for any student of computer science.)

• In 1985 and 1986, one person was killed and several were injured by excess radiation, while
undergoing radiation treatments by a mis-programmed computerized radiation machine.
In another case, over a ten-year period ending in 1992, almost 1,000 cancer patients
received radiation dosages that were 30% less than prescribed because of a programming
error.

• In 1985, a computer at the Bank of New York started destroying records of on-going
security transactions because of an error in a program. It took less than 24 hours to fix
the program, but by that time, the bank was out $5,000,000 in overnight interest payments
on funds that it had to borrow to cover the problem.

• The programming of the inertial guidance system of the F-16 fighter plane would have
turned the plane upside-down when it crossed the equator, if the problem had not been
discovered in simulation. The Mariner 18 space probe was lost because of an error in one
line of a program. The Gemini V space capsule missed its scheduled landing target by
a hundred miles, because a programmer forgot to take into account the rotation of the
Earth.

• In 1990, AT&T’s long-distance telephone service was disrupted throughout the United
States when a newly loaded computer program proved to contain a bug.

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 385

Of course, there have been more recent problems. For example, computer software error
contributed to the Northeast Blackout of 2003, one of the largest power outages in history. In
2006, the Airbus A380 was delayed by software incompatibility problems, at a cost of perhaps
billions of dollars. In 2007, a software problem grounded thousands of planes at the Los Angeles
International Airport. On May 6, 2010, a flaw in an automatic trading program apparently
resulted in a 1000-point drop in the Dow Jones Industrial Average.

These are just a few examples. Software problems are all too common. As programmers,
we need to understand why that is true and what can be done about it.

8.1.2 Java to the Rescue

Part of the problem, according to the inventors of Java, can be traced to programming languages
themselves. Java was designed to provide some protection against certain types of errors. How
can a language feature help prevent errors? Let’s look at a few examples.

Early programming languages did not require variables to be declared. In such languages,
when a variable name is used in a program, the variable is created automatically. You might
consider this more convenient than having to declare every variable explicitly, but there is an
unfortunate consequence: An inadvertent spelling error might introduce an extra variable that
you had no intention of creating. This type of error was responsible, according to one famous
story, for yet another lost spacecraft. In the FORTRAN programming language, the command “DO
20 I = 1,5” is the first statement of a counting loop. Now, spaces are insignificant in FORTRAN,
so this is equivalent to “DO20I=1,5”. On the other hand, the command “DO20I=1.5”, with a
period instead of a comma, is an assignment statement that assigns the value 1.5 to the variable
DO20I. Supposedly, the inadvertent substitution of a period for a comma in a statement of this
type caused a rocket to blow up on take-off. Because FORTRAN doesn’t require variables to be
declared, the compiler would be happy to accept the statement “DO20I=1.5.” It would just
create a new variable named DO20I. If FORTRAN required variables to be declared, the compiler
would have complained that the variable DO20I was undeclared.

While most programming languages today do require variables to be declared, there are
other features in common programming languages that can cause problems. Java has eliminated
some of these features. Some people complain that this makes Java less efficient and less
powerful. While there is some justice in this criticism, the increase in security and robustness is
probably worth the cost in most circumstances. The best defense against some types of errors
is to design a programming language in which the errors are impossible. In other cases, where
the error can’t be completely eliminated, the language can be designed so that when the error
does occur, it will automatically be detected. This will at least prevent the error from causing
further harm, and it will alert the programmer that there is a bug that needs fixing. Let’s look
at a few cases where the designers of Java have taken these approaches.

An array is created with a certain number of locations, numbered from zero up to some
specified maximum index. It is an error to try to use an array location that is outside of the
specified range. In Java, any attempt to do so is detected automatically by the system. In some
other languages, such as C and C++, it’s up to the programmer to make sure that the index
is within the legal range. Suppose that an array, A, has three locations, A[0], A[1], and A[2].
Then A[3], A[4], and so on refer to memory locations beyond the end of the array. In Java,
an attempt to store data in A[3] will be detected. The program will be terminated (unless the
error is “caught”, as discussed in Section 3.7). In C or C++, the computer will just go ahead
and store the data in memory that is not part of the array. Since there is no telling what that
memory location is being used for, the result will be unpredictable. The consequences could

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 386

be much more serious than a terminated program. (See, for example, the discussion of buffer
overflow errors later in this section.)

Pointers are a notorious source of programming errors. In Java, a variable of object type
holds either a pointer to an object or the special value null. Any attempt to use a null value as
if it were a pointer to an actual object will be detected by the system. In some other languages,
again, it’s up to the programmer to avoid such null pointer errors. In my old Macintosh
computer, a null pointer was actually implemented as if it were a pointer to memory location
zero. A program could use a null pointer to change values stored in memory near location zero.
Unfortunately, the Macintosh stored important system data in those locations. Changing that
data could cause the whole system to crash, a consequence more severe than a single failed
program.

Another type of pointer error occurs when a pointer value is pointing to an object of the
wrong type or to a segment of memory that does not even hold a valid object at all. These
types of errors are impossible in Java, which does not allow programmers to manipulate pointers
directly. In other languages, it is possible to set a pointer to point, essentially, to any location
in memory. If this is done incorrectly, then using the pointer can have unpredictable results.

Another type of error that cannot occur in Java is a memory leak. In Java, once there are
no longer any pointers that refer to an object, that object is “garbage collected” so that the
memory that it occupied can be reused. In other languages, it is the programmer’s responsibility
to return unused memory to the system. If the programmer fails to do this, unused memory
can build up, leaving less memory for programs and data. There is a story that many common
programs for older Windows computers had so many memory leaks that the computer would
run out of memory after a few days of use and would have to be restarted.

Many programs have been found to suffer from buffer overflow errors. Buffer overflow
errors often make the news because they are responsible for many network security problems.
When one computer receives data from another computer over a network, that data is stored in
a buffer. The buffer is just a segment of memory that has been allocated by a program to hold
data that it expects to receive. A buffer overflow occurs when more data is received than will
fit in the buffer. The question is, what happens then? If the error is detected by the program
or by the networking software, then the only thing that has happened is a failed network
data transmission. The real problem occurs when the software does not properly detect buffer
overflows. In that case, the software continues to store data in memory even after the buffer is
filled, and the extra data goes into some part of memory that was not allocated by the program
as part of the buffer. That memory might be in use for some other purpose. It might contain
important data. It might even contain part of the program itself. This is where the real security
issues come in. Suppose that a buffer overflow causes part of a program to be replaced with
extra data received over a network. When the computer goes to execute the part of the program
that was replaced, it’s actually executing data that was received from another computer. That
data could be anything. It could be a program that crashes the computer or takes it over. A
malicious programmer who finds a convenient buffer overflow error in networking software can
try to exploit that error to trick other computers into executing his programs.

For software written completely in Java, buffer overflow errors are impossible. The language
simply does not provide any way to store data into memory that has not been properly allocated.
To do that, you would need a pointer that points to unallocated memory or you would have
to refer to an array location that lies outside the range allocated for the array. As explained
above, neither of these is possible in Java. (However, there could conceivably still be errors in
Java’s standard classes, since some of the methods in these classes are actually written in the

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 387

C programming language rather than in Java.)
It’s clear that language design can help prevent errors or detect them when they occur.

Doing so involves restricting what a programmer is allowed to do. Or it requires tests, such as
checking whether a pointer is null, that take some extra processing time. Some programmers
feel that the sacrifice of power and efficiency is too high a price to pay for the extra security. In
some applications, this is true. However, there are many situations where safety and security
are primary considerations. Java is designed for such situations.

8.1.3 Problems Remain in Java

There is one area where the designers of Java chose not to detect errors automatically: numerical
computations. In Java, a value of type int is represented as a 32-bit binary number. With 32
bits, it’s possible to represent a little over four billion different values. The values of type int

range from -2147483648 to 2147483647. What happens when the result of a computation lies
outside this range? For example, what is 2147483647 + 1? And what is 2000000000 * 2? The
mathematically correct result in each case cannot be represented as a value of type int. These
are examples of integer overflow . In most cases, integer overflow should be considered an
error. However, Java does not automatically detect such errors. For example, it will compute
the value of 2147483647 + 1 to be the negative number, -2147483648. (What happens is
that any extra bits beyond the 32-nd bit in the correct answer are discarded. Values greater
than 2147483647 will “wrap around” to negative values. Mathematically speaking, the result
is always “correct modulo 232.”)

For example, consider the 3N+1 program, which was discussed in Subsection 3.2.2. Starting
from a positive integer N, the program computes a certain sequence of integers:

while (N != 1) {

if (N % 2 == 0) // If N is even...

N = N / 2;

else

N = 3 * N + 1;

System.out.println(N);

}

But there is a problem here: If N is too large, then the value of 3*N+1 will not be mathematically
correct because of integer overflow. The problem arises whenever 3*N+1 > 2147483647, that is
when N > 2147483646/3. For a completely correct program, we should check for this possibility
before computing 3*N+1:

while (N != 1) {

if (N % 2 == 0) // If N is even...

N = N / 2;

else {

if (N > 2147483646/3) {

System.out.println("Sorry, but the value of N has become");

System.out.println("too large for your computer!");

break;

}

N = 3 * N + 1;

}

System.out.println(N);

}

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 388

(Be sure you understand why we can’t just test “if (3*N+1 > 2147483647)”.) The prob-
lem here is not that the original algorithm for computing 3N+1 sequences was wrong. The
problem is that it just can’t be correctly implemented using 32-bit integers. Many programs
ignore this type of problem. But integer overflow errors have been responsible for their share
of serious computer failures, and a completely robust program should take the possibility of
integer overflow into account. (The infamous “Y2K” bug at the start of the year 2000 was, in
fact, just this sort of error.)

For numbers of type double, there are even more problems. There are still overflow er-
rors, which occur when the result of a computation is outside the range of values that can be
represented as a value of type double. This range extends up to about 1.7 times 10 to the
power 308. Numbers beyond this range do not “wrap around” to negative values. Instead, they
are represented by special values that have no real numerical equivalent. The special values
Double.POSITIVE INFINITY and Double.NEGATIVE INFINITY represent numbers outside the
range of legal values. For example, 20 * 1e308 is computed to be Double.POSITIVE INFINITY.
Another special value of type double, Double.NaN, represents an illegal or undefined result.
(“NaN” stands for “Not a Number”.) For example, the result of dividing zero by zero or taking
the square root of a negative number is Double.NaN. You can test whether a number x is this
special not-a-number value by calling the boolean-valued function Double.isNaN(x).

For real numbers, there is the added complication that most real numbers can only be
represented approximately on a computer. A real number can have an infinite number of digits
after the decimal point. A value of type double is only accurate to about 15 digits. The real
number 1/3, for example, is the repeating decimal 0.333333333333..., and there is no way to
represent it exactly using a finite number of digits. Computations with real numbers generally
involve a loss of accuracy. In fact, if care is not exercised, the result of a large number of such
computations might be completely wrong! There is a whole field of computer science, known as
numerical analysis, which is devoted to studying algorithms that manipulate real numbers.

So you see that not all possible errors are avoided or detected automatically in Java. Fur-
thermore, even when an error is detected automatically, the system’s default response is to
report the error and terminate the program. This is hardly robust behavior! So, a Java pro-
grammer still needs to learn techniques for avoiding and dealing with errors. These are the
main topics of the next three sections.

8.2 Writing Correct Programs

Correct programs don’t just happen. It takes planning and attention to detail to avoid
errors in programs. There are some techniques that programmers can use to increase the
likelihood that their programs are correct.

8.2.1 Provably Correct Programs

In some cases, it is possible to prove that a program is correct. That is, it is possible to
demonstrate mathematically that the sequence of computations represented by the program
will always produce the correct result. Rigorous proof is difficult enough that in practice it can
only be applied to fairly small programs. Furthermore, it depends on the fact that the “correct
result” has been specified correctly and completely. As I’ve already pointed out, a program
that correctly meets its specification is not useful if its specification was wrong. Nevertheless,
even in everyday programming, we can apply some of the ideas and techniques that are used

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 389

in proving that programs are correct.
The fundamental ideas are process and state . A state consists of all the information

relevant to the execution of a program at a given moment during its execution. The state
includes, for example, the values of all the variables in the program, the output that has been
produced, any input that is waiting to be read, and a record of the position in the program
where the computer is working. A process is the sequence of states that the computer goes
through as it executes the program. From this point of view, the meaning of a statement in a
program can be expressed in terms of the effect that the execution of that statement has on the
computer’s state. As a simple example, the meaning of the assignment statement “x = 7;” is
that after this statement is executed, the value of the variable x will be 7. We can be absolutely
sure of this fact, so it is something upon which we can build part of a mathematical proof.

In fact, it is often possible to look at a program and deduce that some fact must be true at
a given point during the execution of a program. For example, consider the do loop:

do {

System.out.print("Enter a positive integer: ");

N = TextIO.getlnInt();

} while (N <= 0);

After this loop ends, we can be absolutely sure that the value of the variable N is greater than
zero. The loop cannot end until this condition is satisfied. This fact is part of the meaning of
the while loop. More generally, if a while loop uses the test “while (〈condition 〉)”, then
after the loop ends, we can be sure that the 〈condition 〉 is false. We can then use this fact to
draw further deductions about what happens as the execution of the program continues. (With
a loop, by the way, we also have to worry about the question of whether the loop will ever end.
This is something that has to be verified separately.)

A fact that can be proven to be true after a given program segment has been executed
is called a postcondition of that program segment. Postconditions are known facts upon
which we can build further deductions about the behavior of the program. A postcondition
of a program as a whole is simply a fact that can be proven to be true after the program has
finished executing. A program can be proven to be correct by showing that the postconditions
of the program meet the program’s specification.

Consider the following program segment, where all the variables are of type double:

disc = B*B - 4*A*C;

x = (-B + Math.sqrt(disc)) / (2*A);

The quadratic formula (from high-school mathematics) assures us that the value assigned to x

is a solution of the equation A*x2 + B*x + C = 0, provided that the value of disc is greater
than or equal to zero and the value of A is not zero. If we can assume or guarantee that
B*B-4*A*C >= 0 and that A != 0, then the fact that x is a solution of the equation becomes
a postcondition of the program segment. We say that the condition, B*B-4*A*C >= 0 is a
precondition of the program segment. The condition that A != 0 is another precondition. A
precondition is defined to be a condition that must be true at a given point in the execution
of a program in order for the program to continue correctly. A precondition is something that
you want to be true. It’s something that you have to check or force to be true, if you want your
program to be correct.

We’ve encountered preconditions and postconditions once before, in Subsection 4.6.1. That
section introduced preconditions and postconditions as a way of specifying the contract of
a subroutine. As the terms are being used here, a precondition of a subroutine is just a

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 390

precondition of the code that makes up the definition of the subroutine, and the postcondition
of a subroutine is a postcondition of the same code. In this section, we have generalized these
terms to make them more useful in talking about program correctness.

Let’s see how this works by considering a longer program segment:

do {

System.out.println("Enter A, B, and C. B*B-4*A*C must be >= 0.");

System.out.print("A = ");

A = TextIO.getlnDouble();

System.out.print("B = ");

B = TextIO.getlnDouble();

System.out.print("C = ");

C = TextIO.getlnDouble();

if (A == 0 || B*B - 4*A*C < 0)

System.out.println("Your input is illegal. Try again.");

} while (A == 0 || B*B - 4*A*C < 0);

disc = B*B - 4*A*C;

x = (-B + Math.sqrt(disc)) / (2*A);

After the loop ends, we can be sure that B*B-4*A*C >= 0 and that A != 0. The preconditions
for the last two lines are fulfilled, so the postcondition that x is a solution of the equation
A*x2 + B*x + C = 0 is also valid. This program segment correctly and provably computes a
solution to the equation. (Actually, because of problems with representing real numbers on
computers, this is not 100% true. The algorithm is correct, but the program is not a perfect
implementation of the algorithm. See the discussion in Subsection 8.1.3.)

Here is another variation, in which the precondition is checked by an if statement. In the
first part of the if statement, where a solution is computed and printed, we know that the
preconditions are fulfilled. In the other parts, we know that one of the preconditions fails to
hold. In any case, the program is correct.

System.out.println("Enter your values for A, B, and C.");

System.out.print("A = ");

A = TextIO.getlnDouble();

System.out.print("B = ");

B = TextIO.getlnDouble();

System.out.print("C = ");

C = TextIO.getlnDouble();

if (A != 0 && B*B - 4*A*C >= 0) {

disc = B*B - 4*A*C;

x = (-B + Math.sqrt(disc)) / (2*A);

System.out.println("A solution of A*X*X + B*X + C = 0 is " + x);

}

else if (A == 0) {

System.out.println("The value of A cannot be zero.");

}

else {

System.out.println("Since B*B - 4*A*C is less than zero, the");

System.out.println("equation A*X*X + B*X + C = 0 has no solution.");

}

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 391

Whenever you write a program, it’s a good idea to watch out for preconditions and think
about how your program handles them. Often, a precondition can offer a clue about how to
write the program.

For example, every array reference, such as A[i], has a precondition: The index must
be within the range of legal indices for the array. For A[i], the precondition is that 0 <= i

< A.length. The computer will check this condition when it evaluates A[i], and if the condition
is not satisfied, the program will be terminated. In order to avoid this, you need to make sure
that the index has a legal value. (There is actually another precondition, namely that A is not
null, but let’s leave that aside for the moment.) Consider the following code, which searches
for the number x in the array A and sets the value of i to be the index of the array element
that contains x:

i = 0;

while (A[i] != x) {

i++;

}

As this program segment stands, it has a precondition, namely that x is actually in the array.
If this precondition is satisfied, then the loop will end when A[i] == x. That is, the value of
i when the loop ends will be the position of x in the array. However, if x is not in the array,
then the value of i will just keep increasing until it is equal to A.length. At that time, the
reference to A[i] is illegal and the program will be terminated. To avoid this, we can add a
test to make sure that the precondition for referring to A[i] is satisfied:

i = 0;

while (i < A.length && A[i] != x) {

i++;

}

Now, the loop will definitely end. After it ends, i will satisfy either i == A.length or
A[i] == x. An if statement can be used after the loop to test which of these conditions
caused the loop to end:

i = 0;

while (i < A.length && A[i] != x) {

i++;

}

if (i == A.length)

System.out.println("x is not in the array");

else

System.out.println("x is in position " + i);

8.2.2 Robust Handling of Input

One place where correctness and robustness are important—and especially difficult—is in the
processing of input data, whether that data is typed in by the user, read from a file, or received
over a network. Files and networking will be covered in Chapter 11, which will make essential
use of material that will be covered in the next section of this chapter. For now, let’s look at
an example of processing user input.

Examples in this textbook use my TextIO class for reading input from the user. This class
has built-in error handling. For example, the function TextIO.getDouble() is guaranteed to
return a legal value of type double. If the user types an illegal value, then TextIO will ask

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 392

the user to re-enter their response; your program never sees the illegal value. However, this
approach can be clumsy and unsatisfactory, especially when the user is entering complex data.
In the following example, I’ll do my own error-checking.

Sometimes, it’s useful to be able to look ahead at what’s coming up in the input without
actually reading it. For example, a program might need to know whether the next item in
the input is a number or a word. For this purpose, the TextIO class includes the function
TextIO.peek(). This function returns a char which is the next character in the user’s input,
but it does not actually read that character. If the next thing in the input is an end-of-line,
then TextIO.peek() returns the new-line character, ’\n’.

Often, what we really need to know is the next non-blank character in the user’s input.
Before we can test this, we need to skip past any spaces (and tabs). Here is a function that does
this. It uses TextIO.peek() to look ahead, and it reads characters until the next character in the
input is either an end-of-line or some non-blank character. (The function TextIO.getAnyChar()

reads and returns the next character in the user’s input, even if that character is a space. By
contrast, the more common TextIO.getChar() would skip any blanks and then read and return
the next non-blank character. We can’t use TextIO.getChar() here since the object is to skip
the blanks without reading the next non-blank character.)

/**

* Reads past any blanks and tabs in the input.

* Postcondition: The next character in the input is an

* end-of-line or a non-blank character.

*/

static void skipBlanks() {

char ch;

ch = TextIO.peek();

while (ch == ’ ’ || ch == ’\t’) {

// Next character is a space or tab; read it

// and look at the character that follows it.

ch = TextIO.getAnyChar();

ch = TextIO.peek();

}

} // end skipBlanks()

(In fact, this operation is so common that it is built into TextIO. The method
TextIO.skipBlanks() does essentially the same thing as the skipBlanks() method presented
here.)

An example in Subsection 3.5.3 allowed the user to enter length measurements such as “3
miles” or “1 foot”. It would then convert the measurement into inches, feet, yards, and miles.
But people commonly use combined measurements such as “3 feet 7 inches”. Let’s improve the
program so that it allows inputs of this form.

More specifically, the user will input lines containing one or more measurements such as “1
foot” or “3 miles 20 yards 2 feet”. The legal units of measure are inch, foot, yard, and mile.
The program will also recognize plurals (inches, feet, yards, miles) and abbreviations (in, ft,
yd, mi). Let’s write a subroutine that will read one line of input of this form and compute
the equivalent number of inches. The main program uses the number of inches to compute the
equivalent number of feet, yards, and miles. If there is any error in the input, the subroutine
will print an error message and return the value -1. The subroutine assumes that the input
line is not empty. The main program tests for this before calling the subroutine and uses an
empty line as a signal for ending the program.

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 393

Ignoring the possibility of illegal inputs, a pseudocode algorithm for the subroutine is

inches = 0 // This will be the total number of inches

while there is more input on the line:

read the numerical measurement

read the units of measure

add the measurement to inches

return inches

We can test whether there is more input on the line by checking whether the next non-blank
character is the end-of-line character. But this test has a precondition: Before we can test the
next non-blank character, we have to skip over any blanks. So, the algorithm becomes

inches = 0

skipBlanks()

while TextIO.peek() is not ’\n’:

read the numerical measurement

read the unit of measure

add the measurement to inches

skipBlanks()

return inches

Note the call to skipBlanks() at the end of the while loop. This subroutine must be executed
before the computer returns to the test at the beginning of the loop. More generally, if the test
in a while loop has a precondition, then you have to make sure that this precondition holds at
the end of the while loop, before the computer jumps back to re-evaluate the test, as well as
before the start of the loop.

What about error checking? Before reading the numerical measurement, we have to make
sure that there is really a number there to read. Before reading the unit of measure, we have
to test that there is something there to read. (The number might have been the last thing on
the line. An input such as “3”, without a unit of measure, is not acceptable.) Also, we have to
check that the unit of measure is one of the valid units: inches, feet, yards, or miles. Here is
an algorithm that includes error-checking:

inches = 0

skipBlanks()

while TextIO.peek() is not ’\n’:

if the next character is not a digit:

report an error and return -1

Let measurement = TextIO.getDouble();

skipBlanks() // Precondition for the next test!!

if the next character is end-of-line:

report an error and return -1

Let units = TextIO.getWord()

if the units are inches:

add measurement to inches

else if the units are feet:

add 12*measurement to inches

else if the units are yards:

add 36*measurement to inches

else if the units are miles:

add 12*5280*measurement to inches

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 394

else

report an error and return -1

skipBlanks()

return inches

As you can see, error-testing adds significantly to the complexity of the algorithm. Yet
this is still a fairly simple example, and it doesn’t even handle all the possible errors. For
example, if the user enters a numerical measurement such as 1e400 that is outside the legal
range of values of type double, then the program will fall back on the default error-handling
in TextIO. Something even more interesting happens if the measurement is “1e308 miles”. The
number 1e308 is legal, but the corresponding number of inches is outside the legal range of
values for type double. As mentioned in the previous section, the computer will get the value
Double.POSITIVE INFINITY when it does the computation. You might want to run the program
and try this out.

Here is the subroutine written out in Java:

/**

* Reads the user’s input measurement from one line of input.

* Precondition: The input line is not empty.

* Postcondition: If the user’s input is legal, the measurement

* is converted to inches and returned. If the

* input is not legal, the value -1 is returned.

* The end-of-line is NOT read by this routine.

*/

static double readMeasurement() {

double inches; // Total number of inches in user’s measurement.

double measurement; // One measurement,

// such as the 12 in "12 miles"

String units; // The units specified for the measurement,

// such as "miles"

char ch; // Used to peek at next character in the user’s input.

inches = 0; // No inches have yet been read.

skipBlanks();

ch = TextIO.peek();

/* As long as there is more input on the line, read a measurement and

add the equivalent number of inches to the variable, inches. If an

error is detected during the loop, end the subroutine immediately

by returning -1. */

while (ch != ’\n’) {

/* Get the next measurement and the units. Before reading

anything, make sure that a legal value is there to read. */

if (! Character.isDigit(ch)) {

System.out.println(

"Error: Expected to find a number, but found " + ch);

return -1;

}

measurement = TextIO.getDouble();

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 395

skipBlanks();

if (TextIO.peek() == ’\n’) {

System.out.println(

"Error: Missing unit of measure at end of line.");

return -1;

}

units = TextIO.getWord();

units = units.toLowerCase();

/* Convert the measurement to inches and add it to the total. */

if (units.equals("inch")

|| units.equals("inches") || units.equals("in")) {

inches += measurement;

}

else if (units.equals("foot")

|| units.equals("feet") || units.equals("ft")) {

inches += measurement * 12;

}

else if (units.equals("yard")

|| units.equals("yards") || units.equals("yd")) {

inches += measurement * 36;

}

else if (units.equals("mile")

|| units.equals("miles") || units.equals("mi")) {

inches += measurement * 12 * 5280;

}

else {

System.out.println("Error: \"" + units

+ "\" is not a legal unit of measure.");

return -1;

}

/* Look ahead to see whether the next thing on the line is

the end-of-line. */

skipBlanks();

ch = TextIO.peek();

} // end while

return inches;

} // end readMeasurement()

The source code for the complete program can be found in the file LengthConverter2.java.

8.3 Exceptions and try..catch

Getting a program to work under ideal circumstances is usually a lot easier than making
the program robust . A robust program can survive unusual or “exceptional” circumstances
without crashing. One approach to writing robust programs is to anticipate the problems that
might arise and to include tests in the program for each possible problem. For example, a
program will crash if it tries to use an array element A[i], when i is not within the declared

http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/LengthConverter2.java

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 396

range of indices for the array A. A robust program must anticipate the possibility of a bad index
and guard against it. One way to do this is to write the program in a way that ensures (as a
postcondition of the code that precedes the array reference) that the index is in the legal range.
Another way is to test whether the index value is legal before using it in the array. This could
be done with an if statement:

if (i < 0 || i >= A.length) {

... // Do something to handle the out-of-range index, i

}

else {

... // Process the array element, A[i]

}

There are some problems with this approach. It is difficult and sometimes impossible to an-
ticipate all the possible things that might go wrong. It’s not always clear what to do when an
error is detected. Furthermore, trying to anticipate all the possible problems can turn what
would otherwise be a straightforward program into a messy tangle of if statements.

8.3.1 Exceptions and Exception Classes

We have already seen in Section 3.7 that Java provides a neater, more structured alternative
technique for dealing with errors that can occur while a program is running. The technique is
referred to as exception handling . The word “exception” is meant to be more general than
“error.” It includes any circumstance that arises as the program is executed which is meant to
be treated as an exception to the normal flow of control of the program. An exception might
be an error, or it might just be a special case that you would rather not have clutter up your
elegant algorithm.

When an exception occurs during the execution of a program, we say that the exception
is thrown . When this happens, the normal flow of the program is thrown off-track, and the
program is in danger of crashing. However, the crash can be avoided if the exception is caught
and handled in some way. An exception can be thrown in one part of a program and caught
in a different part. An exception that is not caught will generally cause the program to crash.
(More exactly, the thread that throws the exception will crash. In a multithreaded program,
it is possible for other threads to continue even after one crashes. We will cover threads in
Chapter 12. In particular, GUI programs are multithreaded, and parts of the program might
continue to function even while other parts are non-functional because of exceptions.)

By the way, since Java programs are executed by a Java interpreter, having a program
crash simply means that it terminates abnormally and prematurely. It doesn’t mean that
the Java interpreter will crash. In effect, the interpreter catches any exceptions that are not
caught by the program. The interpreter responds by terminating the program. In many other
programming languages, a crashed program will sometimes crash the entire system and freeze
the computer until it is restarted. With Java, such system crashes should be impossible—which
means that when they happen, you have the satisfaction of blaming the system rather than
your own program.

Exceptions were introduced in Section 3.7, along with the try..catch statement, which is
used to catch and handle exceptions. However, that section did not cover the complete syntax
of try..catch or the full complexity of exceptions. In this section, we cover these topics in full
detail.

∗ ∗ ∗

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 397

When an exception occurs, the thing that is actually “thrown” is an object. This object
can carry information (in its instance variables) from the point where the exception occurs to
the point where it is caught and handled. This information always includes the subroutine
call stack , which is a list of the subroutines that were being executed when the exception was
thrown. (Since one subroutine can call another, several subroutines can be active at the same
time.) Typically, an exception object also includes an error message describing what happened
to cause the exception, and it can contain other data as well. All exception objects must belong
to a subclass of the standard class java.lang.Throwable. In general, each different type of
exception is represented by its own subclass of Throwable, and these subclasses are arranged in
a fairly complex class hierarchy that shows the relationship among various types of exception.
Throwable has two direct subclasses, Error and Exception. These two subclasses in turn have
many other predefined subclasses. In addition, a programmer can create new exception classes
to represent new types of exception.

Most of the subclasses of the class Error represent serious errors within the Java virtual
machine that should ordinarily cause program termination because there is no reasonable way
to handle them. In general, you should not try to catch and handle such errors. An example is
a ClassFormatError, which occurs when the Java virtual machine finds some kind of illegal data
in a file that is supposed to contain a compiled Java class. If that class was being loaded as
part of the program, then there is really no way for the program to proceed.

On the other hand, subclasses of the class Exception represent exceptions that are meant
to be caught. In many cases, these are exceptions that might naturally be called “errors,” but
they are errors in the program or in input data that a programmer can anticipate and possibly
respond to in some reasonable way. (However, you should avoid the temptation of saying, “Well,
I’ll just put a thing here to catch all the errors that might occur, so my program won’t crash.”
If you don’t have a reasonable way to respond to the error, it’s best just to let the program
crash, because trying to go on will probably only lead to worse things down the road—in the
worst case, a program that gives an incorrect answer without giving you any indication that
the answer might be wrong!)

The class Exception has its own subclass, RuntimeException. This class groups together
many common exceptions, including all those that have been covered in previous sections. For
example, IllegalArgumentException and NullPointerException are subclasses of RuntimeException.
A RuntimeException generally indicates a bug in the program, which the programmer should
fix. RuntimeExceptions and Errors share the property that a program can simply ignore the
possibility that they might occur. (“Ignoring” here means that you are content to let your
program crash if the exception occurs.) For example, a program does this every time it uses
an array reference like A[i] without making arrangements to catch a possible ArrayIndexOut-
OfBoundsException. For all other exception classes besides Error, RuntimeException, and their
subclasses, exception-handling is “mandatory” in a sense that I’ll discuss below.

The following diagram is a class hierarchy showing the class Throwable and just a few of
its subclasses. Classes that require mandatory exception-handling are shown in red:

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 398

Throwable

Error Exception

InterruptedException

ArrayIndexOutOfBoundsException

IOException

EOFException SocketException

RuntimeException

IllegalArgumentException

NumberFormatException

The class Throwable and

some of its subclasses.

The class Throwable includes several instance methods that can be used with any exception
object. If e is of type Throwable (or one of its subclasses), then e.getMessage() is a function
that returns a String that describes the exception. The function e.toString(), which is used
by the system whenever it needs a string representation of the object, returns a String that
contains the name of the class to which the exception belongs as well as the same string that
would be returned by e.getMessage(). And the method e.printStackTrace() writes a stack
trace to standard output that tells which subroutines were active when the exception occurred.
A stack trace can be very useful when you are trying to determine the cause of the problem.
(Note that if an exception is not caught by the program, then the default response to the
exception prints the stack trace to standard output.)

8.3.2 The try Statement

To catch exceptions in a Java program, you need a try statement. We have been using such
statements since Section 3.7, but the full syntax of the try statement is more complicated than
what was presented there. The try statements that we have used so far had a syntax similar
to the following example:

try {

double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];

System.out.println("The determinant of M is " + determinant);

}

catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M is the wrong size to have a determinant.");

e.printStackTrace();

}

Here, the computer tries to execute the block of statements following the word “try”. If no
exception occurs during the execution of this block, then the “catch” part of the statement
is simply ignored. However, if an exception of type ArrayIndexOutOfBoundsException occurs,
then the computer jumps immediately to the catch clause of the try statement. This block
of statements is said to be an exception handler for ArrayIndexOutOfBoundsException. By
handling the exception in this way, you prevent it from crashing the program. Before the body
of the catch clause is executed, the object that represents the exception is assigned to the
variable e, which is used in this example to print a stack trace.

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 399

However, the full syntax of the try statement has many options. It will take a while to go
through them. For one thing, a try..catch statement can have more than one catch clause.
This makes it possible to catch several different types of exception with one try statement.
In the above example, in addition to the possible ArrayIndexOutOfBoundsException, there is a
possible NullPointerException which will occur if the value of M is null. We can handle both
possible exceptions by adding a second catch clause to the try statement:

try {

double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];

System.out.println("The determinant of M is " + determinant);

}

catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M is the wrong size to have a determinant.");

}

catch (NullPointerException e) {

System.out.print("Programming error! M doesn’t exist." +);

}

Here, the computer tries to execute the statements in the try clause. If no error occurs, both
of the catch clauses are skipped. If an ArrayIndexOutOfBoundsException occurs, the computer
executes the body of the first catch clause and skips the second one. If a NullPointerException
occurs, it jumps to the second catch clause and executes that.

Note that both ArrayIndexOutOfBoundsException and NullPointerException are subclasses of
RuntimeException. It’s possible to catch all RuntimeExceptions with a single catch clause. For
example:

try {

double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];

System.out.println("The determinant of M is " + determinant);

}

catch (RuntimeException err) {

System.out.println("Sorry, an error has occurred.");

System.out.println("The error was: " + err);

}

The catch clause in this try statement will catch any exception belonging to class RuntimeEx-
ception or to any of its subclasses. This shows why exception classes are organized into a class
hierarchy. It allows you the option of casting your net narrowly to catch only a specific type
of exception. Or you can cast your net widely to catch a wide class of exceptions. Because
of subclassing, when there are multiple catch clauses in a try statement, it is possible that a
given exception might match several of those catch clauses. For example, an exception of type
NullPointerException would match catch clauses for NullPointerException, RuntimeException,
Exception, or Throwable. In this case, only the first catch clause that matches the exception
is executed.

Of course, catching RuntimeException would catch many more types of exception than the
two that we are interested in. It is possible to combine several specific exception types in a
single catch clause. For example,

try {

double determinant = M[0][0]*M[1][1] - M[0][1]*M[1][0];

System.out.println("The determinant of M is " + determinant);

}

catch (NullPointerException | ArrayIndexOutOfBoundsException err) {

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 400

System.out.println("Sorry, an error has occurred.");

System.out.println("The error was: " + err);

}

Here, the two exception types are combined with a ”|”, the vertical line character that is also
used in the boolean or operator. This example will catch errors of type NullPointerException or
ArrayIndexOutOfBoundsException, and no other types.

The example I’ve been using here is not realistic, because you are not very likely to use
exception-handling to guard against null pointers and bad array indices. This is a case where
careful programming is better than exception handling: Just be sure that your program assigns
a reasonable, non-null value to the array M. You would certainly resent it if the designers of
Java forced you to set up a try..catch statement every time you wanted to use an array!
This is why handling of potential RuntimeExceptions is not mandatory. There are just too
many things that might go wrong! (This also shows that exception-handling does not solve
the problem of program robustness. It just gives you a tool that will in many cases let you
approach the problem in a more organized way.)

∗ ∗ ∗

I have still not completely specified the syntax of the try statement. The next variation is
the possibility of a finally clause at the end of a try statement. With this addition, syntax
of the try statement can be described as:

try {

〈statements 〉
}

〈optional-catch-clauses 〉
〈optional-finally-clause 〉

Note that the catch clauses are also listed as optional. The try statement can include zero or
more catch clauses and, optionally, a finally clause. The try statement must include one
or the other. That is, a try statement can have either a finally clause, or one or more catch
clauses, or both. The syntax for a catch clause is

catch (〈exception-class-names 〉 〈variable-name 〉) {

〈statements 〉
}

where 〈exception-class-names〉 can be a single exception class or several classes separated by ”|”.
The syntax for a finally clause is

finally {

〈statements 〉
}

The semantics of the finally clause is that the block of statements in the finally clause is
guaranteed to be executed as the last step in the execution of the try statement, whether or not
any exception occurs and whether or not any exception that does occur is caught and handled.
The finally clause is meant for doing essential cleanup that under no circumstances should
be omitted. One example of this type of cleanup is closing a network connection. Although
you don’t yet know enough about networking to look at the actual programming in this case,
we can consider some pseudocode:

try {

open a network connection

communicate over the connection

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 401

}

catch (IOException e) {

report the error

}

finally {

if the connection was successfully opened

close the connection

}

The finally clause ensures that the network connection will definitely be closed, whether or not
an error occurs during the communication. The pseudocode in this example follows a general
pattern that can be used to robustly obtain a resource, use the resource, and then release the
resource.

∗ ∗ ∗

The pattern of obtaining a resource, then using the resource, and then releasing the resource
is very common. Note that the resource can only be released if no error occurred while obtaining
it. And, if it was successfully obtained, then it should be closed whether or not an error occurs
while using it. This pattern is so common that it leads to one last option in the try statement
syntax. With this option, you only need code to obtain the resource, and you don’t need to
worry about releasing it. That will happen automatically at the end of the try statement.

In order for this to work, the resource must be represented by an object that implements an
interface named AutoCloseable, which defines a single method named close(), with no param-
eters. Standard Java classes that represent things like files and network connections already
implement AutoClosable. So does the Scanner class, which was introduced in Subsection 2.4.6.
In that section, I showed how to use a Scanner to read from System.in. Although I didn’t
do it in that section, it’s considered good form to close a Scanner after using it. Here is an
example that uses the resource pattern in a try statement to make sure that the Scanner is
closed automatically:

try(Scanner in = new Scanner(System.in)) {

// Use the Scanner to read from standard input

}

catch (Exception e) {

// ... some error occurred while using the Scanner

}

The statement that allocates the resource goes in parentheses after the word “try”. The state-
ment must have the form of a variable declaration that includes an initialization of the variable.
The variable is local to the try statement. (You can actually declare several variables in the
parentheses, separated by semicolons.) In this example, we can be sure that in.close() will
definitely be called by the system at the end of the try statement, as long as the Scanner was
successfully initialized.

This is all getting quite complicated, and I won’t continue the discussion here. The sample
program TryStatementDemo.java demonstrates a try statement with all its options, and it
includes a lot of comments to help you understand what can happen when you run the program.

8.3.3 Throwing Exceptions

There are times when it makes sense for a program to deliberately throw an exception. This
is the case when the program discovers some sort of exceptional or error condition, but there
is no reasonable way to handle the error at the point where the problem is discovered. The

http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/TryStatementDemo.java

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 402

program can throw an exception in the hope that some other part of the program will catch
and handle the exception. This can be done with a throw statement . You have already seen
an example of this in Subsection 4.3.8. In this section, we cover the throw statement more
fully. The syntax of the throw statement is:

throw 〈exception-object 〉 ;

The 〈exception-object〉 must be an object belonging to one of the subclasses of Throwable.
Usually, it will in fact belong to one of the subclasses of Exception. In most cases, it will be a
newly constructed object created with the new operator. For example:

throw new ArithmeticException("Division by zero");

The parameter in the constructor becomes the error message in the exception object; if e

refers to the object, the error message can be retrieved by calling e.getMessage(). (You
might find this example a bit odd, because you might expect the system itself to throw an
ArithmeticException when an attempt is made to divide by zero. So why should a programmer
bother to throw the exception? Recall that if the numbers that are being divided are of type
int, then division by zero will indeed throw an ArithmeticException. However, no arithmetic
operations with floating-point numbers will ever produce an exception. Instead, the special
value Double.NaN is used to represent the result of an illegal operation. In some situations, you
might prefer to throw an ArithmeticException when a real number is divided by zero.)

An exception can be thrown either by the system or by a throw statement. The exception
is processed in exactly the same way in either case. Suppose that the exception is thrown
inside a try statement. If that try statement has a catch clause that handles that type of
exception, then the computer jumps to the catch clause and executes it. The exception has
been handled . After handling the exception, the computer executes the finally clause of
the try statement, if there is one. It then continues normally with the rest of the program,
which follows the try statement. If the exception is not immediately caught and handled, the
processing of the exception will continue.

When an exception is thrown during the execution of a subroutine and the exception is
not handled in the same subroutine, then that subroutine is terminated (after the execution
of any pending finally clauses). Then the routine that called that subroutine gets a chance
to handle the exception. That is, if the subroutine was called inside a try statement that has
an appropriate catch clause, then that catch clause will be executed and the program will
continue on normally from there. Again, if the second routine does not handle the exception,
then it also is terminated and the routine that called it (if any) gets the next shot at the
exception. The exception will crash the program only if it passes up through the entire chain of
subroutine calls without being handled. (In fact, even this is not quite true: In a multithreaded
program, only the thread in which the exception occurred is terminated.)

A subroutine that might generate an exception can announce this fact by adding a clause
“throws 〈exception-class-name〉” to the header of the routine. For example:

/**

* Returns the larger of the two roots of the quadratic equation

* A*x*x + B*x + C = 0, provided it has any roots. If A == 0 or

* if the discriminant, B*B - 4*A*C, is negative, then an exception

* of type IllegalArgumentException is thrown.

*/

static public double root(double A, double B, double C)

throws IllegalArgumentException {

if (A == 0) {

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 403

throw new IllegalArgumentException("A can’t be zero.");

}

else {

double disc = B*B - 4*A*C;

if (disc < 0)

throw new IllegalArgumentException("Discriminant < zero.");

return (-B + Math.sqrt(disc)) / (2*A);

}

}

As discussed in the previous section, the computation in this subroutine has the precon-
ditions that A != 0 and B*B-4*A*C >= 0. The subroutine throws an exception of type Ille-
galArgumentException when either of these preconditions is violated. When an illegal condition
is found in a subroutine, throwing an exception is often a reasonable response. If the program
that called the subroutine knows some good way to handle the error, it can catch the exception.
If not, the program will crash—and the programmer will know that the program needs to be
fixed.

A throws clause in a subroutine heading can declare several different types of exception,
separated by commas. For example:

void processArray(int[] A) throws NullPointerException,

ArrayIndexOutOfBoundsException { ...

8.3.4 Mandatory Exception Handling

In the preceding example, declaring that the subroutine root() can throw an IllegalArgumentEx-
ception is just a courtesy to potential readers of this routine. This is because handling of Il-
legalArgumentExceptions is not “mandatory.” A routine can throw an IllegalArgumentException
without announcing the possibility. And a program that calls that routine is free either to catch
or to ignore the exception, just as a programmer can choose either to catch or to ignore an
exception of type NullPointerException.

For those exception classes that require mandatory handling, the situation is different. If a
subroutine can throw such an exception, that fact must be announced in a throws clause in
the routine definition. Failing to do so is a syntax error that will be reported by the compiler.
Exceptions that require mandatory handling are called checked exceptions. The compiler
will check that such exceptions are handled by the program.

Suppose that some statement in the body of a subroutine can generate a checked exception,
one that requires mandatory handling. The statement could be a throw statement, which throws
the exception directly, or it could be a call to a subroutine that can throw the exception. In
either case, the exception must be handled. This can be done in one of two ways: The first way
is to place the statement in a try statement that has a catch clause that handles the exception;
in this case, the exception is handled within the subroutine, so that no caller of the subroutine
can ever see the exception. The second way is to declare that the subroutine can throw the
exception. This is done by adding a “throws” clause to the subroutine heading, which alerts
any callers to the possibility that the exception might be generated when the subroutine is
executed. The caller will, in turn, be forced either to handle the exception in a try statement
or to declare the exception in a throws clause in its own header.

Exception-handling is mandatory for any exception class that is not a subclass of either
Error or RuntimeException. These checked exceptions generally represent conditions that are
outside the control of the programmer. For example, they might represent bad input or an

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 404

illegal action taken by the user. There is no way to avoid such errors, so a robust program
has to be prepared to handle them. The design of Java makes it impossible for programmers
to ignore the possibility of such errors.

Among the checked exceptions are several that can occur when using Java’s input/output
routines. This means that you can’t even use these routines unless you understand something
about exception-handling. Chapter 11 deals with input/output and uses checked exceptions
extensively.

8.3.5 Programming with Exceptions

Exceptions can be used to help write robust programs. They provide an organized and struc-
tured approach to robustness. Without exceptions, a program can become cluttered with if

statements that test for various possible error conditions. With exceptions, it becomes possible
to write a clean implementation of an algorithm that will handle all the normal cases. The
exceptional cases can be handled elsewhere, in a catch clause of a try statement.

When a program encounters an exceptional condition and has no way of handling it im-
mediately, the program can throw an exception. In some cases, it makes sense to throw an
exception belonging to one of Java’s predefined classes, such as IllegalArgumentException or
IOException. However, if there is no standard class that adequately represents the exceptional
condition, the programmer can define a new exception class. The new class must extend the
standard class Throwable or one of its subclasses. In general, if the programmer does not want
to require mandatory exception handling, the new class will extend RuntimeException (or one
of its subclasses). To create a new checked exception class, which does require mandatory
handling, the programmer can extend one of the other subclasses of Exception or can extend
Exception itself.

Here, for example, is a class that extends Exception, and therefore requires mandatory
exception handling when it is used:

public class ParseError extends Exception {

public ParseError(String message) {

// Create a ParseError object containing

// the given message as its error message.

super(message);

}

}

The class contains only a constructor that makes it possible to create a ParseError object
containing a given error message. (The statement “super(message)” calls a constructor in the
superclass, Exception. See Subsection 5.6.3.) Of course the class inherits the getMessage() and
printStackTrace() routines from its superclass. If e refers to an object of type ParseError,
then the function call e.getMessage() will retrieve the error message that was specified in the
constructor. But the main point of the ParseError class is simply to exist. When an object of
type ParseError is thrown, it indicates that a certain type of error has occurred. (Parsing , by
the way, refers to figuring out the syntax of a string. A ParseError would indicate, presumably,
that some string that is being processed by the program does not have the expected form.)

A throw statement can be used in a program to throw an error of type ParseError. The
constructor for the ParseError object must specify an error message. For example:

throw new ParseError("Encountered an illegal negative number.");

or

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 405

throw new ParseError("The word ’" + word

+ "’ is not a valid file name.");

Since ParseError is defined as a subclass of Exception, it is a checked exception. If the throw
statement does not occur in a try statement that catches the error, then the subroutine that
contains the throw must declare that it can throw a ParseError by adding the clause “throws
ParseError” to the subroutine heading. For example,

void getUserData() throws ParseError {

. . .

}

This would not be required if ParseError were defined as a subclass of RuntimeException instead
of Exception, since in that case ParseErrors would not be checked exceptions.

A routine that wants to handle ParseErrors can use a try statement with a catch clause
that catches ParseErrors. For example:

try {

getUserData();

processUserData();

}

catch (ParseError pe) {

. . . // Handle the error

}

Note that since ParseError is a subclass of Exception, a catch clause of the form “catch
(Exception e)” would also catch ParseErrors, along with any other object of type Exception.

Sometimes, it’s useful to store extra data in an exception object. For example,

class ShipDestroyed extends RuntimeException {

Ship ship; // Which ship was destroyed.

int where x, where y; // Location where ship was destroyed.

ShipDestroyed(String message, Ship s, int x, int y) {

// Constructor creates a ShipDestroyed object

// carrying an error message plus the information

// that the ship s was destroyed at location (x,y)

// on the screen.

super(message);

ship = s;

where x = x;

where y = y;

}

}

Here, a ShipDestroyed object contains an error message and some information about a ship that
was destroyed. This could be used, for example, in a statement:

if (userShip.isHit())

throw new ShipDestroyed("You’ve been hit!", userShip, xPos, yPos);

Note that the condition represented by a ShipDestroyed object might not even be considered
an error. It could be just an expected interruption to the normal flow of a game. Exceptions
can sometimes be used to handle such interruptions neatly.

∗ ∗ ∗

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 406

The ability to throw exceptions is particularly useful in writing general-purpose methods
and classes that are meant to be used in more than one program. In this case, the person writing
the method or class often has no reasonable way of handling the error, since that person has no
way of knowing exactly how the method or class will be used. In such circumstances, a novice
programmer is often tempted to print an error message and forge ahead, but this is almost
never satisfactory since it can lead to unpredictable results down the line. Printing an error
message and terminating the program is almost as bad, since it gives the program no chance
to handle the error.

The program that calls the method or uses the class needs to know that the error has
occurred. In languages that do not support exceptions, the only alternative is to return some
special value or to set the value of some variable to indicate that an error has occurred. For
example, the readMeasurement() function in Subsection 8.2.2 returns the value -1 if the user’s
input is illegal. However, this only does any good if the main program bothers to test the
return value. It is very easy to be lazy about checking for special return values every time a
subroutine is called. And in this case, using -1 as a signal that an error has occurred makes it
impossible to allow negative measurements. Exceptions are a cleaner way for a subroutine to
react when it encounters an error.

It is easy to modify the readMeasurement() function to use exceptions instead of a special
return value to signal an error. My modified subroutine throws a ParseError when the user’s
input is illegal, where ParseError is the subclass of Exception that was defined above. (Arguably,
it might be reasonable to avoid defining a new class by using the standard exception class
IllegalArgumentException instead.) The changes from the original version are shown in italic:

/**

* Reads the user’s input measurement from one line of input.

* Precondition: The input line is not empty.

* Postcondition: If the user’s input is legal, the measurement

* is converted to inches and returned.

* @throws ParseError if the user’s input is not legal.

*/

static double readMeasurement() throws ParseError {

double inches; // Total number of inches in user’s measurement.

double measurement; // One measurement,

// such as the 12 in "12 miles."

String units; // The units specified for the measurement,

// such as "miles."

char ch; // Used to peek at next character in the user’s input.

inches = 0; // No inches have yet been read.

skipBlanks();

ch = TextIO.peek();

/* As long as there is more input on the line, read a measurement and

add the equivalent number of inches to the variable, inches. If an

error is detected during the loop, end the subroutine immediately

by throwing a ParseError. */

while (ch != ’\n’) {

/* Get the next measurement and the units. Before reading

anything, make sure that a legal value is there to read. */

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 407

if (! Character.isDigit(ch)) {

throw new ParseError("Expected to find a number, but found " + ch);

}

measurement = TextIO.getDouble();

skipBlanks();

if (TextIO.peek() == ’\n’) {

throw new ParseError("Missing unit of measure at end of line.");

}

units = TextIO.getWord();

units = units.toLowerCase();

/* Convert the measurement to inches and add it to the total. */

if (units.equals("inch")

|| units.equals("inches") || units.equals("in")) {

inches += measurement;

}

else if (units.equals("foot")

|| units.equals("feet") || units.equals("ft")) {

inches += measurement * 12;

}

else if (units.equals("yard")

|| units.equals("yards") || units.equals("yd")) {

inches += measurement * 36;

}

else if (units.equals("mile")

|| units.equals("miles") || units.equals("mi")) {

inches += measurement * 12 * 5280;

}

else {

throw new ParseError("\"" + units

+ "\" is not a legal unit of measure.");

}

/* Look ahead to see whether the next thing on the line is

the end-of-line. */

skipBlanks();

ch = TextIO.peek();

} // end while

return inches;

} // end readMeasurement()

In the main program, this subroutine is called in a try statement of the form

try {

inches = readMeasurement();

}

catch (ParseError e) {

. . . // Handle the error.

}

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 408

The complete program can be found in the file LengthConverter3.java. From the user’s
point of view, this program has exactly the same behavior as the program LengthConverter2
from the previous section. Internally, however, the programs are significantly different, since
LengthConverter3 uses exception handling.

8.4 Assertions and Annotations

In this short section, we look briefly at two features of Java that are not covered or used
elsewhere in this textbook, assertions and annotations. They are included here for completeness,
but they are mostly meant for more advanced programming.

8.4.1 Assertions

Recall that a precondition is a condition that must be true at a certain point in a program, for
the execution of the program to continue correctly from that point. In the case where there is
a chance that the precondition might not be satisfied—for example, if it depends on input from
the user—then it’s a good idea to insert an if statement to test it. But then the question arises,
What should be done if the precondition does not hold? One option is to throw an exception.
This will terminate the program, unless the exception is caught and handled elsewhere in the
program.

In many cases, of course, instead of using an if statement to test whether a precondition
holds, a programmer tries to write the program in a way that will guarantee that the precondi-
tion holds. In that case, the test should not be necessary, and the if statement can be avoided.
The problem is that programmers are not perfect. In spite of the programmer’s intention, the
program might contain a bug that screws up the precondition. So maybe it’s a good idea to
check the precondition after all—at least during the debugging phase of program development.

Similarly, a postcondition is a condition that is true at a certain point in the program as
a consequence of the code that has been executed before that point. Assuming that the code
is correctly written, a postcondition is guaranteed to be true, but here again testing whether a
desired postcondition is actually true is a way of checking for a bug that might have screwed
up the postcondition. This is something that might be desirable during debugging.

The programming languages C and C++ have always had a facility for adding what are
called assertions to a program. These assertions take the form “assert(〈condition〉)”, where
〈condition〉 is a boolean-valued expression. This condition expresses a precondition or post-
condition that should hold at that point in the program. When the computer encounters an
assertion during the execution of the program, it evaluates the condition. If the condition is
false, the program is terminated. Otherwise, the program continues normally. This allows the
programmer’s belief that the condition is true to be tested; if it is not true, that indicates that
the part of the program that preceded the assertion contained a bug. One nice thing about
assertions in C and C++ is that they can be “turned off” at compile time. That is, if the
program is compiled in one way, then the assertions are included in the compiled code. If the
program is compiled in another way, the assertions are not included. During debugging, the
first type of compilation is used, with assertions turned on. The release version of the program
is compiled with assertions turned off. The release version will be more efficient, because the
computer won’t have to evaluate all the assertions.

Although early versions of Java did not have assertions, an assertion facility similar to the
one in C/C++ has been available in Java since version 1.4. As with the C/C++ version, Java

http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/LengthConverter3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/LengthConverter2.java

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 409

assertions can be turned on during debugging and turned off during normal execution. In Java,
however, assertions are turned on and off at run time rather than at compile time. An assertion
in the Java source code is always included in the compiled class file. When the program is
run in the normal way, these assertions are ignored; since the condition in the assertion is not
evaluated in this case, there is little or no performance penalty for having the assertions in
the program. When the program is being debugged, it can be run with assertions enabled, as
discussed below, and then the assertions can be a great help in locating and identifying bugs.

∗ ∗ ∗

An assertion statement in Java takes one of the following two forms:

assert 〈condition 〉 ;

or

assert 〈condition 〉 : 〈error-message 〉 ;

where 〈condition〉 is a boolean-valued expression and 〈error-message〉 is a string or an expres-
sion of type String. The word “assert” is a reserved word in Java, which cannot be used as an
identifier. An assertion statement can be used anyplace in Java where a statement is legal.

If a program is run with assertions disabled, an assertion statement is equivalent to an
empty statement and has no effect. When assertions are enabled and an assertion statement is
encountered in the program, the 〈condition〉 in the assertion is evaluated. If the value is true,
the program proceeds normally. If the value of the condition is false, then an exception of
type java.lang.AssertionError is thrown, and the program will crash (unless the error is
caught by a try statement). If the assert statement includes an 〈error-message〉, then the
error message string becomes the message in the AssertionError.

So, the statement “assert 〈condition 〉 : 〈error-message 〉;" is similar to

if (〈condition 〉 == false)

throw new AssertionError(〈error-message 〉);

except that the if statement is executed whenever the program is run, and the assert state-
ment is executed only when the program is run with assertions enabled.

The question is, when to use assertions instead of exceptions? The general rule is to use
assertions to test conditions that should definitely be true, if the program is written correctly.
Assertions are useful for testing a program to see whether or not it is correct and for finding
the errors in an incorrect program. After testing and debugging, when the program is used in
the normal way, the assertions in the program will be ignored. However, if a problem turns
up later, the assertions are still there in the program to be used to help locate the error. If
someone writes to you to say that your program doesn’t work when he does such-and-such, you
can run the program with assertions enabled, do such-and-such, and hope that the assertions
in the program will help you locate the point in the program where it goes wrong.

Consider, for example, the root() method from Subsection 8.3.3 that calculates a root of
a quadratic equation. If you believe that your program will always call this method with legal
arguments, then it would make sense to write the method using assertions instead of exceptions:

/**

* Returns the larger of the two roots of the quadratic equation

* A*x*x + B*x + C = 0, provided it has any roots.

* Precondition: A != 0 and B*B - 4*A*C >= 0.

*/

static public double root(double A, double B, double C) {

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 410

assert A != 0 : "Leading coefficient of quadratic equation cannot be zero.";

double disc = B*B - 4*A*C;

assert disc >= 0 : "Discriminant of quadratic equation cannot be negative.";

return (-B + Math.sqrt(disc)) / (2*A);

}

The assertions are not checked when the program is run in the normal way. If you are correct in
your belief that the method is never called with illegal arguments, then checking the conditions
in the assertions would be unnecessary. If your belief is not correct, the problem should turn
up during testing or debugging, when the program is run with the assertions enabled.

If the root() method is part of a software library that you expect other people to use, then
the situation is less clear. Oracle’s Java documentation advises that assertions should not be
used for checking the contract of public methods: If the caller of a method violates the contract
by passing illegal parameters, then an exception should be thrown. This will enforce the contract
whether or not assertions are enabled. (However, while it’s true that Java programmers expect
the contract of a method to be enforced with exceptions, there are reasonable arguments for
using assertions instead, in some cases.) One might say that assertions are for you, to help you
in debugging your code, while exceptions are for people who use your code, to alert them that
they are misusing it.

On the other hand, it never hurts to use an assertion to check a postcondition of a method.
A postcondition is something that is supposed to be true after the method has executed, and
it can be tested with an assert statement at the end of the method. If the postcondition is
false, there is a bug in the method itself, and that is something that needs to be found during
the development of the method.

∗ ∗ ∗

To have any effect, assertions must be enabled when the program is run. How to do this
depends on what programming environment you are using. (See Section 2.6 for a discussion of
programming environments.) In the usual command line environment, assertions are enabled by
adding the option -enableassertions to the java command that is used to run the program.
For example, if the class that contains the main program is RootFinder, then the command

java -enableassertions RootFinder

will run the program with assertions enabled. The -enableassertions option can be abbre-
viated to -ea, so the command can alternatively be written as

java -ea RootFinder

In fact, it is possible to enable assertions in just part of a program. An option of the form
“-ea:〈class-name 〉” enables only the assertions in the specified class. Note that there are no
spaces between the -ea, the “:”, and the name of the class. To enable all the assertions in a
package and in its sub-packages, you can use an option of the form “-ea:〈package-name 〉...”.
To enable assertions in the “default package” (that is, classes that are not specified to belong to
a package, like almost all the classes in this book), use “-ea:...”. For example, to run a Java
program named “MegaPaint” with assertions enabled for every class in the packages named
“paintutils” and “drawing”, you would use the command:

java -ea:paintutils... -ea:drawing... MegaPaint

If you are using the Eclipse integrated development environment, you can specify the -ea

option by creating a run configuration . Right-click the name of the main program class in the
Package Explorer pane, and select “Run As” from the pop-up menu and then “Run. . . ” from

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 411

the submenu. This will open a dialog box where you can manage run configurations. The name
of the project and of the main class will be already be filled in. Click the “Arguments” tab, and
enter -ea in the box under “VM Arguments”. The contents of this box are added to the java
command that is used to run the program. You can enter other options in this box, including
more complicated enableassertions options such as -ea:paintutils.... When you click the
“Run” button, the options will be applied. Furthermore, they will be applied whenever you run
the program, unless you change the run configuration or add a new configuration. Note that it
is possible to make two run configurations for the same class, one with assertions enabled and
one with assertions disabled.

8.4.2 Annotations

The term “annotation” refers to notes added to or written alongside a main text, to help you
understand or appreciate the text. An annotation might be a note that you make to yourself
in the margin of a book. It might be a footnote added to an old novel by an editor to explain
the historical context of some event. The annotation is metadata or “metatext,” that is, text
written about the main text rather than as part of the main text itself.

Comments on a program are actually a kind of annotation. Since they are ignored by the
compiler, they have no effect on the meaning of the program. They are there to explain that
meaning to a human reader. It is possible, of course, for another computer program (not the
compiler) to process comments. That’s what done in the case of Javadoc comments, which are
processed by a program that uses them to create API documentation. But comments are only
one type of metadata that might be added to programs.

In Java 5.0, a new feature called annotations was added to the Java language to make
it easier to create new kinds of metadata for Java programs. This has made it possible for
programmers to devise new ways of annotating programs, and to write programs that can read
and use their annotations.

Java annotations have no direct effect on the program that they annotate. But they do have
many potential uses. Some annotations are used to make the programmer’s intent more explicit.
Such annotations might be checked by a compiler to make sure that the code is consistent with
the programmer’s intention. For example, @Override is a standard annotation that can be
used to annotate method definitions. It means that the method is intended to override (that
is replace) a method with the same signature that was defined in some superclass. A compiler
can check that the superclass method actually exists; if not, it can inform the programmer. An
annotation used in this way is an aid to writing correct programs, since the programmer can
be warned about a potential error in advance, instead of having to hunt it down later as a bug.

To annotate a method definition with the @Override annotation, simply place it in front of
the definition. Syntactically, annotations are modifiers that are used in much the same way as
built-in modifiers like “public” and “final.” For example,

@Override public void WindowClosed(WindowEvent evt) { ... }

If there is no "WindowClosed(WindowEvent)" method in any superclass, then the compiler
can issue an error. In fact, this example is based on a hard-to-find bug that I once intro-
duced when trying to override a method named “windowClosed” with a method that I called
“WindowClosed” (with an upper case “W”). If the @Override annotation had existed at that
time—and if I had used it—the compiler could have rejected my code and saved me the trouble
of tracking down the bug.

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 412

(Annotations are a fairly advanced feature, and I might not have mentioned them in this
textbook, except that the @Override annotation can show up in code generated by Eclipse and
other integrated development environments.)

There are two other standard annotations. One is @Deprecated, which can be used to mark
deprecated classes, methods, and variables. (A deprecated item is one that is considered to be
obsolete, but is still part of the Java language for backwards compatibility for old code.) Use of
this annotation would allow a compiler to generate warnings when the deprecated item is used.

The other standard annotation is @SurpressWarnings, which can be used by a compiler
to turn off warning messages that would ordinarily be generated when a class or method is
compiled. @SuppressWarnings is an example of an annotation that has a parameter. The
parameter tells what class of warnings are to be suppressed. For example, when a class or
method is annotated with

@SuppressWarnings("deprecation")

then no warnings about the use of deprecated items will be emitted when the class or method
is compiled. There are other types of warning that can be suppressed; unfortunately the list of
warnings and their names is not standardized and will vary from one compiler to another.

Note, by the way, that the syntax for annotation parameters—especially for an annotation
that accepts multiple parameters—is not the same as the syntax for method parameters. I
won’t cover the annotation syntax here.

Programmers can define new annotations for use in their code. Such annotations are ignored
by standard compilers and programming tools, but it’s possible to write programs that can
understand the annotations and check for their presence in source code. It is even possible to
create annotations that will be retained at run-time and become part of the running program.
In that case, a program can check for annotations in the actual compiled code that is being
executed, and take actions that depend on the presence of the annotation or the values of its
parameters.

Annotations can help programmers to write correct programs. To use an example from the
Java documentation, they can help with the creation of “boilerplate” code—that is, code that
has a very standardized format and that can be generated mechanically. Often, boilerplate code
is generated based on other code. Doing that by hand is a tedious and error-prone process.
A simple example might be code to save certain aspects of a program’s state to a file and to
restore it later. The code for reading and writing the values of all the relevant state variables is
highly repetitious. Instead of writing that code by hand, a programmer could use an annotation
to mark the variables that are part of the state that is to be saved. A program could then be
used to check for the annotations and generate the save-and-restore code. In fact, it would even
be possible to do without that code altogether, if the program checks for the presence of the
annotation at run time to decide which variables to save and restore.

8.5 Analysis of Algorithms

This chapter has concentrated mostly on correctness of programs. In practice, another
issue is also important: efficiency . When analyzing a program in terms of efficiency, we
want to look at questions such as, “How long does it take for the program to run?” and “Is
there another approach that will get the answer more quickly?” Efficiency will always be less
important than correctness; if you don’t care whether a program works correctly, you can make
it run very quickly indeed, but no one will think it’s much of an achievement! On the other

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 413

hand, a program that gives a correct answer after ten thousand years isn’t very useful either,
so efficiency is often an important issue.

The term “efficiency” can refer to efficient use of almost any resource, including time,
computer memory, disk space, or network bandwidth. In this section, however, we will deal
exclusively with time efficiency, and the major question that we want to ask about a program
is, how long does it take to perform its task?

It really makes little sense to classify an individual program as being “efficient” or “ineffi-
cient.” It makes more sense to compare two (correct) programs that perform the same task and
ask which one of the two is “more efficient,” that is, which one performs the task more quickly.
However, even here there are difficulties. The running time of a program is not well-defined.
The run time can be different depending on the number and speed of the processors in the
computer on which it is run and, in the case of Java, on the design of the Java Virtual Machine
which is used to interpret the program. It can depend on details of the compiler which is used
to translate the program from high-level language to machine language. Furthermore, the run
time of a program depends on the size of the problem which the program has to solve. It takes
a sorting program longer to sort 10000 items than it takes it to sort 100 items. When the run
times of two programs are compared, it often happens that Program A solves small problems
faster than Program B, while Program B solves large problems faster than Program A, so that
it is simply not the case that one program is faster than the other in all cases.

In spite of these difficulties, there is a field of computer science dedicated to analyzing
the efficiency of programs. The field is known as Analysis of Algorithms. The focus is
on algorithms, rather than on programs as such, to avoid having to deal with multiple im-
plementations of the same algorithm written in different languages, compiled with different
compilers, and running on different computers. Analysis of Algorithms is a mathematical field
that abstracts away from these down-and-dirty details. Still, even though it is a theoretical
field, every working programmer should be aware of some of its techniques and results. This
section is a very brief introduction to some of those techniques and results. Because this is not
a mathematics book, the treatment will be rather informal.

One of the main techniques of analysis of algorithms is asymptotic analysis. The term
“asymptotic” here means basically “the tendency in the long run.” An asymptotic analysis of
an algorithm’s run time looks at the question of how the run time depends on the size of the
problem. The analysis is asymptotic because it only considers what happens to the run time
as the size of the problem increases without limit; it is not concerned with what happens for
problems of small size or, in fact, for problems of any fixed finite size. Only what happens in the
long run, as the problem size increases without limit, is important. Showing that Algorithm A
is asymptotically faster than Algorithm B doesn’t necessarily mean that Algorithm A will run
faster than Algorithm B for problems of size 10 or size 1000 or even size 1000000—it only
means that if you keep increasing the problem size, you will eventually come to a point where
Algorithm A is faster than Algorithm B. An asymptotic analysis is only a first approximation,
but in practice it often gives important and useful information.

∗ ∗ ∗

Central to asymptotic analysis is Big-Oh notation . Using this notation, we might say,
for example, that an algorithm has a running time that is O(n2) or O(n) or O(log(n)). These
notations are read “Big-Oh of n squared,” “Big-Oh of n,” and “Big-Oh of log n” (where log is a
logarithm function). More generally, we can refer to O(f(n)) (“Big-Oh of f of n”), where f(n) is
some function that assigns a positive real number to every positive integer n. The “n” in this
notation refers to the size of the problem. Before you can even begin an asymptotic analysis,

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 414

you need some way to measure problem size. Usually, this is not a big issue. For example, if
the problem is to sort a list of items, then the problem size can be taken to be the number of
items in the list. When the input to an algorithm is an integer, as in the case of an algorithm
that checks whether a given positive integer is prime, the usual measure of the size of a problem
is the number of bits in the input integer rather than the integer itself. More generally, the
number of bits in the input to a problem is often a good measure of the size of the problem.

To say that the running time of an algorithm is O(f(n)) means that for large values of
the problem size, n, the running time of the algorithm is no bigger than some constant times
f(n). (More rigorously, there is a number C and a positive integer M such that whenever n
is greater than M, the run time is less than or equal to C*f(n).) The constant takes into
account details such as the speed of the computer on which the algorithm is run; if you use
a slower computer, you might have to use a bigger constant in the formula, but changing the
constant won’t change the basic fact that the run time is O(f(n)). The constant also makes
it unnecessary to say whether we are measuring time in seconds, years, CPU cycles, or any
other unit of measure; a change from one unit of measure to another is just multiplication by
a constant. Note also that O(f(n)) doesn’t depend at all on what happens for small problem
sizes, only on what happens in the long run as the problem size increases without limit.

To look at a simple example, consider the problem of adding up all the numbers in an array.
The problem size, n, is the length of the array. Using A as the name of the array, the algorithm
can be expressed in Java as:

total = 0;

for (int i = 0; i < n; i++)

total = total + A[i];

This algorithm performs the same operation, total = total + A[i], n times. The total
time spent on this operation is a*n, where a is the time it takes to perform the operation once.
Now, this is not the only thing that is done in the algorithm. The value of i is incremented
and is compared to n each time through the loop. This adds an additional time of b*n to the
run time, for some constant b. Furthermore, i and total both have to be initialized to zero;
this adds some constant amount c to the running time. The exact running time would then be
(a+b)*n+c, where the constants a, b, and c depend on factors such as how the code is compiled
and what computer it is run on. Using the fact that c is less than or equal to c*n for any
positive integer n, we can say that the run time is less than or equal to (a+b+c)*n. That is,
the run time is less than or equal to a constant times n. By definition, this means that the run
time for this algorithm is O(n).

If this explanation is too mathematical for you, we can just note that for large values of
n, the c in the formula (a+b)*n+c is insignificant compared to the other term, (a+b)*n. We
say that c is a “lower order term.” When doing asymptotic analysis, lower order terms can
be discarded. A rough, but correct, asymptotic analysis of the algorithm would go something
like this: Each iteration of the for loop takes a certain constant amount of time. There are
n iterations of the loop, so the total run time is a constant times n, plus lower order terms
(to account for the initialization). Disregarding lower order terms, we see that the run time is
O(n).

∗ ∗ ∗

Note that to say that an algorithm has run time O(f(n)) is to say that its run time is no
bigger than some constant times f(n) (for large values of n). O(f(n)) puts an upper limit on
the run time. However, the run time could be smaller, even much smaller. For example, if the
run time is O(n), it would also be correct to say that the run time is O(n2) or even O(n10). If

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 415

the run time is less than a constant times n, then it is certainly less than the same constant
times n2 or n10.

Of course, sometimes it’s useful to have a lower limit on the run time. That is, we want to
be able to say that the run time is greater than or equal to some constant times f(n) (for large
values of n). The notation for this is Ω(f(n)), read “Omega of f of n.” “Omega” is the name of
a letter in the Greek alphabet, and Ω is the upper case version of that letter. (To be technical,
saying that the run time of an algorithm is Ω(f(n)) means that there is a positive number C
and a positive integer M such that whenever n is greater than M, the run time is greater than
or equal to C*f(n).) O(f(n)) tells you something about the maximum amount of time that you
might have to wait for an algorithm to finish; Ω(f(n)) tells you something about the minimum
time.

The algorithm for adding up the numbers in an array has a run time that is Ω(n) as well as
O(n). When an algorithm has a run time that is both Ω(f(n)) and O(f(n)), its run time is said
to be Θ(f(n)), read “Theta of f of n.” (Theta is another letter from the Greek alphabet.) To
say that the run time of an algorithm is Θ(f(n)) means that for large values of n, the run time
is between a*f(n) and b*f(n), where a and b are constants (with b greater than a, and both
greater than 0).

Let’s look at another example. Consider the algorithm that can be expressed in Java in the
following method:

/**

* Sorts the n array elements A[0], A[1], ..., A[n-1] into increasing order.

*/

public static simpleBubbleSort(int[] A, int n) {

for (int i = 0; i < n; i++) {

// Do n passes through the array...

for (int j = 0; j < n-1; j++) {

if (A[j] > A[j+1]) {

// A[j] and A[j+1] are out of order, so swap them

int temp = A[j];

A[j] = A[j+1];

A[j+1] = temp;

}

}

}

}

Here, the parameter n represents the problem size. The outer for loop in the method is executed
n times. Each time the outer for loop is executed, the inner for loop is executed n-1 times, so
the if statement is executed n*(n-1) times. This is n2-n, but since lower order terms are not
significant in an asymptotic analysis, it’s good enough to say that the if statement is executed
about n2 times. In particular, the test A[j] > A[j+1] is executed about n2 times, and this fact
by itself is enough to say that the run time of the algorithm is Ω(n2), that is, the run time is
at least some constant times n2. Furthermore, if we look at other operations—the assignment
statements, incrementing i and j, etc.—none of them are executed more than n2 times, so the
run time is also O(n2), that is, the run time is no more than some constant times n2. Since it
is both Ω(n2) and O(n2), the run time of the simpleBubbleSort algorithm is Θ(n2).

You should be aware that some people use the notation O(f(n)) as if it meant Θ(f(n)). That
is, when they say that the run time of an algorithm is O(f(n)), they mean to say that the run
time is about equal to a constant times f(n). For that, they should use Θ(f(n)). Properly

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 416

speaking, O(f(n)) means that the run time is less than a constant times f(n), possibly much
less.

∗ ∗ ∗

So far, my analysis has ignored an important detail. We have looked at how run time
depends on the problem size, but in fact the run time usually depends not just on the size of
the problem but on the specific data that has to be processed. For example, the run time of a
sorting algorithm can depend on the initial order of the items that are to be sorted, and not
just on the number of items.

To account for this dependency, we can consider either the worst case run time analysis
or the average case run time analysis of an algorithm. For a worst case run time analysis, we
consider all possible problems of size n and look at the longest possible run time for all such
problems. For an average case analysis, we consider all possible problems of size n and look at
the average of the run times for all such problems. Usually, the average case analysis assumes
that all problems of size n are equally likely to be encountered, although this is not always
realistic—or even possible in the case where there is an infinite number of different problems of
a given size.

In many cases, the average and the worst case run times are the same to within a constant
multiple. This means that as far as asymptotic analysis is concerned, they are the same. That
is, if the average case run time is O(f(n)) or Θ(f(n)), then so is the worst case. However, later in
the book, we will encounter a few cases where the average and worst case asymptotic analyses
differ.

∗ ∗ ∗

So, what do you really have to know about analysis of algorithms to read the rest of this
book? We will not do any rigorous mathematical analysis, but you should be able to follow
informal discussion of simple cases such as the examples that we have looked at in this section.
Most important, though, you should have a feeling for exactly what it means to say that the
running time of an algorithm is O(f(n)) or Θ(f(n)) for some common functions f(n). The main
point is that these notations do not tell you anything about the actual numerical value of the
running time of the algorithm for any particular case. They do not tell you anything at all
about the running time for small values of n. What they do tell you is something about the
rate of growth of the running time as the size of the problem increases.

Suppose you compare two algorithms that solve the same problem. The run time of one
algorithm is Θ(n2), while the run time of the second algorithm is Θ(n3). What does this tell
you? If you want to know which algorithm will be faster for some particular problem of size,
say, 100, nothing is certain. As far as you can tell just from the asymptotic analysis, either
algorithm could be faster for that particular case—or in any particular case. But what you can
say for sure is that if you look at larger and larger problems, you will come to a point where the
Θ(n2) algorithm is faster than the Θ(n3) algorithm. Furthermore, as you continue to increase
the problem size, the relative advantage of the Θ(n2) algorithm will continue to grow. There
will be values of n for which the Θ(n2) algorithm is a thousand times faster, a million times
faster, a billion times faster, and so on. This is because for any positive constants a and b, the
function a*n3 grows faster than the function b*n2 as n gets larger. (Mathematically, the limit
of the ratio of a*n3 to b*n2 is infinite as n approaches infinity.)

This means that for “large” problems, a Θ(n2) algorithm will definitely be faster than a
Θ(n3) algorithm. You just don’t know—based on the asymptotic analysis alone—exactly how
large “large” has to be. In practice, in fact, it is likely that the Θ(n2) algorithm will be faster

CHAPTER 8. CORRECTNESS, ROBUSTNESS, EFFICIENCY 417

even for fairly small values of n, and absent other information you would generally prefer a
Θ(n2) algorithm to a Θ(n3) algorithm.

So, to understand and apply asymptotic analysis, it is essential to have some idea of the
rates of growth of some common functions. For the power functions n, n2, n3, n4, . . . , the larger
the exponent, the greater the rate of growth of the function. Exponential functions such as 2n

and 10n, where the n is in the exponent, have a growth rate that is faster than that of any power
function. In fact, exponential functions grow so quickly that an algorithm whose run time grows
exponentially is almost certainly impractical even for relatively modest values of n, because the
running time is just too long. Another function that often turns up in asymptotic analysis is
the logarithm function, log(n). There are actually many different logarithm functions, but the
one that is usually used in computer science is the so-called logarithm to the base two, which is
defined by the fact that log(2x) = x for any number x. (Usually, this function is written log2(n),
but I will leave out the subscript 2, since I will only use the base-two logarithm in this book.)
The logarithm function grows very slowly. The growth rate of log(n) is much smaller than the
growth rate of n. The growth rate of n*log(n) is a little larger than the growth rate of n, but
much smaller than the growth rate of n2. The following table should help you understand the
differences among the rates of grows of various functions:

16
64

256
1024

1000000
1000000000

4
6
8

10
20
30

64
384

2048
10240

19931568
29897352854

256
4096

65536
1048576

1000000000000
1000000000000000000

4.0
10.7
32.0

102.4
50173.1

33447777.3

n log(n) n*log(n) n n / log(n)2

The reason that log(n) shows up so often is because of its association with multiplying and
dividing by two: Suppose you start with the number n and divide it by 2, then divide by 2
again, and so on, until you get a number that is less than or equal to 1. Then the number of
divisions is equal (to the nearest integer) to log(n).

As an example, consider the binary search algorithm from Subsection 7.4.1. This algorithm
searches for an item in a sorted array. The problem size, n, can be taken to be the length of
the array. Each step in the binary search algorithm divides the number of items still under
consideration by 2, and the algorithm stops when the number of items under consideration is
less than or equal to 1 (or sooner). It follows that the number of steps for an array of length n
is at most log(n). This means that the worst-case run time for binary search is Θ(log(n)). (The
average case run time is also Θ(log(n)).) By comparison, the linear search algorithm, which
was also presented in Subsection 7.4.1 has a run time that is Θ(n). The Θ notation gives us
a quantitative way to express and to understand the fact that binary search is “much faster”
than linear search.

In binary search, each step of the algorithm divides the problem size by 2. It often happens
that some operation in an algorithm (not necessarily a single step) divides the problem size
by 2. Whenever that happens, the logarithm function is likely to show up in an asymptotic
analysis of the run time of the algorithm.

Analysis of Algorithms is a large, fascinating field. We will only use a few of the most basic
ideas from this field, but even those can be very helpful for understanding the differences among
algorithms.

Exercises 418

Exercises for Chapter 8

1. Write a program that uses the following subroutine, from Subsection 8.3.3, to solve equa- (solution)

tions specified by the user.

/**

* Returns the larger of the two roots of the quadratic equation

* A*x*x + B*x + C = 0, provided it has any roots. If A == 0 or

* if the discriminant, B*B - 4*A*C, is negative, then an exception

* of type IllegalArgumentException is thrown.

*/

static public double root(double A, double B, double C)

throws IllegalArgumentException {

if (A == 0) {

throw new IllegalArgumentException("A can’t be zero.");

}

else {

double disc = B*B - 4*A*C;

if (disc < 0)

throw new IllegalArgumentException("Discriminant < zero.");

return (-B + Math.sqrt(disc)) / (2*A);

}

}

Your program should allow the user to specify values for A, B, and C. It should call the
subroutine to compute a solution of the equation. If no error occurs, it should print the
root. However, if an error occurs, your program should catch that error and print an error
message. After processing one equation, the program should ask whether the user wants
to enter another equation. The program should continue until the user answers no.

2. As discussed in Section 8.1, values of type int are limited to 32 bits. Integers that are too (solution)

large to be represented in 32 bits cannot be stored in an int variable. Java has a standard
class, java.math.BigInteger, that addresses this problem. An object of type BigInteger
is an integer that can be arbitrarily large. (The maximum size is limited only by the
amount of memory available to the Java Virtual Machine.) Since BigIntegers are objects,
they must be manipulated using instance methods from the BigInteger class. For example,
you can’t add two BigIntegers with the + operator. Instead, if N and M are variables that
refer to BigIntegers, you can compute the sum of N and M with the function call N.add(M).
The value returned by this function is a new BigInteger object that is equal to the sum of
N and M.

The BigInteger class has a constructor new BigInteger(str), where str is a string.
The string must represent an integer, such as “3” or “39849823783783283733”. If the string
does not represent a legal integer, then the constructor throws a NumberFormatException.

There are many instance methods in the BigInteger class. Here are a few that you will
find useful for this exercise. Assume that N and M are variables of type BigInteger.

• N.add(M) — a function that returns a BigInteger representing the sum of N and M.

• N.multiply(M) — a function that returns a BigInteger representing the result of
multiplying N times M.

http://math.hws.edu/eck/cs124/javanotes7/c8/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c8/ex2-ans.html

Exercises 419

• N.divide(M) — a function that returns a BigInteger representing the result of divid-
ing N by M, discarding the remainder.

• N.signum()— a function that returns an ordinary int. The returned value represents
the sign of the integer N. The returned value is 1 if N is greater than zero. It is -1 if
N is less than zero. And it is 0 if N is zero.

• N.equals(M) — a function that returns a boolean value that is true if N and M have
the same integer value.

• N.toString() — a function that returns a String representing the value of N.

• N.testBit(k)— a function that returns a boolean value. The parameter k is an inte-
ger. The return value is true if the k-th bit in N is 1, and it is false if the k-th bit is 0.
Bits are numbered from right to left, starting with 0. Testing “if (N.testBit(0))”
is an easy way to check whether N is even or odd. N.testBit(0) is true if and only
if N is an odd number.

For this exercise, you should write a program that prints 3N+1 sequences with starting
values specified by the user. In this version of the program, you should use BigIntegers
to represent the terms in the sequence. You can read the user’s input into a String with
the TextIO.getln() function. Use the input value to create the BigInteger object that
represents the starting point of the 3N+1 sequence. Don’t forget to catch and handle the
NumberFormatException that will occur if the user’s input is not a legal integer! You
should also check that the input number is greater than zero.

If the user’s input is legal, print out the 3N+1 sequence. Count the number of terms
in the sequence, and print the count at the end of the sequence. Exit the program when
the user inputs an empty line.

3. A Roman numeral represents an integer using letters. Examples are XVII to represent 17, (solution)

MCMLIII for 1953, and MMMCCCIII for 3303. By contrast, ordinary numbers such as
17 or 1953 are called Arabic numerals. The following table shows the Arabic equivalent
of all the single-letter Roman numerals:

M 1000 X 10

D 500 V 5

C 100 I 1

L 50

When letters are strung together, the values of the letters are just added up, with the
following exception. When a letter of smaller value is followed by a letter of larger value,
the smaller value is subtracted from the larger value. For example, IV represents 5 - 1, or
4. And MCMXCV is interpreted as M + CM + XC + V, or 1000 + (1000 - 100) + (100 -
10) + 5, which is 1995. In standard Roman numerals, no more than three consecutive
copies of the same letter are used. Following these rules, every number between 1 and
3999 can be represented as a Roman numeral made up of the following one- and two-letter
combinations:

M 1000 X 10

CM 900 IX 9

D 500 V 5

CD 400 IV 4

C 100 I 1

XC 90

http://math.hws.edu/eck/cs124/javanotes7/c8/ex3-ans.html

Exercises 420

L 50

XL 40

Write a class to represent Roman numerals. The class should have two constructors.
One constructs a Roman numeral from a string such as “XVII” or “MCMXCV”. It should
throw a NumberFormatException if the string is not a legal Roman numeral. The other
constructor constructs a Roman numeral from an int. It should throw a NumberForma-
tException if the int is outside the range 1 to 3999.

In addition, the class should have two instance methods. The method toString()

returns the string that represents the Roman numeral. The method toInt() returns the
value of the Roman numeral as an int.

At some point in your class, you will have to convert an int into the string that
represents the corresponding Roman numeral. One way to approach this is to gradually
“move” value from the Arabic numeral to the Roman numeral. Here is the beginning of a
routine that will do this, where number is the int that is to be converted:

String roman = "";

int N = number;

while (N >= 1000) {

// Move 1000 from N to roman.

roman += "M";

N -= 1000;

}

while (N >= 900) {

// Move 900 from N to roman.

roman += "CM";

N -= 900;

}

.

. // Continue with other values from the above table.

.

(You can save yourself a lot of typing in this routine if you use arrays in a clever way to
represent the data in the above table.)

Once you’ve written your class, use it in a main program that will read both Arabic
numerals and Roman numerals entered by the user. If the user enters an Arabic numeral,
print the corresponding Roman numeral. If the user enters a Roman numeral, print the
corresponding Arabic numeral. (You can tell the difference by using TextIO.peek() to
peek at the first character in the user’s input (see Subsection 8.2.2). If the first character
is a digit, then the user’s input is an Arabic numeral. Otherwise, it’s a Roman numeral.)
The program should end when the user inputs an empty line.

4. The source code file Expr.java defines a class, Expr, that can be used to represent math- (solution)

ematical expressions involving the variable x. The expression can use the operators +, -,
*, /, and ^ (where ^ represents the operation of raising a number to a power). It can use
mathematical functions such as sin, cos, abs, and ln. See the source code file for full
details. The Expr class uses some advanced techniques which have not yet been covered in
this textbook. However, the interface is easy to understand. It contains only a constructor
and two public methods.

The constructor new Expr(def) creates an Expr object defined by a given expres-
sion. The parameter, def, is a string that contains the definition. For example,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/Expr.java
http://math.hws.edu/eck/cs124/javanotes7/c8/ex4-ans.html

Exercises 421

new Expr("x^2") or new Expr("sin(x)+3*x"). If the parameter in the constructor call
does not represent a legal expression, then the constructor throws an IllegalArgumentEx-
ception. The message in the exception describes the error.

If func is a variable of type Expr and num is of type double, then func.value(num)

is a function that returns the value of the expression when the number num is substituted
for the variable x in the expression. For example, if Expr represents the expression 3*x+1,
then func.value(5) is 3*5+1, or 16. If the expression is undefined for the specified value
of x, then the special value Double.NaN is returned; no exception is thrown.

Finally, func.toString() returns the definition of the expression. This is just the
string that was used in the constructor that created the expression object.

For this exercise, you should write a program that lets the user enter an expression. If
the expression contains an error, print an error message. Otherwise, let the user enter some
numerical values for the variable x. Print the value of the expression for each number that
the user enters. However, if the expression is undefined for the specified value of x, print
a message to that effect. You can use the boolean-valued function Double.isNaN(val)

to check whether a number, val, is Double.NaN.
The user should be able to enter as many values of x as desired. After that, the user

should be able to enter a new expression.

5. This exercise uses the class Expr, which was described in Exercise 8.4 and which is defined (solution)

in the source code file Expr.java. For this exercise, you should write a GUI program that
can graph a function, f(x), whose definition is entered by the user. The program should
have a text-input box where the user can enter an expression involving the variable x,
such as x^2 or sin(x-3)/x. This expression is the definition of the function. When the
user presses return in the text input box, the program should use the contents of the text
input box to construct an object of type Expr. If an error is found in the definition, then
the program should display an error message. Otherwise, it should display a graph of
the function. (Recall: A JTextField generates an ActionEvent when the user presses
return.)

The program will need a JPanel for displaying the graph. To keep things simple,
this panel should represent a fixed region in the xy-plane, defined by -5 <= x <= 5 and
-5 <= y <= 5. To draw the graph, compute a large number of points and connect them
with line segments. (This method does not handle discontinuous functions properly; doing
so is very hard, so you shouldn’t try to do it for this exercise.) My program divides the
interval -5 <= x <= 5 into 300 subintervals and uses the 301 endpoints of these subin-
tervals for drawing the graph. Note that the function might be undefined at one of these
x-values. In that case, you have to skip that point.

A point on the graph has the form (x,y) where y is obtained by evaluating the
user’s expression at the given value of x. You will have to convert these real numbers to
the integer coordinates of the corresponding pixel on the canvas. The formulas for the
conversion are:

a = (int)((x + 5)/10 * width);

b = (int)((5 - y)/10 * height);

where a and b are the horizontal and vertical coordinates of the pixel, and width and
height are the width and height of the panel.

http://math.hws.edu/eck/cs124/javanotes7/c8/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/Expr.java

Quiz 422

Quiz on Chapter 8
(answers)

1. What does it mean to say that a program is robust?

2. Why do programming languages require that variables be declared before they are used?
What does this have to do with correctness and robustness?

3. What is a precondition? Give an example.

4. Explain how preconditions can be used as an aid in writing correct programs.

5. Java has a predefined class called Throwable. What does this class represent? Why does
it exist?

6. Write a method that prints out a 3N+1 sequence starting from a given integer, N. The
starting value should be a parameter to the method. If the parameter is less than or equal
to zero, throw an IllegalArgumentException. If the number in the sequence becomes too
large to be represented as a value of type int, throw an ArithmeticException.

7. Rewrite the method from the previous question, using assert statements instead of ex-
ceptions to check for errors. What is the difference between the two versions of the method
when the program is run?

8. Some classes of exceptions are checked exceptions that require mandatory exception han-
dling. Explain what this means.

9. Consider a subroutine processData() that has the header

static void processData() throws IOException

Write a try..catch statement that calls this subroutine and prints an error message if
an IOException occurs.

10. Why should a subroutine throw an exception when it encounters an error? Why not just
terminate the program?

11. Suppose that you have a choice of two algorithms that perform the same task. One has
average-case run time that is Θ(n2) while the run time of the second algorithm has an
average-case run time that is Θ(n*log(n)). Suppose that you need to process an input
of size n = 100. Which algorithm would you choose? Can you be certain that you are
choosing the fastest algorithm for the input that you intend to process.

12. Analyze the run time of the following algorithm. That is, find a function f(n) such that
the run time of the algorithm is O(f(n)) or, better, Θ(f(n)). Assume that A is an array of
integers, and use the length of the array as the input size, n.

int total = 0;

for (int i = 0; i < A.length; i++) {

if (A[i] > 0)

total = total + A[i];

}

http://math.hws.edu/eck/cs124/javanotes7/c8/quiz_answers.html

Chapter 9

Linked Data Structures and
Recursion

In this chapter, we look at two advanced programming techniques, recursion and linked data
structures, and some of their applications. Both of these techniques are related to the seemingly
paradoxical idea of defining something in terms of itself. This turns out to be a remarkably
powerful idea.

A subroutine is said to be recursive if it calls itself, either directly or indirectly. What this
means is that the subroutine is used in its own definition. Recursion can often be used to solve
complex problems by reducing them to simpler problems of the same type.

A reference to one object can be stored in an instance variable of another object. The
objects are then said to be “linked.” Complex data structures can be built by linking objects
together. An especially interesting case occurs when an object contains a link to another object
that belongs to the same class. In that case, the class is used in its own definition. Several
important types of data structures are built using classes of this kind.

9.1 Recursion

At one time or another, you’ve probably been told that you can’t define something in
terms of itself. Nevertheless, if it’s done right, defining something at least partially in terms of
itself can be a very powerful technique. A recursive definition is one that uses the concept
or thing that is being defined as part of the definition. For example: An “ancestor” is either
a parent or an ancestor of a parent. A “sentence” can be, among other things, two sentences
joined by a conjunction such as “and.” A “directory” is a part of a disk drive that can hold files
and directories. In mathematics, a “set” is a collection of elements, which can themselves be
sets. A “statement” in Java can be a while statement, which is made up of the word “while”,
a boolean-valued condition, and a statement.

Recursive definitions can describe very complex situations with just a few words. A def-
inition of the term “ancestor” without using recursion might go something like “a parent, or
a grandparent, or a great-grandparent, or a great-great-grandparent, and so on.” But saying
“and so on” is not very rigorous. (I’ve often thought that recursion is really just a rigorous
way of saying “and so on.”) You run into the same problem if you try to define a “directory”
as “a file that is a list of files, where some of the files can be lists of files, where some of those
files can be lists of files, and so on.” Trying to describe what a Java statement can look like,
without using recursion in the definition, would be difficult and probably pretty comical.

423

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 424

Recursion can be used as a programming technique. A recursive subroutine (or recursive
method) is one that calls itself, either directly or indirectly. To say that a subroutine calls itself
directly means that its definition contains a subroutine call statement that calls the subroutine
that is being defined. To say that a subroutine calls itself indirectly means that it calls a second
subroutine which in turn calls the first subroutine (either directly or indirectly). A recursive
subroutine can define a complex task in just a few lines of code. In the rest of this section, we’ll
look at a variety of examples, and we’ll see other examples in the rest of the book.

9.1.1 Recursive Binary Search

Let’s start with an example that you’ve seen before: the binary search algorithm from Subsec-
tion 7.4.1. Binary search is used to find a specified value in a sorted list of items (or, if it does
not occur in the list, to determine that fact). The idea is to test the element in the middle of
the list. If that element is equal to the specified value, you are done. If the specified value is
less than the middle element of the list, then you should search for the value in the first half of
the list. Otherwise, you should search for the value in the second half of the list. The method
used to search for the value in the first or second half of the list is binary search. That is, you
look at the middle element in the half of the list that is still under consideration, and either
you’ve found the value you are looking for, or you have to apply binary search to one half of the
remaining elements. And so on! This is a recursive description, and we can write a recursive
subroutine to implement it.

Before we can do that, though, there are two considerations that we need to take into
account. Each of these illustrates an important general fact about recursive subroutines. First
of all, the binary search algorithm begins by looking at the “middle element of the list.” But
what if the list is empty? If there are no elements in the list, then it is impossible to look
at the middle element. In the terminology of Subsection 8.2.1, having a non-empty list is a
“precondition” for looking at the middle element, and this is a clue that we have to modify
the algorithm to take this precondition into account. What should we do if we find ourselves
searching for a specified value in an empty list? The answer is easy: If the list is empty, we can
be sure that the value does not occur in the list, so we can give the answer without any further
work. An empty list is a base case for the binary search algorithm. A base case for a recursive
algorithm is a case that is handled directly, rather than by applying the algorithm recursively.
The binary search algorithm actually has another type of base case: If we find the element we
are looking for in the middle of the list, we are done. There is no need for further recursion.

The second consideration has to do with the parameters to the subroutine. The problem is
phrased in terms of searching for a value in a list. In the original, non-recursive binary search
subroutine, the list was given as an array. However, in the recursive approach, we have to be
able to apply the subroutine recursively to just a part of the original list. Where the original
subroutine was designed to search an entire array, the recursive subroutine must be able to
search part of an array. The parameters to the subroutine must tell it what part of the array
to search. This illustrates a general fact that in order to solve a problem recursively, it is often
necessary to generalize the problem slightly.

Here is a recursive binary search algorithm that searches for a given value in part of an
array of integers:

/**

* Search in the array A in positions numbered loIndex to hiIndex,

* inclusive, for the specified value. If the value is found, return

* the index in the array where it occurs. If the value is not found,

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 425

* return -1. Precondition: The array must be sorted into increasing

* order.

*/

static int binarySearch(int[] A, int loIndex, int hiIndex, int value) {

if (loIndex > hiIndex) {

// The starting position comes after the final index,

// so there are actually no elements in the specified

// range. The value does not occur in this empty list!

return -1;

}

else {

// Look at the middle position in the list. If the

// value occurs at that position, return that position.

// Otherwise, search recursively in either the first

// half or the second half of the list.

int middle = (loIndex + hiIndex) / 2;

if (value == A[middle])

return middle;

else if (value < A[middle])

return binarySearch(A, loIndex, middle - 1, value);

else // value must be > A[middle]

return binarySearch(A, middle + 1, hiIndex, value);

}

} // end binarySearch()

In this routine, the parameters loIndex and hiIndex specify the part of the array that is
to be searched. To search an entire array, it is only necessary to call binarySearch(A, 0,

A.length - 1, value). In the two base cases—when there are no elements in the specified
range of indices and when the value is found in the middle of the range—the subroutine can
return an answer immediately, without using recursion. In the other cases, it uses a recursive
call to compute the answer and returns that answer.

Most people find it difficult at first to convince themselves that recursion actually works.
The key is to note two things that must be true for recursion to work properly: There must
be one or more base cases, which can be handled without using recursion. And when recursion
is applied during the solution of a problem, it must be applied to a problem that is in some
sense smaller—that is, closer to the base cases—than the original problem. The idea is that
if you can solve small problems and if you can reduce big problems to smaller problems, then
you can solve problems of any size. Ultimately, of course, the big problems have to be reduced,
possibly in many, many steps, to the very smallest problems (the base cases). Doing so might
involve an immense amount of detailed bookkeeping. But the computer does that bookkeeping,
not you! As a programmer, you lay out the big picture: the base cases and the reduction of
big problems to smaller problems. The computer takes care of the details involved in reducing
a big problem, in many steps, all the way down to base cases. Trying to think through this
reduction in detail is likely to drive you crazy, and will probably make you think that recursion
is hard. Whereas in fact, recursion is an elegant and powerful method that is often the simplest
approach to solving a complex problem.

A common error in writing recursive subroutines is to violate one of the two rules: There
must be one or more base cases, and when the subroutine is applied recursively, it must be
applied to a problem that is smaller than the original problem. If these rules are violated, the

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 426

result can be an infinite recursion , where the subroutine keeps calling itself over and over,
without ever reaching a base case. Infinite recursion is similar to an infinite loop. However,
since each recursive call to the subroutine uses up some of the computer’s memory, a program
that is stuck in an infinite recursion will run out of memory and crash before long. In Java, the
program will crash with an exception of type StackOverflowError.

9.1.2 Towers of Hanoi

We have been studying an algorithm, binary search, that can easily be implemented with a
while loop, instead of with recursion. Next, we turn to a problem that is easy to solve with
recursion but difficult to solve without it. This is a standard example known as “The Towers
of Hanoi.” The problem involves a stack of various-sized disks, piled up on a base in order of
decreasing size. The object is to move the stack from one base to another, subject to two rules:
Only one disk can be moved at a time, and no disk can ever be placed on top of a smaller
disk. There is a third base that can be used as a “spare.” The starting situation for a stack
of ten disks is shown in the top half of the following picture. The situation after a number of
moves have been made is shown in the bottom half of the picture. (These illustrations are from
a sample program from Chapter 12, TowersOfHanoiGUI.java, which displays an animation of
the step-by-step solution of the problem; however, that program uses some techniques that you
haven’t learned yet.)

The problem is to move ten disks from Stack 0 to Stack 1, subject to the rules given above.
Stack 2 can be used as a spare location. Can we reduce this to smaller problems of the same
type, possibly generalizing the problem a bit to make this possible? It seems natural to consider
the size of the problem to be the number of disks to be moved. If there are N disks in Stack 0,
we know that we will eventually have to move the bottom disk from Stack 0 to Stack 1. But
before we can do that, according to the rules, the first N-1 disks must be on Stack 2. Once
we’ve moved the N-th disk to Stack 1, we must move the other N-1 disks from Stack 2 to Stack 1
to complete the solution. But moving N-1 disks is the same type of problem as moving N disks,
except that it’s a smaller version of the problem. This is exactly what we need to do recursion!
The problem has to be generalized a bit, because the smaller problems involve moving disks

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/TowersOfHanoiGUI.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 427

from Stack 0 to Stack 2 or from Stack 2 to Stack 1, instead of from Stack 0 to Stack 1. In the
recursive subroutine that solves the problem, the stacks that serve as the source and destination
of the disks have to be specified. It’s also convenient to specify the stack that is to be used as
a spare, even though we could figure that out from the other two parameters. The base case is
when there is only one disk to be moved. The solution in this case is trivial: Just move the disk
in one step. Here is a version of the subroutine that will print out step-by-step instructions for
solving the problem:

/**

* Solve the problem of moving the number of disks specified

* by the first parameter from the stack specified by the

* second parameter to the stack specified by the third

* parameter. The stack specified by the fourth parameter

* is available for use as a spare. Stacks are specified by

* number: 0, 1, or 2.

*/

static void towersOfHanoi(int disks, int from, int to, int spare) {

if (disks == 1) {

// There is only one disk to be moved. Just move it.

System.out.printf("Move disk 1 from stack %d to stack %d%n",

from, to);

}

else {

// Move all but one disk to the spare stack, then

// move the bottom disk, then put all the other

// disks on top of it.

towersOfHanoi(disks-1, from, spare, to);

System.out.printf("Move disk %d from stack %d to stack %d%n",

disks, from, to);

towersOfHanoi(disks-1, spare, to, from);

}

}

This subroutine just expresses the natural recursive solution. The recursion works because
each recursive call involves a smaller number of disks, and the problem is trivial to solve in
the base case, when there is only one disk. To solve the “top level” problem of moving N disks
from Stack 0 to Stack 1, it should be called with the command TowersOfHanoi(N,0,1,2). The
subroutine is demonstrated by the sample program TowersOfHanoi.java.

Here, for example, is the output from the program when it is run with the number of disks
set equal to 4:

Move disk 1 from stack 0 to stack 2

Move disk 2 from stack 0 to stack 1

Move disk 1 from stack 2 to stack 1

Move disk 3 from stack 0 to stack 2

Move disk 1 from stack 1 to stack 0

Move disk 2 from stack 1 to stack 2

Move disk 1 from stack 0 to stack 2

Move disk 4 from stack 0 to stack 1

Move disk 1 from stack 2 to stack 1

Move disk 2 from stack 2 to stack 0

Move disk 1 from stack 1 to stack 0

Move disk 3 from stack 2 to stack 1

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/TowersOfHanoi.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 428

Move disk 1 from stack 0 to stack 2

Move disk 2 from stack 0 to stack 1

Move disk 1 from stack 2 to stack 1

The output of this program shows you a mass of detail that you don’t really want to think
about! The difficulty of following the details contrasts sharply with the simplicity and elegance
of the recursive solution. Of course, you really want to leave the details to the computer. (You
might think about what happens when the precondition that the number of disks is positive is
violated. The result is an example of infinite recursion.)

There is, by the way, a story that explains the name of this problem. According to this
story, on the first day of creation, a group of monks in an isolated tower near Hanoi were given
a stack of 64 disks and were assigned the task of moving one disk every day, according to the
rules of the Towers of Hanoi problem. On the day that they complete their task of moving all
the disks from one stack to another, the universe will come to an end. But don’t worry. The
number of steps required to solve the problem for N disks is 2N - 1, and 264 - 1 days is over
50,000,000,000,000 years. We have a long way to go.

(In the terminology of Section 8.5, the Towers of Hanoi algorithm has a run time that is
Θ(2n), where n is the number of disks that have to be moved. Since the exponential function
2n grows so quickly, the Towers of Hanoi problem can be solved in practice only for a small
number of disks.)

∗ ∗ ∗

By the way, in addition to the graphical Towers of Hanoi program, mentioned above, there
are two more demo programs that you might want to look at. Each program provides a visual
demonstration of a recursive algorithm. In Maze.java, recursion is used to solve a maze. In
LittlePentominos.java, it is used to solve a well-known kind of puzzle. (LittlePentominos.java
also requires the file MosaicPanel.java.) It would be useful to run the programs and watch them
for a while, but the source code uses some techniques that won’t be covered until Chapter 12.

The Maze program first creates a random maze. It then tries to solve the maze by finding
a path through the maze from the upper left corner to the lower right corner. This problem
is actually very similar to a “blob-counting” problem that is considered later in this section.
The recursive maze-solving routine starts from a given square, and it visits each neighboring
square and calls itself recursively from there. The recursion ends if the routine finds itself at the
lower right corner of the maze. When it can’t find a solution from a square, it “backs up” out
of that square and tries somewhere else. This common technique is referred to as recursive
backtracking .

The LittlePentominos program is an implementation of a classic puzzle. A pentomino
is a connected figure made up of five equal-sized squares. There are exactly twelve figures
that can be made in this way, not counting all the possible rotations and reflections of the
basic figures. The problem is to place the twelve pentominos on an 8-by-8 board in which
four of the squares have already been marked as filled. The recursive solution looks at a
board that has already been partially filled with pentominos. The subroutine looks at each
remaining piece in turn. It tries to place that piece in the next available place on the board.
If the piece fits, it calls itself recursively to try to fill in the rest of the solution. If that fails,
then the subroutine goes on to the next piece—another example of recursive backtracking.
A generalized version of the pentominos program with many more features can be found at
http://math.hws.edu/xJava/PentominosSolver/.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/Maze.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/LittlePentominos.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/MosaicPanel.java
http://math.hws.edu/xJava/PentominosSolver/

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 429

9.1.3 A Recursive Sorting Algorithm

Turning next to an application that is perhaps more practical, we’ll look at a recursive algorithm
for sorting an array. The selection sort and insertion sort algorithms, which were covered in
Section 7.4, are fairly simple, but they are rather slow when applied to large arrays. Faster
sorting algorithms are available. One of these is Quicksort , a recursive algorithm which turns
out to be the fastest sorting algorithm in most situations.

The Quicksort algorithm is based on a simple but clever idea: Given a list of items, select
any item from the list. This item is called the pivot . (In practice, I’ll just use the first item in
the list.) Move all the items that are smaller than the pivot to the beginning of the list, and
move all the items that are larger than the pivot to the end of the list. Now, put the pivot
between the two groups of items. This puts the pivot in the position that it will occupy in the
final, completely sorted array. It will not have to be moved again. We’ll refer to this procedure
as QuicksortStep.

QuicksortStep is not recursive. It is used as a subroutine by Quicksort. The speed of
Quicksort depends on having a fast implementation of QuicksortStep. Since it’s not the main
point of this discussion, I present one without much comment.

/**

* Apply QuicksortStep to the list of items in locations lo through hi

* in the array A. The value returned by this routine is the final

* position of the pivot item in the array.

*/

static int quicksortStep(int[] A, int lo, int hi) {

int pivot = A[lo]; // Get the pivot value.

// The numbers hi and lo mark the endpoints of a range

// of numbers that have not yet been tested. Decrease hi

// and increase lo until they become equal, moving numbers

// bigger than pivot so that they lie above hi and moving

// numbers less than the pivot so that they lie below lo.

// When we begin, A[lo] is an available space, since its

// value has been moved into the local variable, pivot.

while (hi > lo) {

while (hi > lo && A[hi] >= pivot) {

// Move hi down past numbers greater than pivot.

// These numbers do not have to be moved.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 430

hi--;

}

if (hi == lo)

break;

// The number A[hi] is less than pivot. Move it into

// the available space at A[lo], leaving an available

// space at A[hi].

A[lo] = A[hi];

lo++;

while (hi > lo && A[lo] <= pivot) {

// Move lo up past numbers less than pivot.

// These numbers do not have to be moved.

lo++;

}

if (hi == lo)

break;

// The number A[lo] is greater than pivot. Move it into

// the available space at A[hi], leaving an available

// space at A[lo].

A[hi] = A[lo];

hi--;

} // end while

// At this point, lo has become equal to hi, and there is

// an available space at that position. This position lies

// between numbers less than pivot and numbers greater than

// pivot. Put pivot in this space and return its location.

A[lo] = pivot;

return lo;

} // end QuicksortStep

With this subroutine in hand, Quicksort is easy. The Quicksort algorithm for sorting a list
consists of applying QuicksortStep to the list, then applying Quicksort recursively to the items
that lie to the left of the new position of the pivot and to the items that lie to the right of that
position. Of course, we need base cases. If the list has only one item, or no items, then the list
is already as sorted as it can ever be, so Quicksort doesn’t have to do anything in these cases.

/**

* Apply quicksort to put the array elements between

* position lo and position hi into increasing order.

*/

static void quicksort(int[] A, int lo, int hi) {

if (hi <= lo) {

// The list has length one or zero. Nothing needs

// to be done, so just return from the subroutine.

return;

}

else {

// Apply quicksortStep and get the new pivot position.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 431

// Then apply quicksort to sort the items that

// precede the pivot and the items that follow it.

int pivotPosition = quicksortStep(A, lo, hi);

quicksort(A, lo, pivotPosition - 1);

quicksort(A, pivotPosition + 1, hi);

}

}

As usual, we had to generalize the problem. The original problem was to sort an array, but
the recursive algorithm is set up to sort a specified part of an array. To sort an entire array, A,
using the quickSort() subroutine, you would call quicksort(A, 0, A.length - 1).

Quicksort is an interesting example from the point of view of the analysis of algorithms
(Section 8.5), because its average case run time differs greatly from its worst case run time.
Here is a very informal analysis, starting with the average case: Note that an application of
quicksortStep divides a problem into two sub-problems. On the average, the subproblems will
be of approximately the same size. A problem of size n is divided into two problems that are
roughly of size n/2; these are then divided into four problems that are roughly of size n/4;
and so on. Since the problem size is divided by 2 on each level, there will be approximately
log(n) levels of subdivision. The amount of processing on each level is proportional to n. (On
the top level, each element in the array is looked at and possibly moved. On the second level,
where there are two subproblems, every element but one in the array is part of one of those
two subproblems and must be looked at and possibly moved, so there is a total of about n
steps in both subproblems combined. Similarly, on the third level, there are four subproblems
and a total of about n steps in the four subproblems on that level. . . .) With a total of n steps
on each level and approximately log(n) levels in the average case, the average case run time
for Quicksort is Θ(n*log(n)). This analysis assumes that quicksortStep divides a problem into
two approximately equal parts. However, in the worst case, each application of quicksortStep
divides a problem of size n into a problem of size 0 and a problem of size n-1. This happens
when the pivot element ends up at the beginning or end of the array. In this worst case, there
are n levels of subproblems, and the worst-case run time is Θ(n2). The worst case is very
rare—it depends on the items in the array being arranged in a very special way, so the average
performance of Quicksort can be very good even though it is not so good in certain rare cases.
There are sorting algorithms that have both an average case and a worst case run time of
Θ(n*log(n)). One example is MergeSort, which you can look up if you are interested.

9.1.4 Blob Counting

Next, we will look at counting the number of squares in a group of connected squares. I call
a group of squares a “blob,” and the sample program that we will consider is Blobs.java. The
program displays a grid of small white and gray squares. Here is a screenshot from the program,
showing the grid of squares along with some controls:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/Blobs.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 432

The gray squares are considered to be “filled” and the white squares are “empty.” For the
purposes of this example, we define a “blob” to consist of a filled square and all the filled squares
that can be reached from it by moving up, down, left, and right through other filled squares.
If the user clicks on any filled square in the program, the computer will count the squares in
the blob that contains the clicked square, and it will change the color of those squares to red.
The program has several controls. There is a “New Blobs” button; clicking this button will
create a new random pattern in the grid. A pop-up menu specifies the approximate percentage
of squares that will be filled in the new pattern. The more filled squares, the larger the blobs.
And a button labeled “Count the Blobs” will tell you how many different blobs there are in the
pattern.

Recursion is used in this program to count the number of squares in a blob. Without
recursion, this would be a very difficult thing to implement. Recursion makes it relatively easy,
but it still requires a new technique, which is also useful in a number of other applications.

The data for the grid of squares is stored in a two dimensional array of boolean values,

boolean[][] filled;

The value of filled[r][c] is true if the square in row r and in column c of the grid is
filled. The number of rows in the grid is stored in an instance variable named rows, and the
number of columns is stored in columns. The program uses a recursive instance method named
getBlobSize() to count the number of squares in the blob that contains the square in a given
row r and column c. If there is no filled square at position (r,c), then the answer is zero.
Otherwise, getBlobSize() has to count all the filled squares that can be reached from the
square at position (r,c). The idea is to use getBlobSize() recursively to get the number of
filled squares that can be reached from each of the neighboring positions: (r+1,c), (r-1,c),
(r,c+1), and (r,c-1). Add up these numbers, and add one to count the square at (r,c)

itself, and you get the total number of filled squares that can be reached from (r,c). Here is
an implementation of this algorithm, as stated. Unfortunately, it has a serious flaw: It leads to
an infinite recursion!

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 433

int getBlobSize(int r, int c) { // BUGGY, INCORRECT VERSION!!

// This INCORRECT method tries to count all the filled

// squares that can be reached from position (r,c) in the grid.

if (r < 0 || r >= rows || c < 0 || c >= columns) {

// This position is not in the grid, so there is

// no blob at this position. Return a blob size of zero.

return 0;

}

if (filled[r][c] == false) {

// This square is not part of a blob, so return zero.

return 0;

}

int size = 1; // Count the square at this position, then count the

// the blobs that are connected to this square

// horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end INCORRECT getBlobSize()

Unfortunately, this routine will count the same square more than once. In fact, it will try to
count each square infinitely often! Think of yourself standing at position (r,c) and trying to
follow these instructions. The first instruction tells you to move up one row. You do that, and
then you apply the same procedure. As one of the steps in that procedure, you have to move
down one row and apply the same procedure yet again. But that puts you back at position
(r,c)! From there, you move up one row, and from there you move down one row. . . . Back
and forth forever! We have to make sure that a square is only counted and processed once, so
we don’t end up going around in circles. The solution is to leave a trail of breadcrumbs—or on
the computer a trail of boolean values—to mark the squares that you’ve already visited. Once
a square is marked as visited, it won’t be processed again. The remaining, unvisited squares
are reduced in number, so definite progress has been made in reducing the size of the problem.
Infinite recursion is avoided!

A second boolean array, visited[r][c], is used to keep track of which squares have already
been visited and processed. It is assumed that all the values in this array are set to false before
getBlobSize() is called. As getBlobSize() encounters unvisited squares, it marks them as
visited by setting the corresponding entry in the visited array to true. When getBlobSize()

encounters a square that it has already visited, it doesn’t count it or process it further. The
technique of “marking” items as they are encountered is one that is used over and over in the
programming of recursive algorithms. Here is the corrected version of getBlobSize(), with
changes shown in italic:

/**

* Counts the squares in the blob at position (r,c) in the

* grid. Squares are only counted if they are filled and

* unvisited. If this routine is called for a position that

* has been visited, the return value will be zero.

*/

int getBlobSize(int r, int c) {

if (r < 0 || r >= rows || c < 0 || c >= columns) {

// This position is not in the grid, so there is

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 434

// no blob at this position. Return a blob size of zero.

return 0;

}

if (filled[r][c] == false || visited[r][c] == true) {

// This square is not part of a blob, or else it has

// already been counted, so return zero.

return 0;

}

visited[r][c] = true; // Mark the square as visited so that

// we won’t count it again during the

// following recursive calls.

int size = 1; // Count the square at this position, then count the

// the blobs that are connected to this square

// horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end getBlobSize()

In the program, this method is used to determine the size of a blob when the user clicks
on a square. After getBlobSize() has performed its task, all the squares in the blob are still
marked as visited. The paintComponent() method draws visited squares in red, which makes
the blob visible. The getBlobSize() method is also used for counting blobs. This is done by
the following method, which includes comments to explain how it works:

/**

* When the user clicks the "Count the Blobs" button, find the

* number of blobs in the grid and report the number in the

* message label.

*/

void countBlobs() {

int count = 0; // Number of blobs.

/* First clear out the visited array. The getBlobSize() method

will mark every filled square that it finds by setting the

corresponding element of the array to true. Once a square

has been marked as visited, it will stay marked until all the

blobs have been counted. This will prevent the same blob from

being counted more than once. */

for (int r = 0; r < rows; r++)

for (int c = 0; c < columns; c++)

visited[r][c] = false;

/* For each position in the grid, call getBlobSize() to get the

size of the blob at that position. If the size is not zero,

count a blob. Note that if we come to a position that was part

of a previously counted blob, getBlobSize() will return 0 and

the blob will not be counted again. */

for (int r = 0; r < rows; r++)

for (int c = 0; c < columns; c++) {

if (getBlobSize(r,c) > 0)

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 435

count++;

}

repaint(); // Note that all the filled squares will be red,

// since they have all now been visited.

message.setText("The number of blobs is " + count);

} // end countBlobs()

9.2 Linked Data Structures

Every useful object contains instance variables. When the type of an instance variable is
given by a class or interface name, the variable can hold a reference to another object. Such
a reference is also called a pointer, and we say that the variable points to the object. (Of
course, any variable that can contain a reference to an object can also contain the special value
null, which points to nowhere.) When one object contains an instance variable that points to
another object, we think of the objects as being “linked” by the pointer. Data structures of
great complexity can be constructed by linking objects together.

9.2.1 Recursive Linking

Something interesting happens when an object contains an instance variable that can refer to
another object of the same type. In that case, the definition of the object’s class is recursive.
Such recursion arises naturally in many cases. For example, consider a class designed to repre-
sent employees at a company. Suppose that every employee except the boss has a supervisor,
who is another employee of the company. Then the Employee class would naturally contain an
instance variable of type Employee that points to the employee’s supervisor:

/**

* An object of type Employee holds data about one employee.

*/

public class Employee {

String name; // Name of the employee.

Employee supervisor; // The employee’s supervisor.

.

. // (Other instance variables and methods.)

.

} // end class Employee

If emp is a variable of type Employee, then emp.supervisor is another variable of type
Employee. If emp refers to the boss, then the value of emp.supervisor should be null to
indicate the fact that the boss has no supervisor. If we wanted to print out the name of the
employee’s supervisor, for example, we could use the following Java statement:

if (emp.supervisor == null) {

System.out.println(emp.name + " is the boss and has no supervisor!");

}

else {

System.out.print("The supervisor of " + emp.name + " is ");

System.out.println(emp.supervisor.name);

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 436

}

Now, suppose that we want to know how many levels of supervisors there are between a
given employee and the boss. We just have to follow the chain of command through a series of
supervisor links, and count how many steps it takes to get to the boss:

if (emp.supervisor == null) {

System.out.println(emp.name + " is the boss!");

}

else {

Employee runner; // For "running" up the chain of command.

runner = emp.supervisor;

if (runner.supervisor == null) {

System.out.println(emp.name + " reports directly to the boss.");

}

else {

int count = 0;

while (runner.supervisor != null) {

count++; // Count the supervisor on this level.

runner = runner.supervisor; // Move up to the next level.

}

System.out.println("There are " + count

+ " supervisors between " + emp.name

+ " and the boss.");

}

}

As the while loop is executed, runner points in turn to the original employee (emp), then
to emp’s supervisor, then to the supervisor of emp’s supervisor, and so on. The count

variable is incremented each time runner “visits” a new employee. The loop ends when
runner.supervisor is null, which indicates that runner has reached the boss. At that point,
count has counted the number of steps between emp and the boss.

In this example, the supervisor variable is quite natural and useful. In fact, data structures
that are built by linking objects together are so useful that they are a major topic of study
in computer science. We’ll be looking at a few typical examples. In this section and the
next, we’ll be looking at linked lists. A linked list consists of a chain of objects of the same
type, linked together by pointers from one object to the next. This is much like the chain of
supervisors between emp and the boss in the above example. It’s also possible to have more
complex situations, in which one object can contain links to several other objects. We’ll look
at an example of this in Section 9.4.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 437

null

null
null

null

null

null

null

null
null

null

When an object contains a reference to an object of the

same type, then several objects can be linked together

into a list. Each object refers to the next object.

Things get even more interesting

when an object contains two

references to objects of the

same type. In that case,

more complicated data

structures can be

constructed.

9.2.2 Linked Lists

For most of the examples in the rest of this section, linked lists will be constructed out of objects
belonging to the class Node which is defined as follows:

class Node {

String item;

Node next;

}

The term node is often used to refer to one of the objects in a linked data structure. Objects
of type Node can be chained together as shown in the top part of the above illustration. Each
node holds a String and a pointer to the next node in the list (if any). The last node in such a
list can always be identified by the fact that the instance variable next in the last node holds
the value null instead of a pointer to another node. The purpose of the chain of nodes is to
represent a list of strings. The first string in the list is stored in the first node, the second string
is stored in the second node, and so on. The pointers and the node objects are used to build
the structure, but the data that we want to represent is the list of strings. Of course, we could
just as easily represent a list of integers or a list of JButtons or a list of any other type of data
by changing the type of the item that is stored in each node.

Although the Nodes in this example are very simple, we can use them to illustrate the
common operations on linked lists. Typical operations include deleting nodes from the list,
inserting new nodes into the list, and searching for a specified String among the items in the
list. We will look at subroutines to perform all of these operations, among others.

For a linked list to be used in a program, that program needs a variable that refers to the
first node in the list. It only needs a pointer to the first node since all the other nodes in the list
can be accessed by starting at the first node and following links along the list from one node to
the next. In my examples, I will always use a variable named head, of type Node, that points
to the first node in the linked list. When the list is empty, the value of head is null.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 438

null

For a list to be useful, there must be a variable

that points to the first node in the list. Here,

the variable named "head" serves this purpose.

"fred" "jane" "joe" "mary"

head:

9.2.3 Basic Linked List Processing

It is very common to want to process all the items in a linked list in some way. The common
pattern is to start at the head of the list, then move from each node to the next by following
the pointer in the node, stopping when the null that marks the end of the list is reached. If
head is a variable of type Node that points to the first node in the list, then the general form
of the code for processing all the items in a linked list is:

Node runner; // A pointer that will be used to traverse the list.

runner = head; // Start with runner pointing to the head of the list.

while (runner != null) { // Continue until null is encountered.

process(runner.item); // Do something with the item in the current node.

runner = runner.next; // Move on to the next node in the list.

}

Our only access to the list is through the variable head, so we start by getting a copy of the
value in head with the assignment statement runner = head. We need a copy of head because
we are going to change the value of runner. We can’t change the value of head, or we would
lose our only access to the list! The variable runner will point to each node of the list in turn.
When runner points to one of the nodes in the list, runner.next is a pointer to the next node
in the list, so the assignment statement runner = runner.next moves the pointer along the
list from each node to the next. We know that we’ve reached the end of the list when runner

becomes equal to null. Note that our list-processing code works even for an empty list, since
for an empty list the value of head is null and the body of the while loop is not executed at
all. As an example, we can print all the strings in a list of Strings by saying:

Node runner = head;

while (runner != null) {

System.out.println(runner.item);

runner = runner.next;

}

The while loop can, by the way, be rewritten as a for loop. Remember that even though the
loop control variable in a for loop is often numerical, that is not a requirement. Here is a for

loop that is equivalent to the above while loop:

for (Node runner = head; runner != null; runner = runner.next) {

System.out.println(runner.item);

}

Similarly, we can traverse a list of integers to add up all the numbers in the list. A linked
list of integers can be constructed using the class

public class IntNode {

int item; // One of the integers in the list.

IntNode next; // Pointer to the next node in the list.

}

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 439

If head is a variable of type IntNode that points to a linked list of integers, we can find the sum
of the integers in the list using:

int sum = 0;

IntNode runner = head;

while (runner != null) {

sum = sum + runner.item; // Add current item to the sum.

runner = runner.next;

}

System.out.println("The sum of the list of items is " + sum);

It is also possible to use recursion to process a linked list. Recursion is rarely the natural
way to process a list, since it’s so easy to use a loop to traverse the list. However, understanding
how to apply recursion to lists can help with understanding the recursive processing of more
complex data structures. A non-empty linked list can be thought of as consisting of two parts:
the head of the list, which is just the first node in the list, and the tail of the list, which
consists of the remainder of the list after the head. Note that the tail is itself a linked list and
that it is shorter than the original list (by one node). This is a natural setup for recursion,
where the problem of processing a list can be divided into processing the head and recursively
processing the tail. The base case occurs in the case of an empty list (or sometimes in the case
of a list of length one). For example, here is a recursive algorithm for adding up the numbers
in a linked list of integers:

if the list is empty then

return 0 (since there are no numbers to be added up)

otherwise

let listsum = the number in the head node

let tailsum be the sum of the numbers in the tail list (recursively)

add tailsum to listsum

return listsum

One remaining question is, how do we get the tail of a non-empty linked list? If head is a
variable that points to the head node of the list, then head.next is a variable that points to
the second node of the list—and that node is in fact the first node of the tail. So, we can view
head.next as a pointer to the tail of the list. One special case is when the original list consists
of a single node. In that case, the tail of the list is empty, and head.next is null. Since an
empty list is represented by a null pointer, head.next represents the tail of the list even in this
special case. This allows us to write a recursive list-summing function in Java as

/**

* Compute the sum of all the integers in a linked list of integers.

* @param head a pointer to the first node in the linked list

*/

public static int addItemsInList(IntNode head) {

if (head == null) {

// Base case: The list is empty, so the sum is zero.

return 0;

}

else {

// Recursive case: The list is non-empty. Find the sum of

// the tail list, and add that to the item in the head node.

// (Note that this case could be written simply as

// return head.item + addItemsInList(head.next);)

int listsum = head.item;

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 440

int tailsum = addItemsInList(head.next);

listsum = listsum + tailsum;

return listsum;

}

}

I will finish by presenting a list-processing problem that is easy to solve with recursion, but
quite tricky to solve without it. The problem is to print out all the strings in a linked list of
strings in the reverse of the order in which they occur in the list. Note that when we do this,
the item in the head of a list is printed out after all the items in the tail of the list. This leads
to the following recursive routine. You should convince yourself that it works, and you should
think about trying to do the same thing without using recursion:

public static void printReversed(Node head) {

if (head == null) {

// Base case: The list is empty, and there is nothing to print.

return;

}

else {

// Recursive case: The list is non-empty.

printReversed(head.next); // Print strings from tail, in reverse order.

System.out.println(head.item); // Then print string from head node.

}

}

∗ ∗ ∗

In the rest of this section, we’ll look at a few more advanced operations on a linked list of
strings. The subroutines that we consider are instance methods in a class that I wrote named
StringList. An object of type StringList represents a linked list of strings. The class has a private
instance variable named head of type Node that points to the first node in the list, or is null
if the list is empty. Instance methods in class StringList access head as a global variable. The
source code for StringList is in the file StringList.java, and it is used in a sample program named
ListDemo.java, so you can take a look at the code in context if you want.

One of the methods in the StringList class searches the list, looking for a specified string.
If the string that we are looking for is searchItem, then we have to compare searchItem to
each item in the list. This is an example of basic list traversal and processing. However, in this
case, we can stop processing if we find the item that we are looking for.

/**

* Searches the list for a specified item.

* @param searchItem the item that is to be searched for

* @return true if searchItem is one of the items in the list or false if

* searchItem does not occur in the list.

*/

public boolean find(String searchItem) {

Node runner; // A pointer for traversing the list.

runner = head; // Start by looking at the head of the list.

// (head is an instance variable!)

while (runner != null) {

// Go through the list looking at the string in each

// node. If the string is the one we are looking for,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/StringList.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/ListDemo.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 441

// return true, since the string has been found in the list.

if (runner.item.equals(searchItem))

return true;

runner = runner.next; // Move on to the next node.

}

// At this point, we have looked at all the items in the list

// without finding searchItem. Return false to indicate that

// the item does not exist in the list.

return false;

} // end find()

It is possible that the list is empty, that is, that the value of head is null. We should be
careful that this case is handled properly. In the above code, if head is null, then the body
of the while loop is never executed at all, so no nodes are processed and the return value is
false. This is exactly what we want when the list is empty, since the searchItem can’t occur
in an empty list.

9.2.4 Inserting into a Linked List

The problem of inserting a new item into a linked list is more difficult, at least in the case
where the item is inserted into the middle of the list. (In fact, it’s probably the most difficult
operation on linked data structures that you’ll encounter in this chapter.) In the StringList
class, the items in the nodes of the linked list are kept in increasing order. When a new item
is inserted into the list, it must be inserted at the correct position according to this ordering.
This means that, usually, we will have to insert the new item somewhere in the middle of the
list, between two existing nodes. To do this, it’s convenient to have two variables of type Node,
which refer to the existing nodes that will lie on either side of the new node. In the following
illustration, these variables are previous and runner. Another variable, newNode, refers to the
new node. In order to do the insertion, the link from previous to runner must be “broken,”
and new links from previous to newNode and from newNode to runner must be added:

Inserting a new node

into the middle of a list.

òóôõö" ò÷øùõò ò÷úõò òûøôüò

previous:

runner:

newNode: òýøôôüò

...
...

Once we have previous and runner pointing to the right nodes, the command
“previous.next = newNode;” can be used to make previous.next point to the new node.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 442

And the command “newNode.next = runner” will set newNode.next to point to the correct
place. However, before we can use these commands, we need to set up runner and previous

as shown in the illustration. The idea is to start at the first node of the list, and then move
along the list past all the items that are less than the new item. While doing this, we have to
be aware of the danger of “falling off the end of the list.” That is, we can’t continue if runner
reaches the end of the list and becomes null. If insertItem is the item that is to be inserted,
and if we assume that it does, in fact, belong somewhere in the middle of the list, then the
following code would correctly position previous and runner:

Node runner, previous;

previous = head; // Start at the beginning of the list.

runner = head.next;

while (runner != null && runner.item.compareTo(insertItem) < 0) {

previous = runner; // "previous = previous.next" would also work

runner = runner.next;

}

(This uses the compareTo() instance method from the String class to test whether the item in
the node is less than the item that is being inserted. See Subsection 2.3.3.)

This is fine, except that the assumption that the new node is inserted into the middle of
the list is not always valid. It might be that insertItem is less than the first item of the list.
In that case, the new node must be inserted at the head of the list. This can be done with the
instructions

newNode.next = head; // Make newNode.next point to the old head.

head = newNode; // Make newNode the new head of the list.

It is also possible that the list is empty. In that case, newNode will become the first and only
node in the list. This can be accomplished simply by setting head = newNode. The following
insert() method from the StringList class covers all of these possibilities:

/**

* Insert a specified item into the list, keeping the list in order.

* @param insertItem the item that is to be inserted.

*/

public void insert(String insertItem) {

Node newNode; // A Node to contain the new item.

newNode = new Node();

newNode.item = insertItem; // (N.B. newNode.next is null.)

if (head == null) {

// The new item is the first (and only) one in the list.

// Set head to point to it.

head = newNode;

}

else if (head.item.compareTo(insertItem) >= 0) {

// The new item is less than the first item in the list,

// so it has to be inserted at the head of the list.

newNode.next = head;

head = newNode;

}

else {

// The new item belongs somewhere after the first item

// in the list. Search for its proper position and insert it.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 443

Node runner; // A node for traversing the list.

Node previous; // Always points to the node preceding runner.

runner = head.next; // Start by looking at the SECOND position.

previous = head;

while (runner != null && runner.item.compareTo(insertItem) < 0) {

// Move previous and runner along the list until runner

// falls off the end or hits a list element that is

// greater than or equal to insertItem. When this

// loop ends, previous indicates the position where

// insertItem must be inserted.

previous = runner;

runner = runner.next;

}

newNode.next = runner; // Insert newNode after previous.

previous.next = newNode;

}

} // end insert()

If you were paying close attention to the above discussion, you might have noticed that
there is one special case which is not mentioned. What happens if the new node has to be
inserted at the end of the list? This will happen if all the items in the list are less than the new
item. In fact, this case is already handled correctly by the subroutine, in the last part of the
if statement. If insertItem is greater than all the items in the list, then the while loop will
end when runner has traversed the entire list and become null. However, when that happens,
previous will be left pointing to the last node in the list. Setting previous.next = newNode

adds newNode onto the end of the list. Since runner is null, the command newNode.next =

runner sets newNode.next to null, which is exactly what is needed to mark the end of the list.

9.2.5 Deleting from a Linked List

The delete operation is similar to insert, although a little simpler. There are still special cases
to consider. When the first node in the list is to be deleted, then the value of head has to be
changed to point to what was previously the second node in the list. Since head.next refers to
the second node in the list, this can be done by setting head = head.next. (Once again, you
should check that this works when head.next is null, that is, when there is no second node in
the list. In that case, the list becomes empty.)

If the node that is being deleted is in the middle of the list, then we can set up previous and
runner with runner pointing to the node that is to be deleted and with previous pointing to the
node that precedes that node in the list. Once that is done, the command “previous.next =

runner.next;” will delete the node. The deleted node will be garbage collected. I encourage
you to draw a picture for yourself to illustrate this operation. Here is the complete code for the
delete() method:

/**

* Delete a specified item from the list, if that item is present.

* If multiple copies of the item are present in the list, only

* the one that comes first in the list is deleted.

* @param deleteItem the item to be deleted

* @return true if the item was found and deleted, or false if the item

* was not in the list.

*/

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 444

public boolean delete(String deleteItem) {

if (head == null) {

// The list is empty, so it certainly doesn’t contain deleteString.

return false;

}

else if (head.item.equals(deleteItem)) {

// The string is the first item of the list. Remove it.

head = head.next;

return true;

}

else {

// The string, if it occurs at all, is somewhere beyond the

// first element of the list. Search the list.

Node runner; // A node for traversing the list.

Node previous; // Always points to the node preceding runner.

runner = head.next; // Start by looking at the SECOND list node.

previous = head;

while (runner != null && runner.item.compareTo(deleteItem) < 0) {

// Move previous and runner along the list until runner

// falls off the end or hits a list element that is

// greater than or equal to deleteItem. When this

// loop ends, runner indicates the position where

// deleteItem must be, if it is in the list.

previous = runner;

runner = runner.next;

}

if (runner != null && runner.item.equals(deleteItem)) {

// Runner points to the node that is to be deleted.

// Remove it by changing the pointer in the previous node.

previous.next = runner.next;

return true;

}

else {

// The item does not exist in the list.

return false;

}

}

} // end delete()

9.3 Stacks, Queues, and ADTs

A linked list is a particular type of data structure, made up of objects linked together by
pointers. In the previous section, we used a linked list to store an ordered list of Strings, and
we implemented insert, delete, and find operations on that list. However, we could easily
have stored the list of Strings in an array or ArrayList, instead of in a linked list. We could still
have implemented the same operations on the list. The implementations of these operations
would have been different, but their interfaces and logical behavior would still be the same.

The term abstract data type , or ADT , refers to a set of possible values and a set of
operations on those values, without any specification of how the values are to be represented
or how the operations are to be implemented. An “ordered list of strings” can be defined as an

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 445

abstract data type. Any sequence of Strings that is arranged in increasing order is a possible
value of this data type. The operations on the data type include inserting a new string, deleting
a string, and finding a string in the list. There are often several different ways to implement the
same abstract data type. For example, the “ordered list of strings” ADT can be implemented
as a linked list or as an array. A program that only depends on the abstract definition of the
ADT can use either implementation, interchangeably. In particular, the implementation of the
ADT can be changed without affecting the program as a whole. This can make the program
easier to debug and maintain, so ADTs are an important tool in software engineering.

In this section, we’ll look at two common abstract data types, stacks and queues. Both
stacks and queues are often implemented as linked lists, but that is not the only possible
implementation. You should think of the rest of this section partly as a discussion of stacks
and queues and partly as a case study in ADTs.

9.3.1 Stacks

A stack consists of a sequence of items, which should be thought of as piled one on top of
the other like a physical stack of boxes or cafeteria trays. Only the top item on the stack is
accessible at any given time. It can be removed from the stack with an operation called pop.
An item lower down on the stack can only be removed after all the items on top of it have been
popped off the stack. A new item can be added to the top of the stack with an operation called
push . We can make a stack of any type of items. If, for example, the items are values of type
int, then the push and pop operations can be implemented as instance methods

• void push (int newItem) — Add newItem to top of stack.

• int pop() — Remove the top int from the stack and return it.

It is an error to try to pop an item from an empty stack, so it is important to be able to tell
whether a stack is empty. We need another stack operation to do the test, implemented as an
instance method

• boolean isEmpty() — Returns true if the stack is empty.

This defines a “stack of ints” as an abstract data type. This ADT can be implemented in several
ways, but however it is implemented, its behavior must correspond to the abstract mental image
of a stack.

25

123

5

17

83

25

123

5

17

Original stack. After pop(). After push(83).

12

25

123

5

17

In a stack, all operations take place at the

"top" of the stack. The "push" operation

adds an item to the top of the stack.

The "pop" operation removes the item on

the top of the stack and returns it.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 446

In the linked list implementation of a stack, the top of the stack is actually the node at the
head of the list. It is easy to add and remove nodes at the front of a linked list—much easier
than inserting and deleting nodes in the middle of the list. Here is a class that implements the
“stack of ints” ADT using a linked list. (It uses a static nested class to represent the nodes of
the linked list, but that is part of the private implementation of the ADT.)

public class StackOfInts {

/**

* An object of type Node holds one of the items in the linked list

* that represents the stack.

*/

private static class Node {

int item;

Node next;

}

private Node top; // Pointer to the Node that is at the top of

// of the stack. If top == null, then the

// stack is empty.

/**

* Add N to the top of the stack.

*/

public void push(int N) {

Node newTop; // A Node to hold the new item.

newTop = new Node();

newTop.item = N; // Store N in the new Node.

newTop.next = top; // The new Node points to the old top.

top = newTop; // The new item is now on top.

}

/**

* Remove the top item from the stack, and return it.

* Throws an IllegalStateException if the stack is empty when

* this method is called.

*/

public int pop() {

if (top == null)

throw new IllegalStateException("Can’t pop from an empty stack.");

int topItem = top.item; // The item that is being popped.

top = top.next; // The previous second item is now on top.

return topItem;

}

/**

* Returns true if the stack is empty. Returns false

* if there are one or more items on the stack.

*/

public boolean isEmpty() {

return (top == null);

}

} // end class StackOfInts

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 447

You should make sure that you understand how the push and pop operations operate on the
linked list. Drawing some pictures might help. Note that the linked list is part of the private
implementation of the StackOfInts class. A program that uses this class doesn’t even need to
know that a linked list is being used.

Now, it’s pretty easy to implement a stack as an array instead of as a linked list. Since the
number of items on the stack varies with time, a counter is needed to keep track of how many
spaces in the array are actually in use. If this counter is called top, then the items on the stack
are stored in positions 0, 1, . . . , top-1 in the array. The item in position 0 is on the bottom
of the stack, and the item in position top-1 is on the top of the stack. Pushing an item onto
the stack is easy: Put the item in position top and add 1 to the value of top. If we don’t want
to put a limit on the number of items that the stack can hold, we can use the dynamic array
techniques from Subsection 7.2.4. Note that the typical picture of the array would show the
stack “upside down,” with the bottom of the stack at the top of the array. This doesn’t matter.
The array is just an implementation of the abstract idea of a stack, and as long as the stack
operations work the way they are supposed to, we are OK. Here is a second implementation of
the StackOfInts class, using a dynamic array:

public class StackOfInts { // (alternate version, using an array)

private int[] items = new int[10]; // Holds the items on the stack.

private int top = 0; // The number of items currently on the stack.

/**

* Add N to the top of the stack.

*/

public void push(int N) {

if (top == items.length) {

// The array is full, so make a new, larger array and

// copy the current stack items into it. (Note that

// java.util.Arrays must be imported.)

items = Arrays.copyOf(items, 2*items.length);

}

items[top] = N; // Put N in next available spot.

top++; // Number of items goes up by one.

}

/**

* Remove the top item from the stack, and return it.

* Throws an IllegalStateException if the stack is empty when

* this method is called.

*/

public int pop() {

if (top == 0)

throw new IllegalStateException("Can’t pop from an empty stack.");

int topItem = items[top - 1]; // Top item in the stack.

top--; // Number of items on the stack goes down by one.

return topItem;

}

/**

* Returns true if the stack is empty. Returns false

* if there are one or more items on the stack.

*/

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 448

public boolean isEmpty() {

return (top == 0);

}

} // end class StackOfInts

Once again, the implementation of the stack (as an array) is private to the class. The two
versions of the StackOfInts class can be used interchangeably, since their public interfaces are
identical.

∗ ∗ ∗

It’s interesting to look at the run time analysis of stack operations. (See Section 8.5). We
can measure the size of the problem by the number of items that are on the stack. For the
linked list implementation of a stack, the worst case run time both for the push and for the pop
operation is Θ(1). This just means that the run time is less than some constant, independent
of the number of items on the stack. This is easy to see if you look at the code. The operations
are implemented with a few simple assignment statements, and the number of items on the
stack has no effect.

For the array implementation, on the other hand, a special case occurs in the push operation
when the array is full. In that case, a new array is created and all the stack items are copied
into the new array. This takes an amount of time that is proportional to the number of items
on the stack. So, although the run time for push is usually Θ(1), the worst case run time is
Θ(n), where n is the number of items on the stack. (However, the worst case occurs only rarely,
and there is a natural sense in which the average case run time for the array implementation is
still Θ(1).)

9.3.2 Queues

Queues are similar to stacks in that a queue consists of a sequence of items, and there are
restrictions about how items can be added to and removed from the list. However, a queue
has two ends, called the front and the back of the queue. Items are always added to the queue
at the back and removed from the queue at the front. The operations of adding and removing
items are called enqueue and dequeue . An item that is added to the back of the queue will
remain on the queue until all the items in front of it have been removed. This should sound
familiar. A queue is like a “line” or “queue” of customers waiting for service. Customers are
serviced in the order in which they arrive on the queue.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 449

46 125 8 22 17

125 8 22 17

83125 8 22 17

þÿI�� I�ÿIe ��I�I aÿ �a�� a�� 	Ia
I �er� �er�ÿ

Af�� ������

Af�� �����q��

þ� a ��I�I� a		 r�Ieaÿ�r�� ÿa�I �	a�I aÿ r�I I�� r� ÿdI ��I�I
re ÿdI rÿdIe. �dI "I���I�I" r�Ieaÿ�r� a��� a� �ÿI� ÿr ÿde

"�a��" r� ÿdI ��I�I. �dI "�I��I�I" r�Ieaÿ�r� eI�r
I� ÿdI
�ÿI� aÿ ÿdI "�er�ÿ" a�� eIÿ�e�� �ÿ.

BackFront

A queue can hold items of any type. For a queue of ints, the enqueue and dequeue operations
can be implemented as instance methods in a “QueueOfInts” class. We also need an instance
method for checking whether the queue is empty:

• void enqueue(int N) — Add N to the back of the queue.

• int dequeue() — Remove the item at the front and return it.

• boolean isEmpty() — Return true if the queue is empty.

A queue can be implemented as a linked list or as an array. An efficient array implementation
is trickier than the array implementation of a stack, so I won’t give it here. In the linked list
implementation, the first item of the list is at the front of the queue. Dequeueing an item from
the front of the queue is just like popping an item off a stack. The back of the queue is at the
end of the list. Enqueueing an item involves setting a pointer in the last node of the current
list to point to a new node that contains the item. To do this, we’ll need a command like
“tail.next = newNode;”, where tail is a pointer to the last node in the list. If head is a
pointer to the first node of the list, it would always be possible to get a pointer to the last node
of the list by saying:

Node tail; // This will point to the last node in the list.

tail = head; // Start at the first node.

while (tail.next != null) {

tail = tail.next; // Move to next node.

}

// At this point, tail.next is null, so tail points to

// the last node in the list.

However, it would be very inefficient to do this over and over every time an item is enqueued.
For the sake of efficiency, we’ll keep a pointer to the last node in an instance variable. This
complicates the class somewhat; we have to be careful to update the value of this variable
whenever a new node is added to the end of the list. Given all this, writing the QueueOfInts
class is not all that difficult:

public class QueueOfInts {

/**

* An object of type Node holds one of the items

* in the linked list that represents the queue.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 450

*/

private static class Node {

int item;

Node next;

}

private Node head = null; // Points to first Node in the queue.

// The queue is empty when head is null.

private Node tail = null; // Points to last Node in the queue.

/**

* Add N to the back of the queue.

*/

public void enqueue(int N) {

Node newTail = new Node(); // A Node to hold the new item.

newTail.item = N;

if (head == null) {

// The queue was empty. The new Node becomes

// the only node in the list. Since it is both

// the first and last node, both head and tail

// point to it.

head = newTail;

tail = newTail;

}

else {

// The new node becomes the new tail of the list.

// (The head of the list is unaffected.)

tail.next = newTail;

tail = newTail;

}

}

/**

* Remove and return the front item in the queue.

* Throws an IllegalStateException if the queue is empty.

*/

public int dequeue() {

if (head == null)

throw new IllegalStateException("Can’t dequeue from an empty queue.");

int firstItem = head.item;

head = head.next; // The previous second item is now first.

// If we have just removed the last item,

// then head is null.

if (head == null) {

// The queue has become empty. The Node that was

// deleted was the tail as well as the head of the

// list, so now there is no tail. (Actually, the

// class would work fine without this step.)

tail = null;

}

return firstItem;

}

/**

* Return true if the queue is empty.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 451

*/

boolean isEmpty() {

return (head == null);

}

} // end class QueueOfInts

Queues are typically used in a computer (as in real life) when only one item can be processed
at a time, but several items can be waiting for processing. For example:

• In a Java program that has multiple threads, the threads that want processing time on
the CPU are kept in a queue. When a new thread is started, it is added to the back of the
queue. A thread is removed from the front of the queue, given some processing time, and
then—if it has not terminated—is sent to the back of the queue to wait for another turn.

• Events such as keystrokes and mouse clicks are stored in a queue called the “event queue”.
A program removes events from the event queue and processes them. It’s possible for
several more events to occur while one event is being processed, but since the events are
stored in a queue, they will always be processed in the order in which they occurred.

• A web server is a program that receives requests from web browsers for “pages.” It is easy
for new requests to arrive while the web server is still fulfilling a previous request. Requests
that arrive while the web server is busy are placed into a queue to await processing. Using
a queue ensures that requests will be processed in the order in which they were received.

Queues are said to implement a FIFO policy: First In, First Out. Or, as it is more
commonly expressed, first come, first served. Stacks, on the other hand implement a LIFO
policy: Last In, First Out. The item that comes out of the stack is the last one that was put
in. Just like queues, stacks can be used to hold items that are waiting for processing (although
in applications where queues are typically used, a stack would be considered “unfair”).

∗ ∗ ∗

To get a better handle on the difference between stacks and queues, consider the sample
program DepthBreadth.java. I suggest that you try out the program. The program shows a
grid of squares. Initially, all the squares are white. When you click on a white square, the
program will gradually mark all the squares in the grid, starting from the one where you click.
To understand how the program does this, think of yourself in the place of the program. When
the user clicks a square, you are handed an index card. The location of the square—its row and
column—is written on the card. You put the card in a pile, which then contains just that one
card. Then, you repeat the following: If the pile is empty, you are done. Otherwise, remove
an index card from the pile. The index card specifies a square. Look at each horizontal and
vertical neighbor of that square. If the neighbor has not already been encountered, write its
location on a new index card and put the card in the pile. You are done when there are no
more index cards waiting in the pile to be processed.

In the program, while a square is in the pile, waiting to be processed, it is colored red; that
is, red squares have been encountered but not yet processed. When a square is taken from the
pile and processed, its color changes to gray. Once a square has been colored gray, its color
won’t change again. Eventually, all the squares have been processed, and the procedure ends.
At that time, every square is gray. In the index card analogy, the pile of cards has been emptied.

The program can use your choice of three methods: Stack, Queue, and Random. In each
case, the same general procedure is used. The only difference is how the “pile of index cards” is
managed. For a stack, cards are added and removed at the top of the pile. For a queue, cards

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/DepthBreadth.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 452

are added to the bottom of the pile and removed from the top. In the random case, the card to
be processed is picked at random from among all the cards in the pile. The order of processing
is very different in these three cases. Here are three pictures from the program, using the three
different processing methods. In each case, the process was started by selecting a square near
the middle of the grid. A stack is used for the picture on the left, a queue for the picture in
the middle, and random selection for the picture on the right:

The patterns that are produced are very different. When using a stack, the program explores
out as far as possible before it starts backtracking to look at previously encountered squares.
With a queue, squares are processed roughly in the order of their distance from the starting
point. When random selection is used, the result is an irregular blob, but it is a connected blob
since a square can only be encountered if it is next to a previously encountered square.

You should experiment with the program to see how it all works. Try to understand how
stacks and queues are being used. Try starting from one of the corner squares. While the
process is going on, you can click on other white squares, and they will be added to the list of
encountered squares. When you do this with a stack, you should notice that the square you
click is processed immediately, and all the red squares that were already waiting for processing
have to wait. On the other hand, if you do this with a queue, the square that you click will
wait its turn until all the squares that were already in the pile have been processed. Again, the
source code for the program is DepthBreadth.java.

∗ ∗ ∗

Queues seem very natural because they occur so often in real life, but there are times when
stacks are appropriate and even essential. For example, consider what happens when a routine
calls a subroutine. The first routine is suspended while the subroutine is executed, and it will
continue only when the subroutine returns. Now, suppose that the subroutine calls a second
subroutine, and the second subroutine calls a third, and so on. Each subroutine is suspended
while the subsequent subroutines are executed. The computer has to keep track of all the
subroutines that are suspended. It does this with a stack.

When a subroutine is called, an activation record is created for that subroutine. The
activation record contains information relevant to the execution of the subroutine, such as its
local variables and parameters. The activation record for the subroutine is placed on a stack.
It will be removed from the stack and destroyed when the subroutine returns. If the subroutine
calls another subroutine, the activation record of the second subroutine is pushed onto the
stack, on top of the activation record of the first subroutine. The stack can continue to grow
as more subroutines are called, and it shrinks as those subroutines return.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/DepthBreadth.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 453

9.3.3 Postfix Expressions

As another example, stacks can be used to evaluate postfix expressions. An ordinary mathe-
matical expression such as 2+(15-12)*17 is called an infix expression . In an infix expression,
an operator comes in between its two operands, as in “2 + 2”. In a postfix expression, an oper-
ator comes after its two operands, as in “2 2 +”. The infix expression “2+(15-12)*17” would
be written in postfix form as “2 15 12 - 17 * +”. The “-” operator in this expression applies
to the two operands that precede it, namely “15” and “12”. The “*” operator applies to the
two operands that precede it, namely “15 12 -” and “17”. And the “+” operator applies to
“2” and “15 12 - 17 *”. These are the same computations that are done in the original infix
expression.

Now, suppose that we want to process the expression “2 15 12 - 17 * +”, from left to
right and find its value. The first item we encounter is the 2, but what can we do with it?
At this point, we don’t know what operator, if any, will be applied to the 2 or what the other
operand might be. We have to remember the 2 for later processing. We do this by pushing
it onto a stack. Moving on to the next item, we see a 15, which is pushed onto the stack on
top of the 2. Then the 12 is added to the stack. Now, we come to the operator, “-”. This
operation applies to the two operands that preceded it in the expression. We have saved those
two operands on the stack. So, to process the “-” operator, we pop two numbers from the
stack, 12 and 15, and compute 15 - 12 to get the answer 3. This 3 must be remembered to be
used in later processing, so we push it onto the stack, on top of the 2 that is still waiting there.
The next item in the expression is a 17, which is processed by pushing it onto the stack, on top
of the 3. To process the next item, “*”, we pop two numbers from the stack. The numbers are
17 and the 3 that represents the value of “15 12 -”. These numbers are multiplied, and the
result, 51 is pushed onto the stack. The next item in the expression is a “+” operator, which is
processed by popping 51 and 2 from the stack, adding them, and pushing the result, 53, onto
the stack. Finally, we’ve come to the end of the expression. The number on the stack is the
value of the entire expression, so all we have to do is pop the answer from the stack, and we
are done! The value of the expression is 53.

Although it’s easier for people to work with infix expressions, postfix expressions have some
advantages. For one thing, postfix expressions don’t require parentheses or precedence rules.
The order in which operators are applied is determined entirely by the order in which they
occur in the expression. This allows the algorithm for evaluating postfix expressions to be
fairly straightforward:

Start with an empty stack

for each item in the expression:

if the item is a number:

Push the number onto the stack

else if the item is an operator:

Pop the operands from the stack // Can generate an error

Apply the operator to the operands

Push the result onto the stack

else

There is an error in the expression

Pop a number from the stack // Can generate an error

if the stack is not empty:

There is an error in the expression

else:

The last number that was popped is the value of the expression

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 454

Errors in an expression can be detected easily. For example, in the expression “2 3 + *”,
there are not enough operands for the “*” operation. This will be detected in the algorithm
when an attempt is made to pop the second operand for “*” from the stack, since the stack
will be empty. The opposite problem occurs in “2 3 4 +”. There are not enough operators for
all the numbers. This will be detected when the 2 is left still sitting in the stack at the end of
the algorithm.

This algorithm is demonstrated in the sample program PostfixEval.java. This program lets
you type in postfix expressions made up of non-negative real numbers and the operators “+”,
“-”, “*”, “/”, and ”^”. The “^” represents exponentiation. That is, “2 3 ^” is evaluated as
23. The program prints out a message as it processes each item in the expression. The stack
class that is used in the program is defined in the file StackOfDouble.java. The StackOfDouble
class is identical to the first StackOfInts class, given above, except that it has been modified to
store values of type double instead of values of type int.

The only interesting aspect of this program is the method that implements the postfix
evaluation algorithm. It is a direct implementation of the pseudocode algorithm given above:

/**

* Read one line of input and process it as a postfix expression.

* If the input is not a legal postfix expression, then an error

* message is displayed. Otherwise, the value of the expression

* is displayed. It is assumed that the first character on

* the input line is a non-blank.

*/

private static void readAndEvaluate() {

StackOfDouble stack; // For evaluating the expression.

stack = new StackOfDouble(); // Make a new, empty stack.

System.out.println();

while (TextIO.peek() != ’\n’) {

if (Character.isDigit(TextIO.peek())) {

// The next item in input is a number. Read it and

// save it on the stack.

double num = TextIO.getDouble();

stack.push(num);

System.out.println(" Pushed constant " + num);

}

else {

// Since the next item is not a number, the only thing

// it can legally be is an operator. Get the operator

// and perform the operation.

char op; // The operator, which must be +, -, *, /, or ^.

double x,y; // The operands, from the stack, for the operation.

double answer; // The result, to be pushed onto the stack.

op = TextIO.getChar();

if (op != ’+’ && op != ’-’ && op != ’*’ && op != ’/’ && op != ’^’) {

// The character is not one of the acceptable operations.

System.out.println("\nIllegal operator found in input: " + op);

return;

}

if (stack.isEmpty()) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/PostfixEval.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/StackOfDouble.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 455

System.out.println(" Stack is empty while trying to evaluate " + op);

System.out.println("\nNot enough numbers in expression!");

return;

}

y = stack.pop();

if (stack.isEmpty()) {

System.out.println(" Stack is empty while trying to evaluate " + op);

System.out.println("\nNot enough numbers in expression!");

return;

}

x = stack.pop();

switch (op) {

case ’+’:

answer = x + y;

break;

case ’-’:

answer = x - y;

break;

case ’*’:

answer = x * y;

break;

case ’/’:

answer = x / y;

break;

default:

answer = Math.pow(x,y); // (op must be ’^’.)

}

stack.push(answer);

System.out.println(" Evaluated " + op + " and pushed " + answer);

}

TextIO.skipBlanks();

} // end while

// If we get to this point, the input has been read successfully.

// If the expression was legal, then the value of the expression is

// on the stack, and it is the only thing on the stack.

if (stack.isEmpty()) { // Impossible if the input is really non-empty.

System.out.println("No expression provided.");

return;

}

double value = stack.pop(); // Value of the expression.

System.out.println(" Popped " + value + " at end of expression.");

if (stack.isEmpty() == false) {

System.out.println(" Stack is not empty.");

System.out.println("\nNot enough operators for all the numbers!");

return;

}

System.out.println("\nValue = " + value);

} // end readAndEvaluate()

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 456

Postfix expressions are often used internally by computers. In fact, the Java virtual machine
is a “stack machine” which uses the stack-based approach to expression evaluation that we have
been discussing. The algorithm can easily be extended to handle variables, as well as constants.
When a variable is encountered in the expression, the value of the variable is pushed onto the
stack. It also works for operators with more or fewer than two operands. As many operands as
are needed are popped from the stack and the result is pushed back onto the stack. For example,
the unary minus operator, which is used in the expression “-x”, has a single operand. We
will continue to look at expressions and expression evaluation in the next two sections.

9.4 Binary Trees

We have seen in the two previous sections how objects can be linked into lists. When an
object contains two pointers to objects of the same type, structures can be created that are
much more complicated than linked lists. In this section, we’ll look at one of the most basic and
useful structures of this type: binary trees. Each of the objects in a binary tree contains two
pointers, typically called left and right. In addition to these pointers, of course, the nodes
can contain other types of data. For example, a binary tree of integers would be made up of
objects of the following type:

class TreeNode {

int item; // The data in this node.

TreeNode left; // Pointer to the left subtree.

TreeNode right; // Pointer to the right subtree.

}

The left and right pointers in a TreeNode can be null or can point to other objects of
type TreeNode. A node that points to another node is said to be the parent of that node, and
the node it points to is called a child . In the picture below, for example, node 3 is the parent
of node 6, and nodes 4 and 5 are children of node 2. Not every linked structure made up of
tree nodes is a binary tree. A binary tree must have the following properties: There is exactly
one node in the tree which has no parent. This node is called the root of the tree. Every other
node in the tree has exactly one parent. Finally, there can be no loops in a binary tree. That
is, it is not possible to follow a chain of pointers starting at some node and arriving back at the
same node.

1

2 3

null

6

null

null

5

null

null

4

null

null

L��� ����

R��! ����

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 457

A node that has no children is called a leaf . A leaf node can be recognized by the fact that
both the left and right pointers in the node are null. In the standard picture of a binary tree,
the root node is shown at the top and the leaf nodes at the bottom—which doesn’t show much
respect for the analogy to real trees. But at least you can see the branching, tree-like structure
that gives a binary tree its name.

9.4.1 Tree Traversal

Consider any node in a binary tree. Look at that node together with all its descendants (that
is, its children, the children of its children, and so on). This set of nodes forms a binary tree,
which is called a subtree of the original tree. For example, in the picture, nodes 2, 4, and 5
form a subtree. This subtree is called the left subtree of the root. Similarly, nodes 3 and 6
make up the right subtree of the root. We can consider any non-empty binary tree to be made
up of a root node, a left subtree, and a right subtree. Either or both of the subtrees can be
empty. This is a recursive definition, matching the recursive definition of the TreeNode class.
So it should not be a surprise that recursive subroutines are often used to process trees.

Consider the problem of counting the nodes in a binary tree. As an exercise, you might try
to come up with a non-recursive algorithm to do the counting, but you shouldn’t expect to find
one easily. The heart of the problem is keeping track of which nodes remain to be counted. It’s
not so easy to do this, and in fact it’s not even possible without an auxiliary data structure
such as a stack or queue. With recursion, however, the algorithm is almost trivial. Either the
tree is empty or it consists of a root and two subtrees. If the tree is empty, the number of nodes
is zero. (This is the base case of the recursion.) Otherwise, use recursion to count the nodes in
each subtree. Add the results from the subtrees together, and add one to count the root. This
gives the total number of nodes in the tree. Written out in Java:

/**

* Count the nodes in the binary tree to which root points, and

* return the answer. If root is null, the answer is zero.

*/

static int countNodes(TreeNode root) {

if (root == null)

return 0; // The tree is empty. It contains no nodes.

else {

int count = 1; // Start by counting the root.

count += countNodes(root.left); // Add the number of nodes

// in the left subtree.

count += countNodes(root.right); // Add the number of nodes

// in the right subtree.

return count; // Return the total.

}

} // end countNodes()

Or, consider the problem of printing the items in a binary tree. If the tree is empty, there
is nothing to do. If the tree is non-empty, then it consists of a root and two subtrees. Print the
item in the root and use recursion to print the items in the subtrees. Here is a subroutine that
prints all the items on one line of output:

/**

* Print all the items in the tree to which root points.

* The item in the root is printed first, followed by the

* items in the left subtree and then the items in the

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 458

* right subtree.

*/

static void preorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

System.out.print(root.item + " "); // Print the root item.

preorderPrint(root.left); // Print items in left subtree.

preorderPrint(root.right); // Print items in right subtree.

}

} // end preorderPrint()

This routine is called “preorderPrint” because it uses a preorder traversal of the tree.
In a preorder traversal, the root node of the tree is processed first, then the left subtree is
traversed, then the right subtree. In a postorder traversal , the left subtree is traversed, then
the right subtree, and then the root node is processed. And in an inorder traversal , the left
subtree is traversed first, then the root node is processed, then the right subtree is traversed.
Printing subroutines that use postorder and inorder traversal differ from preorderPrint only
in the placement of the statement that outputs the root item:

/**

* Print all the items in the tree to which root points.

* The item in the left subtree is printed first, followed

* by the items in the right subtree and then the item

* in the root node.

*/

static void postorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

postorderPrint(root.left); // Print items in left subtree.

postorderPrint(root.right); // Print items in right subtree.

System.out.print(root.item + " "); // Print the root item.

}

} // end postorderPrint()

/**

* Print all the items in the tree to which root points.

* The item in the left subtree is printed first, followed

* by the item in the root node and then the items

* in the right subtree.

*/

static void inorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

inorderPrint(root.left); // Print items in left subtree.

System.out.print(root.item + " "); // Print the root item.

inorderPrint(root.right); // Print items in right subtree.

}

} // end inorderPrint()

Each of these subroutines can be applied to the binary tree shown in the illustration at the
beginning of this section. The order in which the items are printed differs in each case:

preorderPrint outputs: 1 2 4 5 3 6

postorderPrint outputs: 4 5 2 6 3 1

inorderPrint outputs: 4 2 5 1 3 6

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 459

In preorderPrint, for example, the item at the root of the tree, 1, is output before anything
else. But the preorder printing also applies to each of the subtrees of the root. The root item
of the left subtree, 2, is printed before the other items in that subtree, 4 and 5. As for the right
subtree of the root, 3 is output before 6. A preorder traversal applies at all levels in the tree.
The other two traversal orders can be analyzed similarly.

9.4.2 Binary Sort Trees

One of the examples in Section 9.2 was a linked list of strings, in which the strings were kept
in increasing order. While a linked list works well for a small number of strings, it becomes
inefficient for a large number of items. When inserting an item into the list, searching for that
item’s position requires looking at, on average, half the items in the list. Finding an item in the
list requires a similar amount of time. If the strings are stored in a sorted array instead of in a
linked list, then searching becomes more efficient because binary search can be used. However,
inserting a new item into the array is still inefficient since it means moving, on average, half of
the items in the array to make a space for the new item. A binary tree can be used to store
an ordered list of strings, or other items, in a way that makes both searching and insertion
efficient. A binary tree used in this way is called a binary sort tree.

A binary sort tree is a binary tree with the following property: For every node in the tree,
the item in that node is greater than or equal to every item in the left subtree of that node, and
it is less than or equal to all the items in the right subtree of that node. Here for example is
a binary sort tree containing items of type String. (In this picture, I haven’t bothered to draw
all the pointer variables. Non-null pointers are shown as arrows.)

j#$%

b&'' m()%

)**+,

('&-/ 0)/$ tom

$(2/ j(3/

j*/4 56789: ;<9= T9>>

Binary sort trees have this useful property: An inorder traversal of the tree will process the
items in increasing order. In fact, this is really just another way of expressing the definition.
For example, if an inorder traversal is used to print the items in the tree shown above, then the
items will be in alphabetical order. The definition of an inorder traversal guarantees that all
the items in the left subtree of “judy” are printed before “judy”, and all the items in the right
subtree of “judy” are printed after “judy”. But the binary sort tree property guarantees that
the items in the left subtree of “judy” are precisely those that precede “judy” in alphabetical
order, and all the items in the right subtree follow “judy” in alphabetical order. So, we know
that “judy” is output in its proper alphabetical position. But the same argument applies to
the subtrees. “Bill” will be output after “alice” and before “fred” and its descendents. “Fred”
will be output after “dave” and before “jane” and “joe”. And so on.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 460

Suppose that we want to search for a given item in a binary search tree. Compare that item
to the root item of the tree. If they are equal, we’re done. If the item we are looking for is
less than the root item, then we need to search the left subtree of the root—the right subtree
can be eliminated because it only contains items that are greater than or equal to the root.
Similarly, if the item we are looking for is greater than the item in the root, then we only need
to look in the right subtree. In either case, the same procedure can then be applied to search
the subtree. Inserting a new item is similar: Start by searching the tree for the position where
the new item belongs. When that position is found, create a new node and attach it to the tree
at that position.

Searching and inserting are efficient operations on a binary search tree, provided that the
tree is close to being balanced . A binary tree is balanced if for each node, the left subtree of
that node contains approximately the same number of nodes as the right subtree. In a perfectly
balanced tree, the two numbers differ by at most one. Not all binary trees are balanced, but if
the tree is created by inserting items in a random order, there is a high probability that the tree
is approximately balanced. (If the order of insertion is not random, however, it’s quite possible
for the tree to be very unbalanced.) During a search of any binary sort tree, every comparison
eliminates one of two subtrees from further consideration. If the tree is balanced, that means
cutting the number of items still under consideration in half. This is exactly the same as the
binary search algorithm, and the result is a similarly efficient algorithm.

In terms of asymptotic analysis (Section 8.5), searching, inserting, and deleting in a binary
search tree have average case run time Θ(log(n)). The problem size, n, is the number of items
in the tree, and the average is taken over all the different orders in which the items could have
been inserted into the tree. As long as the actual insertion order is random, the actual run
time can be expected to be close to the average. However, the worst case run time for binary
search tree operations is Θ(n), which is much worse than Θ(log(n)). The worst case occurs
for particular insertion orders. For example, if the items are inserted into the tree in order of
increasing size, then every item that is inserted moves always to the right as it moves down
the tree. The result is a “tree” that looks more like a linked list, since it consists of a linear
string of nodes strung together by their right child pointers. Operations on such a tree have
the same performance as operations on a linked list. Now, there are data structures that are
similar to simple binary sort trees, except that insertion and deletion of nodes are implemented
in a way that will always keep the tree balanced, or almost balanced. For these data structures,
searching, inserting, and deleting have both average case and worst case run times that are
Θ(log(n)). Here, however, we will look at only the simple versions of inserting and searching.

The sample program SortTreeDemo.java is a demonstration of binary sort trees. The pro-
gram includes subroutines that implement inorder traversal, searching, and insertion. We’ll
look at the latter two subroutines below. The main() routine tests the subroutines by letting
you type in strings to be inserted into the tree.

In SortTreeDemo, nodes in the binary tree are represented using the following static nested
class, including a simple constructor that makes creating nodes easier:

/**

* An object of type TreeNode represents one node in a binary tree of strings.

*/

private static class TreeNode {

String item; // The data in this node.

TreeNode left; // Pointer to left subtree.

TreeNode right; // Pointer to right subtree.

TreeNode(String str) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SortTreeDemo.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 461

// Constructor. Make a node containing str.

// Note that left and right pointers are null.

item = str;

}

} // end class TreeNode

A static member variable of type TreeNode points to the binary sort tree that is used by the
program:

private static TreeNode root; // Pointer to the root node in the tree.

// When the tree is empty, root is null.

A recursive subroutine named treeContains is used to search for a given item in the tree. This
routine implements the search algorithm for binary trees that was outlined above:

/**

* Return true if item is one of the items in the binary

* sort tree to which root points. Return false if not.

*/

static boolean treeContains(TreeNode root, String item) {

if (root == null) {

// Tree is empty, so it certainly doesn’t contain item.

return false;

}

else if (item.equals(root.item)) {

// Yes, the item has been found in the root node.

return true;

}

else if (item.compareTo(root.item) < 0) {

// If the item occurs, it must be in the left subtree.

return treeContains(root.left, item);

}

else {

// If the item occurs, it must be in the right subtree.

return treeContains(root.right, item);

}

} // end treeContains()

When this routine is called in the main() routine, the first parameter is the static member
variable root, which points to the root of the entire binary sort tree.

It’s worth noting that recursion is not really essential in this case. A simple, non-recursive
algorithm for searching a binary sort tree follows the rule: Start at the root and move down
the tree until you find the item or reach a null pointer. Since the search follows a single path
down the tree, it can be implemented as a while loop. Here is a non-recursive version of the
search routine:

private static boolean treeContainsNR(TreeNode root, String item) {

TreeNode runner; // For "running" down the tree.

runner = root; // Start at the root node.

while (true) {

if (runner == null) {

// We’ve fallen off the tree without finding item.

return false;

}

else if (item.equals(runner.item)) {

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 462

// We’ve found the item.

return true;

}

else if (item.compareTo(runner.item) < 0) {

// If the item occurs, it must be in the left subtree,

// So, advance the runner down one level to the left.

runner = runner.left;

}

else {

// If the item occurs, it must be in the right subtree.

// So, advance the runner down one level to the right.

runner = runner.right;

}

} // end while

} // end treeContainsNR();

The subroutine for inserting a new item into the tree turns out to be more similar to the
non-recursive search routine than to the recursive. The insertion routine has to handle the case
where the tree is empty. In that case, the value of root must be changed to point to a node
that contains the new item:

root = new TreeNode(newItem);

But this means, effectively, that the root can’t be passed as a parameter to the subroutine,
because it is impossible for a subroutine to change the value stored in an actual parameter.
(I should note that this is something that is possible in other languages.) Recursion uses
parameters in an essential way. There are ways to work around the problem, but the easiest
thing is just to use a non-recursive insertion routine that accesses the static member variable
root directly. One difference between inserting an item and searching for an item is that we
have to be careful not to fall off the tree. That is, we have to stop searching just before runner

becomes null. When we get to an empty spot in the tree, that’s where we have to insert the
new node:

/**

* Add the item to the binary sort tree to which the global variable

* "root" refers. (Note that root can’t be passed as a parameter to

* this routine because the value of root might change, and a change

* in the value of a formal parameter does not change the actual parameter.)

*/

private static void treeInsert(String newItem) {

if (root == null) {

// The tree is empty. Set root to point to a new node containing

// the new item. This becomes the only node in the tree.

root = new TreeNode(newItem);

return;

}

TreeNode runner; // Runs down the tree to find a place for newItem.

runner = root; // Start at the root.

while (true) {

if (newItem.compareTo(runner.item) < 0) {

// Since the new item is less than the item in runner,

// it belongs in the left subtree of runner. If there

// is an open space at runner.left, add a new node there.

// Otherwise, advance runner down one level to the left.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 463

if (runner.left == null) {

runner.left = new TreeNode(newItem);

return; // New item has been added to the tree.

}

else

runner = runner.left;

}

else {

// Since the new item is greater than or equal to the item in

// runner, it belongs in the right subtree of runner. If there

// is an open space at runner.right, add a new node there.

// Otherwise, advance runner down one level to the right.

if (runner.right == null) {

runner.right = new TreeNode(newItem);

return; // New item has been added to the tree.

}

else

runner = runner.right;

}

} // end while

} // end treeInsert()

9.4.3 Expression Trees

Another application of trees is to store mathematical expressions such as 15*(x+y) or
sqrt(42)+7 in a convenient form. Let’s stick for the moment to expressions made up of num-
bers and the operators +, -, *, and /. Consider the expression 3*((7+1)/4)+(17-5). This
expression is made up of two subexpressions, 3*((7+1)/4) and (17-5), combined with the
operator “+”. When the expression is represented as a binary tree, the root node holds the
operator +, while the subtrees of the root node represent the subexpressions 3*((7+1)/4) and
(17-5). Every node in the tree holds either a number or an operator. A node that holds a
number is a leaf node of the tree. A node that holds an operator has two subtrees representing
the operands to which the operator applies. The tree is shown in the illustration below. I will
refer to a tree of this type as an expression tree .

Given an expression tree, it’s easy to find the value of the expression that it represents. Each
node in the tree has an associated value. If the node is a leaf node, then its value is simply the
number that the node contains. If the node contains an operator, then the associated value is
computed by first finding the values of its child nodes and then applying the operator to those
values. The process is shown by the upward-directed arrows in the illustration. The value
computed for the root node is the value of the expression as a whole. There are other uses for
expression trees. For example, a postorder traversal of the tree will output the postfix form of
the expression.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 464

+

*

/3

+ 4

17

517

7 1

8 4

3 2 17 5

126

answer18
A tree that represents

t?@ @BCD@EEFGH
J K MMNOPQSUQ O MPN V WQ
X?@ YCwZD[CGFHtFHg
ZDDGwE E?Gw ?Gw t?@
vZ\Y@ G] t?@ @BCD@EEFGH
cZH ^@ cG_CYt@[p

An expression tree contains two types of nodes: nodes that contain numbers and nodes that
contain operators. Furthermore, we might want to add other types of nodes to make the trees
more useful, such as nodes that contain variables. If we want to work with expression trees in
Java, how can we deal with this variety of nodes? One way—which will be frowned upon by
object-oriented purists—is to include an instance variable in each node object to record which
type of node it is:

enum NodeType { NUMBER, OPERATOR } // Possible kinds of node.

class ExpNode { // A node in an expression tree.

NodeType kind; // Which type of node is this?

double number; // The value in a node of type NUMBER.

char op; // The operator in a node of type OPERATOR.

ExpNode left; // Pointers to subtrees,

ExpNode right; // in a node of type OPERATOR.

ExpNode(double val) {

// Constructor for making a node of type NUMBER.

kind = NodeType.NUMBER;

number = val;

}

ExpNode(char op, ExpNode left, ExpNode right) {

// Constructor for making a node of type OPERATOR.

kind = NodeType.OPERATOR;

this.op = op;

this.left = left;

this.right = right;

}

} // end class ExpNode

Given this definition, the following recursive subroutine will find the value of an expression tree:

static double getValue(ExpNode node) {

// Return the value of the expression represented by

// the tree to which node refers. Node must be non-null.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 465

if (node.kind == NodeType.NUMBER) {

// The value of a NUMBER node is the number it holds.

return node.number;

}

else { // The kind must be OPERATOR.

// Get the values of the operands and combine them

// using the operator.

double leftVal = getValue(node.left);

double rightVal = getValue(node.right);

switch (node.op) {

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return Double.NaN; // Bad operator.

}

}

} // end getValue()

Although this approach works, a more object-oriented approach is to note that since there
are two types of nodes, there should be two classes to represent them, ConstNode and BinOpN-
ode. To represent the general idea of a node in an expression tree, we need another class,
ExpNode. Both ConstNode and BinOpNode will be subclasses of ExpNode. Since any actual
node will be either a ConstNode or a BinOpNode, ExpNode should be an abstract class. (See
Subsection 5.5.5.) Since one of the things we want to do with nodes is find their values, each
class should have an instance method for finding the value:

abstract class ExpNode {

// Represents a node of any type in an expression tree.

abstract double value(); // Return the value of this node.

} // end class ExpNode

class ConstNode extends ExpNode {

// Represents a node that holds a number.

double number; // The number in the node.

ConstNode(double val) {

// Constructor. Create a node to hold val.

number = val;

}

double value() {

// The value is just the number that the node holds.

return number;

}

} // end class ConstNode

class BinOpNode extends ExpNode {

// Represents a node that holds an operator.

char op; // The operator.

ExpNode left; // The left operand.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 466

ExpNode right; // The right operand.

BinOpNode(char op, ExpNode left, ExpNode right) {

// Constructor. Create a node to hold the given data.

this.op = op;

this.left = left;

this.right = right;

}

double value() {

// To get the value, compute the value of the left and

// right operands, and combine them with the operator.

double leftVal = left.value();

double rightVal = right.value();

switch (op) {

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return Double.NaN; // Bad operator.

}

}

} // end class BinOpNode

Note that the left and right operands of a BinOpNode are of type ExpNode, not BinOpNode.
This allows the operand to be either a ConstNode or another BinOpNode—or any other type of
ExpNode that we might eventually create. Since every ExpNode has a value() method, we can
call left.value() to compute the value of the left operand. If left is in fact a ConstNode,
this will call the value() method in the ConstNode class. If it is in fact a BinOpNode, then
left.value() will call the value() method in the BinOpNode class. Each node knows how to
compute its own value.

Although it might seem more complicated at first, the object-oriented approach has some
real advantages. For one thing, it doesn’t waste memory. In the original ExpNode class, only
some of the instance variables in each node were actually used, and we needed an extra instance
variable to keep track of the type of node. More important, though, is the fact that new types
of nodes can be added more cleanly, since it can be done by creating a new subclass of ExpNode
rather than by modifying an existing class.

We’ll return to the topic of expression trees in the next section, where we’ll see how to
create an expression tree to represent a given expression.

9.5 A Simple Recursive Descent Parser

I have always been fascinated by language—both natural languages like English and the
artificial languages that are used by computers. There are many difficult questions about how
languages can convey information, how they are structured, and how they can be processed.
Natural and artificial languages are similar enough that the study of programming languages,
which are pretty well understood, can give some insight into the much more complex and difficult
natural languages. And programming languages raise more than enough interesting issues to
make them worth studying in their own right. How can it be, after all, that computers can be
made to “understand” even the relatively simple languages that are used to write programs?

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 467

Computers can only directly use instructions expressed in very simple machine language. Higher
level languages must be translated into machine language. But the translation is done by a
compiler, which is just a program. How could such a translation program be written?

9.5.1 Backus-Naur Form

Natural and artificial languages are similar in that they have a structure known as grammar
or syntax. Syntax can be expressed by a set of rules that describe what it means to be a legal
sentence or program. For programming languages, syntax rules are often expressed in BNF
(Backus-Naur Form), a system that was developed by computer scientists John Backus and
Peter Naur in the late 1950s. Interestingly, an equivalent system was developed independently
at about the same time by linguist Noam Chomsky to describe the grammar of natural language.
BNF cannot express all possible syntax rules. For example, it can’t express the fact that a
variable must be defined before it is used. Furthermore, it says nothing about the meaning or
semantics of the language. The problem of specifying the semantics of a language—even of an
artificial programming language—is one that is still far from being completely solved. However,
BNF does express the basic structure of the language, and it plays a central role in the design
of compilers.

In English, terms such as “noun”, “transitive verb,” and “prepositional phrase” are syntac-
tic categories that describe building blocks of sentences. Similarly, “statement”, “number,”
and “while loop” are syntactic categories that describe building blocks of Java programs. In
BNF, a syntactic category is written as a word enclosed between “<” and ”>”. For example:
<noun>, <verb-phrase>, or <while-loop>. A rule in BNF specifies the structure of an item
in a given syntactic category, in terms of other syntactic categories and/or basic symbols of the
language. For example, one BNF rule for the English language might be

<sentence> ::= <noun-phrase> <verb-phrase>

The symbol “::=” is read “can be”, so this rule says that a <sentence> can be a <noun-phrase>
followed by a <verb-phrase>. (The term is “can be” rather than “is” because there might be
other rules that specify other possible forms for a sentence.) This rule can be thought of as a
recipe for a sentence: If you want to make a sentence, make a noun-phrase and follow it by a
verb-phrase. Noun-phrase and verb-phrase must, in turn, be defined by other BNF rules.

In BNF, a choice between alternatives is represented by the symbol “|”, which is read “or”.
For example, the rule

<verb-phrase> ::= <intransitive-verb> |

(<transitive-verb> <noun-phrase>)

says that a <verb-phrase> can be an <intransitive-verb>, or a <transitive-verb> followed
by a <noun-phrase>. Note also that parentheses can be used for grouping. To express the fact
that an item is optional, it can be enclosed between “[” and “]”. An optional item that can
be repeated any number of times is enclosed between “[” and “]...”. And a symbol that is
an actual part of the language that is being described is enclosed in quotes. For example,

<noun-phrase> ::= <common-noun> ["that" <verb-phrase>] |

<common-noun> [<prepositional-phrase>]...

says that a <noun-phrase> can be a <common-noun>, optionally followed by the literal word
“that” and a <verb-phrase>, or it can be a <common-noun> followed by zero or more
<prepositional-phrase>’s. Obviously, we can describe very complex structures in this way.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 468

The real power comes from the fact that BNF rules can be recursive. In fact, the two pre-
ceding rules, taken together, are recursive. A <noun-phrase> is defined partly in terms of
<verb-phrase>, while <verb-phrase> is defined partly in terms of <noun-phrase>. For ex-
ample, a <noun-phrase> might be “the rat that ate the cheese”, since “ate the cheese” is a
<verb-phrase>. But then we can, recursively, make the more complex <noun-phrase> “the cat
that caught the rat that ate the cheese” out of the <common-noun> “the cat”, the word “that”
and the <verb-phrase> “caught the rat that ate the cheese”. Building from there, we can make
the <noun-phrase> “the dog that chased the cat that caught the rat that ate the cheese”. The
recursive structure of language is one of the most fundamental properties of language, and the
ability of BNF to express this recursive structure is what makes it so useful.

BNF can be used to describe the syntax of a programming language such as Java in a formal
and precise way. For example, a <while-loop> can be defined as

<while-loop> ::= "while" "(" <condition> ")" <statement>

This says that a <while-loop> consists of the word “while”, followed by a left parenthesis,
followed by a <condition>, followed by a right parenthesis, followed by a <statement>. Of
course, it still remains to define what is meant by a condition and by a statement. Since a
statement can be, among other things, a while loop, we can already see the recursive structure
of the Java language. The exact specification of an if statement, which is hard to express
clearly in words, can be given as

<if-statement> ::=

"if" "(" <condition> ")" <statement>

["else" "if" "(" <condition> ")" <statement>]...

["else" <statement>]

This rule makes it clear that the “else” part is optional and that there can be, optionally, one
or more “else if” parts.

9.5.2 Recursive Descent Parsing

In the rest of this section, I will show how a BNF grammar for a language can be used as a guide
for constructing a parser. A parser is a program that determines the grammatical structure of a
phrase in the language. This is the first step in determining the meaning of the phrase—which
for a programming language means translating it into machine language. Although we will look
at only a simple example, I hope it will be enough to convince you that compilers can in fact
be written and understood by mortals and to give you some idea of how that can be done.

The parsing method that we will use is called recursive descent parsing . It is not the
only possible parsing method, or the most efficient, but it is the one most suited for writing
compilers by hand (rather than with the help of so called “parser generator” programs). In a
recursive descent parser, every rule of the BNF grammar is the model for a subroutine. Not
every BNF grammar is suitable for recursive descent parsing. The grammar must satisfy a
certain property. Essentially, while parsing a phrase, it must be possible to tell what syntactic
category is coming up next just by looking at the next item in the input. Many grammars are
designed with this property in mind.

I should also mention that many variations of BNF are in use. The one that I’ve described
here is one that is well-suited for recursive descent parsing.

∗ ∗ ∗

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 469

When we try to parse a phrase that contains a syntax error, we need some way to respond
to the error. A convenient way of doing this is to throw an exception. I’ll use an exception
class called ParseError, defined as follows:

/**

* An object of type ParseError represents a syntax error found in

* the user’s input.

*/

private static class ParseError extends Exception {

ParseError(String message) {

super(message);

}

} // end nested class ParseError

Another general point is that our BNF rules don’t say anything about spaces between items,
but in reality we want to be able to insert spaces between items at will. To allow for this, I’ll
always call the routine TextIO.skipBlanks() before trying to look ahead to see what’s coming
up next in input. TextIO.skipBlanks() skips past any whitespace, such as spaces and tabs,
in the input, and stops when the next character in the input is either a non-blank character or
the end-of-line character.

Let’s start with a very simple example. A “fully parenthesized expression” can be specified
in BNF by the rules

<expression> ::= <number> |

"(" <expression> <operator> <expression> ")"

<operator> ::= "+" | "-" | "*" | "/"

where <number> refers to any non-negative real number. An example of a fully parenthesized
expression is “(((34-17)*8)+(2*7))”. Since every operator corresponds to a pair of parenthe-
ses, there is no ambiguity about the order in which the operators are to be applied. Suppose
we want a program that will read and evaluate such expressions. We’ll read the expressions
from standard input, using TextIO. To apply recursive descent parsing, we need a subroutine
for each rule in the grammar. Corresponding to the rule for <operator>, we get a subroutine
that reads an operator. The operator can be a choice of any of four things. Any other input
will be an error.

/**

* If the next character in input is one of the legal operators,

* read it and return it. Otherwise, throw a ParseError.

*/

static char getOperator() throws ParseError {

TextIO.skipBlanks();

char op = TextIO.peek(); // look ahead at the next char, without reading it

if (op == ’+’ || op == ’-’ || op == ’*’ || op == ’/’) {

TextIO.getAnyChar(); // read the operator, to remove it from the input

return op;

}

else if (op == ’\n’)

throw new ParseError("Missing operator at end of line.");

else

throw new ParseError("Missing operator. Found \"" +

op + "\" instead of +, -, *, or /.");

} // end getOperator()

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 470

I’ve tried to give a reasonable error message, depending on whether the next character is an
end-of-line or something else. I use TextIO.peek() to look ahead at the next character before I
read it, and I call TextIO.skipBlanks() before testing TextIO.peek() in order to ignore any
blanks that separate items. I will follow this same pattern in every case.

When we come to the subroutine for <expression>, things are a little more interesting. The
rule says that an expression can be either a number or an expression enclosed in parentheses.
We can tell which it is by looking ahead at the next character. If the character is a digit,
we have to read a number. If the character is a “(“, we have to read the “(“, followed by an
expression, followed by an operator, followed by another expression, followed by a “)”. If the
next character is anything else, there is an error. Note that we need recursion to read the
nested expressions. The routine doesn’t just read the expression. It also computes and returns
its value. This requires semantical information that is not specified in the BNF rule.

/**

* Read an expression from the current line of input and return its value.

* @throws ParseError if the input contains a syntax error

*/

private static double expressionValue() throws ParseError {

TextIO.skipBlanks();

if (Character.isDigit(TextIO.peek())) {

// The next item in input is a number, so the expression

// must consist of just that number. Read and return

// the number.

return TextIO.getDouble();

}

else if (TextIO.peek() == ’(’) {

// The expression must be of the form

// "(" <expression> <operator> <expression> ")"

// Read all these items, perform the operation, and

// return the result.

TextIO.getAnyChar(); // Read the "("

double leftVal = expressionValue(); // Read and evaluate first operand.

char op = getOperator(); // Read the operator.

double rightVal = expressionValue(); // Read and evaluate second operand.

TextIO.skipBlanks();

if (TextIO.peek() != ’)’) {

// According to the rule, there must be a ")" here.

// Since it’s missing, throw a ParseError.

throw new ParseError("Missing right parenthesis.");

}

TextIO.getAnyChar(); // Read the ")"

switch (op) { // Apply the operator and return the result.

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return 0; // Can’t occur since op is one of the above.

// (But Java syntax requires a return value.)

}

}

else { // No other character can legally start an expression.

throw new ParseError("Encountered unexpected character, \"" +

TextIO.peek() + "\" in input.");

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 471

}

} // end expressionValue()

I hope that you can see how this routine corresponds to the BNF rule. Where the rule
uses “|” to give a choice between alternatives, there is an if statement in the routine to
determine which choice to take. Where the rule contains a sequence of items, “(“ <expression>
<operator> <expression> “)”, there is a sequence of statements in the subroutine to read each
item in turn.

When expressionValue() is called to evaluate the expression (((34-17)*8)+(2*7)), it
sees the “(“ at the beginning of the input, so the else part of the if statement is executed.
The “(“ is read. Then the first recursive call to expressionValue() reads and evaluates the
subexpression ((34-17)*8), the call to getOperator() reads the “+” operator, and the sec-
ond recursive call to expressionValue() reads and evaluates the second subexpression (2*7).
Finally, the “)” at the end of the expression is read. Of course, reading the first subexpression,
((34-17)*8), involves further recursive calls to the expressionValue() routine, but it’s better
not to think too deeply about that! Rely on the recursion to handle the details.

You’ll find a complete program that uses these routines in the file SimpleParser1.java.

∗ ∗ ∗

Fully parenthesized expressions aren’t very natural for people to use. But with ordinary
expressions, we have to worry about the question of operator precedence, which tells us, for
example, that the “*” in the expression “5+3*7” is applied before the “+”. The complex
expression “3*6+8*(7+1)/4-24” should be seen as made up of three “terms”, 3*6, 8*(7+1)/4,
and 24, combined with “+” and “-” operators. A term, on the other hand, can be made up
of several factors combined with “*” and “/” operators. For example, 8*(7+1)/4 contains the
factors 8, (7+1) and 4. This example also shows that a factor can be either a number or an
expression in parentheses. To complicate things a bit more, we allow for leading minus signs in
expressions, as in “-(3+4)” or “-7”. (Since a <number> is a positive number, this is the only
way we can get negative numbers. It’s done this way to avoid “3 * -7”, for example.) This
structure can be expressed by the BNF rules

<expression> ::= ["-"] <term> [("+" | "-") <term>]...

<term> ::= <factor> [("*" | "/") <factor>]...

<factor> ::= <number> | "(" <expression> ")"

The first rule uses the “[]...” notation, which says that the items that it encloses can occur
zero, one, two, or more times. The rule means that an <expression> can begin, optionally,
with a “-”. Then there must be a <term> which can optionally be followed by one of the
operators “+” or “-” and another <term>, optionally followed by another operator and <term>,
and so on. In a subroutine that reads and evaluates expressions, this repetition is handled by
a while loop. An if statement is used at the beginning of the loop to test whether a leading
minus sign is present:

/**

* Read an expression from the current line of input and return its value.

* @throws ParseError if the input contains a syntax error

*/

private static double expressionValue() throws ParseError {

TextIO.skipBlanks();

boolean negative; // True if there is a leading minus sign.

negative = false;

if (TextIO.peek() == ’-’) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser1.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 472

TextIO.getAnyChar(); // Read the minus sign.

negative = true;

}

double val; // Value of the expression.

val = termValue();

if (negative)

val = -val;

TextIO.skipBlanks();

while (TextIO.peek() == ’+’ || TextIO.peek() == ’-’) {

// Read the next term and add it to or subtract it from

// the value of previous terms in the expression.

char op = TextIO.getAnyChar(); // Read the operator.

double nextVal = termValue();

if (op == ’+’)

val += nextVal;

else

val -= nextVal;

TextIO.skipBlanks();

}

return val;

} // end expressionValue()

The subroutine for <term> is very similar to this, and the subroutine for <factor> is
similar to the example given above for fully parenthesized expressions. A complete program
that reads and evaluates expressions based on the above BNF rules can be found in the file
SimpleParser2.java.

9.5.3 Building an Expression Tree

Now, so far, we’ve only evaluated expressions. What does that have to do with translating
programs into machine language? Well, instead of actually evaluating the expression, it would
be almost as easy to generate the machine language instructions that are needed to evaluate
the expression. If we are working with a “stack machine,” these instructions would be stack
operations such as “push a number” or “apply a + operation”. The program SimpleParser3.java
can both evaluate the expression and print a list of stack machine operations for evaluating the
expression.

It’s quite a jump from this program to a recursive descent parser that can read a program
written in Java and generate the equivalent machine language code—but the conceptual leap
is not huge.

The SimpleParser3 program doesn’t actually generate the stack operations directly as it
parses an expression. Instead, it builds an expression tree, as discussed in Subsection 9.4.3,
to represent the expression. The expression tree is then used to find the value and to gen-
erate the stack operations. The tree is made up of nodes belonging to classes ConstNode
and BinOpNode that are similar to those given in Subsection 9.4.3. Another class, UnaryMi-
nusNode, has been introduced to represent the unary minus operation. I’ve added a method,
printStackCommands(), to each class. This method is responsible for printing out the stack
operations that are necessary to evaluate an expression. Here for example is the new BinOpNode

class from SimpleParser3.java:

private static class BinOpNode extends ExpNode {

char op; // The operator.

ExpNode left; // The expression for its left operand.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser3.java

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 473

ExpNode right; // The expression for its right operand.

BinOpNode(char op, ExpNode left, ExpNode right) {

// Construct a BinOpNode containing the specified data.

assert op == ’+’ || op == ’-’ || op == ’*’ || op == ’/’;

assert left != null && right != null;

this.op = op;

this.left = left;

this.right = right;

}

double value() {

// The value is obtained by evaluating the left and right

// operands and combining the values with the operator.

double x = left.value();

double y = right.value();

switch (op) {

case ’+’:

return x + y;

case ’-’:

return x - y;

case ’*’:

return x * y;

case ’/’:

return x / y;

default:

return Double.NaN; // Bad operator! Should not be possible.

}

}

void printStackCommands() {

// To evaluate the expression on a stack machine, first do

// whatever is necessary to evaluate the left operand, leaving

// the answer on the stack. Then do the same thing for the

// second operand. Then apply the operator (which means popping

// the operands, applying the operator, and pushing the result).

left.printStackCommands();

right.printStackCommands();

System.out.println(" Operator " + op);

}

}

It’s also interesting to look at the new parsing subroutines. Instead of computing a value,
each subroutine builds an expression tree. For example, the subroutine corresponding to the
rule for <expression> becomes

static ExpNode expressionTree() throws ParseError {

// Read an expression from the current line of input and

// return an expression tree representing the expression.

TextIO.skipBlanks();

boolean negative; // True if there is a leading minus sign.

negative = false;

if (TextIO.peek() == ’-’) {

TextIO.getAnyChar();

negative = true;

}

ExpNode exp; // The expression tree for the expression.

CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION 474

exp = termTree(); // Start with a tree for first term.

if (negative) {

// Build the tree that corresponds to applying a

// unary minus operator to the term we’ve

// just read.

exp = new UnaryMinusNode(exp);

}

TextIO.skipBlanks();

while (TextIO.peek() == ’+’ || TextIO.peek() == ’-’) {

// Read the next term and combine it with the

// previous terms into a bigger expression tree.

char op = TextIO.getAnyChar();

ExpNode nextTerm = termTree();

// Create a tree that applies the binary operator

// to the previous tree and the term we just read.

exp = new BinOpNode(op, exp, nextTerm);

TextIO.skipBlanks();

}

return exp;

} // end expressionTree()

In some real compilers, the parser creates a tree to represent the program that is being
parsed. This tree is called a parse tree . Parse trees are somewhat different in form from
expression trees, but the purpose is the same. Once you have the tree, there are a number of
things you can do with it. For one thing, it can be used to generate machine language code. But
there are also techniques for examining the tree and detecting certain types of programming
errors, such as an attempt to reference a local variable before it has been assigned a value. (The
Java compiler, of course, will reject the program if it contains such an error.) It’s also possible
to manipulate the tree to optimize the program. In optimization, the tree is transformed to
make the program more efficient before the code is generated.

And so we are back where we started in Chapter 1, looking at programming languages,
compilers, and machine language. But looking at them, I hope, with a lot more understanding
and a much wider perspective.

Exercises 475

Exercises for Chapter 9

1. In many textbooks, the first examples of recursion are the mathematical functions factorial (solution)

and fibonacci. These functions are defined for non-negative integers using the following
recursive formulas:

factorial(0) = 1

factorial(N) = N*factorial(N-1) for N > 0

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(N) = fibonacci(N-1) + fibonacci(N-2) for N > 1

Write recursive functions to compute factorial(N) and fibonacci(N) for a given non-
negative integer N, and write a main() routine to test your functions. Consider using the
BigInteger class (see Exercise 8.2)

(In fact, factorial and fibonacci are really not very good examples of recursion, since
the most natural way to compute them is to use simple for loops. Furthermore, fibonacci
is a particularly bad example, since the natural recursive approach to computing this
function is extremely inefficient.)

2. Exercise 7.7 asked you to read a file, make an alphabetical list of all the words that occur (solution)

in the file, and write the list to another file. In that exercise, you were asked to use an
ArrayList<String> to store the words. Write a new version of the same program that stores
the words in a binary sort tree instead of in an arraylist. You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in Subsection 9.4.2.

3. Suppose that linked lists of integers are made from objects belonging to the class (solution)

class ListNode {

int item; // An item in the list.

ListNode next; // Pointer to the next node in the list.

}

Write a subroutine that will make a copy of a list, with the order of the items of the list
reversed. The subroutine should have a parameter of type ListNode, and it should return
a value of type ListNode. The original list should not be modified.

You should also write a main() routine to test your subroutine.

4. Subsection 9.4.1 explains how to use recursion to print out the items in a binary tree in (solution)

various orders. That section also notes that a non-recursive subroutine can be used to
print the items, provided that a stack or queue is used as an auxiliary data structure.
Assuming that a queue is used, here is an algorithm for such a subroutine:

Add the root node to an empty queue

while the queue is not empty:

Get a node from the queue

Print the item in the node

if node.left is not null:

add it to the queue

if node.right is not null:

add it to the queue

http://math.hws.edu/eck/cs124/javanotes7/c9/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c9/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SortTreeDemo.java
http://math.hws.edu/eck/cs124/javanotes7/c9/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c9/ex4-ans.html

Exercises 476

Write a subroutine that implements this algorithm, and write a program to test the sub-
routine. Note that you will need a queue of TreeNodes, so you will need to write a class
to represent such queues.

(Note that the order in which items are printed by this algorithm is different from all
three of the orders considered in Subsection 9.4.1.)

5. In Subsection 9.4.2, I say that “if the [binary sort] tree is created by inserting items in a (solution)

random order, there is a high probability that the tree is approximately balanced.” For
this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the length of the path from the root of the tree
to that node. That is, the root has depth 0, its children have depth 1, its grandchildren
have depth 2, and so on. In a balanced tree, all the leaves in the tree are about the same
depth. For example, in a perfectly balanced tree with 1023 nodes, all the leaves are at
depth 9. In an approximately balanced tree with 1023 nodes, the average depth of all the
leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might be a few
leaves that have much larger depth than the average, so we might also want to look at the
maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023 nodes. The
items in the tree can be real numbers, and you can create the tree by generating 1023
random real numbers and inserting them into the tree, using the usual treeInsert()
method for binary sort trees. Once you have the tree, you should compute and output the
average depth of all the leaves in the tree and the maximum depth of all the leaves. To
do this, you will need three recursive subroutines: one to count the leaves, one to find the
sum of the depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that tells how deep in the tree
you’ve gone. When you call this routine from the main program, the depth parameter is
0; when you call the routine recursively, the parameter increases by 1.

6. The parsing programs in Section 9.5 work with expressions made up of numbers and (solution)

operators. We can make things a little more interesting by allowing the variable “x” to
occur. This would allow expression such as “3*(x-1)*(x+1)”, for example. Make a new
version of the sample program SimpleParser3.java that can work with such expressions.
In your program, the main() routine can’t simply print the value of the expression, since
the value of the expression now depends on the value of x. Instead, it should print the
value of the expression for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways. Currently, the
program uses classes ConstNode, BinOpNode, and UnaryMinusNode to represent nodes
in an expression tree. Since expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the expression.

In the original program, each of the node classes has an instance method,
“double value()”, which returns the value of the node. But in your program, the
value can depend on x, so you should replace this method with one of the form
“double value(double xValue)”, where the parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into account the
fact that expressions can contain x. There is just one small change in the BNF rules for
the expressions: A <factor> is allowed to be the variable x:

<factor> ::= <number> | <x-variable> | "(" <expression> ")"

http://math.hws.edu/eck/cs124/javanotes7/c9/ex5-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c9/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser3.java

Exercises 477

where <x-variable> can be either a lower case or an upper case “X”. This change in the
BNF requires a change in the factorTree() subroutine.

7. This exercise builds on the previous exercise, Exercise 9.6. To understand it, you should (solution)

have some background in Calculus. The derivative of an expression that involves the
variable x can be defined by a few recursive rules:

• The derivative of a constant is 0.

• The derivative of x is 1.

• If A is an expression, let dA be the derivative of A. Then the derivative of -A is -dA.

• If A and B are expressions, let dA be the derivative of A and let dB be the derivative
of B. Then the derivative of A+B is dA+dB.

• The derivative of A-B is dA-dB.

• The derivative of A*B is A*dB + B*dA.

• The derivative of A/B is (B*dA - A*dB) / (B*B).

For this exercise, you should modify your program from the previous exercise so that
it can compute the derivative of an expression. You can do this by adding a derivative-
computing method to each of the node classes. First, add another abstract method to the
ExpNode class:

abstract ExpNode derivative();

Then implement this method in each of the four subclasses of ExpNode. All the information
that you need is in the rules given above. In your main program, instead of printing the
stack operations for the original expression, you should print out the stack operations
that define the derivative. Note that the formula that you get for the derivative can be
much more complicated than it needs to be. For example, the derivative of 3*x+1 will be
computed as (3*1+0*x)+0. This is correct, even though it’s kind of ugly, and it would be
nice for it to be simplified. However, simplifying expressions is not easy.

As an alternative to printing out stack operations, you might want to print the deriva-
tive as a fully parenthesized expression. You can do this by adding a printInfix() routine
to each node class. It would be nice to leave out unnecessary parentheses, but again, the
problem of deciding which parentheses can be left out without altering the meaning of the
expression is a fairly difficult one, which I don’t advise you to attempt.

(There is one curious thing that happens here: If you apply the rules, as given, to an
expression tree, the result is no longer a tree, since the same subexpression can occur at
multiple points in the derivative. For example, if you build a node to represent B*B by
saying “new BinOpNode(’*’,B,B)”, then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference is harmless
in this case since, like a tree, the structure that you get has no loops in it. Loops, on the
other hand, would be a disaster in most of the recursive tree-processing subroutines that
we have written, since it would lead to infinite recursion. The type of structure that is
built by the derivative functions is technically referred to as a directed acyclic graph .)

http://math.hws.edu/eck/cs124/javanotes7/c9/ex7-ans.html

Quiz 478

Quiz on Chapter 9
(answers)

1. Explain what is meant by a recursive subroutine.

2. Consider the following subroutine:

static void printStuff(int level) {

if (level == 0) {

System.out.print("*");

}

else {

System.out.print("[");

printStuff(level - 1);

System.out.print(",");

printStuff(level - 1);

System.out.print("]");

}

}

Show the output that would be produced by the subroutine calls printStuff(0),
printStuff(1), printStuff(2), and printStuff(3).

3. Suppose that a linked list is formed from objects that belong to the class

class ListNode {

int item; // An item in the list.

ListNode next; // Pointer to next item in the list.

}

Write a subroutine that will count the number of zeros that occur in a given linked list
of ints. The subroutine should have a parameter of type ListNode and should return a
value of type int.

4. What are the three operations on a stack?

5. What is the basic difference between a stack and a queue?

6. What is an activation record? What role does a stack of activation records play in a
computer?

7. Suppose that a binary tree of integers is formed from objects belonging to the class

class TreeNode {

int item; // One item in the tree.

TreeNode left; // Pointer to the left subtree.

TreeNode right; // Pointer to the right subtree.

}

Write a recursive subroutine that will find the sum of all the nodes in the tree. Your
subroutine should have a parameter of type TreeNode, and it should return a value of
type int.

8. What is a postorder traversal of a binary tree?

9. Suppose that a <multilist> is defined by the BNF rule

http://math.hws.edu/eck/cs124/javanotes7/c9/quiz_answers.html

Quiz 479

<multilist> ::= <word> | "(" [<multilist>]... ")"

where a <word> can be any sequence of letters. Give five different <multilist>’s that
can be generated by this rule. (This rule, by the way, is almost the entire syntax of
the programming language LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)

10. Explain what is meant by parsing a computer program.

Chapter 10

Generic Programming and
Collection Classes

How to avoid reinventing the wheel? Many data structures and algorithms, such as
those from Chapter 9, have been studied, programmed, and re-programmed by generations of
computer science students. This is a valuable learning experience. Unfortunately, they have
also been programmed and re-programmed by generations of working computer professionals,
taking up time that could be devoted to new, more creative work. A programmer who needs
a list or a binary tree shouldn’t have to re-code these data structures from scratch. They are
well-understood and have been programmed thousands of times before. The problem is how to
make pre-written, robust data structures available to programmers. In this chapter, we’ll look
at Java’s attempt to address this problem.

You have already seen part of the solution in Section 7.3. That section introduced parame-
terized types and the ArrayList class. Parameterized types make it possible for the same class
to work with many different kinds of data. This idea—that the same code can be used for a
variety of data types—is called generic programming .

10.1 Generic Programming

Generic programming refers to writing code that will work for many types of data. We
encountered the alternative to generic programming in Subsection 7.2.4, where we looked at
dynamic arrays of integers. The source code presented there for working with dynamic arrays
of integers works only for data of type int. But the source code for dynamic arrays of double,
String, JButton, or any other type would be almost identical, except for the substitution of one
type name for another. It seems silly to write essentially the same code over and over. Java’s
approach to this problem is parameterized types. As we saw in Section 7.3, the parameterized
class ArrayList implements dynamic arrays. Since it is parameterized, there are types such as
ArrayList<String> to represent dynamic arrays of String, ArrayList<JButton> for dynamic arrays
of buttons, and more generally ArrayList<T> for any object type T. ArrayList is just one class,
but the source code works for many different types. This is generic programming.

The ArrayList class is just one of several standard classes that are used for generic program-
ming in Java. We will spend the next few sections looking at these classes and how they are
used, and we’ll see that there are also generic methods and generic interfaces. All the classes
and interfaces discussed in these sections are defined in the package java.util, and you will
need an import statement at the beginning of your program to get access to them. (Before

481

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 482

you start putting “import java.util.*” at the beginning of every program, you should know
that some things in java.util have names that are the same as things in other packages. For
example, both java.util.List and java.awt.List exist, so it is often better to import the
individual classes that you need.)

In the final section of this chapter, we will see that it is possible to define new generic classes,
interfaces, and methods. Until then, we will stick to using the generics that are predefined in
Java’s standard library.

It is no easy task to design a library for generic programming. Java’s solution has many
nice features but is certainly not the only possible approach. It is almost certainly not the
best, and has a few features that in my opinion can only be called bizarre, but in the context
of the overall design of Java, it might be close to optimal. To get some perspective on generic
programming in general, it might be useful to look very briefly at some other approaches to
generic programming.

10.1.1 Generic Programming in Smalltalk

Smalltalk was one of the very first object-oriented programming languages. It is still used today,
although its use is not very common. It never achieved anything like the popularity of Java or
C++, but it is the source of many ideas used in these languages. In Smalltalk, essentially all
programming is generic, because of two basic properties of the language.

First of all, variables in Smalltalk are typeless. A data value has a type, such as integer or
string, but variables do not have types. Any variable can hold data of any type. Parameters
are also typeless, so a subroutine can be applied to parameter values of any type. Similarly,
a data structure can hold data values of any type. For example, once you’ve defined a binary
tree data structure in SmallTalk, you can use it for binary trees of integers or strings or dates
or data of any other type. There is simply no need to write new code for each data type.

Secondly, all data values are objects, and all operations on objects are defined by methods
in a class. This is true even for types that are “primitive” in Java, such as integers. When the
“+” operator is used to add two integers, the operation is performed by calling a method in the
integer class. When you define a new class, you can define a “+” operator, and you will then
be able to add objects belonging to that class by saying “a + b” just as if you were adding
numbers. Now, suppose that you write a subroutine that uses the “+” operator to add up the
items in a list. The subroutine can be applied to a list of integers, but it can also be applied,
automatically, to any other data type for which “+” is defined. Similarly, a subroutine that
uses the “<" operator to sort a list can be applied to lists containing any type of data for which
“<” is defined. There is no need to write a different sorting subroutine for each type of data.

Put these two features together and you have a language where data structures and al-
gorithms will work for any type of data for which they make sense, that is, for which the
appropriate operations are defined. This is real generic programming. This might sound pretty
good, and you might be asking yourself why all programming languages don’t work this way.
This type of freedom makes it easier to write programs, but unfortunately it makes it harder
to write programs that are correct and robust (see Chapter 8). Once you have a data structure
that can contain data of any type, it becomes hard to ensure that it only holds the type of
data that you want it to hold. If you have a subroutine that can sort any type of data, it’s
hard to ensure that it will only be applied to data for which the “<” operator is defined. More
particularly, there is no way for a compiler to ensure these things. The problem will only show
up at run time when an attempt is made to apply some operation to a data type for which it
is not defined, and the program will crash.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 483

10.1.2 Generic Programming in C++

Unlike Smalltalk, C++ is a very strongly typed language, even more so than Java. Every
variable has a type, and can only hold data values of that type. This means that the kind of
generic programming that is used in Smalltalk is impossible in C++. Nevertheless, C++ has a
powerful and flexible system of generic programming. It is made possible by a language feature
known as templates. In C++, instead of writing a different sorting subroutine for each type
of data, you can write a single subroutine template. The template is not a subroutine; it’s more
like a factory for making subroutines. We can look at an example, since the syntax of C++ is
very similar to Java’s:

template<class ItemType>

void sort(ItemType A[], int count) {

// Sort items in the array, A, into increasing order.

// The items in positions 0, 1, 2, ..., (count-1) are sorted.

// The algorithm that is used here is selection sort.

for (int i = count-1; i > 0; i--) {

int position of max = 0;

for (int j = 1; j <= i ; j++)

if (A[j] > A[position of max])

position of max = j;

ItemType temp = A[i];

A[i] = A[position of max];

A[position of max] = temp;

}

}

This piece of code defines a subroutine template. If you remove the first line, “template<class
ItemType>”, and substitute the word “int” for the word “ItemType” in the rest of the template,
you get a subroutine for sorting arrays of ints. (Even though it says “class ItemType”, you
can actually substitute any type for ItemType, including the primitive types.) If you substitute
“string” for “ItemType”, you get a subroutine for sorting arrays of strings. This is pretty much
what the compiler does with the template. If your program says “sort(list,10)” where list
is an array of ints, the compiler uses the template to generate a subroutine for sorting arrays
of ints. If you say “sort(cards,10)” where cards is an array of objects of type Card, then the
compiler generates a subroutine for sorting arrays of Cards. At least, it tries to. The template
uses the “>” operator to compare values. If this operator is defined for values of type Card, then
the compiler will successfully use the template to generate a subroutine for sorting cards. If “>”
is not defined for Cards, then the compiler will fail—but this will happen at compile time, not,
as in Smalltalk, at run time where it would make the program crash. (By the way, in C++,
it is possible to write definitions of operators like > for any type, so that it is possible that >
might work for values of type Card.)

In addition to subroutine templates, C++ also has templates for making classes. If you write
a template for a binary tree class, you can use it to generate classes for binary trees of ints,
binary trees of strings, binary trees of dates, and so on—all from one template. Modern C++
comes with a large number of pre-written templates called the Standard Template Library
or STL. The STL is quite complex. Many people would say that it’s much too complex. But it
is also one of the most interesting features of C++.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 484

10.1.3 Generic Programming in Java

Java’s generic programming features have gone through several stages of development. Early
versions of Java did not have parameterized types, but they did have classes to represent
common data structures. Those classes were designed to work with Objects; that is, they could
hold objects of any type, and there was no way to restrict the types of objects that could be
stored in a given data structure. For example, ArrayList was not originally a parameterized type,
so that any ArrayList could hold any type of object. This means that if list was an ArrayList,
then list.get(i) would return a value of type Object. If the programmer was actually using
the list to store Strings, the value returned by list.get(i) would have to be type-cast to treat
it as a string:

String item = (String)list.get(i);

This is still a kind of generic programming, since one class can work for any kind of object, but
it was closer in spirit to Smalltalk than it was to C++, since there is no way to do type checks
at compile time. Unfortunately, as in Smalltalk, the result is a category of errors that show up
only at run time, rather than at compile time. If a programmer assumes that all the items in a
data structure are strings and tries to process those items as strings, a run-time error will occur
if other types of data have inadvertently been added to the data structure. In Java, the error
will most likely occur when the program retrieves an Object from the data structure and tries
to type-cast it to type String. If the object is not actually of type String, the illegal type-cast
will throw an error of type ClassCastException.

Java 5.0 introduced parameterized types, which made it possible to create generic data
structures that can be type-checked at compile time rather than at run time. For example, if
list is of type ArrayList<String>, then the compiler will only allow objects of type String to
be added to list. Furthermore, the return type of list.get(i) is String, so type-casting is
not necessary. Java’s parameterized classes are similar to template classes in C++ (although
the implementation is very different), and their introduction moves Java’s generic programming
model closer to C++ and farther from Smalltalk. In this chapter, I will use the parameterized
types exclusively, but you should remember that their use is not mandatory. It is still legal to
use a parameterized class as a non-parameterized type, such as a plain ArrayList. In that case,
any type of object can be stored in the data structure.

Note that there is a significant difference between parameterized classes in Java and tem-
plate classes in C++. A template class in C++ is not really a class at all—it’s a kind of factory
for generating classes. Every time the template is used with a new type, a new compiled class
is created. With a Java parameterized class, there is only one compiled class file. For example,
there is only one compiled class file, ArrayList.class, for the parameterized class ArrayList.
The parameterized types ArrayList<String> and ArrayList<Integer> both use the same compiled
class file, as does the plain ArrayList type. The type parameter—String or Integer—just tells the
compiler to limit the type of object that can be stored in the data structure. The type parame-
ter has no effect at run time and is not even known at run time. The type information is said to
be “erased” at run time. This type erasure introduces a certain amount of weirdness. For ex-
ample, you can’t test “if (list instanceof ArrayList<String>)” because the instanceof
operator is evaluated at run time, and at run time only the plain ArrayList exists. Similarly, you
can’t type-cast to the type ArrayList<String>. Even worse, you can’t create an array that has
base type ArrayList<String> by using the new operator, as in “new ArrayList<String>[N]”.
This is because the new operator is evaluated at run time, and at run time there is no such
thing as “ArrayList<String>”; only the non-parameterized type ArrayList exists at run time.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 485

(However, although you can’t have an array of ArrayList<String>, you can have an ArrayList of
ArrayList<String>—with the type written as ArrayList<ArrayList<String>>—which is just as good
or better.)

Fortunately, most programmers don’t have to deal with such problems, since they turn
up only in fairly advanced programming. Most people who use parameterized types will not
encounter the problems, and they will get the benefits of type-safe generic programming with
little difficulty.

10.1.4 The Java Collection Framework

As I’ve said, Java comes with a number of parameterized classes that implement common data
structures. This collection of data structure classes is referred to as the Java Collection
Framework , or JFC . We will spend the next few sections learning about the JFC.

The generic data structures in the Java Collection Framework can be divided into two cate-
gories: collections and maps. A collection is more or less what it sounds like: a collection of
objects. A map associates objects in one set with objects in another set in the way that a dictio-
nary associates definitions with words or a phone book associates phone numbers with names.
A map is similar to what I called an “association list” in Subsection 7.4.2. In Java, collections
and maps are represented by the parameterized interfaces Collection<T> and Map<T,S>. Here,
“T” and “S” stand for any type except for the primitive types. Map<T,S> is an example of a
parameterized type that has two type parameters, T and S ; we will not deal further with this
possibility until we look at maps more closely in Section 10.3. In this section and the next, we
look at collections only.

There are two types of collections: lists and sets. A list is a collection in which the objects
are arranged in a linear sequence. A list has a first item, a second item, and so on. For any
item in the list, except the last, there is an item that directly follows it. For collections that
are “sets,” the defining property is that no object can occur more than once in a set; the
elements of a set are not necessarily thought of as being in any particular order. The ideas of
lists and sets are represented as parameterized interfaces List<T> and Set<T>. These are sub-
interfaces of Collection<T>. That is, any object that implements the interface List<T> or Set<T>
automatically implements Collection<T> as well. The interface Collection<T> specifies general
operations that can be applied to any collection at all. List<T> and Set<T> add additional
operations that are appropriate for lists and sets respectively.

Of course, any actual object that is a collection, list, or set must belong to a concrete class
that implements the corresponding interface. For example, the class ArrayList<T> implements
the interface List<T> and therefore also implements Collection<T>. This means that all the
methods that are defined in the list and collection interfaces can be used with an ArrayList.
We will look at various classes that implement the list and set interfaces in the next section.
But before we do that, we’ll look briefly at some of the general operations that are available
for all collections.

∗ ∗ ∗

The interface Collection<T> specifies methods for performing some basic operations on any
collection of objects. Since “collection” is a very general concept, operations that can be applied
to all collections are also very general. They are generic operations in the sense that they can
be applied to various types of collections containing various types of objects. Suppose that
coll is an object that implements the interface Collection<T> (for some specific non-primitive
type T). Then the following operations, which are specified in the interface Collection<T>, are

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 486

defined for coll:

• coll.size() — returns an int that gives the number of objects in the collection.

• coll.isEmpty() — returns a boolean value which is true if the size of the collection is 0.

• coll.clear() — removes all objects from the collection.

• coll.add(tobject) — adds tobject to the collection. The parameter must be of type T ;
if not, a syntax error occurs at compile time. (Remember that if T is a class, this includes
objects belonging to a subclass of T, and if T is an interface, it includes any object that
implements T.) The add() method returns a boolean value which tells you whether the
operation actually modified the collection. For example, adding an object to a Set has no
effect if that object was already in the set.

• coll.contains(object) — returns a boolean value that is true if object is in the
collection. Note that object is not required to be of type T, since it makes sense to
check whether object is in the collection, no matter what type object has. (For testing
equality, null is considered to be equal to itself. The criterion for testing non-null objects
for equality can differ from one kind of collection to another; see Subsection 10.1.6, below.)

• coll.remove(object)— removes object from the collection, if it occurs in the collection,
and returns a boolean value that tells you whether the object was found. Again, object
is not required to be of type T. The test for equality is the same test that is used by
contains().

• coll.containsAll(coll2) — returns a boolean value that is true if every object in
coll2 is also in coll. The parameter can be any collection.

• coll.addAll(coll2) — adds all the objects in coll2 to coll. The parameter, coll2,
can be any collection of type Collection<T>. However, it can also be more general. For
example, if T is a class and S is a sub-class of T, then coll2 can be of type Collection<S>.
This makes sense because any object of type S is automatically of type T and so can
legally be added to coll.

• coll.removeAll(coll2) — removes every object from coll that also occurs in the
collection coll2. coll2 can be any collection.

• coll.retainAll(coll2) — removes every object from coll that does not occur in
the collection coll2. It “retains” only the objects that do occur in coll2. coll2 can be
any collection.

• coll.toArray() — returns an array of type Object[] that contains all the items in the
collection. Note that the return type is Object[], not T[]! However, there is another
version of this method that takes an array of type T[] as a parameter: the method
coll.toArray(tarray) returns an array of type T[] containing all the items in the collec-
tion. If the array parameter tarray is large enough to hold the entire collection, then the
items are stored in tarray and tarray is also the return value of the collection. If tarray
is not large enough, then a new array is created to hold the items; in that case tarray

serves only to specify the type of the array. For example, coll.toArray(new String[0])

can be used if coll is a collection of Strings and will return a new array of type String[].

Since these methods are part of the Collection<T> interface, they must be defined for every
object that implements that interface. There is a problem with this, however. For example,
the size of some collections cannot be changed after they are created. Methods that add or
remove objects don’t make sense for these collections. While it is still legal to call the methods,
an exception will be thrown when the call is evaluated at run time. The type of the exception

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 487

is UnsupportedOperationException. Furthermore, since Collection<T> is only an interface, not a
concrete class, the actual implementation of the method is left to the classes that implement
the interface. This means that the semantics of the methods, as described above, are not
guaranteed to be valid for all collection objects; they are valid, however, for classes in the Java
Collection Framework.

There is also the question of efficiency. Even when an operation is defined for several types of
collections, it might not be equally efficient in all cases. Even a method as simple as size() can
vary greatly in efficiency. For some collections, computing the size() might involve counting
the items in the collection. The number of steps in this process is equal to the number of items.
Other collections might have instance variables to keep track of the size, so evaluating size()

just means returning the value of a variable. In this case, the computation takes only one step,
no matter how many items there are. When working with collections, it’s good to have some
idea of how efficient operations are and to choose a collection for which the operations that you
need can be implemented most efficiently. We’ll see specific examples of this in the next two
sections.

10.1.5 Iterators and for-each Loops

The interface Collection<T> defines a few basic generic algorithms, but suppose you want to
write your own generic algorithms. Suppose, for example, you want to do something as simple
as printing out every item in a collection. To do this in a generic way, you need some way of
going through an arbitrary collection, accessing each item in turn. We have seen how to do
this for specific data structures: For an array, you can use a for loop to iterate through all
the array indices. For a linked list, you can use a while loop in which you advance a pointer
along the list. For a binary tree, you can use a recursive subroutine to do an inorder traversal.
Collections can be represented in any of these forms and many others besides. With such a
variety of traversal mechanisms, how can we even hope to come up with a single generic method
that will work for collections that are stored in wildly different forms? This problem is solved
by iterators. An iterator is an object that can be used to traverse a collection. Different
types of collections have iterators that are implemented in different ways, but all iterators are
used in the same way. An algorithm that uses an iterator to traverse a collection is generic,
because the same technique can be applied to any type of collection. Iterators can seem rather
strange to someone who is encountering generic programming for the first time, but you should
understand that they solve a difficult problem in an elegant way.

The interface Collection<T> defines a method that can be used to obtain an iterator for any
collection. If coll is a collection, then coll.iterator() returns an iterator that can be used
to traverse the collection. You should think of the iterator as a kind of generalized pointer that
starts at the beginning of the collection and can move along the collection from one item to the
next. Iterators are defined by a parameterized interface named Iterator<T>. If coll implements
the interface Collection<T> for some specific type T, then coll.iterator() returns an iterator
of type Iterator<T>, with the same type T as its type parameter. The interface Iterator<T>
defines just three methods. If iter refers to an object that implements Iterator<T>, then we
have:

• iter.next() — returns the next item, and advances the iterator. The return value is of
type T. This method lets you look at one of the items in the collection. Note that there is
no way to look at an item without advancing the iterator past that item. If this method
is called when no items remain, it will throw a NoSuchElementException.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 488

• iter.hasNext() — returns a boolean value telling you whether there are more items to
be processed. In general, you should test this before calling iter.next().

• iter.remove() — if you call this after calling iter.next(), it will remove the item
that you just saw from the collection. Note that this method has no parameter. It
removes the item that was most recently returned by iter.next(). This might produce
an UnsupportedOperationException, if the collection does not support removal of items.

Using iterators, we can write code for printing all the items in any collection. Suppose,
for example, that coll is of type Collection<String>. In that case, the value returned by
coll.iterator() is of type Iterator<String>, and we can say:

Iterator<String> iter; // Declare the iterator variable.

iter = coll.iterator(); // Get an iterator for the collection.

while (iter.hasNext()) {

String item = iter.next(); // Get the next item.

System.out.println(item);

}

The same general form will work for other types of processing. For example, the following code
will remove all null values from any collection of type Collection<JButton> (as long as that
collection supports removal of values):

Iterator<JButton> iter = coll.iterator():

while (iter.hasNext()) {

JButton item = iter.next();

if (item == null)

iter.remove();

}

(Note, by the way, that when Collection<T>, Iterator<T>, or any other parameterized type is
used in actual code, they are always used with actual types such as String or JButton in place of
the “formal type parameter” T. An iterator of type Iterator<String> is used to iterate through a
collection of Strings; an iterator of type Iterator<JButton> is used to iterate through a collection
of JButtons; and so on.)

An iterator is often used to apply the same operation to all the elements in a collection. In
many cases, it’s possible to avoid the use of iterators for this purpose by using a for-each loop.
The for-each loop was discussed in Subsection 7.1.1 for use with arrays and in Subsection 7.3.3
for use with ArrayLists. But in fact, a for-each loop can be used to iterate through any
collection. For a collection coll of type Collection<T>, a for-each loop takes the form:

for (T x : coll) { // "for each object x, of type T, in coll"

// process x

}

Here, x is the loop control variable. Each object in coll will be assigned to x in turn, and the
body of the loop will be executed for each object. Since objects in coll are of type T, x is
declared to be of type T. For example, if namelist is of type Collection<String>, we can print
out all the names in the collection with:

for (String name : namelist) {

System.out.println(name);

}

This for-each loop could, of course, be written as a while loop using an iterator, but the for-each
loop is much easier to follow.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 489

10.1.6 Equality and Comparison

There are several methods in the Collection interface that test objects for equality. For exam-
ple, the methods coll.contains(object) and coll.remove(object) look for an item in the
collection that is equal to object. However, equality is not such a simple matter. The obvious
technique for testing equality—using the == operator—does not usually give a reasonable an-
swer when applied to objects. The == operator tests whether two objects are identical in the
sense that they share the same location in memory. Usually, however, we want to consider two
objects to be equal if they represent the same value, which is a very different thing. Two values
of type String should be considered equal if they contain the same sequence of characters. The
question of whether those characters are stored in the same location in memory is irrelevant.
Two values of type Date should be considered equal if they represent the same time.

The Object class defines the boolean-valued method equals(Object) for testing whether
one object is equal to another. This method is used by many, but not by all, collection
classes for deciding whether two objects are to be considered the same. In the Object class,
obj1.equals(obj2) is defined to be the same as obj1 == obj2. However, for many sub-classes
of Object, this definition is not reasonable, and it should be overridden. The String class, for
example, overrides equals() so that for a String str, str.equals(obj) if obj is also a String
and obj contains the same sequence of characters as str.

If you write your own class, you might want to define an equals() method in that class to
get the correct behavior when objects are tested for equality. For example, a Card class that
will work correctly when used in collections could be defined as:

public class Card { // Class to represent playing cards.

private int suit; // Number from 0 to 3 that codes for the suit --

// spades, diamonds, clubs or hearts.

private int value; // Number from 1 to 13 that represents the value.

public boolean equals(Object obj) {

try {

Card other = (Card)obj; // Type-cast obj to a Card.

if (suit == other.suit && value == other.value) {

// The other card has the same suit and value as

// this card, so they should be considered equal.

return true;

}

else

return false;

}

catch (Exception e) {

// This will catch the NullPointerException that occurs if obj

// is null and the ClassCastException that occurs if obj is

// not of type Card. In these cases, obj is not equal to

// this Card, so return false.

return false;

}

}

.

. // other methods and constructors

.

}

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 490

Without the equals() method in this class, methods such as contains() and remove() from
the interface Collection<Card> will not work as expected.

A similar concern arises when items in a collection are sorted. Sorting refers to arranging
a sequence of items in ascending order, according to some criterion. The problem is that there
is no natural notion of ascending order for arbitrary objects. Before objects can be sorted,
some method must be defined for comparing them. Objects that are meant to be compared
should implement the interface java.lang.Comparable. In fact, Comparable is defined as a
parameterized interface, Comparable<T>, which represents the ability to be compared to an
object of type T. The interface Comparable<T> defines one method:

public int compareTo(T obj)

The value returned by obj1.compareTo(obj2) should be negative if and only if obj1 comes
before obj2, when the objects are arranged in ascending order. It should be positive if and
only if obj1 comes after obj2. A return value of zero means that the objects are considered
to be the same for the purposes of this comparison. This does not necessarily mean that the
objects are equal in the sense that obj1.equals(obj2) is true. For example, if the objects are
of type Address, representing mailing addresses, it might be useful to sort the objects by zip
code. Two Addresses are considered the same for the purposes of the sort if they have the same
zip code—but clearly that would not mean that they are the same address. (Some classes in
the JFC use compareTo() rather than equals() to test objects for equality.)

The String class implements the interface Comparable<String> and defines compareTo in a
reasonable way. In this case, the return value of compareTo is zero if and only if the two strings
that are being compared are equal. If you define your own class and want to be able to sort
objects belonging to that class, you should do the same. For example:

/**

* Represents a full name consisting of a first name and a last name.

*/

public class FullName implements Comparable<FullName> {

private String firstName, lastName; // Non-null first and last names.

public FullName(String first, String last) { // Constructor.

if (first == null || last == null)

throw new IllegalArgumentException("Names must be non-null.");

firstName = first;

lastName = last;

}

public boolean equals(Object obj) {

try {

FullName other = (FullName)obj; // Type-cast obj to type FullName

return firstName.equals(other.firstName)

&& lastName.equals(other.lastName);

}

catch (Exception e) {

return false; // if obj is null or is not of type FullName

}

}

public int compareTo(FullName other) {

if (lastName.compareTo(other.lastName) < 0) {

// If lastName comes before the last name of

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 491

// the other object, then this FullName comes

// before the other FullName. Return a negative

// value to indicate this.

return -1;

}

else if (lastName.compareTo(other.lastName) > 0) {

// If lastName comes after the last name of

// the other object, then this FullName comes

// after the other FullName. Return a positive

// value to indicate this.

return 1;

}

else {

// Last names are the same, so base the comparison on

// the first names, using compareTo from class String.

return firstName.compareTo(other.firstName);

}

}

.

. // other methods

.

}

(I find it a little odd that the class here is declared as “class FullName implements

Comparable<FullName>”, with “FullName” repeated as a type parameter in the name of the
interface. However, it does make sense. It means that we are going to compare objects that
belong to the class FullName to other objects of the same type. Even though this is the only
reasonable thing to do, that fact is not obvious to the Java compiler—and the type parameter
in Comparable<FullName> is there for the compiler.)

There is another way to allow for comparison of objects in Java, and that is to provide
a separate object that is capable of making the comparison. The object must implement the
interface Comparator<T>, where T is the type of the objects that are to be compared. The
interface Comparator<T> defines the method:

public int compare(T obj1, T obj2)

This method compares two objects of type T and returns a value that is negative, or positive,
or zero, depending on whether obj1 comes before obj2, or comes after obj2, or is considered to
be the same as obj2 for the purposes of this comparison. Comparators are useful for compar-
ing objects that do not implement the Comparable interface and for defining several different
orderings on the same collection of objects.

In the next two sections, we’ll see how Comparable and Comparator are used in the context
of collections and maps.

10.1.7 Generics and Wrapper Classes

As noted in Section 7.3 the case of ArrayList, Java’s generic programming does not apply to the
primitive types, since generic data structures can only hold objects, while values of primitive
type are not objects. However, the “wrapper classes” that were introduced in Subsection 7.3.2
make it possible to get around this restriction to a great extent.

Recall that each primitive type has an associated wrapper class: class Integer for type int,
class Boolean for type boolean, class Character for type char, and so on.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 492

An object of type Integer contains a value of type int. The object serves as a “wrapper”
for the primitive type value, which allows it to be used in contexts where objects are required,
such as in generic data structures. For example, a list of Integers can be stored in a variable of
type ArrayList<Integer>, and interfaces such as Collection<Integer> and Set<Integer> are defined.
Furthermore, class Integer defines equals(), compareTo(), and toString() methods that do
what you would expect (that is, that compare and write out the corresponding primitive type
values in the usual way). Similar remarks apply for all the wrapper classes.

Recall also that Java does automatic conversions between a primitive type and the corre-
sponding wrapper type. (These conversions, which are called autoboxing and unboxing, were
also introduced in Subsection 7.3.3.) This means that once you have created a generic data
structure to hold objects belonging to one of the wrapper classes, you can use the data structure
pretty much as if it actually contained primitive type values. For example, if numbers is a vari-
able of type Collection<Integer>, it is legal to call numbers.add(17) or numbers.remove(42).
You can’t literally add the primitive type value 17 to numbers, but Java will automatically con-
vert the 17 to the corresponding wrapper object, new Integer(17), and the wrapper object
will be added to the collection. (The creation of the object does add some time and memory
overhead to the operation, and you should keep that in mind in situations where efficiency is
important. An array of int is more efficient than an ArrayList<Integer>.)

10.2 Lists and Sets

In the previous section, we looked at the general properties of collection classes in Java.
In this section, we look at some specific collection classes and how to use them. These classes
can be divided into two main categories: lists and sets. A list consists of a sequence of items
arranged in a linear order. A list has a definite order, but is not necessarily sorted into ascending
order. A set is a collection that has no duplicate entries. The elements of a set might or might
not be arranged into some definite order. I will also briefly discuss a third category of collection
known as a “priority queue.”

10.2.1 ArrayList and LinkedList

There are two obvious ways to represent a list: as a dynamic array and as a linked list. We’ve
encountered these already in Section 7.3 and Section 9.2. Both of these options are available
in generic form as the collection classes java.util.ArrayList and java.util.LinkedList.
These classes are part of the Java Collection Framework. Each implements the interface List<T>,
and therefore the interface Collection<T>. An object of type ArrayList<T> represents an ordered
sequence of objects of type T, stored in an array that will grow in size whenever necessary as
new items are added. An object of type LinkedList<T> also represents an ordered sequence of
objects of type T, but the objects are stored in nodes that are linked together with pointers.

Both list classes support the basic list operations that are defined in the interface List<T>,
and an abstract data type is defined by its operations, not by its representation. So why two
classes? Why not a single List class with a single representation? The problem is that there is
no single representation of lists for which all list operations are efficient. For some operations,
linked lists are more efficient than arrays. For others, arrays are more efficient. In a particular
application of lists, it’s likely that only a few operations will be used frequently. You want
to choose the representation for which the frequently used operations will be as efficient as
possible.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 493

Broadly speaking, the LinkedList class is more efficient in applications where items will often
be added or removed at the beginning of the list or in the middle of the list. In an array, these
operations require moving a large number of items up or down one position in the array, to
make a space for a new item or to fill in the hole left by the removal of an item. In terms of
asymptotic analysis (Section 8.5), adding an element at the beginning or in the middle of an
array has run time Θ(n), where n is the number of items in the array. In a linked list, nodes can
be added or removed at any position by changing a few pointer values, an operation that has
run time Θ(1). That is, the operation takes only some constant amount of time, independent
of how many items are in the list.

On the other hand, the ArrayList class is more efficient when random access to items is
required. Random access means accessing the k-th item in the list, for any integer k. Random
access is used when you get or change the value stored at a specified position in the list. This is
trivial for an array, with run time Θ(1). But for a linked list it means starting at the beginning
of the list and moving from node to node along the list for k steps, an operation that has run
time Θ(k).

Operations that can be done efficiently for both types of lists include sorting and adding an
item at the end of the list.

All lists implement the methods from interface Collection<T> that were discussed in Sub-
section 10.1.4. These methods include size(), isEmpty(), add(T), remove(Object), and
clear(). The add(T) method adds the object at the end of the list. The remove(Object)

method involves first finding the object, which uses linear search and is not very efficient for
any list since it involves going through the items in the list from beginning to end until the
object is found. The interface List<T> adds some methods for accessing list items according to
their numerical positions in the list. Suppose that list is an object of type List<T>. Then we
have the methods:

• list.get(index) — returns the object of type T that is at position index in the list,
where index is an integer. Items are numbered 0, 1, 2, . . . , list.size()-1. The param-
eter must be in this range, or an IndexOutOfBoundsException is thrown.

• list.set(index,obj) — stores the object obj at position number index in the list,
replacing the object that was there previously. The object obj must be of type T. This
does not change the number of elements in the list or move any of the other elements.

• list.add(index,obj) — inserts an object obj into the list at position number index,
where obj must be of type T. The number of items in the list increases by one, and items
that come after position index move down one position to make room for the new item.
The value of index must be in the range 0 to list.size(), inclusive. If index is equal
to list.size(), then obj is added at the end of the list.

• list.remove(index) — removes the object at position number index, and returns that
object as the return value of the method. Items after this position move up one space in
the list to fill the hole, and the size of the list decreases by one. The value of index must
be in the range 0 to list.size()-1.

• list.indexOf(obj) — returns an int that gives the position of obj in the list, if it occurs.
If it does not occur, the return value is -1. The object obj can be of any type, not just
of type T. If obj occurs more than once in the list, the index of the first occurrence is
returned.

These methods are defined both in class ArrayList<T> and in class LinkedList<T>, although
some of them—get and set—are only efficient for ArrayLists. The class LinkedList<T> adds a

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 494

few additional methods, which are not defined for an ArrayList. If linkedlist is an object of
type LinkedList<T>, then we have

• linkedlist.getFirst() — returns the object of type T that is the first item in the list.
The list is not modified. If the list is empty when the method is called, an exception of
type NoSuchElementException is thrown (the same is true for the next three methods as
well).

• linkedlist.getLast() — returns the object of type T that is the last item in the list.
The list is not modified.

• linkedlist.removeFirst() — removes the first item from the list, and returns that
object of type T as its return value. The functions linkedlist.remove() and
linkedlist.pop() are also defined, with the same meaning as removeFirst().

• linkedlist.removeLast() — removes the last item from the list, and returns that object
of type T as its return value.

• linkedlist.addFirst(obj) — adds the obj, which must be of type T, to the beginning
of the list. The function linkedlist.push(obj) has the same meaning.

• linkedlist.addLast(obj) — adds the object obj, which must be of type T, to the end
of the list. This is exactly the same as linkedlist.add(obj) but is defined to keep the
naming consistent.

There is some redundancy here, apparently to make it easy to use a LinkedList as if it were
a stack or a queue. (See Section 9.3.) For example, we can use a LinkedList as a stack by
using the methods named push() and pop(), or as a queue by using add() and remove() to
implement the enqueue and dequeue operations.

If list is an object of type List<T>, then the method list.iterator(), defined in the
interface Collection<T>, returns an Iterator that can be used to traverse the list from beginning
to end. However, for Lists, there is a special type of Iterator, called a ListIterator, which offers
additional capabilities. ListIterator<T> is an interface that extends the interface Iterator<T>.
The method list.listIterator() returns an object of type ListIterator<T>.

A ListIterator has the usual Iterator methods, hasNext(), next(), and remove(), but it
also has methods hasPrevious(), previous(), add(obj), and set(obj) that make it possible
to move backwards in the list, to add an item at the current position of the iterator, and to
replace one of the items in the list. To understand how these work, it’s best to think of an
iterator as pointing to a position between two list elements, or at the beginning or end of the
list. In this diagram, the items in a list are represented by squares, and arrows indicate the
possible positions of an iterator:

If iter is of type ListIterator<T>, then iter.next() moves the iterator one space to the
right along the list and returns the item that the iterator passes as it moves. The method
iter.previous() moves the iterator one space to the left along the list and returns the item
that it passes. The method iter.remove() removes an item from the list; the item that is
removed is the item that the iterator passed most recently in a call to either iter.next()

or iter.previous(). The method iter.set(obj) works similarly; it replaces the item that
would be removed by iter.remove(). There is also a method iter.add(obj) that adds the

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 495

specified object to the list at the current position of the iterator (where obj must be of type
T). This can be between two existing items or at the beginning of the list or at the end of the
list.

(By the way, the lists that are used in class LinkedList<T> are doubly linked lists.
That is, each node in the list contains two pointers—one to the next node in the list and
one to the previous node. This makes it possible to efficiently implement both the next()

and previous() methods of a ListIterator. Also, to make the addLast() and getLast()

methods of a LinkedList efficient, the class LinkedList<T> includes a “tail pointer” that points
to the last node in the list.)

As an example of using a ListIterator, suppose that we want to maintain a list of items
that is always sorted into increasing order. When adding an item to the list, we can use a
ListIterator to find the position in the list where the item should be added. Once the position
has been found, we use the same list iterator to place the item in that position. The idea is to
start at the beginning of the list and to move the iterator forward past all the items that are
smaller than the item that is being inserted. At that point, the iterator’s add() method can
be used to insert the item. To be more definite, suppose that stringList is a variable of type
List<String>. Assume that the strings that are already in the list are stored in ascending order
and that newItem is a string that we would like to insert into the list. The following code will
place newItem in the list in its correct position, so that the modified list is still in ascending
order:

ListIterator<String> iter = stringList.listIterator();

// Move the iterator so that it points to the position where

// newItem should be inserted into the list. If newItem is

// bigger than all the items in the list, then the while loop

// will end when iter.hasNext() becomes false, that is, when

// the iterator has reached the end of the list.

while (iter.hasNext()) {

String item = iter.next();

if (newItem.compareTo(item) <= 0) {

// newItem should come BEFORE item in the list.

// Move the iterator back one space so that

// it points to the correct insertion point,

// and end the loop.

iter.previous();

break;

}

}

iter.add(newItem);

Here, stringList might be of type ArrayList<String> or of type LinkedList<String>. The
algorithm that is used to insert newItem into the list will be about equally efficient for both types
of lists, and it will even work for other classes that implement the interface List<String>. You
would probably find it easier to design an insertion algorithm that uses array-like indexing with
the methods get(index) and add(index,obj). However, that algorithm would be horribly
inefficient for LinkedLists because random access is so inefficient for linked lists. (By the way,
the insertion algorithm works when the list is empty. It might be useful for you to think about
why this is true.)

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 496

10.2.2 Sorting

Sorting a list is a fairly common operation, and there should really be a sorting method in
the List interface. There is not, presumably because it only makes sense to sort lists of certain
types of objects. However, methods for sorting lists are available as static methods in the class
java.util.Collections. This class contains a variety of static utility methods for working
with collections. The methods are generic; that is, they will work for collections of objects of
various types. (You have already seen similar methods for arrays in the Arrays class.) Suppose
that list is of type List<T>. The command

Collections.sort(list);

can be used to sort the list into ascending order. The items in the list should implement the
interface Comparable<T> (see Subsection 10.1.6). The method Collections.sort() will work,
for example, for lists of String and for lists of any of the wrapper classes such as Integer and
Double. There is also a sorting method that takes a Comparator as its second argument:

Collections.sort(list,comparator);

In this method, the comparator will be used to compare the items in the list. As mentioned
in the previous section, a Comparator is an object that defines a compare() method that can
be used to compare two objects. We’ll see an example of using a Comparator in Section 10.4.

The sorting method that is used by Collections.sort() is the so-called “merge sort”
algorithm, which has both worst-case and average-case run times that are Θ(n*log(n)) for
a list of size n. Although the average run time for MergeSort is a little slower than that of
QuickSort, its worst-case performance is much better than QuickSort’s. (QuickSort was covered
in Subsection 9.1.3.) MergeSort also has a nice property called “stability” that we will encounter
at the end of Subsection 10.4.3.

The Collections class has at least two other useful methods for modifying lists.
Collections.shuffle(list) will rearrange the elements of the list into a random order.
Collections.reverse(list) will reverse the order of the elements, so that the last element is
moved to the beginning of the list, the next-to-last element to the second position, and so on.

Since an efficient sorting method is provided for Lists, there is no need to write one yourself.

10.2.3 TreeSet and HashSet

A set is a collection of objects in which no object occurs more than once. Sets implement all
the methods in the interface Collection<T>, but do so in a way that ensures that no element
occurs twice in the set. For example, if set is an object of type Set<T>, then set.add(obj)

will have no effect on the set if obj is already an element of the set. Java has two classes that
implement the interface Set<T>: java.util.TreeSet and java.util.HashSet.

In addition to being a Set, a TreeSet has the property that the elements of the set are
arranged into ascending sorted order. An Iterator (or a for-each loop) for a TreeSet will always
visit the elements of the set in ascending order.

A TreeSet cannot hold arbitrary objects, since there must be a way to determine the sorted
order of the objects it contains. Ordinarily, this means that the objects in a set of type
TreeSet<T> should implement the interface Comparable<T> and that obj1.compareTo(obj2)

should be defined in a reasonable way for any two objects obj1 and obj2 in the set. Alter-
natively, an object of type Comparator<T> can be provided as a parameter to the constructor
when the TreeSet is created. In that case, the compare() method of the Comparator will be
used to compare objects that are added to the set.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 497

A TreeSet does not use the equals() method to test whether two objects are the same.
Instead, it uses the compareTo() (or compare()) method. This can be a problem. Recall from
Subsection 10.1.6 that compareTo() can consider two objects to be the same for the purpose of
the comparison even though the objects are not equal. For a TreeSet, this means that only one
of those objects can be in the set. For example, if the TreeSet contains mailing addresses and if
the compareTo() method for addresses just compares their zip codes, then the set can contain
only one address in each zip code. Clearly, this is not right! But that only means that you
have to be aware of the semantics of TreeSets, and you need to make sure that compareTo()
is defined in a reasonable way for objects that you put into a TreeSet. This will be true, by
the way, for Strings, Integers, and many other built-in types, since the compareTo() method for
these types considers two objects to be the same only if they are actually equal.

In the implementation of a TreeSet, the elements are stored in something similar to a binary
sort tree. (See Subsection 9.4.2.) However, the data structure that is used is balanced in the
sense that all the leaves of the tree are at about the same distance from the root of the tree.
This ensures that all the basic operations—inserting, deleting, and searching—are efficient, with
worst-case run time Θ(log(n)), where n is the number of items in the set.

The fact that a TreeSet sorts its elements and removes duplicates makes it very useful in
some applications. Exercise 7.7 asked you to write a program that would read a file and output
an alphabetical list of all the words that occurred in the file, with duplicates removed. The
words were to be stored in an ArrayList, so it was up to you to make sure that the list was
sorted and contained no duplicates. The same task can be programmed much more easily
using a TreeSet instead of a list. A TreeSet automatically eliminates duplicates, and an iterator
for the set will automatically visit the items in the set in sorted order. An algorithm for the
program, using a TreeSet, would be:

TreeSet<String> words = new TreeSet<String>();

while there is more data in the input file:

Let word = the next word from the file

Convert word to lower case

words.add(word) // Adds the word only if not already present.

for (String w : words) // for each String w in words

Output w // words are output in sorted order

If you would like to see a complete, working program, you can find it in the file WordListWith-
TreeSet.java.

As another example, suppose that coll is any Collection of Strings. (This would also
work for any other type for which compareTo() is properly defined.) We can use a TreeSet to
sort the items of coll and remove the duplicates simply by saying:

TreeSet<String> set = new TreeSet<String>();

set.addAll(coll);

The second statement adds all the elements of the collection to the set. Since it’s a Set,
duplicates are ignored. Since it’s a TreeSet, the elements of the set are sorted. If you would like
to have the data in some other type of data structure, it’s easy to copy the data from the set.
For example, to place the answer in an ArrayList, you could say:

TreeSet<String> set = new TreeSet<String>();

set.addAll(coll);

ArrayList<String> list = new ArrayList<String>();

list.addAll(set);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordListWithTreeSet.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 498

Now, in fact, every one of Java’s collection classes has a constructor that takes a Collection
as an argument. All the items in that Collection are added to the new collection when it is
created. So, if coll is of type Collection<String>, then “new TreeSet<String>(coll)” creates
a TreeSet that contains the same elements as coll, but with duplicates removed and in sorted
order. This means that we can abbreviate the four lines in the above example to the single
command:

ArrayList<String> list = new ArrayList<String>(new TreeSet<String>(coll));

This makes a sorted list of the elements of coll with no duplicates. Although the repeated
type parameter, “<String>”, makes it a bit ugly to look at, this is still a nice example of the
power of generic programming.

∗ ∗ ∗

A HashSet stores its elements in a hash table , a type of data structure that I will discuss
in the next section. The operations of finding, adding, and removing elements are implemented
very efficiently in hash tables, even more so than for TreeSets. The elements of a HashSet are
not stored in any particular order, and so do not need to implement the Comparable interface.
(They do, however, need to define a proper “hash code,” as we’ll see in the next section.)

The equals() method is used to determine whether two objects in a HashSet are to be
considered the same. An Iterator for a HashSet will visit its elements in what seems to be a
completely arbitrary order, and it’s possible for the order to change completely when a new
element is added. Use a HashSet instead of a TreeSet when the elements it contains are not
comparable, or when the order is not important, or when the small advantage in efficiency is
important.

∗ ∗ ∗

A note about the mathematics of sets: In mathematical set theory, the items in a set are
called members or elements of that set. Important operations include adding an element
to a set, removing an element from a set, and testing whether a given entity is an element of
a set. Operations that can be performed on two sets include union , intersection , and set
difference . All these operations are defined in Java for objects of type Set, but with different
names. Suppose that A and B are Sets. Then:

• A.add(x) adds the element x to the set A.

• A.remove(x) removes the element x from the set A.

• A.contains(x) tests whether x is an element of the set A.

• A.addAll(B) computes the union of A and B.

• A.retainAll(B) computes the intersection of A and B.

• A.removeAll(B) computes the set difference, A - B.

There are of course, differences between mathematical sets and sets in Java. Most important,
perhaps, sets in Java must be finite, while in mathematics, most of the fun in set theory comes
from working with infinity. In mathematics, a set can contain arbitrary elements, while in Java,
a set of type Set<T> can only contain elements of type T. The operation A.addAll(B) acts by
modifying the value of A, while in mathematics the operation A union B computes a new set,
without changing the value of A or B. See Exercise 10.2 for an example of mathematical set
operations in Java.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 499

10.2.4 EnumSet

Enumerated types (or “enums”) were introduced in Subsection 2.3.4. Suppose that E is an
enumerated type. Since E is a class, it is possible to create objects of type TreeSet<E> and Hash-
Set<E>. However, because enums are so simple, trees and hash tables are not the most efficient
implementation for sets of enumerated type values. Java provides the class java.util.EnumSet
as an alternative way to create such sets.

Sets of enumerated type values are created using static methods in the class EnumSet. For
example, if e1, e2, and e3 are values belonging to the enumerated type E, then the method

EnumSet.of(e1, e2, e3)

creates and returns a set of type EnumSet<E> that contains exactly the elements e1, e2, and
e3. The set implements the interface Set<E>, so all the usual set and collection operations are
available. The implementation of these operations is very efficient. The implementation uses
what is called a bit vector. A bit is a quantity that has only two possible values, zero and one.
A set of type EnumSet<E> is represented by a bit vector that contains one bit for each enum
constant in the enumerated type E ; the bit corresponding to the enum constant e is 1 if e is
a member of the set and is 0 if e is not a member of the set. The bit vectors for two sets of
type EnumSet<E> can be very easily combined to represent such operations as the union and
intersection of two sets. The bit vector representation is feasible for EnumSets, but not for
other sets in Java, because an enumerated type contains only a small finite number of enum
constants. (Java actually has a class named BitSet that uses bit vectors to represent finite sets
of non-negative integers, but this class is not part of the Java Collection Framework and does
not implement the Set interface.)

The function EnumSet.of() can be used with any positive number of parameters. All the
parameters must be values of the same enumerated type. Null values are not allowed. An
EnumSet cannot contain the value null—any attempt to add null to an EnumSet will result
in a NullPointerException.

There is also a function EnumSet.range(e1,e2) that returns an EnumSet consisting of the
enum constants between e1 and e2, inclusive. The ordering of enum constants is the same as
the order in which they are listed in the definition of the enum. In EnumSet.range(e1,e2), e1
and e2 must belong to the same enumerated type, and e1 must be less than or equal to e2.

If E is an enum, then EnumSet.allOf(E.class) is a set that contains all values of type
E. EnumSet.noneOf(E.class) is an empty set , a set of type EnumSet<E> that contains no
elements at all. Note that in EnumSet.allOf(E.class) and EnumSet.noneOf(E.class), the
odd-looking parameter represents the enumerated type class itself. If eset is a set of type
EnumSet<E>, then EnumSet.complementOf(eset) is a set that contains all the enum constants
of E that are not in eset.

As an example, consider a program that keeps schedules of events. The program must
keep track of repeating events that happen on specified days of the week. For example, an
event might take place only on weekdays, or only on Wednesdays and Fridays. In other words,
associated with the event is the set of days of the week on which it takes place. This information
can be represented using the enumerated type

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

The days of the week on which an event takes place would then be a value of type EnumSet<Day>.
An object of type RepeatingEvent would have an instance variable of type EnumSet<Day> to
hold this information. An event that takes place on Wednesdays and Fridays would have the
associated set

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 500

EnumSet.of(Day.WEDNESDAY, Day.FRIDAY)

We could define some common sets of Days as

EnumSet<Day> weekday = EnumSet.range(Day.MONDAY, Day.FRIDAY);

EnumSet<Day> weekend = EnumSet.complementOf(weekday);

EnumSet<Day> everyday = EnumSet.allOf(Day.class);

EnumSets are often used to specify sets of “options” that are to be applied during some type
of processing. For example, a program that draws characters in fancy fonts might have various
options that can be applied. Let’s say that the options are bold, italic, underlined, strikethrough,
and boxed. Note that we are assuming that options can be combined in arbitrary ways. For
example, you can have italic, boxed, underlined characters. This just means that we need to
keep track of a set of options. If the options are represented by the enumerated type

enum FontOption { BOLD, ITALIC, UNDERLINED, STRIKETHROUGH, BOXED }

then a set of options is represented by a value of type EnumSet<FontOption>. Suppose that
options is a variable of this type that represents the set of options that are currently being
applied by the program. Then we can do things like:

• options = EnumSet.noneOf(FontOption.class) — Turn off all options.

• options = EnumSet.of(FontOption.BOLD) — Use bold, with no other options.

• options.add(FontOption.BOLD) — Add bold to any options that are already on.

• options.remove(FontOption.UNDERLINED) — Turn underlining off (if it’s on).

This is a nice, safe way to work with sets of options. Applications like this are one of the major
reasons that enumerated types were introduced.

10.2.5 Priority Queues

A priority queue is an ADT that represents a collection of items, where each item has an
assigned “priority” that allows any two items to be compared. Operations on a priority queue
include add, which adds an item to the collection, and remove, which removes and returns an
item from the collection that has the minimum priority among items currently in the collection.
(Maximum priority would also be possible, but in Java’s version, the remove operation removes
a minimum priority item.)

A simple implementation of priority queue could be achieved by using a linked list to store
the items in the queue in order of increasing priority. In that case, remove would simply remove
and return the first item in the list. However, add would have to insert the new item into its
correct position in the list, an operation with average run time Θ(n), where n is the number of
items in the list. In fact, priority queues can be implemented so that both add and remove have
run time Θ(log(n)), which is much more efficient. (The efficient implementation uses something
called a “heap,” which is not to be confused with the heap where objects are created. I will
not discuss the implementation here.)

The parameterized class PriorityQueue<T> implements a priority queue of objects of type T.
This class implements the interface Collection<T>. So, if pq is a PriorityQueue, then it has all
the methods defined in that interface. But the essential priority queue operations are

• pq.add(obj) — adds obj to the priority queue, where obj must be an object of type T

• pq.remove() — removes and returns an item of minimal priority. The return value is an
object of type T. Throws an exception if the queue is empty.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 501

• pq.isEmpty() — tests whether the priority queue is empty.

You’ve probably noticed that I haven’t yet mentioned how the priority of items in the
priority queue are determined. The situation is much like sorting: We need to be able to
compare any two items in the queue. As with sorting, there are two solutions. If the items
implement the Comparable interface, then they can be compared using the compareTo()method
from that interface. Alternatively, a Comparator object can be provided as a parameter to the
PriorityQueue constructor. In that case, the Comparator’s compare method will be used to
compare items.

Classes such as String, Integer, and Date that implement Comparable can be used in a priority
queue. For example, a PriorityQueue<String> can be used to sort strings into lexicographic order:
Just add all the strings to the priority queue, then remove them one-by-one. Since items are
removed from a queue in order of priority, they will be removed in lexicographic order. Earlier,
I showed how to use a TreeSet to sort and remove duplicates from a collection. A PriorityQueue
can be used in a similar way to sort a collection without removing duplicates. For example, if
coll is of type Collection<String>, then the following code segment will print all the items from
coll in order, including duplicates:

PriorityQueue<String> pq = new PriorityQueue<String>();

pq.addAll(coll);

while (! pq.isEmpty()) {

System.out.println(pq.remove());

}

(Note, by the way, that we can’t use an iterator or a for-each loop to print the items in this
example, since interators and for-each loops do not traverse a priority queue in ascending order.)

The sample program WordListWithPriorityQueue.java makes a sorted list of words from
a file without removing duplicates, using a priority queue to hold the words. It is a minor
modification of WordListWithTreeSet.java.

Although priority queues can be used for sorting, they have other natural applications. For
example, consider the problem of scheduling “jobs” to be executed on a computer, where each
job is assigned a priority and jobs with lower priority should always be executed before jobs
with higher priority. Jobs can be placed into a priority queue as they are created. When the
computer removes jobs from the queue for execution, they will be removed in order of increasing
priority.

10.3 Maps

An array of N elements can be thought of as a way of associating some item with each of
the integers 0, 1, . . . , N-1. If i is one of these integers, it’s possible to get the item associated
with i, and it’s possible to put a new item in the i-th position. These “get” and “put”
operations define what it means to be an array.

A map is a kind of generalized array. Like an array, a map is defined by “get” and “put”
operations. But in a map, these operations are defined not for integers 0, 1, . . . , N-1, but for
arbitrary objects of some specified type T. Associated to these objects of type T are objects of
some possibly different type S.

In fact, some programming languages use the term associative array instead of “map”
and use the same notation for associative arrays as for regular arrays. In those languages,
for example, you might see the notation A["fred"] used to indicate the item associated to the

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordListWithPriorityQueue.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordListWithTreeSet.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 502

string “fred” in an associative array A. Java does not use array notation for maps, unfortunately,
but the idea is the same: A map is like an array, but the indices for a map are objects, not
integers. In a map, an object that serves as an “index” is called a key . The object that is
associated with a key is called a value . Note that a key can have at most one associated value,
but the same value can be associated to several different keys. A map can be considered to be
a set of “associations,” where each association is a key/value pair.

10.3.1 The Map Interface

In Java, maps are defined by the interface java.util.Map, which includes put and get methods
as well as other general methods for working with maps. The map interface, Map<K,V>, is
parameterized by two types. The first type parameter, K, specifies the type of objects that are
possible keys in the map; the second type parameter, V, specifies the type of objects that are
possible values in the map. For example, a map of type Map<Date,JButton> would associate
values of type JButton to keys of type Date. For a map of type Map<String,String>, both the
keys and the values are of type String.

Suppose that map is a variable of type Map<K,V> for some specific types K and V. Then the
following are some of the methods that are defined for map:

• map.get(key) — returns the object of type V that is associated by the map to the key.
If the map does not associate any value with key, then the return value is null. Note that
it’s also possible for the return value to be null when the map explicitly associates the
value null with the key. Referring to “map.get(key)” is similar to referring to “A[key]”
for an array A. (But note that there is nothing like an IndexOutOfBoundsException for
maps.)

• map.put(key,value) — Associates the specified value with the specified key, where key
must be of type K and value must be of type V. If the map already associated some
other value with the key, then the new value replaces the old one. This is similar to the
command “A[key] = value” for an array.

• map.putAll(map2) — if map2 is another map of type Map<K,V>, this copies all the asso-
ciations from map2 into map.

• map.remove(key) — if map associates a value to the specified key, that association is
removed from the map.

• map.containsKey(key) — returns a boolean value that is true if the map associates some
value to the specified key.

• map.containsValue(value) — returns a boolean value that is true if the map associates
the specified value to some key.

• map.size() — returns an int that gives the number of key/value associations in the map.

• map.isEmpty() — returns a boolean value that is true if the map is empty, that is if it
contains no associations.

• map.clear() — removes all associations from the map, leaving it empty.

The put and get methods are certainly the most commonly used of the methods in the Map
interface. In many applications, these are the only methods that are needed, and in such cases
a map is really no more difficult to use than a standard array.

Java includes two classes that implement the interface Map<K,V>: TreeMap<K,V> and
HashMap<K,V>. In a TreeMap, the key/value associations are stored in a sorted tree, in which

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 503

they are sorted according to their keys. For this to work, it must be possible to compare the
keys to one another. This means either that the keys must implement the interface Compa-
rable<K>, or that a Comparator must be provided for comparing keys. (The Comparator can
be provided as a parameter to the TreeMap constructor.) Note that in a TreeMap, as in a
TreeSet, the compareTo() (or compare()) method is used to decide whether two keys are to
be considered the same. This can have undesirable consequences if the compareTo() method
does not agree with the usual notion of equality, and you should keep this in mind when using
TreeMaps.

A HashMap does not store associations in any particular order, so the keys that can be used
in a HashMap do not have to be comparable. However, the key class should have reasonable
definitions for the equals() method and for a hashCode() method that is discussed later in
this section; most of Java’s standard classes define these methods correctly. Most operations are
a little faster on HashMaps than they are on TreeMaps. In general, you should use a HashMap
unless you have some particular need for the ordering property of a TreeMap. In particular, if
you are only using the put and get operations, you can safely use a HashMap.

Let’s consider an example where maps would be useful. In Subsection 7.4.2, I presented
a simple PhoneDirectory class that associated phone numbers with names. That class defined
operations addEntry(name,number) and getNumber(name), where both name and number are
given as Strings. In fact, the phone directory is acting just like a map, with the addEntry

method playing the role of the put operation and getNumber playing the role of get. In a real
programming application, there would be no need to define a new class; we could simply use a
map of type Map<String,String>. A directory would be defined as

Map<String,String> directory = new Map<String,String>();

and then directory.put(name,number) would record a phone number in the directory and
directory.get(name) would retrieve the phone number associated with a given name.

10.3.2 Views, SubSets, and SubMaps

A Map is not a Collection, and maps do not implement all the operations defined on collections.
In particular, there are no iterators for maps. Sometimes, though, it’s useful to be able to
iterate through all the associations in a map. Java makes this possible in a roundabout but
clever way. If map is a variable of type Map<K,V>, then the method

map.keySet()

returns the set of all objects that occur as keys for associations in the map. The value returned
by this method is an object that implements the interface Set<K>. The elements of this set
are the map’s keys. The obvious way to implement the keySet() method would be to create
a new set object, add all the keys from the map, and return that set. But that’s not how it’s
done. The value returned by map.keySet() is not an independent object. It is what is called a
view of the actual objects that are stored in the map. This “view” of the map implements the
Set<K> interface, but it does it in such a way that the methods defined in the interface refer
directly to keys in the map. For example, if you remove a key from the view, that key—along
with its associated value—is actually removed from the map. It’s not legal to add an object
to the view, since it doesn’t make sense to add a key to a map without specifying the value
that should be associated to the key. Since map.keySet() does not create a new set, it’s very
efficient, even for very large maps.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 504

One of the things that you can do with a Set is get an Iterator for it and use the iterator to
visit each of the elements of the set in turn. We can use an iterator for the key set of a map to
traverse the map. For example, if map is of type Map<String,Double>, we could write:

Set<String> keys = map.keySet(); // The set of keys in the map.

Iterator<String> keyIter = keys.iterator();

System.out.println("The map contains the following associations:");

while (keyIter.hasNext()) {

String key = keyIter.next(); // Get the next key.

Double value = map.get(key); // Get the value for that key.

System.out.println(" (" + key + "," + value + ")");

}

Or we could do the same thing more easily, avoiding the explicit use of an iterator, with a
for-each loop:

System.out.println("The map contains the following associations:");

for (String key : map.keySet()) { // "for each key in the map’s key set"

Double value = map.get(key);

System.out.println(" (" + key + "," + value + ")");

}

If the map is a TreeMap, then the key set of the map is a sorted set, and the iterator will visit
the keys in ascending order. For a HashMap, the keys are visited in an arbitrary, unpredictable
order.

The Map interface defines two other views. If map is a variable of type Map<K,V>, then the
method:

map.values()

returns an object of type Collection<V> that contains all the values from the associations that
are stored in the map. The return value is a Collection rather than a Set because it can contain
duplicate elements (since a map can associate the same value to any number of keys). The
method:

map.entrySet()

returns a set that contains all the associations from the map. The elements in the set are
objects of type Map.Entry<K,V>. Map.Entry<K,V> is defined as a static nested interface inside
the interface Map<K,V>, so its full name contains a period. However, the name can be used
in the same way as any other type name. (The return type of the method map.entrySet()

is written as Set<Map.Entry<K,V>>. The type parameter in this case is itself a parameterized
type. Although this might look confusing, it’s just Java’s way of saying that the elements of the
set are of type Map.Entry<K,V>.) The information in the set returned by map.entrySet() is
actually no different from the information in the map itself, but the set provides a different view
of this information, with different operations. Each Map.Entry object contains one key/value
pair, and defines methods getKey() and getValue() for retrieving the key and the value. There
is also a method, setValue(value), for setting the value; calling this method for a Map.Entry

object will modify the map itself, just as if the map’s put method were called. As an example,
we can use the entry set of a map to print all the key/value pairs in the map. This is more
efficient than using the key set to print the same information, as I did in the above example,
since we don’t have to use the get() method to look up the value associated with each key.
Suppose again that map is of type Map<String,Double>. Then we can write:

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 505

Set<Map.Entry<String,Double>> entries = map.entrySet();

Iterator<Map.Entry<String,Double>> entryIter = entries.iterator();

System.out.println("The map contains the following associations:");

while (entryIter.hasNext()) {

Map.Entry<String,Double> entry = entryIter.next();

String key = entry.getKey(); // Get the key from the entry.

Double value = entry.getValue(); // Get the value.

System.out.println(" (" + key + "," + value + ")");

}

or, using a for-each loop:

System.out.println("The map contains the following associations:");

for (Map.Entry<String,Double> entry : map.entrySet()) {

System.out.println(" (" + entry.getKey() + "," + entry.getValue() + ")");

}

∗ ∗ ∗

Maps are not the only place in Java’s generic programming framework where views are
used. For example, the interface List<T> defines a sublist as a view of a part of a list. If list
implements the interface List<T>, then the method

list.subList(fromIndex, toIndex)

where fromIndex and toIndex are integers, returns a view of the part of the list consisting
of the list elements in positions between fromIndex and toIndex (including fromIndex but
excluding toIndex). This view lets you operate on the sublist using any of the operations
defined for lists, but the sublist is not an independent list. Changes made to the sublist are
actually made to the original list.

Similarly, it is possible to obtain views that represent certain subsets of a sorted set. If
set is of type TreeSet<T>, then set.subSet(fromElement,toElement) returns a Set<T> that
contains all the elements of set that are between fromElement and toElement (including
fromElement and excluding toElement). The parameters fromElement and toElement must
be objects of type T. For example, if words is a set of type TreeSet<String> in which all the
elements are strings of lower case letters, then words.subSet("m","n") contains all the ele-
ments of words that begin with the letter ’m’. This subset is a view of part of the original
set. That is, creating the subset does not involve copying elements. And changes made to
the subset, such as adding or removing elements, are actually made to the original set. The
view set.headSet(toElement) consists of all elements from the set which are strictly less than
toElement, and set.tailSet(fromElement) is a view that contains all elements from the set
that are greater than or equal to fromElement.

The class TreeMap<K,V> defines three submap views. A submap is similar to a subset.
A submap is a Map that contains a subset of the keys from the original Map, along with
their associated values. If map is a variable of type TreeMap<K,V>, and if fromKey and toKey

are of type T, then map.subMap(fromKey,toKey) returns a view that contains all key/value
pairs from map whose keys are between fromKey and toKey (including fromKey and excluding
toKey). There are also views map.headMap(toKey) and map.tailMap(fromKey) which are
defined analogously to headSet and tailSet. Suppose, for example, that blackBook is a map
of type TreeMap<String,String> in which the keys are names and the values are phone numbers.
We can print out all the entries from blackBook where the name begins with “M” as follows:

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 506

Map<String,String> ems = blackBook.subMap("M","N");

// This submap contains entries for which the key is greater

// than or equal to "M" and strictly less than "N".

if (ems.isEmpty()) {

System.out.println("No entries beginning with M.");

}

else {

System.out.println("Entries beginning with M:");

for (Map.Entry<String,String> entry : ems.entrySet())

System.out.println(" " + entry.getKey() + ": " + entry.getValue());

}

Subsets and submaps are probably best thought of as generalized search operations that
make it possible to find all the items in a range of values, rather than just to find a single
value. Suppose, for example that a database of scheduled events is stored in a map of type
TreeMap<Date,Event> in which the keys are the times of the events, and suppose you want a
listing of all events that are scheduled for some time on July 4, 2014. Just make a submap
containing all keys in the range from 12:00 AM, July 4, 2014 to 12:00 AM, July 5, 2014, and
output all the entries from that submap. This type of search, which is known as a subrange
query is quite common.

10.3.3 Hash Tables and Hash Codes

HashSets and HashMaps are implemented using a data structure known as a hash table .
You don’t need to understand hash tables to use HashSets or HashMaps, but any computer
programmer should be familiar with hash tables and how they work.

Hash tables are an elegant solution to the search problem. A hash table, like a HashMap,
stores key/value pairs. Given a key, you have to search the table for the corresponding key/value
pair. When a hash table is used to implement a set, there are no values, and the only question
is whether or not the key occurs in the set. You still have to search for the key to check whether
it is there or not.

In most search algorithms, in order to find the item you are interested in, you have to look
through a bunch of other items that don’t interest you. To find something in an unsorted list,
you have to go through the items one-by-one until you come to the one you are looking for.
In a binary sort tree, you have to start at the root and move down the tree until you find the
item you want. When you search for a key/value pair in a hash table, you can go directly to
the location that contains the item you want. You don’t have to look through any other items.
(This is not quite true, but it’s close.) The location of the key/value pair is computed from the
key: You just look at the key, and then you go directly to the location where it is stored.

How can this work? If the keys were integers in the range 0 to 99, we could store the
key/value pairs in an array, A, of 100 elements. The key/value pair with key K would be stored
in A[K]. The key takes us directly to the location of the key/value pair. The problem is that
there are usually far too many different possible keys for us to be able to use an array with
one location for each possible key. For example, if the key can be any value of type int, then
we would need an array with over four billion locations—quite a waste of space if we are only
going to store, say, a few thousand items! If the key can be a string of any length, then the
number of possible keys is infinite, and using an array with one location for each possible key
is simply impossible.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 507

Nevertheless, hash tables store their data in an array, and the array index where a key is
stored is based on the key. The index is not equal to the key, but it is computed from the key.
The array index for a key is called the hash code for that key. A function that computes a
hash code, given a key, is called a hash function . To find a key in a hash table, you just have
to compute the hash code of the key and go directly to the array location given by that hash
code. If the hash code is 17, look in array location number 17.

Now, since there are fewer array locations than there are possible keys, it’s possible that
we might try to store two or more keys in the same array location. This is called a collision .
A collision is not an error. We can’t reject a key just because another key happened to have
the same hash code. A hash table must be able to handle collisions in some reasonable way. In
the type of hash table that is used in Java, each array location actually holds a linked list of
key/value pairs (possibly an empty list). When two items have the same hash code, they are
in the same linked list. The structure of the hash table looks something like this:

0

1

2

3

4

5

6

7

8

9

10

11...
...

item

item

item

item

item

item item

item

item

item

In this diagram, there are two items with hash code 0, no items with hash code 1, one item
with hash code 2, and so on. In a properly designed hash table, most of the linked lists are of
length zero or one, and the average length of the lists is less than one. Although the hash code
of a key doesn’t necessarily take you directly to that key, there are probably no more than one
or two other items that you have to look through before finding the key you want. For this to
work properly, the number of items in the hash table should be somewhat less than the number
of locations in the array. In Java’s implementation, whenever the number of items exceeds 75%
of the array size, the array is replaced by a larger one and all the items in the old array are
inserted into the new one. (This is why adding one new item will sometimes cause the ordering
of all the items in the hash table to change completely.)

There is still the question of where hash codes come from. Every object in Java has a
hash code. The Object class defines the method hashCode(), which returns a value of type
int. When an object, obj, is stored in a hash table that has N locations, a hash code in the
range 0 to N-1 is needed. This hash code is computed as Math.abs(obj.hashCode()) % N,
the remainder when the absolute value of obj.hashCode() is divided by N. (The Math.abs

is necessary because obj.hashCode() can be a negative integer, and we need a non-negative
number to use as an array index.)

For hashing to work properly, two objects that are equal according to the equals() method
must have the same hash code. In the Object class, this condition is satisfied because both
equals() and hashCode() are based on the address of the memory location where the object
is stored. However, as noted in Subsection 10.1.6, many classes redefine the equals() method.

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 508

If a class redefines the equals() method, and if objects of that class will be used as keys in
hash tables, then the class must also redefine the hashCode() method. For example, in the
String class, the equals() method is redefined so that two objects of type String are considered
to be equal if they contain the same sequence of characters. The hashCode() method is also
redefined in the String class, so that the hash code of a string is computed from the characters
in that string rather than from its location in memory. For Java’s standard classes, you can
expect equals() and hashCode() to be correctly defined. However, you might need to define
these methods in classes that you write yourself.

Writing a good hash function is something of an art. In order to work well, the hash function
must spread the possible keys fairly evenly over the hash table. Otherwise, the items in a table
can be concentrated in a subset of the available locations, and the linked lists at those locations
can grow to large size; that would destroy the efficiency that is the major reason for hash tables
to exist in the first place. However, I won’t cover techniques for creating good hash functions
in this book.

10.4 Programming with the Java Collection Framework

In this section, we’ll look at some programming examples that use classes from the Java
Collection Framework. The Collection Framework is easy to use, especially compared to the
difficulty of programming new data structures from scratch.

10.4.1 Symbol Tables

We begin with a straightforward but important application of maps. When a compiler reads
the source code of a program, it encounters definitions of variables, subroutines, and classes.
The names of these things can be used later in the program. The compiler has to remember the
definition of each name, so that it can recognize the name and apply the definition when the
name is encountered later in the program. This is a natural application for a Map. The name
can be used as a key in the map. The value associated to the key is the definition of the name,
encoded somehow as an object. A map that is used in this way is called a symbol table .

In a compiler, the values in a symbol table can be quite complicated, since the compiler has
to deal with names for various sorts of things, and it needs a different type of information for
each different type of name. We will keep things simple by looking at a symbol table in another
context. Suppose that we want a program that can evaluate expressions entered by the user,
and suppose that the expressions can contain variables, in addition to operators, numbers, and
parentheses. For this to make sense, we need some way of assigning values to variables. When
a variable is used in an expression, we need to retrieve the variable’s value. A symbol table can
be used to store the data that we need. The keys for the symbol table are variable names. The
value associated with a key is the value of that variable, which is of type double. The symbol
table will be an object of type Map<String,Double>. (Remember that primitive types such as
double can’t be used as type parameters; a wrapper class such as Double must be used instead.
See Subsection 10.1.7.)

To demonstrate the idea, we’ll use a rather simple-minded program in which the user types
commands such as:

let x = 3 + 12

print 2 + 2

print 10*x +17

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 509

let rate = 0.06

print 1000*(1+rate)

The program is an interpreter for a very simple language. The only two commands that
the program understands are “print” and “let”. When a “print” command is executed, the
computer evaluates the expression and displays the value. If the expression contains a variable,
the computer has to look up the value of that variable in the symbol table. A “let” command
is used to give a value to a variable. The computer has to store the value of the variable in
the symbol table. (Note: The “variables” I am talking about here are not variables in the Java
program. The Java program is executing a sort of program typed in by the user. I am talking
about variables in the user’s program. The user gets to make up variable names, so there is no
way for the Java program to know in advance what the variables will be.)

In Subsection 9.5.2, we saw how to write a program, SimpleParser2.java, that can evaluate
expressions that do not contain variables. Here, I will discuss another example program, Sim-
pleInterpreter.java, that is based on the older program. I will only talk about the parts that
are relevant to the symbol table.

The program uses a HashMap as the symbol table. A TreeMap could also be used, but since
the program does not need to access the variables in alphabetical order, we don’t need to have
the keys stored in sorted order. The symbol table in the program is represented by a variable
named symbolTable of type HashMap<String,Double>. At the beginning of the program, the
symbol table object is created with the command:

symbolTable = new HashMap<String,Double>();

This creates a map that initially contains no key/value associations. To execute a “let” com-
mand, the program uses the symbol table’s put() method to associate a value with the variable
name. Suppose that the name of the variable is given by a String, varName, and the value of
the variable is stored in a variable val of type double. The following command would then set
the value associated with the variable in the symbol table:

symbolTable.put(varName, val);

In the program SimpleInterpreter.java, you’ll find this in the method named doLetCommand().
The actual value that is stored in the symbol table is an object of type Double. We can use the
double value val in the call to put because Java does an automatic conversion of type double

to Double when necessary. The double value is “wrapped” in an object of type Double, so that,
in effect, the above statement is equivalent to

symbolTable.put(varName, new Double(val));

Just for fun, I decided to pre-define two variables named “pi” and “e” whose values are the
usual mathematical constants π and e. In Java, the values of these constants are given by
Math.PI and Math.E. To make these variables available to the user of the program, they are
added to the symbol table with the commands:

symbolTable.put("pi", Math.PI);

symbolTable.put("e", Math.E);

When the program encounters a variable while evaluating an expression, the symbol table’s
get() method is used to retrieve its value. The function symbolTable.get(varName) returns
a value of type Double. It is possible that the return value is null; this will happen if no value
has ever been assigned to varName in the symbol table. It’s important to check this possibility.
It indicates that the user is trying to use a variable that the user has not defined. The program
considers this to be an error, so the processing looks something like this:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/SimpleInterpreter.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/SimpleInterpreter.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 510

Double val = symbolTable.get(varName);

if (val == null) {

... // Throw an exception: Undefined variable.

}

// The value associated to varName is val.doubleValue()

You will find this code, more or less, in a method named primaryValue() in SimpleInter-
preter.java.

As you can see from this example, Maps are very useful and are really quite easy to use.

10.4.2 Sets Inside a Map

The objects in a collection or map can be of any type. They can even be collections. Here’s an
example where it’s natural to store sets as the value objects in a map.

Consider the problem of making an index for a book. An index consists of a list of terms
that appear in the book. Next to each term is a list of the pages on which that term appears.
To represent an index in a program, we need a data structure that can hold a list of terms,
along with a list of pages for each term. Adding new data should be easy and efficient. When
it’s time to print the index, it should be easy to access the terms in alphabetical order. There
are many ways this could be done, but I’d like to use Java’s generic data structures and let
them do as much of the work as possible.

We can think of an index as a Map that associates a list of page references to each term.
The terms are keys, and the value associated with a given key is the list of page references for
that term. A Map can be either a TreeMap or a HashMap, but only a TreeMap will make it
easy to access the terms in sorted order. The value associated with a term is a list of page
references. How can we represent such a value? If you think about it, you see that it’s not
really a list in the sense of Java’s generic classes. If you look in any index, you’ll see that a
list of page references has no duplicates, so it’s really a set rather than a list. Furthermore,
the page references for a given term are always printed in increasing order, so we want a sorted
set. This means that we should use a TreeSet to represent each list of page references. The
values that we really want to put in this set are of type int, but once again we have to deal
with the fact that generic data structures can only hold objects, so we must use the wrapper
class, Integer, for the objects in the set.

To summarize, an index will be represented by a TreeMap. The keys for the map will be
terms, which are of type String. The values in the map will be TreeSets that contain Integers
that are the page numbers of every page on which a term appears. The parameterized type
that we should use for the sets is TreeSet<Integer>. For the TreeMap that represents the index
as a whole, the key type is String and the value type is TreeSet<Integer>. This means that the
index has type

TreeMap< String, TreeSet<Integer> >

This is just the usual TreeMap<K,V> with K=String and V=TreeSet<Integer>. A type name
as complicated as this one can look intimidating (especially, I think, when used in a constructor
with the new operator), but if you think about the data structure that we want to represent, it
makes sense. Given a little time and practice, you can get used to types like this one.

To make an index, we need to start with an empty TreeMap and look through the book,
inserting every reference that we want to be in the index into the map. We then need to print
out the data from the map. Let’s leave aside the question of how we find the references to put
in the index, and just look at how the TreeMap is used. It can be created with the commands:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/SimpleInterpreter.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 511

TreeMap<String,TreeSet<Integer>> index; // Declare the variable.

index = new TreeMap<String,TreeSet<Integer>>(); // Create the map object.

Now, suppose that we find a reference to some term (of type String) on some pageNum (of
type int). We need to insert this information into the index. To do this, we should look up the
term in the index, using index.get(term). The return value is either null or is the set of page
references that we have previously found for the term. If the return value is null, then this is
the first page reference for the term, so we should add the term to the index, with a new set
that contains the page reference we’ve just found. If the return value is non-null, we already
have a set of page references, and we should just add the new page reference to the set. Here
is a subroutine that does this:

/**

* Add a page reference to the index.

*/

void addReference(String term, int pageNum) {

TreeSet<Integer> references; // The set of page references that we

// have so far for the term.

references = index.get(term);

if (references == null){

// This is the first reference that we have

// found for the term. Make a new set containing

// the page number and add it to the index, with

// the term as the key.

TreeSet<Integer> firstRef = new TreeSet<Integer>();

firstRef.add(pageNum); // pageNum is "autoboxed" to give an Integer!

index.put(term,firstRef);

}

else {

// references is the set of page references

// that we have found previously for the term.

// Add the new page number to that set. This

// set is already associated to term in the index.

references.add(pageNum); // pageNum is "autoboxed" to give an Integer!

}

}

The only other thing we need to do with the index is print it out. We want to iterate
through the index and print out each term, together with the set of page references for that
term. We could use an Iterator to iterate through the index, but it’s much easier to do it with
a for-each loop. The loop will iterate through the entry set of the map (see Subsection 10.3.2).
Each “entry” is a key/value pair from the map; the key is a term and the value is the associated
set of page references. Inside the for-each loop, we will have to print out a set of Integers, which
can also be done with a for-each loop. So, here we have an example of nested for-each loops.
(You might try to do the same thing entirely with iterators; doing so should give you some
appreciation for the for-each loop!) Here is a subroutine that will print the index:

/**

* Print each entry in the index.

*/

void printIndex() {

for (Map.Entry<String,TreeSet<Integer>> entry : index.entrySet()) {

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 512

String term = entry.getKey();

TreeSet<Integer> pageSet = entry.getValue();

System.out.print(term + " ");

for (int page : pageSet) {

System.out.print(page + " ");

}

System.out.println();

}

}

The hardest thing here is the name of the type Map.Entry<String,TreeSet<Integer>>! Re-
member that the entries in a map of type Map<K,V> have type Map.Entry<K,V>, so the type
parameters in Map.Entry<String,TreeSet<Integer>> are simply copied from the declaration
of index. Another thing to note is that I used a loop control variable, page, of type int to
iterate through the elements of pageSet, which is of type TreeSet<Integer>. You might have
expected page to be of type Integer, not int, and in fact Integer would have worked just as well
here. However, int does work, because of automatic type conversion: It’s legal to assign a value
of type Integer to a variable of type int. (To be honest, I was sort of surprised that this worked
when I first tried it!)

This is not a lot of code, considering the complexity of the operations. I have not written
a complete indexing program, but Exercise 10.5 presents a problem that is almost identical to
the indexing problem.

∗ ∗ ∗

By the way, in this example, I would prefer to print each list of page references with the
integers separated by commas. In the printIndex() method given above, they are separated
by spaces. There is an extra space after the last page reference in the list, but it does no harm
since it’s invisible in the printout. An extra comma at the end of the list would be annoying.
The lists should be in a form such as “17,42,105” and not “17,42,105,”. The problem is, how
to leave that last comma out. Unfortunately, this is not so easy to do with a for-each loop. It
might be fun to look at a few ways to solve this problem. One alternative is to use an iterator:

Iterator<Integer> iter = pageSet.iterator();

int firstPage = iter.next(); // In this program, we know the set has at least

// one element.

System.out.print(firstPage);

while (iter.hasNext()) {

int nextPage = iter.next();

System.out.print("," + nextPage);

}

Another possibility is to use the fact that the TreeSet class defines a method first() that
returns the first item in the set, that is, the one that is smallest in terms of the ordering that
is used to compare items in the set. (It also defines the method last().) We can solve our
problem using this method and a for-each loop:

int firstPage = pageSet.first(); // Find out the first page number in the set.

for (int page : pageSet) {

if (page != firstPage)

System.out.print(","); // Output comma only if this is not the first page.

System.out.print(page);

}

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 513

Finally, here is an elegant solution using a subset view of the tree. (See Subsection 10.3.2.)
Actually, this solution might be a bit extreme:

int firstPage = pageSet.first(); // Get first item, which we know exists.

System.out.print(firstPage); // Print first item, with no comma.

for (int page : pageSet.tailSet(firstPage+1)) // Process remaining items.

System.out.print("," + page);

10.4.3 Using a Comparator

There is a potential problem with our solution to the indexing problem. If the terms in the index
can contain both upper case and lower case letters, then the terms will not be in alphabetical
order! The ordering on String is not alphabetical. It is based on the Unicode codes of the
characters in the string. The codes for all the upper case letters are less than the codes for
the lower case letters. So, for example, terms beginning with “Z” come before terms beginning
with “a”. If the terms are restricted to use lower case letters only (or upper case only), then
the ordering would be alphabetical. But suppose that we allow both upper and lower case, and
that we insist on alphabetical order. In that case, our index can’t use the usual ordering for
Strings. Fortunately, it’s possible to specify a different method to be used for comparing the
keys of a map. This is a typical use for a Comparator.

Recall that an object that implements the interface Comparator<T> defines a method for
comparing two objects of type T :

public int compare(T obj1, T obj2)

This method should return an integer that is negative, zero, or positive, depending on whether
obj1 is less than, equal to, or greater than obj2. We need an object of type Comparator<String>
that will compare two Strings based on alphabetical order. The easiest way to do this is to
convert the Strings to lower case and use the default comparison on the lower case Strings. The
following class defines such a comparator:

/**

* Represents a Comparator that can be used for comparing two

* strings based on alphabetical order.

*/

class AlphabeticalOrder implements Comparator<String> {

public int compare(String str1, String str2) {

String s1 = str1.toLowerCase(); // Convert to lower case.

String s2 = str2.toLowerCase();

return s1.compareTo(s2); // Compare lower-case Strings.

}

}

To solve our indexing problem, we just need to tell our index to use an object of type
AlphabeticalOrder for comparing keys. This is done by providing a Comparator object as a
parameter to the constructor. We just have to create the index in our example with the
command:

index = new TreeMap<String,TreeSet<Integer>>(new AlphabeticalOrder());

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 514

This does work. However, I’ve been concealing one technicality. Suppose, for exam-
ple, that the indexing program calls addReference("aardvark",56) and that it later calls
addReference("Aardvark",102). The words “aardvark” and “Aardvark” differ only in that
one of them begins with an upper case letter; when converted to lower case, they are the same.
When we insert them into the index, do they count as two different terms or as one term? The
answer depends on the way that a TreeMap tests objects for equality. In fact, TreeMaps and
TreeSets always use a Comparator object or a compareTo method to test for equality. They do
not use the equals() method for this purpose. The Comparator that is used for the TreeMap in
this example returns the value zero when it is used to compare “aardvark” and “Aardvark”, so
the TreeMap considers them to be the same. Page references to “aardvark” and “Aardvark” are
combined into a single list, and when the index is printed it will contain only the first version
of the word that was encountered by the program. This is probably acceptable behavior in this
example. If not, some other technique must be used to sort the terms into alphabetical order.

10.4.4 Word Counting

The final example in this section also deals with storing information about words. The problem
here is to make a list of all the words that occur in a file, along with the number of times that
each word occurs. The file will be selected by the user. The output of the program will consist
of two lists. Each list contains all the words from the file, along with the number of times that
the word occurred. One list is sorted alphabetically, and the other is sorted according to the
number of occurrences, with the most common words at the top and the least common at the
bottom. The problem here is a generalization of Exercise 7.7, which asked you to make an
alphabetical list of all the words in a file, without counting the number of occurrences.

My word counting program can be found in the file WordCount.java. As the program reads
an input file, it must keep track of how many times it encounters each word. We could simply
throw all the words, with duplicates, into a list and count them later. But that would require
a lot of extra storage space and would not be very efficient. A better method is to keep a
counter for each word. The first time the word is encountered, the counter is initialized to 1.
On subsequent encounters, the counter is incremented. To keep track of the data for one word,
the program uses a simple class that holds a word and the counter for that word. The class is
a static nested class:

/**

* Represents the data we need about a word: the word and

* the number of times it has been encountered.

*/

private static class WordData {

String word;

int count;

WordData(String w) {

// Constructor for creating a WordData object when

// we encounter a new word.

word = w;

count = 1; // The initial value of count is 1.

}

} // end class WordData

The program has to store all the WordData objects in some sort of data structure. We want
to be able to add new words efficiently. Given a word, we need to check whether a WordData

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordCount.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 515

object already exists for that word, and if it does, we need to find that object so that we can
increment its counter. A Map can be used to implement these operations. Given a word, we
want to look up a WordData object in the Map. This means that the word is the key, and the
WordData object is the value. (It might seem strange that the key is also one of the instance
variables in the value object, but in fact this is probably the most common situation: The
value object contains all the information about some entity, and the key is one of those pieces
of information; the partial information in the key is used to retrieve the full information in the
value object.) After reading the file, we want to output the words in alphabetical order, so we
should use a TreeMap rather than a HashMap. This program converts all words to lower case
so that the default ordering on Strings will put the words in alphabetical order. The data is
stored in a variable named words of type TreeMap<String,WordData>. The variable is declared
and the map object is created with the statement:

TreeMap<String,WordData> words = new TreeMap<String,WordData>();

When the program reads a word from a file, it calls words.get(word) to find out if that
word is already in the map. If the return value is null, then this is the first time the word
has been encountered, so a new WordData object is created and inserted into the map with the
command words.put(word, new WordData(word)). If words.get(word) is not null, then
its value is the WordData object for this word, and the program only has to increment the
counter in that object. The program uses a method readNextWord(), which was given in
Exercise 7.7, to read one word from the file. This method returns null when the end of the file
is encountered. Here is the complete code segment that reads the file and collects the data:

String word = readNextWord();

while (word != null) {

word = word.toLowerCase(); // convert word to lower case

WordData data = words.get(word);

if (data == null)

words.put(word, new WordData(word));

else

data.count++;

word = readNextWord();

}

After reading the words and printing them out in alphabetical order, the program has to
sort the words by frequency and print them again. To do the sorting using a generic algorithm, I
defined a simple Comparator class for comparing two word objects according to their frequency
counts. The class implements the interface Comparator<WordData>, since it will be used to
compare two objects of type WordData:

/**

* A comparator class for comparing objects of type WordData according to

* their counts. This is used for sorting the list of words by frequency.

*/

private static class CountCompare implements Comparator<WordData> {

public int compare(WordData data1, WordData data2) {

return data2.count - data1.count;

// The return value is positive if data1.count < data2.count.

// I.E., data1 comes after data2 in the ordering if there

// were FEWER occurrences of data1.word than of data2.word.

// The words are sorted according to decreasing counts.

}

} // end class CountCompare

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 516

Given this class, we can sort the WordData objects according to frequency by first copying
them into a list and then using the generic method Collections.sort(list,comparator).
The WordData objects that we need are the values in the map, words. Recall that
words.values() returns a Collection that contains all the values from the map. The con-
structor for the ArrayList class lets you specify a collection to be copied into the list when it is
created. So, we can use the following commands to create a list of type ArrayList<WordData>
containing the word data and then sort that list according to frequency:

ArrayList<WordData> wordsByFrequency = new ArrayList<WordData>(words.values());

Collections.sort(wordsByFrequency, new CountCompare());

You should notice that these two lines replace a lot of code! It requires some practice to think
in terms of generic data structures and algorithms, but the payoff is significant in terms of saved
time and effort.

The only remaining problem is to print the data. We have to print the data from all the
WordData objects twice, first in alphabetical order and then sorted according to frequency
count. The data is in alphabetical order in the TreeMap, or more precisely, in the values of
the TreeMap. We can use a for-each loop to print the data in the collection words.values(),
and the words will appear in alphabetical order. Another for-each loop can be used to print
the data in the list wordsByFrequency, and the words will be printed in order of decreasing
frequency. Here is the code that does it:

TextIO.putln("List of words in alphabetical order"

+ " (with counts in parentheses):\n");

for (WordData data : words.values())

TextIO.putln(" " + data.word + " (" + data.count + ")");

TextIO.putln("\n\nList of words by frequency of occurrence:\n");

for (WordData data : wordsByFrequency)

TextIO.putln(" " + data.word + " (" + data.count + ")");

You can find the complete word-counting program in the file WordCount.java. Note that for
reading and writing files, it uses the file I/O capabilities of TextIO.java, which were discussed
in Subsection 2.4.4.

By the way, if you run the WordCount program on a reasonably large file and take a look
at the output, it will illustrate something about the Collections.sort() method. The second
list of words in the output is ordered by frequency, but if you look at a group of words that all
have the same frequency, you will see that the words in that group are in alphabetical order.
The method Collections.sort() was applied to sort the words by frequency, but before it was
applied, the words were already in alphabetical order. When Collections.sort() rearranged
the words, it did not change the ordering of words that have the same frequency, so they were
still in alphabetical order within the group of words with that frequency. This is because the
algorithm used by Collections.sort() is a stable sorting algorithm. A sorting algorithm is
said to be stable if it satisfies the following condition: When the algorithm is used to sort a list
according to some property of the items in the list, then the sort does not change the relative
order of items that have the same value of that property. That is, if item B comes after item A
in the list before the sort, and if both items have the same value for the property that is being
used as the basis for sorting, then item B will still come after item A after the sorting has
been done. Neither SelectionSort nor QuickSort are stable sorting algorithms. Insertion sort is
stable, but is not very fast. Merge sort, the sorting algorithm used by Collections.sort(),
is both stable and fast.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordCount.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/TextIO.java

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 517

I hope that the programming examples in this section have convinced you of the usefulness
of the Java Collection Framework!

10.5 Writing Generic Classes and Methods

So far in this chapter, you have learned about using the generic classes and methods that
are part of the Java Collection Framework. Now, it’s time to learn how to write new generic
classes and methods from scratch. Generic programming produces highly general and reusable
code—it’s very useful for people who write reusable software libraries to know how to do generic
programming, since it enables them to write code that can be used in many different situations.
Not every programmer needs to write reusable software libraries, but every programmer should
know at least a little about how to do it. In fact, just to read the Javadoc documentation for
Java’s standard generic classes, you need to know some of the syntax that is introduced in this
section.

I will not cover every detail of generic programming in Java in this section, but the material
presented here should be sufficient to cover the most common cases.

10.5.1 Simple Generic Classes

Let’s start with an example that illustrates the motivation for generic programming. In Subsec-
tion 10.2.1, I remarked that it would be easy to use a LinkedList to implement a queue. (Queues
were introduced in Subsection 9.3.2.) To ensure that the only operations that are performed
on the list are the queue operations enqueue, dequeue, and isEmpty, we can create a new class
that contains the linked list as a private instance variable. To implement queues of strings, for
example, we can define the class:

class QueueOfStrings {

private LinkedList<String> items = new LinkedList<String>();

public void enqueue(String item) {

items.addLast(item);

}

public String dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

This is a fine and useful class. But, if this is how we write queue classes, and if we want
queues of Integers or Doubles or JButtons or any other type, then we will have to write a
different class for each type. The code for all of these classes will be almost identical, which
seems like a lot of redundant programming. To avoid the redundancy, we can write a generic
Queue class that can be used to define queues of any type of object.

The syntax for writing the generic class is straightforward: We replace the specific type
String with a type parameter such as T, and we add the type parameter to the name of the
class:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 518

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

Note that within the class, the type parameter T is used just like any regular type name.
It’s used to declare the return type for dequeue, as the type of the formal parameter item in
enqueue, and even as the actual type parameter in LinkedList<T>. Given this class definition, we
can use parameterized types such as Queue<String> and Queue<Integer> and Queue<JButton>.
That is, the Queue class is used in exactly the same way as built-in generic classes like LinkedList
and HashSet.

Note that you don’t have to use “T” as the name of the type parameter in the definition of
the generic class. Type parameters are like formal parameters in subroutines. You can make up
any name you like in the definition of the class. The name in the definition will be replaced by
an actual type name when the class is used to declare variables or create objects. If you prefer
to use a more meaningful name for the type parameter, you might define the Queue class as:

class Queue<ItemType> {

private LinkedList<ItemType> items = new LinkedList<ItemType>();

public void enqueue(ItemType item) {

items.addLast(item);

}

public ItemType dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

Changing the name from “T” to “ItemType” has absolutely no effect on the meaning of the
class definition or on the way that Queue is used.

Generic interfaces can be defined in a similar way. It’s also easy to define generic classes
and interfaces that have two or more type parameters, as is done with the standard interface
Map<K,V>. A typical example is the definition of a “Pair” that contains two objects, possibly
of different types. A simple version of such a class can be defined as:

class Pair<T,S> {

public T first;

public S second;

public Pair(T a, S b) { // Constructor.

first = a;

second = b;

}

}

This class can be used to declare variables and create objects such as:

Pair<String,Color> colorName = new Pair<String,Color>("Red", Color.RED);

Pair<Double,Double> coordinates = new Pair<Double,Double>(17.3,42.8);

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 519

Note that in the definition of the constructor in this class, the name “Pair” does not have type
parameters. You might have expected “Pair<T,S>”. However, the name of the class is “Pair”,
not “Pair<T,S>”, and within the definition of the class, “T” and “S” are used as if they are the
names of specific, actual types. Note in any case that type parameters are never added to the
names of methods or constructors, only to the names of classes and interfaces.

10.5.2 Simple Generic Methods

In addition to generic classes, Java also has generic methods. An example is the method
Collections.sort(), which can sort collections of objects of any type. To see how to write
generic methods, let’s start with a non-generic method for counting the number of times that
a given string occurs in an array of strings:

/**

* Returns the number of times that itemToCount occurs in list. Items in the

* list are tested for equality using itemToCount.equals(), except in the

* special case where itemToCount is null.

*/

public static int countOccurrences(String[] list, String itemToCount) {

int count = 0;

if (itemToCount == null) {

for (String listItem : list)

if (listItem == null)

count++;

}

else {

for (String listItem : list)

if (itemToCount.equals(listItem))

count++;

}

return count;

}

Once again, we have some code that works for type String, and we can imagine writing
almost identical code to work with other types of objects. By writing a generic method, we get
to write a single method definition that will work for objects of any type. We need to replace
the specific type String in the definition of the method with the name of a type parameter, such
as T. However, if that’s the only change we make, the compiler will think that “T” is the name
of an actual type, and it will mark it as an undeclared identifier. We need some way of telling
the compiler that “T” is a type parameter. That’s what the “<T>” does in the definition of the
generic class “class Queue<T> { ...”. For a generic method, the “<T>” goes just before the
name of the return type of the method:

public static <T> int countOccurrences(T[] list, T itemToCount) {

int count = 0;

if (itemToCount == null) {

for (T listItem : list)

if (listItem == null)

count++;

}

else {

for (T listItem : list)

if (itemToCount.equals(listItem))

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 520

count++;

}

return count;

}

The “<T>” marks the method as being generic and specifies the name of the type parameter
that will be used in the definition. Of course, the name of the type parameter doesn’t have to
be “T”; it can be anything. (The “<T>” looks a little strange in that position, I know, but it
had to go somewhere and that’s just where the designers of Java decided to put it.)

Given the generic method definition, we can apply it to objects of any type. If wordList is
a variable of type String[] and word is a variable of type String, then

int ct = countOccurrences(wordList, word);

will count the number of times that word occurs in wordList. If palette is a variable of type
Color[] and color is a variable of type Color, then

int ct = countOccurrences(palette, color);

will count the number of times that color occurs in palette. If numbers is a variable of type
Integer[], then

int ct = countOccurrences(numbers, 17);

will count the number of times that 17 occurs in numbers. This last example uses autoboxing;
the 17 is automatically converted to a value of type Integer. Note that, since generic program-
ming in Java applies only to objects, we cannot use countOccurrences to count the number
of occurrences of 17 in an array of type int[].

A generic method can have one or more type parameters, such as the “T” in
countOccurrences. Note that when a generic method is used, as in the function call
“countOccurrences(wordlist, word)”, there is no explicit mention of the type that is sub-
stituted for the type parameter. The compiler deduces the type from the types of the actual
parameters in the method call. Since wordlist is of type String[], the compiler can tell that
in “countOccurrences(wordlist, word)”, the type that replaces T is String. This contrasts
with the use of generic classes, as in “new Queue<String>()”, where the type parameter is
specified explicitly.

The countOccurrences method operates on an array. We could also write a similar method
to count occurrences of an object in any collection:

public static <T> int countOccurrences(Collection<T> collection, T itemToCount) {

int count = 0;

if (itemToCount == null) {

for (T item : collection)

if (item == null)

count++;

}

else {

for (T item : collection)

if (itemToCount.equals(item))

count++;

}

return count;

}

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 521

Since Collection<T> is itself a generic type, this method is very general. It can operate on
an ArrayList of Integers, a TreeSet of Strings, a LinkedList of JButtons,

10.5.3 Type Wildcards

There is a limitation on the sort of generic classes and methods that we have looked at so far:
The type parameter in our examples, usually named T, can be any type at all. This is OK
in many cases, but it means that the only things that you can do with T are things that can
be done with every type, and the only things that you can do with objects of type T are
things that you can do with every object. With the techniques that we have covered so far,
you can’t, for example, write a generic method that compares objects with the compareTo()

method, since that method is not defined for all objects. The compareTo() method is defined
in the Comparable interface. What we need is a way of specifying that a generic class or method
only applies to objects of type Comparable and not to arbitrary objects. With that restriction,
we should be free to use compareTo() in the definition of the generic class or method.

There are two different but related syntaxes for putting restrictions on the types that are
used in generic programming. One of these is bounded type parameters, which are used
as formal type parameters in generic class and method definitions; a bounded type parameter
would be used in place of the simple type parameter T in “class GenericClass<T> ...” or
in “public static <T> void genericMethod(...”. The second syntax is wildcard types,
which are used as type parameters in the declarations of variables and of formal parameters
in method definitions; a wildcard type could be used in place of the type parameter String
in the declaration statement “List<String> list;” or in the formal parameter list “void
concat(Collection<String> c)”. We will look at wildcard types first, and we will return to
the topic of bounded types later in this section.

Let’s start with a simple example in which a wildcard type is useful. Suppose that Shape
is a class that defines a method public void draw(), and suppose that Shape has subclasses
such as Rect and Oval. Suppose that we want a method that can draw all the shapes in a
collection of Shapes. We might try:

public static void drawAll(Collection<Shape> shapes) {

for (Shape s : shapes)

s.draw();

}

This method works fine if we apply it to a variable of type Collection<Shape>, or Ar-
rayList<Shape>, or any other collection class with type parameter Shape. Suppose, however,
that you have a list of Rects stored in a variable named rectangles of type Collection<Rect>.
Since Rects are Shapes, you might expect to be able to call drawAll(rectangles). Unfortu-
nately, this will not work; a collection of Rects is not considered to be a collection of Shapes!
The variable rectangles cannot be assigned to the formal parameter shapes. The solution
is to replace the type parameter “Shape” in the declaration of shapes with the wildcard type
“? extends Shape”:

public static void drawAll(Collection<? extends Shape> shapes) {

for (Shape s : shapes)

s.draw();

}

The wildcard type “? extends Shape” means roughly “any type that is either equal to Shape
or that is a subclass of Shape”. When the parameter shapes is declared to be of type Collec-

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 522

tion<? extends Shape>, it becomes possible to call the drawAll method with an actual parameter
of type Collection<Rect> since Rect is a subclass of Shape and therefore matches the wildcard.
We could also pass actual parameters to drawAll of type ArrayList<Rect> or Set<Oval> or
List<Oval>. And we can still pass variables of type Collection<Shape> or ArrayList<Shape>, since
the class Shape itself matches “? extends Shape”. We have greatly increased the usefulness
of the method by using the wildcard type.

(Although it is not essential, you might be interested in knowing why Java does not allow
a collection of Rects to be used as a collection of Shapes, even though every Rect is considered
to be a Shape. Consider the rather silly but legal method that adds an oval to a list of shapes:

static void addOval(List<Shape> shapes, Oval oval) {

shapes.add(oval);

}

Suppose that rectangles is of type List<Rect>. It’s illegal to call addOval(rectangles,oval),
because of the rule that a list of Rects is not a list of Shapes. If we dropped that rule, then
addOval(rectangles,oval) would be legal, and it would add an Oval to a list of Rects. This
would be bad: Since Oval is not a subclass of Rect, an Oval is not a Rect, and a list of Rects
should never be able to contain an Oval. The method call addOval(rectangles,oval) does
not make sense and should be illegal, so the rule that a collection of Rects is not a collection
of Shapes is a good rule.)

As another example, consider the method addAll() from the interface Collection<T>. In
my description of this method in Subsection 10.1.4, I say that for a collection, coll, of type
Collection<T>, coll.addAll(coll2) “adds all the objects in coll2 to coll. The parameter,
coll2, can be any collection of type Collection<T>. However, it can also be more general. For
example, if T is a class and S is a sub-class of T, then coll2 can be of type Collection<S>.
This makes sense because any object of type S is automatically of type T and so can legally
be added to coll.” If you think for a moment, you’ll see that what I’m describing here, a little
awkwardly, is a use of wildcard types: We don’t want to require coll2 to be a collection of
objects of type T ; we want to allow collections of any subclass of T. To be more specific, let’s
look at how a similar addAll() method could be added to the generic Queue class that was
defined earlier in this section:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

public void addAll(Collection<? extends T> collection) {

// Add all the items from the collection to the end of the queue

for (T item : collection)

enqueue(item);

}

}

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 523

Here, T is a type parameter in the generic class definition. We are combining wildcard types
with generic classes. Inside the generic class definition, “T” is used as if it is a specific, though
unknown, type. The wildcard type “? extends T” means some type that is equal to or extends
that specific type. When we create a queue of type Queue<Shape>, “T” refers to “Shape”, and
the wildcard type “? extends T” in the class definition means “? extends Shape”, meaning
that the addAll method of the queue can be applied to collections of Rects and Ovals as well
as to collections of Shapes.

The for-each loop in the definition of addAll iterates through the collection using a
variable, item, of type T. Now, collection can be of type Collection<S>, where S is a subclass
of T. Since item is of type T, not S, do we have a problem here? No, no problem. As long as
S is a subclass of T, a value of type S can be assigned to a variable of type T. The restriction
on the wildcard type makes everything work nicely.

The addAll method adds all the items from a collection to the queue. Suppose that we
wanted to do the opposite: Add all the items that are currently on the queue to a given
collection. An instance method defined as

public void addAllTo(Collection<T> collection)

would only work for collections whose base type is exactly the same as T. This is too restrictive.
We need some sort of wildcard. However, “? extends T” won’t work. Suppose we try it:

public void addAllTo(Collection<? extends T> collection) {

// Remove all items currently on the queue and add them to collection

while (! isEmpty()) {

T item = dequeue(); // Remove an item from the queue.

collection.add(item); // Add it to the collection. ILLEGAL!!

}

}

The problem is that we can’t add an item of type T to a collection that might only be able
to hold items belonging to some subclass, S, of T. The containment is going in the wrong
direction: An item of type T is not necessarily of type S. For example, if we have a queue of
type Queue<Shape>, it doesn’t make sense to add items from the queue to a collection of type
Collection<Rect>, since not every Shape is a Rect. On the other hand, if we have a Queue<Rect>,
it would make sense to add items from that queue to a Collection<Shape> or indeed to any
collection Collection<S> where S is a superclass of Rect.

To express this type of relationship, we need a new kind of type wildcard: “? super T”.
This wildcard means, roughly, “either T itself or any class that is a superclass of T.” For
example, Collection<? super Rect> would match the types Collection<Shape>, ArrayList<Object>,
and Set<Rect>. This is what we need for our addAllTo method. With this change, our complete
generic queue class becomes:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 524

}

public void addAll(Collection<? extends T> collection) {

// Add all the items from the collection to the end of the queue

for (T item : collection)

enqueue(item);

}

public void addAllTo(Collection<? super T> collection) {

// Remove all items currently on the queue and add them to collection

while (! isEmpty()) {

T item = dequeue(); // Remove an item from the queue.

collection.add(item); // Add it to the collection.

}

}

}

In a wildcard type such as “? extends T”, T can be an interface instead of a class. Note
that the term “extends” (not “implements”) is used in the wildcard type, even if T is an
interface. For example, we will see that Runnable is an interface that defines the method
public void run(). (Runnable objects are usually associated with threads; see Chapter 12.)
Here is a method that runs all the objects in a collection of Runnables by executing the run()
method from each runnable object:

public static runAll(Collection<? extends Runnable> runnables) {

for (Runnable runnable : runnables) {

runnable.run();

}

}

∗ ∗ ∗

Wildcard types are used only as type parameters in parameterized types, such as Collec-
tion<? extends Runnable>. The place where a wildcard type is most likely to occur, by far, is
in a formal parameter list, where the wildcard type is used in the declaration of the type of a
formal parameter. However, they can also be used in a few other places. For example, they can
be used in the type specification in a variable declaration statement.

One final remark: The wildcard type “<?>” is equivalent to “<? extends Object>”. That
is, it matches any possible type. For example, the removeAll() method in the generic interface
Collections<T> is declared as

public boolean removeAll(Collection<?> c) { ...

This just means that the removeAll method can be applied to any collection of any type of
object.

10.5.4 Bounded Types

Wildcard types don’t solve all of our problems. They allow us to generalize method definitions
so that they can work with collections of objects of various types, rather than just a single type.
However, they do not allow us to restrict the types that are allowed as type parameters in a
generic class or method definition. Bounded types exist for this purpose.

We start with a small, not very realistic example. Suppose that you would like to cre-
ate groups of GUI components using a generic class named ComponentGroup. For example,
the parameterized type ComponentGroup<JButton> would represent a group of JButtons, while

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 525

ComponentGroup<JPanel> would represent a group of JPanels. The class will include methods
that can be called to apply certain operations to all components in the group at once. For
example, there will be an instance method of the form

public void repaintAll() {

.

. // Call the repaint() method of every component in the group.

.

}

The problem is that the repaint() method is defined in a JComponent object, but not for ob-
jects of arbitrary type. It wouldn’t make sense to allow types such as ComponentGroup<String>
or ComponentGroup<Integer>, since Strings and Integers don’t have repaint() methods. We
need some way to restrict the type parameter T in ComponentGroup<T> so that only JCompo-
nent and subclasses of JComponent are allowed as actual type parameters. We can do this by
using the bounded type “T extends JComponent” instead of a plain “T” in the definition of
the class:

public class ComponentGroup<T extends JComponent> {

private ArrayList<T> components; // For storing the components in this group.

public void repaintAll() {

for (JComponent c : components)

if (c != null)

c.repaint();

}

public void setAllEnabled(boolean enable) {

for (JComponent c : components)

if (c != null)

c.setEnabled(enable);

}

}

public void add(T c) { // Add a value c, of type T, to the group.

components.add(c);

}

.

. // Additional methods and constructors.

.

}

The restriction “extends JComponent” on T makes it illegal to create the parameterized
types ComponentGroup<String> and ComponentGroup<Integer>, since the actual type parameter
that replaces “T” is required to be either JComponent itself or a subclass of JComponent.
With this restriction, we know—and, more important, the compiler knows—that the objects in
the group are of type JComponent and the operations c.repaint() and c.setEnabled() are
defined for any c in the group.

In general, a bounded type parameter “T extends SomeType” means roughly “a type, T,
that is either equal to SomeType or is a subclass of SomeType”, and the upshot is that any
object of type T is also of type SomeType, and any operation that is defined for objects of type
SomeType is defined for objects of type T. The type SomeType doesn’t have to be the name of
a class. It can be any name that represents an actual object type. For example, it can be an
interface or even a parameterized type.

Bounded types and wildcard types are clearly related. They are, however, used in very
different ways. A bounded type can be used only as a formal type parameter in the definition

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 526

of a generic method, class, or interface. A wildcard type is used most often to declare the type
of a formal parameter in a method and cannot be used as a formal type parameter. One other
difference, by the way, is that, in contrast to wildcard types, bounded type parameters can only
use “extends”, never “super”.

Bounded type parameters can be used when declaring generic methods. For example, as
an alternative to the generic ComponentGroup class, one could write a free-standing generic
static method that can repaint any collection of JComponents as follows:

public static <T extends JComponent> void repaintAll(Collection<T> comps) {

for (JComponent c : comps)

if (c != null)

c.repaint();

}

Using “<T extends JComponent>” as the formal type parameter means that the method can
only be called for collections whose base type is JComponent or some subclass of JComponent.
Thus, it is legal to call repaintAll(coll) where coll is of type List<JPanel> but not where
coll is of type Set<String>.

Note that we don’t really need a generic type parameter in this case. We can write an
equivalent method using a wildcard type:

public static void repaintAll(Collection<? extends JComponent> comps) {

for (JComponent c : comps)

if (c != null)

c.repaint();

}

In this situation, the version that uses the wildcard type is to be preferred, since the implemen-
tation is simpler. However, there are some situations where a generic method with a bounded
type parameter cannot be rewritten using a wildcard type. Note that a generic type parameter
gives a name, such as T, to the unknown type, while a wildcard type does not give a name to
the unknown type. The name makes it possible to refer to the unknown type in the body of
the method that is being defined. If a generic method definition uses the generic type name
more than once or uses it outside the formal parameter list of the method, then the generic
type cannot be replaced with a wildcard type.

Let’s look at a generic method in which a bounded type parameter is essential. In Subsec-
tion 10.2.1, I presented a code segment for inserting a string into a sorted list of strings, in such
a way that the modified list is still in sorted order. Here is the same code, but this time in the
form of a method definition (and without the comments):

static void sortedInsert(List<String> sortedList, String newItem) {

ListIterator<String> iter = sortedList.listIterator();

while (iter.hasNext()) {

String item = iter.next();

if (newItem.compareTo(item) <= 0) {

iter.previous();

break;

}

}

iter.add(newItem);

}

CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES 527

This method works fine for lists of strings, but it would be nice to have a generic method
that can be applied to lists of other types of objects. The problem, of course, is that the code
assumes that the compareTo() method is defined for objects in the list, so the method can
only work for lists of objects that implement the Comparable interface. We can’t simply use
a wildcard type to enforce this restriction. Suppose we try to do it, by replacing List<String>
with List<? extends Comparable>:

static void sortedInsert(List<? extends Comparable> sortedList, ???? newItem) {

ListIterator<????> iter = stringList.listIterator();

...

We immediately run into a problem, because we have no name for the unknown type represented
by the wildcard. We need a name for that type because the type of newItem and of iter should
be the same as the type of the items in the list. The problem is solved if we write a generic
method with a bounded type parameter, since then we have a name for the unknown type, and
we can write a valid generic method:

static <T extends Comparable> void sortedInsert(List<T> sortedList, T newItem) {

ListIterator<T> iter = sortedList.listIterator();

while (iter.hasNext()) {

T item = iter.next();

if (newItem.compareTo(item) <= 0) {

iter.previous();

break;

}

}

iter.add(newItem);

}

There is still one technicality to cover in this example. Comparable is itself a parameterized
type, but I have used it here without a type parameter. This is legal but the compiler might give
you a warning about using a “raw type.” In fact, the objects in the list should implement the
parameterized interface Comparable<T>, since they are being compared to items of type T. This
just means that instead of using Comparable as the type bound, we should use Comparable<T>:

static <T extends Comparable<T>> void sortedInsert(List<T> sortedList, ...

∗ ∗ ∗

With this example, I will leave the topic of generic types and generic programming. In this
chapter, I have occasionally used terms such as “strange” and “weird” to talk about generic
programming in Java. I will confess that I have some affection for the more simple-minded
generic programming style of Smalltalk. Nevertheless, I recognize the power and increased
robustness of generics in Java. I hope that I have convinced you that using the Java Collection
Framework is reasonably natural and straightforward, and that using it can save you a lot of
time and effort compared to repeatedly recoding the same data structures and algorithms from
scratch. Things become more technical when you start writing new generic classes and methods
of your own, and the syntax is (as I’ve said) a little strange. But with some practice, you’ll get
used to the syntax and will find that it’s not that difficult after all.

Exercises 528

Exercises for Chapter 10

1. Rewrite the PhoneDirectory class from Subsection 7.4.2 so that it uses a TreeMap to store (solution)

directory entries, instead of an array. (Doing this was suggested in Subsection 10.3.1.)

2. In mathematics, several operations are defined on sets. The union of two sets A and B is (solution)

a set that contains all the elements that are in A together with all the elements that are
in B. The intersection of A and B is the set that contains elements that are in both A
and B. The difference of A and B is the set that contains all the elements of A except
for those elements that are also in B.

Suppose that A and B are variables of type set in Java. The mathematical opera-
tions on A and B can be computed using methods from the Set interface. In particular:
A.addAll(B) computes the union of A and B; A.retainAll(B) computes the intersection
of A and B; and A.removeAll(B) computes the difference of A and B. (These operations
change the contents of the set A, while the mathematical operations create a new set
without changing A, but that difference is not relevant to this exercise.)

For this exercise, you should write a program that can be used as a “set calcula-
tor” for simple operations on sets of non-negative integers. (Negative integers are not
allowed.) A set of such integers will be represented as a list of integers, separated by
commas and, optionally, spaces and enclosed in square brackets. For example: [1,2,3]

or [17, 42, 9, 53, 108]. The characters +, *, and - will be used for the union, in-
tersection, and difference operations. The user of the program will type in lines of input
containing two sets, separated by an operator. The program should perform the operation
and print the resulting set. Here are some examples:

Input Output

------------------------- -------------------

[1, 2, 3] + [3, 5, 7] [1, 2, 3, 5, 7]

[10,9,8,7] * [2,4,6,8] [8]

[5, 10, 15, 20] - [0, 10, 20] [5, 15]

To represent sets of non-negative integers, use sets of type TreeSet<Integer>. Read the
user’s input, create two TreeSets, and use the appropriate TreeSet method to perform the
requested operation on the two sets. Your program should be able to read and process
any number of lines of input. If a line contains a syntax error, your program should not
crash. It should report the error and move on to the next line of input. (Note: To print
out a Set, A, of Integers, you can just say System.out.println(A). I’ve chosen the syntax
for sets to be the same as that used by the system for outputting a set.)

3. The fact that Java has a HashMap class means that no Java programmer has to write (solution)

an implementation of hash tables from scratch—unless, of course, that programmer is a
computer science student.

For this exercise, you should write a hash table in which both the keys and the values
are of type String. (This is not an exercise in generic programming; do not try to write a
generic class.) Write an implementation of hash tables from scratch. Define the following
methods: get(key), put(key,value), remove(key), containsKey(key), and size().
Remember that every object, obj, has a method obj.hashCode() that can be used for
computing a hash code for the object, so at least you don’t have to define your own hash
function. Do not use any of Java’s built-in generic types; create your own linked lists

http://math.hws.edu/eck/cs124/javanotes7/c10/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c10/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c10/ex3-ans.html

Exercises 529

using nodes as covered in Subsection 9.2.2. However, you do not have to worry about
increasing the size of the table when it becomes too full.

You should also write a short program to test your solution.

4. A predicate is a boolean-valued function with one parameter. Some languages use pred- (solution)

icates in generic programming. Java 7 doesn’t, but this exercise looks at how predicates
might work.

In Java, we could implement “predicate objects” by defining a generic interface:

public interface Predicate<T> {

public boolean test(T obj);

}

The idea is that an object that implements this interface knows how to “test” objects
of type T in some way. Define a class that contains the following generic static methods
for working with predicate objects. The name of the class should be Predicates, in analogy
with the standard class Collections that provides various static methods for working with
collections.

public static <T> void remove(Collection<T> coll, Predicate<T> pred)

// Remove every object, obj, from coll for which

// pred.test(obj) is true.

public static <T> void retain(Collection<T> coll, Predicate<T> pred)

// Remove every object, obj, from coll for which

// pred.test(obj) is false. (That is, retain the

// objects for which the predicate is true.)

public static <T> List<T> collect(Collection<T> coll, Predicate<T> pred)

// Return a List that contains all the objects, obj,

// from the collection, coll, such that pred.test(obj)

// is true.

public static <T> int find(ArrayList<T> list, Predicate<T> pred)

// Return the index of the first item in list

// for which the predicate is true, if any.

// If there is no such item, return -1.

(In C++, methods similar to these are included as a standard part of the generic pro-
gramming framework. And Java 8 has a similar predicate interface, and the Collections
class has a removeIf() method that uses a predicate.)

5. An example in Subsection 10.4.2 concerns the problem of making an index for a book. (solution)

A related problem is making a concordance for a document. A concordance lists every
word that occurs in the document, and for each word it gives the line number of every
line in the document where the word occurs. All the subroutines for creating an index
that were presented in Subsection 10.4.2 can also be used to create a concordance. The
only real difference is that the integers in a concordance are line numbers rather than page
numbers.

Write a program that can create a concordance. The document should be read from
an input file, and the concordance data should be written to an output file. You can use
the indexing subroutines from Subsection 10.4.2, modified to write the data to TextIO

instead of to System.out. (You will need to make these subroutines static.) The input
and output files should be selected by the user when the program is run. The sample

http://math.hws.edu/eck/cs124/javanotes7/c10/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c10/ex5-ans.html

Exercises 530

program WordCount.java, from Subsection 10.4.4, can be used as a model of how to use
files. That program also has a useful subroutine that reads one word from input.

As you read the file, you want to take each word that you encounter and add it to the
concordance along with the current line number. Keeping track of the line numbers is one
of the trickiest parts of the problem. In an input file, the end of each line in the file is
marked by the newline character, ’\n’. Every time you encounter this character, you have
to add one to the line number. WordCount.java ignores ends of lines. Because you need
to find and count the end-of-line characters, your program cannot process the input file in
exactly the same way as does WordCount.java. Also, you will need to detect the end of
the file. The function TextIO.peek(), which is used to look ahead at the next character
in the input, returns the value TextIO.EOF at end-of-file, after all the characters in the
file have been read.

Because it is so common, don’t include the word “the” in your concordance. Also, do
not include words that have length less than 3.

6. The sample program SimpleInterpreter.java from Subsection 10.4.1 can carry out com- (solution)

mands of the form “let variable = expression” or “print expression”. That program can
handle expressions that contain variables, numbers, operators, and parentheses. Extend
the program so that it can also handle the standard mathematical functions sin, cos,
tan, abs, sqrt, and log. For example, the program should be able to evaluate an expres-
sion such as sin(3*x-7)+log(sqrt(y)), assuming that the variables x and y have been
given values. Note that the name of a function must be followed by an expression that is
enclosed in parentheses.

In the original program, a symbol table holds a value for each variable that has been
defined. In your program, you should add another type of symbol to the table to represent
standard functions. You can use the following nested enumerated type and class for this
purpose:

private enum Functions { SIN, COS, TAN, ABS, SQRT, LOG }

/**

* An object of this class represents one of the standard functions.

*/

private static class StandardFunction {

/**

* Tells which function this is.

*/

Functions functionCode;

/**

* Constructor creates an object to represent one of

* the standard functions

* @param code which function is represented.

*/

StandardFunction(Functions code) {

functionCode = code;

}

/**

* Finds the value of this function for the specified

* parameter value, x.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordCount.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/SimpleInterpreter.java
http://math.hws.edu/eck/cs124/javanotes7/c10/ex6-ans.html

Exercises 531

*/

double evaluate(double x) {

switch(functionCode) {

case SIN:

return Math.sin(x);

case COS:

return Math.cos(x);

case TAN:

return Math.tan(x);

case ABS:

return Math.abs(x);

case SQRT:

return Math.sqrt(x);

default:

return Math.log(x);

}

}

} // end class StandardFunction

Add a symbol to the symbol table to represent each function. The key is the name
of the function and the value is an object of type StandardFunction that represents the
function. For example:

symbolTable.put("sin", new StandardFunction(Function.SIN));

In SimpleInterpreter.java, the symbol table is a map of type HashMap<String,Double>. It’s
not legal to use a StandardFunction as the value in such a map, so you will have to change
the type of the map. The map has to hold two different types of objects. The easy way
to make this possible is to create a map of type HashMap<String,Object>. (A better way
is to create a general type to represent objects that can be values in the symbol table,
and to define two subclasses of that class, one to represent variables and one to represent
standard functions, but for this exercise, you should do it the easy way.)

In your parser, when you encounter a word, you have to be able to tell whether it’s a
variable or a standard function. Look up the word in the symbol table. If the associated
object is non-null and is of type Double, then the word is a variable. If it is of type
StandardFunction, then the word is a function. Remember that you can test the type of
an object using the instanceof operator. For example: if (obj instanceof Double)

Quiz 532

Quiz on Chapter 10
(answers)

1. What is meant by generic programming and what is the alternative?

2. Why can’t you make an object of type LinkedList<int>? What should you do instead?

3. What is an iterator and why are iterators necessary for generic programming?

4. Suppose that integers is a variable of type Collection<Integer>. Write a code segment
that uses an iterator to compute the sum of all the integer values in the collection. Write
a second code segment that does the same thing using a for-each loop.

5. Interfaces such as List, Set, and Map define abstract data types. Explain what this means.

6. What is the fundamental property that distinguishes Sets from other types of Collections?

7. What is the essential difference in functionality between a TreeMap and a HashMap?

8. Explain what is meant by a hash code.

9. Modify the following Date class so that it implements the interface Comparable<Date>.
The ordering on objects of type Date should be the natural, chronological ordering.

class Date {

int month; // Month number in range 1 to 12.

int day; // Day number in range 1 to 31.

int year; // Year number.

Date(int m, int d, int y) {

month = m;

day = d;

year = y;

}

}

10. Suppose that syllabus is a variable of type TreeMap<Date,String>, where Date is the class
from the preceding exercise. Write a code segment that will write out the value string for
every key that is in the month of December, 2014.

11. Write a generic class Stack<T> that can be used to represent stacks of objects of type T.
The class should include methods push(), pop(), and isEmpty(). Inside the class, use
an ArrayList to hold the items on the stack.

12. Write a generic method, using a generic type parameter <T>, that replaces every occurrence
in an ArrayList<T> of a specified item with a specified replacement item. The list and the
two items are parameters to the method. Both items are of type T. Take into account
the fact that the item that is being replaced might be null. For a non-null item, use
equals() to do the comparison.

http://math.hws.edu/eck/cs124/javanotes7/c10/quiz_answers.html

Chapter 11

Advanced Input/Output:
Streams, Files, and Networking

Computer programs are only useful if they interact with the rest of the world in some
way. This interaction is referred to as input/output , or I/O . Up until now, this book has
concentrated on just one type of interaction: interaction with the user, through either a graph-
ical user interface or a command-line interface. But the user is only one possible source of
information and only one possible destination for information. We have already encountered
one other type of input/output, since TextIO can read data from files and write data to files.
However, Java has an input/output framework that provides much more power and flexibility
than does TextIO, and that covers other kinds of I/O in addition to files. Most importantly,
it supports communication over network connections. In Java, the most common type of in-
put/output involving files and networks is based on streams, which are objects that support
I/O commands that are similar to those that you have already used. In fact, standard output
(System.out) and standard input (System.in) are examples of streams.

Working with files and networks requires familiarity with exceptions, which were covered in
Section 8.3. Many of the subroutines that are used can throw checked exceptions, which require
mandatory exception handling. This generally means calling the subroutine in a try..catch

statement that can deal with the exception if one occurs. Effective network communication
also requires the use of threads, which will be covered in Chapter 12. We will look at the basic
networking API in this chapter, but we will return to the topic of threads and networking in
Section 12.4.

11.1 Streams, Readers, and Writers

Without the ability to interact with the rest of the world, a program would be useless.
The interaction of a program with the rest of the world is referred to as input/output or I/O.
Historically, one of the hardest parts of programming language design has been coming up with
good facilities for doing input and output. A computer can be connected to many different
types of input and output devices. If a programming language had to deal with each type of
device as a special case, the complexity would be overwhelming. One of the major achievements
in the history of programming has been to come up with good abstractions for representing
I/O devices. In Java, the main I/O abstractions are called streams. Other I/O abstractions,
such as “files” and “channels” also exist, but in this section we will look only at streams. Every
stream represents either a source of input or a destination to which output can be sent.

533

CHAPTER 11. STREAMS, FILES, AND NETWORKING 534

11.1.1 Character and Byte Streams

When dealing with input/output, you have to keep in mind that there are two broad categories
of data: machine-formatted data and human-readable text. Machine-formatted data is repre-
sented in binary form, the same way that data is represented inside the computer, that is, as
strings of zeros and ones. Human-readable data is in the form of characters. When you read a
number such as 3.141592654, you are reading a sequence of characters and interpreting them
as a number. The same number would be represented in the computer as a bit-string that you
would find unrecognizable.

To deal with the two broad categories of data representation, Java has two broad categories
of streams: byte streams for machine-formatted data and character streams for human-
readable data. There are many predefined classes that represent streams of each type.

An object that outputs data to a byte stream belongs to one of the subclasses of the
abstract class OutputStream. Objects that read data from a byte stream belong to subclasses
of the abstract class InputStream. If you write numbers to an OutputStream, you won’t be able
to read the resulting data yourself. But the data can be read back into the computer with
an InputStream. The writing and reading of the data will be very efficient, since there is no
translation involved: the bits that are used to represent the data inside the computer are simply
copied to and from the streams.

For reading and writing human-readable character data, the main classes are the abstract
classes Reader and Writer. All character stream classes are subclasses of one of these. If a
number is to be written to a Writer stream, the computer must translate it into a human-
readable sequence of characters that represents that number. Reading a number from a Reader
stream into a numeric variable also involves a translation, from a character sequence into the
appropriate bit string. (Even if the data you are working with consists of characters in the
first place, such as words from a text editor, there might still be some translation. Characters
are stored in the computer as 16-bit Unicode values. For people who use Western alphabets,
character data is generally stored in files in ASCII code, which uses only 8 bits per character.
The Reader and Writer classes take care of this translation, and can also handle non-western
alphabets in countries that use them.)

Byte streams can be useful for direct machine-to-machine communication, and they can
sometimes be useful for storing data in files, especially when large amounts of data need to be
stored efficiently, such as in large databases. However, binary data is fragile in the sense that
its meaning is not self-evident. When faced with a long series of zeros and ones, you have to
know what information it is meant to represent and how that information is encoded before
you will be able to interpret it. Of course, the same is true to some extent for character data,
since characters, like any other kind of data, have to be coded as binary numbers to be stored
or processed by a computer. But the binary encoding of character data has been standardized
and is well understood, and data expressed in character form can be made meaningful to human
readers. The current trend seems to be towards increased use of character data, represented in
a way that will make its meaning as self-evident as possible. We’ll look at one way this is done
in Section 11.5.

I should note that the original version of Java did not have character streams, and that
for ASCII-encoded character data, byte streams are largely interchangeable with character
streams. In fact, the standard input and output streams, System.in and System.out, are byte
streams rather than character streams. However, you should use Readers and Writers rather
than InputStreams and OutputStreams when working with character data, even when working
with the standard ASCII character set.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 535

The standard stream classes discussed in this section are defined in the package java.io,
along with several supporting classes. You must import the classes from this package if you
want to use them in your program. That means either importing individual classes or putting
the directive “import java.io.*;” at the beginning of your source file. Streams are necessary
for working with files and for doing communication over a network. They can also be used
for communication between two concurrently running threads, and there are stream classes for
reading and writing data stored in the computer’s memory.

The beauty of the stream abstraction is that it is as easy to write data to a file or to send
data over a network as it is to print information on the screen.

∗ ∗ ∗

The basic I/O classes Reader, Writer, InputStream, and OutputStream provide only very
primitive I/O operations. For example, the InputStream class declares an abstract instance
method

public int read() throws IOException

for reading one byte of data, as a number in the range 0 to 255, from an input stream. If the end
of the input stream is encountered, the read() method will return the value -1 instead. If some
error occurs during the input attempt, an exception of type IOException is thrown. Since IOEx-
ception is a checked exception, this means that you can’t use the read() method except inside
a try statement or in a subroutine that is itself declared with a “throws IOException” clause.
(Checked exceptions and mandatory exception handling were covered in Subsection 8.3.3.)

The InputStream class also defines methods for reading multiple bytes of data in one step
into an array of bytes. However, InputStream provides no convenient methods for reading other
types of data, such as int or double, from a stream. This is not a problem because you’ll never
use an object of type InputStream itself. Instead, you’ll use subclasses of InputStream that add
more convenient input methods to InputStream’s rather primitive capabilities. Similarly, the
OutputStream class defines a primitive output method for writing one byte of data to an output
stream. The method is defined as:

public void write(int b) throws IOException

The parameter is of type int rather than byte, but the parameter value is type-cast to type
byte before it is written; this effectively discards all but the eight low order bits of b. Again,
in practice, you will almost always use higher-level output operations defined in some subclass
of OutputStream.

The Reader and Writer classes provide the analogous low-level read and write methods.
As in the byte stream classes, the parameter of the write(c) method in Writer and the return
value of the read() method in Reader are of type int, but in these character-oriented classes,
the I/O operations read and write characters rather than bytes. The return value of read()
is -1 if the end of the input stream has been reached. Otherwise, the return value must be
type-cast to type char to obtain the character that was read. In practice, you will ordinarily use
higher level I/O operations provided by sub-classes of Reader and Writer, as discussed below.

11.1.2 PrintWriter

One of the neat things about Java’s I/O package is that it lets you add capabilities to a stream
by “wrapping” it in another stream object that provides those capabilities. The wrapper object
is also a stream, so you can read from or write to it—but you can do so using fancier operations
than those available for basic streams.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 536

For example, PrintWriter is a subclass of Writer that provides convenient methods for out-
putting human-readable character representations of all of Java’s basic data types. If you have
an object belonging to the Writer class, or any of its subclasses, and you would like to use
PrintWriter methods to output data to that Writer, all you have to do is wrap the Writer in a
PrintWriter object. You do this by constructing a new PrintWriter object, using the Writer as
input to the constructor. For example, if charSink is of type Writer, then you could say

PrintWriter printableCharSink = new PrintWriter(charSink);

In fact, the parameter to the constructor can also be an OutputStream or a File, and the
constructor will build a PrintWriter that can write to that output destination. (Files are covered
in the next section.) When you output data to the PrintWriter printableCharSink, using the
high-level output methods in PrintWriter, that data will go to exactly the same place as data
written directly to charSink. You’ve just provided a better interface to the same output
destination. For example, this allows you to use PrintWriter methods to send data to a file or
over a network connection.

For the record, if out is a variable of type PrintWriter, then the following methods are
defined:

• out.print(x) — prints the value of x, represented in the form of a string of characters,
to the output stream; x can be an expression of any type, including both primitive types
and object types. An object is converted to string form using its toString() method. A
null value is represented by the string “null”.

• out.println() — outputs an end-of-line to the output stream.

• out.println(x) — outputs the value of x, followed by an end-of-line; this is equivalent
to out.print(x) followed by out.println().

• out.printf(formatString, x1, x2, ...) — does formatted output of x1, x2, ... to
the output stream. The first parameter is a string that specifies the format of the output.
There can be any number of additional parameters, of any type, but the types of the
parameters must match the formatting directives in the format string. Formatted output
for the standard output stream, System.out, was introduced in Subsection 2.4.1, and
out.printf has the same functionality.

• out.flush() — ensures that characters that have been written with the above methods
are actually sent to the output destination. In some cases, notably when writing to a file
or to the network, it might be necessary to call this method to force the output to actually
appear at the destination.

Note that none of these methods will ever throw an IOException. Instead, the PrintWriter
class includes the method

public boolean checkError()

which will return true if any error has been encountered while writing to the stream. The
PrintWriter class catches any IOExceptions internally, and sets the value of an internal error flag
if one occurs. The checkError() method can be used to check the error flag. This allows you
to use PrintWriter methods without worrying about catching exceptions. On the other hand, to
write a fully robust program, you should call checkError() to test for possible errors whenever
you use a PrintWriter.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 537

11.1.3 Data Streams

When you use a PrintWriter to output data to a stream, the data is converted into the sequence
of characters that represents the data in human-readable form. Suppose you want to output
the data in byte-oriented, machine-formatted form? The java.io package includes a byte-
stream class, DataOutputStream that can be used for writing data values to streams in internal,
binary-number format. DataOutputStream bears the same relationship to OutputStream that
PrintWriter bears to Writer. That is, whereas OutputStream only has methods for outputting
bytes, DataOutputStream has methods writeDouble(double x) for outputting values of type
double, writeInt(int x) for outputting values of type int, and so on. Furthermore, you can
wrap any OutputStream in a DataOutputStream so that you can use the higher level output
methods on it. For example, if byteSink is of type OutputStream, you could say

DataOutputStream dataSink = new DataOutputStream(byteSink);

to wrap byteSink in a DataOutputStream.
For input of machine-readable data, such as that created by writing to a DataOutputStream,

java.io provides the class DataInputStream. You can wrap any InputStream in a DataIn-
putStream object to provide it with the ability to read data of various types from the byte-
stream. The methods in the DataInputStream for reading binary data are called readDouble(),
readInt(), and so on. Data written by a DataOutputStream is guaranteed to be in a format
that can be read by a DataInputStream. This is true even if the data stream is created on one
type of computer and read on another type of computer. The cross-platform compatibility of
binary data is a major aspect of Java’s platform independence.

In some circumstances, you might need to read character data from an InputStream or write
character data to an OutputStream. This is not a problem, since characters, like all data, are
ultimately represented as binary numbers. However, for character data, it is convenient to use
Reader and Writer instead of InputStream and OutputStream. To make this possible, you can
wrap a byte stream in a character stream. If byteSource is a variable of type InputStream and
byteSink is of type OutputStream, then the statements

Reader charSource = new InputStreamReader(byteSource);

Writer charSink = new OutputStreamWriter(byteSink);

create character streams that can be used to read character data from and write character
data to the byte streams. In particular, the standard input stream System.in, which is of
type InputStream for historical reasons, can be wrapped in a Reader to make it easier to read
character data from standard input:

Reader charIn = new InputStreamReader(System.in);

As another application, the input and output streams that are associated with a network
connection are byte streams rather than character streams, but the byte streams can be wrapped
in character streams to make it easy to send and receive character data over the network. We
will encounter network I/O in Section 11.4.

There are various ways for characters to be encoded as binary data. A particular encoding is
known as a charset or character set . Charsets have standardized names such as “UTF-16,”
“UTF-8,” and “ISO-8859-1.” In UTF-16, characters are encoded as 16-bit UNICODE values;
this is the character set that is used internally by Java. UTF-8 is a way of encoding UNICODE
characters using 8 bits for common ASCII characters and longer codes for other characters.
ISO-8859-1, also known as “Latin-1,” is an 8-bit encoding that includes ASCII characters as
well as certain accented characters that are used in several European languages. Readers and

CHAPTER 11. STREAMS, FILES, AND NETWORKING 538

Writers use the default charset for the computer on which they are running, unless you specify
a different one. This can be done, for example, in a constructor such as

Writer charSink = new OutputStreamWriter(byteSink, "ISO-8859-1");

Certainly, the existence of a variety of charset encodings has made text processing more
complicated—unfortunate for us English-speakers but essential for people who use non-Western
character sets. Ordinarily, you don’t have to worry about this, but it’s a good idea to be aware
that different charsets exist in case you run into textual data encoded in a non-default way.

11.1.4 Reading Text

Much I/O is done in the form of human-readable characters. In view of this, it is surprising
that Java does not provide a standard character input class that can read character data in
a manner that is reasonably symmetrical with the character output capabilities of PrintWriter.
(The Scanner class, introduced briefly in Subsection 2.4.6 and covered in more detail below,
comes pretty close.) There is one basic case that is easily handled by the standard class
BufferedReader, which has a method

public String readLine() throws IOException

that reads one line of text from its input source. If the end of the stream has been reached, the
return value is null. When a line of text is read, the end-of-line marker is read from the input
stream, but it is not part of the string that is returned. Different input streams use different
characters as end-of-line markers, but the readLinemethod can deal with all the common cases.
(Traditionally, Unix computers, including Linux and Mac OS X, use a line feed character, ’\n’,
to mark an end of line; classic Macintosh used a carriage return character, ’\r’; and Windows
uses the two-character sequence “\r\n”. In general, modern computers can deal correctly with
all of these possibilities.)

Line-by-line processing is very common. Any Reader can be wrapped in a BufferedReader
to make it easy to read full lines of text. If reader is of type Reader, then a BufferedReader
wrapper can be created for reader with

BufferedReader in = new BufferedReader(reader);

This can be combined with the InputStreamReader class that was mentioned above to read lines
of text from an InputStream. For example, we can apply this to System.in:

BufferedReader in; // BufferedReader for reading from standard input.

in = new BufferedReader(new InputStreamReader(System.in));

try {

String line = in.readLine();

while (line != null) {

processOneLineOfInput(line);

line = in.readLine();

}

}

catch (IOException e) {

}

This code segment reads and processes lines from standard input until an end-of-stream is
encountered. (An end-of-stream is possible even for interactive input. For example, on at least
some computers, typing a Control-D generates an end-of-stream on the standard input stream.)
The try..catch statement is necessary because the readLinemethod can throw an exception of

CHAPTER 11. STREAMS, FILES, AND NETWORKING 539

type IOException, which requires mandatory exception handling; an alternative to try..catch

would be to declare that the method that contains the code “throws IOException”. Also,
remember that BufferedReader, InputStreamReader, and IOException must be imported from the
package java.io.

Note that the main purpose of BufferedReader is not simply to make it easier to read lines
of text. Some I/O devices work most efficiently if data is read or written in large chunks,
instead of as individual bytes or characters. A BufferedReader reads a chunk of data, and stores
it in internal memory. The internal memory is known as a buffer . When you read from the
BufferedReader, it will take data from the buffer if possible, and it will only go back to its input
source for more data when the buffer is emptied. There is also a BufferedWriter class, and there
are buffered stream classes for byte streams as well.

∗ ∗ ∗

Previously in this book, we have used the non-standard class TextIO for input both from
users and from files. The advantage of TextIO is that it makes it fairly easy to read data values
of any of the primitive types. Disadvantages include the fact that TextIO can only read from
one input source at a time and that it does not follow the same pattern as Java’s built-in
input/output classes.

I have written a class named TextReader to fix some of these disadvantages, while providing
input capabilities similar to those of TextIO. Like TextIO, TextReader is a non-standard class,
so you have to be careful to make it available to any program that uses it. The source code for
the class can be found in the file TextReader.java.

Just as for many of Java’s stream classes, an object of type TextReader can be used as a
wrapper for an existing input stream, which becomes the source of the characters that will
be read by the TextReader. (Unlike the standard classes, however, a TextReader is not itself a
stream and cannot be wrapped inside other stream classes.) The constructors

public TextReader(Reader characterSource)

and

public TextReader(InputStream byteSource)

create objects that can be used to read character data from the given Reader or InputStream
using the convenient input methods of the TextReader class. In TextIO, the input methods were
static members of the class. The input methods in the TextReader class are instance methods.
The instance methods in a TextReader object read from the data source that was specified in
the object’s constructor. This makes it possible for several TextReader objects to exist at the
same time, reading from different streams; those objects can then be used to read data from
several files or other input sources at the same time.

A TextReader object has essentially the same set of input methods as the TextIO class.
One big difference is how errors are handled. When a TextReader encounters an error in the
input, it throws an exception of type IOException. This follows the standard pattern that is
used by Java’s standard input streams. IOExceptions require mandatory exception handling,
so TextReader methods are generally called inside try..catch statements. If an IOException
is thrown by the input stream that is wrapped inside a TextReader, that IOException is simply
passed along. However, other types of errors can also occur. One such possible error is an
attempt to read data from the input stream when there is no more data left in the stream. A
TextReader throws an exception of type TextReader.EndOfStreamException when this happens.
The exception class in this case is a nested class in the TextReader class; it is a subclass of

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TextReader.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 540

IOException, so a try..catch statement that handles IOExceptions will also handle end-of-
stream exceptions. However, having a class to represent end-of-stream errors makes it possible
to detect such errors and provide special handling for them. Another type of error occurs
when a TextReader tries to read a data value of a certain type, and the next item in the input
stream is not of the correct type. In this case, the TextReader throws an exception of type
TextReader.BadDataException, which is another subclass of IOException.

For reference, here is a list of some of the more useful instance methods in the TextReader
class. All of these methods can throw exceptions of type IOException:

• public char peek()— looks ahead at the next character in the input stream, and returns
that character. The character is not removed from the stream. If the next character is an
end-of-line, the return value is ’\n’. It is legal to call this method even if there is no more
data left in the stream; in that case, the return value is the constant TextReader.EOF.
(“EOF” stands for “End-Of-File,” a term that is more commonly used than “End-Of-
Stream”, even though not all streams are files.)

• public boolean eoln() and public boolean eof() — convenience methods for testing
whether the next thing in the file is an end-of-line or an end-of-file. Note that these
methods do not skip whitespace. If eof() is false, you know that there is still at least
one character to be read, but there might not be any more non-blank characters in the
stream.

• public void skipBlanks() and public void skipWhiteSpace() — skip past whites-
pace characters in the input stream; skipWhiteSpace() skips all whitespace characters,
including end-of-line while skipBlanks() only skips spaces and tabs.

• public String getln()— reads characters up to the next end-of-line (or end-of-stream),
and returns those characters in a string. The end-of-line marker is read but is not part of
the returned string. This will throw an exception if there are no more characters in the
stream.

• public char getAnyChar() — reads and returns the next character from the stream.
The character can be a whitespace character such as a blank or end-of-line. If this method
is called after all the characters in the stream have been read, an exception is thrown.

• public int getInt(), public double getDouble(), public char getChar(), etc. —
skip any whitespace characters in the stream, including end-of-lines, then read and return
a value of the specified type. Extra characters on the line are not discarded and are still
available to be read by subsequent input methods. There is a method for each primitive
type. An exception occurs if it’s not possible to read a data value of the requested type.

• public int getlnInt(), public double getlnDouble(), public char getlnChar(),
etc. — skip any whitespace characters in the stream, including end-of-lines, then read a
value of the specified type, which will be the return value of the method. Any remaining
characters on the line are then discarded, including the end-of-line marker. There is a
method for each primitive type. An exception occurs if it’s not possible to read a data
value of the requested type.

• public void close() — Closes the input stream. This should be done when finished
reading from the stream. (TextReader implements the AutoCloseable interface and so can
be used as a “resource” in a try..catch statement, as discussed at the end of Subsec-
tion 8.3.2.)

CHAPTER 11. STREAMS, FILES, AND NETWORKING 541

11.1.5 The Scanner Class

Since its introduction, Java has been notable for its lack of built-in support for basic input,
and for its reliance on fairly advanced techniques for the support that it does offer. (This is my
opinion, at least.) The Scanner class was introduced to make it easier to read basic data types
from a character input source. It does not (again, in my opinion) solve the problem completely,
but it is a big improvement. (My TextIO and TextReader classes are not complete solutions
either.) The Scanner class is in the package java.util.

Input routines are defined as instance methods in the Scanner class, so to use the class, you
need to create a Scanner object. The constructor specifies the source of the characters that the
Scanner will read. The scanner acts as a wrapper for the input source. The source can be a
Reader, an InputStream, a String, or a File. (If a String is used as the input source, the Scanner
will simply read the characters in the string from beginning to end, in the same way that it
would process the same sequence of characters from a stream. The File class will be covered in
the next section.) For example, you can use a Scanner to read from standard input by saying:

Scanner standardInputScanner = new Scanner(System.in);

and if charSource is of type Reader, you can create a Scanner for reading from charSource

with:

Scanner scanner = new Scanner(charSource);

When processing input, a scanner usually works with tokens. A token is a meaningful
string of characters that cannot, for the purposes at hand, be further broken down into smaller
meaningful pieces. A token can, for example, be an individual word or a string of characters
that represents a value of type double. In the case of a scanner, tokens must be separated by
“delimiters.” By default, the delimiters are whitespace characters such as spaces, tabs, and end-
of-line markers, but you can change a Scanner’s delimiters if you need to. In normal processing,
whitespace characters serve simply to separate tokens and are discarded by the scanner. A
scanner has instance methods for reading tokens of various types. Suppose that scanner is an
object of type Scanner. Then we have:

• scanner.next() — reads the next token from the input source and returns it as a String.

• scanner.nextInt(), scanner.nextDouble(), and so on — read the next token from the
input source and tries to convert it to a value of type int, double, and so on. There are
methods for reading values of any of the primitive types.

• scanner.nextLine() — reads an entire line from the input source, up to the next end-
of-line and returns the line as a value of type String. The end-of-line marker is read but
is not part of the return value. Note that this method is not based on tokens. An entire
line is read and returned, including any whitespace characters in the line.

All of these methods can generate exceptions. If an attempt is made to read past the
end of input, an exception of type NoSuchElementException is thrown. Methods such as
scanner.getInt() will throw an exception of type InputMismatchException if the next to-
ken in the input does not represent a value of the requested type. The exceptions that can be
generated do not require mandatory exception handling.

The Scanner class has very nice look-ahead capabilities. You can query a scanner to de-
termine whether more tokens are available and whether the next token is of a given type. If
scanner is of type Scanner :

CHAPTER 11. STREAMS, FILES, AND NETWORKING 542

• scanner.hasNext() — returns a boolean value that is true if there is at least one more
token in the input source.

• scanner.hasNextInt(), scanner.hasNextDouble(), and so on — returns a boolean

value that is true if there is at least one more token in the input source and that token
represents a value of the requested type.

• scanner.hasNextLine() — returns a boolean value that is true if there is at least one
more line in the input source.

Although the insistence on defining tokens only in terms of delimiters limits the usability
of scanners to some extent, they are easy to use and are suitable for many applications. With
so many input classes available—BufferedReader, TextReader, Scanner—you might have trouble
deciding which one to use! In general, I would recommend using a Scanner unless you have some
particular reason for preferring the TextIO-style input routines of TextReader. BufferedReader
can be used as a lightweight alternative when all that you want to do is read entire lines of text
from the input source.

11.1.6 Serialized Object I/O

The classes PrintWriter, TextReader, Scanner, DataInputStream, and DataOutputStream allow
you to easily input and output all of Java’s primitive data types. But what happens when you
want to read and write objects? Traditionally, you would have to come up with some way of
encoding your object as a sequence of data values belonging to the primitive types, which can
then be output as bytes or characters. This is called serializing the object. On input, you
have to read the serialized data and somehow reconstitute a copy of the original object. For
complex objects, this can all be a major chore. However, you can get Java to do all the work
for you by using the classes ObjectInputStream and ObjectOutputStream. These are subclasses
of InputStream and OutputStream that can be used for writing and reading serialized objects.

ObjectInputStream and ObjectOutputStream are wrapper classes that can be wrapped around
arbitrary InputStreams and OutputStreams. This makes it possible to do object input and output
on any byte stream. The methods for object I/O are readObject(), in ObjectInputStream,
and writeObject(Object obj), in ObjectOutputStream. Both of these methods can throw
IOExceptions. Note that readObject() returns a value of type Object, which generally has to
be type-cast to the actual type of the object that was read.

ObjectOutputStream also has methods writeInt(), writeDouble(), and so on, for out-
putting primitive type values to the stream, and ObjectInputStream has corresponding methods
for reading primitive type values. These primitive type values can be interspersed with objects
in the data.

Object streams are byte streams. The objects are represented in binary, machine-readable
form. This is good for efficiency, but it does suffer from the fragility that is often seen in
binary data. They suffer from the additional problem that the binary format of Java objects is
very specific to Java, so the data in object streams is not easily available to programs written
in other programming languages. For these reasons, object streams are appropriate mostly
for short-term storage of objects and for transmitting objects over a network connection from
one Java program to another. For long-term storage and for communication with non-Java
programs, other approaches to object serialization are usually better. (See Section 11.5 for a
character-based approach.)

ObjectInputStream and ObjectOutputStream only work with objects that implement an in-
terface named Serializable. Furthermore, all of the instance variables in the object must be

CHAPTER 11. STREAMS, FILES, AND NETWORKING 543

serializable. However, there is little work involved in making an object serializable, since the
Serializable interface does not declare any methods. It exists only as a marker for the compiler,
to tell it that the object is meant to be writable and readable. You only need to add the words
“implements Serializable” to your class definitions. Many of Java’s standard classes are
already declared to be serializable, including all the GUI component classes and many other
classes in Swing and in the AWT. One of the programming examples in Section 11.3 uses object
IO.

One warning about using ObjectOutputStreams: These streams are optimized to avoid writ-
ing the same object more than once. When an object is encountered for a second time, only
a reference to the first occurrence is written. Unfortunately, if the object has been modified
in the meantime, the new data will not be written. Because of this, ObjectOutputStreams are
meant mainly for use with “immutable” objects that can’t be changed after they are created.
(Strings are an example of this.) However, if you do need to write mutable objects to an Ob-
jectOutputStream, and if it is possible that you will write the same object more than once, you
can ensure that the full, correct version of the object can be written by calling the stream’s
reset() method before writing the object to the stream.

11.2 Files

The data and programs in a computer’s main memory survive only as long as the power is
on. For more permanent storage, computers use files, which are collections of data stored on
a hard disk, on a USB memory stick, on a CD-ROM, or on some other type of storage device.
Files are organized into directories (sometimes called folders). A directory can hold other
directories, as well as files. Both directories and files have names that are used to identify them.

Programs can read data from existing files. They can create new files and can write data
to files. In Java, such input and output can be done using streams. Human-readable character
data can be read from a file using an object belonging to the class FileReader, which is a
subclass of Reader. Similarly, data can be written to a file in human-readable format through
an object of type FileWriter, a subclass of Writer. For files that store data in machine format,
the appropriate I/O classes are FileInputStream and FileOutputStream. In this section, I will
only discuss character-oriented file I/O using the FileReader and FileWriter classes. However,
FileInputStream and FileOutputStream are used in an exactly parallel fashion. All these classes
are defined in the java.io package.

11.2.1 Reading and Writing Files

The FileReader class has a constructor which takes the name of a file as a parameter and creates
an input stream that can be used for reading from that file. This constructor will throw an
exception of type FileNotFoundException if the file doesn’t exist. For example, suppose you have
a file named “data.txt”, and you want your program to read data from that file. You could
do the following to create an input stream for the file:

FileReader data; // (Declare the variable before the

// try statement, or else the variable

// is local to the try block and you won’t

// be able to use it later in the program.)

try {

data = new FileReader("data.txt"); // create the stream

CHAPTER 11. STREAMS, FILES, AND NETWORKING 544

}

catch (FileNotFoundException e) {

... // do something to handle the error---maybe, end the program

}

The FileNotFoundException class is a subclass of IOException, so it would be acceptable to
catch IOExceptions in the above try...catch statement. More generally, just about any error
that can occur during input/output operations can be caught by a catch clause that handles
IOException.

Once you have successfully created a FileReader, you can start reading data from it. But
since FileReaders have only the primitive input methods inherited from the basic Reader class,
you will probably want to wrap your FileReader in a Scanner, in a TextReader, or in some
other wrapper class. (The TextReader class is not a standard part of Java; it is described
in Subsection 11.1.4. Scanner is discussed in Subsection 11.1.5.) To create a TextReader for
reading from a file named data.dat, you could say:

TextReader data;

try {

data = new TextReader(new FileReader("data.dat"));

}

catch (FileNotFoundException e) {

... // handle the exception

}

To use a Scanner to read from the file, you can construct the scanner in a similar way. However,
it is more common to construct it from an object of type File (to be covered below):

Scanner in;

try {

in = new Scanner(new File("data.dat"));

}

catch (FileNotFoundException e) {

... // handle the exception

}

Once you have a Scanner or TextReader for reading from a file, you can get data from the file
using exactly the same methods that work with any Scanner or TextReader. When you read
from a file using either of these, exceptions can occur. Since the exceptions in this case are
not checked exceptions, you are not forced to enclose your input commands in a try..catch

statement, but it is usually a good idea to do it anyway.
Working with output files is no more difficult than this. You simply create an object

belonging to the class FileWriter. You will probably want to wrap this output stream in an object
of type PrintWriter. For example, suppose you want to write data to a file named “result.dat”.
Since the constructor for FileWriter can throw an exception of type IOException, you should use
a try..catch statement:

PrintWriter result;

try {

result = new PrintWriter(new FileWriter("result.dat"));

}

catch (IOException e) {

... // handle the exception

}

CHAPTER 11. STREAMS, FILES, AND NETWORKING 545

However, as with Scanner, it is more common to use a constructor that takes a File as parameter;
this will automatically wrap the File in a FileWriter before creating the PrintWriter:

PrintWriter result;

try {

result = new PrintWriter(new File("result.dat"));

}

catch (IOException e) {

... // handle the exception

}

You can even use just a String as the parameter to the constructor, and it will be interpreted as
a file name (but you should remember that a String in the Scanner constructor does not name
a file; instead the file will read characters from the string itself).

If no file named result.dat exists, a new file will be created. If the file already exists, then
the current contents of the file will be erased and replaced with the data that your program
writes to the file. This will be done without any warning. To avoid overwriting a file that
already exists, you can check whether a file of the same name already exists before trying
to create the stream, as discussed later in this section. An IOException might occur in the
PrintWriter constructor if, for example, you are trying to create a file on a disk that is “write-
protected,” meaning that it cannot be modified.

When you are finished with a PrintWriter, you should call its flush() method, such as
“result.flush()”, to make sure that all the output has been set to its destination. If you
forget to do this, you might find that some of the data that you have written to a file has not
actually shown up in the file.

After you are finished using a file, it’s a good idea to close the file, to tell the operating
system that you are finished using it. You can close a file by calling the close() method of
the associated PrintWriter, TextReader, or Scanner. Once a file has been closed, it is no longer
possible to read data from it or write data to it, unless you open it again as a new stream.
(Note that for most stream classes, the close() method can throw an IOException, which
must be handled; however, PrintWriter, TextReader, and Scanner override this method so that
it cannot throw such exceptions.) If you forget to close a file, the file will ordinarily be closed
automatically when the program terminates or when the file object is garbage collected, but it
is better not to depend on this.

As a complete example, here is a program that will read numbers from a file named
data.dat, and will then write out the same numbers in reverse order to another file named
result.dat. It is assumed that data.dat contains only real numbers. The input file is read
using a Scanner. Exception-handling is used to check for problems along the way. Although the
application is not a particularly useful one, this program demonstrates the basics of working with
files. (By the way, at the end of this program, you’ll find our first useful example of a finally

clause in a try statement. When the computer executes a try statement, the commands in its
finally clause are guaranteed to be executed, no matter what. See Subsection 8.3.2.)

import java.io.*;

import java.util.ArrayList;

/**

* Reads numbers from a file named data.dat and writes them to a file

* named result.dat in reverse order. The input file should contain

* exactly one real number per line.

*/

CHAPTER 11. STREAMS, FILES, AND NETWORKING 546

public class ReverseFile {

public static void main(String[] args) {

TextReader data; // Character input stream for reading data.

PrintWriter result; // Character output stream for writing data.

ArrayList<Double> numbers; // An ArrayList for holding the data.

numbers = new ArrayList<Double>();

try { // Create the input stream.

data = new TextReader(new FileReader("data.dat"));

}

catch (FileNotFoundException e) {

System.out.println("Can’t find file data.dat!");

return; // End the program by returning from main().

}

try { // Create the output stream.

result = new PrintWriter(new FileWriter("result.dat"));

}

catch (IOException e) {

System.out.println("Can’t open file result.dat!");

System.out.println("Error: " + e);

data.close(); // Close the input file.

return; // End the program.

}

try {

// Read numbers from the input file, adding them to the ArrayList.

while (data.eof() == false) { // Read until end-of-file.

double inputNumber = data.getlnDouble();

numbers.add(inputNumber);

}

// Output the numbers in reverse order.

for (int i = numbers.size()-1; i >= 0; i--)

result.println(numbers.get(i));

result.flush(); // Make sure data is actually sent to the file.

if (result.checkError())

System.out.println("Some error occurred while writing the file.");

else

System.out.println("Done!");

}

catch (IOException e) {

// Some problem reading the data from the input file.

// (Note that PrintWriter doesn’t throw exceptions on output errors.)

System.out.println("Input Error: " + e.getMessage());

}

finally {

// Finish by closing the files, whatever else may have happened.

data.close();

CHAPTER 11. STREAMS, FILES, AND NETWORKING 547

result.close();

}

} // end of main()

} // end class ReverseFileWithTextReader

A version of this program that uses a Scanner instead of a TextReader can be found in Reverse-
FileWithScanner.java. Note that the Scanner version does not need the final try..catch from
the TextReader version, since the Scanner method for reading data doesn’t throw an IOExcep-
tion. Instead, the program will simply stop reading data from the file if it encounters anything
other than a number in the input.

∗ ∗ ∗

As mentioned at the end of Subsection 8.3.2, the pattern of creating or opening a “resource,”
using it, and then closing the resource is a very common one, and the pattern is supported by
the syntax of the try..catch statement. Files are resources in this sense, as are Scanner,
TextReader, and all of Java’s I/O streams. All of these things define close() methods, and
it is good form to close them when you are finished using them. Since they all implement
the AutoCloseable interface, they are all resources in the sense required by try..catch. A
try..catch statement can be used to automatically close a resource when the try statement
ends, which eliminates the need to close it by hand in a finally clause. This assumes that you
will open the resource and use it in the same try..catch.

As an example, the sample program ReverseFileWithResources.java is another version of
the example we have been looking at. In this case, try..catch statements using the resource
pattern are used to read the data from a file and to write the data to a file. My original
program opened a file in one try statement and used it in another try statement. The resource
pattern requires that it all be done in one try, which requires some reorganization of the code
(and can sometimes make it harder to determine the exact cause of an exception). Here is the
try..catch statement from the sample program that opens the input file, reads from it, and
closes it automatically.

try(TextReader data = new TextReader(new FileReader("data.dat"))) {

// Read numbers, adding them to the ArrayList.

while (data.eof() == false) { // Read until end-of-file.

double inputNumber = data.getlnDouble();

numbers.add(inputNumber);

}

}

catch (FileNotFoundException e) {

// Can only be caused by the TextReader constructor

System.out.println("Can’t open input file data.dat!");

System.out.println("Error: " + e);

return; // Return from main(), since an error has occurred.

// (Otherwise, the program would try to do the output!)

}

catch (IOException e) {

// Can occur when the TextReader tries to read a number.

System.out.println("Error while reading from file: " + e);

return; // Return from main(), since an error has occurred.

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ReverseFileWithScanner.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ReverseFileWithResources.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 548

The resource, data, is constructed on the first line. The syntax requires a declaration of the
resource, with an initial value, in parentheses after the word “try.” It’s possible to have several
resource declarations, separated by semicolons. They will be closed in the order opposite to the
order in which they are declared.

11.2.2 Files and Directories

The subject of file names is actually more complicated than I’ve let on so far. To fully specify
a file, you have to give both the name of the file and the name of the directory where that
file is located. A simple file name like “data.dat” or “result.dat” is taken to refer to a file in
a directory that is called the current directory (also known as the “default directory” or
“working directory”). The current directory is not a permanent thing. It can be changed by
the user or by a program. Files not in the current directory must be referred to by a path
name , which includes both the name of the file and information about the directory where it
can be found.

To complicate matters even further, there are two types of path names, absolute path
names and relative path names. An absolute path name uniquely identifies one file among
all the files available to the computer. It contains full information about which directory the
file is in and what the file’s name is. A relative path name tells the computer how to locate the
file starting from the current directory.

Unfortunately, the syntax for file names and path names varies somewhat from one type of
computer to another. Here are some examples:

• data.dat — on any computer, this would be a file named “data.dat” in the current
directory.

• /home/eck/java/examples/data.dat — This is an absolute path name in a UNIX op-
erating system, including Linux and Mac OS X. It refers to a file named data.dat in a
directory named examples, which is in turn in a directory named java,

• C:\eck\java\examples\data.dat — An absolute path name on a Windows computer.

• examples/data.dat — a relative path name under UNIX. “examples” is the name of a
directory that is contained within the current directory, and data.dat is a file in that direc-
tory. The corresponding relative path name for Windows would be examples\data.dat.

• ../examples/data.dat — a relative path name in UNIX that means “go to the directory
that contains the current directory, then go into a directory named examples inside that
directory, and look there for a file named data.dat.” In general, “..” means “go up one
directory.” The corresponding path on Windows is ..\examples\data.dat.

When working on the command line, it’s safe to say that if you stick to using simple file names
only, and if the files are stored in the same directory with the program that will use them, then
you will be OK. Later in this section, we’ll look at a convenient way of letting the user specify
a file in a GUI program, which allows you to avoid the issue of path names altogether.

It is possible for a Java program to find out the absolute path names for two important
directories, the current directory and the user’s home directory. You can then use the path
name, for example, in a constructor for a File or a PrintWriter. The names of these directories
are system properties, and they can be read using the function calls:

• System.getProperty("user.dir") — returns the absolute path name of the current
directory as a String.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 549

• System.getProperty("user.home")— returns the absolute path name of the user’s home
directory as a String.

To avoid some of the problems caused by differences in path names between platforms, Java
has the class java.io.File. An object belonging to this class represents a file. More precisely,
an object of type File represents a file name rather than a file as such. The file to which the
name refers might or might not exist. Directories are treated in the same way as files, so a File
object can represent a directory just as easily as it can represent a file.

A File object has a constructor, “new File(String)”, that creates a File object from a path
name. The name can be a simple name, a relative path, or an absolute path. For example,
new File("data.dat") creates a File object that refers to a file named data.dat, in the current
directory. Another constructor, “new File(File,String)”, has two parameters. The first is a
File object that refers to a directory. The second can be the name of the file in that directory
or a relative path from that directory to the file.

File objects contain several useful instance methods. Assuming that file is a variable of
type File, here are some of the methods that are available:

• file.exists() — This boolean-valued function returns true if the file named by the
File object already exists. You can use this method if you want to avoid overwriting the
contents of an existing file when you create a new output stream.

• file.isDirectory() — This boolean-valued function returns true if the File object
refers to a directory. It returns false if it refers to a regular file or if no file with the given
name exists.

• file.delete()—Deletes the file, if it exists. Returns a boolean value to indicate whether
the file was successfully deleted.

• file.list() — If the File object refers to a directory, this function returns an array of
type String[] containing the names of the files in that directory. Otherwise, it returns
null. The method file.listFiles() is similar, except that it returns an array of File
instead of an array of String.

Here, for example, is a program that will list the names of all the files in a directory specified
by the user. In this example, I have used a Scanner to read the user’s input:

import java.io.File;

import java.util.Scanner;

/**

* This program lists the files in a directory specified by

* the user. The user is asked to type in a directory name.

* If the name entered by the user is not a directory, a

* message is printed and the program ends.

*/

public class DirectoryList {

public static void main(String[] args) {

String directoryName; // Directory name entered by the user.

File directory; // File object referring to the directory.

String[] files; // Array of file names in the directory.

Scanner scanner; // For reading a line of input from the user.

scanner = new Scanner(System.in); // scanner reads from standard input.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 550

System.out.print("Enter a directory name: ");

directoryName = scanner.nextLine().trim();

directory = new File(directoryName);

if (directory.isDirectory() == false) {

if (directory.exists() == false)

System.out.println("There is no such directory!");

else

System.out.println("That file is not a directory.");

}

else {

files = directory.list();

System.out.println("Files in directory \"" + directory + "\":");

for (int i = 0; i < files.length; i++)

System.out.println(" " + files[i]);

}

} // end main()

} // end class DirectoryList

All the classes that are used for reading data from files and writing data to files have
constructors that take a File object as a parameter. For example, if file is a variable of type
File, and you want to read character data from that file, you can create a FileReader to do so
by saying new FileReader(file).

11.2.3 File Dialog Boxes

In many programs, you want the user to be able to select the file that is going to be used for
input or output. If your program lets the user type in the file name, you will just have to
assume that the user understands how to work with files and directories. But in a graphical
user interface, the user expects to be able to select files using a file dialog box , which is a
window that a program can open when it wants the user to select a file for input or output.
Swing includes a platform-independent technique for using file dialog boxes in the form of a
class called JFileChooser. This class is part of the package javax.swing. We looked at using
some basic dialog boxes in Subsection 6.7.2. File dialog boxes are similar to those, but are just
a little more complicated to use.

A file dialog box shows the user a list of files and sub-directories in some directory, and makes
it easy for the user to specify a file in that directory. The user can also navigate easily from
one directory to another. The most common constructor for JFileChooser has no parameter
and sets the starting directory in the dialog box to be the user’s home directory. There are also
constructors that specify the starting directory explicitly:

new JFileChooser(File startDirectory)

new JFileChooser(String pathToStartDirectory)

Constructing a JFileChooser object does not make the dialog box appear on the screen.
You have to call a method in the object to do that. There are two different methods that
can be used because there are two types of file dialog: An open file dialog allows the user
to specify an existing file to be opened for reading data into the program; a save file dialog
lets the user specify a file, which might or might not already exist, to be opened for writing
data from the program. File dialogs of these two types are opened using the showOpenDialog

CHAPTER 11. STREAMS, FILES, AND NETWORKING 551

and showSaveDialog methods. These methods make the dialog box appear on the screen; the
methods do not return until the user selects a file or cancels the dialog.

A file dialog box always has a parent , another component which is associated with the
dialog box. The parent is specified as a parameter to the showOpenDialog or showSaveDialog
methods. The parent is a GUI component, and can often be specified as “this” in prac-
tice, since file dialogs are often used in instance methods of GUI component classes. (The
parameter can also be null, in which case an invisible component is created to be used
as the parent.) Both showOpenDialog and showSaveDialog have a return value, which
will be one of the constants JFileChooser.CANCEL OPTION, JFileChooser.ERROR OPTION, or
JFileChooser.APPROVE OPTION. If the return value is JFileChooser.APPROVE OPTION, then
the user has selected a file. If the return value is something else, then the user did not select a
file. The user might have clicked a “Cancel” button, for example. You should always check the
return value, to make sure that the user has, in fact, selected a file. If that is the case, then you
can find out which file was selected by calling the JFileChooser’s getSelectedFile() method,
which returns an object of type File that represents the selected file.

Putting all this together, we can look at a typical subroutine that reads data from a file
that is selected using a JFileChooser :

public void readFile() {

if (fileDialog == null) // (fileDialog is an instance variable)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File for Reading");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

// (Using "this" as a parameter to showOpenDialog() assumes that the

// readFile() method is an instance method in a GUI component class.)

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

TextReader in; // (or use some other wrapper class)

try {

FileReader stream = new FileReader(selectedFile); // (or a FileInputStream)

in = new TextReader(stream);

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

.

. // Read and process the data from the input stream, in.

.

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

finally {

in.close();

}

}

CHAPTER 11. STREAMS, FILES, AND NETWORKING 552

One fine point here is that the variable fileDialog is an instance variable of type JFileChooser,
not a local variable. This allows the file dialog to continue to exist between calls to readFile().
The main effect of this is that the dialog box will keep the same selected directory from one
call of readFile() to the next. When the dialog reappears, it will show the same directory
that the user selected the previous time it appeared. This is probably what the user expects.

Note that it’s common to do some configuration of a JFileChooser before
calling showOpenDialog or showSaveDialog. For example, the instance method
setDialogTitle(String) is used to specify a title to appear in the title bar of the window.
And setSelectedFile(File) is used to set the file that is selected in the dialog box when
it appears. This can be used to provide a default file choice for the user. In the readFile()

method, above, fileDialog.setSelectedFile(null) specifies that no file is pre-selected when
the dialog box appears. Otherwise, the selected file could be carried over from the previous
time the file dialog was used.

Writing data to a file is similar, but it’s a good idea to add a check to determine whether
the output file that is selected by the user already exists. In that case, ask the user whether to
replace the file. Here is a typical subroutine for writing to a user-selected file:

public void writeFile() {

if (fileDialog == null)

fileDialog = new JFileChooser(); // (fileDialog is an instance variable)

File selectedFile = new File("output.txt"); // (default output file name)

fileDialog.setSelectedFile(selectedFile); // Specify a default file name.

fileDialog.setDialogTitle("Select File for Writing");

int option = fileDialog.showSaveDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

selectedFile = fileDialog.getSelectedFile();

if (selectedFile.exists()) { // Ask the user whether to replace the file.

int response = JOptionPane.showConfirmDialog(this,

"The file \"" + selectedFile.getName()

+ "\" already exists.\nDo you want to replace it?",

"Confirm Save",

JOptionPane.YES NO OPTION,

JOptionPane.WARNING MESSAGE);

if (response != JOptionPane.YES OPTION)

return; // User does not want to replace the file.

}

PrintWriter out; // (or use some other wrapper class)

try {

out = new PrintWriter(selectedFile);

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

.

. // Write data to the output stream, out. (Does not throw exceptions.)

.

out.flush();

out.close();

CHAPTER 11. STREAMS, FILES, AND NETWORKING 553

if (out.checkError()) // (need to check for errors in PrintWriter)

throw new IOException("Error occurred while trying to write file.");

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to write the data:\n" + e);

}

}

The readFile() and writeFile() routines presented here can be used, with just a few
changes, when you need to read or write a file in a GUI program. We’ll look at some more
complete examples of using files and file dialogs in the next section.

11.3 Programming With Files

In this section, we look at several programming examples that work with files, using the
techniques that were introduced in Section 11.1 and Section 11.2.

11.3.1 Copying a File

As a first example, we look at a simple command-line program that can make a copy of a
file. Copying a file is a pretty common operation, and every operating system already has a
command for doing it. However, it is still instructive to look at a Java program that does the
same thing. Many file operations are similar to copying a file, except that the data from the
input file is processed in some way before it is written to the output file. All such operations
can be done by programs with the same general form. Subsection 4.3.6 included a program for
copying text files using TextIO. The example in this section will work for any file.

Since the program should be able to copy any file, we can’t assume that the data in the
file is in human-readable form. So, we have to use byte streams InputStream and OutputStream
to operate on the file. The program simply copies all the data from the InputStream to the
OutputStream, one byte at a time. If source is the variable that refers to the InputStream,
then the function source.read() can be used to read one byte. This function returns the
value -1 when all the bytes in the input file have been read. Similarly, if copy refers to the
OutputStream, then copy.write(b) writes one byte to the output file. So, the heart of the
program is a simple while loop. As usual, the I/O operations can throw exceptions, so this
must be done in a try..catch statement:

while(true) {

int data = source.read();

if (data < 0)

break;

copy.write(data);

}

The file-copy command in an operating system such as UNIX uses command line argu-
ments to specify the names of the files. For example, the user might say “copy original.dat

backup.dat” to copy an existing file, original.dat, to a file named backup.dat. Command-
line arguments can also be used in Java programs. The command line arguments are stored
in the array of strings, args, which is a parameter to the main() routine. The program can
retrieve the command-line arguments from this array. (See Subsection 4.3.6.) For example, if
the program is named CopyFile and if the user runs the program with the command

CHAPTER 11. STREAMS, FILES, AND NETWORKING 554

java CopyFile work.dat oldwork.dat

then in the program, args[0] will be the string "work.dat" and args[1] will be the string
"oldwork.dat". The value of args.length tells the program how many command-line argu-
ments were specified by the user.

The program CopyFile.java gets the names of the files from the command-line arguments.
It prints an error message and exits if the file names are not specified. To add a little interest,
there are two ways to use the program. The command line can simply specify the two file names.
In that case, if the output file already exists, the program will print an error message and end.
This is to make sure that the user won’t accidently overwrite an important file. However, if the
command line has three arguments, then the first argument must be “-f” while the second and
third arguments are file names. The -f is a command-line option , which is meant to modify
the behavior of the program. The program interprets the -f to mean that it’s OK to overwrite
an existing program. (The “f” stands for “force,” since it forces the file to be copied in spite of
what would otherwise have been considered an error.) You can see in the source code how the
command line arguments are interpreted by the program:

import java.io.*;

/**

* Makes a copy of a file. The original file and the name of the

* copy must be given as command-line arguments. In addition, the

* first command-line argument can be "-f"; if present, the program

* will overwrite an existing file; if not, the program will report

* an error and end if the output file already exists. The number

* of bytes that are copied is reported.

*/

public class CopyFile {

public static void main(String[] args) {

String sourceName; // Name of the source file,

// as specified on the command line.

String copyName; // Name of the copy,

// as specified on the command line.

InputStream source; // Stream for reading from the source file.

OutputStream copy; // Stream for writing the copy.

boolean force; // This is set to true if the "-f" option

// is specified on the command line.

int byteCount; // Number of bytes copied from the source file.

/* Get file names from the command line and check for the

presence of the -f option. If the command line is not one

of the two possible legal forms, print an error message and

end this program. */

if (args.length == 3 && args[0].equalsIgnoreCase("-f")) {

sourceName = args[1];

copyName = args[2];

force = true;

}

else if (args.length == 2) {

sourceName = args[0];

copyName = args[1];

force = false;

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CopyFile.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 555

}

else {

System.out.println(

"Usage: java CopyFile <source-file> <copy-name>");

System.out.println(

" or java CopyFile -f <source-file> <copy-name>");

return;

}

/* Create the input stream. If an error occurs, end the program. */

try {

source = new FileInputStream(sourceName);

}

catch (FileNotFoundException e) {

System.out.println("Can’t find file \"" + sourceName + "\".");

return;

}

/* If the output file already exists and the -f option was not

specified, print an error message and end the program. */

File file = new File(copyName);

if (file.exists() && force == false) {

System.out.println(

"Output file exists. Use the -f option to replace it.");

return;

}

/* Create the output stream. If an error occurs, end the program. */

try {

copy = new FileOutputStream(copyName);

}

catch (IOException e) {

System.out.println("Can’t open output file \"" + copyName + "\".");

return;

}

/* Copy one byte at a time from the input stream to the output

stream, ending when the read() method returns -1 (which is

the signal that the end of the stream has been reached). If any

error occurs, print an error message. Also print a message if

the file has been copied successfully. */

byteCount = 0;

try {

while (true) {

int data = source.read();

if (data < 0)

break;

copy.write(data);

byteCount++;

}

source.close();

copy.close();

CHAPTER 11. STREAMS, FILES, AND NETWORKING 556

System.out.println("Successfully copied " + byteCount + " bytes.");

}

catch (Exception e) {

System.out.println("Error occurred while copying. "

+ byteCount + " bytes copied.");

System.out.println("Error: " + e);

}

} // end main()

} // end class CopyFile

It is not terribly efficient to copy one byte at a time. Efficiency could be improved by using
alternative versions of the read() and write() methods that read and write multiple bytes (see
the API for details). Alternatively, the input and output streams could be wrapped in objects of
type BufferedInputStream and BufferedOutputStream which automatically read from and write
data to files in larger blocks, which is more efficient than reading and writing individual bytes.

(There is also a sample program CopyFileAsResources.java that does the same thing as
CopyFile but uses the resource pattern in a try..catch statement to make sure that the
streams are closed in all cases.)

11.3.2 Persistent Data

Once a program ends, any data that was stored in variables and objects in the program is gone.
In many cases, it would be useful to have some of that data stick around so that it will be
available when the program is run again. The problem is, how to make the data persistent
between runs of the program? The answer, of course, is to store the data in a file (or, for some
applications, in a database—but the data in a database is itself stored in files).

Consider a “phone book” program that allows the user to keep track of a list of names and
associated phone numbers. The program would make no sense at all if the user had to create
the whole list from scratch each time the program is run. It would make more sense to think of
the phone book as a persistent collection of data, and to think of the program as an interface to
that collection of data. The program would allow the user to look up names in the phone book
and to add new entries. Any changes that are made should be preserved after the program
ends.

The sample program PhoneDirectoryFileDemo.java is a very simple implementation of this
idea. It is meant only as an example of file use; the phone book that it implements is a “toy”
version that is not meant to be taken seriously. This program stores the phone book data in a
file named “.phone book demo” in the user’s home directory. To find the user’s home directory,
it uses the System.getProperty() method that was mentioned in Subsection 11.2.2. When
the program starts, it checks whether the file already exists. If it does, it should contain the
user’s phone book, which was saved in a previous run of the program, so the data from the file
is read and entered into a TreeMap named phoneBook that represents the phone book while
the program is running. (See Subsection 10.3.1.) In order to store the phone book in a file,
some decision must be made about how the data in the phone book will be represented. For
this example, I chose a simple representation in which each line of the file contains one entry
consisting of a name and the associated phone number. A percent sign (’%’) separates the
name from the number. The following code at the beginning of the program will read the
phone book data file, if it exists and has the correct format:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CopyFileAsResources.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/PhoneDirectoryFileDemo.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 557

File userHomeDirectory = new File(System.getProperty("user.home"));

File dataFile = new File(userHomeDirectory, ".phone book data");

// A file named .phone book data in the user’s home directory.

if (! dataFile.exists()) {

System.out.println("No phone book data file found. A new one");

System.out.println("will be created, if you add any entries.");

System.out.println("File name: " + dataFile.getAbsolutePath());

}

else {

System.out.println("Reading phone book data...");

try(Scanner scanner = new Scanner(dataFile)) {

while (scanner.hasNextLine()) {

// Read one line from the file, containing one name/number pair.

String phoneEntry = scanner.nextLine();

int separatorPosition = phoneEntry.indexOf(’%’);

if (separatorPosition == -1)

throw new IOException("File is not a phonebook data file.");

name = phoneEntry.substring(0, separatorPosition);

number = phoneEntry.substring(separatorPosition+1);

phoneBook.put(name,number);

}

}

catch (IOException e) {

System.out.println("Error in phone book data file.");

System.out.println("File name: " + dataFile.getAbsolutePath());

System.out.println("This program cannot continue.");

System.exit(1);

}

}

The program then lets the user do various things with the phone book, including making
modifications. Any changes that are made are made only to the TreeMap that holds the data.
When the program ends, the phone book data is written to the file (if any changes have been
made while the program was running), using the following code:

if (changed) {

System.out.println("Saving phone directory changes to file " +

dataFile.getAbsolutePath() + " ...");

PrintWriter out;

try {

out = new PrintWriter(new FileWriter(dataFile));

}

catch (IOException e) {

System.out.println("ERROR: Can’t open data file for output.");

return;

}

for (Map.Entry<String,String> entry : phoneBook.entrySet())

out.println(entry.getKey() + "%" + entry.getValue());

out.flush();

out.close();

if (out.checkError())

System.out.println("ERROR: Some error occurred while writing data file.");

else

CHAPTER 11. STREAMS, FILES, AND NETWORKING 558

System.out.println("Done.");

}

The net effect of this is that all the data, including the changes, will be there the next time the
program is run. I’ve shown you all the file-handling code from the program. If you would like
to see the rest of the program, see the source code file, PhoneDirectoryFileDemo.java.

11.3.3 Files in GUI Programs

The previous examples in this section use a command-line interface, but graphical user interface
programs can also manipulate files. Programs typically have an “Open” command that reads
the data from a file and displays it in a window and a “Save” command that writes the data
from the window into a file. We can illustrate this in Java with a simple text editor program,
TrivialEdit.java. The window for this program uses a JTextArea component to display some
text that the user can edit. It also has a menu bar, with a “File” menu that includes “Open”
and “Save” commands. These commands are implemented using the techniques for reading and
writing files that were covered in Section 11.2.

When the user selects the Open command from the File menu in the TrivialEdit program,
the program pops up a file dialog box where the user specifies the file. It is assumed that the file
is a text file. A limit of 10000 characters is put on the size of the file, since a JTextArea is not
meant for editing large amounts of text. The program reads the text contained in the specified
file, and sets that text to be the content of the JTextArea. The program also sets the title bar
of the window to show the name of the file that was opened. All this is done in the following
method, which is just a variation of the readFile() method presented in Section 11.2:

/**

* Carry out the Open command by letting the user specify a file to be opened

* and reading up to 10000 characters from that file. If the file is read

* successfully and is not too long, then the text from the file replaces the

* text in the JTextArea.

*/

public void doOpen() {

if (fileDialog == null)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File to be Opened");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

Scanner in;

try {

in = new Scanner(selectedFile);

}

catch (FileNotFoundException e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

StringBuilder input = new StringBuilder();

while (in.hasNextLine()) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TrivialEdit.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 559

String lineFromFile = in.nextLine();

if (lineFromFile == null)

break; // End-of-file has been reached.

input.append(lineFromFile);

input.append(’\n’);

if (input.length() > 10000)

throw new IOException("Input file is too large for this program.");

}

text.setText(input.toString());

editFile = selectedFile;

setTitle("TrivialEdit: " + editFile.getName());

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

finally {

in.close();

}

}

In this program, the instance variable editFile is used to keep track of the file that is currently
being edited, if any, and the setTitle() method from class JFrame is used to set the title of
the window to show the name of the file. (TrivialEdit is defined as a subclass of JFrame.)

Similarly, the response to the Save command is a minor variation on the writeFile()

method from Section 11.2. I will not repeat it here. If you would like to see the entire program,
you will find the source code in the file TrivialEdit.java.

11.3.4 Storing Objects in Files

Whenever data is stored in files, some definite format must be adopted for representing the
data. As long as the output routine that writes the data and the input routine that reads the
data use the same format, the files will be usable. However, as usual, correctness is not the
end of the story. The representation that is used for data in files should also be robust. (See
Section 8.1.) To see what this means, we will look at several different ways of representing the
same data. This example builds on the example SimplePaint2.java from Subsection 7.3.3. (You
might want to run it now to remind yourself of what it can do.) In that program, the user
could use the mouse to draw simple sketches. Now, we will add file input/output capabilities
to that program. This will allow the user to save a sketch to a file and later read the sketch
back from the file into the program so that the user can continue to work on the sketch. The
basic requirement is that all relevant data about the sketch must be saved in the file, so that
the sketch can be exactly restored when the file is read by the program.

The new version of the program can be found in the source code file SimplePaintWith-
Files.java. A “File” menu has been added to the new version. It contains two sets of Save/Open
commands, one for saving and reloading sketch data in text form and one for data in binary
form. We will consider both possibilities here, in some detail.

The data for a sketch consists of the background color of the picture and a list of the
curves that were drawn by the user. A curve consists of a list of Points. Point is a standard
class in package java.awt; a Point pt has instance variables pt.x and pt.y of type int that
represent the pixel coordinates of a point on the xy-plane. Each curve can be a different color.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TrivialEdit.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithFiles.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 560

Furthermore, a curve can be “symmetric,” which means that in addition to the curve itself, the
horizontal and vertical reflections of the curve are also drawn. The data for each curve is stored
in an object of type CurveData, which is defined in the program as:

/**

* An object of type CurveData represents the data required to redraw one

* of the curves that have been sketched by the user.

*/

private static class CurveData implements Serializable {

Color color; // The color of the curve.

boolean symmetric; // Are horizontal and vertical reflections also drawn?

ArrayList<Point> points; // The points on the curve.

}

Then, a list of type ArrayList<CurveData> is used to hold data for all of the curves that the user
has drawn. Note that in the new version of the program, the CurveData class has been declared
to “implement Serializable”. This allows objects of type CurveData to be written in binary
form to an ObjectOutputStream. See Subsection 11.1.6.

Let’s think about how the data for a sketch could be saved to an ObjectOuputStream. The
sketch is displayed on the screen in an object of type SimplePaintPanel, which is a subclass of
JPanel. All the data needed for the sketch is stored in instance variables of that object. One
possibility would be to simply write the entire SimplePaintPanel component as a single object to
the stream. This could be done in a method in the SimplePaintPanel class with the statement

outputStream.writeObject(this);

where outputStream is the ObjectOutputStream and “this” refers to the SimplePaintPanel
itself. This statement saves the entire current state of the panel. To read the data back into
the program, you would create an ObjectInputStream for reading the object from the file, and
you would retrieve the object from the file with the statement

SimplePaintPanel newPanel = (SimplePaintPanel)in.readObject();

where in is the ObjectInputStream. Note that the type-cast is necessary because the method
in.readObject() returns a value of type Object. (To get the saved sketch to appear on the
screen, the newPanel must replace the current content pane in the program’s window; further-
more, the menu bar of the window must be replaced, because the menus are associated with a
particular SimplePaintPanel object.)

It might look tempting to be able to save data and restore it with a single command, but
in this case, it’s not a good idea. The main problem with doing things this way is that the
serialized form of objects that represent Swing components can change from one
version of Java to the next. This means that data files that contain serialized components such
as a SimplePaintPanel might become unusable in the future, and the data that they contain will
be effectively lost. This is an important consideration for any serious application.

Taking this into consideration, my program uses a different format when it creates a binary
file. The data written to the file consists of (1) the background color of the sketch, (2) the
number of curves in the sketch, and (3) all the CurveData objects that describe the individual
curves. The method that saves the data is similar to the writeFile() method from Subsec-
tion 11.2.3. Here is the complete doSaveAsBinary() method from SimplePaintWithFiles,
with the changes from the generic writeFile() method shown in italic:

/**

* Save the user’s sketch to a file in binary form as serialized

CHAPTER 11. STREAMS, FILES, AND NETWORKING 561

* objects, using an ObjectOutputStream. Files created by this method

* can be read back into the program using the doOpenAsBinary() method.

*/

private void doSaveAsBinary() {

if (fileDialog == null)

fileDialog = new JFileChooser();

File selectedFile; //Initially selected file name in the dialog.

if (editFile == null)

selectedFile = new File("sketchData.binary");

else

selectedFile = new File(editFile.getName());

fileDialog.setSelectedFile(selectedFile);

fileDialog.setDialogTitle("Select File to be Saved");

int option = fileDialog.showSaveDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

selectedFile = fileDialog.getSelectedFile();

if (selectedFile.exists()) { // Ask the user whether to replace the file.

int response = JOptionPane.showConfirmDialog(this,

"The file \"" + selectedFile.getName()

+ "\" already exists.\nDo you want to replace it?",

"Confirm Save",

JOptionPane.YES NO OPTION,

JOptionPane.WARNING MESSAGE);

if (response != JOptionPane.YES OPTION)

return; // User does not want to replace the file.

}

ObjectOutputStream out;

try {

FileOutputStream stream = new FileOutputStream(selectedFile);

out = new ObjectOutputStream(stream);

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

out.writeObject(getBackground());

out.writeInt(curves.size());

for (CurveData curve : curves)

out.writeObject(curve);

out.flush();

out.close();

editFile = selectedFile;

setTitle("SimplePaint: " + editFile.getName());

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to write the file:\n" + e);

}

}

CHAPTER 11. STREAMS, FILES, AND NETWORKING 562

The heart of this method consists of the following lines, which do the actual writing of the data
to the file:

out.writeObject(getBackground()); // Writes the panel’s background color.

out.writeInt(curves.size()); // Writes the number of curves.

for (CurveData curve : curves) // For each curve...

out.writeObject(curve); // write the corresponding CurveData object.

The last line depends on the fact that the CurveData class implements the Serializable interface.
(So does the first; the Color class, like many of Java’s standard classes, implements Serializable.)

The doOpenAsBinary() method, which is responsible for reading sketch data back into the
program from an ObjectInputStream, has to read exactly the same data that was written, in the
same order, and use that data to build the data structures that will represent the sketch while
the program is running. Once the data structures have been successfully built, they replace the
data structures that describe the previous contents of the panel. This is done as follows:

/* Read data from the file into local variables */

Color newBackgroundColor = (Color)in.readObject();

int curveCount = in.readInt();

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

for (int i = 0; i < curveCount; i++)

newCurves.add((CurveData)in.readObject());

in.close();

/* Copy the data that was read into the instance variables that

describe the sketch that is displayed by the program.*/

curves = newCurves;

setBackground(newBackgroundColor);

repaint();

This is only a little harder than saving the entire SimplePaintPanel component to the file in
one step, and it is more robust since the serialized form of the objects that are saved to file is
unlikely to change in the future. But it still suffers from the general fragility of binary data.

∗ ∗ ∗

An alternative to using object streams is to save the data in human-readable, character
form. The basic idea is the same: All the data necessary to reconstitute a sketch must be saved
to the output file in some definite format. The method that reads the file must follow exactly
the same format as it reads the data, and it must use the data to rebuild the data structures
that represent the sketch while the program is running.

When writing character data, we can’t write out entire objects in one step. All the data has
to be expressed, ultimately, in terms of simple data values such as strings and primitive type
values. A color, for example, can be expressed in terms of three integers giving the red, green,
and blue components of the color. The first (not very good) idea that comes to mind might be
to just dump all the necessary data, in some definite order, into the file. Suppose that out is a
PrintWriter that is used to write to the file. We could then say:

Color bgColor = getBackground(); // Write the background color to the file.

out.println(bgColor.getRed());

out.println(bgColor.getGreen());

out.println(bgColor.getBlue());

out.println(curves.size()); // Write the number of curves.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 563

for (CurveData curve : curves) { // For each curve, write...

out.println(curve.color.getRed()); // the color of the curve

out.println(curve.color.getGreen());

out.println(curve.color.getBlue());

out.println(curve.symmetric ? 0 : 1); // the curve’s symmetry property

out.println(curve.points.size()); // the number of points on curve

for (Point pt : curve.points) { // the coordinates of each point

out.println(pt.x);

out.println(pt.y);

}

}

This works in the sense that the file-reading method can read the data and rebuild the data
structures. Suppose that the input method uses a Scanner named scanner to read the data
file. Then it could say:

Color newBackgroundColor; // Read the background Color.

int red = scanner.nextInt();

int green = scanner.nextInt();

int blue = scanner.nextInt();

newBackgroundColor = new Color(red,green,blue);

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

int curveCount = scanner.nextInt(); // The number of curves to be read.

for (int i = 0; i < curveCount; i++) {

CurveData curve = new CurveData();

int r = scanner.nextInt(); // Read the curve’s color.

int g = scanner.nextInt();

int b = scanner.nextInt();

curve.color = new Color(r,g,b);

int symmetryCode = scanner.nextInt(); // Read the curve’s symmetry property.

curve.symmetric = (symmetryCode == 1);

curveData.points = new ArrayList<Point>();

int pointCount = scanner.nextInt(); // The number of points on this curve.

for (int j = 0; j < pointCount; j++) {

int x = scanner.nextInt(); // Read the coordinates of the point.

int y = scanner.nextInt();

curveData.points.add(new Point(x,y));

}

newCurves.add(curve);

}

curves = newCurves; // Install the new data structures.

setBackground(newBackgroundColor);

Note how every piece of data that was written by the output method is read, in the same order,
by the input method. While this does work, the data file is just a long string of numbers. It
doesn’t make much more sense to a human reader than a binary-format file would. Furthermore,
it is still fragile in the sense that any small change made to the data representation in the
program, such as adding a new property to curves, will render the data file useless (unless you
happen to remember exactly which version of the program created the file).

So, I decided to use a more complex, more meaningful data format for the text files created
by my program. Instead of just writing numbers, I add words to say what the numbers mean.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 564

Here is a short but complete data file for the program; just by looking at it, you can probably
tell what is going on:

SimplePaintWithFiles 1.0

background 110 110 180

startcurve

color 255 255 255

symmetry true

coords 10 10

coords 200 250

coords 300 10

endcurve

startcurve

color 0 255 255

symmetry false

coords 10 400

coords 590 400

endcurve

The first line of the file identifies the program that created the data file; when the user
selects a file to be opened, the program can check the first word in the file as a simple test to
make sure the file is of the correct type. The first line also contains a version number, 1.0. If
the file format changes in a later version of the program, a higher version number would be
used; if the program sees a version number of 1.2 in a file, but the program only understands
version 1.0, the program can explain to the user that a newer version of the program is needed
to read the data file.

The second line of the file specifies the background color of the picture. The three integers
specify the red, green, and blue components of the color. The word “background” at the
beginning of the line makes the meaning clear. The remainder of the file consists of data for the
curves that appear in the picture. The data for each curve is clearly marked with “startcurve”
and “endcurve.” The data consists of the color and symmetry properties of the curve and the
xy-coordinates of each point on the curve. Again, the meaning is clear. Files in this format can
easily be created or edited by hand. In fact, the data file shown above was actually created in
a text editor rather than by the program. Furthermore, it’s easy to extend the format to allow
for additional options. Future versions of the program could add a “thickness” property to the
curves to make it possible to have curves that are more than one pixel wide. Shapes such as
rectangles and ovals could easily be added.

Outputting data in this format is easy. Suppose that out is a PrintWriter that is being used
to write the sketch data to a file. Then the output can be done with:

out.println("SimplePaintWithFiles 1.0"); // Name and version number.

Color bgColor = getBackground();

out.println("background " + bgColor.getRed() + " " +

bgColor.getGreen() + " " + bgColor.getBlue());

for (CurveData curve : curves) {

out.println();

out.println("startcurve");

out.println(" color " + curve.color.getRed() + " " +

curve.color.getGreen() + " " + curve.color.getBlue());

out.println(" symmetry " + curve.symmetric);

for (Point pt : curve.points)

CHAPTER 11. STREAMS, FILES, AND NETWORKING 565

out.println(" coords " + pt.x + " " + pt.y);

out.println("endcurve");

}

Reading the data is somewhat harder, since the input routine has to deal with all the extra
words in the data. In my input routine, I decided to allow some variation in the order in which
the data occurs in the file. For example, the background color can be specified at the end of
the file, instead of at the beginning. It can even be left out altogether, in which case white will
be used as the default background color. This is possible because each item of data is labeled
with a word that describes its meaning; the labels can be used to drive the processing of the
input. Here is the complete method from SimplePaintWithFiles.java that reads data files in
text format. It uses a Scanner to read items from the file:

private void doOpenAsText() {

if (fileDialog == null)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File to be Opened");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

Scanner scanner; // For reading from the data file.

try {

Reader stream = new BufferedReader(new FileReader(selectedFile));

scanner = new Scanner(stream);

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try { // Read the contents of the file.

String programName = scanner.next();

if (! programName.equals("SimplePaintWithFiles"))

throw new IOException("File is not a SimplePaintWithFiles data file.");

double version = scanner.nextDouble();

if (version > 1.0)

throw new IOException("File requires newer version of this program.");

Color newBackgroundColor = Color.WHITE; // default value

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

while (scanner.hasNext()) {

String itemName = scanner.next();

if (itemName.equalsIgnoreCase("background")) {

int red = scanner.nextInt();

int green = scanner.nextInt();

int blue = scanner.nextInt();

newBackgroundColor = new Color(red,green,blue);

}

else if (itemName.equalsIgnoreCase("startcurve")) {

CurveData curve = new CurveData();

curve.color = Color.BLACK; // default value

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithFiles.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 566

curve.symmetric = false; // default value

curve.points = new ArrayList<Point>();

itemName = scanner.next();

while (! itemName.equalsIgnoreCase("endcurve")) {

if (itemName.equalsIgnoreCase("color")) {

int r = scanner.nextInt();

int g = scanner.nextInt();

int b = scanner.nextInt();

curve.color = new Color(r,g,b);

}

else if (itemName.equalsIgnoreCase("symmetry")) {

curve.symmetric = scanner.nextBoolean();

}

else if (itemName.equalsIgnoreCase("coords")) {

int x = scanner.nextInt();

int y = scanner.nextInt();

curve.points.add(new Point(x,y));

}

else {

throw new Exception("Unknown term in input.");

}

itemName = scanner.next();

}

newCurves.add(curve);

}

else {

throw new Exception("Unknown term in input.");

}

}

scanner.close();

setBackground(newBackgroundColor); // Install the new picture data.

curves = newCurves;

repaint();

editFile = selectedFile;

setTitle("SimplePaint: " + editFile.getName());

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

}

The main reason for this long discussion of file formats has been to get you to think about
the problem of representing complex data in a form suitable for storing the data in a file. The
same problem arises when data must be transmitted over a network. There is no one correct
solution to the problem, but some solutions are certainly better than others. In Section 11.5,
we will look at one solution to the data representation problem that has become increasingly
common.

∗ ∗ ∗

In addition to being able to save sketch data in both text form and binary form,
SimplePaintWithFiles can also save the picture itself as an image file that could be, for

CHAPTER 11. STREAMS, FILES, AND NETWORKING 567

example, printed or put on a web page. This is a preview of image-handling techniques that
will be covered in Chapter 13, and it uses techniques that I have not yet covered.

11.4 Networking

As far as a program is concerned, a network is just another possible source of input data,
and another place where data can be output. That does oversimplify things, because networks
are not as easy to work with as files are. But in Java, you can do network communication using
input streams and output streams, just as you can use such streams to communicate with the
user or to work with files. Nevertheless, opening a network connection between two computers
is a bit tricky, since there are two computers involved and they have to somehow agree to open a
connection. And when each computer can send data to the other, synchronizing communication
can be a problem. But the fundamentals are the same as for other forms of I/O.

One of the standard Java packages is called java.net. This package includes several
classes that can be used for networking. Two different styles of network I/O are supported.
One of these, which is fairly high-level, is based on the World-Wide Web, and provides the
sort of network communication capability that is used by a Web browser when it downloads
pages for you to view. The main classes for this style of networking are java.net.URL and
java.net.URLConnection. An object of type URL is an abstract representation of a Univer-
sal Resource Locator , which is an address for an HTML document or other resource on the
Web. A URLConnection represents a network connection to such a resource.

The second style of I/O, which is more general and more important, views the network at
a lower level. It is based on the idea of a socket . A socket is used by a program to establish a
connection with another program on a network. Communication over a network involves two
sockets, one on each of the computers involved in the communication. Java uses a class called
java.net.Socket to represent sockets that are used for network communication. The term
“socket” presumably comes from an image of physically plugging a wire into a computer to
establish a connection to a network, but it is important to understand that a socket, as the
term is used here, is simply an object belonging to the class Socket. In particular, a program can
have several sockets at the same time, each connecting it to another program running on some
other computer on the network—or even running on the same computer. All these connections
use the same physical network connection.

This section gives a brief introduction to these basic networking classes, and shows how
they relate to input and output streams.

11.4.1 URLs and URLConnections

The URL class is used to represent resources on the World-Wide Web. Every resource has an
address, which identifies it uniquely and contains enough information for a Web browser to find
the resource on the network and retrieve it. The address is called a “url” or “universal resource
locator.” (URLs can actually refer to resources from other sources besides the web; after all,
they are “universal”.)

An object belonging to the URL class represents such an address. Once you have a URL
object, you can use it to open a URLConnection to the resource at that address. A url is
ordinarily specified as a string, such as “http://math.hws.edu/eck/index.html”. There are
also relative url’s. A relative url specifies the location of a resource relative to the location of
another url, which is called the base or context for the relative url. For example, if the context

CHAPTER 11. STREAMS, FILES, AND NETWORKING 568

is given by the url http://math.hws.edu/eck/, then the incomplete, relative url “index.html”
would really refer to http://math.hws.edu/eck/index.html.

An object of the class URL is not simply a string, but it can be constructed from a string
representation of a url. A URL object can also be constructed from another URL object, repre-
senting a context, plus a string that specifies a url relative to that context. These constructors
have prototypes

public URL(String urlName) throws MalformedURLException

and

public URL(URL context, String relativeName) throws MalformedURLException

Note that these constructors will throw an exception of type MalformedURLException if the
specified strings don’t represent legal url’s. The MalformedURLException class is a subclass of
IOException, and it requires mandatory exception handling.

Once you have a valid URL object, you can call its openConnection() method to set up a
connection. This method returns a URLConnection. The URLConnection object can, in turn,
be used to create an InputStream for reading data from the resource represented by the URL.
This is done by calling its getInputStream() method. For example:

URL url = new URL(urlAddressString);

URLConnection connection = url.openConnection();

InputStream in = connection.getInputStream();

The openConnection() and getInputStream() methods can both throw exceptions of type
IOException. Once the InputStream has been created, you can read from it in the usual way,
including wrapping it in another input stream type, such as BufferedReader, or using a Scanner.
Reading from the stream can, of course, generate exceptions.

One of the other useful instance methods in the URLConnection class is getContentType(),
which returns a String that describes the type of information available from the URL. The
return value can be null if the type of information is not yet known or if it is not possible
to determine the type. The type might not be available until after the input stream has
been created, so you should generally call getContentType() after getInputStream(). The
string returned by getContentType() is in a format called a mime type . Mime types include
“text/plain”, “text/html”, “image/jpeg”, “image/png”, and many others. All mime types
contain two parts: a general type, such as “text” or “image”, and a more specific type within
that general category, such as “html” or “png”. If you are only interested in text data, for
example, you can check whether the string returned by getContentType() starts with “text”.
(Mime types were first introduced to describe the content of email messages. The name stands
for “Multipurpose Internet Mail Extensions.” They are now used almost universally to specify
the type of information in a file or other resource.)

Let’s look at a short example that uses all this to read the data from a URL. This subroutine
opens a connection to a specified URL, checks that the type of data at the URL is text, and
then copies the text onto the screen. Many of the operations in this subroutine can throw
exceptions. They are handled by declaring that the subroutine “throws IOException” and
leaving it up to the main program to decide what to do when an error occurs.

static void readTextFromURL(String urlString) throws IOException {

/* Open a connection to the URL, and get an input stream

for reading data from the URL. */

CHAPTER 11. STREAMS, FILES, AND NETWORKING 569

URL url = new URL(urlString);

URLConnection connection = url.openConnection();

InputStream urlData = connection.getInputStream();

/* Check that the content is some type of text. Note: If

getContentType() method were called before getting the input

stream, it is possible for contentType to be null only because

no connection can be made. The getInputStream() method will

throw an error if no connection can be made. */

String contentType = connection.getContentType();

System.out.println("Stream opened with content type: " + contentType);

System.out.println();

if (contentType == null || contentType.startsWith("text") == false)

throw new IOException("URL does not seem to refer to a text file.");

System.out.println("Fetching context from " + urlString + " ...");

System.out.println();

/* Copy lines of text from the input stream to the screen, until

end-of-file is encountered (or an error occurs). */

BufferedReader in; // For reading from the connection’s input stream.

in = new BufferedReader(new InputStreamReader(urlData));

while (true) {

String line = in.readLine();

if (line == null)

break;

System.out.println(line);

}

in.close();

} // end readTextFromURL()

A complete program that uses this subroutine can be found in the file FetchURL.java. When
you run the program, you can specify the URL on the command line; if not, you will be
prompted to enter the URL. For this program, a URL can begin with “http://” for a URL that
refers to a resource on the web, with “file://” for a URL that refers to a file on your computer,
or with “ftp://” for a URL that uses the “File Transfer Protocol.” If it does not start with
any of these, then “http://” is added to the start of the URL. Try the program with URL
math.hws.edu/javanotes to fetch the front page of this textbook on the web. Try it with
some bad inputs to see the various errors that can occur.

11.4.2 TCP/IP and Client/Server

Communication over the Internet is based on a pair of protocols called the Transmission
Control Protocol and the Internet Protocol , which are collectively referred to as TCP/IP .
(In fact, there is a more basic communication protocol called UDP that can be used instead
of TCP in certain applications. UDP is supported in Java, but for this discussion, I’ll stick to
TCP/IP, which provides reliable two-way communication between networked computers.)

For two programs to communicate using TCP/IP, each program must create a socket, as
discussed earlier in this section, and those sockets must be connected. Once such a connection
is made, communication takes place using input streams and output streams. Each program
has its own input stream and its own output stream. Data written by one program to its output

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/FetchURL.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 570

stream is transmitted to the other computer. There, it enters the input stream of the program
at the other end of the network connection. When that program reads data from its input
stream, it is receiving the data that was transmitted to it over the network.

The hard part, then, is making a network connection in the first place. Two sockets are
involved. To get things started, one program must create a socket that will wait passively until
a connection request comes in from another socket. The waiting socket is said to be listening
for a connection. On the other side of the connection-to-be, another program creates a socket
that sends out a connection request to the listening socket. When the listening socket receives
the connection request, it responds, and the connection is established. Once that is done, each
program can obtain an input stream and an output stream for sending data over the connection.
Communication takes place through these streams until one program or the other closes the
connection.

A program that creates a listening socket is sometimes said to be a server , and the socket is
called a server socket . A program that connects to a server is called a client , and the socket
that it uses to make a connection is called a client socket . The idea is that the server is out
there somewhere on the network, waiting for a connection request from some client. The server
can be thought of as offering some kind of service, and the client gets access to that service by
connecting to the server. This is called the client/server model of network communication.
In many actual applications, a server program can provide connections to several clients at the
same time. When a client connects to a server’s listening socket, that socket does not stop
listening. Instead, it continues listening for additional client connections at the same time that
the first client is being serviced. To do this, it is necessary to use threads. We’ll look at how it
works in the next chapter.

The URL class that was discussed at the beginning of this section uses a client socket behind
the scenes to do any necessary network communication. On the other side of that connection is
a server program that accepts a connection request from the URL object, reads a request from
that object for some particular file on the server computer, and responds by transmitting the
contents of that file over the network back to the URL object. After transmitting the data, the
server closes the connection.

∗ ∗ ∗

A client program has to have some way to specify which computer, among all those on
the network, it wants to communicate with. Every computer on the Internet has an IP ad-
dress which identifies it. Many computers can also be referred to by domain names such as
math.hws.edu or www.whitehouse.gov. (See Section 1.7.) Traditional (or IPv4) IP addresses
are 32-bit integers. They are usually written in the so-called “dotted decimal” form, such as
64.89.144.135, where each of the four numbers in the address represents an 8-bit integer in
the range 0 through 255. A new version of the Internet Protocol, IPv6 , is currently being
introduced. IPv6 addresses are 128-bit integers and are usually written in hexadecimal form
(with some colons and maybe some extra information thrown in). In actual use, IPv6 addresses
are still fairly rare.

A computer can have several IP addresses, and can have both IPv4 and IPv6 addresses.
Usually, one of these is the loopback address, which can be used when a program wants to
communicate with another program on the same computer. The loopback address has IPv4
address 127.0.0.1 and can also, in general, be referred to using the domain name localhost . In
addition, there can be one or more IP addresses associated with physical network connections.
Your computer probably has some utility for displaying your computer’s IP addresses. I have
written a small Java program, ShowMyNetwork.java, that does the same thing. When I run

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ShowMyNetwork.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 571

ShowMyNetwork on my computer, the output is:

en1 : /192.168.1.47 /fe80:0:0:0:211:24ff:fe9c:5271%5

lo0 : /127.0.0.1 /fe80:0:0:0:0:0:0:1%1 /0:0:0:0:0:0:0:1%0

The first thing on each line is a network interface name, which is really meaningful only to the
computer’s operating system. The same line also contains the IP addresses for that interface.
In this example, lo0 refers to the loopback address, which has IPv4 address 127.0.0.1 as usual.
The most important number here is 192.168.1.47, which is the IPv4 address that can be used
for communication over the network. (The slashes at the start of each address are not part of
the actual address.) The other numbers in the output are IPv6 addresses.

Now, a single computer might have several programs doing network communication at the
same time, or one program communicating with several other computers. To allow for this
possibility, a network connection actually has a port number in combination with an IP
address. A port number is just a 16-bit positive integer. A server does not simply listen for
connections—it listens for connections on a particular port. A potential client must know both
the Internet address (or domain name) of the computer on which the server is running and
the port number on which the server is listening. A Web server, for example, generally listens
for connections on port 80; other standard Internet services also have standard port numbers.
(The standard port numbers are all less than 1024, and are reserved for particular services. If
you create your own server programs, you should use port numbers greater than 1024.)

11.4.3 Sockets in Java

To implement TCP/IP connections, the java.net package provides two classes, ServerSocket
and Socket. A ServerSocket represents a listening socket that waits for connection requests
from clients. A Socket represents one endpoint of an actual network connection. A Socket
can be a client socket that sends a connection request to a server. But a Socket can also be
created by a server to handle a connection request from a client. This allows the server to create
multiple sockets and handle multiple connections. A ServerSocket does not itself participate
in connections; it just listens for connection requests and creates Sockets to handle the actual
connections.

When you construct a ServerSocket object, you have to specify the port number on which
the server will listen. The specification for the constructor is

public ServerSocket(int port) throws IOException

The port number must be in the range 0 through 65535, and should generally be greater than
1024. The constructor might throw a SecurityException if a smaller port number is specified. An
IOException can occur if, for example, the specified port number is already in use. (A parameter
value of 0 in this method tells the server socket to listen on any available port.)

As soon as a ServerSocket is created, it starts listening for connection requests. The
accept() method in the ServerSocket class accepts such a request, establishes a connection
with the client, and returns a Socket that can be used for communication with the client. The
accept() method has the form

public Socket accept() throws IOException

When you call the accept() method, it will not return until a connection request is received (or
until some error occurs). The method is said to block while waiting for the connection. (While
the method is blocked, the program—or more exactly, the thread—that called the method
can’t do anything else. If there are other threads in the same program, they can proceed.) You

CHAPTER 11. STREAMS, FILES, AND NETWORKING 572

can call accept() repeatedly to accept multiple connection requests. The ServerSocket will
continue listening for connections until it is closed, using its close() method, or until some
error occurs, or until the program is terminated in some way.

Suppose that you want a server to listen on port 1728, and that you want it to continue to
accept connections as long as the program is running. Suppose that you’ve written a method
provideService(Socket) to handle the communication with one client. Then the basic form
of the server program would be:

try {

ServerSocket server = new ServerSocket(1728);

while (true) {

Socket connection = server.accept();

provideService(connection);

}

}

catch (IOException e) {

System.out.println("Server shut down with error: " + e);

}

On the client side, a client socket is created using a constructor in the Socket class. To
connect to a server on a known computer and port, you would use the constructor

public Socket(String computer, int port) throws IOException

The first parameter can be either an IP number or a domain name. This constructor will block
until the connection is established or until an error occurs.

Once you have a connected socket, no matter how it was created, you can use the Socket
methods getInputStream() and getOutputStream() to obtain streams that can be used for
communication over the connection. These methods return objects of type InputStream and
OutputStream, respectively. Keeping all this in mind, here is the outline of a method for
working with a client connection:

/**

* Open a client connection to a specified server computer and

* port number on the server, and then do communication through

* the connection.

*/

void doClientConnection(String computerName, int serverPort) {

Socket connection;

InputStream in;

OutputStream out;

try {

connection = new Socket(computerName,serverPort);

in = connection.getInputStream();

out = connection.getOutputStream();

}

catch (IOException e) {

System.out.println(

"Attempt to create connection failed with error: " + e);

return;

}

.

. // Use the streams, in and out, to communicate with the server.

.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 573

try {

connection.close();

// (Alternatively, you might depend on the server

// to close the connection.)

}

catch (IOException e) {

}

} // end doClientConnection()

All this makes network communication sound easier than it really is. (And if you think it
sounded hard, then it’s even harder.) If networks were completely reliable, things would be
almost as easy as I’ve described. The problem, though, is to write robust programs that can deal
with network and human error. I won’t go into detail here. However, what I’ve covered here
should give you the basic ideas of network programming, and it is enough to write some simple
network applications. Let’s look at a few working examples of client/server programming.

11.4.4 A Trivial Client/Server

The first example consists of two programs. The source code files for the programs are Date-
Client.java and DateServer.java. One is a simple network client and the other is a matching
server. The client makes a connection to the server, reads one line of text from the server, and
displays that text on the screen. The text sent by the server consists of the current date and
time on the computer where the server is running. In order to open a connection, the client
must know the computer on which the server is running and the port on which it is listening.
The server listens on port number 32007. The port number could be anything between 1025
and 65535, as long as the server and the client use the same port. Port numbers between 1 and
1024 are reserved for standard services and should not be used for other servers. The name or
IP number of the computer on which the server is running can be specified as a command-line
argument. For example, if the server is running on a computer named math.hws.edu, then you
could run the client with the command “java DateClient math.hws.edu”. If a computer is
not specified on the command line, then the user is prompted to enter one. Here is the complete
client program:

import java.net.*;

import java.util.Scanner;

import java.io.*;

/**

* This program opens a connection to a computer specified

* as the first command-line argument. If no command-line

* argument is given, it prompts the user for a computer

* to connect to. The connection is made to

* the port specified by LISTENING PORT. The program reads one

* line of text from the connection and then closes the

* connection. It displays the text that it read on

* standard output. This program is meant to be used with

* the server program, DataServer, which sends the current

* date and time on the computer where the server is running.

*/

public class DateClient {

public static final int LISTENING PORT = 32007;

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateServer.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 574

public static void main(String[] args) {

String hostName; // Name of the server computer to connect to.

Socket connection; // A socket for communicating with server.

BufferedReader incoming; // For reading data from the connection.

/* Get computer name from command line. */

if (args.length > 0)

hostName = args[0];

else {

Scanner stdin = new Scanner(System.in);

System.out.print("Enter computer name or IP address: ");

hostName = stdin.nextLine();

}

/* Make the connection, then read and display a line of text. */

try {

connection = new Socket(hostName, LISTENING PORT);

incoming = new BufferedReader(

new InputStreamReader(connection.getInputStream()));

String lineFromServer = incoming.readLine();

if (lineFromServer == null) {

// A null from incoming.readLine() indicates that

// end-of-stream was encountered.

throw new IOException("Connection was opened, " +

"but server did not send any data.");

}

System.out.println();

System.out.println(lineFromServer);

System.out.println();

incoming.close();

}

catch (Exception e) {

System.out.println("Error: " + e);

}

} // end main()

} //end class DateClient

Note that all the communication with the server is done in a try..catch statement. This
will catch the IOExceptions that can be generated when the connection is opened or closed
and when data is read from the input stream. The connection’s input stream is wrapped in a
BufferedReader, which has a readLine() method that makes it easy to read one line of text.
(See Subsection 11.1.4.)

In order for this program to run without error, the server program must be running on
the computer to which the client tries to connect. By the way, it’s possible to run the client
and the server program on the same computer. For example, you can open two command
windows, start the server in one window and then run the client in the other window. To make
things like this easier, most computers will recognize the domain name localhost and the
IP number 127.0.0.1 as referring to “this computer.” This means that the command “java
DateClient localhost” will tell the DateClient program to connect to a server running on the
same computer. If that command doesn’t work, try “java DateClient 127.0.0.1”.

CHAPTER 11. STREAMS, FILES, AND NETWORKING 575

The server program that corresponds to the DateClient client program is called DateServer.
The DateServer program creates a ServerSocket to listen for connection requests on port 32007.
After the listening socket is created, the server will enter an infinite loop in which it accepts and
processes connections. This will continue until the program is killed in some way—for example
by typing a CONTROL-C in the command window where the server is running. When a connection
request is received from a client, the server calls a subroutine to handle the connection. In the
subroutine, any Exception that occurs is caught, so that it will not crash the server. Just
because a connection to one client has failed for some reason, it does not mean that the server
should be shut down; the error might have been the fault of the client. The connection-handling
subroutine creates a PrintWriter for sending data over the connection. It writes the current date
and time to this stream and then closes the connection. (The standard class java.util.Date
is used to obtain the current time. An object of type Date represents a particular date and
time. The default constructor, “new Date()”, creates an object that represents the time when
the object is created.) The complete server program is as follows:

import java.net.*;

import java.io.*;

import java.util.Date;

/**

* This program is a server that takes connection requests on

* the port specified by the constant LISTENING PORT. When a

* connection is opened, the program sends the current time to

* the connected socket. The program will continue to receive

* and process connections until it is killed (by a CONTROL-C,

* for example). Note that this server processes each connection

* as it is received, rather than creating a separate thread

* to process the connection.

*/

public class DateServer {

public static final int LISTENING PORT = 32007;

public static void main(String[] args) {

ServerSocket listener; // Listens for incoming connections.

Socket connection; // For communication with the connecting program.

/* Accept and process connections forever, or until some error occurs.

(Note that errors that occur while communicating with a connected

program are caught and handled in the sendDate() routine, so

they will not crash the server.) */

try {

listener = new ServerSocket(LISTENING PORT);

System.out.println("Listening on port " + LISTENING PORT);

while (true) {

// Accept next connection request and handle it.

connection = listener.accept();

sendDate(connection);

}

}

catch (Exception e) {

System.out.println("Sorry, the server has shut down.");

System.out.println("Error: " + e);

CHAPTER 11. STREAMS, FILES, AND NETWORKING 576

return;

}

} // end main()

/**

* The parameter, client, is a socket that is already connected to another

* program. Get an output stream for the connection, send the current time,

* and close the connection.

*/

private static void sendDate(Socket client) {

try {

System.out.println("Connection from " +

client.getInetAddress().toString());

Date now = new Date(); // The current date and time.

PrintWriter outgoing; // Stream for sending data.

outgoing = new PrintWriter(client.getOutputStream());

outgoing.println(now.toString());

outgoing.flush(); // Make sure the data is actually sent!

client.close();

}

catch (Exception e){

System.out.println("Error: " + e);

}

} // end sendDate()

} //end class DateServer

When you run DateServer in a command-line interface, it will sit and wait for connection
requests and report them as they are received. To make the DateServer service permanently
available on a computer, the program would be run as a daemon . A daemon is a program that
runs continually on a computer, independently of any user. The computer can be configured
to start the daemon automatically as soon as the computer boots up. It then runs in the
background, even while the computer is being used for other purposes. For example, a computer
that makes pages available on the World Wide Web runs a daemon that listens for requests
for web pages and responds by transmitting the pages. It’s just a souped-up analog of the
DateServer program! However, the question of how to set up a program as a daemon is not one
I want to go into here. For testing purposes, it’s easy enough to start the program by hand,
and, in any case, my examples are not really robust enough or full-featured enough to be run
as serious servers. (By the way, the word “daemon” is just an alternative spelling of “demon”
and is usually pronounced the same way.)

Note that after calling outgoing.println() to send a line of data to the client, the server
program calls outgoing.flush(). The flush() method is available in every output stream
class. Calling it ensures that data that has been written to the stream is actually sent to its
destination. You should generally call this function every time you use an output stream to
send data over a network connection. If you don’t do so, it’s possible that the stream will
collect data until it has a large batch of data to send. This is done for efficiency, but it can
impose unacceptable delays when the client is waiting for the transmission. It is even possible
that some of the data might remain untransmitted when the socket is closed, so it is especially
important to call flush() before closing the connection. This is one of those unfortunate cases
where different implementations of Java can behave differently. If you fail to flush your output

CHAPTER 11. STREAMS, FILES, AND NETWORKING 577

streams, it is possible that your network application will work on some types of computers but
not on others.

11.4.5 A Simple Network Chat

In the DateServer example, the server transmits information and the client reads it. It’s also
possible to have two-way communication between client and server. As a first example, we’ll
look at a client and server that allow a user on each end of the connection to send messages
to the other user. The program works in a command-line interface where the users type in
their messages. In this example, the server waits for a connection from a single client and then
closes down its listener so that no other clients can connect. After the client and server are
connected, both ends of the connection work in much the same way. The user on the client end
types a message, and it is transmitted to the server, which displays it to the user on that end.
Then the user of the server types a message that is transmitted to the client. Then the client
user types another message, and so on. This continues until one user or the other enters “quit”
when prompted for a message. When that happens, the connection is closed and both programs
terminate. The client program and the server program are very similar. The techniques for
opening the connections differ, and the client is programmed to send the first message while
the server is programmed to receive the first message. The client and server programs can be
found in the files CLChatClient.java and CLChatServer.java. (The name “CLChat” stands for
“command-line chat.”) Here is the source code for the server; the client is similar:

import java.net.*;

import java.util.Scanner;

import java.io.*;

/**

* This program is one end of a simple command-line interface chat program.

* It acts as a server which waits for a connection from the CLChatClient

* program. The port on which the server listens can be specified as a

* command-line argument. If it is not, then the port specified by the

* constant DEFAULT PORT is used. Note that if a port number of zero is

* specified, then the server will listen on any available port.

* This program only supports one connection. As soon as a connection is

* opened, the listening socket is closed down. The two ends of the connection

* each send a HANDSHAKE string to the other, so that both ends can verify

* that the program on the other end is of the right type. Then the connected

* programs alternate sending messages to each other. The client always sends

* the first message. The user on either end can close the connection by

* entering the string "quit" when prompted for a message. Note that the first

* character of any string sent over the connection must be 0 or 1; this

* character is interpreted as a command.

*/

public class CLChatServer {

/**

* Port to listen on, if none is specified on the command line.

*/

static final int DEFAULT PORT = 1728;

/**

* Handshake string. Each end of the connection sends this string to the

* other just after the connection is opened. This is done to confirm that

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatServer.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 578

* the program on the other side of the connection is a CLChat program.

*/

static final String HANDSHAKE = "CLChat";

/**

* This character is prepended to every message that is sent.

*/

static final char MESSAGE = ’0’;

/**

* This character is sent to the connected program when the user quits.

*/

static final char CLOSE = ’1’;

public static void main(String[] args) {

int port; // The port on which the server listens.

ServerSocket listener; // Listens for a connection request.

Socket connection; // For communication with the client.

BufferedReader incoming; // Stream for receiving data from client.

PrintWriter outgoing; // Stream for sending data to client.

String messageOut; // A message to be sent to the client.

String messageIn; // A message received from the client.

Scanner userInput; // A wrapper for System.in, for reading

// lines of input from the user.

/* First, get the port number from the command line,

or use the default port if none is specified. */

if (args.length == 0)

port = DEFAULT PORT;

else {

try {

port= Integer.parseInt(args[0]);

if (port < 0 || port > 65535)

throw new NumberFormatException();

}

catch (NumberFormatException e) {

System.out.println("Illegal port number, " + args[0]);

return;

}

}

/* Wait for a connection request. When it arrives, close

down the listener. Create streams for communication

and exchange the handshake. */

try {

listener = new ServerSocket(port);

System.out.println("Listening on port " + listener.getLocalPort());

connection = listener.accept();

listener.close();

incoming = new BufferedReader(

new InputStreamReader(connection.getInputStream()));

outgoing = new PrintWriter(connection.getOutputStream());

CHAPTER 11. STREAMS, FILES, AND NETWORKING 579

outgoing.println(HANDSHAKE); // Send handshake to client.

outgoing.flush();

messageIn = incoming.readLine(); // Receive handshake from client.

if (! HANDSHAKE.equals(messageIn)) {

throw new Exception("Connected program is not a CLChat!");

}

System.out.println("Connected. Waiting for the first message.");

}

catch (Exception e) {

System.out.println("An error occurred while opening connection.");

System.out.println(e.toString());

return;

}

/* Exchange messages with the other end of the connection until one side

or the other closes the connection. This server program waits for

the first message from the client. After that, messages alternate

strictly back and forth. */

try {

userInput = new Scanner(System.in);

System.out.println("NOTE: Enter ’quit’ to end the program.\n");

while (true) {

System.out.println("WAITING...");

messageIn = incoming.readLine();

if (messageIn.length() > 0) {

// The first character of the message is a command. If

// the command is CLOSE, then the connection is closed.

// Otherwise, remove the command character from the

// message and proceed.

if (messageIn.charAt(0) == CLOSE) {

System.out.println("Connection closed at other end.");

connection.close();

break;

}

messageIn = messageIn.substring(1);

}

System.out.println("RECEIVED: " + messageIn);

System.out.print("SEND: ");

messageOut = userInput.nextLine();

if (messageOut.equalsIgnoreCase("quit")) {

// User wants to quit. Inform the other side

// of the connection, then close the connection.

outgoing.println(CLOSE);

outgoing.flush(); // Make sure the data is sent!

connection.close();

System.out.println("Connection closed.");

break;

}

outgoing.println(MESSAGE + messageOut);

outgoing.flush(); // Make sure the data is sent!

if (outgoing.checkError()) {

throw new IOException("Error occurred while transmitting message.");

}

CHAPTER 11. STREAMS, FILES, AND NETWORKING 580

}

}

catch (Exception e) {

System.out.println("Sorry, an error has occurred. Connection lost.");

System.out.println("Error: " + e);

System.exit(1);

}

} // end main()

} //end class CLChatServer

This program is a little more robust than DateServer. For one thing, it uses a handshake to
make sure that a client who is trying to connect is really a CLChatClient program. A handshake
is simply information sent between a client and a server as part of setting up a connection,
before any actual data is sent. In this case, each side of the connection sends a string to
the other side to identify itself. The handshake is part of the protocol that I made up for
communication between CLChatClient and CLChatServer. A protocol is a detailed specification
of what data and messages can be exchanged over a connection, how they must be represented,
and what order they can be sent in. When you design a client/server application, the design
of the protocol is an important consideration. Another aspect of the CLChat protocol is that
after the handshake, every line of text that is sent over the connection begins with a character
that acts as a command. If the character is 0, the rest of the line is a message from one user to
the other. If the character is 1, the line indicates that a user has entered the “quit” command,
and the connection is to be shut down.

Remember that if you want to try out this program on a single computer, you can use
two command-line windows. In one, give the command “java CLChatServer” to start the
server. Then, in the other, use the command “java CLChatClient localhost” to connect to
the server that is running on the same machine. Note that if you run CLChatClient without
specifying a computer on the command line, then you will be asked to type in the name or IP
address of the server computer.

11.5 A Brief Introduction to XML

When data is saved to a file or transmitted over a network, it must be represented in some
way that will allow the same data to be rebuilt later, when the file is read or the transmission
is received. We have seen that there are good reasons to prefer textual, character-based rep-
resentations in many cases, but there are many ways to represent a given collection of data as
text. In this section, we’ll take a brief look at one type of character-based data representation
that has become increasingly common.

XML (eXtensible Markup Language) is a syntax for creating data representation languages.
There are two aspects or levels of XML. On the first level, XML specifies a strict but relatively
simple syntax. Any sequence of characters that follows that syntax is a well-formed XML
document. On the second level, XML provides a way of placing further restrictions on what
can appear in a document. This is done by associating a DTD (Document Type Definition)
with an XML document. A DTD is essentially a list of things that are allowed to appear in the
XML document. A well-formed XML document that has an associated DTD and that follows
the rules of the DTD is said to be a valid XML document. The idea is that XML is a general

CHAPTER 11. STREAMS, FILES, AND NETWORKING 581

format for data representation, and a DTD specifies how to use XML to represent a particular
kind of data. (There are also alternatives to DTDs, such as XML schemas, for defining valid
XLM documents, but let’s ignore them here.)

There is nothing magical about XML. It’s certainly not perfect. It’s a very verbose language,
and some people think it’s ugly. On the other hand it’s very flexible. It can be used to represent
almost any type of data. It was built from the start to support all languages and alphabets.
Most important, it has become an accepted standard. There is support in just about any
programming language for processing XML documents. There are standard DTDs for describing
many different kinds of data. There are many ways to design a data representation language,
but XML is one that has happened to come into widespread use. In fact, it has found its way
into almost every corner of information technology. For example: There are XML languages for
representing mathematical expressions (MathML), musical notation (MusicXML), molecules
and chemical reactions (CML), vector graphics (SVG), and many other kinds of information.
XML is used by OpenOffice and recent versions of Microsoft Office in the document format
for office applications such as word processing, spreadsheets, and presentations. XML site
syndication languages (RSS, ATOM) make it possible for web sites, newspapers, and blogs to
make a list of recent headlines available in a standard format that can be used by other web
sites and by web browsers; the same format is used to publish podcasts. And XML is a common
format for the electronic exchange of business information.

My purpose here is not to tell you everything there is to know about XML. I will just
explain a few ways in which it can be used in your own programs. In particular, I will not
say anything further about DTDs and valid XML. For many purposes, it is sufficient to use
well-formed XML documents with no associated DTDs.

11.5.1 Basic XML Syntax

If you know HTML, the language for writing web pages, then XML will look familiar. An XML
document looks a lot like an HTML document. HTML is not itself an XML language, since it
does not follow all the strict XML syntax rules, but the basic ideas are similar. Here is a short,
well-formed XML document:

<?xml version="1.0"?>

<simplepaint version="1.0">

<background red=’255’ green=’153’ blue=’51’/>

<curve>

<color red=’0’ green=’0’ blue=’255’/>

<symmetric>false</symmetric>

<point x=’83’ y=’96’/>

<point x=’116’ y=’149’/>

<point x=’159’ y=’215’/>

<point x=’216’ y=’294’/>

<point x=’264’ y=’359’/>

<point x=’309’ y=’418’/>

<point x=’371’ y=’499’/>

<point x=’400’ y=’543’/>

</curve>

<curve>

<color red=’255’ green=’255’ blue=’255’/>

<symmetric>true</symmetric>

<point x=’54’ y=’305’/>

<point x=’79’ y=’289’/>

CHAPTER 11. STREAMS, FILES, AND NETWORKING 582

<point x=’128’ y=’262’/>

<point x=’190’ y=’236’/>

<point x=’253’ y=’209’/>

<point x=’341’ y=’158’/>

</curve>

</simplepaint>

The first line, which is optional, merely identifies this as an XML document. This line can
also specify other information, such as the character encoding that was used to encode the
characters in the document into binary form. If this document had an associated DTD, it
would be specified in a “DOCTYPE” directive on the next line of the file.

Aside from the first line, the document is made up of elements, attributes, and textual
content. An element starts with a tag , such as <curve> and ends with a matching end-tag
such as </curve>. Between the tag and end-tag is the content of the element, which can
consist of text and nested elements. (In the example, the only textual content is the true or
false in the <symmetric> elements.) If an element has no content, then the opening tag and
end-tag can be combined into a single empty tag , such as <point x=’83’ y=’96’/>, with
a “/” before the final “>”. This is an abbreviation for <point x=’83’ y=’96’></point>. A
tag can include attributes such as the x and y in <point x=’83’ y=’96’/> or the version

in <simplepaint version="1.0">. A document can also include a few other things, such as
comments, that I will not discuss here.

The author of a well-formed XML document gets to choose the tag names and attribute
names, and meaningful names can be chosen to descibe the data to a human reader. (For a
valid XML document that uses a DTD, it’s the author of the DTD who gets to choose the tag
names.)

Every well-formed XML document follows a strict syntax. Here are some of the most
important syntax rules: Tag names and attribute names in XML are case sensitive. A name
must begin with a letter and can contain letters, digits and certain other characters. Spaces
and ends-of-line are significant only in textual content. Every tag must either be an empty
tag or have a matching end-tag. By “matching” here, I mean that elements must be properly
nested; if a tag is inside some element, then the matching end-tag must also be inside that
element. A document must have a root element , which contains all the other elements. The
root element in the above example has tag name simplepaint. Every attribute must have
a value, and that value must be enclosed in quotation marks; either single quotes or double
quotes can be used for this. The special characters < and &, if they appear in attribute values
or textual content, must be written as < and &. “<” and “&” are examples
of entities. The entities >, ", and ' are also defined, representing >, double
quote, and single quote. (Additional entities can be defined in a DTD.)

While this description will not enable you to understand everything that you might en-
counter in XML documents, it should allow you to design well-formed XML documents to
represent data structures used in Java programs.

11.5.2 Working With the DOM

The sample XML file shown above was designed to store information about simple drawings
made by the user. The drawings are ones that could be made using the sample program Sim-
plePaint2.java from Subsection 7.3.3. We’ll look at another version of that program that can
save the user’s drawing using an XML format for the data file. The new version is Simple-
PaintWithXML.java The sample XML document shown earlier in this section was produced

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithXML.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 583

by this program. I designed the format of that document to represent all the data needed
to reconstruct a picture in SimplePaint. The document encodes the background color of the
picture and a list of curves. Each <curve> element contains the data from one object of type
CurveData.

It is easy enough to write data in a customized XML format, although we have to be very
careful to follow all the syntax rules. Here is how I write the data for a SimplePaint picture to
a PrintWriter, out. This produces an XML file with the same structure as the example shown
above:

out.println("<?xml version=\"1.0\"?>");

out.println("<simplepaint version=\"1.0\">");

Color bgColor = getBackground();

out.println(" <background red=’" + bgColor.getRed() + "’ green=’" +

bgColor.getGreen() + "’ blue=’" + bgColor.getBlue() + "’/>");

for (CurveData c : curves) {

out.println(" <curve>");

out.println(" <color red=’" + c.color.getRed() + "’ green=’" +

c.color.getGreen() + "’ blue=’" + c.color.getBlue() + "’/>");

out.println(" <symmetric>" + c.symmetric + "</symmetric>");

for (Point pt : c.points)

out.println(" <point x=’" + pt.x + "’ y=’" + pt.y + "’/>");

out.println(" </curve>");

}

out.println("</simplepaint>");

Reading the data back into the program is another matter. To reconstruct the data structure
represented by the XML Document, it is necessary to parse the document and extract the data
from it. This could be difficult to do by hand. Fortunately, Java has a standard API for parsing
and processing XML Documents. (Actually, it has two, but we will only look at one of them.)

A well-formed XML document has a certain structure, consisting of elements containing
attributes, nested elements, and textual content. It’s possible to build a data structure in the
computer’s memory that corresponds to the structure and content of the document. Of course,
there are many ways to do this, but there is one common standard representation known as
the Document Object Model , or DOM. The DOM specifies how to build data structures
to represent XML documents, and it specifies some standard methods for accessing the data
in that structure. The data structure is a kind of tree whose structure mirrors the structure
of the document. The tree is constructed from nodes of various types. There are nodes to
represent elements, attributes, and text. (The tree can also contain several other types of node,
representing aspects of XML that we can ignore here.) Attributes and text can be processed
without directly manipulating the corresponding nodes, so we will be concerned almost entirely
with element nodes.

(The sample program XMLDemo.java lets you experiment with XML and the DOM. It has
a text area where you can enter an XML document. Initially, the input area contains the sample
XML document from this section. When you click a button named “Parse XML Input”, the
program will attempt to read the XML from the input box and build a DOM representation of
that document. If the input is not well-formed XML, an error message is displayed. If it is legal,
the program will traverse the DOM representation and display a list of elements, attributes,
and textual content that it encounters. The program uses a few techniques that I won’t discuss
here.)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/XMLDemo.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 584

In Java, the DOM representation of an XML document file can be created with just two
statements. If selectedFile is a variable of type File that represents the XML file, then

DocumentBuilder docReader

= DocumentBuilderFactory.newInstance().newDocumentBuilder();

xmldoc = docReader.parse(selectedFile);

will open the file, read its contents, and build the DOM representation. The classes Document-
Builder and DocumentBuilderFactory are both defined in the package javax.xml.parsers. The
method docReader.parse() does the actual work. It will throw an exception if it can’t read
the file or if the file does not contain a legal XML document. If it succeeds, then the value
returned by docReader.parse() is an object that represents the entire XML document. (This
is a very complex task! It has been coded once and for all into a method that can be used very
easily in any Java program. We see the benefit of using a standardized syntax.)

The structure of the DOM data structure is defined in the package org.w3c.dom, which
contains several data types that represent an XML document as a whole and the individual
nodes in a document. The “org.w3c” in the name refers to the World Wide Web Consortium,
W3C, which is the standards organization for the Web. DOM, like XML, is a general standard,
not just a Java standard. The data types that we need here are Document, Node, Element, and
NodeList. (They are defined as interfaces rather than classes, but that fact is not relevant
here.) We can use methods that are defined in these data types to access the data in the DOM
representation of an XML document.

An object of type Document represents an entire XML document. The return value of
docReader.parse()—xmldoc in the above example—is of type Document. We will only need
one method from this class: If xmldoc is of type Document, then

xmldoc.getDocumentElement()

returns a value of type Element that represents the root element of the document. (Recall that
this is the top-level element that contains all the other elements.) In the sample XML document
from earlier in this section, the root element consists of the tag <simplepaint version="1.0">,
the end-tag </simplepaint>, and everything in between. The elements that are nested inside
the root element are represented by their own nodes, which are said to be children of the
root node. An object of type Element contains several useful methods. If element is of type
Element, then we have:

• element.getTagName() — returns a String containing the name that is used in the ele-
ment’s tag. For example, the name of a <curve> element is the string “curve”.

• element.getAttribute(attrName) — if attrName is the name of an attribute in the
element, then this method returns the value of that attribute. For the element,
<point x="83" y="42"/>, element.getAttribute("x") would return the string “83”.
Note that the return value is always a String, even if the attribute is supposed to represent
a numerical value. If the element has no attribute with the specified name, then the return
value is an empty string.

• element.getTextContent() — returns a String containing all the textual content that
is contained in the element. Note that this includes text that is contained inside other
elements that are nested inside the element.

• element.getChildNodes() — returns a value of type NodeList that contains all the Nodes
that are children of the element. The list includes nodes representing other elements and
textual content that are directly nested in the element (as well as some other types of node

http://www.w3c.org

CHAPTER 11. STREAMS, FILES, AND NETWORKING 585

that I don’t care about here). The getChildNodes() method makes it possible to traverse
the entire DOM data structure by starting with the root element, looking at children of
the root element, children of the children, and so on. (There is a similar method that
returns the attributes of the element, but I won’t be using it here.)

• element.getElementsByTagName(tagName) — returns a NodeList that contains all the
nodes representing all elements that are nested inside element and which have the given
tag name. Note that this includes elements that are nested to any level, not just elements
that are directly contained inside element. The getElementsByTagName() method allows
you to reach into the document and pull out specific data that you are interested in.

An object of type NodeList represents a list of Nodes. Unfortunately, it does not use the
API defined for lists in the Java Collection Framework. Instead, a value, nodeList, of type
NodeList has two methods: nodeList.getLength() returns the number of nodes in the list,
and nodeList.item(i) returns the node at position i, where the positions are numbered 0,
1, . . . , nodeList.getLength() - 1. Note that the return value of nodeList.get() is of type
Node, and it might have to be type-cast to a more specific node type before it is used.

Knowing just this much, you can do the most common types of processing of DOM rep-
resentations. Let’s look at a few code fragments. Suppose that in the course of processing a
document you come across an Element node that represents the element

<background red=’255’ green=’153’ blue=’51’/>

This element might be encountered either while traversing the document with getChildNodes()

or in the result of a call to getElementsByTagName("background"). Our goal is to reconstruct
the data structure represented by the document, and this element represents part of that data.
In this case, the element represents a color, and the red, green, and blue components are given
by the attributes of the element. If element is a variable that refers to the node, the color can
be obtained by saying:

int r = Integer.parseInt(element.getAttribute("red"));

int g = Integer.parseInt(element.getAttribute("green"));

int b = Integer.parseInt(element.getAttribute("blue"));

Color bgColor = new Color(r,g,b);

Suppose now that element refers to the node that represents the element

<symmetric>true</symmetric>

In this case, the element represents the value of a boolean variable, and the value is encoded
in the textual content of the element. We can recover the value from the element with:

String bool = element.getTextContent();

boolean symmetric;

if (bool.equals("true"))

symmetric = true;

else

symmetric = false;

Next, consider an example that uses a NodeList. Suppose we encounter an element that repre-
sents a list of Points:

<pointlist>

<point x=’17’ y=’42’/>

<point x=’23’ y=’8’/>

<point x=’109’ y=’342’/>

CHAPTER 11. STREAMS, FILES, AND NETWORKING 586

<point x=’18’ y=’270’/>

</pointlist>

Suppose that element refers to the node that represents the <pointlist> element. Our goal
is to build the list of type ArrayList<Point> that is represented by the element. We can do
this by traversing the NodeList that contains the child nodes of element:

ArrayList<Point> points = new ArrayList<Point>();

NodeList children = element.getChildNodes();

for (int i = 0; i < children.getLength(); i++) {

Node child = children.item(i); // One of the child nodes of element.

if (child instanceof Element) {

Element pointElement = (Element)child; // One of the <point> elements.

int x = Integer.parseInt(pointElement.getAttribute("x"));

int y = Integer.parseInt(pointElement.getAttribute("y"));

Point pt = new Point(x,y); // Create the Point represented by pointElement.

points.add(pt); // Add the point to the list of points.

}

}

All the nested <point> elements are children of the <pointlist> element. The if statement
in this code fragment is necessary because an element can have other children in addition to its
nested elements. In this example, we only want to process the children that are elements.

All these techniques can be employed to write the file input method for the sample program
SimplePaintWithXML.java. When building the data structure represented by an XML file, my
approach is to start with a default data structure and then to modify and add to it as I traverse
the DOM representation of the file. It’s not a trivial process, but I hope that you can follow it:

Color newBackground = Color.WHITE;

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

Element rootElement = xmldoc.getDocumentElement();

if (! rootElement.getNodeName().equals("simplepaint"))

throw new Exception("File is not a SimplePaint file.");

String version = rootElement.getAttribute("version");

try {

double versionNumber = Double.parseDouble(version);

if (versionNumber > 1.0)

throw new Exception("File requires a newer version of SimplePaint.");

}

catch (NumberFormatException e) {

}

NodeList nodes = rootElement.getChildNodes();

for (int i = 0; i < nodes.getLength(); i++) {

if (nodes.item(i) instanceof Element) {

Element element = (Element)nodes.item(i);

if (element.getTagName().equals("background")) { // Read background color.

int r = Integer.parseInt(element.getAttribute("red"));

int g = Integer.parseInt(element.getAttribute("green"));

int b = Integer.parseInt(element.getAttribute("blue"));

newBackground = new Color(r,g,b);

}

else if (element.getTagName().equals("curve")) { // Read data for a curve.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithXML.java

CHAPTER 11. STREAMS, FILES, AND NETWORKING 587

CurveData curve = new CurveData();

curve.color = Color.BLACK;

curve.points = new ArrayList<Point>();

newCurves.add(curve); // Add this curve to the new list of curves.

NodeList curveNodes = element.getChildNodes();

for (int j = 0; j < curveNodes.getLength(); j++) {

if (curveNodes.item(j) instanceof Element) {

Element curveElement = (Element)curveNodes.item(j);

if (curveElement.getTagName().equals("color")) {

int r = Integer.parseInt(curveElement.getAttribute("red"));

int g = Integer.parseInt(curveElement.getAttribute("green"));

int b = Integer.parseInt(curveElement.getAttribute("blue"));

curve.color = new Color(r,g,b);

}

else if (curveElement.getTagName().equals("point")) {

int x = Integer.parseInt(curveElement.getAttribute("x"));

int y = Integer.parseInt(curveElement.getAttribute("y"));

curve.points.add(new Point(x,y));

}

else if (curveElement.getTagName().equals("symmetric")) {

String content = curveElement.getTextContent();

if (content.equals("true"))

curve.symmetric = true;

}

}

}

}

}

}

curves = newCurves; // Change picture in window to show the data from file.

setBackground(newBackground);

repaint();

You can find the complete source code in SimplePaintWithXML.java.

∗ ∗ ∗

XML has developed into an extremely important technology, and some applications of it are
very complex. But there is a core of simple ideas that can be easily applied in Java. Knowing
just the basics, you can make good use of XML in your own Java programs.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithXML.java

Exercises 588

Exercises for Chapter 11

1. The sample program DirectoryList.java, given as an example in Subsection 11.2.2, will (solution)

print a list of files in a directory specified by the user. But some of the files in that
directory might themselves be directories. And the subdirectories can themselves contain
directories. And so on. Write a modified version of DirectoryList that will list all the
files in a directory and all its subdirectories, to any level of nesting. You will need a
recursive subroutine to do the listing. The subroutine should have a parameter of type
File. You will need the constructor from the File class that has the form

public File(File dir, String fileName)

// Constructs the File object representing a file

// named fileName in the directory specified by dir.

2. Write a program that will count the number of lines in each file that is specified on the (solution)

command line. Assume that the files are text files. Note that multiple files can be specified,
as in:

java LineCounts file1.txt file2.txt file3.txt

Write each file name, along with the number of lines in that file, to standard output. If an
error occurs while trying to read from one of the files, you should print an error message
for that file, but you should still process all the remaining files. Do not use TextIO to
process the files; use a Scanner, a BufferedReader, or a TextReader to process each file.

3. For this exercise, you will write a network server program. The program is a simple file (solution)

server that makes a collection of files available for transmission to clients. When the server
starts up, it needs to know the name of the directory that contains the collection of files.
This information can be provided as a command-line argument. You can assume that the
directory contains only regular files (that is, it does not contain any sub-directories). You
can also assume that all the files are text files.

When a client connects to the server, the server first reads a one-line command from
the client. The command can be the string “INDEX”. In this case, the server responds by
sending a list of names of all the files that are available on the server. Or the command can
be of the form “GET <filename>”, where <filename> is a file name. The server checks
whether the requested file actually exists. If so, it first sends the word “OK” as a message
to the client. Then it sends the contents of the file and closes the connection. Otherwise,
it sends a line beginning with the word “ERROR” to the client and closes the connection.
(The error response can include an error message on the rest of the line.)

Write a subroutine to handle each request. See the DirectoryList example in Subsec-
tion 11.2.2 for help with the problem of getting the list of files in the directory.

4. Write a client program for the server from Exercise 11.3. Design a user interface that will (solution)

let the user do at least two things: (1) Get a list of files that are available on the server
and display the list on standard output; and (2) Get a copy of a specified file from the
server and save it to a local file (on the computer where the client is running).

5. The sample program PhoneDirectoryFileDemo.java, from Subsection 11.3.2, stores (solution)

name/number pairs for a simple phone book in a text file in the user’s home directory.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DirectoryList.java
http://math.hws.edu/eck/cs124/javanotes7/c11/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c11/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c11/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DirectoryList.java
http://math.hws.edu/eck/cs124/javanotes7/c11/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/eck/cs124/javanotes7/c11/ex5-ans.html

Exercises 589

Modify that program so that it uses an XML format for the data. The only significant
changes that you will have to make are to the parts of the program that read and write
the data file. Use the DOM to read the data, as discussed in Subsection 11.5.2. You can
use the XML format illustrated in the following sample phone directory file:

<?xml version="1.0"?>

<phone directory>

<entry name=’barney’ number=’890-1203’/>

<entry name=’fred’ number=’555-9923’/>

</phone directory>

(This is just a short exercise in basic XML processing; as before, the program in this
exercise is not meant to be a useful phone directory program.)

6. The sample program Checkers.java from Subsection 7.5.3 lets two players play checkers. (solution)

It would be nice if, in the middle of a game, the state of the game could be saved to a file.
Later, the file could be read back into the file to restore the game and allow the players to
continue. Add the ability to save and load files to the checkers program. Design a simple
text-based format for the files. Here is a picture of my solution to this exercise, just after
a file has been loaded into the program:

It’s a little tricky to completely restore the state of a game. The program has a
variable board of type CheckersData that stores the current contents of the board, and it
has a variable currentPlayer of type int that indicates whether Red or Black is currently
moving. This data must be stored in the file when a file is saved. When a file is read into the
program, you should read the data into two local variables newBoard of type CheckersData
and newCurrentPlayer of type int. Once you have successfully read all the data from
the file, you can use the following code to set up the program state correctly. This code
assumes that you have introduced two new variables saveButton and loadButton of type
JButton to represent the “Save Game” and “Load Game” buttons:

board = newBoard; // Set up game with data read from file.

currentPlayer = newCurrentPlayer;

legalMoves = board.getLegalMoves(currentPlayer);

selectedRow = -1;

gameInProgress = true;

newGameButton.setEnabled(false);

loadButton.setEnabled(false);

saveButton.setEnabled(true);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Checkers.java
http://math.hws.edu/eck/cs124/javanotes7/c11/ex6-ans.html

Exercises 590

resignButton.setEnabled(true);

if (currentPlayer == CheckersData.RED)

message.setText("Game loaded -- it’s RED’s move.");

else

message.setText("Game loaded -- it’s BLACK’s move.");

repaint();

(Note, by the way, that in my solution, I use a TextReader to read the data from the
file. TextReader is a non-standard class introduced in Subsection 11.1.4 and defined in the
file TextReader.java. How to read the data in a file depends, of course, on the format that
you have chosen for the data.)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TextReader.java

Quiz 591

Quiz on Chapter 11
(answers)

1. In Java, input/output is done using streams. Streams are an abstraction. Explain what
this means and why it is important.

2. Java has two types of streams: character streams and byte streams. Why? What is the
difference between the two types of streams?

3. What is a file? Why are files necessary?

4. What is the point of the following statement?

out = new PrintWriter(new FileWriter("data.dat"));

Why would you need a statement that involves two different stream classes, PrintWriter
and FileWriter?

5. The package java.io includes a class named URL. What does an object of type URL
represent, and how is it used?

6. What is the purpose of the JFileChooser class?

7. Explain what is meant by the client / server model of network communication.

8. What is a socket?

9. What is a ServerSocket and how is it used?

10. What is meant by an element in an XML document?

11. What is it about XML that makes it suitable for representing almost any type of data?

12. Write a complete program that will display the first ten lines from a text file. The lines
should be written to standard output, System.out. The file name is given as the command-
line argument args[0]. You can assume that the file contains at least ten lines. Don’t
bother to make the program robust. Do not use TextIO to process the file; read from the
file using methods covered in this chapter.

http://math.hws.edu/eck/cs124/javanotes7/c11/quiz_answers.html

Chapter 12

Threads and Multiprocessing

In the classic programming model, there is a single central processing unit that reads
instructions from memory and carries them out, one after the other. The purpose of a program
is to provide the list of instructions for the processor to execute. This is the only type of
programming that we have considered so far.

However, this model of programming has limitations. Modern computers have multiple
processors, making it possible for them to perform several tasks at the same time. To use the
full potential of all those processors, you will need to write programs that can do parallel
processing . For Java programmers, that means learning about threads. A single thread is
similar to the programs that you have been writing up until now, but more than one thread
can be running at the same time, “in parallel.” What makes things more interesting—and
more difficult—than single-threaded programming is the fact that the threads in a parallel
program are rarely completely independent of one another. They usually need to cooperate
and communicate. Learning to manage and control cooperation among threads is the main
hurdle that you will face in this chapter.

There are several reasons to use parallel programming. One is simply to do computations
more quickly by setting several processors to work on them simultaneously. Just as important,
however, is to use threads to deal with “blocking” operations, where a process can’t proceed
until some event occurs. In the previous chapter, for example, we saw how programs can block
while waiting for data to arrive over a network connection. Threads make it possible for one
part of a program to continue to do useful work even while another part is blocked, waiting for
some event to occur. In this context, threads are a vital programming tool even for a computer
that has only a single processing unit.

12.1 Introduction to Threads

Like people, computers can multitask . That is, they can be working on several different
tasks at the same time. A computer that has just a single central processing unit can’t literally
do two things at the same time, any more than a person can, but it can still switch its attention
back and forth among several tasks. Furthermore, it is increasingly common for computers to
have more than one processing unit, and such computers can literally work on several tasks
simultaneously. It is likely that from now on, most of the increase in computing power will
come from adding additional processors to computers rather than from increasing the speed of
individual processors. To use the full power of these multiprocessing computers, a programmer
must do parallel programming , which means writing a program as a set of several tasks that

593

CHAPTER 12. THREADS AND MULTIPROCESSING 594

can be executed simultaneously. Even on a single-processor computer, parallel programming
techniques can be useful, since some problems can be tackled most naturally by breaking the
solution into a set of simultaneous tasks that cooperate to solve the problem.

In Java, a single task is called a thread . The term “thread” refers to a “thread of control” or
“thread of execution,” meaning a sequence of instructions that are executed one after another—
the thread extends through time, connecting each instruction to the next. In a multithreaded
program, there can be many threads of control, weaving through time in parallel and forming
the complete fabric of the program. (Ok, enough with the metaphor, already!) Every Java
program has at least one thread; when the Java virtual machine runs your program, it creates a
thread that is responsible for executing the main routine of the program. This main thread can
in turn create other threads that can continue even after the main thread has terminated. In a
GUI program, there is at least one additional thread, which is responsible for handling events
and drawing components on the screen. This GUI thread is created when the first window is
opened. So in fact, you have already done parallel programming! When a main routine opens a
window, both the main thread and the GUI thread can continue to run in parallel. Of course,
parallel programming can be used in much more interesting ways.

Unfortunately, parallel programming is even more difficult than ordinary, single-threaded
programming. When several threads are working together on a problem, a whole new category
of errors is possible. This just means that techniques for writing correct and robust programs are
even more important for parallel programming than they are for normal programming. On the
other hand, fortunately, Java has a nice thread API that makes basic uses of threads reasonably
easy. It also has a variety of standard classes to help with some of the more tricky parts or to
hide them entirely. It won’t be until midway through Section 12.3 that you’ll learn about the
low-level techniques that are necessary to handle the trickiest parts of parallel programming.
In fact, a programmer can do a lot with threads without ever learning about the low-level stuff.

12.1.1 Creating and Running Threads

In Java, a thread is represented by an object belonging to the class java.lang.Thread (or to
a subclass of this class). The purpose of a Thread object is to execute a single method and to
execute it just once. This method represents the task to be carried out by the thread. The
method is executed in its own thread of control, which can run in parallel with other threads.
When the execution of the thread’s method is finished, either because the method terminates
normally or because of an uncaught exception, the thread stops running. Once this happens,
there is no way to restart the thread or to use the same Thread object to start another thread.

There are two ways to program a thread. One is to create a subclass of Thread and to define
the method public void run() in the subclass. This run() method defines the task that will
be performed by the thread; that is, when the thread is started, it is the run() method that
will be executed in the thread. For example, here is a simple, and rather useless, class that
defines a thread that does nothing but print a message on standard output:

public class NamedThread extends Thread {

private String name; // The name of this thread.

public NamedThread(String name) { // Constructor gives name to thread.

this.name = name;

}

public void run() { // The run method prints a message to standard output.

System.out.println("Greetings from thread ’" + name + "’!");

}

CHAPTER 12. THREADS AND MULTIPROCESSING 595

}

To use a NamedThread, you must of course create an object belonging to this class. For
example,

NamedThread greetings = new NamedThread("Fred");

However, creating the object does not automatically start the thread running or cause its run()
method to be executed. To do that, you must call the start() method in the thread object.
For the example, this would be done with the statement

greetings.start();

The purpose of the start() method is to create the new thread of control that will execute the
Thread object’s run() method. The new thread runs in parallel with the thread in which the
start() method was called, along with any other threads that already existed. The start()

method returns immediately after starting the new thread of control, without waiting for
the thread to terminate. This means that the code in the thread’s run() method executes
at the same time as the statements that follow the call to the start() method. Consider this
code segment:

NamedThread greetings = new NamedThread("Fred");

greetings.start();

System.out.println("Thread has been started");

After greetings.start() is executed, there are two threads. One of them will print “Thread
has been started” while the other one wants to print “Greetings from thread ’Fred’ !”. It is
important to note that these messages can be printed in either order. The two threads run
simultaneously and will compete for access to standard output, so that they can print their
messages. Whichever thread happens to be the first to get access will be the first to print its
message. In a normal, single-threaded program, things happen in a definite, predictable order
from beginning to end. In a multi-threaded program, there is a fundamental indeterminacy.
You can’t be sure what order things will happen in. This indeterminacy is what makes parallel
programming so difficult!

Note that calling greetings.start() is very different from calling greetings.run().
Calling greetings.run() would execute the run() method in the same thread, rather than
creating a new thread. This means that all the work of the run() method will be done before
the computer moves on to the statements that follow the call to greetings.run(). There is
no parallelism and no indeterminacy.

Time
Thread

of

Control

Thread

of

Control

call

subroutine

return

call

subroutine

return

start

thread

start

thread
start

thread

END

END

END

When a thread

starts another thread,

there is a new thread

of control that runs in

parallel with the original

thread of control, and

can even continue after

the original thread

terminates.

When a thread

calls a subroutine,

there is still

only one thread

of control, which

is in the subroutine

for a time until

the subroutine

returns.

CHAPTER 12. THREADS AND MULTIPROCESSING 596

This discussion has assumed that the computer on which the program is running has more
than one processing unit, so that it is possible for the original thread and the newly created
thread to literally be executed at the same time. However, it’s possible to create multiple
threads even on a computer that has only one processor (and, more generally, it is possible to
create many more threads than there are processors, on any computer). In that case, the two
threads will compete for time on the processor. However, there is still indeterminacy because
the processor can switch from one thread to another at unpredictable times. In fact, from
the point of view of the programmer, there is no difference between programming for a single-
processor computer and programming for a multi-processor computer, and we will mostly ignore
the distinction from now on.

∗ ∗ ∗

I mentioned that there are two ways to program a thread. The first way was to de-
fine a subclass of Thread. The second is to define a class that implements the interface
java.lang.Runnable. The Runnable interface defines a single method, public void run().
Given a Runnable, it is possible to create a Thread whose task is to execute the Runnable’s
run() method.

The Thread class has a constructor that takes a Runnable as its parameter. When an object
that implements the Runnable interface is passed to that constructor, the run() method of the
thread will simply call the run() method from the Runnable, and calling the thread’s start()
method will create a new thread of control in which the Runnable’s run() method is executed.
For example, as an alternative to the NamedThread class, we could define the class:

public class NamedRunnable implements Runnable {

private String name; // The name of this Runnable.

public NamedRunnable(String name) { // Constructor gives name to object.

this.name = name;

}

public void run() { // The run method prints a message to standard output.

System.out.println("Greetings from runnable ’" + name +"’!");

}

}

To use this version of the class, we would create a NamedRunnable object and use that object
to create an object of type Thread :

NamedRunnable greetings = new NamedRunnable("Fred");

Thread greetingsThread = new Thread(greetings);

greetingsThread.start();

The advantage of doing things this way is that any object can implement the Runnable interface
and can contain a run() method, which can then be executed in a separate thread. That run()
method has access to everything in the class, including private variables and methods. The
disadvantage is that this way of doing things is not very object-oriented: It violates the principle
that each object should have a single, clearly-defined responsibility. Instead of making some
random object Runnable just so that you can use it to make a thread, you can consider defining
the thread using a nested class that is a subclass of the Thread class. (See Section 5.8.)

Finally, I’ll note that it is sometimes convenient to define a thread using an anonymous
inner class (Subsection 5.8.3). For example:

Thread greetingsFromFred = new Thread() {

public void run() {

System.out.println("Greetings from Fred!");

CHAPTER 12. THREADS AND MULTIPROCESSING 597

}

};

greetingsFromFred.start();

∗ ∗ ∗

To help you understand how multiple threads are executed in parallel, we consider the
sample program ThreadTest1.java. This program creates several threads. Each thread performs
exactly the same task. The task is to count the number of integers less than 5000000 that are
prime. (The particular task that is done is not important for our purposes here. This is a demo
program; it would be silly in a real program to have multiple threads that do the same thing.)
This computation should take no more than a few seconds on a modern computer. The threads
that perform this task are defined by the following static nested class:

/**

* When a thread belonging to this class is run it will count the

* number of primes between 2 and 5000000. It will print the result

* to standard output, along with its ID number and the elapsed

* time between the start and the end of the computation.

*/

private static class CountPrimesThread extends Thread {

int id; // An id number for this thread; specified in the constructor.

public CountPrimesThread(int id) {

this.id = id;

}

public void run() {

long startTime = System.currentTimeMillis();

int count = countPrimes(2,5000000); // Counts the primes.

long elapsedTime = System.currentTimeMillis() - startTime;

System.out.println("Thread " + id + " counted " +

count + " primes in " + (elapsedTime/1000.0) + " seconds.");

}

}

The main program asks the user how many threads to run, and then creates and starts the
specified number of threads:

public static void main(String[] args) {

int numberOfThreads = 0;

while (numberOfThreads < 1 || numberOfThreads > 25) {

System.out.print("How many threads do you want to use (1 to 25) ? ");

numberOfThreads = TextIO.getlnInt();

if (numberOfThreads < 1 || numberOfThreads > 25)

System.out.println("Please enter a number between 1 and 25 !");

}

System.out.println("\nCreating " + numberOfThreads

+ " prime-counting threads...");

CountPrimesThread[] worker = new CountPrimesThread[numberOfThreads];

for (int i = 0; i < numberOfThreads; i++)

worker[i] = new CountPrimesThread(i);

for (int i = 0; i < numberOfThreads; i++)

worker[i].start();

System.out.println("Threads have been created and started.");

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/ThreadTest1.java

CHAPTER 12. THREADS AND MULTIPROCESSING 598

It would be a good idea for you to compile and run the program.
When I ran the program with one thread on my computer, it took 6.251 seconds for the

computer to do the computation. When I ran it using eight threads, the output was:

Creating 8 prime-counting threads...

Threads have been created and started.

Thread 4 counted 348513 primes in 12.264 seconds.

Thread 2 counted 348513 primes in 12.569 seconds.

Thread 3 counted 348513 primes in 12.567 seconds.

Thread 0 counted 348513 primes in 12.569 seconds.

Thread 7 counted 348513 primes in 12.562 seconds.

Thread 5 counted 348513 primes in 12.565 seconds.

Thread 1 counted 348513 primes in 12.569 seconds.

Thread 6 counted 348513 primes in 12.563 seconds.

The second line was printed immediately after the first. At this point, the main program
has ended but the eight threads continue to run. After a pause of about 12.5 seconds, all eight
threads completed at about the same time. The order in which the threads complete is not the
same as the order in which they were started, and the order is indeterminate. That is, if the
program is run again, the order in which the threads complete will probably be different.

On this computer, eight threads took about twice as long as one thread. This is because
the computer has four processors. With eight threads running on four processors—one-half
processor per thread—each thread was only actively being executed for about half of the time,
so it took twice as long to finish its task. On a single-processor computer, eight threads would
take about eight times as long as one thread. On a computer with eight or more processors,
eight threads might take no more time than a single thread. Because of overhead and other
reasons, the actual speedup will probably be a little smaller than this analysis indicates, but
on a multiprocessor machine, you should see a definite speedup. What happens when you run
the program on your own computer? How many processors do you have?

Whenever there are more threads to be run than there are processors to run them, the
computer divides its attention among all the runnable threads by switching rapidly from one
thread to another. That is, each processor runs one thread for a while then switches to another
thread and runs that one for a while, and so on. Typically, these “context switches” occur
about 100 times or more per second. The result is that the computer makes progress on all
the tasks, and it looks to the user as if all the tasks are being executed simultaneously. This
is why in the sample program, in which each thread has the same amount of work to do, all
the threads complete at about the same time: Over any time period longer than a fraction of
a second, the computer’s time is divided approximately equally among all the threads.

12.1.2 Operations on Threads

Much of Java’s thread API can be found in the Thread class. However, we’ll start with a
thread-related method in Runtime, a class that allows a Java program to get information about
the environment in which it is running. When you do parallel programming in order to spread
the work among several processors, you might want to take into account the number of available
processors. You might, for example, want to create one thread for each processor. In Java, you
can find out the number of processors by calling the function

Runtime.getRuntime().availableProcessors()

CHAPTER 12. THREADS AND MULTIPROCESSING 599

which returns an int giving the number of processors that are available to the Java Virtual
Machine. In some cases, this might be less than the actual number of processors in the computer.

∗ ∗ ∗

A Thread object contains several useful methods for working with threads. Most important
is the start() method, which was discussed above.

Once a thread has been started, it will continue to run until its run() method ends for some
reason. Sometimes, it’s useful for one thread to be able to tell whether another thread has termi-
nated. If thrd is an object of type Thread, then the boolean-valued function thrd.isAlive()

can be used to test whether or not thrd has terminated. A thread is “alive” between the time
it is started and the time when it terminates. After the thread has terminated it is said to be
“dead.” (The rather gruesome metaphor is also used when we refer to “killing” or “aborting”
a thread.) Remember that a thread that has terminated cannot be restarted.

The static method Thread.sleep(milliseconds) causes the thread that executes this
method to “sleep” for the specified number of milliseconds. A sleeping thread is still alive,
but it is not running. While a thread is sleeping, the computer can work on any other runnable
threads (or on other programs). Thread.sleep() can be used to insert a pause in the execution
of a thread. The sleep() method can throw an exception of type InterruptedException, which is
a checked exception that requires mandatory exception handling. In practice, this means that
the sleep() method is usually called inside a try..catch statement that catches the potential
InterruptedException:

try {

Thread.sleep(lengthOfPause);

}

catch (InterruptedException e) {

}

One thread can interrupt another thread to wake it up when it is sleeping or paused for certain
other reasons. A Thread, thrd, can be interrupted by calling the method thrd.interrupt().
Doing so can be a convenient way to send a signal from one thread to another. A thread knows
it has been interrupted when it catches an InterruptedException. Outside any catch handler
for the exception, the thread can check whether it has been interrupted by calling the static
method Thread.interrupted(). This method tells whether the current thread—the thread
that executes the method—has been interrupted. It also has the unusual property of clearing
the interrupted status of the thread, so you only get one chance to check for an interruption.
In your own programs, your threads are not going to be interrupted unless you interrupt them.
So most often, you are not likely to need to do anything in response to an InterruptedException
(except to catch it).

Sometimes, it’s necessary for one thread to wait for another thread to die. This is done with
the join() method from the Thread class. Suppose that thrd is a Thread. Then, if another
thread calls thrd.join(), that other thread will go to sleep until thrd terminates. If thrd is
already dead when thrd.join() is called, then it simply has no effect. The join() method can
throw an InterruptedException, which must be handled as usual. As an example, the following
code starts several threads, waits for them all to terminate, and then outputs the elapsed time:

CountPrimesThread[] worker = new CountPrimesThread[numberOfThreads];

long startTime = System.currentTimeMillis();

for (int i = 0; i < numberOfThreads; i++) {

worker[i] = new CountPrimesThread();

worker[i].start();

CHAPTER 12. THREADS AND MULTIPROCESSING 600

}

for (int i = 0; i < numberOfThreads; i++) {

try {

worker[i].join(); // Wait until worker[i] finishes, if it hasn’t already.

}

catch (InterruptedException e) {

}

}

// At this point, all the worker threads have terminated.

long elapsedTime = System.currentTimeMillis() - startTime;

System.out.println("Total elapsed time: " + (elapsedTime/1000.0) + " seconds");

An observant reader will note that this code assumes that no InterruptedException will occur.
To be absolutely sure that the thread worker[i] has terminated in an environment where
InterruptedExceptions are possible, you would have to do something like:

while (worker[i].isAlive()) {

try {

worker[i].join();

}

catch (InterruptedException e) {

}

}

Another version of the join() method takes an integer parameter that specifies the maxi-
mum number of milliseconds to wait. A call to thrd.join(m) will wait until either thrd has
terminated or until m milliseconds have elapsed. This can be used to allow a thread to wake
up occasionally to perform some task while it is waiting. Here, for example, is a code segment
that will start a thread, thrd, and then will output a period every two seconds as long as thrd
continues to run:

System.out.print("Running the thread ");

thrd.start();

while (thrd.isAlive()) {

try {

thrd.join(2000);

System.out.print(".");

}

catch (InterruptedException e) {

}

}

System.out.println(" Done!");

∗ ∗ ∗

Threads have two properties that are occasionally useful: a daemon status and a priority. A
Thread thrd can be designated as a daemon thread by calling thrd.setDaemon(true). This
must be done before the thread is started, and it can throw an exception of type SecurityExcep-
tion if the calling thread is not allowed to modify thrd’s properties. This has only one effect:
The Java Virtual Machine will exit as soon as there are no non-daemon threads that are still
alive. That is, the fact that a daemon thread is still alive is not enough to keep the Java Virtual
Machine running. A daemon thread might exist, for example, only to provide some service to
other, non-daemon threads. When there are no more non-daemon threads, there will be no
further call for the daemon thread’s services, so the program might as well shut down.

CHAPTER 12. THREADS AND MULTIPROCESSING 601

The priority of a thread is a more important property. Every thread has a priority , specified
as an integer. A thread with a greater priority value will be run in preference to a thread with a
smaller priority. For example, computations that can be done in the background, when no more
important thread has work to do, can be run with a low priority. In the next section, we will see
how this can be useful in GUI programs. If thrd is of type Thread, then thrd.getPriority()

returns the integer that specifies thrd’s priority, and thrd.setPriority(p) can be used to set
its priority to a given integer, p.

Priorities cannot be arbitrary integers, and thrd.setPriority() will throw an IllegalArgu-
mentException if the specified priority is not in the legal range for the thread. The range of legal
priority values can differ from one computer to another. The range of legal values is specified
by the constants Thread.MIN PRIORITY and Thread.MAX PRIORITY, but a given thread might
be further restricted to values less than Thread.MAX PRIORITY. The default priority is given
by Thread.NORM PRIORITY. To set thrd to run with a priority value just below the normal
priority, you can call

thrd.setPriority(Thread.NORM PRIORITY - 1);

Note that thrd.setPriority() can also throw an exception of type SecurityException, if
the thread that calls the method is not allowed to set the priority of thrd.

Finally, I’ll note that the static method Thread.currentThread() returns the current
thread. That is, the return value of this method is the thread that executed the method.
This allows a thread to get a reference to itself, so that it can modify its own proper-
ties. For example, you can determine the priority of the currently running thread by calling
Thread.currentThread().getPriority().

12.1.3 Mutual Exclusion with “synchronized”

It’s pretty easy to program several threads to carry out completely independent tasks. The real
difficulty arises when threads have to interact in some way. One way that threads interact is
by sharing resources. When two threads need access to the same resource, such as a variable or
a window on the screen, some care must be taken that they don’t try to use the same resource
at the same time. Otherwise, the situation could be something like this: Imagine several cooks
sharing the use of just one measuring cup, and imagine that Cook A fills the measuring cup
with milk, only to have Cook B grab the cup before Cook A has a chance to empty the milk
into his bowl. There has to be some way for Cook A to claim exclusive rights to the cup while
he performs the two operations: Add-Milk-To-Cup and Empty-Cup-Into-Bowl.

Something similar happens with threads, even with something as simple as adding one to a
counter. The statement

count = count + 1;

is actually a sequence of three operations:

Step 1. Get the value of count

Step 2. Add 1 to the value.

Step 3. Store the new value in count

Suppose that each of several threads performs these three steps. Remember that it’s possible
for two threads to run at the same time, and even if there is only one processor, it’s possible
for that processor to switch from one thread to another at any point. Suppose that while one
thread is between Step 2 and Step 3, another thread starts executing the same sequence of
steps. Since the first thread has not yet stored the new value in count, the second thread

CHAPTER 12. THREADS AND MULTIPROCESSING 602

reads the old value of count and adds one to that old value. Both threads have computed the
same new value for count, and both threads then go on to store that value back into count

by executing Step 3. After both threads have done so, the value of count has gone up only
by 1 instead of by 2! This type of problem is called a race condition . This occurs when one
thread is in the middle of a multi-step operation, and another thread can change some value or
condition that the first thread is depending upon. (The first thread is “in a race” to complete
all the steps before it is interrupted by another thread.)

Another example of a race condition can occur in an if statement. Consider the following
statement, which is meant to avoid a division-by-zero error:

if (A != 0) {

B = C / A;

}

Suppose that this statement is executed by some thread. If the variable A is shared by one
or more other threads, and if nothing is done to guard against the race condition, then it is
possible that one of those other threads will change the value of A to zero between the time
that the first thread checks the condition A != 0 and the time that it does the division. This
means that the thread can end up dividing by zero, even though it just checked that A was not
zero!

To fix the problem of race conditions, there has to be some way for a thread to get exclusive
access to a shared resource. This is not a trivial thing to implement, but Java provides a high-
level and relatively easy-to-use approach to exclusive access. It’s done with synchronized
methods and with the synchronized statement . These are used to protect shared resources
by making sure that only one thread at a time will try to access the resource. Synchronization in
Java actually provides only mutual exclusion , which means that exclusive access to a resource
is only guaranteed if every thread that needs access to that resource uses synchronization.
Synchronization is like a cook leaving a note that says, “I’m using the measuring cup.” This
will get the cook exclusive access to the cup—but only if all the cooks agree to check the note
before trying to grab the cup.

Because this is a difficult topic, I will start with a simple example. Suppose that we want
to avoid the race condition that occurs when several threads all want to add 1 to a counter. We
can do this by defining a class to represent the counter and by using synchronized methods in
that class. A method is declared to be synchronized by adding the reserved word synchronized

as a modifier to the definition of the method:

public class ThreadSafeCounter {

private int count = 0; // The value of the counter.

synchronized public void increment() {

count = count + 1;

}

synchronized public int getValue() {

return count;

}

}

If tsc is of type ThreadSafeCounter, then any thread can call tsc.increment() to add 1 to
the counter in a completely safe way. The fact that tsc.increment() is synchronized means
that only one thread can be in this method at a time; once a thread starts executing this

CHAPTER 12. THREADS AND MULTIPROCESSING 603

method, it is guaranteed that it will finish executing it without having another thread change
the value of tsc.count in the meantime. There is no possibility of a race condition. Note that
the guarantee depends on the fact that count is a private variable. This forces all access to
tsc.count to occur in the synchronized methods that are provided by the class. If count were
public, it would be possible for a thread to bypass the synchronization by, for example, saying
tsc.count++. This could change the value of count while another thread is in the middle
of tsc.increment(). Remember that synchronization by itself does not guarantee exclusive
access; it only guarantees mutual exclusion among all the threads that are synchronized.

However, the ThreadSafeCounter class does not prevent all possible race conditions that
might arise when using a counter. Consider the if statement:

if (tsc.getValue() == 0) {

doSomething();

}

where doSomething() is some method that requires the value of the counter to be zero. There
is still a race condition here, which occurs if a second thread increments the counter between
the time the first thread tests tsc.getValue() == 0 and the time it executes doSomething().
The first thread needs exclusive access to the counter during the execution of the whole if

statement. (The synchronization in the ThreadSafeCounter class only gives it exclusive access
during the time it is evaluating tsc.getValue().) We can solve the race condition by putting
the if statement in a synchronized statement:

synchronized(tsc) {

if (tsc.getValue() == 0)

doSomething();

}

Note that the synchronized statement takes an object—tsc in this case—as a kind of param-
eter. The syntax of the synchronized statement is:

synchronized(〈object 〉) {

〈statements 〉
}

In Java, mutual exclusion is always associated with an object; we say that the synchronization
is “on” that object. For example, the if statement above is “synchronized on tsc.” A synchro-
nized instance method, such as those in the class ThreadSafeCounter, is synchronized on the
object that contains the instance method. In fact, adding the synchronized modifier to the
definition of an instance method is pretty much equivalent to putting the body of the method
in a synchronized statement of the form synchronized(this) {...}. It is also possible to
have synchronized static methods; a synchronized static method is synchronized on the special
class object that represents the class containing the static method.

The real rule of synchronization in Java is this: Two threads cannot be synchronized
on the same object at the same time; that is, they cannot simultaneously be executing
code segments that are synchronized on that object. If one thread is synchronized on an object,
and a second thread tries to synchronize on the same object, the second thread is forced to
wait until the first thread has finished with the object. This is implemented using something
called a synchronization lock . Every object has a synchronization lock, and that lock can
be “held” by only one thread at a time. To enter a synchronized statement or synchronized
method, a thread must obtain the associated object’s lock. If the lock is available, then the
thread obtains the lock and immediately begins executing the synchronized code. It releases

CHAPTER 12. THREADS AND MULTIPROCESSING 604

the lock after it finishes executing the synchronized code. If Thread A tries to obtain a lock
that is already held by Thread B, then Thread A has to wait until Thread B releases the lock.
In fact, Thread A will go to sleep, and will not be awoken until the lock becomes available.

∗ ∗ ∗

As a simple example of shared resources, we return to the prime-counting problem. In this
case, instead of having every thread perform exactly the same task, we’ll do some real parallel
processing. The program will count the prime numbers in a given range of integers, and it will
do so by dividing the work up among several threads. Each thread will be assigned a part of
the full range of integers, and it will count the primes in its assigned part. At the end of its
computation, the thread has to add its count to the overall total of primes in the entire range.
The variable that represents the total is shared by all the threads, since each thread has to add
a number to the total. If each thread just says

total = total + count;

then there is a (small) chance that two threads will try to do this at the same time and that the
final total will be wrong. To prevent this race condition, access to total has to be synchronized.
My program uses a synchronized method to add the counts to the total. This method is called
once by each thread:

synchronized private static void addToTotal(int x) {

total = total + x;

System.out.println(total + " primes found so far.");

}

The source code for the program can be found in ThreadTest2.java. This program counts
the primes in the range 3000001 to 6000000. (The numbers are rather arbitrary.) The main()

routine in this program creates between 1 and 5 threads and assigns part of the job to each
thread. It waits for all the threads to finish, using the join() method as described above. It
then reports the total number of primes found, along with the elapsed time. Note that join()
is required here, since it doesn’t make sense to report the number of primes until all of the
threads have finished. If you run the program on a multiprocessor computer, it should take less
time for the program to run when you use more than one thread.

∗ ∗ ∗

Synchronization can help to prevent race conditions, but it introduces the possibility of
another type of error, deadlock . A deadlock occurs when a thread waits forever for a resource
that it will never get. In the kitchen, a deadlock might occur if two very simple-minded cooks
both want to measure a cup of milk at the same time. The first cook grabs the measuring cup,
while the second cook grabs the milk. The first cook needs the milk, but can’t find it because
the second cook has it. The second cook needs the measuring cup, but can’t find it because
the first cook has it. Neither cook can continue and nothing more gets done. This is deadlock.
Exactly the same thing can happen in a program, for example if there are two threads (like the
two cooks) both of which need to obtain locks on the same two objects (like the milk and the
measuring cup) before they can proceed. Deadlocks can easily occur, unless great care is taken
to avoid them.

12.1.4 Volatile Variables

Synchronization is only one way of controlling communication among threads. We will cover
several other techniques later in the chapter. For now, we finish this section with one more

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/ThreadTest2.java

CHAPTER 12. THREADS AND MULTIPROCESSING 605

communication technique: volatile variables.
In general, threads communicate by sharing variables and accessing those variables in syn-

chronized methods or synchronized statements. However, synchronization is fairly expensive
computationally, and excessive use of it should be avoided. So in some cases, it can make sense
for threads to refer to shared variables without synchronizing their access to those variables.

However, a subtle problem arises when the value of a shared variable is set in one thread
and used in another. Because of the way that threads are implemented in Java, the second
thread might not see the changed value of the variable immediately. That is, it is possible that
a thread will continue to see the old value of the shared variable for some time after the value
of the variable has been changed by another thread. This is because threads are allowed to
cache shared data. That is, each thread can keep its own local copy of the shared data. When
one thread changes the value of a shared variable, the local copies in the caches of other threads
are not immediately changed, so the other threads can continue to see the old value, at least
briefly.

When a synchronized method or statement is entered, threads are forced to update their
caches to the most current values of the variables in the cache. So, using shared variables in
synchronized code is always safe.

It is possible to use a shared variable safely outside of synchronized code, but in that case,
the variable must be declared to be volatile . The volatile keyword is a modifier that can be
added to a variable declaration, as in

private volatile int count;

If a variable is declared to be volatile, no thread will keep a local copy of that variable in its
cache. Instead, the thread will always use the official, main copy of the variable. This means
that any change that is made to the variable will immediately be visible to all threads. This
makes it safe for threads to refer to volatile shared variables even outside of synchronized
code. Access to volatile variables is less efficient than access to non-volatile variables, but more
efficient than using synchronization. (Remember, though, that synchronization is still the only
way to prevent race conditions.)

When the volatile modifier is applied to an object variable, only the variable itself is
declared to be volatile, not the contents of the object that the variable points to. For this reason,
volatile is used mostly for variables of simple types such as primitive types or immutable types
like String.

A typical example of using volatile variables is to send a signal from one thread to another
that tells the second thread to terminate. The two threads would share a variable

volatile boolean terminate = false;

The run method of the second thread would check the value of terminate frequently, and it
would end when the value of terminate becomes true:

public void run() {

while (terminate == false) {

.

. // Do some work.

.

}

}

This thread will run until some other thread sets the value of terminate to true. Something
like this is really the only clean way for one thread to cause another thread to die.

CHAPTER 12. THREADS AND MULTIPROCESSING 606

(By the way, you might be wondering why threads should use local data caches in the first
place, since it seems to complicate things unnecessarily. Caching is allowed because of the
structure of multiprocessing computers. In many multiprocessing computers, each processor
has some local memory that is directly connected to the processor. A thread’s cache can be
stored in the local memory of the processor on which the thread is running. Access to this local
memory is much faster than access to other memory, so it is more efficient for a thread to use
a local copy of a shared variable rather than some “master copy” that is stored in non-local
memory.)

12.2 Programming with Threads

Threads introduce new complexity into programming, but they are an important tool and
will only become more essential in the future. So, every programmer should know some of the
fundamental design patterns that are used with threads. In this section, we will look at some
basic techniques, with more to come as the chapter progresses.

12.2.1 Threads Versus Timers

One of the most basic uses of threads is to perform some periodic task at set intervals. In
fact, this is so basic that there is a specialized class for performing this task—and you’ve
already worked with it. The Timer class, in package javax.swing, can generate a sequence
of ActionEvents separated by a specified time interval. Timers were introduced in Section 6.4,
where they were used to implement animations. Behind the scenes, a Timer uses a thread. The
thread sleeps most of the time, but it wakes up periodically to generate the events associated
with the timer. Before timers were introduced, threads had to be used directly to implement a
similar functionality.

In a typical use of a timer for animation, each event from the timer causes a new frame of
the animation to be computed and displayed. In the response to the event, it is only necessary
to update some state variables and to repaint the display to reflect the changes. A Timer to do
that every thirty milliseconds might be created like this:

Timer timer = new Timer(30, new ActionListener() {

public void actionPerformed(ActionEvent evt) {

updateForNextFrame();

display.repaint();

}

});

timer.start();

Suppose that we wanted to do the same thing with a thread. The run() method of the
thread would have to execute a loop in which the thread sleeps for 30 milliseconds, then wakes
up to do the updating and repainting. This could be implemented in a nested class as follows
using the method Thread.sleep() that was discussed in Subsection 12.1.2:

private class Animator extends Thread {

public void run() {

while (true) {

try {

Thread.sleep(30);

}

catch (InterruptedException e) {

CHAPTER 12. THREADS AND MULTIPROCESSING 607

}

updateForNextFrame();

display.repaint();

}

}

}

To run the animation, you would create an object belonging to this class and call its start()
method. As it stands, there would be no way to stop the animation once it is started. One way
to make it possible to stop the animation would be to end the loop when a volatile boolean

variable, terminate, becomes true, as discussed in Subsection 12.1.4. Since thread objects can
only be executed once, in order to restart the animation after it has been stopped in this way,
it would be necessary to create a new thread. In the next section, we’ll see some more versatile
techniques for controlling threads.

There is a subtle difference between using threads and using timers for animation. The
thread that is used by a Swing Timer does nothing but generate events. The event-handling
code that is executed in response to those events is actually executed in the Swing event-handling
GUI thread, which also handles repainting of components and responses to user actions. This is
important because the Swing GUI is not thread-safe . That is, it does not use synchronization
to avoid race conditions among threads trying to access GUI components and their state vari-
ables. As long as everything is done in the Swing event thread, there is no problem. A problem
can arise when another thread manipulates components or the variables that are also used in the
GUI thread. In the Animator example given above, this could happen when the thread calls the
updateForNextFrame() method. The variables that are modified in updateForNextFrame()

would also be used by the paintComponent() method that draws the frame. There is a race
condition here: If these two methods are being executed simultaneously, there is a possibility
that paintComponent() will use inconsistent variable values—some appropriate for the new
frame, some for the previous frame.

One solution to this problem would be to declare both paintComponent() and
updateForNextFrame() to be synchronized methods. A better solution in this case is to
use a timer rather than a thread. In practice, race conditions might not be a problem for a
simple animation, even if they are implemented using threads. But it can become a real issue
when threads are used for more complex tasks.

I should note that the repaint() method of a component can be safely called from any
thread, without worrying about synchronization. Recall that repaint() does not actually do
any painting itself. It just tells the system to schedule a paint event. The actual painting will
be done later, in the Swing event-handling thread. I will also note that Java has another timer
class, java.util.Timer, that is appropriate for use in non-GUI programs.

The sample program RandomArtWithThreads.java uses a thread to drive a very simple
animation. You can compare it to RandomArt.java, from Section 6.4, which implemented
the same animation with a timer. In this example, the thread does nothing except to call
repaint(), so there is no need for synchronization.

12.2.2 Recursion in a Thread

Although timers should be used in preference to threads when possible, there are times when
it is reasonable to use a thread even for a straightforward animation. One reason to do so is
when the thread is running a recursive algorithm, and you want to repaint the display many
times over the course of the recursion. (Recursion is covered in Section 9.1.) It’s difficult to

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/RandomArtWithThreads.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomArt.java

CHAPTER 12. THREADS AND MULTIPROCESSING 608

drive a recursive algorithm with a series of events from a timer; it’s much more natural to use
a single recursive method call to do the recursion, and it’s easy to do that in a thread.

As an example, the program QuicksortThreadDemo.java uses an animation to illustrate the
recursive QuickSort algorithm for sorting an array. In this case, the array contains colors, and
the goal is to sort the colors into a standard spectrum from red to violet. In the program, the
user randomizes the array and starts the sorting process by clicking the “Start” button below
the display. The “Start” button changes to a “Finish” button that can be used to abort the
sort before it finishes on its own. (It’s an interesting program to watch, and it might even help
you to understand QuickSort better, so you should try running it.)

In this program, the display’s repaint() method is called every time the algorithm makes a
change to the array. Whenever this is done, the thread sleeps for 100 milliseconds to allow time
for the display to be repainted and for the user to see the change. There is also a longer delay, one
full second, just after the array is randomized, before the sorting starts. Since these delays occur
at several points in the code, QuicksortThreadDemo defines a delay() method that makes the
thread that calls it sleep for a specified period. The delay() method calls display.repaint()
just before sleeping. While the animation thread sleeps, the event-handling thread will have a
chance to run and will have plenty of time to repaint the display. (I didn’t use synchronization
in this example, but it would have been a good idea to do so.)

An interesting question is how to implement the “Finish” button, which should abort the
sort and terminate the thread. Pressing this button causes the value of a volatile boolean

variable, running, to be set to false, as a signal to the thread that it should terminate. The
problem is that this button can be clicked at any time, even when the algorithm is many levels
down in the recursion. Before the thread can terminate, all of those recursive method calls must
return. A nice way to cause that is to throw an exception. QuickSortThreadDemo defines a new
exception class, ThreadTerminationException, for this purpose. The delay() method checks the
value of the signal variable, running. If running is false, the delay() method throws the
exception that will cause the recursive algorithm, and eventually the animation thread itself,
to terminate. Here, then, is the delay() method:

private void delay(int millis) {

if (! running)

throw new ThreadTerminationException();

display.repaint();

try {

Thread.sleep(millis);

}

catch (InterruptedException e) {

}

if (! running) // Check again, in case it changed during the sleep period.

throw new ThreadTerminationException();

}

The ThreadTerminationException is caught in the thread’s run() method:

/**

* This class defines the threads that run the recursive

* QuickSort algorithm. The thread begins by randomizing the

* array, hue. It then calls quickSort() to sort the entire array.

* If quickSort() is aborted by a ThreadTerminationException,

* which would be caused by the user clicking the Finish button,

* then the thread will restore the array to sorted order before

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/QuicksortThreadDemo.java

CHAPTER 12. THREADS AND MULTIPROCESSING 609

* terminating, so that whether or not the quickSort is aborted,

* the array ends up sorted.

*/

private class Runner extends Thread {

public void run() {

try {

for (int i = hue.length-1; i > 0; i--) { // Randomize array.

int r = (int)((i+1)*Math.random());

int temp = hue[r];

hue[r] = hue[i];

hue[i] = temp;

}

delay(1000); // Wait one second before starting the sort.

quickSort(0,hue.length-1); // Sort the whole array, recursively.

}

catch (ThreadTerminationException e) { // User clicked "Finish".

for (int i = 0; i < hue.length; i++)

hue[i] = i; // restore original array values.

}

finally {// Make sure running is false and button label is correct.

running = false;

startButton.setText("Start");

display.repaint();

}

}

}

The program uses a variable, runner, of type Runner to represent the thread that does the
sorting. When the user clicks the “Start” button, the following code is executed to create and
start the thread:

startButton.setText("Finish");

runner = new Runner();

running = true; // Set the signal before starting the thread!

runner.start();

Note that the value of the signal variable running is set to true before starting the thread.
If running were false when the thread was started, the thread might see that value as soon
as it starts and interpret it as a signal to stop before doing anything. Remember that when
runner.start() is called, runner starts running in parallel with the thread that called it.

Stopping the thread is a little more interesting, because the thread might be sleeping when
the “Finish” button is pressed. The thread has to wake up before it can act on the signal that it
is to terminate. To make the thread a little more responsive, we can call runner.interrupt(),
which will wake the thread if it is sleeping. (See Subsection 12.1.2.) This doesn’t have much
practical effect in this program, but it does make the program respond noticeably more quickly
if the user presses “Finish” immediately after pressing “Start,” while the thread is sleeping for
a full second.

12.2.3 Threads for Background Computation

In order for a GUI program to be responsive—that is, to respond to events very soon after they
are generated—it’s important that event-handling methods in the program finish their work
very quickly. Remember that events go into a queue as they are generated, and the computer

CHAPTER 12. THREADS AND MULTIPROCESSING 610

cannot respond to an event until after the event-handler methods for previous events have done
their work. This means that while one event handler is being executed, other events will have
to wait. If an event handler takes a while to run, the user interface will effectively freeze up
during that time. This can be very annoying if the delay is more than a fraction of a second.
Fortunately, modern computers can do an awful lot of computation in a fraction of a second.

However, some computations are too big to be done in event handlers. The solution, in that
case, is to do the computation in another thread that runs in parallel with the event-handling
thread. This makes it possible for the computer to respond to user events even while the
computation is ongoing. We say that the computation is done “in the background.”

Note that this application of threads is very different from the previous example. When a
thread is used to drive a simple animation, it actually does very little work. The thread only
has to wake up several times each second, do a few computations to update state variables for
the next frame of the animation, and call repaint() to cause the next frame to be displayed.
There is plenty of time while the thread is sleeping for the computer to redraw the display and
handle any other events generated by the user.

When a thread is used for background computation, however, we want to keep the com-
puter as busy as possible working on the computation. The thread will compete for proces-
sor time with the event-handling thread; if you are not careful, event-handling—repainting in
particular—can still be delayed. Fortunately, you can use thread priorities to avoid the problem.
By setting the computation thread to run at a lower priority than the event-handling thread,
you make sure that events will be processed as quickly as possible, while the computation thread
will get all the extra processing time. Since event handling generally uses very little processing
time, this means that most of the processing time goes to the background computation, but
the interface is still very responsive. (Thread priorities were discussed in Subsection 12.1.2.)

The sample program BackgroundComputationDemo.java is an example of background pro-
cessing. This program creates an image that takes a while to compute. The program uses some
techniques for working with images that will not be covered until Section 13.1, for now all that
you need to know is that it takes some computation to compute the color of each pixel in the
image. The image itself is a piece of a mathematical object known as the Mandelbrot set. We
will use the same image in several examples in this chapter, and will return to the Mandelbrot
set in Section 13.5.

In outline, BackgroundComputationDemo is similar to the QuicksortThreadDemo discussed
above. The computation is done in a thread defined by a nested class, Runner. A volatile

boolean variable, running, is used to control the thread. If the value of running is set to
false, the thread should terminate. The sample program has a button that the user clicks to
start and to abort the computation. The difference is that the thread in this case is meant to
run continuously, without sleeping. To allow the user to see that progress is being made in the
computation (always a good idea), every time the thread computes a row of pixels, it copies
those pixels to the image that is shown on the screen. The user sees the image being built up
line-by-line.

When the computation thread is created in response to the “Start” button, we need to set
it to run at a priority lower than the event-handling thread. The code that creates the thread
is itself running in the event-handling thread, so we can use a priority that is one less than
the priority of the thread that is executing the code. Note that the priority is set inside a
try..catch statement. If an error occurs while trying to set the thread priority, the program
will still work, though perhaps not as smoothly as it would if the priority was correctly set.
Here is how the thread is created and started:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/BackgroundComputationDemo.java

CHAPTER 12. THREADS AND MULTIPROCESSING 611

runner = new Runner();

try {

runner.setPriority(Thread.currentThread().getPriority() - 1);

}

catch (Exception e) {

System.out.println("Error: Can’t set thread priority: " + e);

}

running = true; // Set the signal before starting the thread!

runner.start();

The other major point of interest in this program is that we have two threads that are both
using the object that represents the image. The computation thread accesses the image in order
to set the color of its pixels. The event-handling thread accesses the same image when it copies
the image to the screen. Since the image is a resource that is shared by several threads, access
to the image object should be synchronized. When the paintComponent() method copies the
image to the screen (using a method that we have not yet covered), it does so in a synchronized
statement:

synchronized(image) {

g.drawImage(image,0,0,null);

}

When the computation thread sets the colors of a row of pixels (using another unfamiliar
method), it also uses synchronized:

synchronized(image) {

image.setRGB(0,row, width, 1, rgb, 0, width);

}

Note that both of these statements are synchronized on the same object, image. This is es-
sential. In order to prevent the two code segments from being executed simultaneously, the
synchronization must be on the same object. I use the image object here because it is conve-
nient, but just about any object would do; it is not required that you synchronize on the object
to which you are trying to control access.

Although BackgroundComputationDemo works OK, there is one problem: The goal is to get
the computation done as quickly as possible, using all available processing time. The program
accomplishes that goal on a computer that has only one processor. But on a computer that has
several processors, we are still using only one of those processors for the computation. It would
be nice to get all the processors working on the problem. To do that, we need real parallel
processing, with several computation threads. We turn to that problem next.

12.2.4 Threads for Multiprocessing

Our next example, MultiprocessingDemo1.java, is a variation on BackgroundComputationDemo.
Instead of doing the computation in a single thread, MultiprocessingDemo1 can divide the
problem among several threads. The user can select the number of threads to be used. Each
thread is assigned one section of the image to compute. The threads perform their tasks in
parallel. For example, if there are two threads, the first thread computes the top half of the
image while the second thread computes the bottom half. Here is picture of the program nearing
the end of a computation using three threads. The gray areas represent parts of the image that
have not yet been computed:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo1.java

CHAPTER 12. THREADS AND MULTIPROCESSING 612

You should try out the program. On a multi-processor computer, the computation will complete
more quickly when using several threads than when using just one. Note that when using one
thread, this program has the same behavior as the previous example program.

The approach used in this example for dividing up the problem among threads is not optimal.
We will see in the next section how it can be improved. However, MultiprocessingDemo1makes
a good first example of multiprocessing.

When the user clicks the “Start” button, the program has to create and start the specified
number of threads, and it has to assign a segment of the image to each thread. Here is how
this is done:

workers = new Runner[threadCount]; // Holds the computation threads.

int rowsPerThread; // How many rows of pixels should each thread compute?

rowsPerThread = height / threadCount; // (height = vertical size of image)

running = true; // Set the signal before starting the threads!

threadsCompleted = 0; // Records how many of the threads have terminated.

for (int i = 0; i < threadCount; i++) {

int startRow; // first row computed by thread number i

int endRow; // last row computed by thread number i

// Create and start a thread to compute the rows of the image from

// startRow to endRow. Note that we have to make sure that

// the endRow for the last thread is the bottom row of the image.

startRow = rowsPerThread*i;

if (i == threadCount-1)

endRow = height-1;

else

endRow = rowsPerThread*(i+1) - 1;

workers[i] = new Runner(startRow, endRow);

try {

workers[i].setPriority(Thread.currentThread().getPriority() - 1);

}

catch (Exception e) {

}

workers[i].start();

}

CHAPTER 12. THREADS AND MULTIPROCESSING 613

Beyond creating more than one thread, very few changes are needed to get the benefits of
multiprocessing. Just as in the previous example, each time a thread has computed the colors
for a row of pixels, it copies that row into the image, and synchronization is used in exactly the
same way to control access to the image.

One thing is new, however. When all the threads have finished running, the name of the
button in the program changes from “Abort” to “Start Again”, and the pop-up menu, which
has been disabled while the threads were running, is re-enabled. The problem is, how to tell
when all the threads have terminated? (You might think about why we can’t use join()

to wait for the threads to end, as was done in the example in Subsection 12.1.2; at least,
we certainly can’t do that in the event-handling thread!) In this example, I use an instance
variable, threadsCompleted, to keep track of how many threads have terminated so far. As
each thread finishes, it calls a method that adds one to the value of this variable. (The method
is called in the finally clause of a try statement to make absolutely sure that it is called.)
When the number of threads that have finished is equal to the number of threads that were
created, the method updates the state of the program appropriately. Here is the method:

synchronized private void threadFinished() {

threadsCompleted++;

if (threadsCompleted == workers.length) { // All threads have finished.

startButton.setText("Start Again");

startButton.setEnabled(true);

running = false; // Make sure running is false after the threads end.

workers = null; // Discard the array that holds the threads.

threadCountSelect.setEnabled(true); // Re-enable pop-up menu.

}

}

Note that this method is synchronized. This is to avoid the race condition when
threadsCompleted is incremented. Without the synchronization, it is possible that two threads
might call the method at the same time. If the timing is just right, both threads could read
the same value for threadsCompleted and get the same answer when they increment it. The
net result will be that threadsCompleted goes up by one instead of by two. One thread is not
properly counted, and threadsCompleted will never become equal to the number of threads
created. The program would hang in a kind of deadlock. The problem would occur only very
rarely, since it depends on exact timing. But in a large program, problems of this sort can be
both very serious and very hard to debug. Proper synchronization makes the error impossible.

12.2.5 The SwingUtilities Approach

Using synchronized is important for controlling access to shared resources, but it does have
some performance penalty. In Java GUI programming, there is an alternative. The class
SwingUtilities in package javax.swing contains a variety of static methods that are useful in
GUI programming. One of those is

public static invokeLater(Runnable task)

In the statement SwingUtilities.invokeLater(task), task is an object that implements the
Runnable interface and so has a run() method. The statement causes task to be added to
the GUI event queue. The task’s run() method will be executed some time later by the GUI
thread, after any other events in the queue have been processed. Since the task is executed by
the same thread that handles events and repaints the screen, there is no problem with the task

CHAPTER 12. THREADS AND MULTIPROCESSING 614

accessing the same resources as the painting or event handling code. This eliminates the need
for synchronizing access to those resources.

As an example, the sample program BackgroundCompWithInvoke.java is a slight modifi-
cation of BackgroundComputationDemo.java, which was discussed earlier in this section. In
the revised version, SwingUtilities.invokeLater replaces synchronized. You can check the
source code if you are interested.

After a thread calls SwingUtilities.invokeLater(task), the thread continues immedi-
ately without waiting for the task to be completed. This is a problem if the thread depends
in some way on the results of the task. The method SwingUtilities.invokeAndWait(task)

schedules the task to be executed in the GUI thread, then blocks until the task has actually
been completed. That is, the thread that called SwingUtilities.invokeAndWait will go to
sleep until it is notified that the task has been executed. This method can throw several types
of checked exceptions, so it is usually called in a try..catch statement. You can consult Java
documentation for more information.

12.3 Threads and Parallel Processing

The example in Subsection 12.2.4 in the previous section used parallel processing to execute
pieces of a large task. On a computer that has several processors, this allows the computation
to be completed more quickly. However, the way that the program divided up the computation
into subtasks was not optimal. Nor was the way that the threads were managed. In this section,
we will look at two more versions of that program. The first improves the way the problem is
decomposed into subtasks. The second improves the way threads are used. Along the way, I’ll
introduce a couple of built-in classes that Java provides to support parallel processing. Later in
the section, I will cover wait() and notify(), lower-level methods that can be used to control
parallel processes more directly.

12.3.1 Problem Decomposition

The sample program MultiprocessingDemo1.java divides the task of computing an image into
several subtasks and assigns each subtask to a thread. While this works OK, there is a problem:
Some of the subtasks might take substantially longer than others. The program divides the
image up into equal parts, but the fact is that some parts of the image require more computation
than others. In fact, if you run the program with three threads, you’ll notice that the middle
piece takes longer to compute than the top or bottom piece. In general, when dividing a
problem into subproblems, it is very hard to predict just how much time it will take to solve
each subproblem. Let’s say that one particular subproblem happens to take a lot longer than all
the others. The thread that computes that subproblem will continue to run for a relatively long
time after all the other threads have completed. During that time, only one of the computer’s
processors will be working; the rest will be idle.

As a simple example, suppose that your computer has two processors. You divide the
problem into two subproblems and create a thread to run each subproblem Your hope is that
by using both processors, you can get your answer in half the time that it would take when
using one processor. But if one subproblem takes four times longer than the other to solve,
then for most of the time, only one processor will be working. In this case, you will only have
cut the time needed to get your answer by 20%.

Even if you manage to divide your problem into subproblems that require equal amounts

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/BackgroundCompWithInvoke.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/BackgroundComputationDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo1.java

CHAPTER 12. THREADS AND MULTIPROCESSING 615

of computation, you still can’t depend on all the subproblems requiring equal amounts of time
to solve. For example, some of the processors on your computer might be busy running other
programs. Or perhaps some of the processors are simply slower than others. (This is not so
likely when running your computation on a single computer, but when distributing computation
across several networked computers, as we will do later in this chapter, differences in processor
speed can be a major issue.)

The common technique for dealing with all this is to divide the problem into a fairly large
number of subproblems—many more subproblems than there are processors. This means that
each processor will have to solve several subproblems. Each time a processor completes one
subtask, it is assigned another subtask to work on, until all the subtasks have been assigned. Of
course, there will still be variation in the time that the various subtasks require. One processor
might complete several subproblems while another works on one particularly difficult case. And
a slow or busy processor might complete only one or two subproblems while another processor
finishes five or six. Each processor can work at its own pace. As long as the subproblems are
fairly small, most of the processors can be kept busy until near the end of the computation.
This is known as load balancing : the computational load is balanced among the available
processors in order to keep them all as busy as possible. Of course, some processors will still
finish before others, but not by longer than the time it takes to complete the longest subtask.

While the subproblems should be small, they should not be too small. There is some
computational overhead involved in creating the subproblems and assigning them to processors.
If the subproblems are very small, this overhead can add significantly to the total amount of
work that has to be done. In my example program, the task is to compute a color for each
pixel in an image. For dividing that task up into subtasks, one possibility would be to have
each subtask compute just one pixel. But the subtasks produced in that way are probably too
small. So, instead, each subtask in my program will compute the colors for one row of pixels.
Since there are several hundred rows of pixels in the image, the number of subtasks will be
fairly large, while each subtask will also be fairly large. The result is fairly good load balancing,
with a reasonable amount of overhead.

Note, by the way, that the problem that we are working on is a very easy one for parallel
programming. When we divide the problem of calculating an image into subproblems, all
the subproblems are completely independent. It is possible to work on any number of them
simultaneously, and they can be done in any order. Things get a lot more complicated when
some subtasks produce results that are required by other subtasks. In that case, the subtasks are
not independent, and the order in which the subtasks are performed is important. Furthermore,
there has to be some way for results from one subtask to be shared with other tasks. When the
subtasks are executed by different threads, this raises all the issues involved in controlling access
of threads to shared resources. So, in general, decomposing a problem for parallel processing is
much more difficult than it might appear from our relatively simple example. But for the most
part, that’s a topic for a course in distributed computing, not an introductory programming
course.

12.3.2 Thread Pools and Task Queues

Once we have decided how to decompose a task into subtasks, there is the question of how to
assign those subtasks to threads. Typically, in an object-oriented approach, each subtask will
be represented by an object. Since a task represents some computation, it’s natural for the
object that represents it to have an instance method that does the computation. To execute
the task, it is only necessary to call its computation method. In my program, the computation

CHAPTER 12. THREADS AND MULTIPROCESSING 616

method is called run() and the task object implements the standard Runnable interface that
was discussed in Subsection 12.1.1. This interface is a natural way to represent computational
tasks. It’s possible to create a new thread for each Runnable. However, that doesn’t really
make sense when there are many tasks, since there is a significant amount of overhead involved
in creating each new thread. A better alternative is to create just a few threads and let each
thread execute a number of tasks.

The optimal number of threads to use is not entirely clear, and it can depend on exactly
what problem you are trying to solve. The goal is to keep all of the computer’s processors busy.
In the image-computing example, it works well to create one thread for each available processor,
but that won’t be true for all problems. In particular, if a thread can block for a non-trivial
amount of time while waiting for some event or for access to some resource, you want to have
extra threads around for the processor to run while other threads are blocked. We’ll encounter
exactly that situation when we turn to using threads with networking in Section 12.4.

When several threads are available for performing tasks, those threads are called a thread
pool . Thread pools are used to avoid creating a new thread to perform each task. Instead,
when a task needs to be performed, it can be assigned to any idle thread in the “pool.”

Once all the threads in the thread pool are busy, any additional tasks will have to wait until
one of the threads becomes idle. This is a natural application for a queue: Associated with
the thread pool is a queue of waiting tasks. As tasks become available, they are added to the
queue. Every time that a thread finishes a task, it goes to the queue to get another task to
work on.

Note that there is only one task queue for the thread pool. All the threads in the pool
use the same queue, so the queue is a shared resource. As always with shared resources, race
conditions are possible and synchronization is essential. Without synchronization, for example,
it is possible that two threads trying to get items from the queue at the same time will end up
retrieving the same item. (See if you can spot the race conditions in the dequeue() method in
Subsection 9.3.2.)

Java has a built-in class to solve this problem: ConcurrentLinkedQueue. This class and others
that can be useful in parallel programming are defined in the package java.util.concurrent.
It is a parameterized class so that to create a queue that can hold objects of type Runnable,
you can say

ConcurrentLinkedQueue<Runnable> queue = new ConcurrentLinkedQueue<Runnable>();

This class represents a queue, implemented as a linked list, in which operations on the queue are
properly synchronized. The operations on a ConcurrentLinkedQueue are not exactly the queue
operations that we are used to. The method for adding a new item, x, to the end of queue is
queue.add(x). The method for removing an item from the front of queue is queue.poll().
The queue.poll() method returns null if the queue is empty; thus, poll() can be used to test
whether the queue is empty and to retrieve an item if it is not. It makes sense to do things in
this way because testing whether the queue is non-empty before taking an item from the queue
involves a race condition: Without synchronization, it is possible for another thread to remove
the last item from the queue between the time when you check that the queue is non-empty
and the time when you try to take the item from the queue. By the time you try to get the
item, there’s nothing there!

∗ ∗ ∗

To use ConcurrentLinkedQueue in our image-computing example, we can use the queue along
with a thread pool. To begin the computation of the image, we create all the tasks that make

CHAPTER 12. THREADS AND MULTIPROCESSING 617

up the image and add them to the queue. Then, we can create and start the worker threads that
will execute the tasks. Each thread will run in a loop in which it gets one task from the queue,
by calling the queue’s poll() method, and carries out that task. Since the task is an object of
type Runnable, it is only necessary for the thread to call the task’s run() method. When the
poll() method returns null, the queue is empty and the thread can terminate because all the
tasks have been assigned to threads.

The sample program MultiprocessingDemo2.java implements this idea. It uses a queue
taskQueue of type ConcurrentLinkedQueue<Runnable> to hold the tasks. In addition, in order
to allow the user to abort the computation before it finishes, it uses the volatile boolean

variable running to signal the thread when the user aborts the computation. The thread
should terminate when this variable is set to false. The threads are defined by a nested class
named WorkerThread. It is quite short and simple to write at this point:

private class WorkerThread extends Thread {

public void run() {

try {

while (running) {

Runnable task = taskQueue.poll(); // Get a task from the queue.

if (task == null)

break; // (because the queue is empty)

task.run(); // Execute the task;

}

}

finally {

threadFinished(); // Records fact that this thread has terminated.

}

}

}

The program uses a nested class named MandelbrotTask to represent the task of computing
one row of pixels in the image. This class implements the Runnable interface. Its run() method
does the actual work: Compute the color of each pixel, and apply the colors to the image. Here
is what the program does to start the computation (with a few details omitted):

taskQueue = new ConcurrentLinkedQueue<Runnable>(); // Create the queue.

int height = ... ; // Number of rows in the image.

for (int row = 0; row < height; row++) {

MandelbrotTask task;

task = ... ; // Create a task to compute one row of the image.

taskQueue.add(task); // Add the task to the queue.

}

int threadCount = ... ; // Number of threads in the pool

workers = new WorkerThread[threadCount];

running = true; // Set the signal before starting the threads!

threadsCompleted = 0; // Records how many of the threads have terminated.

for (int i = 0; i < threadCount; i++) {

workers[i] = new WorkerThread();

try {

workers[i].setPriority(Thread.currentThread().getPriority() - 1);

}

catch (Exception e) {

}

workers[i].start();

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo2.java

CHAPTER 12. THREADS AND MULTIPROCESSING 618

}

Note that it is important that the tasks be added to the queue before the threads are started.
The threads see an empty queue as a signal to terminate. If the queue is empty when the
threads are started, they might see an empty queue and terminate immediately after being
started, without performing any tasks!

You should try out MultiprocessingDemo2. It computes the same image as
MultiprocessingDemo1, but the rows of pixels are not computed in the same order as in
that program (if there is more than one thread). If you look carefully, you might see that the
rows of pixels are not added to the image in strict order from top to bottom. This is because
it is possible for one thread to finish row number i+1 while another thread is still working on
row i, or even earlier rows. (The effect might be more apparent if you use more threads than
you have processors. Try it with 20 threads.)

12.3.3 Producer/Consumer and Blocking Queues

MultiprocessingDemo2 creates an entirely new thread pool every time it draws an image. This
seems wasteful. Shouldn’t it be possible to create one set of threads at the beginning of the
program and use them whenever an image needs to be computed? After all, the idea of a thread
pool is that the threads should sit around and wait for tasks to come along and should execute
them when they do. The problem is that, so far, we have no way to make a thread wait for a
task to come along. To do that, we will use something called a blocking queue .

A blocking queue is an implementation of one of the classic patterns in parallel processing:
the producer/consumer pattern. This pattern arises when there are one or more “producers”
who produce things and one or more “consumers” who consume those things. All the producers
and consumers should be able to work simultaneously (hence, parallel processing). If there are
no things ready to be processed, a consumer will have to wait until one is produced. In many
applications, producers also have to wait sometimes: If things can only be consumed at a rate
of, say, one per minute, it doesn’t make sense for the producers to produce them indefinitely
at a rate of two per minute. That would just lead to an unlimited build-up of things waiting
to be processed. Therefore, it’s often useful to put a limit on the number of things that can
be waiting for processing. When that limit is reached, producers should wait before producing
more things.

We need a way to get the things from the producers to the consumers. A queue is an obvious
answer: Producers place items into the queue as they are produced. Consumers remove items
from the other end of the queue.

Producer
1

Producer
2

Producer
3

Consumer
3

Consumer
3

Consumer
3

Consumer
3

Blocking Queue

We are talking parallel processing, so we need a synchronized queue, but we need more than
that. When the queue is empty, we need a way to have consumers wait until an item appears in
the queue. If the queue becomes full, we need a way to have producers wait until a space opens

CHAPTER 12. THREADS AND MULTIPROCESSING 619

up in the queue. In our application, the producers and consumers are threads. A thread that
is suspended, waiting for something to happen, is said to be blocked, and the type of queue
that we need is called a blocking queue. In a blocking queue, the operation of dequeueing an
item from the queue can block if the queue is empty. That is, if a thread tries to dequeue an
item from an empty queue, the thread will be suspended until an item becomes available; at
that time, it will wake up, retrieve the item, and proceed. Similarly, if the queue has a limited
capacity, a producer that tries to enqueue an item can block if there is no space in the queue.

Java has two classes that implement blocking queues: LinkedBlockingQueue and ArrayBlock-
ingQueue. These are parameterized types to allow you to specify the type of item that the queue
can hold. Both classes are defined in the package java.util.concurrent and both implement
an interface called BlockingQueue. If bqueue is a blocking queue belonging to one of these
classes, then the following operations are defined:

• bqueue.take() – Removes an item from the queue and returns it. If the queue is empty
when this method is called, the thread that called it will block until an item becomes
available. This method throws an InterruptedException if the thread is interrupted while
it is blocked.

• bqueue.put(item) – Adds the item to the queue. If the queue has a limited capacity
and is full, the thread that called it will block until a space opens up in the queue. This
method throws an InterruptedException if the thread is interrupted while it is blocked.

• bqueue.add(item) – Adds the item to the queue, if space is available. If the queue has
a limited capacity and is full, an IllegalStateException is thrown. This method does not
block.

• bqueue.clear() – Removes all items from the queue and discards them.

Java’s blocking queues define many additional methods (for example, bqueue.poll(500) is
similar to bqueue.take(), except that it will not block for longer than 500 milliseconds), but
the four listed here are sufficient for our purposes. Note that I have listed two methods for adding
items to the queue: bqueue.put(item) blocks if there is not space available in the queue and is
most appropriate for use with blocking queues that have a limited capacity; bqueue.add(item)
does not block and is appropriate for use with blocking queues that have an unlimited capacity.

An ArrayBlockingQueue has a maximum capacity that is specified when it is constructed.
For example, to create a blocking queue that can hold up to 25 objects of type ItemType, you
could say:

ArrayBlockingQueue<ItemType> bqueue = new ArrayBlockingQueue<ItemType>(25);

With this declaration, bqueue.put(item) will block if bqueue already contains 25 items, while
bqueue.add(item) will throw an exception in that case. Recall that this ensures that items are
not produced indefinitely at a rate faster than they can be consumed. A LinkedBlockingQueue
is meant for creating blocking queues with unlimited capacity. For example,

LinkedBlockingQueue<ItemType> bqueue = new LinkedBlockingQueue<ItemType>();

creates a queue with no upper limit on the number of items that it can contain. In
this case, bqueue.put(item) will never block and bqueue.add(item) will never throw an
IllegalStateException. You would use a LinkedBlockingQueue when you want to avoid block-
ing, and you have some other way of ensuring that the queue will not grow to arbitrary size.
For both types of blocking queue, bqueue.take() will block if the queue is empty.

∗ ∗ ∗

CHAPTER 12. THREADS AND MULTIPROCESSING 620

The sample program MultiprocessingDemo3.java uses a LinkedBlockingQueue in place of the
ConcurrentLinkedQueue in the previous version, MultiprocessingDemo2.java. In this example,
the queue holds tasks, that is, items of type Runnable, and the queue is declared as an instance
variable named taskQueue:

LinkedBlockingQueue<Runnable> taskQueue;

When the user clicks the “Start” button and it’s time to compute an image, all of the tasks that
make up the computation are put into this queue. This is done by calling taskQueue.add(task)
for each task. It’s important that this can be done without blocking, since the tasks are
created in the event-handling thread, and we don’t want to block that. The queue cannot grow
indefinitely because the program only works on one image at a time, and there are only a few
hundred tasks per image.

Just as in the previous version of the program, worker threads belonging to a thread pool
will remove tasks from the queue and carry them out. However, in this case, the threads are
created once at the beginning of the program—actually, the first time the “Start” button is
pressed—and the same threads are reused for any number of images. When there are no tasks to
execute, the task queue is empty and the worker threads will block until tasks become available.
Each worker thread runs in an infinite loop, processing tasks forever, but it will spend a lot
of its time blocked, waiting for a task to be added to the queue. Here is the inner class that
defines the worker threads:

/**

* This class defines the worker threads that make up the thread pool.

* A WorkerThread runs in a loop in which it retrieves a task from the

* taskQueue and calls the run() method in that task. Note that if

* the queue is empty, the thread blocks until a task becomes available

* in the queue. The constructor starts the thread, so there is no

* need for the main program to do so. The thread will run at a priority

* that is one less than the priority of the thread that calls the

* constructor.

*

* A WorkerThread is designed to run in an infinite loop. It will

* end only when the Java virtual machine exits. (This assumes that

* the tasks that are executed don’t throw exceptions, which is true

* in this program.) The constructor sets the thread to run as

* a daemon thread; the Java virtual machine will exit automatically when

* the only threads are daemon threads. (In this program, this is not

* necessary since the virtual machine is set to exit when the

* window is closed. In a multi-window program, however, we can’t

* simply end the program when a window is closed.)

*/

private class WorkerThread extends Thread {

WorkerThread() {

try {

setPriority(Thread.currentThread().getPriority() - 1);

}

catch (Exception e) {

}

try {

setDaemon(true);

}

catch (Exception e) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo2.java

CHAPTER 12. THREADS AND MULTIPROCESSING 621

}

start(); // Thread starts as soon as it is constructed.

}

public void run() {

while (true) {

try {

Runnable task = taskQueue.take(); // wait for task if necessary

task.run();

}

catch (InterruptedException e) {

}

}

}

}

We should look more closely at how the thread pool works. The worker threads are created and
started before there is any task to perform. Each thread immediately calls taskQueue.take().
Since the task queue is empty, all the worker threads will block as soon as they are started. To
start the computation of an image, the event-handling thread will create tasks and add them
to the queue. As soon as this happens, worker threads will wake up and start processing tasks,
and they will continue doing so until the queue is emptied. (Note that on a multi-processor
computer, some worker threads can start processing even while the event thread is still adding
tasks to the queue.) When the queue is empty, the worker threads will go back to sleep until
processing starts on the next image.

∗ ∗ ∗

An interesting point in this program is that we want to be able to abort the computation
before it finishes, but we don’t want the worker threads to terminate when that happens. When
the user clicks the “Abort” button, the program calls taskQueue.clear(), which prevents any
more tasks from being assigned to worker threads. However, some tasks are most likely already
being executed when the task queue is cleared. Those tasks will complete after the computation
in which they are subtasks has supposedly been aborted. When those subtasks complete, we
don’t want their output to be applied to the image. It’s not a big deal in this program, but in
more general applications, we don’t want output meant for a previous computation job to be
applied to later jobs.

My solution is to assign a job number to each computation job. The job number of the
current job is stored in an instance variable named jobNum, and each task object has an instance
variable that tells which task that job is part of. When a job ends—either because the job
finishes on its own or because the user aborts it—the value of jobNum is incremented. When a
task completes, the job number stored in the task object is compared to jobNum. If they are
equal, then the task is part of the current job, and its output is applied to the image. If they
are not equal, then the task was part of a previous job, and its output is discarded.

It’s important that access to jobNum be properly synchronized. Otherwise, one thread might
check the job number just as another thread is incrementing it, and output meant for an old
job might sneak through after that job has been aborted. In the program, all the methods that
access or change jobNum are synchronized. You can read the source code to see how it works.

∗ ∗ ∗

One more point about MultiprocessingDemo3. . . . I have not provided any way to terminate
the worker threads in this program. They will continue to run until the Java Virtual Machine
exits. To allow thread termination before that, we could use a volatile signaling variable,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo3.java

CHAPTER 12. THREADS AND MULTIPROCESSING 622

running, and set its value to false when we want the worker threads to terminate. The run()
methods for the threads would be replaced by

public void run() {

while (running) {

try {

Runnable task = taskQueue.take();

task.run();

}

catch (InterruptedException e) {

}

}

}

However, if a thread is blocked in taskQueue.take(), it will not see the new value of
running until it becomes unblocked. To ensure that that happens, it is necessary to call
worker.interrupt() for each worker thread worker, just after setting runner to false.

If a worker thread is executing a task when runner is set to false, the thread will not
terminate until that task has completed. If the tasks are reasonably short, this is not a problem.
If tasks can take longer to execute than you are willing to wait for the threads to terminate,
then each task must also check the value of running periodically and exit when that value
becomes false.

12.3.4 Wait and Notify

To implement a blocking queue, we must be able to make a thread block just until some event
occurs. The thread is waiting for the event to occur. Somehow, it must be notified when that
happens. There are two threads involved since the event that will wake one thread is caused
by an action taken by another thread, such as adding an item to the queue.

Note that this is not just an issue for blocking queues. Whenever one thread produces some
sort of result that is needed by another thread, that imposes some restriction on the order in
which the threads can do their computations. If the second thread gets to the point where
it needs the result from the first thread, it might have to stop and wait for the result to be
produced. Since the second thread can’t continue, it might as well go to sleep. But then there
has to be some way to notify the second thread when the result is ready, so that it can wake
up and continue its computation.

Java, of course, has a way to do this kind of “waiting” and “notifying”: It has wait()

and notify() methods that are defined as instance methods in class Object and so can be
used with any object. These methods are used internally in blocking queues. They are fairly
low-level, tricky, and error-prone, and you should use higher-level control strategies such as
blocking queues when possible. However, it’s nice to know about wait() and notify() in case
you ever need to use them directly.

The reason why wait() and notify() should be associated with objects is not obvious,
so don’t worry about it at this point. It does, at least, make it possible to direct different
notifications to different recipients, depending on which object’s notify() method is called.

The general idea is that when a thread calls a wait() method in some object, that thread
goes to sleep until the notify() method in the same object is called. It will have to be called,
obviously, by another thread, since the thread that called wait() is sleeping. A typical pattern
is that Thread A calls wait() when it needs a result from Thread B, but that result is not yet
available. When Thread B has the result ready, it calls notify(), which will wake Thread A

CHAPTER 12. THREADS AND MULTIPROCESSING 623

up, if it is waiting, so that it can use the result. It is not an error to call notify() when no
one is waiting; it just has no effect. To implement this, Thread A will execute code similar to
the following, where obj is some object:

if (resultIsAvailable() == false)

obj.wait(); // wait for notification that the result is available

useTheResult();

while Thread B does something like:

generateTheResult();

obj.notify(); // send out a notification that the result is available

Now, there is a really nasty race condition in this code. The two threads might execute
their code in the following order:

1. Thread A checks resultIsAvailable() and finds that the result is not ready,

so it decides to execute the obj.wait() statement, but before it does,

2. Thread B finishes generating the result and calls obj.notify()

3. Thread A calls obj.wait() to wait for notification that the result is ready.

In Step 3, Thread A is waiting for a notification that will never come, because notify() has
already been called in Step 2. This is a kind of deadlock that can leave Thread A waiting forever.
Obviously, we need some kind of synchronization. The solution is to enclose both Thread A’s
code and Thread B’s code in synchronized statements, and it is very natural to synchronize
on the same object, obj, that is used for the calls to wait() and notify(). In fact, since
synchronization is almost always needed when wait() and notify() are used, Java makes it
an absolute requirement. In Java, a thread can legally call obj.wait() or obj.notify() only
if that thread holds the synchronization lock associated with the object obj. If it does not hold
that lock, then an exception is thrown. (The exception is of type IllegalMonitorStateException,
which does not require mandatory handling and which is typically not caught.) One further
complication is that the wait() method can throw an InterruptedException and so should be
called in a try statement that handles the exception.

To make things more definite, let’s consider how we can get a result that is computed by
one thread to another thread that needs the result. This is a simplified producer/consumer
problem in which only one item is produced and consumed. Assume that there is a shared
variable named sharedResult that is used to transfer the result from the producer to the
consumer. When the result is ready, the producer sets the variable to a non-null value. The
consumer can check whether the result is ready by testing whether the value of sharedResult
is null. We will use a variable named lock for synchronization. The code for the producer
thread could have the form:

makeResult = generateTheResult(); // Not synchronized!

synchronized(lock) {

sharedResult = makeResult;

lock.notify();

}

while the consumer would execute code such as:

synchronized(lock) {

while (sharedResult == null) {

try {

lock.wait();

}

CHAPTER 12. THREADS AND MULTIPROCESSING 624

catch (InterruptedException e) {

}

}

useResult = sharedResult;

}

useTheResult(useResult); // Not synchronized!

The calls to generateTheResult() and useTheResult() are not synchronized, which al-
lows them to run in parallel with other threads that might also synchronize on lock. Since
sharedResult is a shared variable, all references to sharedResult should be synchronized, so
the references to sharedResult must be inside the synchronized statements. The goal is to
do as little as possible (but not less) in synchronized code segments.

If you are uncommonly alert, you might notice something funny: lock.wait() does
not finish until lock.notify() is executed, but since both of these methods are called in
synchronized statements that synchronize on the same object, shouldn’t it be impossible for
both methods to be running at the same time? In fact, lock.wait() is a special case: When a
thread calls lock.wait(), it gives up the lock that it holds on the synchronization object, lock.
This gives another thread a chance to execute the synchronized(lock) block that contains the
lock.notify() statement. After the second thread exits from this block, the lock is returned
to the consumer thread so that it can continue.

In the full producer/consumer pattern, multiple results are produced by one or more pro-
ducer threads and are consumed by one or more consumer threads. Instead of having just one
sharedResult object, we keep a list of objects that have been produced but not yet consumed.
Let’s see how this might work in a very simple class that implements the three operations on a
LinkedBlockingQueue<Runnable> that are used in MultiprocessingDemo3:

import java.util.LinkedList;

public class MyLinkedBlockingQueue {

private LinkedList<Runnable> taskList = new LinkedList<Runnable>();

public void clear() {

synchronized(taskList) {

taskList.clear();

}

}

public void add(Runnable task) {

synchronized(taskList) {

taskList.addLast(task);

taskList.notify();

}

}

public Runnable take() throws InterruptedException {

synchronized(taskList) {

while (taskList.isEmpty())

taskList.wait();

return taskList.removeFirst();

}

}

}

CHAPTER 12. THREADS AND MULTIPROCESSING 625

An object of this class could be used as a direct replacement for the taskQueue in
MultiprocessingDemo3.

In this class, I have chosen to synchronize on the taskList object, but any object could be
used. In fact, I could simply use synchronized methods, which is equivalent to synchronizing
on this. (Note that you might see a call to wait() or notify() in a synchronized instance
method, with no reference to the object that is being used. Remember that wait() and
notify() in that context really mean this.wait() and this.notify().)

By the way, it is essential that the call to taskList.clear() be synchronized on the same
object, even though it doesn’t call wait() or notify(). Otherwise, there is a race condition
that can occur: The list might be cleared just after the take() method checks that taskList
is non-empty and before it removes an item from the list. In that case, the list is empty again
by the time taskList.removeFirst() is called, resulting in an error.

∗ ∗ ∗

It is possible for several threads to be waiting for notification. A call to obj.notify() will
wake only one of the threads that is waiting on obj. If you want to wake all threads that are
waiting on obj, you can call obj.notifyAll(). obj.notify() works OK in the above example
because only consumer threads can be blocked. We only need to wake one consumer thread
when a task is added to the queue because it doesn’t matter which consumer gets the task.
But consider a blocking queue with limited capacity, where producers and consumers can both
block. When an item is added to the queue, we want to make sure that a consumer thread is
notified, not just another producer. One solution is to call notifyAll() instead of notify(),
which will notify all threads including any waiting consumer.

I should also mention a possible confusion about the name of the method obj.notify().
This method does not notify obj of anything! It notifies a thread that has called obj.wait()

(if there is such a thread). Similarly, in obj.wait(), it’s not obj that is waiting for something;
it’s the thread that calls the method.

And a final note on wait: There is another version of wait() that takes a number of
milliseconds as a parameter. A thread that calls obj.wait(milliseconds) will wait only up
to the specified number of milliseconds for a notification. If a notification doesn’t occur during
that period, the thread will wake up and continue without the notification. In practice, this
feature is most often used to let a waiting thread wake periodically while it is waiting in order
to perform some periodic task, such as causing a message “Waiting for computation to finish”
to blink.

∗ ∗ ∗

Let’s look at an example that uses wait() and notify() to allow one thread to control
another. The sample program TowersOfHanoiGUI.java solves the Towers Of Hanoi puzzle
(Subsection 9.1.2), with control buttons that allow the user to control the execution of the
algorithm. The user can click a “Next Step” button to execute just one step in the solution,
which moves a single disk from one pile to another. Clicking “Run” lets the algorithm run
automatically on its own; the text on the button changes from “Run” to “Pause”, and clicking
“Pause” stops the automatic execution. There is also a “Start Over” button that aborts the
current solution and puts the puzzle back into its initial configuration. Here is a picture of the
program in the middle of a solution, including the buttons:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/TowersOfHanoiGUI.java

CHAPTER 12. THREADS AND MULTIPROCESSING 626

In this program, there are two threads: a thread that runs a recursive algorithm to solve the
puzzle, and the event-handling thread that reacts to user actions. When the user clicks one of
the buttons, a method is called in the event-handling thread. But it’s actually the thread that
is running the recursion that has to respond by, for example, doing one step of the solution or
starting over. The event-handling thread has to send some sort of signal to the solution thread.
This is done by setting the value of a variable that is shared by both threads. The variable is
named status, and its possible values are the constants GO, PAUSE, STEP, and RESTART.

When the event-handling thread changes the value of this variable, the solution thread
should see the new value and respond. When status equals PAUSE, the solution thread is
paused, waiting for the user to click “Run” or “Next Step”. This is the initial state, when
the program starts. If the user clicks “Next Step”, the event-handling thread sets the value of
status to “STEP”; the solution thread should see the new value and respond by executing one
step of the solution and then resetting status to PAUSE. If the user clicks “Run”, status is
set to GO, which should cause the solution thread to run automatically. When the user clicks
“Pause” while the solution is running, status is reset to PAUSE, and the solution thread should
return to its paused state. If the user clicks “Start Over”, the event-handling thread sets status
to RESTART, and the solution thread should respond by ending the current recursive solution
and restoring the puzzle to its initial state.

The main point for us is that when the solution thread is paused, it is sleeping. It won’t see
a new value for status unless it wakes up! To make that possible, the program uses wait()
in the solution thread to put that thread to sleep, and it uses notify() in the event-handling
thread to wake up the solution thread whenever it changes the value of status. Here is the
actionPerformed() method that responds to clicks on the buttons. When the user clicks a
button, this method changes the value of status and calls notify() to wake up the solution
thread:

synchronized public void actionPerformed(ActionEvent evt) {

Object source = evt.getSource();

if (source == runPauseButton) { // Toggle between running and paused.

if (status == GO) { // Animation is running. Pause it.

status = PAUSE;

nextStepButton.setEnabled(true); // Enable while paused.

runPauseButton.setText("Run");

}

else { // Animation is paused. Start it running.

status = GO;

nextStepButton.setEnabled(false); // Disable while running.

runPauseButton.setText("Pause");

}

}

else if (source == nextStepButton) { // Makes animation run one step.

CHAPTER 12. THREADS AND MULTIPROCESSING 627

status = STEP;

}

else if (source == startOverButton) { // Restore to initial state.

status = RESTART;

}

notify(); // Wake up the thread so it can see the new status value!

}

This method is synchronized to allow the call to notify(). Remember that the notify()

method in an object can only be called by a thread that holds that object’s synchronization
lock. In this case, the synchronization object is this. Synchronization is also necessary because
of race conditions that arise because the value of status can also be changed by the solution
thread.

The solution thread calls a method named checkStatus() to check the value of status.
This method calls wait() if the status is PAUSE, which puts the solution thread to sleep until
the event-handling thread calls notify(). Note that if the status is RESTART, checkStatus()
throws an IllegalStateException:

synchronized private void checkStatus() {

while (status == PAUSE) {

try {

wait();

}

catch (InterruptedException e) {

}

}

// At this point, status is RUN, STEP, or RESTART.

if (status == RESTART)

throw new IllegalStateException("Restart");

// At this point, status is RUN or STEP.

}

The run() method for the solution thread runs in an infinite loop in which it sets up the
initial state of the puzzle and then calls a solve() method to solve the puzzle. To implement
the wait/notify control strategy, run() calls checkStatus() before starting the solution, and
solve() calls checkStatus() after each move. If checkStatus() throws an IllegalStateExcep-
tion, the call to solve() is terminated early. (We used the method of throwing an exception
to terminate a recursive algorithm before, in Subsection 12.2.2.) After the solve() method
finishes or is terminated by an exception, the run() method returns to the beginning of the
while loop, where the initial state of the puzzle, and of the user interface, is restored:

public void run() {

while (true) {

runPauseButton.setText("Run"); // Set user interface to initial state.

nextStepButton.setEnabled(true);

startOverButton.setEnabled(false);

setUpProblem(); // Set up the initial state of the puzzle

status = PAUSE; // Initially, the solution thread is paused.

checkStatus(); // Returns only when user has clicked "Run" or "Next Step"

startOverButton.setEnabled(true);

try {

solve(10,0,1,2); // Move 10 disks from pile 0 to pile 1.

}

CHAPTER 12. THREADS AND MULTIPROCESSING 628

catch (IllegalStateException e) {

// Exception was thrown because user clicked "Start Over".

}

}

}

You can check the full source code to see how this all fits into the complete program. If you
want to learn how to use wait() and notify() directly, understanding this example is a good
place to start!

12.4 Threads and Networking

In the previous chapter, we looked at several examples of network programming. Those
examples showed how to create network connections and communicate through them, but they
didn’t deal with one of the fundamental characteristics of network programming, the fact that
network communication is asynchronous. From the point of view of a program on one end of a
network connection, messages can arrive from the other side of the connection at any time; the
arrival of a message is an event that is not under the control of the program that is receiving the
message. Perhaps an event-oriented networking API would be a good approach to dealing with
the asynchronous nature of network communication, but that is not the approach that is taken
in Java (or, typically, in other languages). Instead, network programming in Java typically uses
threads.

12.4.1 The Blocking I/O Problem

As covered in Section 11.4, network programming uses sockets. A socket, in the sense that
we are using the term here, represents one end of a network connection. Every socket has an
associated input stream and output stream. Data written to the output stream on one end of
the connection is transmitted over the network and appears in the input stream at the other
end.

A program that wants to read data from a socket’s input stream calls one of that input
stream’s input methods. It is possible that the data has already arrived before the input
method is called; in that case, the input method retrieves the data and returns immediately.
More likely, however, the input method will have to wait for data to arrive from the other side
of the connection. Until the data arrives, the input method and the thread that called it will
be blocked.

It is also possible for an output method in a socket’s output stream to block. This can happen
if the program tries to output data to the socket faster than the data can be transmitted over
the network. (It’s a little complicated: a socket uses a “buffer” to hold data that is supposed to
be transmitted over the network. A buffer is just a block of memory that is used like a queue.
The output method drops its data into the buffer; lower-level software removes data from the
buffer and transmits it over the network. The output method will block if the buffer fills up.
Note that when the output method returns, it doesn’t mean that the data has gone out over
the network—it just means that the data has gone into the buffer and is scheduled for later
transmission.)

We say that network communication uses blocking I/O , because input and output oper-
ations on the network can block for indefinite periods of time. Programs that use the network
must be prepared to deal with this blocking. In some cases, it’s acceptable for a program to

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/TowersOfHanoiGUI.java

CHAPTER 12. THREADS AND MULTIPROCESSING 629

simply shut down all other processing and wait for input. (This is what happens when a com-
mand line program reads input typed by the user. User input is another type of blocking I/O.)
However, threads make it possible for some parts of a program to continue doing useful work
while other parts are blocked. A network client program that sends requests to a server might
get by with a single thread, if it has nothing else to do while waiting for the server’s responses.
A network server program, on the other hand, can typically be connected to several clients at
the same time. While waiting for data to arrive from a client, the server certainly has other
things that it can do, namely communicate with other clients. When a server uses different
threads to handle the communication with different clients, the fact that I/O with one client is
blocked won’t stop the server from communicating with other clients.

It’s important to understand that using threads to deal with blocking I/O differs in a
fundamental way from using threads to speed up computation. When using threads for speed-
up in Subsection 12.3.2, it made sense to use one thread for each available processor. If only
one processor is available, using more than one thread will yield no speed-up at all; in fact, it
would slow things down because of the extra overhead involved in creating and managing the
threads.

In the case of blocking I/O, on the other hand, it can make sense to have many more threads
than there are processors, since at any given time many of the threads can be blocked. Only the
active, unblocked threads are competing for processing time. In the ideal case, to keep all the
processors busy, you would want to have one active thread per processor (actually somewhat
less than that, on average, to allow for variations over time in the number of active threads).
On a network server program, for example, threads generally spend most of their time blocked
waiting for I/O operations to complete. If threads are blocked, say, about 90% of the time,
you’d like to have about ten times as many threads as there are processors. So even on a
computer that has just a single processor, server programs can make good use of large numbers
of threads.

12.4.2 An Asynchronous Network Chat Program

As a first example of using threads for network communication, we consider a GUI chat program.
The command-line chat programs, CLChatClient.java and CLChatServer.java, from Sub-

section 11.4.5 use a straight-through, step-by-step protocol for communication. After a user on
one side of a connection enters a message, the user must wait for a reply from the other side of
the connection. An asynchronous chat program would be much nicer. In such a program, a user
could just keep typing lines and sending messages without waiting for any response. Messages
that arrive—asynchronously—from the other side would be displayed as soon as they arrive.
It’s not easy to do this in a command-line interface, but it’s a natural application for a graphical
user interface. The basic idea for a GUI chat program is to create a thread whose job is to read
messages that arrive from the other side of the connection. As soon as the message arrives,
it is displayed to the user; then, the message-reading thread blocks until the next incoming
message arrives. While it is blocked, however, other threads can continue to run. In particular,
the event-handling thread that responds to user actions keeps running; that thread can send
outgoing messages as soon as the user generates them.

The GUIChat program can act as either the client end or the server end of a connection.
(Refer back to Subsection 11.4.3 for information about how clients and servers work.) The
program has a “Listen” button that the user can click to create a server socket that will listen
for an incoming connection request; this makes the program act as a server. It also has a
“Connect” button that the user can click to send a connection request; this makes the program

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatServer.java

CHAPTER 12. THREADS AND MULTIPROCESSING 630

act as a client. As usual, the server listens on a specified port number. The client needs to
know the computer on which the server is running and the port on which the server is listening.
There are input boxes in the GUIChat window where the user can enter this information.

Once a connection has been established between two GUIChat windows, each user can send
messages to the other. The window has an input box where the user types a message. Pressing
return while typing in this box sends the message. This means that the sending of the message
is handled by the usual event-handling thread, in response to an event generated by a user
action. Messages are received by a separate thread that just sits around waiting for incoming
messages. This thread blocks while waiting for a message to arrive; when a message does
arrive, it displays that message to the user. The window contains a large transcript area that
displays both incoming and outgoing messages, along with other information about the network
connection.

I urge you to compile the source code, GUIChat.java, and try the program. To make it easy
to try it on a single computer, you can make a connection between one window and another
window on the same computer, using “localhost” or “127.0.0.1” as the name of the computer.
(Once you have one GUIChat window open, you can open a second one by clicking the “New”
button.) I also urge you to read the source code. I will discuss only parts of it here.

The program uses a nested class, ConnectionHandler, to handle most network-related tasks.
ConnectionHandler is a subclass of Thread. The ConnectionHandler thread is responsible for
opening the network connection and then for reading incoming messages once the connection
has been opened. By putting the connection-opening code in a separate thread, we make sure
that the GUI is not blocked while the connection is being opened. (Like reading incoming
messages, opening a connection is a blocking operation that can take some time to complete.)
The ConnectionHandler handles opening the connection both when the program acts as a server
and when it acts as a client. The thread is created when the user clicks either the “Listen” button
or the “Connect” button. The “Listen” button should make the thread act as a server, while
“Connect” should make it act as a client. To distinguish these two cases, the ConnectionHandler
class has two constructors. Note that the postMessage() method posts a message to the
transcript area of the window, where it will be visible to the user:

/**

* Listen for a connection on a specified port. The constructor

* does not perform any network operations; it just sets some

* instance variables and starts the thread. Note that the

* thread will only listen for one connection, and then will

* close its server socket.

*/

ConnectionHandler(int port) { // For acting as the "server."

state = ConnectionState.LISTENING;

this.port = port;

postMessage("\nLISTENING ON PORT " + port + "\n");

start();

}

/**

* Open a connection to a specified computer and port. The constructor

* does not perform any network operations; it just sets some

* instance variables and starts the thread.

*/

ConnectionHandler(String remoteHost, int port) { // For acting as "client."

state = ConnectionState.CONNECTING;

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/GUIChat.java

CHAPTER 12. THREADS AND MULTIPROCESSING 631

this.remoteHost = remoteHost;

this.port = port;

postMessage("\nCONNECTING TO " + remoteHost + " ON PORT " + port + "\n");

start();

}

Here, state is an instance variable whose type is defined by an enumerated type

enum ConnectionState { LISTENING, CONNECTING, CONNECTED, CLOSED };

The values of this enum represent different possible states of the network connection. It is often
useful to treat a network connection as a state machine (see Subsection 6.4.4), since the response
to various events can depend on the state of the connection when the event occurs. Setting the
state variable to LISTENING or CONNECTING tells the thread whether to act as server or as a
client when setting up the connection.

Once the thread has been started, it executes the following run() method:

/**

* The run() method that is executed by the thread. It opens a

* connection as a client or as a server (depending on which

* constructor was used).

*/

public void run() {

try {

if (state == ConnectionState.LISTENING) {

// Open a connection as a server.

listener = new ServerSocket(port);

socket = listener.accept();

listener.close();

}

else if (state == ConnectionState.CONNECTING) {

// Open a connection as a client.

socket = new Socket(remoteHost,port);

}

connectionOpened(); // Sets up to use the connection (including

// creating a BufferedReader, in, for reading

// incoming messages).

while (state == ConnectionState.CONNECTED) {

// Read one line of text from the other side of

// the connection, and report it to the user.

String input = in.readLine();

if (input == null)

connectionClosedFromOtherSide(); // Close socket and report to user.

else

received(input); // Report message to user.

}

}

catch (Exception e) {

// An error occurred. Report it to the user, but not

// if the connection has been closed (since the error

// might be the expected error that is generated when

// a socket is closed).

if (state != ConnectionState.CLOSED)

postMessage("\n\n ERROR: " + e);

}

CHAPTER 12. THREADS AND MULTIPROCESSING 632

finally { // Clean up before terminating the thread.

cleanUp();

}

}

This method calls several other methods to do some of its work, but you can see the general
outline of how it works. After opening the connection as either a server or client, the run()

method enters a while loop in which it receives and processes messages from the other side of
the connection until the connection is closed. It is important to understand how the connection
can be closed. The GUIChat window has a “Disconnect” button that the user can click to close
the connection. The program responds to this event by closing the socket that represents the
connection and by setting the connection state to CLOSED. It is likely that when this happens, the
connection-handling thread is blocked in the in.readLine() method, waiting for an incoming
message. When the socket is closed by the GUI thread, this method will fail and will throw an
exception; this exception causes the thread to terminate. (If the connection-handling thread
happens to be between calls to in.readLine() when the socket is closed, the while loop will
terminate because the connection state changes from CONNECTED to CLOSED.) Note that closing
the window will also close the connection in the same way.

It is also possible for the user on the other side of the connection to close the connection.
When that happens, the stream of incoming messages ends, and the in.readLine() on this
side of the connection returns the value null, which indicates end-of-stream and acts as a signal
that the connection has been closed by the remote user.

For a final look into the GUIChat code, consider the methods that send and receive messages.
These methods are called from different threads. The send() method is called by the event-
handling thread in response to a user action. Its purpose is to transmit a message to the
remote user. (It is conceivable, though not likely, that the data output operation could block,
if the socket’s output buffer fills up. A more sophisticated program might take this possibility
into account.) This method uses a PrintWriter, out, that writes to the socket’s output stream.
Synchronization of this method prevents the connection state from changing in the middle of
the send operation:

/**

* Send a message to the other side of the connection, and post the

* message to the transcript. This should only be called when the

* connection state is ConnectionState.CONNECTED; if it is called at

* other times, it is ignored.

*/

synchronized void send(String message) {

if (state == ConnectionState.CONNECTED) {

postMessage("SEND: " + message);

out.println(message);

out.flush();

if (out.checkError()) {

postMessage("\nERROR OCCURRED WHILE TRYING TO SEND DATA.");

close(); // Closes the connection.

}

}

}

The received() method is called by the connection-handling thread after a message has been
read from the remote user. Its only job is to display the message to the user, but again it is

CHAPTER 12. THREADS AND MULTIPROCESSING 633

synchronized to avoid the race condition that could occur if the connection state were changed
by another thread while this method is being executed:

/**

* This is called by the run() method when a message is received from

* the other side of the connection. The message is posted to the

* transcript, but only if the connection state is CONNECTED. (This

* is because a message might be received after the user has clicked

* the "Disconnect" button; that message should not be seen by the

* user.)

*/

synchronized private void received(String message) {

if (state == ConnectionState.CONNECTED)

postMessage("RECEIVE: " + message);

}

12.4.3 A Threaded Network Server

Threads are often used in network server programs. They allow the server to deal with several
clients at the same time. When a client can stay connected for an extended period of time, other
clients shouldn’t have to wait for service. Even if the interaction with each client is expected
to be very brief, you can’t always assume that that will be the case. You have to allow for the
possibility of a misbehaving client—one that stays connected without sending data that the
server expects. This can hang up a thread indefinitely, but in a threaded server there will be
other threads that can carry on with other clients.

The DateServer.java sample program, from Subsection 11.4.4, is an extremely simple net-
work server program. It does not use threads, so the server must finish with one client before
it can accept a connection from another client. Let’s see how we can turn DateServer into
a threaded server. (This server is so simple that doing so doesn’t make a great deal of sense.
However, the same techniques will work for more complicated servers. See, for example, Exer-
cise 12.4.)

As a first attempt, consider DateServerWithThreads.java. This sample program creates
a new thread every time a connection request is received, instead of handling the connection
itself by calling a subroutine. The main program simply creates the thread and hands the
connection to the thread. This takes very little time, and in particular will not block. The
run() method of the thread handles the connection in exactly the same way that it would be
handled by the original program. This is not at all difficult to program. Here’s the new version
of the program, with significant changes shown in italic. Note again that the constructor for
the connection thread does very little and in particular cannot block; this is very important
since the constructor runs in the main thread:

import java.net.*;

import java.io.*;

import java.util.Date;

/**

* This program is a server that takes connection requests on

* the port specified by the constant LISTENING PORT. When a

* connection is opened, the program sends the current time to

* the connected socket. The program will continue to receive

* and process connections until it is killed (by a CONTROL-C,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateServer.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/DateServerWithThreads.java

CHAPTER 12. THREADS AND MULTIPROCESSING 634

* for example).

*

* This version of the program creates a new thread for

* every connection request.

*/

public class DateServerWithThreads {

public static final int LISTENING PORT = 32007;

public static void main(String[] args) {

ServerSocket listener; // Listens for incoming connections.

Socket connection; // For communication with the connecting program.

/* Accept and process connections forever, or until some error occurs. */

try {

listener = new ServerSocket(LISTENING PORT);

System.out.println("Listening on port " + LISTENING PORT);

while (true) {

// Accept next connection request and create thread to handle it.

connection = listener.accept();

ConnectionHandler handler = new ConnectionHandler(connection);

handler.start();

}

}

catch (Exception e) {

System.out.println("Sorry, the server has shut down.");

System.out.println("Error: " + e);

return;

}

} // end main()

/**

* Defines a thread that handles the connection with one

* client.

*/

private static class ConnectionHandler extends Thread {

Socket client; // The connection to the client.

ConnectionHandler(Socket socket) {

client = socket;

}

public void run() {

// (code copied from the original DateServer program)

String clientAddress = client.getInetAddress().toString();

try {

System.out.println("Connection from " + clientAddress);

Date now = new Date(); // The current date and time.

PrintWriter outgoing; // Stream for sending data.

outgoing = new PrintWriter(client.getOutputStream());

outgoing.println(now.toString());

outgoing.flush(); // Make sure the data is actually sent!

client.close();

}

catch (Exception e){

CHAPTER 12. THREADS AND MULTIPROCESSING 635

System.out.println("Error on connection with: "

+ clientAddress + ": " + e);

}

}

}

} //end class DateServerWithThreads

One interesting change is at the end of the run() method, where I’ve added the clientAddress
to the output of the error message. I did this to identify which connection the error message
refers to. Since threads run in parallel, it’s possible for outputs from different threads to be
intermingled in various orders. Messages from the same thread don’t necessarily come together
in the output; they might be separated by messages from other threads. This is just one of the
complications that you have to keep in mind when working with threads!

12.4.4 Using a Thread Pool

It’s not very efficient to create a new thread for every connection, especially when the connec-
tions are typically very short-lived. Fortunately, we have an alternative: thread pools (Subsec-
tion 12.3.2).

DateServerWithThreadPool.java is an improved version of our server that uses a thread
pool. Each thread in the pool runs in an infinite loop. Each time through the loop, it handles
one connection. We need a way for the main program to send connections to the threads.
It’s natural to use a blocking queue named connectionQueue for that purpose. A connection-
handling thread takes connections from this queue. Since it is a blocking queue, the thread
blocks when the queue is empty and wakes up when a connection becomes available in the
queue. No other synchronization or communication technique is needed; it’s all built into the
blocking queue. Here is the run() method for the connection-handling threads:

public void run() {

while (true) {

Socket client;

try {

client = connectionQueue.take(); // Blocks until item is available.

}

catch (InterruptedException e) {

continue; // (If interrupted, just go back to start of while loop.)

}

String clientAddress = client.getInetAddress().toString();

try {

System.out.println("Connection from " + clientAddress);

System.out.println("Handled by thread " + this);

Date now = new Date(); // The current date and time.

PrintWriter outgoing; // Stream for sending data.

outgoing = new PrintWriter(client.getOutputStream());

outgoing.println(now.toString());

outgoing.flush(); // Make sure the data is actually sent!

client.close();

}

catch (Exception e){

System.out.println("Error on connection with: "

+ clientAddress + ": " + e);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/DateServerWithThreadPool.java

CHAPTER 12. THREADS AND MULTIPROCESSING 636

}

}

}

The main program, in the meantime, runs in an infinite loop in which connections are accepted
and added to the queue:

while (true) {

// Accept next connection request and put it in the queue.

connection = listener.accept();

try {

connectionQueue.put(connection); // Blocks if queue is full.

}

catch (InterruptedException e) {

}

}

The queue in this program is of type ArrayBlockingQueue<Socket>. As such, it has a limited
capacity, and the put() operation on the queue will block if the queue is full. But wait—didn’t
we want to avoid blocking the main program? When the main program is blocked, the server is
no longer accepting connections, and clients who are trying to connect are kept waiting. Would
it be better to use a LinkedBlockingQueue, with an unlimited capacity?

In fact, connections in the blocking queue are waiting anyway; they are not being serviced.
If the queue grows unreasonably long, connections in the queue will have to wait for an un-
reasonable amount of time. If the queue keeps growing indefinitely, that just means that the
server is receiving connection requests faster than it can process them. That could happen
for several reasons: Your server might simply not be powerful enough to handle the volume of
traffic that you are getting; you need to buy a new server. Or perhaps the thread pool doesn’t
have enough threads to fully utilize your server; you should increase the size of the thread pool
to match the server’s capabilities. Or maybe your server is under a “Denial Of Service” attack,
in which some bad guy is deliberately sending your server more requests than it can handle in
an attempt to keep other, legitimate clients from getting service.

In any case, ArrayBlockingQueue with limited capacity is the correct choice. The queue
should be short enough so that connections in the queue will not have to wait too long for
service. In a real server, the size of the queue and the number of threads in the thread pool
should be adjusted to “tune” the server to account for the particular hardware and network on
which the server is running and for the nature of the client requests that it typically processes.
Optimal tuning is, in general, a difficult problem.

There is, by the way, another way that things can go wrong: Suppose that the server needs
to read some data from the client, but the client doesn’t send the expected data. The thread
that is trying to read the data can then block indefinitely, waiting for the input. If a thread
pool is being used, this could happen to every thread in the pool. In that case, no further
processing can ever take place! The solution to this problem is to have connections “time out”
if they are inactive for an excessive period of time. Typically, each connection thread will keep
track of the time when it last received data from the client. The server runs another thread
(sometimes called a “reaper thread”, after the Grim Reaper) that wakes up periodically and
checks each connection thread to see how long it has been inactive. A connection thread that
has been waiting too long for input is terminated, and a new thread is started in its place. The
question of how long the timeout period should be is another difficult tuning issue.

CHAPTER 12. THREADS AND MULTIPROCESSING 637

12.4.5 Distributed Computing

We have seen how threads can be used to do parallel processing, where a number of processors
work together to complete some task. So far, we have assumed that all the processors were
inside one multi-processor computer. But parallel processing can also be done using processors
that are in different computers, as long as those computers are connected to a network over
which they can communicate. This type of parallel processing—in which a number of computers
work together on a task and communicate over a network—is called distributed computing .

In some sense, the whole Internet is an immense distributed computation, but here I am
interested in how computers on a network can cooperate to solve some computational problem.
There are several approaches to distributed computing that are supported in Java. RMI and
CORBA are standards that enable a program running on one computer to call methods in
objects that exist on other computers. This makes it possible to design an object-oriented
program in which different parts of the program are executed on different computers. RMI
(Remote Method Invocation) only supports communication between Java objects. CORBA
(Common Object Request Broker Architecture) is a more general standard that allows objects
written in various programming languages, including Java, to communicate with each other.
As is commonly the case in networking, there is the problem of locating services (where in this
case, a “service” means an object that is available to be called over the network). That is, how
can one computer know which computer a service is located on and what port it is listening
on? RMI and CORBA solve this problem using a “request broker”—a server program running
at a known location keeps a list of services that are available on other computers. Computers
that offer services register those services with the request broker; computers that need services
must know the location of the broker, and they contact it to find out what services are available
and where they are located.

RMI and CORBA are complex systems that are not very easy to use. I mention them here
because they are part of Java’s standard network API, but I will not discuss them further.
Instead, we will look at a relatively simple demonstration of distributed computing that uses
only basic networking.

The problem that we will consider is the same one that we used in Multiprocess-
ingDemo1.java, and its variations, in Section 12.2 and Section 12.3, namely the computation of
a complex image. This is an application that uses the simplest type of parallel programming, in
which the problem can be broken down into tasks that can be performed independently, with
no communication between the tasks. To apply distributed computing to this type of problem,
we can use one “master” program that divides the problem into tasks and sends those tasks
over the network to “worker” programs that do the actual work. The worker programs send
their results back to the master program, which combines the results from all the tasks into a
solution of the overall problem. In this context, the worker programs are often called “slaves,”
and the program uses the so-called master/slave approach to distributed computing.

The demonstration program is defined by three source code files: CLMandelbrotMas-
ter.java defines the master program; CLMandelbrotWorker.java defines the worker programs;
and CLMandelbrotTask.java defines the class, CLMandelbrotTask, that represents an individual
task that is performed by the workers. The master divides the overall problem into a collec-
tion of tasks; it distributes those tasks to the workers that will execute the tasks and send the
results back to the master; and the master applies the results from all the individual tasks to
the overall problem.

To run the demonstration, you must first start the CLMandelbrotWorker program on several
computers (probably by running it on the command line). This program uses CLMandelbrot-

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotMaster.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotWorker.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotTask.java

CHAPTER 12. THREADS AND MULTIPROCESSING 638

Task, so both class files, CLMandelbrotWorker.class and CLMandelbrotTask.class, must be
present on the worker computers. You can then run CLMandelbrotMaster on the master com-
puter. Note that this program also requires the class CLMandelbrotTask. You must specify
the host name or IP address of each of the worker computers as command line arguments for
CLMandelbrotMaster. The worker programs listen for connection requests from the master
program, and the master program must be told where to send those requests. For example, if
the worker program is running on three computers with IP addresses 172.21.7.101, 172.21.7.102,
and 172.21.7.103, then you can run CLMandelbrotMaster with the command

java CLMandelbrotMaster 172.21.7.101 172.21.7.102 172.21.7.103

The master will make a network connection to the worker at each IP address; these connections
will be used for communication between the master program and the workers.

It is possible to run several copies of CLMandelbrotWorker on the same computer, but
they must listen for network connections on different ports. It is also possible to run
CLMandelbrotWorker on the same computer as CLMandelbrotMaster. You might even see
some speed-up when you do this, if your computer has several processors. See the comments in
the program source code files for more information, but here are some commands that you can
use to run the master program and two copies of the worker program on the same computer.
Give these commands in separate command windows:

java CLMandelbrotWorker (Listens on default port)

java CLMandelbrotWorker 2501 (Listens on port 2501)

java CLMandelbrotMaster localhost localhost:2501

Every time CLMandelbrotMaster is run, it solves exactly the same problem. (For this
demonstration, the nature of the problem is not important, but the problem is to compute the
data needed for a picture of a small piece of the famous “Mandelbrot Set.” If you are interested
in seeing the picture that is produced, uncomment the call to the saveImage() method at the
end of the main() routine in CLMandelbrotMaster.java.)

You can run CLMandelbrotMaster with different numbers of worker programs to see how
the time required to solve the problem depends on the number of workers. (Note that the
worker programs continue to run after the master program exits, so you can run the mas-
ter program several times without having to restart the workers.) In addition, if you run
CLMandelbrotMaster with no command line arguments, it will solve the entire problem on its
own, so you can see how long it takes to do so without using distributed computing. In a
trial that I ran on some very old, slow computers, it took 40 seconds for CLMandelbrotMaster
to solve the problem on its own. Using just one worker, it took 43 seconds. The extra time
represents extra work involved in using the network; it takes time to set up a network connec-
tion and to send messages over the network. Using two workers (on different computers), the
problem was solved in 22 seconds. In this case, each worker did about half of the work, and
their computations were performed in parallel, so that the job was done in about half the time.
With larger numbers of workers, the time continued to decrease, but only up to a point. The
master program itself has a certain amount of work to do, no matter how many workers there
are, and the total time to solve the problem can never be less than the time it takes for the
master program to do its part. In this case, the minimum time seemed to be about five seconds.

∗ ∗ ∗

Let’s take a look at how this distributed application is programmed. The master program
divides the overall problem into a set of tasks. Each task is represented by an object of type

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotMaster.java

CHAPTER 12. THREADS AND MULTIPROCESSING 639

CLMandelbrotTask. These tasks have to be communicated to the worker programs, and the
worker programs must send back their results. Some protocol is needed for this communication.
I decided to use character streams. The master encodes a task as a line of text, which is sent
to a worker. The worker decodes the text (into an object of type CLMandelbrotTask) to find
out what task it is supposed to perform. It performs the assigned task. It encodes the results
as another line of text, which it sends back to the master program. Finally, the master decodes
the results and combines them with the results from other tasks. After all the tasks have been
completed and their results have been combined, the problem has been solved.

A worker receives not just one task, but a sequence of tasks. Each time it finishes a task
and sends back the result, it is assigned a new task. After all tasks are complete, the worker
receives a “close” command that tells it to close the connection. In CLMandelbrotWorker.java,
all this is done in a method named handleConnection() that is called to handle a connection
that has already been opened to the master program. It uses a method readTask() to decode
a task that it receives from the master and a method writeResults() to encode the results of
the task for transmission back to the master. It must also handle any errors that occur:

private static void handleConnection(Socket connection) {

try {

BufferedReader in = new BufferedReader(

new InputStreamReader(connection.getInputStream()));

PrintWriter out = new PrintWriter(connection.getOutputStream());

while (true) {

String line = in.readLine(); // Message from the master.

if (line == null) {

// End-of-stream encountered -- should not happen.

throw new Exception("Connection closed unexpectedly.");

}

if (line.startsWith(CLOSE CONNECTION COMMAND)) {

// Represents the normal termination of the connection.

System.out.println("Received close command.");

break;

}

else if (line.startsWith(TASK COMMAND)) {

// Represents a CLMandelbrotTask that this worker is

// supposed to perform.

CLMandelbrotTask task = readTask(line); // Decode the message.

task.compute(); // Perform the task.

out.println(writeResults(task)); // Send back the results.

out.flush(); // Make sure data is sent promptly!

}

else {

// No other messages are part of the protocol.

throw new Exception("Illegal command received.");

}

}

}

catch (Exception e) {

System.out.println("Client connection closed with error " + e);

}

finally {

try {

connection.close(); // Make sure the socket is closed.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotWorker.java

CHAPTER 12. THREADS AND MULTIPROCESSING 640

}

catch (Exception e) {

}

}

}

Note that this method is not executed in a separate thread. The worker has only one thing to
do at a time and does not need to be multithreaded.

Turning to the master program, CLMandelbrotMaster.java, we encounter a more complex
situation. The master program must communicate with several workers over several network
connections. To accomplish this, the master program is multi-threaded, with one thread to
manage communication with each worker. A pseudocode outline of the main() routine is quite
simple:

create a list of all tasks that must be performed

if there are no command line arguments {

// The master program does all the tasks itself.

Perform each task.

}

else {

// The tasks will be performed by worker programs.

for each command line argument:

Get information about a worker from command line argument.

Create and start a thread to communicate with the worker.

// The threads do all the work...

Wait for all threads to terminate.

}

// All tasks are now complete (assuming no error occurred).

The tasks are put into a variable of type ConcurrentBlockingQueue<CLMandelbrotTask>
named tasks (see Subsection 12.3.2.) The communication threads take tasks from this list
and send them to worker programs. The method tasks.poll() is used to remove a task from
the queue. If the queue is empty, it returns null, which acts as a signal that all tasks have
been assigned and the communication thread can terminate.

The job of a thread is to send a sequence of tasks to a worker thread and to receive the
results that the worker sends back. The thread is also responsible for opening the connection
in the first place. A pseudocode outline for the process executed by the thread might look like:

Create a socket connected to the worker program.

Create input and output streams for communicating with the worker.

while (true) {

Let task = tasks.poll().

If task == null

break; // All tasks have been assigned.

Encode the task into a message and transmit it to the worker.

Read the response from the worker.

Decode and process the response.

}

Send a "close" command to the worker.

Close the socket.

This would work OK. However, there are a few subtle points. First of all, the thread must be
ready to deal with a network error. For example, a worker might shut down unexpectedly. But if
that happens, the master program can continue, provided other workers are still available. (You

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotMaster.java

CHAPTER 12. THREADS AND MULTIPROCESSING 641

can try this when you run the program: Stop one of the worker programs, with CONTROL-C,
and observe that the master program still completes successfully.) A difficulty arises if an
error occurs while the thread is working on a task: If the problem as a whole is going to
be completed, that task will have to be reassigned to another worker. I take care of this by
putting the uncompleted task back into the task list. (Unfortunately, my program does not
handle all possible errors. If the last worker thread fails, there will be no one left to take
over the uncompleted task. Also, if a network connection “hangs” indefinitely without actually
generating an error, my program will also hang, waiting for a response from a worker that will
never arrive. A more robust program would have some way of detecting the problem reassigning
the task.)

Another defect in the procedure outlined above is that it leaves the worker program idle
while the thread is processing the worker’s response. It would be nice to get a new task to the
worker before processing the response from the previous task. This would keep the worker busy
and allow two operations to proceed simultaneously instead of sequentially. (In this example,
the time it takes to process a response is so short that keeping the worker waiting while it is
done probably makes no significant difference. But as a general principle, it’s desirable to have
as much parallelism as possible in the algorithm.) We can modify the procedure to take this
into account:

try {

Create a socket connected to the worker program.

Create input and output streams for communicating with the worker.

Let currentTask = tasks.poll().

Encode currentTask into a message and send it to the worker.

while (true) {

Read the response from the worker.

Let nextTask = tasks.poll().

If nextTask != null {

// Send nextTask to the worker before processing the

// response to currentTask.

Encode nextTask into a message and send it to the worker.

}

Decode and process the response to currentTask.

currentTask = nextTask.

if (currentTask == null)

break; // All tasks have been assigned.

}

Send a "close" command to the worker.

Close the socket.

}

catch (Exception e) {

Put uncompleted task, if any, back into the task queue.

}

finally {

Close the connection.

}

Finally, here is how this translates into Java. The pseudocode presented above becomes the
run() method in the class that defines the communication threads used by the master program:

/**

* This class represents one worker thread. The job of a worker thread

* is to send out tasks to a CLMandelbrotWorker program over a network

CHAPTER 12. THREADS AND MULTIPROCESSING 642

* connection, and to get back the results computed by that program.

*/

private static class WorkerConnection extends Thread {

int id; // Identifies this thread in output statements.

String host; // The host to which this thread will connect.

int port; // The port number to which this thread will connect.

/**

* The constructor just sets the values of the instance

* variables id, host, and port and starts the thread.

*/

WorkerConnection(int id, String host, int port) {

this.id = id;

this.host = host;

this.port = port;

start();

}

/**

* The run() method of the thread opens a connection to the host and

* port specified in the constructor, then sends tasks to the

* CLMandelbrotWorker program on the other side of that connection.

* If the thread terminates normally, it outputs the number of tasks

* that it processed. If it terminates with an error, it outputs

* an error message.

*/

public void run() {

int tasksCompleted = 0; // How many tasks has this thread handled.

Socket socket; // The socket for the connection.

try {

socket = new Socket(host,port); // open the connection.

}

catch (Exception e) {

System.out.println("Thread " + id +

" could not open connection to " + host + ":" + port);

System.out.println(" Error: " + e);

return;

}

CLMandelbrotTask currentTask = null;

CLMandelbrotTask nextTask = null;

try {

PrintWriter out = new PrintWriter(socket.getOutputStream());

BufferedReader in = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

currentTask = tasks.poll();

if (currentTask != null) {

// Send first task to the worker program.

String taskString = writeTask(currentTask);

out.println(taskString);

out.flush();

}

while (currentTask != null) {

CHAPTER 12. THREADS AND MULTIPROCESSING 643

String resultString = in.readLine(); // Get results for currentTask.

if (resultString == null)

throw new IOException("Connection closed unexpectedly.");

if (! resultString.startsWith(RESULT COMMAND))

throw new IOException("Illegal string received from worker.");

nextTask = tasks.poll(); // Get next task and send it to worker.

if (nextTask != null) {

// Send nextTask to worker before processing results for

// currentTask, so that the worker can work on nextTask

// while the currentTask results are processed.

String taskString = writeTask(nextTask);

out.println(taskString);

out.flush();

}

readResults(resultString, currentTask);

finishTask(currentTask); // Process results from currentTask.

tasksCompleted++;

currentTask = nextTask; // We are finished with old currentTask.

nextTask = null;

}

out.println(CLOSE CONNECTION COMMAND); // Send close command to worker.

out.flush();

}

catch (Exception e) {

System.out.println("Thread " + id + " terminated because of an error");

System.out.println(" Error: " + e);

e.printStackTrace();

// Put uncompleted tasks, if any, back into the task list.

if (currentTask != null)

reassignTask(currentTask);

if (nextTask != null)

reassignTask(nextTask);

}

finally {

System.out.println("Thread " + id + " ending after completing " +

tasksCompleted + " tasks");

try {

socket.close();

}

catch (Exception e) {

}

}

} //end run()

} // end nested class WorkerConnection

12.5 Network Programming Example:
A Networked Game Framework

This section presents several programs that use networking and threads. The common
problem in each application is to support network communication between several programs

CHAPTER 12. THREADS AND MULTIPROCESSING 644

running on different computers. A typical example of such an application is a networked game
with two or more players, but the same problem can come up in less frivolous applications
as well. The first part of this section describes a common framework that can be used for a
variety of such applications, and the rest of the section discusses three specific applications that
use that framework. This is a fairly complex example, probably the most complex that you
have seen so far in this book. Understanding it is not essential for a basic understanding of
networking.

This section was inspired by a pair of students, Alexander Kittelberger and Kieran Koehn-
lein, who wanted to write a networked poker game as a final project in a class that I was
teaching. I helped them with the network part of the project by writing a basic framework
to support communication between the players. Since the application illustrates a variety of
important ideas, I decided to include a somewhat more advanced and general version of that
framework in the current edition of this book. The final example is a networked poker game.

12.5.1 The Netgame Framework

One can imagine playing many different games over the network. As far as the network goes,
all of those games have at least one thing in common: There has to be some way for actions
taken by one player to be communicated over the network to other players. It makes good
programming sense to make that capability available in a reusable common core that can be
used in many different games. I have written such a core; it is defined by several classes in the
package netgame.common.

We have not done much with packages in this book, aside from using built-in classes. Pack-
ages were introduced in Subsection 2.6.6, but we have stuck to the “default package” in our
programming examples. In practice, however, packages are used in all but the simplest pro-
gramming projects to divide the code into groups of related classes. It makes particularly good
sense to define a reusable framework in a package that can be included as a unit in a variety of
projects.

Integrated development environments such as Eclipse or Netbeans make it very easy to use
packages: To use the netgame package in a project in an IDE, simply copy-and-paste the entire
netgame directory into the project.

If you work on the command line, you should be in a working directory that includes
the netgame directory as a subdirectory. Then, to compile all the java files in the package
netgame.common, for example, you can use the following command in Mac OS or Linux:

javac netgame/common/*.java

For windows, you should use backslashes instead of forward slashes:

javac netgame\common*.java

You will need similar commands to compile the source code for the examples in this section,
which are defined in other subpackages of netgame.

To run a main program that is defined in a package, you should again be in a directory that
contains the package as a subdirectory, and you should use the full name of the class that you
want to run. For example, the ChatRoomServer class, discussed later in this section, is defined
in the package netgame.chat, so you would run it with the command

java netgame.chat.ChatRoomServer

I will have more to say about packages in the final example of the book, in Section 13.5.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/

CHAPTER 12. THREADS AND MULTIPROCESSING 645

∗ ∗ ∗

The applications discussed in this section are examples of distributed computing, since they
involve several computers communicating over a network. Like the example in Subsection 12.4.5,
they use a central “server,” or “master,” to which a number of “clients” will connect. All
communication goes through the server; a client cannot send messages directly to another
client. In this section, I will refer to the server as a hub, in the sense of “communications hub”:

Client

HUB

ClientClient

Client

The main things that you need to understand are that: The hub must be running before
any clients are started. Clients connect the hub and can send messages to the hub. The hub
processes all messages from clients sequentially, in the order in which they are received. The
processing can result in the hub sending messages out to one or more clients. Each client
is identified by a unique ID number. This is a framework that can be used in a variety of
applications, and the messages and processing will be defined by the particular application.
Here are some of the details. . .

In Subsection 12.4.5, messages were sent back and forth between the server and the client in a
definite, predetermined sequence. Communication between the server and a client was actually
communication between one thread running on the server and another thread running on the
client. For the netgame framework, however, I want to allow for asynchronous communication,
in which it is not possible to wait for messages to arrive in a predictable sequence. To make
this possible a netgame client will use two threads for communication, one for sending messages
to the hub and one for receiving messages from the hub. Similarly, the netgame hub will use
two threads for communicating with each client.

The hub is generally connected to many clients and can receive messages from any of those
clients at any time. The hub will have to process each message in some way. To organize this
processing, the hub uses a single thread to process all incoming messages. When a communi-
cation thread receives a message from a client, it simply drops that message into a queue of
incoming messages. There is only one such queue, which is used for messages from all clients.
The message processing thread runs in a loop in which it removes a message from the queue,
processes it, removes another message from the queue, processes it, and so on. The queue itself
is implemented as an object of type LinkedBlockingQueue (see Subsection 12.3.3).

CHAPTER 12. THREADS AND MULTIPROCESSING 646

receive

send

Incoming
Message Queue

Message
Processing

Thread

HUB
receive thread

send thread

Client

There is one more thread in the hub, not shown in the illustration. This final thread creates
a ServerSocket and uses it to listen for connection requests from clients. Each time it accepts
a connection request, it hands off the client socket to another object, defined by the nested
class ConnectionToClient, which will handle communication with that client. Each connected
client is identified by an ID number. ID numbers 1, 2, 3, . . . are assigned to clients as they
connect. Since clients can also disconnect, the clients connected at any give time might not
have consecutive IDs. A variable of type TreeMap<Integer,ConnectionToClient> associates the
ID numbers of connected clients with the objects that handle their connections.

The messages that are sent and received are objects. The I/O streams that are used for
reading and writing objects are of type ObjectInputStream and ObjectOutputStream. (See Sub-
section 11.1.6.) The output stream of a socket is wrapped in an ObjectOutputStream to make
it possible to transmit objects through that socket. The socket’s input stream is wrapped in
an ObjectInputStream to make it possible to receive objects. Remember that the objects that
are used with such streams must implement the interface java.io.Serializable.

The netgame Hub class is defined in the file Hub.java, in the package netgame.common.
The port on which the server socket will listen must be specified as a parameter to the Hub
constructor. The Hub class defines a method

protected void messageReceived(int playerID, Object message)

which is called to process the messages that are received from clients. The first parameter,
playerID, is the ID number of the client from whom the message was received, and the second
parameter is the message itself. In the Hub class, this method will simply forward the message
to all connected clients. This defines the default processing for incoming messages to the hub.
To forward the message, it wraps both the playerID and the message in an object of type
ForwardedMessage (defined in the file ForwardedMessage.java, in the package netgame.common).
In a simple application such as the chat room discussed in the next subsection, this default
processing might be exactly what is needed by the application. For most applications, however,
it will be necessary to define a subclass of Hub and redefine the messageReceived() method
to do more complicated message processing. There are several other methods in the Hub class
that you might want to redefine in a subclass, including

• protected void playerConnected(int playerID) — This method is called each time
a player connects to the hub. The parameter playerID is the ID number of the newly con-
nected player. In the Hub class, this method does nothing. Note that the complete list of
ID numbers for currently connected players can be obtained by calling getPlayerList().

• protected void playerDisconnected(int playerID) — This is called each time a
player disconnects from the hub. The parameter tells which player has just disconnected.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/Hub.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/ForwardedMessage.java

CHAPTER 12. THREADS AND MULTIPROCESSING 647

In the Hub class, this method does nothing.

The Hub class also defines a number of useful public methods, notably

• sendToAll(message) — sends the specified message to every client that is currently con-
nected to the hub. The message must be a non-null object that implements the Serializable
interface.

• sendToOne(recipientID,message) — sends a specified message to just one user. The
first parameter, recipientID is the ID number of the client who will receive the message.
This method returns a boolean value, which is false if there is no connected client with
the specified recipientID.

• shutDownServerSocket() — shuts down the hub’s server socket, so that no additional
clients will be able to connect. This could be used, for example, in a two-person game,
after the second client has connected.

• setAutoreset(autoreset) — sets the boolean value of the autoreset property. If this
property is true, then the ObjectOutputStreams that are used to transmit messages to
clients will automatically be reset before each message is transmitted. The default value
is false. (Resetting an ObjectOutputStream is something that has to be done if an object
is written to the stream, modified, and then written to the stream again. If the stream is
not reset before writing the modified object, then the old, unmodified value is sent to the
stream instead of the new value. See Subsection 11.1.6 for a discussion of this technicality.)

For more information—and to see how all this is implemented—you should read the source
code file Hub.java. With some effort and study, you should be able to understand everything
in that file. (However, you only need to understand the public and protected interface of Hub
and other classes in the the netgame framework to write applications based on it.)

∗ ∗ ∗

Turning to the client side, the basic netgame client class is defined in the file Client.java, in
the package netgame.common. The Client class has a constructor that specifies the host name
(or IP address) and port number of the hub to which the client will connect. This constructor
blocks until the connection has been established.

Client is an abstract class. Every netgame application must define a subclass of Client
and provide a definition for the abstract method:

abstract protected void messageReceived(Object message);

This method is called each time a message is received from the netgame hub to which the client is
connected. A subclass of client might also override the protected methods playerConnected,
playerDisconnected, serverShutdown, and connectionClosedByError. See the source code
for more information. I should also note that Client contains the protected instance variable
connectedPlayerIDs, of type int[], an array containing the ID numbers of all the clients that
are currently connected to the hub. The most important public methods that are provided by
the Client class are

• send(message) — transmits a message to the hub. The message can be any non-null
object that implements the Serializable interface.

• getID() — gets the ID number that was assigned to this client by the hub.

• disconnect() — closes the client’s connection to the hub. It is not possible to send
messages after disconnecting. The send() method will throw an IllegalStateException if
an attempt is made to do so.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/Hub.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/Client.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/Client.java

CHAPTER 12. THREADS AND MULTIPROCESSING 648

The Hub and Client classes are meant to define a general framework that can be used as the
basis for a variety of networked games—and, indeed, of other distributed programs. The low
level details of network communication and multithreading are hidden in the private sections
of these classes. Applications that build on these classes can work in terms of higher-level
concepts such as players and messages. The design of these classes was developed though
several iterations, based on experience with several actual applications. I urge you to look at
the source code to see how Hub and Client use threads, sockets, and streams. In the remainder
of this section, I will discuss three applications built on the netgame framework. I will not
discuss these applications in great detail. You can find the complete source code for all three
in the netgame package.

12.5.2 A Simple Chat Room

Our first example is a “chat room,” a network application where users can connect to a server
and can then post messages that will be seen by all current users of the room. It is similar to
the GUIChat program from Subsection 12.4.2, except that any number of users can participate
in a chat. While this application is not a game, it does show the basic functionality of the
netgame framework.

The chat room application consists of two programs. The first, ChatRoomServer.java, is a
completely trivial program that simply creates a netgame Hub to listen for connection requests
from netgame clients:

public static void main(String[] args) {

try {

new Hub(PORT);

}

catch (IOException e) {

System.out.println("Can’t create listening socket. Shutting down.");

}

}

The port number, PORT, is defined as a constant in the program and is arbitrary, as long as
both the server and the clients use the same port. Note that ChatRoom uses the Hub class
itself, not a subclass.

The second part of the chat room application is the program ChatRoomWindow.java, which
is meant to be run by users who want to participate in the chat room. A potential user must
know the name (or IP address) of the computer where the hub is running. (For testing, it
is possible to run the client program on the same computer as the hub, using localhost as
the name of the computer where the hub is running.) When ChatRoomWindow is run, it uses
a dialog box to ask the user for this information. It then opens a window that will serve as
the user’s interface to the chat room. The window has a large transcript area that displays
messages that users post to the chat room. It also has a text input box where the user can
enter messages. When the user enters a message, that message will be posted to the transcript
of every user who is connected to the hub, so all users see every message sent by every user.
Let’s look at some of the programming.

Any netgame application must define a subclass of the abstract Client class. For the chat
room application, clients are defined by a nested class ChatClient inside ChatRoomWindow.
The program has an instance variable, connection, of type ChatClient, which represents the
program’s connection to the hub. When the user enters a message, that message is sent to the
hub by calling

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/GUIChat.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/ChatRoomServer.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/ChatRoomWindow.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/Client.java

CHAPTER 12. THREADS AND MULTIPROCESSING 649

connection.send(message);

When the hub receives the message, it packages it into an object of type ForwardedMessage,
along with the ID number of the client who sent the message. The hub sends a copy of that
ForwardedMessage to every connected client, including the client who sent the message. On the
client side in each client, when the message is received from the hub, the messageReceived()

method of the ChatClient object in that client is called. ChatClient overrides this method to
make it add the message to the transcript of the ChatClientWindow. To summarize: Every
message entered by any user is sent to the hub, which just sends out copies of each message
that it receives to every client. Each client will see exactly the same stream of messages from
the hub.

A client is also notified when a player connects to or disconnects from the hub and when the
connection with the hub is lost. ChatClient overrides the methods that are called when these
events happen so that they post appropriate messages to the transcript. Here’s the complete
definition of the client class for the chat room application:

/**

* A ChatClient connects to a Hub and is used to send messages to

* and receive messages from the Hub. Messages received from the

* Hub will be of type ForwardedMessage and will contain the

* ID number of the sender and the string that was sent by that user.

*/

private class ChatClient extends Client {

/**

* Opens a connection to the chat room server on a specified computer.

*/

ChatClient(String host) throws IOException {

super(host, PORT);

}

/**

* Responds when a message is received from the server. It should be

* a ForwardedMessage representing something that one of the participants

* in the chat room is saying. The message is simply added to the

* transcript, along with the ID number of the sender.

*/

protected void messageReceived(Object message) {

if (message instanceof ForwardedMessage) {

// (no other message types are expected)

ForwardedMessage fm = (ForwardedMessage)message;

addToTranscript("#" + fm.senderID + " SAYS: " + fm.message);

}

}

/**

* Called when the connection to the client is shut down because of some

* error message. (This will happen if the server program is terminated.)

*/

protected void connectionClosedByError(String message) {

addToTranscript("Sorry, communication has shut down due to an error:\n "

+ message);

sendButton.setEnabled(false);

messageInput.setEnabled(false);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/ForwardedMessage.java

CHAPTER 12. THREADS AND MULTIPROCESSING 650

messageInput.setEditable(false);

messageInput.setText("");

connected = false;

connection = null;

}

/**

* Posts a message to the transcript when someone joins the chat room.

*/

protected void playerConnected(int newPlayerID) {

addToTranscript("Someone new has joined the chat room, with ID number "

+ newPlayerID);

}

/**

* Posts a message to the transcript when someone leaves the chat room.

*/

protected void playerDisconnected(int departingPlayerID) {

addToTranscript("The person with ID number " + departingPlayerID

+ " has left the chat room");

}

} // end nested class ChatClient

For the full source code of the chat room application, see the source code files, which can be
found in the package netgame.chat.

Note: A user of my chat room application is identified only by an ID number that is
assigned by the hub when the client connects. Essentially, users are anonymous, which is not
very satisfying. See Exercise 12.6 at the end of this chapter for a way of addressing this issue.

12.5.3 A Networked TicTacToe Game

My second example is a very simple game: the familiar children’s game TicTacToe. In TicTac-
Toe, two players alternate placing marks on a three-by-three board. One player plays X’s; the
other plays O’s. The object is to get three X’s or three O’s in a row.

At a given time, the state of a TicTacToe game consists of various pieces of information
such as the current contents of the board, whose turn it is, and—when the game is over—who
won or lost. In a typical non-networked version of the game, this state would be represented
by instance variables. The program would consult those instance variables to determine how
to draw the board and how to respond to user actions such as mouse clicks. In the networked
netgame version, however, there are three objects involved: Two objects belonging to a client
class, which provide the interface to the two players of the game, and the hub object that
manages the connections to the clients. These objects are not even on the same computer, so
they certainly can’t use the same state variables! Nevertheless, the game has to have a single,
well-defined state at any time, and both players have to be aware of that state.

My solution is to store the “official” game state in the hub, and to send a copy of that
state to each player every time the state changes. The players can’t change the state directly.
When a player takes some action, such as placing a piece on the board, that action is sent as a
message to the hub. The hub changes the state to reflect the result of the action, and it sends
the new state to both players. The window used by each player will then be updated to reflect
the new state. In this way, we can be sure that the game always looks the same to both players.
(Instead of sending a complete copy of the state each time the state changes, I might have sent

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat

CHAPTER 12. THREADS AND MULTIPROCESSING 651

just the change. But that would require some way to encode the changes into messages that
can be sent over the network. Since the state is so simple, it seemed easier just to send the
entire state as the message in this case.)

Networked TicTacToe is defined in several classes in the package netgame.tictactoe. Tic-
TacToeGameState represents the state of a game. It includes a method

public void applyMessage(int senderID, Object message)

that modifies the state to reflect the effect of a message received from one of the players of
the game. The message will represent some action taken by the player, such as clicking on the
board.

The basic Hub class knows nothing about TicTacToe. Since the hub for the TicTacToe
game has to keep track of the state of the game, it has to be defined by a subclass of Hub.
The TicTacToeGameHub class is quite simple. It overrides the messageReceived() method
so that it responds to a message from a player by applying that message to the game state
and sending a copy of the new state to both players. It also overrides the playerConnected()
and playerDisconnected() methods to take appropriate actions, since the game can only be
played when there are exactly two connected players. Here is the complete source code:

package netgame.tictactoe;

import java.io.IOException;

import netgame.common.Hub;

/**

* A "Hub" for the network TicTacToe game. There is only one Hub

* for a game, and both network players connect to the same Hub.

* Official information about the state of the game is maintained

* on the Hub. When the state changes, the Hub sends the new

* state to both players, ensuring that both players see the

* same state.

*/

public class TicTacToeGameHub extends Hub {

private TicTacToeGameState state; // Records the state of the game.

/**

* Create a hub, listening on the specified port. Note that this

* method calls setAutoreset(true), which will cause the output stream

* to each client to be reset before sending each message. This is

* essential since the same state object will be transmitted over and

* over, with changes between each transmission.

* @param port the port number on which the hub will listen.

* @throws IOException if a listener cannot be opened on the specified port.

*/

public TicTacToeGameHub(int port) throws IOException {

super(port);

state = new TicTacToeGameState();

setAutoreset(true);

}

/**

* Responds when a message is received from a client. In this case,

* the message is applied to the game state, by calling state.applyMessage().

* Then the possibly changed state is transmitted to all connected players.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/TicTacToeGameState.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/TicTacToeGameHub.java

CHAPTER 12. THREADS AND MULTIPROCESSING 652

*/

protected void messageReceived(int playerID, Object message) {

state.applyMessage(playerID, message);

sendToAll(state);

}

/**

* This method is called when a player connects. If that player

* is the second player, then the server’s listening socket is

* shut down (because only two players are allowed), the

* first game is started, and the new state -- with the game

* now in progress -- is transmitted to both players.

*/

protected void playerConnected(int playerID) {

if (getPlayerList().length == 2) {

shutdownServerSocket();

state.startFirstGame();

sendToAll(state);

}

}

/**

* This method is called when a player disconnects. This will

* end the game and cause the other player to shut down as

* well. This is accomplished by setting state.playerDisconnected

* to true and sending the new state to the remaining player, if

* there is one, to notify that player that the game is over.

*/

protected void playerDisconnected(int playerID) {

state.playerDisconnected = true;

sendToAll(state);

}

}

A player’s interface to the game is represented by the class TicTacToeWindow. As in the
chat room application, this class defines a nested subclass of Client to represent the client’s
connection to the hub. One interesting point is how the client responds to a message from
the hub. Such a message represents a new game state. When the message is received, the
window must be updated to show the new state. The message is received and processed by
one thread; the updating is done in another thread. This has the potential of introducing race
conditions that require synchronization. (In particular, as I was developing the program, I
found that it was possible for a message to be received before the window’s constructor had
finished executing. This led to a very hard-to-diagnose bug because my response to the message
was trying to use objects that had not yet been created.)

When working with the Swing API, it is recommended that all modifications to the GUI
be made in the GUI event thread. An alternative would be to make paintComponent() and
other methods synchronized, but that would negatively impact the performance of the GUI.
Swing includes a method SwingUtilitites.invokeLater(runnable) to make it possible to
run arbitrary code in the GUI event thread. See Subsection 12.2.5. In the TicTacToe client
class, this technique is used in the method that processes events received from the hub:

protected void messageReceived(final Object message) {

if (message instanceof TicTacToeGameState) {

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/TicTacToeWindow.java

CHAPTER 12. THREADS AND MULTIPROCESSING 653

SwingUtilities.invokeLater(new Runnable(){

public void run() {

// The newState() method updates the GUI for the new state.

newState((TicTacToeGameState)message);

}

});

}

}

To run the TicTacToe netgame, the two players should each run the program Main.java in
the package netgame.tictactoe. This program presents the user with a dialog box where the
user can choose to start a new game or to join an existing game. If the user starts a new game,
then a TicTacToeHub is created to manage the game, and a TicTacToeWindow is created that
immediately connects to the hub. The game will start as soon as a second player connects
to the hub. On the other hand, if the user running TicTacToeWindow chooses to connect to
an existing game, then no hub is created. A window is created, and that window connects
to the hub that was created by the first player. The second player has to know the name of
the computer where the first player’s program is running. As usual, for testing, you can run
everything on one computer and use “localhost” as the computer name.

12.5.4 A Networked Poker Game

And finally, we turn very briefly to the application that inspired the netgame framework: Poker.
In particular, I have implemented a two-player version of the traditional “five card draw” version
of that game. This is a rather complex application, and I do not intend to say much about it
here other than to describe the general design. The full source code can be found in the package
netgame.fivecarddraw. To fully understand it, you will need to be familiar with the game of
five card draw poker. And it uses some techniques from Section 13.1 for drawing the cards.

In general outline, the Poker game is similar to the TicTacToe game. There is a Main class
that is one by both players. The first player starts a new game; the second must join that
existing game. There is a class PokerGameState to represent the state of a game. And there is
a subclass, PokerHub, of Hub to manage the game.

But Poker is a much more complicated game than TicTacToe, and the game state is cor-
respondingly more complicated. It’s not clear that we want to broadcast a new copy of the
complete game state to the players every time some minor change is made in the state. Fur-
thermore, it doesn’t really make sense for both players to know the full game state—that would
include the opponent’s hand and full knowledge of the deck from which the cards are dealt. (Of
course, our client programs wouldn’t have to show the full state to the players, but it would
be easy enough for a player to substitute their own client program to enable cheating.) So in
the Poker application, the full game state is known only to the PokerHub. A PokerGameState
object represents a view of the game from the point of view of one player only. When the state
of the game changes, the PokerHub creates two different PokerGameState objects, representing
the state of the game from each player’s point of view, and it sends the appropriate game state
objects to each player. You can see the source code for details.

(One of the hard parts in poker is to implement some way to compare two hands, to see
which is higher. In my game, this is handled by the class PokerRank. You might find this class
useful in other poker games.)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/Main.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/Main.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerGameState.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerHub.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerRank.java

Exercises 654

Exercises for Chapter 12

1. Subsection 12.1.3 discusses the need for synchronization in multithreaded programs, and (solution)

it defines a ThreadSafeCounter class with the necessary synchronization. Is this really
important? Can you really get errors by using an unsynchronized counter with multiple
threads? Write a program to find out. Use the following unsynchronized counter class,
which you can include as a nested class in your program:

static class Counter {

int count;

void inc() {

count = count+1;

}

int getCount() {

return count;

}

}

Write a thread class that will call the inc() method in this class a specified number of
times. Create several threads, start them all, and wait for all the threads to terminate.
Print the final value of the counter, and see whether it is correct.

Let the user enter the number of threads and the number of times that each thread
will increment the counter. You might need a fairly large number of increments to see
an error. And of course there can never be any error if you use just one thread. Your
program can use join() to wait for a thread to terminate (see Subsection 12.1.2).

2. Exercise 3.2 asked you to find the integer in the range 1 to 10000 that has the largest (solution)

number of divisors. Now write a program that uses multiple threads to solve the same
problem, but for the range 1 to 100000 (or less, if you don’t have a fast computer). By
using threads, your program will take less time to do the computation when it is run
on a multiprocessor computer. At the end of the program, output the elapsed time, the
integer that has the largest number of divisors, and the number of divisors that it has.
The program can be modeled on the sample prime-counting program ThreadTest2.java
from Subsection 12.1.3. For this exercise, you should simply divide up the problem into
parts and create one thread to do each part.

3. In the previous exercise, you divided up a large task into a small number of large pieces (solution)

and created a thread to execute each task. Because of the nature of the problem, this
meant that some threads had much more work to do than others—it is much easier to
find the number of divisors of a small number than it is of a big number. As discussed in
Subsection 12.3.1, a better approach is to break up the problem into a fairly large number
of smaller problems. Subsection 12.3.2 shows how to use a thread pool to execute the
tasks: Each thread in the pool runs in a loop in which it repeatedly takes a task from a
queue and carries out that task. Implement a thread pool strategy for solving the same
maximum-number-of-divisors problem as in the previous exercise.

To make things even more interesting, you should try a new technique for combining
the results from all the tasks: Use two queues in your program. Use a queue of tasks, as
usual, to hold the tasks that will be executed by the thread pool (Subsection 12.3.2). But
also use a queue of results produced by the threads. When a task completes, the result

http://math.hws.edu/eck/cs124/javanotes7/c12/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c12/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/ThreadTest2.java
http://math.hws.edu/eck/cs124/javanotes7/c12/ex3-ans.html

Exercises 655

from that task should be placed into the result queue. The main program can read results
from the second queue as they become available, and combine all the results to get the
final answer. The result queue will have to be a blocking queue (Subsection 12.3.3), since
the main program will have to wait for results to become available. Note that the main
program knows the exact number of results that it expects to read from the queue, so it
can do so in a for loop; when the for loop completes, the main program knows that all
the tasks have been executed.

4. In Exercise 11.3, you wrote a network server program that can send text files from a (solution)

specified directory to clients. That program used a single thread, which handled all the
communication with each client. Modify the program to turn it into a multithreaded
server. Use a thread pool of connection-handling threads and use an ArrayBlockingQueue
to get connected sockets from the main() routine to the threads. The sample program
DateServerWithThreads.java from Subsection 12.4.3 is an example of a multithreaded
server that works in this way. Your server program will work with the same client program
as the original server. You wrote the client program as the solution to Exercise 11.4.

5. It is possible to get an estimate of the mathematical constant π by using a random process. (solution)

The idea is based on the fact that the area of a circle of radius 1 is equal to π, and the
area of a quarter of that circle is π/4. Here is a picture of a quarter of a circle of radius 1,
inside a 1-by-1 square:

The area of the whole square is one, while the area of the part inside the circle is π/4. If
we choose a point in the square at random, the probability that it is inside the circle is
π/4. If we choose N points in the square at random, and if C of them are inside the circle,
we expect the fraction C/N of points that fall inside the circle to be about π/4. That is,
we expect 4*C/N to be close to π. If N is large, we can expect 4*C/N to be a good estimate
for π, and as N gets larger and larger, the estimate is likely to improve.

We can pick a random point in the square by choosing numbers x and y in the range
0 to 1 (using Math.random()). Since the equation of the circle is x*x+y*y=1, the point
lies inside the circle if x*x+y*y is less than 1. One trial consists of picking x and y and
testing whether x*x+y*y is less than 1. To get an estimate for π, you have to do many
trials, count the trials, and count the number of trials in which x*x+y*y is less than 1,

For this exercise, you should write a GUI program that does this computation and
displays the result. The computation should be done in a separate thread, and the results
should be displayed periodically. The program can use JLabels to the display the results.
It should set the text on the labels after running each batch of, say, one million trials.
(Setting the text after each trial doesn’t make sense, since millions of trials can be done in
one second, and trying to change the display millions of times per second would be silly.

Your program should have a “Run”/”Pause” button that controls the computation.
When the program starts, clicking “Run” will start the computation and change the text
on the button to “Pause”. Clicking “Pause” will cause the computation to pause. The

http://math.hws.edu/eck/cs124/javanotes7/c12/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/DateServerWithThreads.java
http://math.hws.edu/eck/cs124/javanotes7/c12/ex5-ans.html

Exercises 656

thread that does the computation should be started at the beginning of the program, but
should immediately go into the paused state until the “Run” button is pressed. Use the
wait() method in the thread to make it wait until “Run” is pressed. Use the notify()

method when the “Run” button is pressed to wake up the thread. Use a boolean signal
variable running to control whether the computation thread is paused. (The wait() and
notify() methods are covered in Subsection 12.3.4.)

Here is a picture of the program after it has run many trials:

You might want to start with a version of the program with no control button. In that
version, the computation thread can run continually from the time it is started. Once that
is working, you can add the button and the control feature.

To get you started, here is the code from the thread in my solution that runs one batch
of trials and updates the display labels:

for (int i = 0; i < BATCH SIZE; i++) {

double x = Math.random();

double y = Math.random();

trialCount++;

if (x*x + y*y < 1)

inCircleCount++;

}

double estimateForPi = 4 * ((double)inCircleCount / trialCount);

countLabel.setText(" Number of Trials: " + trialCount);

piEstimateLabel.setText(" Current Estimate: " + estimateForPi);

The variables trialCount and inCircleCount are of type long in order to allow the
number of trials to be more than the two billion or so that would be possible with a
variable of type int.

(I was going to ask you to use multiple computation threads, one for each available
processor, but I ran into an issue when using the Math.random()method in several threads.
This method requires synchronization, which causes serious performance problems when
several threads are using it to generate large amounts of random numbers. A solution
to this problem is to have each thread use its own object of type java.util.Random to
generate its random numbers (see Subsection 5.3.1). My on-line solution to this exercise
discusses this problem further.)

6. The chat room example from Subsection 12.5.2 can be improved in several ways. First, it (solution)

would be nice if the participants in the chat room could be identified by name instead of
by number. Second, it would be nice if one person could send a private message to another
person that would be seen just by that person rather than by everyone. Make these two
changes. You can start with a copy of the package netgame.chat. You will also need the
package netgame.common, which defines the netgame framework.

http://math.hws.edu/eck/cs124/javanotes7/c12/ex6-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/

Exercises 657

To make the first change, you will have to implement a subclass of Hub that can keep
track of client names as well as numbers. To get the name of a client to the hub, you
can override the extraHandshake() method both in the Hub subclass and in the Client
subclass. The extraHandshake() method is called as part of setting up the connection
between the client and the hub. It is called after the client has been assigned an ID
number but before the connection is considered to be fully connected. It should throw an
IOException if some error occurs during the setup process. Note that any messages that
are sent by the hub as part of the handshake must be read by the client and vice versa.
The extraHandshake() method in the Client is defined as:

protected void extraHandshake(ObjectInputStream in, ObjectOutputStream out)

throws IOException

while in the Hub, there is an extra parameter that tells the ID number of the client whose
connection is being set up:

protected void extraHandshake(in playerID, ObjectInputStream in,

ObjectOutputStream out) throws IOException

In the ChatRoomWindow class, the main() routine asks the user for the name of the
computer where the server is running. You can add some code there to ask the user their
name. You will have to decide what to do if two users want to use the same name. You
might consider having a list of users who are allowed to join the chat room. You might
even assign them passwords.

For the second improvement, personal messages, I suggest defining a PrivateMessage
class. A PrivateMessage object would include both the string that represents the message
and the ID numbers of the player to whom the message is being sent and the player who
sent the message. The hub will have to be programmed to know how to deal with such
messages. A PrivateMessage should only be sent by the hub to the client who is listed as
the recipient of the message. You need to decide how the user will input a private message
and how the user will select the recipient of the message.

If you attempt this exercise, you are likely to find it quite challenging.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/ChatRoomWindow.java

Quiz 658

Quiz on Chapter 12
(answers)

1. Write a complete subclass of Thread to represent a thread that writes out the numbers
from 1 to 10. Then write some code that would create and start a thread belonging to
that class.

2. Suppose that thrd is an object of type Thread. Explain the difference between calling
thrd.start() and calling thrd.run().

3. What is a race condition?

4. How does synchronization prevent race conditions, and what does it mean to say that
synchronization only provides mutual exclusion?

5. Suppose that a program uses a single thread that takes 4 seconds to run. Now suppose
that the program creates two threads and divides the same work between the two threads.
What can be said about the expected execution time of the program that uses two threads?

6. What is an ArrayBlockingQueue and how does it solve the producer/consumer problem?

7. What is a thread pool?

8. Network server programs are often multithreaded. Explain what this means and why it is
true.

9. Why does a multithreaded network server program often use many times more threads
than the number of available processors?

10. Consider the ThreadSafeCounter example from Subsection 12.1.3:

public class ThreadSafeCounter {

private int count = 0; // The value of the counter.

synchronized public void increment() {

count = count + 1;

}

synchronized public int getValue() {

return count;

}

}

The increment()method is synchronized so that the caller of the method can complete
the three steps of the operation “Get value of count,” “Add 1 to value,” “Store new value in
count” without being interrupted by another thread. But getValue() consists of a single,
simple step. Why is getValue() synchronized? (This is a deep and tricky question.)

http://math.hws.edu/eck/cs124/javanotes7/c12/quiz_answers.html

Chapter 13

Advanced GUI Programming

It’s possible to program a wide variety of GUI applications using only the techniques cov-
ered in Chapter 6. In many cases, the basic events, components, layouts, and graphics routines
covered in that chapter suffice. But the Swing graphical user interface library is far richer than
what we have seen so far, and it can be used to build highly sophisticated applications. This
chapter is a further introduction to Swing and other aspects of GUI programming. Although
the title of the chapter is “Advanced GUI Programming,” it is still just an introduction. Full
coverage of this topic would require at least another complete book.

13.1 Images and Resources

We have seen how to use the Graphics class to draw on a GUI component that is visible on
the computer’s screen. Often, however, it is useful to be able to create a drawing off-screen,
in the computer’s memory. It is also important to be able to work with images that are stored
in files.

To a computer, an image is just a set of numbers. The numbers specify the color of each
pixel in the image. The numbers that represent the image on the computer’s screen are stored
in a part of memory called a frame buffer . Many times each second, the computer’s video
card reads the data in the frame buffer and colors each pixel on the screen according to that
data. Whenever the computer needs to make some change to the screen, it writes some new
numbers to the frame buffer, and the change appears on the screen a fraction of a second later,
the next time the screen is redrawn by the video card.

Since it’s just a set of numbers, the data for an image doesn’t have to be stored in a frame
buffer. It can be stored elsewhere in the computer’s memory. It can be stored in a file on the
computer’s hard disk. Just like any other data file, an image file can be downloaded over the
Internet. Java includes standard classes and subroutines that can be used to copy image data
from one part of memory to another and to get data from an image file and use it to display
the image on the screen.

13.1.1 Images and BufferedImages

The class java.awt.Image represents an image stored in the computer’s memory. There are two
fundamentally different types of Image. One kind represents an image read from a source outside
the program, such as from a file on the computer’s hard disk or over a network connection.
The second type is an image created by the program, by drawing to it using a graphics context.
I refer to this second type as an off-screen canvas. An off-screen canvas is a region of the

659

CHAPTER 13. ADVANCED GUI PROGRAMMING 660

computer’s memory that can be used as a drawing surface. It is possible to draw to an off-screen
image using the same Graphics class that is used for drawing on the screen.

An Image of either type can be copied onto the screen (or onto an off-screen canvas)
using methods that are defined in the Graphics class. This is most commonly done in the
paintComponent() method of a JComponent. Suppose that g is the Graphics object that is
a parameter to the paintComponent() method, and that img is of type Image. Then the
statement

g.drawImage(img, x, y, this);

will draw the image img in a rectangular area in the component. The integer-valued parameters
x and y give the position of the upper-left corner of the rectangle in which the image is displayed,
and the rectangle is just large enough to hold the image. The fourth parameter, this is there
for technical reasons. In all cases in this book it will be either this or null. The parameter
is of type ImageObserver and a non-null value is needed only when the complete image might
not be available when the drawImage() method is called. This can happen, for example, if the
image is being read from a file or downloaded over the network. You don’t need it for an image
that the program has created itself in the computer’s memory or for an image that you are sure
has already been completely loaded. In those cases, the image observer parameter can be null.
However, even in those cases, using a non-null value does not cause any problems.

(In cases where you do need a non-null image observer, the special variable this, from
Subsection 5.6.1, is usually appropriate. The image observer parameter is there for technical
reasons having to do with the funny way Java treats image files. For most applications, you don’t
need to understand this, but here is how it works: g.drawImage() does not actually draw the
image in all cases. In some circumstances, it is possible that the complete image is not available
when this method is called. In that case, g.drawImage() merely initiates the drawing of the
image and returns immediately. Pieces of the image are drawn later, asynchronously, as they
become available. The question is, how do they get drawn? That’s where the image observer
comes in. When a piece of the image becomes available to be drawn, the system will inform the
ImageObserver, and it is the responsibility of the observer to make sure that the new piece of the
image will appear on the screen. Any JComponent object can act as an ImageObserver ; it will
call its repaint() method when notified that more of the image is available. The drawImage

method returns a boolean value to indicate whether the image has actually been drawn or not
when the method returns.)

There are a few useful variations of the drawImage() method. For example, it is possible to
scale the image as it is drawn to a specified width and height. This is done with the command

g.drawImage(img, x, y, width, height, imageObserver);

The parameters width and height give the size of the rectangle in which the image is displayed.
Another version makes it possible to draw just part of the image. In the command:

g.drawImage(img, dest x1, dest y1, dest x2, dest y2,

source x1, source y1, source x2, source y2, imageObserver);

the integers source x1, source y1, source x2, and source y2 specify the top-left and bottom-
right corners of a rectangular region in the source image. The integers dest x1, dest y1,
dest x2, and dest y2 specify opposite corners of a region in the destination graphics context.
The specified rectangle in the image is drawn, with scaling if necessary, to the specified rectangle
in the graphics context. For an example in which this is useful, consider a card game that needs
to display 52 different cards. Dealing with 52 image files can be cumbersome and inefficient,
especially for downloading over the Internet. So, all the cards might be put into a single image:

CHAPTER 13. ADVANCED GUI PROGRAMMING 661

(This image is from the Gnome desktop project, http://www.gnome.org, and is shown here
much smaller than its actual size.) Now just one Image object is needed. Drawing one card
means drawing a rectangular region from the image. This technique is used in a variation
of the sample program HighLowGUI.java from Subsection 6.6.6. In the original version, the
cards are represented by textual descriptions such as “King of Hearts.” In the new version,
HighLowWithImages.java, the cards are shown as images. You should try the program, but
here’s how it looks with the card images:

In the program, the pictures of the cards are drawn using the following method. The instance
variable cardImages is a variable of type Image that represents the image that is shown above,
containing 52 cards, plus two Jokers and a face-down card. Each card is 79 by 123 pixels. These
numbers are used, together with the suit and value of the card, to compute the corners of the
source rectangle for the drawImage() command:

/**

* Draws a card in a 79x123 pixel picture of a card with its

* upper left corner at a specified point (x,y). Drawing the card

* requires the image file "cards.png".

* @param g The graphics context used for drawing the card.

* @param card The card that is to be drawn. If the value is null, then a

* face-down card is drawn.

* @param x the x-coord of the upper left corner of the card

http://www.gnome.org
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/HighLowWithImages.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 662

* @param y the y-coord of the upper left corner of the card

*/

public void drawCard(Graphics g, Card card, int x, int y) {

int cx; // x-coord of upper left corner of the card inside cardsImage

int cy; // y-coord of upper left corner of the card inside cardsImage

if (card == null) {

cy = 4*123; // coords for a face-down card.

cx = 2*79;

}

else {

cx = (card.getValue()-1)*79;

switch (card.getSuit()) {

case Card.CLUBS:

cy = 0;

break;

case Card.DIAMONDS:

cy = 123;

break;

case Card.HEARTS:

cy = 2*123;

break;

default: // spades

cy = 3*123;

break;

}

}

g.drawImage(cardImages,x,y,x+79,y+123,cx,cy,cx+79,cy+123,this);

}

I will tell you later in this section how the image file, cards.png, can be loaded into the program.

∗ ∗ ∗

In addition to images loaded from files, it is possible to create images by drawing to an
off-screen canvas. An off-screen canvas can be represented by an object belonging to the class
BufferedImage, which is defined in the package java.awt.image. BufferedImage is a subclass of
Image, so that once you have a BufferedImage, you can copy it into a graphics context g using one
of the g.drawImage() methods, just as you would do with any other image. A BufferedImage
can be created using the constructor

public BufferedImage(int width, int height, int imageType)

where width and height specify the width and height of the image in pixels, and imageType

can be one of several constants that are defined in the BufferedImage. The image type
specifies how the color of each pixel is represented. One likely value for imageType is
BufferedImage.TYPE INT RGB, which specifies that the color of each pixel is a usual RGB
color, with red, green and blue components in the range 0 to 255. The image type
BufferedImage.TYPE INT ARGB represents an RGB image with “transparency.” The image type
BufferedImage.TYPE BYTE GRAY can be used to create a grayscale image in which the only
possible colors are shades of gray.

To draw to a BufferedImage, you need a graphics context that is set up to do its drawing on
the image. If OSC is of type BufferedImage, then the method

OSC.createGraphics()

CHAPTER 13. ADVANCED GUI PROGRAMMING 663

returns an object of type Graphics2D that can be used for drawing on the image. (Graphics2D
is a subclass of Graphics. See Subsection 6.2.5 and the next section. This means you can also
use the object as a regular Graphics drawing context.)

There are several reasons why a programmer might want to draw to an off-screen canvas.
One is to simply keep a copy of an image that is shown on the screen. Remember that a picture
that is drawn on a component can be lost, for example when the component is resized. This
means that you have to be able to redraw the picture on demand, and that in turn means
keeping enough information around to enable you to redraw the picture. One way to do this
is to keep a copy of the picture in an off-screen canvas. Whenever the on-screen picture needs
to be redrawn, you just have to copy the contents of the off-screen canvas onto the screen.
Essentially, the off-screen canvas allows you to save a copy of the color of every individual
pixel in the picture. The sample program PaintWithOffScreenCanvas.java is a little painting
program that uses an off-screen canvas in this way. In this program, the user can draw curves,
lines, and various shapes; a “Tool” menu allows the user to select the thing to be drawn. There
is also an “Erase” tool and a “Smudge” tool that I will get to later. A BufferedImage is used
to store the user’s picture. When the user changes the picture, the changes are made to the
image, and the changed image is then copied to the screen. No record is kept of the shapes
that the user draws; the only record is the color of the individual pixels in the off-screen image.
(You should contrast this with the program SimplePaint2.java in Subsection 7.3.3, where the
user’s drawing is recorded as a list of objects that represent the shapes that the user drew.)

You should try the program. Try drawing a Filled Rectangle on top of some other shapes.
As you drag the mouse, the rectangle stretches from the starting point of the mouse drag to the
current mouse location. As the mouse moves, the underlying picture seems to be unaffected—
parts of the picture can be covered up by the rectangle and later uncovered as the mouse moves,
and they are still there. What this means is that the rectangle that is shown as you drag the
mouse can’t actually be part of the off-screen canvas, since drawing something into an image
means changing the color of some pixels in the image. The previous colors of those pixels are
not stored anywhere else and so are permanently lost. In fact, as you draw a line, rectangle,
or oval in PaintWithOffScreenCanvas, the shape that is shown as you drag the mouse is not
drawn to the off-screen canvas at all. Instead, the paintComponent() method draws the shape
on top of the contents of the canvas. Only when you release the mouse does the shape become
a permanent part of the off-screen canvas. This illustrates the point that when an off-screen
canvas is used, not everything that is visible on the screen has to be drawn on the canvas.
Some extra stuff can be drawn on top of the contents of the canvas by the paintComponent()
method. The other tools are handled differently from the shape tools. For the curve, erase, and
smudge tools, the changes are made to the canvas immediately, as the mouse is being dragged.

Let’s look at how an off-screen canvas is used in this program. The canvas is represented
by an instance variable, OSC, of type BufferedImage. The size of the canvas must be the same
size as the panel on which the canvas is displayed. The size can be determined by calling the
getWidth() and getHeight() instance methods of the panel. Furthermore, when the canvas is
first created, it should be filled with the background color, which is represented in the program
by an instance variable named fillColor. All this is done by the method:

/**

* This method creates the off-screen canvas and fills it with the current

* fill color.

*/

private void createOSC() {

OSC = new BufferedImage(getWidth(),getHeight(),BufferedImage.TYPE INT RGB);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintWithOffScreenCanvas.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 664

Graphics osg = OSC.createGraphics();

osg.setColor(fillColor);

osg.fillRect(0,0,getWidth(),getHeight());

osg.dispose();

}

Note how it uses OSC.createGraphics() to obtain a graphics context for drawing to the image.
Also note that the graphics context is disposed at the end of the method. When you create
a graphics context, it is good practice to dispose of it when you are finished with it. There
still remains the problem of where to call this method. The problem is that the width and
height of the panel object are not set until some time after the panel object is constructed. If
createOSC() is called in the constructor, getWidth() and getHeight() will return the value
zero and we won’t get an off-screen image of the correct size. The approach that I take in
PaintWithOffScreenCanvas is to call createOSC() in the paintComponent() method, the
first time the paintComponent() method is called. At that time, the size of the panel has
definitely been set, but the user has not yet had a chance to draw anything. With this in mind
you are ready to understand the paintComponent() method:

public void paintComponent(Graphics g) {

/* First create the off-screen canvas, if it does not already exist. */

if (OSC == null)

createOSC();

/* Copy the off-screen canvas to the panel. Since we know that the

image is already completely available, the fourth, "ImageObserver"

parameter to g.drawImage() can be null. Since the canvas completely

fills the panel, there is no need to call super.paintComponent(g). */

g.drawImage(OSC,0,0,null);

/* If the user is currently dragging the mouse to draw a line, oval,

or rectangle, draw the shape on top of the image from the off-screen

canvas, using the current drawing color. (This is not done if the

user is drawing a curve or using the smudge, curve, or erase tool.) */

if (dragging && SHAPE TOOLS.contains(currentTool)) {

g.setColor(currentColor);

putCurrentShape(g);

}

}

Here, dragging is a boolean instance variable that is set to true while the user is dragging the
mouse, and currentTool tells which tool is currently in use. The possible tools are defined by
an enum named Tool, and SHAPE TOOLS is a variable of type EnumSet<Tool> that contains the
line, oval, rectangle, filled oval, and filled rectangle tools. (See Subsection 10.2.4.)

You might notice that there is a problem if the size of the panel is ever changed, since the
size of the off-screen canvas will not be changed to match. The PaintWithOffScreenCanvas

program does not allow the user to resize the program’s window, so this is not an issue in
that program. If we want to allow resizing, however, a new off-screen canvas must be created
whenever the size of the panel changes. One simple way to do this is to check the size of the
canvas in the paintComponent() method and to create a new canvas if the size of the canvas
does not match the size of the panel:

CHAPTER 13. ADVANCED GUI PROGRAMMING 665

if (OSC == null || getWidth() != OSC.getWidth() || getHeight() != OSC.getHeight())

createOSC();

Of course, this will discard the picture that was contained in the old canvas unless some ar-
rangement is made to copy the picture from the old canvas to the new one before the old canvas
is discarded.

The other point in the program where the off-screen canvas is used is during a mouse-drag
operation, which is handled in the mousePressed(), mouseDragged(), and mouseReleased()

methods. The strategy that is implemented was discussed above. Shapes are drawn to the off-
screen canvas only at the end of the drag operation, in the mouseReleased() method. However,
as the user drags the mouse, the part of the image over which the shape appears is re-copied
from the canvas onto the screen each time the mouse is moved. Then the paintComponent()

method draws the shape that the user is creating on top of the image from the canvas. For
the non-shape (curve, smudge, and erase) tools, on the other hand, changes are made directly
to the canvas, and the region that was changed is repainted so that the change will appear on
the screen. (By the way, the program uses a version of the repaint() method that repaints
just a part of a component. The command repaint(x,y,width,height) tells the system to
repaint the rectangle with upper left corner (x,y) and with the specified width and height.
This can be substantially faster than repainting the entire component.) See the source code,
PaintWithOffScreenCanvas.java, if you want to see how it’s all done.

∗ ∗ ∗

One traditional use of off-screen canvasses is for double buffering . In double-buffering, the
off-screen image is an exact copy of the image that appears on screen; whenever the on-screen
picture needs to be redrawn, the new picture is drawn step-by-step to an off-screen image.
This can take some time. If all this drawing were done on screen, the user might see the image
flicker as it is drawn. Instead, the long drawing process takes place off-screen and the completed
image is then copied very quickly onto the screen. The user doesn’t see all the steps involved
in redrawing. This technique can be used to implement smooth, flicker-free animation.

The term “double buffering” comes from the term “frame buffer,” which refers to the re-
gion in memory that holds the image on the screen. In fact, true double buffering uses two
frame buffers. The video card can display either frame buffer on the screen and can switch
instantaneously from one frame buffer to the other. One frame buffer is used to draw a new
image for the screen. Then the video card is told to switch from one frame buffer to the other.
No copying of memory is involved. Double-buffering as it is implemented in Java does require
copying, which takes some time and is not perfectly flicker-free.

In Java’s older AWT graphical API, it was up to the programmer to do double buffering by
hand. In the Swing graphical API, double buffering is applied automatically by the system, and
the programmer doesn’t have to worry about it. (It is possible to turn this automatic double
buffering off in Swing, but there is seldom a good reason to do so.)

One final historical note about off-screen canvasses: There is an alternative way to create
them. The Component class defines the following instance method, which can be used in any
GUI component object:

public Image createImage(int width, int height)

This method creates an Image with a specified width and height. You can use this image
as an off-screen canvas in the same way that you would a BufferedImage. In fact, you can
expect that in a modern version of Java, the image that is returned by this method is in fact

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintWithOffScreenCanvas.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 666

a BufferedImage. The createImage() method was part of Java from the beginning, before the
BufferedImage class was introduced.

13.1.2 Working With Pixels

One good reason to use a BufferedImage is that it allows easy access to the colors of individual
pixels. If image is of type BufferedImage, then we have the methods:

• image.getRGB(x,y) — returns an int that encodes the color of the pixel at coordinates
(x,y) in the image. The values of the integers x and y must lie within the image. That is,
it must be true that 0 <= x < image.getWidth() and 0 <= y < image.getHeight();
if not, then an exception is thrown.

• image.setRGB(x,y,rgb) — sets the color of the pixel at coordinates (x,y) to the color
encoded by rgb. Again, x and y must be in the valid range. The third parameter, rgb, is
an integer that encodes the color.

These methods use integer codes for colors. If c is of type Color, the integer code for the color
can be obtained by calling c.getRGB(). Conversely, if rgb is an integer that encodes a color,
the corresponding Color object can be obtained with the constructor call new Color(rgb).
This means that you can use

Color c = new Color(image.getRGB(x,y))

to get the color of a pixel as a value of type Color. And if c is of type Color, you can set a pixel
to that color with

image.setRGB(x, y, c.getRGB());

The red, green, and blue components of a color are represented as 8-bit integers, in the
range 0 to 255. When a color is encoded as a single int, the blue component is contained in
the eight low-order bits of the int, the green component in the next lowest eight bits, and the
red component in the next eight bits. (The eight high order bits store the “alpha component”
of the color, which we’ll encounter in the next section.) It is easy to translate between the two
representations using the shift operators << and >> and the bitwise logical operators &

and |. (I have not covered these operators previously in this book. Briefly: If A and B are
integers, then A << B is the integer obtained by shifting each bit of A, B bit positions to the
left; A >> B is the integer obtained by shifting each bit of A, B bit positions to the right; A & B

is the integer obtained by applying the logical and operation to each pair of bits in A and
B; and A | B is obtained similarly, using the logical or operation. For example, using 8-bit
binary numbers, we have: 01100101 & 10100001 is 00100001, while 01100101 | 10100001 is
11100101.) You don’t necessarily need to understand these operators. Here are incantations
that you can use to work with color codes:

/* Suppose that rgb is an int that encodes a color.

To get separate red, green, and blue color components: */

int red = (rgb >> 16) & 0xFF;

int green = (rgb >> 8) & 0xFF;

int blue = rgb & 0xFF;

/* Suppose that red, green, and blue are color components in

the range 0 to 255. To combine them into a single int: */

int rgb = (red << 16) | (green << 8) | blue;

CHAPTER 13. ADVANCED GUI PROGRAMMING 667

∗ ∗ ∗

An example of using pixel colors in a BufferedImage is provided by the smudge tool in
the sample program PaintWithOffScreenCanvas.java. The purpose of this tool is to smear the
colors of an image, as if it were drawn in wet paint. For example, if you rub the middle of a
black rectangle with the smudge tool, you’ll get something like this:

This is an effect that can only be achieved by manipulating the colors of individual pixels! Here’s
how it works: when the user presses the mouse using the smudge tool, the color components
of a 7-by-7 block of pixels are copied from the off-screen canvas into arrays named smudgeRed,
smudgeGreen and smudgeBlue. This is done in the mousePressed() routine with the following
code:

int w = OSC.getWidth();

int h = OSC.getHeight();

int x = evt.getX();

int y = evt.getY();

for (int i = 0; i < 7; i++)

for (int j = 0; j < 7; j++) {

int r = y + j - 3;

int c = x + i - 3;

if (r < 0 || r >= h || c < 0 || c >= w) {

// A -1 in the smudgeRed array indicates that the

// corresponding pixel was outside the canvas.

smudgeRed[i][j] = -1;

}

else {

int color = OSC.getRGB(c,r);

smudgeRed[i][j] = (color >> 16) & 0xFF;

smudgeGreen[i][j] = (color >> 8) & 0xFF;

smudgeBlue[i][j] = color & 0xFF;

}

}

The arrays are of type double[][] because I am going to do some computations with them that
require real numbers. As the user moves the mouse, the colors in the array are blended with
the colors in the image, just as if you were mixing wet paint by smudging it with your finger.
That is, the colors at the new mouse position in the image are replaced with a weighted average
of the current colors in the image and the colors in the arrays. This has the effect of moving
some of the color from the previous mouse position to the new mouse position. At the same
time, the colors in the arrays are replaced by a weighted average of the old colors in the arrays
and the colors from the image. This has the effect of moving some color from the image into
the arrays. This is done using the following code for each pixel position, (c,r), in a 7-by-7
block around the new mouse location:

int curCol = OSC.getRGB(c,r);

int curRed = (curCol >> 16) & 0xFF;

int curGreen = (curCol >> 8) & 0xFF;

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintWithOffScreenCanvas.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 668

int curBlue = curCol & 0xFF;

int newRed = (int)(curRed*0.7 + smudgeRed[i][j]*0.3);

int newGreen = (int)(curGreen*0.7 + smudgeGreen[i][j]*0.3);

int newBlue = (int)(curBlue*0.7 + smudgeBlue[i][j]*0.3);

int newCol = newRed << 16 | newGreen << 8 | newBlue;

OSC.setRGB(c,r,newCol);

smudgeRed[i][j] = curRed*0.3 + smudgeRed[i][j]*0.7;

smudgeGreen[i][j] = curGreen*0.3 + smudgeGreen[i][j]*0.7;

smudgeBlue[i][j] = curBlue*0.3 + smudgeBlue[i][j]*0.7;

13.1.3 Resources

Throughout this textbook, up until now, we have been thinking of a program as made up
entirely of Java code. However, programs often use other types of data, including images,
sounds, and text, as part of their basic structure. These data are referred to as resources. An
example is the image file, cards.png, that was used in the HighLowWithImages.java program
earlier in this section. This file is part of the program. The program needs it in order to run.
The user of the program doesn’t need to know that this file exists or where it is located; as far
as the user is concerned, it is just part of the program. The program of course, does need some
way of locating the resource file and loading its data.

Resources are ordinarily stored in files that are in the same locations as the compiled class
files for the program. Class files are located and loaded by something called a class loader ,
which is represented in Java by an object of type ClassLoader. A class loader has a list of
locations where it will look for class files. This list is called the class path . It includes the
location where Java’s standard classes are stored. It generally includes the current directory.
If the program is stored in a jar file, the jar file is included on the class path. In addition to
class files, a ClassLoader is capable of finding resource files that are located on the class path
or in subdirectories of locations that are on the class path.

The first step in using a resource is to obtain a ClassLoader and to use it to locate the
resource file. In the HighLowWithImages program, this is done with:

ClassLoader cl = getClass().getClassLoader();

URL imageURL = cl.getResource("cards.png");

The idea of the first line is that in order to get a class loader, you have to ask a class that
was loaded by the class loader. Here, getClass() is a reference to the object that represents
the actual class, HighLowWithImages. The getClass() method is an instance method in class
Object and so can be used with any object. Another way to get a reference to a class loader is
to use ClassName.class, where ClassName is the name of any class. For example, I could have
used HighLoadWithImages.class.getClassLoader() to get the class loader in this case.

The second line in the above code uses the class loader to locate the resource file named
cards.png. The return value of cl.getResource() is of type java.net.URL, and it represents
the location of the resource rather than the resource itself. If the resource file cannot be found,
then the return value is null. The class URL was discussed in Subsection 11.4.1.

Often, resources are stored not directly on the class path but in a subdirectory. In that
case, the parameter to getResource() must be a path name that includes the directory path
to the resource. For example, suppose that the image file “cards.png” were stored in a directory
named images inside a directory named resources, where resources is directly on the class
path. Then the path to the file is “resources/images/cards.png” and the command for locating
the resource would be

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/HighLowWithImages.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 669

URL imageURL = cl.getResource("resources/images/cards.png");

Once you have a URL that represents the location of a resource file, you could use a URL-
Connection, as discussed in Subsection 11.4.1, to read the contents of that file. However, Java
provides more convenient methods for loading several types of resources. For loading image
resources, a convenient method is available in the class java.awt.Toolkit. It can be used as
in the following line from HighLowWithImages, where cardImages is an instance variable of
type Image and imageURL is the URL that represents the location of the image file:

cardImages = Toolkit.getDefaultToolkit().createImage(imageURL);

This still does not load the image completely—that will only be done later, for example when
cardImages is used in a drawImage command. Another technique, which does read the image
completely, is to use the ImageIO.read() method, which will be discussed below in Subsec-
tion 13.1.5

∗ ∗ ∗

Sounds represent another kind of resource that a program might want to use. For some
reason, the easiest way to playing a sound is to use a static method in the Applet class, in
package java.awt:

public static AudioClip newAudioClip(URL soundURL)

Since this is a static method, it can be used in any program, not just in applets, simply by
calling it as Applet.newAudioClip(soundURL). The parameter is the URL of a sound resource,
and the return value is of type java.applet.AudioClip. Once you have an AudioClip, you can
call its play() method to play the audio clip from the beginning.

Here is a method that puts all this together to load and play the sound from an audio
resource file:

private void playAudioResource(String audioResourceName) {

ClassLoader cl = getClass().getClassLoader();

URL resourceURL = cl.getResource(audioResourceName);

if (resourceURL != null) {

AudioClip sound = Applet.newAudioClip(resourceURL);

sound.play();

}

}

This method is from a sample program SoundAndCursorDemo.java that will be discussed in
the next subsection. Of course, if you plan to reuse the sound often, it would be better to load
the sound once into an instance variable of type AudioClip, which could then be used to play
the sound any number of times, without the need to reload it each time.

The AudioClip class supports audio files in the common WAV, AIFF, and AU formats.

13.1.4 Cursors and Icons

The position of the mouse is represented on the computer’s screen by a small image called a
cursor . In Java, the cursor is represented by an object of type java.awt.Cursor. A Cursor
has an associated image. It also has a hot spot , which is a Point that specifies the pixel within
the image that corresponds to the exact position on the screen where the mouse is pointing.
For example, for a typical “arrow” cursor, the hot spot is the tip of the arrow. For a “crosshair”
cursor, the hot spot is the center of the crosshairs.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SoundAndCursorDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 670

The Cursor class defines several standard cursors, which are identified by constants such
as Cursor.CROSSHAIR CURSOR and Cursor.DEFAULT CURSOR. You can get a standard cursor by
calling the static method Cursor.getPredefinedCursor(code), where code is one of the
constants that identify the standard cursors. It is also possible to create a custom cursor from
an Image. The Image might be obtained as an image resource, as described in the previous
subsection. It could even be a BufferedImage that you create in your program. It should be
small, maybe 16-by-16 or 24-by-24 pixels. (Some platforms might only be able to handle certain
cursor sizes; see the documentation for Toolkit.getBestCursorSize() for more information.)
A custom cursor can be created by calling the static method createCustomCursor() in the
Toolkit class:

Cursor c = Toolkit.getDefaultToolkit().createCustomCursor(image,hotSpot,name);

where hotSpot is of type Point and name is a String that will act as a name for the cursor (and
which serves no real purpose that I know of).

Cursors are associated with GUI components. When the mouse moves over a component,
the cursor changes to whatever Cursor is associated with that component. To associate a Cursor
with a component, call the component’s instance method setCursor(cursor). For example,
to set the cursor for a JPanel, panel, to be the standard “wait” cursor:

panel.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT CURSOR));

To reset the cursor to be the default cursor, you can use:

panel.setCursor(Cursor.getDefaultCursor());

To set the cursor to be an image that is defined in an image resource file named imageResource,
you might use:

ClassLoader cl = getClass().getClassLoader();

URL resourceURL = cl.getResource(imageResource);

if (resourceURL != null) {

Toolkit toolkit = Toolkit.getDefaultToolkit();

Image image = toolkit.createImage(resourceURL);

Point hotSpot = new Point(7,7);

Cursor cursor = toolkit.createCustomCursor(image, hotSpot, "mycursor");

panel.setCursor(cursor);

}

The sample program SoundAndCursorDemo.java shows how to use predefined and custom
cursors and how to play sounds from resource files. The program has several buttons that you
can click. Some of the buttons change the cursor that is associated with the main panel of the
program. Some of the buttons play sounds. When you play a sound, the cursor is reset to be
the default cursor.

Another standard use of images in GUI interfaces is for icons. An icon is simply a small
picture. As we’ll see in Section 13.3, icons can be used on Java’s buttons, menu items, and
labels; in fact, for our purposes, an icon is simply an image that can be used in this way.

An icon is represented by an object of type Icon, which is actually an interface rather than
a class. The class ImageIcon, which implements the Icon interface, is used to create icons from
Images. If image is a (rather small) Image, then the constructor call new ImageIcon(image)

creates an ImageIcon whose picture is the specified image. Often, the image comes from a
resource file. We will see examples of this later in this chapter.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SoundAndCursorDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 671

13.1.5 Image File I/O

The class javax.imageio.ImageIO makes it easy to save images from a program into files
and to read images from files into a program. This would be useful in a program such as
PaintWithOffScreenCanvas, so that the users would be able to save their work and to open
and edit existing images. (See Exercise 13.1.)

There are many ways that the data for an image could be stored in a file. Many standard
formats have been created for doing this. Java supports at least three standard image formats:
PNG, JPEG, and GIF. (Individual implementations of Java might support more.) The JPEG
format is “lossy,” which means that the picture that you get when you read a JPEG file is
only an approximation of the picture that was saved. Some information in the picture has been
lost. Allowing some information to be lost makes it possible to compress the image into a lot
fewer bits than would otherwise be necessary. Usually, the approximation is quite good. It
works best for photographic images and worst for simple line drawings. The PNG format, on
the other hand is “lossless,” meaning that the picture in the file is an exact duplicate of the
picture that was saved. A PNG file is compressed, but not in a way that loses information. The
compression works best for images made up mostly of large blocks of uniform color; it works
worst for photographic images. GIF is an older format that is limited to just 256 colors in an
image; it has mostly been superseded by PNG.

Suppose that image is a BufferedImage. The image can be saved to a file simply by calling

ImageIO.write(image, format, file)

where format is a String that specifies the image format of the file and file is a File that
specifies the file that is to be written. (See Subsection 11.2.2 for information about the File
class.) The format string should ordinarily be either "PNG" or "JPEG", although other formats
might be supported.

ImageIO.write() is a static method in the ImageIO class. It returns a boolean value
that is false if the image format is not supported. That is, if the specified image format is
not supported, then the image is not saved, but no exception is thrown. This means that you
should always check the return value! For example:

boolean hasFormat = ImageIO.write(OSC,format,selectedFile);

if (! hasFormat)

throw new Exception(format + " format is not available.");

If the image format is recognized, it is still possible that an IOException might be thrown when
the attempt is made to send the data to the file.

Usually, the file to be used in ImageIO.write() will be selected by the user using a JFile-
Chooser, as discussed in Subsection 11.2.3. For example, here is a typical method for saving an
image. (The use of “this” as a parameter in several places assumes that this method is defined
in a subclass of JComponent.)

/**

* Attempts to save an image to a file selected by the user.

* @param image the BufferedImage to be saved to the file

* @param format the format of the image, probably either "PNG" or "JPEG"

*/

private void doSaveFile(BufferedImage image, String format) {

if (fileDialog == null)

fileDialog = new JFileChooser();

fileDialog.setSelectedFile(new File("image." + format.toLowerCase()));

CHAPTER 13. ADVANCED GUI PROGRAMMING 672

fileDialog.setDialogTitle("Select File For Saved Image");

int option = fileDialog.showSaveDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

if (selectedFile.exists()) { // Ask the user whether to replace the file.

int response = JOptionPane.showConfirmDialog(null,

"The file \"" + selectedFile.getName()

+ "\" already exists.\nDo you want to replace it?",

"Confirm Save",

JOptionPane.YES NO OPTION,

JOptionPane.WARNING MESSAGE);

if (response != JOptionPane.YES OPTION)

return; // User does not want to replace the file.

}

try {

boolean hasFormat = ImageIO.write(image,format,selectedFile);

if (! hasFormat)

throw new Exception(format + " format is not available.");

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, an error occurred while trying to save image.");

e.printStackTrace();

}

}

∗ ∗ ∗

The ImageIO class also has a static read() method for reading an image from a file into
a program. The method

ImageIO.read(inputFile)

takes a variable of type File as a parameter and returns a BufferedImage. The return value
is null if the file does not contain an image that is stored in a supported format. Again, no
exception is thrown in this case, so you should always be careful to check the return value. It
is also possible for an IOException to occur when the attempt is made to read the file. There
is another version of the read() method that takes an InputStream instead of a file as its
parameter, and a third version that takes a URL.

Earlier in this section, we encountered another method for reading an image from a URL,
the createImage() method from the Toolkit class. The difference is that ImageIO.read()

reads the image data completely and stores the result in a BufferedImage. On the other hand,
createImage() does not actually read the data; it really just stores the image location and
the data won’t be read until later, when the image is used. This has the advantage that the
createImage() method itself can complete very quickly. ImageIO.read(), on the other hand,
can take some time to execute.

13.2 Fancier Graphics

The graphics commands provided by the Graphics class are sufficient for many purposes.
However, recent versions of Java provide a much larger and richer graphical toolbox in the form

CHAPTER 13. ADVANCED GUI PROGRAMMING 673

of the class java.awt.Graphics2D. I mentioned Graphics2D in Subsection 6.2.5 and promised
to discuss it further in this chapter. You have already seen a few of the ideas that are covered
in this section, at least briefly, but I cover them in more detail here.

Graphics2D is a subclass of Graphics, so all of the graphics commands that you already
know can be used with a Graphics2D object. In fact, when you obtain a Graphics context for
drawing on a Swing component, the graphics object is actually of type Graphics2D and can
be type-cast to gain access to the advanced Graphics2D graphics commands. Furthermore,
BufferedImage has the instance method, createGraphics(), that returns a graphics context
of type Graphics2D. As mentioned in Subsection 6.2.5, to use Graphics2D commands in the
paintComponent() method of a Swing component, you can use code of the form:

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics g2 = (Graphics2D)g;

.

. // Draw to the component using g2 (and g).

.

}

Note that when you do this, g and g2 are just two variables that refer to the same object, so
they both draw to the same drawing surface and have the same state. When properties of g2,
such as drawing color, are changed, the changes also apply to g. By saying

Graphics2D g2 = (Graphics2D)g.create();

you can obtain a newly created graphics context. The object created by g.create() is a
graphics context that draws to the same drawing surface as g and that initially has all the same
properties as g. However, it is a separate object, so that changing properties in g2 has no effect
on g. This can be useful if you want to keep an unmodified copy of the original graphics context
around for some drawing operations. (In this case, it is good practice to call g2.dispose() to
dispose of the new graphics context when you are finished using it.)

13.2.1 Measuring Text

Although this section is mostly about Graphics2D, we start with a topic that has nothing to do
with it.

Often, when drawing a string, it’s important to know how big the image of the string will
be. For example, you need this information if you want to center a string in a component. Or
if you want to know how much space to leave between two lines of text, when you draw them
one above the other. Or if the user is typing the string and you want to position a cursor at the
end of the string. In Java, questions about the size of a string can be answered by an object
belonging to the standard class java.awt.FontMetrics.

There are several lengths associated with any given font. Some of them are shown in this
illustration:

Measuring

Strings

Ascent

Descent
Leading

Lineheight

CHAPTER 13. ADVANCED GUI PROGRAMMING 674

The dashed lines in the illustration are the baselines of the two lines of text. The baseline
of a string is the line on which the bases of the characters rest. The suggested distance between
two baselines, for single-spaced text, is known as the lineheight of the font. The ascent is
the distance that tall characters can rise above the baseline, and the descent is the distance
that tails like the one on the letter “g” can descend below the baseline. The ascent and descent
do not add up to the lineheight, because there should be some extra space between the tops of
characters in one line and the tails of characters on the line above. The extra space is called
leading . (The term comes from the time when lead blocks were used for printing. Characters
were formed on blocks of lead that were lined up to make up the text of a page, covered with
ink, and pressed onto paper to print the page. Extra, blank “leading” was used to separate the
lines of characters.) All these quantities can be determined by calling instance methods in a
FontMetrics object. There are also methods for determining the width of a character and the
total width of a string of characters.

Recall that a font in Java is represented by the class Font. A FontMetrics object is asso-
ciated with a given font and is used to measure characters and strings in that font. If font

is of type Font and g is a graphics context, you can get a FontMetrics object for the font
by calling g.getFontMetrics(font). If fm is the variable that refers to the FontMetrics ob-
ject, then the ascent, descent, leading, and lineheight of the font can be obtained by calling
fm.getAscent(), fm.getDescent(), fm.getLeading(), and fm.getHeight(). If ch is a char-
acter, then fm.charWidth(ch) is the width of the character when it is drawn in that font. If
str is a string, then fm.stringWidth(str) is the width of the string when drawn in that font.
For example, here is a paintComponent() method that shows the message “Hello World” in
the exact center of the component:

public void paintComponent(Graphics g) {

super.paintComponent(g);

int strWidth, strHeight; // Width and height of the string.

int centerX, centerY; // Coordinates of the center of the component.

int baseX, baseY; // Coordinates of the baseline of the string.

int topOfString; // y-coordinate of the top of the string.

centerX = getWidth() / 2;

centerY = getHeight() / 2;

Font font = g.getFont(); // What font will g draw in?

FontMetrics fm = g.getFontMetrics(font);

strWidth = fm.stringWidth("Hello World");

strHeight = fm.getAscent(); // Note: There are no tails on and

// of the chars in the string! So we

// don’t need to account for descent.

baseX = centerX - (strWidth/2); // Move back from center by half the

// width of the string.

topOfString = centerY - (strHeight/2); // Move up from center by half

// the height of the string.

baseY = topOfString + fm.getAscent(); // Baseline is fm.getAscent() pixels

// below the top of the string.

g.drawString("Hello World", baseX, baseY); // Draw the string.

}

CHAPTER 13. ADVANCED GUI PROGRAMMING 675

For the height of the string in this method, I use fm.getAscent(). If I were drawing “Goodbye
World” instead of “Hello World,” I would have used fm.getAscent() + fm.getDescent(),
where the descent is added to the height in order to take into account the tail on the “y” in
“Goodbye”. The value of baseX is computed to be the amount of space between the left edge
of the component and the start of the string. It is obtained by subtracting half the width of the
string from the horizontal center of the component. This will center the string horizontally in
the component. The next line computes the position of the top of the string in the same way.
However, to draw the string, we need the y-coordinate of the baseline, not the y-coordinate of
the top of the string. The baseline of the string is below the top of the string by an amount
equal to the ascent of the font.

There is an example of centering a two-line block of text in the sample program Transparen-
cyDemo.java, which is discussed in the next subsection.

13.2.2 Transparency

A color is represented by red, blue, and green components. In Java’s usual representation, each
component is an eight-bit number in the range 0 to 255. The three color components can be
packed into a 32-bit integer, but that only accounts for 24 bits in the integer. What about the
other eight bits? They don’t have to be wasted. They can be used as a fourth component of
the color, the alpha component . The alpha component can be used in several ways, but it
is most commonly associated with transparency . When you draw with a transparent color,
it’s like laying down a sheet of colored glass. It doesn’t completely obscure the part of the
image that is colored over. Instead, the background image is blended with the transparent
color that is used for drawing—as if you were looking at the background through colored glass.
This type of drawing is properly referred to as alpha blending , and it is not equivalent to true
transparency; nevertheless, most people refer to it as transparency.

The value of the alpha component determines how transparent that color is. Actually, the
alpha component gives the opaqueness of the color. Opaqueness is the opposite of trans-
parency. If something is fully opaque, you can’t see through it at all; if something is almost
fully opaque, then it is just a little transparent; and so on. When the alpha component of a color
has the maximum possible value, the color is fully opaque. When you draw with a fully opaque
color, that color simply replaces the color of the background over which you draw. Except for a
little example in Subsection 5.3.3, this is the only type of color that we have used up until now.
If the alpha component of a color is zero, then the color is perfectly transparent, and drawing
with that color has no effect at all. Intermediate values of the alpha component give partially
opaque colors that will blend with the background when they are used for drawing.

The sample program TransparencyDemo.java can help you to understand transparency.
When you run the program you will see a display area containing a triangle, an oval, a rect-
angle, and some text. Sliders at the bottom of the window allow you to control the degree of
transparency of each shape. When a slider is moved all the way to the right, the corresponding
shape is fully opaque; all the way to the left, and the shape is fully transparent.

∗ ∗ ∗

Colors with alpha components were introduced in Java along with Graphics2D, but they can
be used with ordinary Graphics objects as well. To specify the alpha component of a color, you
can create the Color object using one of the following constructors from the Color class:

public Color(int red, int green, int blue, int alpha);

public Color(float red, float green, float blue, float alpha);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/TransparencyDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/TransparencyDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 676

In the first constructor, all the parameters must be integers in the range 0 to 255. In the second,
the parameters must be in the range 0.0 to 1.0. For example,

Color transparentRed = new Color(255, 0, 0, 200);

makes a slightly transparent red, while

Color tranparentCyan = new Color(0.0F, 1.0F, 1.0F, 0.5F);

makes a blue-green color that is 50% opaque. (The advantage of the constructor that takes
parameters of type float is that it lets you think in terms of percentages.) When you create an
ordinary RGB color, as in new Color(255,0,0), you just get a fully opaque color.

Once you have a transparent color, you can use it in the same way as any other color. That
is, if you want to use a Color c to draw in a graphics context g, you just say g.setColor(c),
and subsequent drawing operations will use that color. As you can see, transparent colors are
very easy to use.

∗ ∗ ∗

A BufferedImage with image type BufferedImage.TYPE INT ARGB can use transparency.
The color of each pixel in the image can have its own alpha component, which tells how
transparent that pixel will be when the image is drawn over some background. A pixel whose
alpha component is zero is perfectly transparent, and has no effect at all when the image is
drawn; in effect, it’s not part of the image at all. It is also possible for pixels to be partly
transparent. When an image is saved to a file, information about transparency might be lost,
depending on the file format. The PNG image format supports transparency; JPEG does not.
(If you look at the images of playing cards that are used in the program HighLowWithImages in
Subsection 13.1.1, you might notice that the tips of the corners of the cards are fully transparent.
The card images are from a PNG file, cards.png.)

An ARGB BufferedImage should be fully transparent when it is first created, but if you want
to make sure, here is one way of doing so: The Graphics2D class has a method setBackground()

that can be used to set a background color for the graphics context, and it has a clearRect()

method that fills a rectangle with the current background color. To create a fully transparent
image with width w and height h, you can use:

BufferedImage image = new BufferedImage(w, h, BufferedImage.TYPE INT ARGB);

Graphics2D g2 = image.createGraphics();

g2.setBackground(new Color(0,0,0,0)); // (The R, G, and B values don’t matter.)

g2.clearRect(0, 0, w, h);

(Note that simply drawing with a transparent color will not make pixels in the image transpar-
ent. The alpha component of a Color makes the color transparent when it is used for drawing;
it does not change the transparency of the pixels that are modified by the drawing operation.)

As an example, just for fun, here is a method that will set the cursor of a component to be
a red square with a transparent interior:

private void useRedSquareCursor() {

BufferedImage image = new BufferedImage(24,24,BufferedImage.TYPE INT ARGB);

Graphics2D g2 = image.createGraphics();

g2.setBackground(new Color(0,0,0,0));

g2.clearRect(0, 0, 24, 24); // (should not be necessary in a new image)

g2.setColor(Color.RED);

g2.drawRect(0,0,23,23); // draw a red border of width 3 around the square

g2.drawRect(1,1,21,21);

g2.drawRect(2,2,19,19);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/cards.png

CHAPTER 13. ADVANCED GUI PROGRAMMING 677

g2.dispose();

Point hotSpot = new Point(12,12);

Toolkit tk = Toolkit.getDefaultToolkit();

Cursor cursor = tk.createCustomCursor(image,hotSpot,"square");

setCursor(cursor);

}

13.2.3 Antialiasing

To draw a geometric figure such as a line or circle, you just have to color the pixels that are part
of the figure, right? Actually, there is a problem with this. Pixels are little squares. Geometric
figures, on the other hand, are made of geometric points that have no size at all. Think about
drawing a circle, and think about a pixel on the boundary of that circle. The infinitely thin
geometric boundary of the circle cuts through the pixel. Part of the pixel lies inside the circle,
part lies outside. So, when we are filling the circle with color, do we color that pixel or not?
A possible solution is to color the pixel if the geometric circle covers 50% or more of the pixel.
Following this procedure, however, leads to a visual defect known as aliasing . It is visible in
images as a jaggedness or “staircasing” effect along the borders of curved shapes. Lines that are
not horizontal or vertical also have a jagged, aliased appearance. (The term “aliasing” seems
to refer to the fact that many different geometric points map to the same pixel. If you think of
the real-number coordinates of a geometric point as a “name” for the pixel that contains that
point, then each pixel has many different names or “aliases.”)

It’s not possible to build a circle out of squares, but there is a technique that can eliminate
some of the jaggedness of aliased images. The technique is called antialiasing . Antialiasing is
based on transparency. The idea is simple: If 50% of a pixel is covered by the geometric figure
that you are trying to draw, then color that pixel with a color that is 50% transparent. If 25%
of the pixel is covered, use a color that is 75% transparent (25% opaque). If the entire pixel
is covered by the figure, of course, use a color that is 100% opaque—antialiasing only affects
pixels that are only partly covered by the geometric shape.

In antialiasing, the color that you are drawing with is blended with the original color of the
pixel, and the amount of blending depends on the fraction of the pixel that is covered by the
geometric shape. (The fraction is difficult to compute exactly, so in practice, various methods
are used to approximate it.) Of course, you still don’t get a picture of the exact geometric
shape, but antialiased images do tend to look better than jagged, aliased images.

For an example, look at the picture in the next subsection. Antialiasing is used to draw
the panels in the second and third row of the picture, but it is not used in the top row. You
should note the jagged appearance of the lines in the top row. (By the way, when antialiasing
is applied to a line, the line is treated as a geometric rectangle whose width is equal to the line
width.)

Antialiasing is supported in Graphics2D. By default, antialiasing is turned off. If g2 is a
graphics context of type Graphics2D, you can turn on antialiasing in g2 by saying:

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);

As you can see, this is only a “hint” that you would like to use antialiasing, and it is even
possible that the hint will be ignored. However, it is likely that subsequent drawing operations
in g2 will be antialiased. If you want to turn antialiasing off in g2, you should say:

CHAPTER 13. ADVANCED GUI PROGRAMMING 678

g2.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS OFF);

13.2.4 Strokes and Paints

When using the Graphics class, any line that you draw will be a solid line that is one pixel thick.
The Graphics2D class makes it possible to draw a much greater variety of lines. You can draw
lines of any thickness, and you can draw lines that are dotted or dashed instead of solid.

An object of type Stroke contains information about how lines should be drawn, including
how thick the line should be and what pattern of dashes and dots, if any, should be used. Every
Graphics2D has an associated Stroke object. The default Stroke draws a solid line of thickness
one. To get lines with different properties, you just have to install a different stroke into the
graphics context.

Stroke is an interface, not a class. The class BasicStroke, which implements the Stroke

interface, is the one that is actually used to create stroke objects. For example, to create a
stroke that draws solid lines with thickness equal to 3, use:

BasicStroke line3 = new BasicStroke(3);

If g2 is of type Graphics2D, the stroke can be installed in g2 by calling its setStroke() com-
mand:

g2.setStroke(line3)

After calling this method, subsequent drawing operations will use lines that are three times as
wide as the usual thickness. The thickness of a line can be given by a value of type float, not
just by an int. For example, to use lines of thickness 2.5 in the graphics context g2, you can
say:

g2.setStroke(new BasicStroke(2.5F));

(Fractional widths make more sense if antialiasing is turned on.)
When you have a thick line, the question comes up, what to do at the ends of the line. If

you draw a physical line with a large, round piece of chalk, the ends of the line will be rounded.
When you draw a line on the computer screen, should the ends be rounded, or should the line
simply be cut off flat? With the BasicStroke class, the choice is up to you. Maybe it’s time to
look at examples. This illustration shows fifteen lines, drawn using different BasicStrokes. Lines
in the middle row have rounded ends; lines in the other two rows are simply cut off at their
endpoints. Lines of various thicknesses are shown, and the bottom row shows dashed lines.
(And, as mentioned above, only the bottom two rows are antialiased.)

CHAPTER 13. ADVANCED GUI PROGRAMMING 679

This illustration is a screenshot from the sample program StrokeDemo.java. In that program,
you can click and drag in any of the small panels, and the lines in all the panels will be redrawn
as you move the mouse. In addition, if you right-click and drag, then rectangles will be drawn
instead of lines; this shows that strokes are used for drawing the outlines of shapes and not just
for straight lines. If you look at the corners of the rectangles that are drawn by the program,
you’ll see that there are several ways of drawing a corner where two wide line segments meet.

All the options that you want for a BasicStroke have to be specified in the constructor. Once
the stroke object is created, there is no way to change the options. There is one constructor
that lets you specify all possible options:

public BasicStroke(float width, int capType, int joinType, float miterlimit,

float[] dashPattern, float dashPhase)

I don’t want to cover all the options in detail, but here’s some basic info:

• width specifies the thickness of the line

• capType specifies how the ends of a line are “capped.” The possible values are
BasicStroke.CAP SQUARE, BasicStroke.CAP ROUND and BasicStroke.CAP BUTT. These
values are used, respectively, in the first, second, and third rows of the above picture. The
default is BasicStroke.CAP SQUARE.

• joinType specifies how two line segments are joined together at corners. Possible values
are BasicStroke.JOIN MITER, BasicStroke.JOIN ROUND, and BasicStroke.JOIN BEVEL.
Again, these are used in the three rows of panels in the sample program; you will
only see the effect if you run the program and draw some rectangles. The default is
BasicStroke.JOIN MITER.

• miterLimit is used only if the value of joinType is JOIN MITER; just use the default value,
10.0F.

• dashPattern is used to specify dotted and dashed lines. The values in the array specify
lengths in the dot/dash pattern. The numbers in the array represent the length of a solid
piece, followed by the length of a transparent piece, followed by the length of a solid piece,
and so on. At the end of the array, the pattern wraps back to the beginning of the array.
If you want a solid line, use a different constructor that has fewer parameters.

• dashPhase tells the computer where to start in the dashPattern array, for the first seg-
ment of the line. Use 0 for this parameter in most cases.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StrokeDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 680

For the third row in the above picture, the dashPattern is set to new float[] {5,5}. This
means that the lines are drawn starting with a solid segment of length 5, followed by a transpar-
ent section of length 5, and then repeating the same pattern. A simple dotted line would have
thickness 1 and dashPattern new float[] {1,1}. A pattern of short and long dashes could be
made by using new float[] {10,4,4,4}. For more information, see the Java documentation,
or try experimenting with the source code for the sample program.

∗ ∗ ∗

So now we can draw fancier lines. But any drawing operation is still restricted to drawing
with a single color. We can get around that restriction by using Paint. An object of type Paint
is used to assign color to each pixel that is “hit” by a drawing operation. Paint is an interface,
and the Color class implements the Paint interface. When a color is used for painting, it applies
the same color to every pixel that is hit. However, there are other types of paint where the
color that is applied to a pixel depends on the coordinates of that pixel. Standard Java includes
several classes that define paint with this property: TexturePaint and several types of gradient
paint. In a texture , the pixel colors come from an image, which is repeated, if necessary, like
a wallpaper pattern to cover the entire xy-plane. In a gradient , the color that is applied to
pixels changes gradually from one color to another color as you move from point to point. Java
has three types of gradient paints: GradientPaint, LinearGradientPaint, and RadialGradientPaint.

It will be helpful to look at some examples. This illustration shows a polygon filled with
two different paints. The polygon on the left uses a GradientPaint while the one on the right
uses a TexturePaint. Note that in this picture, the paint is used only for filling the polygon.
The outline of the polygon is drawn in a plain black color. However, Paint objects can be used
for drawing lines as well as for filling shapes. These pictures were made by the sample program
PaintDemo.java. In that program, you can select among several different paints, and you can
control certain properties of the paints.

Basic gradient paints are created using the constructor

public GradientPaint(float x1, float y1, Color c1,

float x2, float y2, Color c2, boolean cyclic)

This constructs a gradient that has color c1 at the point with coordinates (x1,y1) and color
c2 at the point (x2,y2). As you move along the line between the two points, the color of the
gradient changes from c1 to c2; along lines perpendicular to this line, the color is constant.
The last parameter, cyclic, tells what happens if you move past the point (x2,y2) on the
line from (x1,y1) to (x2,y2). If cyclic is false, the color stops changing and any point
beyond (x2,y2) has color c2. If cyclic is true, then the colors continue to change in a cyclic
pattern after you move past (x2,y2). (It works the same way if you move past the other

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 681

endpoint, (x1,y1).) In most cases, you will set cyclic to true. Note that you can vary the
points (x1,y1) and (x2,y2) to change the width and direction of the gradient. For example,
to create a cyclic gradient that varies from black to light gray along the line from (0,0) to
(100,100), use:

new GradientPaint(0, 0, Color.BLACK, 100, 100, Color.LIGHT GRAY, true)

The other two gradient paint classes, LinearGradientPaint and RadialGradientPaint, are more
sophisticated. Linear gradient paints are similar to GradientPaint but can be based on more
than two colors. Radial gradients color pixels based on their distance from a central point, which
produces rings of constant color instead of lines of constant color. See the API documentation
for details.

∗ ∗ ∗

To construct a TexturePaint, you need a BufferedImage that contains the image that will be
used for the texture. You also specify a rectangle in which the image will be drawn. The image
will be scaled, if necessary, to exactly fill the rectangle. Outside the specified rectangle, the
image will be repeated horizontally and vertically to fill the plane. You can vary the size and
position of the rectangle to change the scale of the texture and its positioning on the plane.
Ordinarily, however the upper left corner of the rectangle is placed at (0,0), and the size of
the rectangle is the same as the actual size of the image. The constructor for TexturePaint is
defined as

public TexturePaint(BufferedImage textureImage, Rectangle2D anchorRect)

The Rectangle2D class is part of the Graphics2D framework and will be discussed at the end
of this section. Often, a call to the constructor takes the following form, which will show the
image at its actual size:

new TexturePaint(image,

new Rectangle2D.Double(0,0,image.getWidth(),image.getHeight())

Once you have a Paint object, you can use the setPaint() method of a Graphics2D object
to install the paint in a graphics context. For example, if g2 is of type Graphics2D, then the
command

g2.setPaint(new GradientPaint(0,0,Color.BLUE,100,100,Color.GREEN,true));

sets up g2 to use a gradient paint. Subsequent drawing operations with g2 will draw using a
blue/green gradient.

13.2.5 Transforms and Shapes

In the standard drawing coordinates on a component, the upper left corner of the component
has coordinates (0,0). Coordinates are integers, and the coordinates (x,y) refer to the point
that is x pixels over from the left edge of the component and y pixels down from the top. With
Graphics2D, however, you are not restricted to using these coordinates. In fact, you can can
set up a Graphics2D graphics context to use any system of coordinates that you like. You can
use this capability to select the coordinate system that is most appropriate for the things that
you want to draw. For example, if you are drawing architectural blueprints, you might use
coordinates in which one unit represents an actual distance of one foot.

Changes to a coordinate system are referred to as transforms. There are three basic
types of transform. A translate transform changes the position of the origin, (0,0). A scale

CHAPTER 13. ADVANCED GUI PROGRAMMING 682

transform changes the scale, that is, the unit of distance. And a rotation transform applies a
rotation about some point. You can make more complex transforms by combining transforms
of the three basic types. For example, you can apply a rotation, followed by a scale, followed by
a translation, followed by another rotation. When you apply several transforms in a row, their
effects are cumulative. It takes a fair amount of study to fully understand complex transforms,
and transforms are a major topic in a course in computer graphics. I will limit myself here to
discussing a few of the most simple cases, just to give you an idea of what transforms can do.

Suppose that g2 is of type Graphics2D. Then g2.translate(x,y) moves the origin,
(0,0), to the point (x,y). This means that if you use coordinates (0,0) after saying
g2.translate(x,y), then you are referring to the point that used to be (x,y), before the
translation was applied. All other coordinate pairs are moved by the same amount. For exam-
ple saying

g.translate(x,y);

g.drawLine(0, 0, 100, 200);

draws the same line as

g.drawLine(x, y, 100+x, 200+y);

In the second case, you are just doing the same translation “by hand.” A translation (like all
transforms) affects all subsequent drawing operations. Instead of thinking in terms of coordinate
systems, you might find it clearer to think of what happens to the objects that are drawn. After
you say g2.translate(x,y), any objects that you draw are displaced x units horizontally and
y units vertically. Note that the parameters x and y can be real numbers.

As an example, perhaps you would prefer to have (0,0) at the center of a component, instead
of at its upper left corner. To do this, just use the following command in the paintComponent()
method of the component:

g2.translate(getWidth()/2, getHeight()/2);

To apply a scale transform to a Graphics2D g2, use g2.scale(s,s), where s is the real
number that specifies the scaling factor. If s is greater than 1, everything is magnified by a
factor of s, while if s is between 0 and 1, everything is shrunk by a factor of s. The center of
scaling is (0,0). That is, the point (0,0) is unaffected by the scaling, and other points move
toward or away from (0,0) by a factor of s. Again, it can be clearer to think of the effect
on objects that are drawn after a scale transform is applied. Those objects will be magnified
or shrunk by a factor of s. Note that scaling affects everything, including thickness of lines
and size of fonts. It is possible to use different scale factors in the horizontal and vertical
direction with a command of the form g2.scale(sx,sy), although that will distort the shapes
of objects. By the way, it is even possible to use scale factors that are less than 0, which results
in reflections. For example, after calling g2.scale(-1,1), objects will be reflected horizontally
through the line x=0.

The third type of basic transform is rotation. The command g2.rotate(r) rotates all
subsequently drawn objects through an angle of r about the point (0,0). You can rotate
instead about the point (x,y) with the command g2.rotate(r,x,y). All the parameters can
be real numbers. Angles are measured in radians, where π radians are equal to 180 degrees. To
rotate through an angle of d degrees, use

g2.rotate(d * Math.PI / 180);

Positive angles are clockwise rotations, while negative angles are counterclockwise (unless you
have applied a negative scale factor, which reverses the orientation).

CHAPTER 13. ADVANCED GUI PROGRAMMING 683

Rotation is not as common as translation or scaling, but there are a few things that you
can do with it that can’t be done any other way. For example, you can use it to draw an image
“on the slant.” Rotation also makes it possible to draw text that is rotated so that its baseline
is slanted or even vertical. To draw the string “Hello World” with its basepoint at (x,y) and
rising at an angle of 30 degrees, use:

g2.rotate(-30 * Math.PI / 180, x, y);

g2.drawString("Hello World", x, y);

To draw the message vertically, with the center of its baseline at the point (x,y), we can use
FontMetrics to measure the string, and say:

FontMetrics fm = g2.getFontMetrics(g2.getFont());

int baselineLength = fm.stringWidth("Hello World");

g2.rotate(-90 * Math.PI / 180, x, y);

g2.drawString("Hello World", x - baselineLength/2, y);

∗ ∗ ∗

The drawing operations in the Graphics class use integer coordinates only. Graphics2D makes
it possible to use real numbers as coordinates. This becomes particularly important once you
start using transforms, since after you apply a scaling transform, a square of size one might
cover many pixels instead of just a single pixel. Unfortunately, the designers of Java couldn’t
decide whether to use numbers of type float or double as coordinates, and their indecision makes
things a little more complicated than they need to be. (My guess is that they really wanted to
use float, since values of type float have enough accuracy for graphics and are probably used
in the underlying graphical computations of the computer. However, in Java programming, it’s
easier to use double than float, so they wanted to make it possible to use double values too.)

To use real number coordinates, you have to use classes defined in the package
java.awt.geom. Among the classes in this package are classes that represent geometric shapes
such as lines and rectangles. For example, the class Line2D represents a line whose endpoints
are given as real number coordinates. The unfortunate thing is that Line2D is an abstract
class, which means that you can’t create objects of type Line2D directly. However, Line2D
has two concrete subclasses that can be used to create objects. One subclass uses coordinates
of type float, and one uses coordinates of type double. The most peculiar part is that these
subclasses are defined as static nested classes inside Line2D. Their names are Line2D.Float and
Line2D.Double. This means that Line2D objects can be created, for example, with:

Line2D line1 = new Line2D.Float(0.17F, 1.3F, -2.7F, 5.21F);

Line2D line2 = new Line2D.Double(0, 0, 1, 0);

Line2D line3 = new Line2D.Double(x1, y1, x2, y2);

where x1, y1, x2, y2 are any numeric variables. In my own code, I generally use Line2D.Double
rather than Line2D.Float.

Other shape classes in java.awt.geom are similar. The class that represents rectangles is
Rectangle2D. To create a rectangle object, you have to use either Rectangle2D.Float or Rectan-
gle2D.Double. For example,

Rectangle2D rect = new Rectangle2D.Double(-0.5, -0.5, 1.0, 1.0);

creates a rectangle with a corner at (-0.5,-0.5) and with width and height both equal to 1.
Other classes include Point2D, which represents a single point; Ellipse2D, which represents an
oval; and Arc2D, which represents an arc of a circle.

If g2 is of type Graphics2D and shape is an object belonging to one of the 2D shape classes,
then the command

CHAPTER 13. ADVANCED GUI PROGRAMMING 684

g2.draw(shape);

draws the shape. For a shape such as a rectangle or ellipse that has an interior, only the outline
is drawn. To fill in the interior of such a shape, use

g2.fill(shape)

For example, to draw a line from (x1,y1) to (x2,y2), use

g2.draw(new Line2D.Double(x1,y1,x2,y2));

and to draw a filled rectangle with a corner at (3.5,7), with width 5 and height 3, use

g2.fill(new Rectangle2D.Double(3.5, 7, 5, 3));

The package java.awt.geom also has a very nice class Path2D that can be used to draw
polygons and curves defined by any number of points. See the Java documentation if you want
to find out how to use it.

This section has introduced you to many of the interesting features of Graphics2D, but there
is still a large part of the Graphics2D framework for you to explore.

13.3 Actions and Buttons

For the past two sections, we have been looking at some of the more advanced aspects of
the Java graphics API. But the heart of most graphical user interface programming is using GUI
components. In this section and the next, we’ll be looking at JComponents. We’ll cover several
component classes that were not covered in Chapter 6, as well as some additional features of
classes that were covered there.

This section is mostly about buttons. Buttons are among the simplest of GUI components,
and it seems like there shouldn’t be all that much to say about them. However, buttons are
not as simple as they seem. For one thing, there are many different types of buttons. The
basic functionality of buttons in Java is defined by the class javax.swing.AbstractButton.
Subclasses of this class represent push buttons, check boxes, and radio buttons. Menu items
are also considered to be buttons. The AbstractButton class defines a surprisingly large API for
controlling the appearance of buttons. This section will cover part of that API, but you should
see the class documentation for full details.

In this section, we’ll also encounter a few classes that do not themselves define buttons but
that are related to the button API, starting with “actions.”

13.3.1 Action and AbstractAction

The JButton class represents push buttons. Up until now, we have created push buttons using
the constructor

public JButton(String text);

which specifies text that will appear on the button. We then added an ActionListener to the
button, to respond when the user presses it. Another way to create a JButton is using an
Action. The Action interface represents the general idea of some action that can be performed,
together with properties associated with that action, such as a name for the action, an icon
that represents the action, and whether the action is currently enabled or disabled. Actions are
usually defined using the class AbstractAction, an abstract class which includes a method

public void actionPerformed(ActionEvent evt)

CHAPTER 13. ADVANCED GUI PROGRAMMING 685

that must be defined in any concrete subclass. Often, this is done in an anonymous inner class.
For example, suppose that display is an object that has a clear() method. Then an Action
object that represents the action “clear the display” can be defined as:

Action clearAction = new AbstractAction("Clear") {

public void actionPerformed(ActionEvent evt) {

display.clear();

}

};

The parameter, "Clear", in the constructor of the AbstractAction is the name of the action.
Other properties can be set by calling the method putValue(key,value), which is part of the
Action interface. For example,

clearAction.putValue(Action.SHORT DESCRIPTION, "Clear the Display");

sets the SHORT DESCRIPTION property of the action to have the value “Clear the Display”. The
key parameter in the putValue() method is usually given as one of several constants defined
in the Action interface. As another example, you can change the name of an action by using
Action.NAME as the key in the putValue() method.

Once you have an Action, you can use it in the constructor of a button. For example, using
the action clearAction defined above, we can create the JButton

JButton clearButton = new JButton(clearAction);

The name of the action will be used as the text of the button, and some other properties of
the button will be taken from properties of the action. For example, if the SHORT DESCRIPTION

property of the action has a value, then that value is used as the tooltip text for the button.
(The tooltip text appears when the user hovers the mouse over the button.) Furthermore,
when you change a property of the action, the corresponding property of the button will also
be changed. For example, changing the Action’s property associated with the key Action.NAME

will also change the text on the button.
The Action interface defines a setEnabled() method that is used to enable and

disable the action. The clearAction action can be enabled and disabled by calling
clearAction.setEnabled(true) and clearAction.setEnabled(false). When you do this,
any button that has been created from the action is also enabled or disabled at the same time.

Now of course, the question is, why should you want to use Actions at all? One advantage
is that using actions can help you to organize your code better. You can create separate objects
that represent each of the actions that can be performed in your program. This represents a nice
division of responsibility. Of course, you could do the same thing with individual ActionListener
objects, but then you couldn’t associate descriptions and other properties with the actions.

More important is the fact that Actions can also be used in other places in the Java API.
You can use an Action to create a JMenuItem in the same way as for a JButton:

JMenuItem clearCommand = new JMenuItem(clearAction);

A JMenuItem, in fact, is a kind of button and shares many of the same properties that a JButton
can have. You can use the same Action to create both a button and a menu item (or even
several of each if you want). Whenever you enable or disable the action or change its name, the
button and the menu item will both be changed to match. If you change the NAME property of
the action, the text of both the menu item and the button will be set to the new name of the
action. If you disable the action, both menu item and button will be disabled. You can think
of the button and the menu items as being two presentations of the Action, and you don’t have

CHAPTER 13. ADVANCED GUI PROGRAMMING 686

to keep track of the button or menu item after you create them. You can do everything that
you need to do by manipulating the Action object.

By the way, if you want to add a menu item that is defined by an Action to a menu, you
don’t even need to create the JMenuItem yourself. You can add the action object directly to
the menu, and the menu item will be created from the properties of the action. For example, if
menu is a JMenu and clearAction is an Action, you can simply say menu.add(clearAction).

Actions have some other useful properties that we will encounter later in this section.

13.3.2 Icons on Buttons

In addition to—or instead of—text, buttons can also show icons. Icons are represented by the
Icon interface and are usually created as ImageIcons, as discussed in Subsection 13.1.4. For
example, here is a picture of a button that displays an image of a large “X” as its icon:

The icon for a button can be set by calling the button’s setIcon() method, or by passing the
icon object as a parameter to the constructor when the button is created. To create the button
shown above, I created an ImageIcon from a BufferedImage on which I drew the picture that
I wanted, and I constructed the JButton using a constructor that takes both the text and the
icon for the button as parameters. Here’s the code segment that does it:

BufferedImage image = new BufferedImage(24,24,BufferedImage.TYPE INT RGB);

Graphics2D g2 = (Graphics2D)image.getGraphics();

g2.setColor(Color.LIGHT GRAY); // Draw the image for the icon.

g2.fillRect(0,0,24,24);

g2.setStroke(new BasicStroke(3)); // Use thick lines.

g2.setColor(Color.BLACK);

g2.drawLine(4,4,20,20); // Draw the "X".

g2.drawLine(4,20,20,4);

g2.dispose();

Icon clearIcon = new ImageIcon(image); // Create the icon.

JButton clearButton = new JButton("Clear the Display", clearIcon);

You can create a button with an icon but no text by using a constructor that takes just the
icon as parameter. Another alternative is for the button to get its icon from an Action. When
a button is constructed from an action, it takes its icon from the value of the action property
Action.SMALL ICON. For example, suppose that we want to use an action named clearAction

to create the button shown above. This could be done with:

clearAction.putValue(Action.SMALL ICON, clearIcon);

JButton clearButton = new JButton(clearAction);

The icon could also be associated with the action by passing it as a parameter to the constructor
of an AbstractAction:

Action clearAction = new AbstractAction("Clear the Display", clearIcon) {

public void actionPerformed(ActionEvent evt) {

.

. // Carry out the action.

CHAPTER 13. ADVANCED GUI PROGRAMMING 687

.

}

}

JButton clearButton = new JButton(clearAction);

The SMALL ICON for an Action will also be used by a JMenuItem created from the action. (An
action can also have an icon associated with the key Action.LARGE ICON KEY. If it does, then
a JButton will use the “large” icon in preference to the “small” icon. However, a JMenuItem
will only use a small icon.)

The appearance of buttons can be tweaked in many ways. For example, you can change the
size of the gap between the button’s text and its icon. You can associate additional icons with
a button that are used when the button is in certain states, such as when it is pressed or when
it is disabled. It is even possible to change the positioning of the text with respect to the icon.
For example, to place the text centered below the icon on a button, you can say:

button.setHorizontalTextPosition(JButton.CENTER);

button.setVerticalTextPosition(JButton.BOTTOM);

These methods and many others are defined in the class AbstractButton. This class is a super-
class for JMenuItem, as well as for JButton and for the classes that define check boxes and radio
buttons.

Finally, I will mention that it is possible to use icons on JLabels in much the same way that
they can be used on JButtons. Placing an ImageIcon on a JLabel can be a convenient way to
add a static image to your GUI.

13.3.3 Making Choices

The JCheckBox class was covered in Subsection 6.5.3, and the equivalent for use in menus,
JCheckBoxMenuItem, in Subsection 6.7.1. A checkbox lets the user make a choice between two
alternatives. A checkbox has two states, selected and not selected, and the user can change the
state by clicking on the check box. The state of a checkbox can also be set programmatically
by calling its setSelected() method, and the current value of the state can be checked using
the isSelected() method.

Closely related to checkboxes are radio buttons. Like a checkbox, a radio button can be
either selected or not. However, radio buttons are expected to occur in groups, and at most one
radio button in a group can be selected at any given time. Radio button groups let the user
make a choice among several alternatives. In Java, a radio button is represented by an object
of type JRadioButton. When used in isolation, a JRadioButton acts just like a JCheckBox, and
it has the same methods and events. Ordinarily, however, a JRadioButton is used in a group.
A group of radio buttons is represented by an object belonging to the class ButtonGroup. A
ButtonGroup is not a component and does not itself have a visible representation on the screen.
A ButtonGroup works behind the scenes to organize a group of radio buttons, to ensure that at
most one button in the group can be selected at any given time.

To use a group of radio buttons, you must create a JRadioButton object for each button
in the group, and you must create one object of type ButtonGroup to organize the individual
buttons into a group. Each JRadioButton must be added individually to some container, so that
it will appear on the screen. (A ButtonGroup plays no role in the placement of the buttons on
the screen.) Each JRadioButton must also be added to the ButtonGroup, which has an add()

method for this purpose. If you want one of the buttons to be selected initially, you can call
setSelected(true) for that button. If you don’t do this, then none of the buttons will be
selected until the user clicks on one of them.

CHAPTER 13. ADVANCED GUI PROGRAMMING 688

As an example, here is how you could set up a set of radio buttons that can be used to
select a color:

JRadioButton redRadio, blueRadio, greenRadio, yellowRadio;

// Variables to represent the radio buttons.

// These should probably be instance variables, so

// that they can be used throughout the program.

ButtonGroup colorGroup = new ButtonGroup();

redRadio = new JRadioButton("Red"); // Create a button.

colorGroup.add(redRadio); // Add it to the group.

blueRadio = new JRadioButton("Blue");

colorGroup.add(blueRadio);

greenRadio = new JRadioButton("Green");

colorGroup.add(greenRadio);

yellowRadio = new JRadioButton("Yellow");

colorGroup.add(yellowRadio);

redRadio.setSelected(true); // Make an initial selection.

The individual buttons must still be added to a container if they are to appear on the screen.
If you want to respond immediately when the user clicks on one of the radio buttons, you can
register an ActionListener for each button. Just as for checkboxes, it is not always necessary
to register listeners for radio buttons. In some cases, you can simply check the state of each
button when you need to know it, using the button’s isSelected() method.

You can add the equivalent of a group of radio buttons to a menu by using the class
JRadioButtonMenuItem. To use this class, create several objects of this type, and create a But-
tonGroup to manage them. Add each JRadioButtonMenuItem to the ButtonGroup, and also add
them to a JMenu. If you want one of the items to be selected initially, call its setSelected()
method to set its selection state to true. You can add ActionListeners to each JRadioButton-
MenuItem if you need to take some action when the user selects the menu item; if not, you
can simply check the selected states of the buttons whenever you need to know them. As an
example, suppose that menu is a JMenu. Then you can add a group of buttons to menu as
follows:

JRadioButtonMenuItem selectRedItem, selectGreenItem, selectBlueItem;

// These might be defined as instance variables

ButtonGroup group = new ButtonGroup();

selectRedItem = new JRadioButtonMenuItem("Red");

group.add(selectRedItem);

menu.add(selectRedItem);

selectGreenItem = new JRadioButtonMenuItem("Green");

group.add(selectGreenItem);

menu.add(selectGreenItem);

selectBlueItem = new JRadioButtonMenuItem("Blue");

group.add(selectBlueItem);

menu.add(selectBlueItem);

∗ ∗ ∗

When it’s drawn on the screen, a JCheckBox includes a little box that is either checked or
unchecked to show the state of the box. That box is actually a pair of Icons. One icon is shown

CHAPTER 13. ADVANCED GUI PROGRAMMING 689

when the check box is unselected; the other is shown when it is selected. You can change the
appearance of the check box by substituting different icons for the standard ones.

The icon that is shown when the check box is unselected is just the main icon for the
JCheckBox. You can provide a different unselected icon in the constructor or you can change
the icon using the setIcon() method of the JCheckBox object. To change the icon that is
shown when the check box is selected, use the setSelectedIcon() method of the JCheckBox.
All this applies equally to JRadioButton, JCheckBoxMenuItem, and JRadioButtonMenuItem.

An example of this can be found in the sample program ToolBarDemo.java, which is dis-
cussed in the next subsection. That program creates a set of radio buttons that use custom
icons. The buttons are created by the following method:

/**

* Create a JRadioButton and add it to a specified button group. The button

* is meant for selecting a drawing color in the display. The color is used to

* create two custom icons, one for the unselected state of the button and one

* for the selected state. These icons are used instead of the usual

* radio button icons.

* @param c the color of the button, and the color to be used for drawing.

* (Note that c has to be "final" since it is used in the anonymous inner

* class that defines the response to ActionEvents on the button.)

* @param grp the ButtonGroup to which the radio button will be added.

* @param selected if true, then the state of the button is set to selected.

* @return the radio button that was just created; sorry, but the button

* is not as pretty as I would like!

*/

private JRadioButton makeColorRadioButton(final Color c,

ButtonGroup grp, boolean selected) {

/* Create an ImageIcon for the normal, unselected state of the button,

using a BufferedImage that is drawn here from scratch. */

BufferedImage image = new BufferedImage(30,30,BufferedImage.TYPE INT RGB);

Graphics g = image.getGraphics();

g.setColor(Color.LIGHT GRAY);

g.fillRect(0,0,30,30);

g.setColor(c);

g.fill3DRect(1, 1, 24, 24, true);

g.dispose();

Icon unselectedIcon = new ImageIcon(image);

/* Create an ImageIcon for the selected state of the button. */

image = new BufferedImage(30,30,BufferedImage.TYPE INT RGB);

g = image.getGraphics();

g.setColor(Color.DARK GRAY);

g.fillRect(0,0,30,30);

g.setColor(c);

g.fill3DRect(3, 3, 24, 24, false);

g.dispose();

Icon selectedIcon = new ImageIcon(image);

/* Create and configure the button. */

JRadioButton button = new JRadioButton(unselectedIcon);

button.setSelectedIcon(selectedIcon);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ToolBarDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 690

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// The action for this button sets the current drawing color

// in the display to c.

display.setCurrentColor(c);

}

});

grp.add(button);

if (selected)

button.setSelected(true);

return button;

} // end makeColorRadioButton

∗ ∗ ∗

It is possible to create radio buttons and check boxes—both the regular sort and the cor-
responding menu items—from Actions. The button or checkbox takes its name, main icon,
tooltip text, and enabled/disabled state from the action. And the Action’s actionPerformed()
method is called when the user changes the state. Furthermore, an action has a property named
Action.SELECTED KEY, which means that the action itself can have a selected state. By default,
the value of the SELECTED KEY property is null and is not used for anything. However, you
can set the value to be true or false by calling action.putValue(Action.SELECTED KEY,true)

or action.putValue(Action.SELECTED KEY,false). Once you have done so, the action’s
SELECTED KEY property and the selected state of any checkbox or radio button created from
the action will automatically be kept in sync. You can find out the current value of the prop-
erty by calling action.getValue(Action.SELECTED KEY). Note that the value of a property is
actually an object. When you set the value to true or false, the value is wrapped in an object
of type Boolean. The return type of action.getValue() is Object, so you will probably need
to type-cast the return value to Boolean.

∗ ∗ ∗

Java has another component that lets the user choose from a set of options: the JComboBox.
A combo box contains a list of items, but only displays the currently selected items. The user
clicks the combo box to see a pop-up list of options and can then select from the list. The
functionality is similar to a group of radio buttons.

JComboBox is a parameterized class, where the type parameter specifies the type of items
that that combo box can hold. Most commonly, the items are strings, and the type is JCom-
boBox<String>. This is the only case I will discuss. When a JComboBox<String> object is first
constructed, it initially contains no items. An item is added to the bottom of the list of options
by calling the combo box’s instance method, addItem(str), where str is the string that will
be displayed in the menu.

For example, the following code will create an object of type JComboBox that contains the
options Red, Blue, Green, and Black:

JComboBox<String> colorChoice = new JComboBox<String>();

colorChoice.addItem("Red");

colorChoice.addItem("Blue");

colorChoice.addItem("Green");

colorChoice.addItem("Black");

You can call the getSelectedIndex() method of a JComboBox to find out which item
is currently selected. This method returns an integer that gives the position of the selected

CHAPTER 13. ADVANCED GUI PROGRAMMING 691

item in the list, where the items are numbered starting from zero. Alternatively, you can
call getSelectedItem() to get the selected item itself. (This method returns a value of type
Object—even when the items are limited to being strings.) You can change the selection by
calling the method setSelectedIndex(n), where n is an integer giving the position of the item
that you want to select.

The most common way to use a JComboBox is to call its getSelectedIndex()method when
you have a need to know which item is currently selected. However, JComboBox components
generate ActionEvents when the user selects an item, and you can register an ActionListener
with the JComboBox if you want to respond to such events as they occur.

JComboBoxes have a nifty feature, which is probably not all that useful in practice. You can
make a JComboBox “editable” by calling its method setEditable(true). If you do this, the
user can edit the selection by clicking on the JComboBox and typing. This allows the user to
make a selection that is not in the pre-configured list that you provide. (The “Combo” in the
name “JComboBox” refers to the fact that it’s a kind of combination of menu and text-input
box.) If the user has edited the selection in this way, then the getSelectedIndex() method
will return the value -1, and getSelectedItem() will return the string that the user typed.
An ActionEvent is triggered if the user presses return while typing in the JComboBox.

∗ ∗ ∗

There is a lot of information in this section. The sample program ChoiceDemo.java demon-
strates the use of combo boxes, check boxes, and radio buttons—including the use of Actions
with check boxes and radio buttons. I encourage you to run the program to see how these
things work and to read the source code. The source code has a lot of comments to explain
what is going on.

13.3.4 Toolbars

It has become increasingly common for programs to have a row of small buttons along the top
or side of the program window that offer access to some of the commonly used features of the
program. The row of buttons is known as a tool bar . Typically, the buttons in a tool bar are
presented as small icons, with no text. Tool bars can also contain other components, such as
JTextFields and JLabels.

In Swing, tool bars are represented by the class JToolBar. A JToolBar is a container that can
hold other components. It is also itself a component, and so can be added to other containers.
In general, the parent component of the tool bar should use a BorderLayout. The tool bar
should occupy one of the edge positions—NORTH, SOUTH, EAST, or WEST—in the BorderLayout.
Furthermore, the other three edge positions should be empty. The reason for this is that it
might be possible (depending on the platform and configuration) for the user to drag the tool
bar from one edge position in the parent container to another. It might even be possible for
the user to drag the tool bar off its parent entirely, so that it becomes a separate window.

Here is a picture of a toolbar. This is from the sample program ToolBarDemo.java, which
I discuss below:

In the demo program, the user can draw colored curves in a large drawing area. The first
three buttons in the tool bar are a set of radio buttons that control the drawing color. The

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ChoiceDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ToolBarDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 692

fourth button is a push button that the user can click to clear the drawing.
Tool bars are easy to use. You just have to create the JToolBar object, add it to a container,

and add some buttons and possibly other components to the tool bar. One fine point is adding
space to a tool bar, such as the gap between the radio buttons and the push button in the
above picture. You can leave a gap by adding a separator to the tool bar. For example:

toolbar.addSeparator(new Dimension(20,20));

This adds an invisible 20-by-20 pixel block to the tool bar. This will appear as a 20 pixel gap
between components.

Here is the constructor from the ToolBarDemo program. It shows how to create the tool
bar and place it in a container. Note that class ToolBarDemo is a subclass of JPanel, and the
tool bar and display are added to the panel object that is being constructed:

public ToolBarDemo() {

setLayout(new BorderLayout(2,2));

setBackground(Color.GRAY);

setBorder(BorderFactory.createLineBorder(Color.GRAY,2));

display = new Display(); // the area where the user draws.

add(display, BorderLayout.CENTER);

JToolBar toolbar = new JToolBar();

add(toolbar, BorderLayout.NORTH);

ButtonGroup group = new ButtonGroup();

toolbar.add(makeColorRadioButton(Color.RED,group,true));

toolbar.add(makeColorRadioButton(Color.GREEN,group,false));

toolbar.add(makeColorRadioButton(Color.BLUE,group,false));

toolbar.addSeparator(new Dimension(20,20));

toolbar.add(makeClearButton());

}

If you want a vertical tool bar that can be placed in the EAST or WEST position of a Border-
Layout, you should specify the orientation in the tool bar’s constructor:

JToolBar toolbar = new JToolBar(JToolBar.VERTICAL);

The default orientation is JToolBar.HORIZONTAL. The orientation is adjusted automatically
when the user drags the tool bar into a new position. If you want to prevent the user from
dragging the tool bar, just say toolbar.setFloatable(false).

13.3.5 Keyboard Accelerators

In most programs, commonly used menu commands have keyboard equivalents. The user
can type the keyboard equivalent instead of selecting the command from the menu, and the
result will be exactly the same. Typically, for example, the “Save” command has keyboard
equivalent CONTROL-S, and the “Undo” command corresponds to CONTROL-Z. (Under Mac OS,
the keyboard equivalents for these commands would probably be META-S and META-Z, where
META refers to holding down the “apple” key.) The keyboard equivalents for menu commands
are referred to as accelerators.

The class javax.swing.KeyStroke is used to represent key strokes that the user can type
on the keyboard. Keystrokes can refer to pressing a key, releasing a key, or typing a character,

CHAPTER 13. ADVANCED GUI PROGRAMMING 693

possibly while holding down one or more of the modifier keys control, shift, alt, and meta.
The KeyStroke class has a convenient static method, getKeyStroke(String), that makes it
easy to create key stroke objects representing key pressed events. For example,

KeyStroke.getKeyStroke("ctrl S")

returns a KeyStroke that represents the action of pressing the “S” key while holding down the
control key. In addition to “ctrl”, you can use the modifiers “shift”, “alt”, and “meta” in the
string that describes the key stroke. You can even combine several modifiers, so that

KeyStroke.getKeyStroke("ctrl shift Z")

represents the action of pressing the “Z” key while holding down both the control and the shift
keys. When the key stroke involves pressing a character key, the character must appear in the
string in upper case form. You can also have key strokes that correspond to non-character keys.
The number keys can be referred to as “1”, “2”, etc., while certain special keys have names
such as “F1”, “ENTER”, and “LEFT” (for the left arrow key). The class KeyEvent defines
many constants such as VK ENTER, VK LEFT, and VK S. The names that are used for keys in the
keystroke description are just these constants with the leading “VK ” removed.

There are at least two ways to associate a keyboard accelerator with a menu item. One is
to use the setAccelerator() method of the menu item object:

JMenuItem saveCommand = new JMenuItem("Save...");

saveCommand.setAccelerator(KeyStroke.getKeyStroke("ctrl S"));

The other technique can be used if the menu item is created from an Action. The action property
Action.ACCELERATOR KEY can be used to associate a KeyStroke with an Action. When a menu
item is created from the action, the keyboard accelerator for the menu item is taken from the
value of this property. For example, if redoAction is an Action representing a “Redo” action,
then you might say:

redoAction.putValue(Action.ACCELERATOR KEY,

KeyStroke.getKeyStroke("ctrl shift Z"));

JMenuItem redoCommand = new JMenuItem(redoAction);

or, alternatively, you could simply add the action to a JMenu, editMenu, with
editMenu.add(redoAction). (Note, by the way, that accelerators apply only to menu items,
not to push buttons. When you create a JButton from an action, the ACCELERATOR KEY property
of the action is ignored.)

Note that you can use accelerators for JCheckBoxMenuItems and JRadioButtonMenuItems,
as well as for simple JMenuItems.

For examples of using keyboard accelerators, see ChoiceDemo.java and the solution to Ex-
ercise 13.2.

∗ ∗ ∗

By the way, as noted above, in the Mac OS operating system, the meta (or apple) key is
usually used for keyboard accelerators instead of the control key. Java has a way of determining
the correct modifier for the computer on which it is running. However, it requires the use of a
different method for constructing the KeyStroke. The function call

int shortcutMask = Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()

returns a “mask” that can be used to represent the correct modifier key when the keystroke is
created by the function

KeyStroke stoke = KeyStroke(keyCode, shortcutMask);

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ChoiceDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 694

The first parameter, keyCode, is one of the constants such as KeyEvent.VK Z that represent keys
on the keyboard. For example, KeyStroke.getKeyStroke(KeyEvent.VK Z,shortcutMask)

represents the action of pressing the Z key while holding down the meta key on a Mac or the
control key on Windows or Linux. It is possible to add other modifiers to the shortcutMask

to account for holding down the shift or alt keys; see the documentation.
As an example, here is a code segment that is used in ChoiceDemo.java to make a “Quit”

menu item that will have the appropriate modifier key for the computer on which the program
is running

int shortcutMask = Toolkit.getDefaultToolkit().getMenuShortcutKeyMask();

KeyStroke quitKeyStroke = KeyStroke.getKeyStroke(KeyEvent.VK Q, shortcutMask);

JMenuItem quit = new JMenuItem("Quit");

quit.setAccelerator(quitKeyStroke);

quit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

System.exit(0);

}

});

controlMenu.add(quit);

13.3.6 HTML on Buttons

As a final stop in this brief tour of ways to spiff up your buttons, I’ll mention the fact that the
text that is displayed on a button can be specified in HTML format. HTML is the markup
language that is used to write web pages. I don’t cover it in this book, but I will explain a few
things that you can do with it. HTML allows you to apply color or italics or other styles to
just part of the text on your buttons. It also makes it possible to have buttons that display
multiple lines of text. (You can also use HTML on JLabels, which can be even more useful.)
Here’s a picture of a button with HTML text (along with a “Java” icon):

If the string of text that is applied to a button starts with “<html>”, then the string is
interpreted as HTML. The string does not have to use strict HTML format; for example, you
don’t need a closing </html> at the end of the string. To get multi-line text, use
 in the
string to represent line breaks. If you would like the lines of text to be center justified, include
the entire text (except for the <html>) between <center> and </center>. For example,

JButton button = new JButton(

"<html><center>This button has
two lines of text</center>");

creates a button that displays two centered lines of text. You can apply italics to part of the
string by enclosing that part between <i> and </i>. Similarly, use ... for bold text and
<u>...</u> for underlined text. For green text, enclose the text between

and . You can, of course, use other colors in place of “green.” The “Java” button that
is shown above was created using:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ChoiceDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 695

JButton javaButton = new JButton("<html><u>Now</u> is the time for
" +

"a nice cup of coffee.");

and then adding the Java image as an icon for the button.

13.4 Complex Components and MVC

Since even buttons turn out to be pretty complex, as seen in the previous section, you
might guess that there is a lot more complexity lurking in the Swing API. While this is true,
a lot of that complexity works to your benefit as a programmer, since a lot of it is hidden in
normal uses of Swing components. For example, you don’t have to know about all the complex
details of buttons in order to use them effectively in most programs.

Swing defines several component classes that are much more complex than those we have
looked at so far, but even the most complex components are not very difficult to use for many
purposes. In this section, we’ll look at components that support display and manipulation of
lists, tables, and text documents. To use these complex components effectively, you’ll need to
know something about the Model-View-Controller pattern that is used as a basis for the design
of many Swing components. This pattern is discussed in the first part of this section.

This section is our last look at Swing components, but there are a number of component
classes that have not even been touched on in this book. Some useful ones that you might want
to look into include: JTabbedPane, JSplitPane, JTree, JSpinner, JPopupMenu, JProgressBar, and
JScrollBar.

At the end of the section, we’ll look briefly at the idea of writing custom component classes—
something that you might consider when even the large variety of components that are already
defined in Swing don’t do quite what you want (or when they do too much, and you want
something simpler).

13.4.1 Model-View-Controller

One of the principles of object-oriented design is division of responsibilities. Ideally, an object
should have a single, clearly defined role, with a limited realm of responsibility. One application
of this principle to the design of graphical user interfaces is the MVC pattern . “MVC” stands
for “Model-View-Controller” and refers to three different realms of responsibility in the design
of a graphical user interface.

When the MVC pattern is applied to a component, the model consists of the data that
represents the current state of the component. The view is simply the visual presentation of
the component on the screen. And the controller is the aspect of the component that carries
out actions in response to events generated by the user (or by other sources such as timers). The
idea is to assign responsibility for the model, the view, and the controller to different objects.

The view is the easiest part of the MVC pattern to understand. It is often represented by
the component object itself, and its responsibility is to draw the component on the screen. In
doing this, of course, it has to consult the model, since the model represents the state of the
component, and that state can determine what appears on the screen. To get at the model
data—which is stored in a separate object according to the MVC pattern—the component
object needs to keep a reference to the model object. Furthermore, when the model changes,
the view often needs to be redrawn to reflect the changed state. The component needs some way
of knowing when changes in the model occur. Typically, in Java, this is done with events and
listeners. The model object is set up to generate events when its data changes. The view object

CHAPTER 13. ADVANCED GUI PROGRAMMING 696

registers itself as a listener for those events. When the model changes, an event is generated,
the view is notified of that event, and the view responds by updating its appearance on the
screen.

When MVC is used for Swing components, the controller is generally not so well defined as
the model and view, and its responsibilities are often split among several objects. The controller
might include mouse and keyboard listeners that respond to user events on the view; Actions
that respond to menu commands or buttons; and listeners for other high-level events, such as
those from a slider, that affect the state of the component. Usually, the controller responds
to events by making modifications to the model, and the view is changed only indirectly, in
response to the changes in the model.

The MVC pattern is used in many places in the design of Swing. It is even used for buttons.
The state of a Swing button is stored in an object of type ButtonModel. The model stores such
information as whether the button is enabled, whether it is selected, and what ButtonGroup it
is part of, if any. If button is of type JButton (or one of the other subclasses of AbstractButton),
then its ButtonModel can be obtained by calling button.getModel(). In the case of buttons,
you might never need to use the model or even know that it exists. But for the list and table
components that we will look at next, knowledge of the model is essential.

13.4.2 Lists and ListModels

A JList is a component that represents a list of items that can be selected by the user. The
sample program SillyStamper.java allows the user to select one icon from a JList of Icons. The
user selects an icon from the list by clicking on it. The selected icon can be “stamped” onto a
drawing area by clicking on the drawing area. (The icons in this program are from the KDE
desktop project.) Here is a picture of the program with several icons already stamped onto the
drawing area and with the “star” icon selected:

Note that the scrollbar in this program is not part of the JList. To add a scrollbar to a list,
the list must be placed into a JScrollPane. See Subsection 6.5.4, where the use of JScrollPane
to hold a JTextArea was discussed. Scroll panes are used in the same way with lists and with
other components. In this case, the JList, iconList, was added to a scroll pane and the scroll
pane was added to a panel with the single command:

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SillyStamper.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 697

add(new JScrollPane(iconList), BorderLayout.EAST);

JList is a parameterized type, where the type parameter indicates what type of object can
be displayed in the list. The most common types are JList<String> and JList<Icon>. Other types
can be used, but they will be converted to strings for display. (It’s possible to “teach” a JList
how to display other types of items; see the setCellRenderer() method in the JList class.)

One way to construct a JList is from an array that contains the objects that will appear in
the list. In the SillyStamper program, the images for the icons are read from resource files,
the icons are placed into an array, and the array is used to construct a JList<Icon>. This is done
by the following method:

private JList<Icon> createIconList() {

String[] iconNames = new String[] {

"icon5.png", "icon7.png", "icon8.png", "icon9.png", "icon10.png",

"icon11.png", "icon24.png", "icon25.png", "icon26.png", "icon31.png",

"icon33.png", "icon34.png"

}; // Array containing resource file names for the icon images.

iconImages = new Image[iconNames.length];

ClassLoader classLoader = getClass().getClassLoader();

Toolkit toolkit = Toolkit.getDefaultToolkit();

try { // Get the icon images from the resource files.

for (int i = 0; i < iconNames.length; i++) {

URL imageURL = classLoader.getResource("stamper icons/" + iconNames[i]);

if (imageURL == null)

throw new Exception();

iconImages[i] = toolkit.createImage(imageURL);

}

}

catch (Exception e) {

iconImages = null;

return null;

}

ImageIcon[] icons = new ImageIcon[iconImages.length];

for (int i = 0; i < iconImages.length; i++) // Create the icons.

icons[i] = new ImageIcon(iconImages[i]);

JList<Icon> list = new JList<Icon>(icons); // A list containing image icons.

list.setSelectionMode(ListSelectionModel.SINGLE SELECTION);

list.setSelectedIndex(0); // First item in the list is currently selected.

return list;

}

By default, the user can select any number of items in a list. A single item is selected by
clicking on it. Multiple items can be selected by shift-clicking and by either control-clicking or
meta-clicking (depending on the platform). In the SillyStamper program, I wanted to restrict
the selection so that only one item can be selected at a time. This restriction is imposed by
calling

list.setSelectionMode(ListSelectionModel.SINGLE SELECTION);

CHAPTER 13. ADVANCED GUI PROGRAMMING 698

With this selection mode, when the user selects an item, the previously selected item, if
any, is deselected. Note that the selection can be changed by the program by calling
list.setSelectedIndex(itemNum). Items are numbered starting from zero. To find out the
currently selected item in single selection mode, call list.getSelectedIndex(). This returns
the item number of the selected item, or -1 if no item is currently selected. If multiple selec-
tions are allowed, you can call list.getSelectedIndices(), which returns an array of ints

that contains the item numbers of all selected items.
Now, the list that you see on the screen is only the view aspect of the list. The controller

consists of the listener objects that respond when the user clicks an item in the list. For its
model, a JList uses an object of type ListModel. This is the object that knows the actual list
of items. A model is defined not only by the data that it contains but by the set of operations
that can be performed on the data. When a JList is constructed from an array of objects, the
model that is used is very simple. The model can tell you how many items it contains and what
those items are, but it can’t do much else. In particular, there is no way to add items to the
list or to delete items from the list! If you need that capability, you will have to use a different
list model.

The class DefaultListModel defines list models that support adding items to and removing
items from the list. Like JList, it is a parameterized class. (Note that the list model that
you get when you create a JList from an array is not of this type.) If dlmodel is of type
DefaultListModel, the following methods, among others, are defined:

• dlmodel.getSize() — returns the number of items.

• dlmodel.getElementAt(index) — returns the item at position index in the list.

• dlmodel.addElement(item) — Adds item to the end of the list; item can be any Object.

• dlmodel.insertElementAt(item, index) — inserts the specified item into the list at
the specified index; items that come after that position in the list are moved down to
make room for the new item.

• dlmodel.setElementAt(item, index) — Replaces the item that is currently at position
index in the list with item.

• dlmodel.remove(index) — removes the item at position index in the list.

• dlmodel.removeAllElements() — removes everything from the list, leaving it empty.

To use a modifiable JList<T>, you should create a DefaultListModel<T>, add any items to it
that should be in the list initially, and pass it to the JList constructor. For example:

DefaultListModel<String> listModel;

JList<String> flavorList;

listModel = new DefaultListModel<String>(); // Create the model object.

listModel.addElement("Chocolate"); // Add items to the model.

listModel.addElement("Vanilla");

listModel.addElement("Strawberry");

listModel.addElement("Rum Raisin");

flavorList = new JList<String>(listModel); // Create the list component.

By keeping a reference to the model around in an instance variable, you will be able to add and
delete flavors as the program is running by calling the appropriate methods in listModel. Keep
in mind that changes that are made to the model will automatically be reflected in the view.
Behind the scenes, when a list model is modified, it generates an event of type ListDataEvent.

CHAPTER 13. ADVANCED GUI PROGRAMMING 699

The JList registers itself with its model as a listener for these events, and it responds to an
event by redrawing itself to reflect the changes in the model. The programmer doesn’t have to
take any extra action, beyond changing the model.

By the way, the model for a JList actually has another part in addition to the ListModel : An
object of type ListSelectionModel stores information about which items in the list are currently
selected. When the model is complex, it’s not uncommon to use several model objects to store
different aspects of the state.

13.4.3 Tables and TableModels

Like a JList, a JTable displays a collection of items to the user. However, tables are much more
complicated than lists. Perhaps the most important difference is that it is possible for the user
to edit items in the table. Table items are arranged in a grid of rows and columns. Each grid
position is called a cell of the table. Each column can have a header , which appears at the
top of the column and contains a name for the column.

It is easy to create a JTable from an array that contains the names of the columns and a
two-dimensional array that contains the items that go into the cells of the table. As an example,
the sample program StatesAndCapitalsTableDemo.java creates a table with two columns named
“State” and “Capital City.” The first column contains a list of the states of the United States
and the second column contains the name of the capital city of each state. The table can be
created as follows:

String[][] statesAndCapitals = new String[][] {

{ "Alabama", "Montgomery" },

{ "Alaska", "Juneau" },

{ "Arizona", "Phoenix" },

.

.

.

{ "Wisconsin", "Madison" },

{ "Wyoming", "Cheyenne" }

};

String[] columnHeads = new String[] { "State", "Capital City" };

JTable table = new JTable(statesAndCapitals, columnHeads);

Since a table does not come with its own scroll bars, it is almost always placed in a JScrollPane
to make it possible to scroll the table. For example:

add(new JScrollPane(table), BorderLayout.CENTER);

The column headers of a JTable are not actually part of the table; they are in a separate
component. But when you add the table to a JScrollPane, the column headers are automatically
placed at the top of the pane.

Using the default settings, the user can edit any cell in the table by clicking that cell. When
editing a cell, the arrow keys can be used to move from one cell to another. The user can
change the order of the columns by dragging a column header to a new position. The user can
also change the width of the columns by dragging the line that separates neighboring column
headers. You can try all this in StatesAndCapitalsTableDemo.java.

Allowing the user to edit all entries in the table is not always appropriate; certainly it’s not
appropriate in the “states and capitals” example. A JTable uses an object of type TableModel
to store information about the contents of the table. The model object is also responsible for

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StatesAndCapitalsTableDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StatesAndCapitalsTableDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 700

deciding whether or not the user should be able to edit any given cell in the table. TableModel
includes the method

public boolean isCellEditable(int rowNum, int columnNum)

where rowNum and columnNum are the position of a cell in the grid of rows and columns that
make up the table. When the controller wants to know whether a certain cell is editable, it
calls this method in the table model. If the return value is true, the user is allowed to edit the
cell.

The default model that is used when the table is created from an array of objects allows
editing of all cells. For this model, the return value of isCellEditable() is true in all cases. To
make some cells non-editable, you have to provide a different model for the table. One way to do
this is to create a subclass of DefaultTableModel and override the isCellEditable() method.
(DefaultTableModel and some other classes that are discussed in this section are defined in
the package javax.swing.table.) Here is how this might have been done in the “states and
capitals” program to make all cells non-editable:

TableModel model = new DefaultTableModel(statesAndCapitals,columnHeads) {

public boolean isCellEditable(int row, int col) {

return false;

}

};

JTable table = new JTable(model);

Here, an anonymous subclass of DefaultTableModel is created in which the isCellEditable()
method returns false in all cases, and the model object that is created from that class is passed
as a parameter to the JTable constructor.

The DefaultTableModel class defines many methods that can be used to modify the table,
including for example: setValueAt(item,rowNum,colNum) to change the item in a given cell;
removeRow(rowNum) to delete a row; and addRow(itemArray) to add a new row at the end of
the table that contains items from the array itemArray. Note that if the item in a given cell is
set to null, then that cell will be empty. Remember, again, that when you modify the model,
the view is automatically updated to reflect the changes.

In addition to the isCellEditable() method, the table model method that you are most
likely to want to override is getColumnClass(), which is defined as

public Class<?> getColumnClass(columnNum)

The purpose of this method is to specify what kind of values are allowed in the specified
column. The return value from this method is of type Class. (The “<?>” is there for technical
reasons having to do with generic programming. See Section 10.5, but don’t worry about
understanding it here.) Although class objects have crept into this book in a few places—
in the discussion of ClassLoaders in Subsection 13.1.3 for example—this is the first time we
have directly encountered the class named Class. An object of type Class represents a class.
A Class object is usually obtained from the name of the class using expressions of the form
“Double.class” or “JTable.class”. If you want a three-column table in which the column
types are String, Double, and Boolean, you can use a table model in which getColumnClass is
defined as:

public Class<?> getColumnClass(columnNum) {

if (columnNum == 0)

return String.class;

else if (columnNum == 1)

CHAPTER 13. ADVANCED GUI PROGRAMMING 701

return Double.class;

else

return Boolean.class;

}

The table will call this method and use the return value to decide how to display and edit
items in the table. For example, if a column is specified to hold Boolean values, the cells in that
column will be displayed and edited as check boxes. For numeric types, the table will not accept
illegal input when the user types in the value. (It is possible to change the way that a table
edits or displays items. See the methods setDefaultEditor() and setDefaultRenderer() in
the JTable class.)

As an alternative to using a subclass of DefaultTableModel, a custom table model can also
be defined using a subclass of AbstractTableModel. Whereas DefaultTableModel provides a lot
of predefined functionality, AbstractTableModel provides very little. However, using Abstract-
TableModel gives you the freedom to represent the table data any way you want. The sample
program ScatterPlotTableDemo.java uses a subclass of AbstractTableModel to define the model
for a JTable. In this program, the table has three columns. The first column holds a row
number and is not editable. The other columns hold values of type Double; these two columns
represent the x- and y-coordinates of points in the plane. The points themselves are graphed in
a “scatter plot” next to the table. Initially, the program fills in the first six points with random
values. Here is a picture of the program, with the x-coordinate in row 5 selected for editing:

Note, by the way, that in this program, the scatter plot can be considered to be a view of the
table model, in the same way that the table itself is. The scatter plot registers itself as a listener
with the model, so that it will receive notification whenever the model changes. When that
happens, the scatter plot redraws itself to reflect the new state of the model. It is an important
property of the MVC pattern that several views can share the same model, offering alternative
presentations of the same data. The views don’t have to know about each other or communicate
with each other except by sharing the model. Although I didn’t do it in this program, it would
even be possible to add a controller to the scatter plot view. This could let the user add a
point by clicking the mouse on the scatter plot or drag a point to change its coordinates. The
controller would update the table model, based on the user actions. Since the scatter plot and
table share the same model, the values displayed in the table would automatically change to
match.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ScatterPlotTableDemo.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 702

Here is the definition of the class that defines the model in the scatter plot program. All
the methods in this class must be defined in any subclass of AbstractTableModel except for
setValueAt(), which only has to be defined if the table is modifiable.

/**

* This class defines the TableModel that is used for the JTable in this

* program. The table has three columns. Column 0 simply holds the

* row number of each row. Column 1 holds the x-coordinates of the

* points for the scatter plot, and Column 2 holds the y-coordinates.

* The table has 25 rows. No support is provided for adding more rows.

*/

private class CoordInputTableModel extends AbstractTableModel {

private Double[] xCoord = new Double[25]; // Data for Column 1.

private Double[] yCoord = new Double[25]; // Data for Column 2.

// Initially, all the values in the array are null, which means

// that all the cells are empty.

public int getColumnCount() { // Tells caller how many columns there are.

return 3;

}

public int getRowCount() { // Tells caller how many rows there are.

return xCoord.length;

}

public Object getValueAt(int row, int col) { // Get value from cell.

if (col == 0)

return (row+1); // Column 0 holds the row number.

else if (col == 1)

return xCoord[row]; // Column 1 holds the x-coordinates.

else

return yCoord[row]; // Column 2 holds the y-coordinates.

}

public Class<?> getColumnClass(int col) { // Get data type of column.

if (col == 0)

return Integer.class;

else

return Double.class;

}

public String getColumnName(int col) { // Returns a name for column header.

if (col == 0)

return "Num";

else if (col == 1)

return "X";

else

return "Y";

}

public boolean isCellEditable(int row, int col) { // Can user edit cell?

return col > 0;

}

public void setValueAt(Object obj, int row, int col) {

// (This method is called by the system if the value of the cell

CHAPTER 13. ADVANCED GUI PROGRAMMING 703

// needs to be changed because the user has edited the cell.

// It can also be called to change the value programmatically.

// In this case, only columns 1 and 2 can be modified, and the data

// type for obj must be Double. The method fireTableCellUpdated()

// has to be called to send an event to registered listeners to

// notify them of the modification to the table model.)

if (col == 1)

xCoord[row] = (Double)obj;

else if (col == 2)

yCoord[row] = (Double)obj;

fireTableCellUpdated(row, col);

}

} // end nested class CoordInputTableModel

In addition to defining a custom table model, I customized the appearance of the table in
several ways. Because this involves changes to the view, most of the changes are made by calling
methods in the JTable object. For example, since the default height of the cells was too small
for my taste, I called table.setRowHeight(25) to increase the height. To make lines appear
between the rows and columns, I found that I had to call both table.setShowGrid(true)

and table.setGridColor(Color.BLACK). Some of the customization has to be done to other
objects. For example, to prevent the user from changing the order of the columns by dragging
the column headers, I had to use

table.getTableHeader().setReorderingAllowed(false);

Tables are quite complex, and I have only discussed a part of the table API here. Nevertheless,
I hope that you have learned enough to start using them and to learn more about them on your
own.

13.4.4 Documents and Editors

As a final example of complex components, we look briefly at JTextComponent and its sub-
classes. A JTextComponent displays text that can, optionally, be edited by the user. Two
subclasses, JTextField and JTextArea, were introduced in Subsection 6.5.4. But the real com-
plexity comes in another subclass, JEditorPane, that supports display and editing of styled text.
This allows features such as boldface and italic. A JEditorPane can even work with basic HTML
documents.

It is almost absurdly easy to write a simple web browser program using a JEditorPane (al-
though the program that you get can only handle basic web pages and does a pretty bad job
on many modern web pages). This is done in the sample program SimpleWebBrowser.java. In
this program, the user enters the URL of a web page, and the program tries to load and display
the web page at that location. A JEditorPane can handle pages with content type “text/plain”,
“text/html”, and “text/rtf”. (The content type “text/rtf” represents styled or “rich text for-
mat” text. URLs and content types were covered in Subsection 11.4.1.) If editPane is of
type JEditorPane and url is of type URL, then the statement “editPane.setPage(url);” is
sufficient to load the page and display it. Since this can generate an exception, the following
method is used in SimpleWebBrowser.java to display a page:

private void loadURL(URL url) {

try {

editPane.setPage(url);

}

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowser.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowser.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 704

catch (Exception e) {

editPane.setContentType("text/plain"); // Set pane to display plain text.

editPane.setText("Sorry, the requested document was not found\n"

+"or cannot be displayed.\n\nError:" + e);

}

}

An HTML document can include links to other pages. When the user clicks on a link, the
web browser should go to the linked page. A JEditorPane does not do this automatically, but
it does generate an event of type HyperLinkEvent when the user clicks a link (provided that the
edit pane has been set to be non-editable by the user). A program can register a listener for
such events and respond by loading the new page.

There are a lot of web pages that a JEditorPane won’t be able to display correctly, but it
can be very useful in cases where you have control over the pages that will be displayed. A
nice application is to distribute HTML-format help and information files with a program. The
files can be stored as resource files in the jar file of the program, and a URL for a resource
file can be obtained in the usual way, using the getResource() method of a ClassLoader. (See
Subsection 13.1.3.)

It turns out, by the way, that SimpleWebBrowser.java is a little too simple. A modified
version, SimpleWebBrowserWithThread.java, improves on the original by using a thread to
load a page and by checking the content type of a page before trying to load it. It actually does
work as a simple web browser. Try it!

The model for a JTextComponent is an object of type Document. If you want to be notified
of changes in the model, you can add a listener to the model using

textComponent.getDocument().addDocumentListener(listener)

where textComponent is of type JTextComponent and listener is of type DocumentListener.
The Document class also has methods that make it easy to read a document from a file and
write a document to a file. I won’t discuss all the things you can do with text components here.
For one more peek at their capabilities, see the sample program SimpleRTFEdit.java, a very
minimal editor for files that contain styled text of type “text/rtf.”

13.4.5 Custom Components

Java’s standard component classes are usually all you need to construct a user interface. At
some point, however, you might need a component that Java doesn’t provide. In that case,
you can write your own component class, building on one of the components that Java does
provide. We’ve already done this, actually, every time we’ve written a subclass of the JPanel
class to use as a drawing surface. A JPanel is a blank slate. By defining a subclass, you can
make it show any picture you like, and you can program it to respond in any way to mouse and
keyboard events. Sometimes, if you are lucky, you don’t need such freedom, and you can build
on one of Java’s more sophisticated component classes.

For example, suppose I have a need for a “stopwatch” component. When the user clicks
on the stopwatch, I want it to start timing. When the user clicks again, I want it to display
the elapsed time since the first click. The textual display can be done with a JLabel, but
we want a JLabel that can respond to mouse clicks. We can get this behavior by defining a
StopWatchLabel component as a subclass of the JLabel class. A StopWatchLabel object will
listen for mouse clicks on itself. The first time the user clicks, it will change its display to
“Timing...” and remember the time when the click occurred. When the user clicks again, it

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowser.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowserWithThread.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleRTFEdit.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 705

will check the time again, and it will compute and display the elapsed time. (Of course, I don’t
necessarily have to define a subclass. I could use a regular label in my program, set up a listener
to respond to mouse events on the label, and let the program do the work of keeping track of
the time and changing the text displayed on the label. However, by writing a new class, I
have something that can be reused in other projects. I also have all the code involved in the
stopwatch function collected together neatly in one place. For more complicated components,
both of these considerations are very important.)

The StopWatchLabel class is not very hard to write. I need an instance variable to record
the time when the user starts the stopwatch. Times in Java are measured in milliseconds and
are stored in variables of type long (to allow for very large values). In the mousePressed()

method, I need to know whether the timer is being started or stopped, so I need a boolean

instance variable, running, to keep track of this aspect of the component’s state. There is
one more item of interest: How do I know what time the mouse was clicked? The method
System.currentTimeMillis() returns the current time. But there can be some delay between
the time the user clicks the mouse and the time when the mousePressed() routine is called.
To make my stopwatch as accurate as possible, I don’t want to know the current time. I want
to know the exact time when the mouse was pressed. When I wrote the StopWatchLabel class,
this need sent me on a search in the Java documentation. I found that if evt is an object of
type MouseEvent, then the function evt.getWhen() returns the time when the event occurred.
I call this function in the mousePressed() routine to determine the exact time when the user
clicked on the label. The complete StopWatch class is rather short:

import java.awt.event.*;

import javax.swing.*;

/**

* A custom component that acts as a simple stop-watch. When the user clicks

* on it, this component starts timing. When the user clicks again,

* it displays the time between the two clicks. Clicking a third time

* starts another timer, etc. While it is timing, the label just

* displays the message "Timing....".

*/

public class StopWatchLabel extends JLabel implements MouseListener {

private long startTime; // Start time of timer.

// (Time is measured in milliseconds.)

private boolean running; // True when the timer is running.

/**

* Constructor sets initial text on the label to

* "Click to start timer." and sets up a mouse listener

* so the label can respond to clicks.

*/

public StopWatchLabel() {

super(" Click to start timer. ", JLabel.CENTER);

addMouseListener(this);

}

/**

* Tells whether the timer is currently running.

*/

public boolean isRunning() {

CHAPTER 13. ADVANCED GUI PROGRAMMING 706

return running;

}

/**

* React when the user presses the mouse by starting or stopping

* the timer and changing the text that is shown on the label.

*/

public void mousePressed(MouseEvent evt) {

if (running == false) {

// Record the time and start the timer.

running = true;

startTime = evt.getWhen(); // Time when mouse was clicked.

setText("Timing....");

}

else {

// Stop the timer. Compute the elapsed time since the

// timer was started and display it.

running = false;

long endTime = evt.getWhen();

double seconds = (endTime - startTime) / 1000.0;

setText("Time: " + seconds + " sec.");

}

}

public void mouseReleased(MouseEvent evt) { }

public void mouseClicked(MouseEvent evt) { }

public void mouseEntered(MouseEvent evt) { }

public void mouseExited(MouseEvent evt) { }

}

Don’t forget that since StopWatchLabel is a subclass of JLabel, you can do anything with a
StopWatchLabel that you can do with a JLabel. You can add it to a container. You can set its
font, foreground color, and background color. You can set the text that it displays (although
this would interfere with its stopwatch function). You can even add a Border if you want.

Let’s look at one more example of defining a custom component. Suppose that—for no
good reason whatsoever—I want a component that acts like a JLabel except that it displays
its text in mirror-reversed form. Since no standard component does anything like this, the
MirrorText class is defined as a subclass of JPanel. It has a constructor that specifies the text to
be displayed and a setText() method that changes the displayed text. The paintComponent()
method draws the text mirror-reversed, in the center of the component. This uses techniques
discussed in Subsection 13.1.1 and Subsection 13.2.1. Information from a FontMetrics object
is used to center the text in the component. The reversal is achieved by using an off-screen
canvas. The text is drawn to the off-screen canvas, in the usual way. Then the image is copied
to the screen with the following command, where OSC is the variable that refers to the off-screen
canvas, and width and height give the size of both the component and the off-screen canvas:

g.drawImage(OSC, width, 0, 0, height, 0, 0, width, height, null);

This is the version of drawImage() that specifies corners of destination and source rect-
angles. The corner (0,0) in OSC is matched to the corner (width,0) on the screen, while
(width,height) is matched to (0,height). This reverses the image left-to-right. Here is the
complete class:

CHAPTER 13. ADVANCED GUI PROGRAMMING 707

import java.awt.*;

import javax.swing.*;

import java.awt.image.BufferedImage;

/**

* A component for displaying a mirror-reversed line of text.

* The text will be centered in the available space. This component

* is defined as a subclass of JPanel. It respects any background

* color, foreground color, and font that are set for the JPanel.

* The setText(String) method can be used to change the displayed

* text. Changing the text will also call revalidate() on this

* component.

*/

public class MirrorText extends JPanel {

private String text; // The text displayed by this component.

private BufferedImage OSC; // Holds an un-reversed picture of the text.

/**

* Construct a MirrorText component that will display the specified

* text in mirror-reversed form.

*/

public MirrorText(String text) {

if (text == null)

text = "";

this.text = text;

}

/**

* Change the text that is displayed on the label.

* @param text the new text to display

*/

public void setText(String text) {

if (text == null)

text = "";

if (! text.equals(this.text)) {

this.text = text; // Change the instance variable.

revalidate(); // Tell container to recompute its layout.

repaint(); // Make sure component is redrawn.

}

}

/**

* Return the text that is displayed on this component.

* The return value is non-null but can be an empty string.

*/

public String getText() {

return text;

}

/**

* The paintComponent method makes a new off-screen canvas, if necessary,

* writes the text to the off-screen canvas, then copies the canvas onto

* the screen in mirror-reversed form.

*/

public void paintComponent(Graphics g) {

CHAPTER 13. ADVANCED GUI PROGRAMMING 708

int width = getWidth();

int height = getHeight();

if (OSC == null || width != OSC.getWidth()

|| height != OSC.getHeight()) {

OSC = new BufferedImage(width,height,BufferedImage.TYPE INT RGB);

}

Graphics OSG = OSC.getGraphics();

OSG.setColor(getBackground());

OSG.fillRect(0, 0, width, height);

OSG.setColor(getForeground());

OSG.setFont(getFont());

FontMetrics fm = OSG.getFontMetrics(getFont());

int x = (width - fm.stringWidth(text)) / 2;

int y = (height + fm.getAscent() - fm.getDescent()) / 2;

OSG.drawString(text, x, y);

OSG.dispose();

g.drawImage(OSC, width, 0, 0, height, 0, 0, width, height, null);

}

/**

* Compute a preferred size that includes the size of the text, plus

* a boundary of 5 pixels on each edge.

*/

public Dimension getPreferredSize() {

FontMetrics fm = getFontMetrics(getFont());

return new Dimension(fm.stringWidth(text) + 10,

fm.getAscent() + fm.getDescent() + 10);

}

} // end MirrorText

This class defines the method “public Dimension getPreferredSize()”. This method is
called by a layout manager when it wants to know how big the component would like to be.
Standard components come with a way of computing a preferred size. For a custom component
based on a JPanel, it’s a good idea to provide a custom preferred size. Every component has
a method setPreferredSize() that can be used to set the preferred size of the component.
For our MirrorText component, however, the preferred size depends on the font and the text
of the component, and these can change from time to time. We need a way to compute a
preferred size on demand, based on the current font and text. That’s what we do by defining
a getPreferredSize() method. The system calls this method when it wants to know the
preferred size of the component. In response, we can compute the preferred size based on the
current font and text.

The StopWatchLabel and MirrorText classes define components. Components don’t stand
on their own. You have to add them to a panel or other container. The sample program Cus-
tomComponentTest.java demonstrates using a MirrorText and a StopWatchLabel component,
which are defined by the source code files MirrorText.java and StopWatchLabel.java.

In this program, the two custom components and a button are added to a panel that uses
a FlowLayout as its layout manager, so the components are not arranged very neatly. If you
click the button labeled “Change Text in this Program”, the text in all the components will
be changed. You can also click on the stopwatch label to start and stop the stopwatch. When
you do any of these things, you will notice that the components will be rearranged to take the
new sizes into account. This is known as “validating” the container. This is done automatically

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/CustomComponentTest.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/MirrorText.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StopWatchLabel.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 709

when a standard component changes in some way that requires a change in preferred size or
location. This may or may not be the behavior that you want. (Validation doesn’t always
cause as much disruption as it does in this program. For example, in a GridLayout, where all
the components are displayed at the same size, it will have no effect at all. I chose a FlowLayout
for this example to make the effect more obvious.) When the text is changed in a MirrorText
component, there is no automatic validation of its container. A custom component such as
MirrorText must call the revalidate() method to indicate that the container that contains
the component should be validated. In the MirrorText class, revalidate() is called in the
setText() method.

13.5 Finishing Touches

In this final section, I will present a program that is more complex and more polished
than those we have looked at previously. Most of the examples in this book have been “toy”
programs that illustrated one or two points about programming techniques. It’s time to put it
all together into a full-scale program that uses many of the techniques that we have covered,
and a few more besides. After discussing the program and its basic design, I’ll use it as an
excuse to talk briefly about some of the features of Java that didn’t fit into the rest of this
book.

The program that we will look at is a Mandelbrot Viewer that lets the user explore the
famous Mandelbrot set. I will begin by explaining what that means. Note that an even more
capable Mandelbrot program can be found at http://math.hws.edu/xJava/MB.

13.5.1 The Mandelbrot Set

The Mandelbrot set is a set of points in the xy-plane that is defined by a computational
procedure. To use the program, all you really need to know is that the Mandelbrot set can be
used to make some pretty pictures, but here are the mathematical details: Consider the point
that has real-number coordinates (a,b) and apply the following computation:

Let x = a

Let y = b

Repeat:

Let newX = x*x - y*y + a

Let newY = 2*x*y + b

Let x = newX

Let y = newY

As the loop is repeated, the point (x,y) changes. The question for the Mandelbrot set is, does
(x,y) grow without bound, or is it trapped forever in a finite region of the plane? If (x,y)
escapes to infinity (that is, grows without bound), then the starting point (a,b) is not in the
Mandelbrot set. If (x,y) is trapped in a finite region, then (a,b) is in the Mandelbrot set.
Now, it is known that if x2 + y2 ever becomes strictly greater than 4, then (x,y) will escape to
infinity. So, if x2 + y2 ever becomes bigger than 4 in the above loop, we can end the loop and
say that (a,b) is definitely not in the Mandelbrot set. For a point (a,b) in the Mandelbrot
set, the loop will never end. When we do this on a computer, of course, we don’t want to have
a loop that runs forever, so we put a limit on the number of times that the loop is executed:

x = a;

y = b;

http://math.hws.edu/xJava/MB

CHAPTER 13. ADVANCED GUI PROGRAMMING 710

count = 0;

while (x*x + y*y < 4.1) {

count++;

if (count > maxIterations)

break;

double newX = x*x - y*y + a;

double newY = 2*x*y + b;

x = newY;

y = newY;

}

After this loop ends, if count is less than or equal to maxIterations, we can say that (a,b)
is definitely not in the Mandelbrot set. If count is greater than maxIterations, then (a,b)

might or might not be in the Mandelbrot set, but the larger maxIterations is, the more likely
that (a,b) is actually in the set.

To make a picture from this procedure, use a rectangular grid of pixels to represent some
rectangle in the plane. Each pixel corresponds to some real number coordinates (a,b). (Use
the coordinates of the center of the pixel.) Run the above loop for each pixel. If the count goes
past maxIterations, color the pixel black; this is a point that is possibly in the Mandelbrot
set. Otherwise, base the color of the pixel on the value of count after the loop ends, using
different colors for different counts. In some sense, the higher the count, the closer the point
is to the Mandelbrot set, so the colors give some information about points outside the set and
about the shape of the set. However, it’s important to understand that the colors are arbitrary
and that colored points are definitely not in the set. Here is a picture that was produced by
the Mandelbrot Viewer program using this computation. The black region is the Mandelbrot
set (except that not all black points are known to be definitely in the set):

When you use the program, you can “zoom in” on small regions of the plane. To do so, just
click-and-drag the mouse on the picture. This will draw a rectangle around part of the picture.
When you release the mouse, the part of the picture inside the rectangle will be zoomed to fill
the entire display. If you simply click a point in the picture, you will zoom in on the point where
you click by a magnification factor of two. (Shift-click or use the right mouse button to zoom
out instead of zooming in.) The interesting points are along the boundary of the Mandelbrot

CHAPTER 13. ADVANCED GUI PROGRAMMING 711

set. In fact, the boundary is infinitely complex. (Note that if you zoom in too far, you will
exceed the capabilities of the double data type; nothing is done in the program to prevent this.)

Use the “MaxIterations” menu to increase the maximum number of iterations in the loop.
Remember that black pixels might or might not be in the set; when you increase “MaxIter-
ations,” you might find that a black region becomes filled with color. The “Palette” menu
determines the set of colors that are used. Different palettes give very different visualizations
of the set. The “PaletteLength” menu determines how many different colors are used. In the
default setting, a different color is used for each possible value of count in the algorithm. Some-
times, you can get a much better picture by using a different number of colors. If the palette
length is less than maxIterations, the palette is repeated to cover all the possible values of
count; if the palette length is greater than maxIterations, only part of of the palette will be
used. (If the picture is of an almost uniform color, try decreasing the palette length, since that
makes the color vary more quickly as count changes. If you see what look like randomly colored
dots instead of bands of color, try increasing the palette length.)

The program has a “File” menu that can be used to save the picture as a PNG image file.
You can also save a “param” file which simply saves the settings that produced the current
picture. A param file can be read back into the program using the “Open” command.

The Mandelbrot set is named after Benoit Mandelbrot, who was the first person to note the
incredible complexity of the set. It is astonishing that such complexity and beauty can arise
out of such a simple algorithm.

13.5.2 Design of the Program

Most classes in Java are defined in packages. While we have used standard packages such as
javax.swing and java.io extensively, almost all of my programming examples have been in
the “default package,” which means that they are not declared to belong to any named package.
However, when doing more serious programming, it is good style to create a package to hold
the classes for your program. The Oracle corporation recommends that package names should
be based on an Internet domain name of the organization that produces the package. My office
computer has domain name eck.hws.edu, and no other computer in the world should have
the same name. According to Oracle, this allows me to use the package name edu.hws.eck,
with the elements of the domain name in reverse order. I can also use sub-packages of this
package, such as edu.hws.eck.mdb, which is the package name that I decided to use for my
Mandelbrot Viewer application. No one else—or at least no one else who uses the same naming
convention—will ever use the same package name, so this package name uniquely identifies my
program.

I briefly discussed using packages in Subsection 2.6.6 and in the context of the programming
examples in Section 12.5. Here’s what you need to know for the Mandelbrot Viewer program:
The program is defined in eight Java source code files. They can be found in the directory
edu/hws/eck/mdb inside the source directory of the web site. (That is, they are in a directory
named mdb, which is inside a directory named eck, which is inside hws, which is inside edu.
The directory structure must follow the package name in this way.) The same directory also
contains a file named strings.properties that is used by the program and that will be discussed
below. And there is an examples folder that contains resource files used for an “Examples”
menu. For an Integrated Development Environment such as Eclipse, you should just have to
add the edu directory to your project. To compile the files on the command line, you must be
working in the directory that contains the edu directory. Use the command

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/strings.properties

CHAPTER 13. ADVANCED GUI PROGRAMMING 712

javac edu/hws/eck/mdb/*.java

or, if you use Windows,

javac edu\hws\eck\mdb*.java

to compile the source code. The main routine for the program is defined by a class named Main.
To run this class, use the command:

java edu.hws.eck.mdb.Main

This command must also be given in the directory that contains the edu directory.

∗ ∗ ∗

The work of computing and displaying images of the Mandelbrot set is done in Mandelbrot-
Display.java. The MandelbrotDisplay class is a subclass of JPanel. It uses an off-screen canvas to
hold a copy of the image. (See Subsection 13.1.1.) The paintComponent() method copies this
image onto the panel. Then, if the user is drawing a “zoom box” with the mouse, the zoom box
is drawn on top of the image. In addition to the image, the class uses a two-dimensional array
to store the iteration count for each pixel in the image. If the range of xy-values changes, or if
the size of the window changes, all the counts must be recomputed. Since the computation can
take quite a while, it would not be acceptable to block the user interface while the computation
is being performed. The solution is to do the computation in separate “worker” threads, as
discussed in Chapter 12. The program uses one worker thread for each available processor.
When the computation begins, the image is filled with gray. Every so often, about twice a
second, the data that has been computed by the computation threads is gathered and applied
to the off-screen canvas, and the part of the canvas that has been modified is copied to the
screen. A Timer is used to control this process—each time the timer fires, the image is updated
with any new data that has been computed by the threads. The user can continue to use the
menus and even the mouse while the image is being computed.

The file MandelbrotPanel.java defines the main panel of the Mandelbrot Viewer window.
MandelbrotPanel is another subclass of JPanel. A MandelbrotPanel is mostly filled with a Man-
delbrotDisplay. It also adds a JLabel beneath the display. The JLabel is used as a “status bar”
that shows some information that might be interesting to the user. The MandelbrotPanel also
defines the program’s mouse listener. In addition to handling zooming, the mouse listener puts
the x and y coordinates of the current mouse location in the status bar as the user moves or
drags the mouse. Also, when the mouse exits the drawing area, the text in the status bar is
set to read “Idle”. This is the first time that we have seen an actual use for mouseMoved and
mouseExited events. (See Subsection 6.3.2 and Subsection 6.3.4.)

The menu bar for the program is defined in Menus.java. Commands in the “File” and
“Control” menu are defined as Actions. (See Subsection 13.3.1.) Note that among the actions are
file manipulation commands that use techniques from Subsection 11.2.3, Subsection 11.5.2, and
Subsection 13.1.5. The “MaxIterations,” “Palette,” and “PaletteLength” menus each contain a
group of JRadioButtonMenuItems. (See Subsection 13.3.3.) I have tried several approaches for
handling such groups, and none of them have satisfied me completely. In this program, I have
defined a nested class inside Menus to represent each group. For example, the PaletteManager
class contains the menu items in the “Palette” menu as instance variables. It registers an action
listener with each item, and it defines a few utility routines for operating on the menu. The
classes for the three menus are very similar and should probably have been defined as subclasses
of some more general class. There is an “Examples” menu that contains settings for several
sample views of pieces of the Mandelbrot set.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/MandelbrotDisplay.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/MandelbrotPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/Menus.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 713

The MandelbrotPanel that is being used in the program is a parameter to the Menus con-
structor. Many of the menu commands operate on this panel or on the MandelbrotDisplay that
it contains. In order to carry out these commands, the Menus object needs a reference to the
MandelbrotPanel. As for the MandelbrotDisplay, the panel has a method getDisplay() that
returns a reference to the display that it contains. So as long as the menu bar has a reference
to the panel, it can obtain a reference to the display. In previous examples, everything was
written as one large class file, so all the objects were directly available to all the code. When a
program is made up of multiple interacting files, getting access to the necessary objects can be
more of a problem.

MandelbrotPanel, MandelbrotDisplay, and Menus are the main classes that make up the
Mandelbrot Viewer program. MandelbrotFrame.java defines a simple subclass of JFrame that
shows a MandelbrotPanel and its menu bar. And Main.java contains the main() routine that
actually runs the program. There are a few other classes that I will discuss below.

This brief discussion of the design of the Mandelbrot Viewer has shown that it uses a wide
variety of techniques that were covered earlier in this book. In the rest of this section, we’ll
look at a few new features of Java that were used in the program.

13.5.3 Internationalization

Internationalization refers to writing a program that is easy to adapt for running in different
parts of the world. Internationalization is often referred to as I18n , where 18 is the number of
letters between the “I” and the final “n” in “Internationalization.” The process of adapting the
program to a particular location is called localization , and the locations are called locales.
Locales differ in many ways, including the type of currency used and the format used for
numbers and dates, but the most obvious difference is language. Here, I will discuss how to
write a program so that it can be easily translated into other languages.

The key idea is that strings that will be presented to the user should not be coded into
the program source code. If they were, then a translator would have to search through the
entire source code, replacing every string with its translation. Then the program would have
to be recompiled. In a properly internationalized program, all the strings are stored together
in one or more files that are separate from the source code, where they can easily be found and
translated. And since the source code doesn’t have to be modified to do the translation, no
recompilation is necessary.

To implement this idea, the strings are stored in one or more properties files. A properties
file is just a list of key/value pairs. For translation purposes, the values are strings that will be
presented to the user; these are the strings that have to be translated. The keys are also strings,
but they don’t have to be translated because they will never be presented to the user. Since
they won’t have to be modified, the key strings can be used in the program source code. Each
key uniquely identifies one of the value strings. The program can use the key string to look up
the corresponding value string from the properties file. The program only needs to know the
key string; the user will only see the value string. When the properties file is translated, the
user of the program will see different value strings.

The format of a properties file is very simple. The key/value pairs take the form

key.string=value string

There are no spaces in the key string or before the equals sign. Periods are often used to divide
words in the key string. The value string can contain spaces or any other characters. If the
line ends with a backslash (“\”), the value string is continued on the next line; in this case,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/MandelbrotFrame.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/Main.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 714

spaces at the beginning of that line are ignored. One unfortunate detail is that a properties file
can contain only plain ASCII characters. The ASCII character set only supports the English
alphabet. Nevertheless, a value string can include arbitrary UNICODE characters. Non-ASCII
characters just have to be specially encoded. The JDK comes with a program, native2ascii,
that can convert files that use non-ASCII characters into a form that is suitable for use as a
properties file.

Suppose that the program wants to present a string to the user (as the name of a menu
command, for example). The properties file would contain a key/value pair such as

menu.saveimage=Save PNG Image...

where “Save PNG Image. . . ” is the string that will appear in the menu. The program would
use the key string, “menu.saveimage”, to look up the corresponding value string and would then
use the value string as the text of the menu item. In Java, the look up process is supported
by the ResourceBundle class, which knows how to retrieve and use properties files. Sometimes
a string that is presented to the user contains substrings that are not known until the time
when the program is running. A typical example is the name of a file. Suppose, for example,
that the program wants to tell the user, “Sorry, the file, 〈filename〉, cannot be loaded”, where
〈filename〉 is the name of a file that was selected by the user at run time. To handle cases like
this, value strings in properties files can include placeholders that will be replaced by strings
to be determined by the program at run time. The placeholders take the form “{0}”, “{1}”,
“{2}”, For the file error example, the properties file might contain:

error.cantLoad=Sorry, the file, {0}, cannot be loaded

The program would fetch the value string for the key error.cantLoad. It would then substitute
the actual file name for the placeholder, “{0}”. Note that when the string is translated, the
word order might be completely different. By using a placeholder for the file name, you can be
sure that the file name will be put in the correct grammatical position for the language that is
being used. Placeholder substitution is not handled by the ResourceBundle class, but Java has
another class, MessageFormat, that makes such substitutions easy.

For the Mandelbrot Viewer program, the properties file is strings.properties. (Any properties
file should have a name that ends in “.properties”.) Any string that you see when you run
the program comes from this file. For handling value string lookup, I wrote I18n.java. The I18n
class has a static method

public static tr(String key, Object... args)

that handles the whole process. Here, key is the key string that will be looked up in
strings.properties. Additional parameters, if any, will be substituted for placeholders in
the value string. (Recall that the formal parameter declaration “Object...” means that there
can be any number of actual parameters after key; see Subsection 7.1.2.) Typical uses would
include:

String saveImageCommandText = I18n.tr("menu.saveimage");

String errMess = I18n.tr("error.cantLoad" , selectedFile.getName());

You will see function calls like this throughout the Mandelbrot Viewer source code. The I18n
class is written in a general way so that it can be used in any program. As long as you provide
a properties file as a resource, the only things you need to do are change the resource file name
in I18n.java and put the class in your own package.

It is actually possible to provide several alternative properties files in the same pro-
gram. For example, you might include French and Japanese versions of the properties file

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/strings.properties
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/I18n.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 715

along with an English version. If the English properties file is named strings.properties,
then the names for the French and Japanese versions should be strings fr.properties and
strings ja.properties. Every language has a two-letter code, such as “fr” and “ja”, that is
used in constructing properties file names for that language. The program asks for the proper-
ties file using the simple name “strings”. If the program is being run on a Java system in which
the preferred language is French, the program will try to load “strings fr.properties”; if
that fails, it will look for “strings.properties”. This means that the program will use the
French properties files in a French locale; it will use the Japanese properties file in a Japanese
locale; and in any other locale it will use the default properties file.

13.5.4 Events, Events, Events

We have worked extensively with mouse events, key events, and action events, but these are
only a few of the event types that are used in Java. The Mandelbrot Viewer program makes use
of several other types of events. It also serves as an example of the benefits of event-oriented
programming.

Let’s start from the following fact: The MandelbrotDisplay class knows nothing about any
of the other classes that make up the program (with the single exception of one call to the
internationalization method I18n.tr). Yet other classes are aware of things that are going
on in the MandelbrotDisplay class. For example, when the size of the display is changed, the
new size is reported in the status bar that is part of the MandelbrotPanel class. In the Menus
class, certain menus are disabled when the display begins the computation of an image and
are re-enabled when the computation completes. The display doesn’t call methods in the
MandelbrotPanel or Menus classes, so how do these classes get their information about what is
going on in the display? The answer, of course, is events. The MandelbrotDisplay object emits
events of various types when various things happen. The MandelbrotPanel and Menus objects
set up listeners that hear those events and respond to them.

The point is that because events are used for communication, the MandelbrotDisplay class is
not strongly coupled to the other classes. In fact, it can be used in other programs without any
modification and without access to the other classes. The alternative to using events would be to
have the display object call methods such as displaySizeChanged() or computationStarted()
in theMandelbrotPanel andMandelbrotFrame objects to tell them what is going on in the display.
This would be strong coupling: Any programmer who wanted to use MandelbrotDisplay would
also have to use the other two classes or would have to modify the display class so that it no
longer refers to the other classes. Of course, not everything can be done with events and not
all strong coupling is bad: The MandelbrotPanel class refers directly to the MandelbrotDisplay
class and cannot be used without it—but since the whole purpose of a MandelbrotPanel is to
hold a MandelbrotDisplay, the coupling is not a problem.

∗ ∗ ∗

The Mandelbrot Viewer program responds to mouse events on the display. These events
are generated by the display object, but the display class itself doesn’t care about mouse events
and doesn’t do anything in response to them. Mouse events are handled by a listener in
the MandelbrotPanel, which responds to them by zooming the display and by showing mouse
coordinates in the status bar.

The status bar also shows the new size of the display whenever that size is changed. To
handle this, events of type ComponentEvent are used. When the size of a component is changed,
a ComponentEvent is generated. In the Mandelbrot Viewer program, a ComponentListener in

CHAPTER 13. ADVANCED GUI PROGRAMMING 716

the MandelbrotPanel class listens for size-change events in the display. When one occurs, the
listener responds by showing the new size in the status bar; the display knows nothing about
the status bar that shows the display’s size.

Component events are also used internally in the MandelbrotDisplay class in an interesting
way. When the user dynamically changes the size of the display, its size can change several
times each second. Normally, a change of display size would trigger the creation of a new off-
screen canvas and the start of a new asynchronous computation of the image. However, doing
this is a big deal, not something I want to do several times in a second. If you try resizing the
program’s window, you’ll notice that the image doesn’t change size dynamically as the window
size changes. The same image and off-screen canvas are used as long as the size is changing.
Only about one-third of a second after the size has stopped changing will a new, resized image
be produced. Here is how this works: The display sets up a ComponentListener to listen for
resize events on itself. When a resize occurs, the listener starts a Timer that has a delay of 1/3
second. (See Subsection 6.4.1.) While this timer is running, the paintComponent() method
does not resize the image; instead, it reuses the image that already exists. If the timer fires 1/3
second later, the image will be resized at that time. However, if another resize event occurs
while the first timer is running, then the first timer will be stopped before it has a chance to
fire, and a new timer will be started with a delay of 1/3 second. The result is that the image
does not get resized until 1/3 second after the size of the window stops changing.

The Mandelbrot Viewer program also uses events of type WindowEvent, which are generated
by a window when it opens or closes (among other things). Window events are used by Main.java
to trigger an action that has to be taken when the program is ending; this will be discussed
below.

Perhaps the most interesting use of events in the Mandelbrot Viewer program is to enable
and disable menu commands based on the status of the display. For this, events of type
PropertyChangeEvent are used. This event class is part of a “bean” framework that Java uses for
some advanced work with objects, and class PropertyChangeEvent and related classes are defined
in the package java.beans. The idea is that bean objects are defined by their “properties”
(which are just aspects of the state of the bean). When a bean property changes, the bean can
emit a PropertyChangeEvent to notify other objects of the change. Properties for which property
change events are emitted are known technically as bound properties. A bound property has
a name that identifies that particular property among all the properties of the bean. When
a property change event is generated, the event object includes the name of the property that
has changed, the previous value of the property, and the new value of the property.

The MandelbrotDisplay class has a bound property whose name is given by the constant
MandelbrotDisplay.STATUS PROPERTY. A display emits a property change event when its sta-
tus changes. The possible values of the status property are given by other constants, such
as MandelbrotDisplay.STATUS READY. The READY status indicates that the display is not cur-
rently running a computation and is ready to do another one. There are several menu commands
that should be enabled only when the status of the display is READY. To implement this, the
Menus class defines a PropertyChangeListener to listen for property change events from the dis-
play. When this listener hears an event, it responds by enabling or disabling menu commands
according to the new value of the status property.

All of Java’s GUI components are beans and are capable of emitting property change events.
In any subclass of Component, this can be done simply by calling the method

public void firePropertyChange(String propertyName,

Object oldValue, Object newValue)

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/Main.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 717

For example, theMandelbrotDisplay class uses the following method for setting its current status:

private void setStatus(String status) {

if (status == this.status) {

// Note: Event should be fired only if status actually changes.

return;

}

String oldStatus = this.status;

this.status = status;

firePropertyChange(STATUS PROPERTY, oldStatus, status);

}

When writing bean classes from scratch, you have to add support for property change events,
if you need them. To make this easier, the java.beans package provides the PropertyChange-
Support class.

13.5.5 Custom Dialogs

Java has several standard dialog boxes that are defined in the classes JOptionPane, JColor-
Chooser, and JFileChooser. These were introduced in Subsection 6.7.2 and Subsection 11.2.3.
Dialogs of all these types are used in the Mandelbrot Viewer program. However, sometimes
other types of dialog are needed. In such cases, you can build a custom dialog box.

Dialog boxes are defined by subclasses of the class JDialog. Like frames, dialog boxes are
separate windows on the screen, and the JDialog class is very similar to the JFrame class. The
big difference is that a dialog box has a parent , which is a frame or another dialog box that
“owns” the dialog box. If the parent of a dialog box closes, the dialog box closes automatically.
Furthermore, the dialog box might “float” on top of its parent, even when its parent is the
active window.

Dialog boxes can be either modal or modeless. When a modal dialog is put up on the
screen, the rest of the application is blocked until the dialog box is dismissed. This is the most
common case, and all the standard dialog boxes are modal. Modeless dialog boxes are more
like independent windows, since they can stay on the screen while the user interacts with other
windows. There are no modeless dialogs in the Mandelbrot Viewer program.

The Mandelbrot Viewer program uses two custom dialog boxes. They are used to implement
the “Set Image Size” and “Set Limits” commands and are defined by the files SetImageSizeDi-
alog.java and SetLimitsDialog.java. The “set image size” dialog lets the user enter a new width
and height for the Mandelbrot image. The “set limits” dialog lets the user input the minimum
and maximum values for x and y that are shown in the image. The two dialog classes are
very similar. In both classes, several JTextFields are used for user input. Two buttons named
“OK” and “Cancel” are added to the window, and listeners are set up for these buttons. If
the user clicks “OK”, the listener checks whether the inputs in the text fields are legal; if not,
an error message is displayed to the user and the dialog stays on the screen. If the input is
legal when the user clicks “OK”, the dialog is disposed. The dialog is also disposed if the user
clicks “Cancel” or clicks the dialog box’s close box. The net effect is that the dialog box stays
on the screen until the user either cancels the dialog or enters legal values for the inputs and
clicks “OK”. The program can find out which of these occurred by calling a method named
getInput() in the dialog object after showing the dialog. This method returns null if the
dialog was canceled; otherwise it returns the user input.

To make my custom dialog boxes easy to use, I added a static showDialog() method to
each dialog class. When this function is called, it shows the dialog, waits for it to be dismissed,

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/SetImageSizeDialog.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/SetLimitsDialog.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 718

and then returns the value of the getInput() method. This makes it possible to use my custom
dialog boxes in much the same way as Java’s standard dialog boxes are used.

Custom dialog boxes are not difficult to create and to use, if you already know about frames.
I will not discuss them further here, but you can look at the source code file SetImageSizeDia-
log.java as a model.

13.5.6 Preferences

Most serious programs allow the user to set preferences. A preference is really just a piece of
the program’s state that is saved between runs of the program. In order to make preferences
persistent from one run of the program to the next, the preferences could simply be saved to a
file in the user’s home directory. However, there would then be the problem of locating the file.
There would be the problem of naming the file in a way that avoids conflicts with file names
used by other programs. And there would be the problem of cluttering up the user’s home
directory with files that the user shouldn’t even have to know about.

To deal with these problems, Java has a standard means of handling preferences. It is
defined by the package java.util.prefs. In general, the only thing that you need from this
package is the class named Preferences.

In the Mandelbrot Viewer program, the file Main.java has an example of using Preferences.
Main.java contains the main() routine for the program.

In most programs, the user sets preferences in a custom dialog box. However, the Man-
delbrot program doesn’t have any preferences that are appropriate for that type of treatment.
Instead, as an example, I automatically save a few aspects of the program’s state as preferences.
Every time the program starts up, it reads the preferences, if any are available. Every time
the program terminates, it saves the preferences. (Saving the preferences poses an interesting
problem because the program ends when the MandelbrotFrame window closes, not when the
main() routine ends. In fact, the main() routine ends as soon as the window appears on the
screen. So, it isn’t possible to save the preferences at the end of the main program. The solution
is to use events: A listener listens for WindowEvents from the frame. When a window-closed
event is received, indicating that the program is ending, the listener saves the preferences.)

Preferences for Java programs are stored in some platform-dependent form in some platform-
dependent location. As a Java programmer, you don’t have to worry about it; the Java pref-
erences system knows where to store the data. There is still the problem of identifying the
preferences for one program among all the possible Java programs that might be running on a
computer. Java solves this problem in the same way that it solves the package naming prob-
lem. In fact, by convention, the preferences for a program are identified by the package name of
the program, with a slight change in notation. For example, the Mandelbrot Viewer program
is defined in the package edu.hws.eck.mdb, and its preferences are identified by the string
“/edu/hws/eck/mdb”. (The periods have been changed to “/”, and an extra “/” has been
added at the beginning.)

The preferences for a program are stored in something called a “node.” The user preferences
node for a given program identifier can be accessed as follows:

Preferences root = Preferences.userRoot();

Preferences node = root.node(pathName);

where pathname is the string, such as “/edu/hws/eck/mdb”, that identifies the node. The node
itself consists of a simple list of key/value pairs, where both the key and the value are strings.
You can store any strings you want in preferences nodes—they are really just a way of storing

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/SetImageSizeDialog.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/Main.java

CHAPTER 13. ADVANCED GUI PROGRAMMING 719

some persistent data between program runs. In general, though, the key string identifies some
particular preference item, and the associated value string is the value of that preference. A
Preferences object, prefnode, contains methods prefnode.get(key) for retrieving the value
string associated with a given key and prefnode.put(key,value) for setting the value string
for a given key.

In Main.java, I use preferences to store the shape and position of the program’s window.
This makes the size and shape of the window persistent between runs of the program; when
you run the program, the window will be right where you left it the last time you ran it. I also
store the name of the directory that is currently selected in the file dialog box that is used by
the program for the Save and Open commands. This is particularly satisfying, since the default
behavior for a file dialog box is to start in the user’s home directory, which is hardly ever the
place where the user wants to keep a program’s files. With the preferences feature, I can switch
to the right directory the first time I use the program, and from then on I’ll automatically
be back in that directory when I use the program again. You can look at the source code in
Main.java for the details.

∗ ∗ ∗

And that’s it. . . . There’s a lot more that I could say about Java and about programming
in general, but this book is only “An Introduction to Programming Using Java,” and it’s time
for our journey to end. I hope that it has been a pleasant journey for you, and I hope that I
have helped you establish a foundation that you can use as a basis for further exploration.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb/Main.java

Exercises 720

Exercises for Chapter 13

1. The sample program PaintWithOffScreenCanvas.java from Section 13.1 is a simple paint (solution)

program. Make two improvements to this program: First, add a “File” menu that lets
the user open an image file and save the current image in either PNG or JPEG format.
Second, add a basic one-level “Undo” command that lets the user undo the most recent
operation that was applied to the image. (Do not try to make a multilevel Undo, which
would allow the user to undo several operations.)

When you read a file into the program, you should copy the image that you read into
the program’s off-screen canvas. Since the canvas in the program has a fixed size, you
should scale the image that you read so that it exactly fills the canvas.

2. For this exercise, you should continue to work on the program from the previous exercise. (solution)

Add a “StrokeWidth” menu that allows the user to draw lines of varying thicknesses. Make
it possible to use different colors for the interior of a filled shape and for the outline of that
shape. To do this, change the “Color” menu to “StrokeColor” and add a “FillColor” menu.
(My solution adds two new tools, “Stroked Filled Rectangle” and “Stroked Filled Oval”,
to represent filled shapes that are outlined with the current stroke.) Add support for filling
shapes with transparent color. A simple approach to this is to use a JCheckboxMenuItem to
select either fully opaque or 50% opaque fill. (Don’t try to apply transparency to stokes—
it’s very difficult to make transparency work correctly for the Curve tool, and in any case,
shape outlines look better if they are opaque.) Finally, make the menus more user friendly
by adding keyboard accelerators to some commands and by using JRadioButtonMenuItems
where appropriate, such as in the color and tool menus. This exercise takes quite a bit of
work to get it all right, so you should tackle the problem in pieces.

3. The StopWatchLabel component from Subsection 13.4.5 displays the text “Timing. . . ” (solution)

when the stop watch is running. It would be nice if it displayed the elapsed time since
the stop watch was started. For that, you need to create a Timer. (See Subsection 6.4.1.)
Add a Timer to the original source code, StopWatchLabel.java, to drive the display of the
elapsed time in seconds. Create the timer in the mousePressed() routine when the stop
watch is started. Stop the timer in the mousePressed() routine when the stop watch
is stopped. The elapsed time won’t be very accurate anyway, so just show the integral
number of seconds. You only need to set the text a few times per second. For my Timer
method, I use a delay of 200 milliseconds for the timer.

4. The custom component example MirrorText.java, from Subsection 13.4.5, uses an off- (solution)

screen canvas to show mirror-reversed text in a JPanel. An alternative approach would
be to draw the text after applying a transform to the graphics context that is used for
drawing. (See Subsection 13.2.5.) With this approach, the custom component can be
defined as a subclass of JLabel in which the paintComponent() method is overridden.
Write a version of the MirrorText component that takes this approach. The solution is
very short, but tricky. Note that the scale transform g2.scale(-1,1) does a left-right
reflection through the left edge of the component.

5. The sample program PhoneDirectoryFileDemo.java from Subsection 11.3.2 keeps data for (solution)

a “phone directory” in a file in the user’s home directory. Exercise 11.5 asked you to

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintWithOffScreenCanvas.java
http://math.hws.edu/eck/cs124/javanotes7/c13/ex1-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c13/ex2-ans.html
http://math.hws.edu/eck/cs124/javanotes7/c13/ex3-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StopWatchLabel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/MirrorText.java
http://math.hws.edu/eck/cs124/javanotes7/c13/ex4-ans.html
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/eck/cs124/javanotes7/c13/ex5-ans.html

Exercises 721

revise that program to use an XML format for the data. Both programs have a simple
command-line user interface. For this exercise, you should provide a GUI interface for the
phone directory data. You can base your program either on the original sample program
or on the modified XML version from the exercise. Use a JTable to hold the data. The
user should be able to edit all the entries in the table. Also, the user should be able
to add and delete rows. Include either buttons or menu commands that can be used to
perform these actions. The delete command should delete the selected row, if any. New
rows should be added at the end of the table. For this program, you can use a standard
DefaultTableModel.

Your program should load data from the file when it starts and save data to the file
when it ends, just as the two previous programs do. For a GUI program, you can’t simply
save the data at the end of the main() routine, since main() terminates as soon as the
window shows up on the screen. You want to save the data when the user closes the window
and ends the program. There are several approaches. One is to use a WindowListener to
detect the event that occurs when the window closes. Another is to use a “Quit” command
to end the program; when the user quits, you can save the data and close the window (by
calling its dispose() method), and end the program. If you use the “Quit” command
approach, you don’t want the user to be able to end the program simply by closing the
window. To accomplish this, you should call

frame.setDefaultCloseOperation(JFrame.DO NOTHING ON CLOSE);

where frame refers to the JFrame that you have created for the program’s user interface.
When using a WindowListener, you want the close box on the window to close the window,
not end the program. For this, you need

frame.setDefaultCloseOperation(JFrame.DISPOSE ON CLOSE);

When the listener is notified of a window closed event, it can save the data and end the
program.

Most of the JTable and DefaultTableModel methods that you need for this exercise are
discussed in Subsection 13.4.3, but there are a few more that you need to know about. To
determine which row is selected in a JTable, call table.getSelectedRow(). This method
returns the row number of the selected row, or returns -1 if no row is selected. To specify
which cell is currently being edited, you can use:

table.setRowSelectionInterval(rowNum, rowNum); // Selects row number rowNum.

table.editCellAt(rowNum, colNum); // Edit cell at position (rowNum,colNum).

phoneTable.getEditorComponent().requestFocus(); // Put input cursor in cell.

One particularly troublesome point is that the data that is in the cell that is currently
being edited is not in the table model. The value in the edit cell is not put into the table
model until after the editing is finished. This means that even though the user sees the
data in the cell, it’s not really part of the table data yet. If you lose that data, the user
would be justified in complaining. To make sure that you get the right data when you
save the data at the end of the program, you have to turn off editing before retrieving the
data from the model. This can be done with the following method:

private void stopEditing() {

if (table.getCellEditor() != null)

table.getCellEditor().stopCellEditing();

}

Exercises 722

This method must also be called before modifying the table by adding or deleting rows; if
such modifications are made while editing is in progress, the effect can be very strange.

Quiz 723

Quiz on Chapter 13
(answers)

1. Describe the object that is created by the following statement, and give an example of
how it might be used in a program:

BufferedImage OSC = new BufferedImage(32,32,BufferedImage.TYPE INT RGB);

2. Many programs depend on resource files. What is meant by a resource in this sense? Give
an example.

3. What is the FontMetrics class used for?

4. If a Color, c, is created as c = new Color(0,0,255,125), what is the effect of drawing
with this color?

5. What is antialiasing?

6. How is the ButtonGroup class used?

7. What does the acronym MVC stand for, and how does it apply to the JTable class?

8. Describe the picture that is produced by the following paintComponent() method:

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D)g;

g2.translate(getWidth()/2, getHeight()/2);

g2.rotate(30 * Math.PI / 180);

g2.fillRect(0,0,100,100);

}

9. What is meant by Internationalization of a program?

10. Suppose that the class that you are writing has an instance method doOpen() (with no
parameters) that is meant to be used to open a file selected by the user. Write a code
segment that creates an Action that represents the action of opening a file. Then show
how to create a button and a menu item from that action.

http://math.hws.edu/eck/cs124/javanotes7/c13/quiz_answers.html

Appendix: Source Files

This appendix contains a list of the examples appearing in the free, on-line textbook
Introduction to Programming Using Java, Seventh Edition.

The web site for the book, http://math.hws.edu/javanotes, has links for downloading the
entire web site. If you do that, you will find the source code files in a directory named sources.
There is also a link for downloading just the source code. The README file from the download
includes some instructions for compiling and running the programs. Note however that some of
these examples depend on other source files, such as TextIO.java, that are not built into Java.
These are classes that I have written. All necessary files are included in the downloads, and
links to the individual files are provided below.

The solutions to end-of-chapter exercises are not listed in this appendix. Each end-of-
chapter exercise has its own Web page, which discusses its solution. The source code of a
sample solution of each exercise is given on the solution page for that exercise. If you want to
compile the solution, you should be able to cut-and-paste the solution out of a Web browser
window and into a text editing program. (You can’t cut-and-paste from the HTML source of
the solution page, since it contains extra HTML markup commands that the Java compiler
won’t understand; the HTML markup does not appear when the page is displayed in a Web
browser.) Exercise solutions are also available as a download from the front page of the web
site. The README file from the download has more information.

Part 1: Text-oriented Examples

Many of the sample programs in the text are based on console-style input/output, where the
computer and the user type lines of text back and forth to each other. Some of these programs
use the standard output object, System.out, for output. Many of them use my non-standard
class, TextIO, for input. For the programs that use TextIO, one of the files TextIO.java or Tex-
tIO.class must be available when you compile the program, and TextIO.class must be available
when you run the program. There is also a GUI version of TextIO; you can find information
about it at the end of Part 3, below.

• HelloWorld.java, from Section 2.1, a trivial program that does nothing but print out the
message, “Hello World!”. A Hello World program is typically the first program for someone
learning a new programming language.

• Interest.java, from Section 2.2, computes the interest on a specific amount of money over
a period of one year.

• TimedComputation.java, from Section 2.3, demonstrates a few basic built-in subroutines
and functions.

• EnumDemo.java, from Section 2.3, a very simple first demonstration of enum types.

725

http://math.hws.edu/javanotes
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/HelloWorld.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TimedComputation.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/EnumDemo.java

Source Code Listing 726

• PrintSquare.java, from Section 2.4, reads an integer typed in by the user and prints the
square of that integer. This program depends on TextIO.java. The same is true
for almost all of the programs in the rest of this list.

• Interest2.java, from Section 2.4, calculates interest on an investment for one year, based
on user input. Uses TextIO for user input.

• CreateProfile.java, from Section 2.4, a simple demo of output to a file, using TextIO.

• Interest2WithScanner.java, from Section 2.4, is a version of Interest2.java that uses Scanner
instead of TextIO to read input from the user.

• Interest3.java”, from Section 3.1, the first example that uses control statements.

• ThreeN1.java, from Section 3.2, outputs a 3N+1 sequence for a given stating value.

• ComputeAverage.java, from Section 3.3, computes the average value of some integers
entered by the user.

• CountDivisors.java, from Section 3.4, counts the number of divisors of an integer entered
by the user.

• ListLetters.java, from Section 3.4, lists all the distinct letters in a string entered by the
user.

• LengthConverter.java, from Section 3.5, converts length measurements input by the user
into different units of measure.

• ComputeAverage2.java, from Section 3.7, computes the average value of some real numbers
entered by the user. Demonstrates the use of try..catch for Double.parseDouble.

• AverageNumbersFromFile.java, from Section 3.7, finds the sum and the average of numbers
read from a file. Demonstrates the use of try..catch statements with TextIO.

• BirthdayProblem.java, from Section 3.8, demonstrates random access to array elements
using the “birthday problem” (how many people do you have to choose at random until
two are found whose birthdays are on the same day of the year).

• ReverseInputNumbers.java, from Section 3.8, illustrates the use of a partially full array
by reading some numbers from the user and then printing them in reverse order.

• GuessingGame.java, from Section 4.2, lets the user play guessing games where the com-
puter picks a number and the user tries to guess it. A slight variation of this program,
which reports the number of games won by the user, is GuessingGame2.java.

• RowsOfChars.java, from Section 4.3, a rather useless program in which one subroutine
calls another.

• CopyTextFile.java, from Section 4.3, demonstrates the use of command-line arguments by
using file names from the command line.

• ThreeN2.java, from Subsection 4.4.3, is an improved 3N+1 program that uses subroutines
and prints its output in neat columns.

• RollTwoPairs.java, from Subsection 5.2.2, uses PairOfDice.java to simulate rolling two
pairs of dice until the same total is rolled on both pairs.

• HighLow.java, from Section 5.4, a simple card game. It uses the classes Card.java and
Deck.java, which are given as examples of object-oriented programming. Also available,
the card-related classes Hand.java and, from Subsection 5.5.1, BlackjackHand.java.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/PrintSquare.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/CreateProfile.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest2WithScanner.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/Interest2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/Interest3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ThreeN1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ComputeAverage.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/CountDivisors.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ListLetters.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/LengthConverter.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ComputeAverage2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/AverageNumbersFromFile.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/BirthdayProblem.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/ReverseInputNumbers.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/GuessingGame.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/GuessingGame2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RowsOfChars.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/CopyTextFile.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/ThreeN2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/RollTwoPairs.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/PairOfDice.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/HighLow.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/BlackjackHand.java

Source Code Listing 727

• ReverseWithDynamicArray.java, from Section 7.2, reads numbers from the user then prints
them out in reverse order. It does this using the class DynamicArrayOfInt.java as an exam-
ple of using dynamic arrays. ReverseWithArrayList.java, from Section 7.3, is functionally
identical, but it uses an ArrayList<Integer> instead of a DynamicArrayOfInt.

• SymmetricMatrix.java, from Section 7.5, implements a symmetric 2D array of double.
The program TestSymmetricMatrix.java tests the SymmetricMatrix class.

• LengthConverter2.java, from Section 8.2, converts measurements input by the user to
inches, feet, yards, and miles. This improvement on LengthConverter.java allows inputs
combining several measurements, such as “3 feet 7 inches,” and it detects illegal inputs.

• TryStatementDemo.java, from Section 8.3, a small demo program with a try..catch

statement that includes autoclosing of a resource.

• LengthConverter3.java, from Section 8.3, is a revision of the previous example that uses
exceptions to handle errors in the user’s input.

• TowersOfHanoi.java, from Section 9.1, prints out the steps in a solution to the Towers of
Hanoi problem; an example of recursion.

• StringList.java, from Section 9.2, implements a linked list of strings. The program List-
Demo.java tests this class.

• PostfixEval.java, from Section 9.3, evaluates postfix expressions using a stack. Depends
on the StackOfDouble class defined in StackOfDouble.java.

• SortTreeDemo.java, from Section 9.4, demonstrates a binary sort tree of strings.

• SimpleParser1.java, SimpleParser2.java, and SimpleParser3.java, from Section 9.5, are
three programs that parse and evaluate arithmetic expressions input by the user. Sim-
pleParser1 only handles fully parenthesized expressions. SimpleParser2 evaluates ordinary
expressions where some parentheses can be omitted. SimpleParser3 constructs expression
trees to represent input expressions and uses the expression trees to evaluate the expres-
sions.

• WordListWithTreeSet.java, from Section 10.2, makes an alphabetical list of words from a
file. A TreeSet is used to eliminate duplicates and sort the words.

• WordListWithPriorityQueue.java, from Section 10.2, makes an alphabetical list of words
from a file. This is a small modification of the previous example that uses a PriorityQueue
instead of a TreeSet. The result is an alphabetical list of words in which duplicates are
not removed.

• SimpleInterpreter.java, from Section 10.4, demonstrates the use of a HashMap as a symbol
table in a program that interprets simple commands from the user.

• WordCount.java, from Section 10.4, counts the number of occurrences of each word in a
file. The program uses several features from the Java Collection Framework.

• ReverseFile.java, from Section 11.2, shows how to read and write files in a simple
command-line application; uses the non-standard class TextReader.java. ReverseFileWith-
Scanner.java is a version of the program that uses a Scanner instead of a TextReader. And
ReverseFileWithResources.java is a version that uses the “resource” pattern in try..catch
statements.

• DirectoryList.java, from Section 11.2, lists the contents of a directory specified by the user;
demonstrates the use of the File class.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/ReverseWithDynamicArray.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/DynamicArrayOfInt.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/ReverseWithArrayList.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SymmetricMatrix.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/TestSymmetricMatrix.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/LengthConverter2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/LengthConverter.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/TryStatementDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/LengthConverter3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/TowersOfHanoi.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/StringList.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/ListDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/PostfixEval.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/StackOfDouble.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SortTreeDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/SimpleParser3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordListWithTreeSet.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordListWithPriorityQueue.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/SimpleInterpreter.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter10/WordCount.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ReverseFile.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TextReader.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ReverseFileWithScanner.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ReverseFileWithResources.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DirectoryList.java

Source Code Listing 728

• CopyFile.java, from Section 11.3, is a program that makes a copy of a file, using file names
that are given as command-line arguments. CopyFileAsResources.java is a version of the
program that also demonstrates uses the “resource” pattern in a try..catch statement.

• PhoneDirectoryFileDemo.java, from Section 11.3, demonstrates the use of a file for storing
data between runs of a program.

• FetchURL.java, from Section 11.4, reads and displays the contents of a specified URL, if
the URL refers to a text file.

• ShowMyNetwork.java, mentioned in Section 11.4, is a short program that prints informa-
tion about each network interface on the computer where it is run, including IP addresses
associated with each interface.

• DateClient.java and DateServer.java, from Section 11.4, are very simple first examples of
network client and server programs.

• CLChatClient.java and CLChatServer.java, from Section 11.4, demonstrate two-way com-
munication over a network by letting users send messages back and forth; however, no
threading is used and the messages must strictly alternate.

• ThreadTest1.java, from section Section 12.1, runs one or more threads that all perform the
same task, to demonstrate that they run simultaneously and finish in an indeterminate
order.

• ThreadTest2.java, from section Section 12.1, divides up a task (counting primes) among
several threads, to demonstrate parallel processing and the use of synchronization.

• DateServerWithThreads.java and DateServerWithThreadPool.java, from Section 12.4, are
modifications of chapter11/DateServer.java (Subsection 11.4.4) that use threads to handle
communication with clients. The first program creates a new thread for each connection.
The second uses a thread pool, and it uses a blocking queue to send connections from the
main program to the pool. The threaded servers will work with original client program,
chapter11/DateClient.java.

• CLMandelbrotMaster.java, CLMandelbrotWorker.java, and CLMandelbrotTask.java,
from Section 12.4, are a demonstration of distributed computing in which pieces of a
large computation are sent over a network to be computed by “worker” programs.

Part 2: Graphical Examples from the Text

The following sample programs use a graphical user interface.

• GUIDemo.java is a simple demonstration of some basic GUI components from the Swing
graphical user interface library. It appears in the text in Section 1.6, but you won’t be
able to understand it until you learn about GUI programming.

• RandomCircles.java, from Section 3.9, draws a large number of randomly colored, ran-
domly positioned disks. his simple graphics program is our first example of a GUI pro-
gram.It is meant both as an introduction to graphics and as an example of using control
structures.

• MovingRects.java, from Section 3.9, draws a set of nested rectangles that seem to move
infinitely towards the center. Both this program and the previous one are based on Sim-
pleAnimationStarter.java, which can be used as a starting point for writing similar pro-
grams.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CopyFile.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CopyFileAsResources.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/PhoneDirectoryFileDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/FetchURL.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/ShowMyNetwork.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateServer.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/CLChatServer.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/ThreadTest1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/ThreadTest2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/DateServerWithThreads.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/DateServerWithThreadPool.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateServer.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/DateClient.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotMaster.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotWorker.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/CLMandelbrotTask.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter1/GUIDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/RandomCircles.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/MovingRects.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/SimpleAnimationStarter.java

Source Code Listing 729

• RandomMosaicWalk.java, a standalone program that displays a window full of colored
squares with a moving disturbance, from Section 4.6. This program depends on Mosaic-
Panel.java and Mosaic.java.

• RandomMosaicWalk2.java is a version of the previous example, modified to use a few
named constants. From Section 4.7.

• GrowingCircleAnimation.java, from Section 5.3, shows an animation of growing, semi-
transparent circles. Requires CircleInfo.java. Used as a simple example of programming
with object.

• ShapeDraw.java, from Section 5.5, is a program that lets the user place various shapes on
a drawing area; an example of abstract classes, subclasses, and polymorphism.

• HelloWorldGUI1.java and HelloWorldGUI2.java, from Section 6.1, show the message
“Hello World” in a window, the first one by using the built-in JOptionPane class and
the second by building the interface “by hand.”

• SimpleColorChooser.jav, used in Section 6.2 to demonstrate RGB and HSB colors. This
program uses techniques that are not covered until later in the text, and it is not presented
as a programming example. You can run it to experiment with colors.

• RandomStringsPanel.java, from Section 6.2, shows 25 copies of the string “Java!” (or some
other string specified in it constructor) in random colors and fonts. The program Ran-
domStrings.java uses a RandomStringsPanel as its content pane. And RandomStringsPan-
elWithMain.java is a program that combines the main() routine and the definition of the
panel into one file. Finally, ClickableRandomStrings.java from Section 6.3 is a modifica-
tion of RandomStrings.java with a mouse listener that redraws the panel when the user
clicks on it.

• SimpleStamper.java, from Section 6.3, lets the user place rectangles and ovals on a drawing
area by clicking with the mouse.

• SimpleTrackMouse.java, from Section 6.3, shows information about mouse events as the
user moves and clicks with the mouse.

• SimplePaint.java, from Section 6.3, lets the user draw curves in a drawing area and select
the drawing color from a palette.

• RandomArt.java, from Section 6.4, shows a new random “artwork” every four seconds.
This is an example of using a Timer.

• KeyboardAndFocusDemo.java, from Section 6.4, shows how to use keyboard and focus
events.

• SubKiller.java, from Section 6.4, lets the user play a simple arcade-style game. Uses a
timer as well as keyboard and focus events.

• SliderDemo.java and TextAreaDemo.java, small programs that demonstrate basic compo-
nents, used as examples in Section 6.5

• BorderDemo.java and

• BorderDemo.java, from Section 6.6, a very simple program that demonstrates six types of
border.

• SliderAndButtonDemo.java, from Section 6.6, shows how to create several components
and lay them out in a GridLayout.

• SimpleCalc.java, from Section 6.6, lets the user add, subtract, multiply, or divide two num-
bers input by the user. A demo of text fields, buttons, and layout with nested subpanels.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RandomMosaicWalk.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/RandomMosaicWalk2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/GrowingCircleAnimation.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/CircleInfo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/ShapeDraw.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HelloWorldGUI1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HelloWorldGUI2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleColorChooser.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStringsPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStrings.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStringsPanelWithMain.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/ClickableRandomStrings.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleStamper.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleTrackMouse.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimplePaint.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomArt.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/KeyboardAndFocusDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SubKiller.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SliderDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/TextAreaDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/BorderDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/BorderDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SliderAndButtonDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleCalc.java

Source Code Listing 730

• NullLayoutDemo.java, from Section 6.6, shows how to lay out the components in a con-
tainer for which the layout manager has been set to null.

• HighLowGUI.java, from Section 6.6, implements a GUI version of the card game High-
Low.java, in which the user sees a playing card and guesses whether the next card will be
higher or lower in value. This program depends on Card.java, Hand.java, and Deck.java.

• MosaicDraw.java, from Section 6.7, demonstrates menus and a color chooser dialog. This
is used in a program where the user colors the squares of a mosaic by clicking-and-dragging
the mouse. It uses MosaicPanel.java to define the mosaic panel itself, and it uses Mosaic-
DrawController.java to create the panel and menu bar and to handle events.

• SimpleDialogDemo.java, from Section 6.7, is a small program that demonstrates JColor-
Chooser and some dialogs from JOptionPane.

• RandomStringsWithArray.java, from Section 7.2, shows multiple copies of a message
in random colors, sizes, and positions. This is an improved version of Random-
StringsPanel.java that uses an array to keep track of the data, so that the same picture
can be redrawn whenever necessary.

• SimplePaint2.java, from Section 7.3, lets the user draw colored curves and stores the data
needed for repainting the drawing surface in a list of type ArrayList<CurveData>.

• Life.java, from Section 7.5, implements John H. Conway’s game of life and is an example
of using 2D arrays. This program depends on MosaicPanel.java.

• Checkers.java, from Section 7.5, lets two users play a game of checkers against each other.
Illustrates the use of a two-dimensional array and a variety of programming techniques.
(This is the longest program in the book so far, at over 700 lines!)

• Maze.java and LittlePentominos.java are demo programs mentioned in Section 9.1 as ex-
amples of recursion. They use techniques that have not covered until Chapter 12. Note
that LittlePentominos depends on MosaicPanel.java.

• Blobs.java, from Section 9.1, uses recursion to count groups of colored squares in a grid.

• DepthBreadth.java, from Section 9.3, demonstrates stacks and queues.

• TrivialEdit.java, from Section 11.3, lets the user edit short text files. This program demon-
strates reading and writing files and using file dialogs.

• SimplePaintWithFiles.java, from Section 11.3, demonstrates saving data from a program
to a file in both binary and character form. The program is a simple sketching program
based on SimplePaint2.java.

• SimplePaintWithXML.java, from Section 11.5, demonstrate saving data from a program
to a file in XML format. This program is a modification of SimplePaintWithFiles.java.

• XMLDemo.java, from Section 11.5, is a simple program that demonstrates basic parsing
of an XML document and traversal of the Document Object Model representation of the
document. The user enters the XML to be parsed in a text area.

• RandomArtWithThreads.java, from Section 12.2, uses a thread to drive a very simple
animation. Compare to RandomArt.java, which does the same thing with a timer.

• QuicksortThreadDemo.java, from Section 12.2, demonstrates using a separate thread to
perform a computation, with simple inter-thread communication.

• BackgroundComputationDemo.java, from Section 12.2, demonstrates using a thread run-
ning at a lower priority to perform a lengthy computation in the background. Back-
groundCompWithInvoke.java is very small modification of the same program that uses

http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/NullLayoutDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/HighLow.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDraw.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/MosaicDrawController.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/SimpleDialogDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/RandomStringsWithArray.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomStringsPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Life.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/Checkers.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/Maze.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/LittlePentominos.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/Blobs.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter9/DepthBreadth.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TrivialEdit.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithFiles.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter7/SimplePaint2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithXML.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/SimplePaintWithFiles.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/XMLDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/RandomArtWithThreads.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/RandomArt.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/QuicksortThreadDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/BackgroundComputationDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/BackgroundCompWithInvoke.java

Source Code Listing 731

SwingUtilities.invokeLater instead of synchronization. (The program computes a vi-
sualization of a small piece of the Mandelbrot set, but the particular computation that is
done is not important.)

• MultiprocessingDemo1.java, from Section 12.2, is a modification of the previous example
that uses several threads to perform the background computation. This speeds up the
computation on multi-processor machines.

• MultiprocessingDemo2.java, from Section 12.3, is a modification of the previous example
that decomposes its task into a large number of fairly small subtasks, in order to achieve
better load balancing. The program uses a thread pool and a queue of tasks.

• MultiprocessingDemo3.java, from Section 12.3, is yet another version of the previous ex-
amples. This one uses a pool of threads that run forever, taking tasks from a queue and
executing them. To make this possible, a blocking queue is used, defined by the standard
LinkedBlockingQueue class. MyLinkedBlockingQueue.java is a simple example of using
wait() and notify() directly that can be used as a replacement for LinkedBlockingQueue
in MultiprocessingDemo3.

• TowersOfHanoiGUI.java, from Section 12.3, shows an animation of the famous Towers
Of Hanoi problem. The user can control the animation with Run/Pause, Next, and
StartAgain buttons. The program is an example of using wait() and notify() directly
for communication between threads.

• GUIChat.java, from Section 12.4, is a simple GUI program for chatting between two
people over a network. It demonstrates using a thread for reading data from a network
connection.

• netgame.common, from Section 12.5, is a package that defines a framework for networked
games. This framework is used in several examples: A chat room, defined in package
netgame.chat; a tic-tac-toe game, defined in package netgame.tictactoe; and a poker game,
defined in package netgame.fivecarddraw.

• HighLowWithImages.java, from Section 13.1, is a variation of HighLowGUI.java that takes
playing card images from an image file. Requires the image file cards.png and depends on
Card.java, Deck.java, and Hand.java.

• PaintWithOffScreenCanvas.java, from Section 13.1, is a little paint program that illus-
trates the use of a BufferedImage as an off-screen canvas.

• SoundAndCursorDemo.java, from Section 13.1, lets the user play a few sounds and change
the cursor by clicking some buttons. This demonstrates using audio resource files and using
an image resource to create a custom cursor. Requires the resource files in the directory
snc resources.

• TransparencyDemo.java, from Section 13.2, demonstrates using the alpha component of
colors. It is also an example of using FontMetrics.

• StrokeDemo.java, from Section 13.2, demonstrates the use of various BasicStrokes for
drawing lines and rectangles. Also demonstrates antialiasing.

• PaintDemo.java, from Section 13.2, demonstrates using a GradientPaint and using a Tex-
turePaint to fill a polygon. Uses the image resource files TinySmiley.png and QueenOf-
Hearts.png.

• ChoiceDemo.java, discussed in Section 13.3, demonstrates radio buttons, combo boxes,
and Actions.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo1.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo2.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MultiprocessingDemo3.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/MyLinkedBlockingQueue.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/TowersOfHanoiGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/GUIChat.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/chat/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/tictactoe
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/HighLowWithImages.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter6/HighLowGUI.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/cards.png
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/Card.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/Deck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/Hand.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintWithOffScreenCanvas.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SoundAndCursorDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/snc_resources
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/TransparencyDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StrokeDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/PaintDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/TinySmiley.png
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/QueenOfHearts.png
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ChoiceDemo.java

Source Code Listing 732

• ToolBarDemo.java, from Section 13.3, uses a JToolBar that holds a group of 3 radio
buttons and a push button. All the buttons use custom icons, and the push button is
created from an Action.

• SillyStamper.java, from Section 13.4, demonstrates using a JList of Icons. The user can
“stamp” images of a selected icon onto a drawing area. This program uses the icon images
in the directory stamper icons as resources.

• StatesAndCapitalsTableDemo.java, from Section 13.4, is a completely trivial demo of a
JTable.

• ScatterPlotTableDemo.java, from Section 13.4, uses a TableModel to customize a JTable.
The table is a list of xy-points that the user can edit. A scatter plot of the points is
displayed.

• SimpleWebBrowser.java and SimpleWebBrowserWithThread.java, from Section 13.4, im-
plement a simple web browser using JEditorPane (which is ridiculously easy). The dif-
ference between the programs is that the first loads documents synchronously, which can
hang the program in an unpleasant way, while the second uses a thread to load documents
asynchronously.

• SimpleRTFEdit.java, mentioned but just barely discussed in Section 13.4, lets the user
edit RTF files, which are text files in a format that include style information such as bold
and italics. This is mainly a simple demo of using Actions defined by “editor kits.”

• StopWatchLabel.java and MirrorText.java, from Section 13.4, are classes that implement
custom components. CustomComponentTest.java is a program that tests them.

• The Mandelbrot program from Section 13.5, which computes and displays visualizations
of the Mandelbrot set, is defined by several classes in the package edu.hws.eck.mdb. The
source code files can be found in the directory edu/hws/eck/mdb.

Part 3: Auxiliary Files

This section lists some of the extra source files that are required by various examples in the
previous sections. The files listed here are those which are general enough to be potentially
useful in other programming projects. Links to these files are also given above, along with the
programs that use them.

• TextIO.java defines a class containing some static methods for doing input/output. These
methods make it easier to use the standard input and output streams, System.in and
System.out. TextIO also supports other input sources and output destinations, such as
files. The TextIO class defined by this file is only useful in a command-line environment,
and it might be inconvenient to use in integrated development environments such as Eclipse
in which standard input does not work particularly well. In that case, you might want to
use the following file instead.

• textiogui/TextIO.java, a GUI version of TextIO that opens a window where TextIO I/O
operations are performed. This is part of a package named textiogui to distinguish it
from the normal TextIO. A companion class in that package, textiogui/System.java, is a
fake System class that makes it possible to use System.out and other features of System
in the same window. I use these classes to build executable jar files for my text-oriented
examples that run in a window instead of on the command line. See the comments in the
source code files for more information.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ToolBarDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SillyStamper.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/stamper_icons
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StatesAndCapitalsTableDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/ScatterPlotTableDemo.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowser.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleWebBrowserWithThread.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/SimpleRTFEdit.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/StopWatchLabel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/MirrorText.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/CustomComponentTest.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter13/edu/hws/eck/mdb
http://math.hws.edu/eck/cs124/javanotes7/source/chapter2/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/textiogui/TextIO.java
http://math.hws.edu/eck/cs124/javanotes7/source/textiogui/System.java

Source Code Listing 733

• SimpleAnimationStarter.java is a small class that you can edit to make very simple ani-
mations, in which every frame is drawn using basic drawing commands. This was used in
Chapter 3.

• Mosaic.java contains subroutines for opening and controlling a window that contains a
grid of colored rectangles. It depends on MosaicPanel.java. This is a toolbox for writing
simple stand-alone applications that use a “mosaic window.” It is used in several examples
and exercises in Chapter 4 and Chapter 6.

• chapter4/MosaicPanel.java defines a subclass of JPanel that shows little rectangles ar-
ranged in rows and columns, with many options.

• StatCalc.java is a simple class that computes some statistics of a set of numbers. It is
used only for a couple exercises in Chapter 5 and Chapter 6.

• Expr.java defines a class Expr that represent mathematical expressions involving the vari-
able x. It is used only in a couple of the exercises in Chapter 8.

• TextReader.java, from Subsection 11.1.4, for reading character data from input streams.
Input methods in an object of type TextReader are similar to the static input methods in
TextIO.

• netgame.common is a package that defines a framework for networked games, which is
discussed in detail in Section 12.5. The netgame packages also includes several examples.

• PokerRank.java can be used to assign ranks to hands of cards in poker games. The cards
are defined in the class PokerCard.java. There is also a PokerDeck.java All of these classes
are part of the package netgame.fivecarddraw, which is discussed in Subsection 12.5.4, but
these classes can be used independently of the netgame framework.

http://math.hws.edu/eck/cs124/javanotes7/source/chapter3/SimpleAnimationStarter.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/Mosaic.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter4/MosaicPanel.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter5/StatCalc.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter8/Expr.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter11/TextReader.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/common/
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerRank.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerCard.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/PokerDeck.java
http://math.hws.edu/eck/cs124/javanotes7/source/chapter12/netgame/fivecarddraw/

Glossary

abstract class. A class that cannot be used to create objects, and that exists only for the
purpose of creating subclasses. Abstract classes in Java are defined using the modifier
abstract.

abstract data type (ADT). A data type for which the possible values of the type and the
permissible operations on those values are specified, without specifying how the values
and operations are to be implemented.

access specifier. A modifier used on a method definition or variable specification that deter-
mines what classes can use that method or variable. The access specifiers in Java are
public, protected, and private. A method or variable that has no access specifier is
said to have “package” visibility.

activation record. A data structure that contains all the information necessary to implement
a subroutine call, including the values of parameters and local variables of the subroutine
and the return address to which the computer will return when the subroutine ends.
Activation records are stored on a stack, which makes it possible for several subroutine
calls to be active at the same time. This is particularly important for recursion, where
several calls to the same subroutine can be active at the same time.

actual parameter. A parameter in a subroutine call statement, whose value will be passed
to the subroutine when the call statement is executed. Actual parameters are also called
“arguments”.

address. Each location in the computer’s memory has an address, which is a number that
identifies that location. Locations in memory are numbered sequentially. In modern
computers, each byte of memory has its own address. Addresses are used when informa-
tion is being stored into or retrieved from memory.

algorithm. An unambiguous, step-by-step procedure for performing some task, which is guar-
anteed to terminate after a finite number of steps.

alpha color component. A component of a color that says how transparent or opaque that
color is. The higher the alpha component, the more opaque the color.

API. Application Programming Interface. A specification of the interface to a software package
or “toolbox.” The API says what classes or subroutines are provided in the toolbox and
how to use them.

applet. A type of Java program that is meant to run on a Web page in a Web browser, as
opposed to a stand-alone application.

animation. An apparently moving picture created by rapidly showing a sequence of still
images, called frames, one after the other. In Java, animations are often driven by Timer
objects; a new frame of the animation is shown each time the timer fires.

735

Glossary 736

antialiasing. Adjusting the color of pixels to reduce the “jagged” effect that can occur when
shapes and text are represented by pixels. For antialiased drawing, when the shape covers
only part of a pixel, the color of the shape is blended with the previous color of the pixel.
The degree of blending depends on how much of the pixel is covered.

array. A list of items, sequentially numbered. Each item in the list can be identified by its
index, that is, its sequence number. In Java, all the items in array must have the same
type, called the base type of the array. An array is a random access data structure; that
is, you can get directly at any item in the array at any time.

array type. A data type whose possible values are arrays. If Type is the name of a type, then
Type[] is the array type for arrays that have base type Type.

assignment statement. A statement in a computer program that retrieves or computes a
value and stores that value in a variable. An assignment statement in Java has the form:
〈variable-name〉 = 〈expression〉;

asynchronous event. An event that can occur at an unpredictable time, outside the control
of a computer program. User input events, such as pressing a button on the mouse, are
asynchronous.

ASCII. American Standard Code for Information Interchange. A way of encoding characters
using 7 bits for characters. ASCII code only supports 128 characters, with no accented
letters, non-English alphabets, special symbols, or ideograms for non-alphabetic lan-
guages such as Chinese. Java uses the much larger and more complete Unicode code for
characters.

base case. In a recursive algorithm, a simple case that is handled directly rather than by
applying the algorithm recursively.

binary number. A number encoded as a sequence of zeros and ones. A binary number is
represented in the “base 2” in the same way that ordinary numbers are represented in
the “base 10.”

binary tree. A linked data structure that is either empty or consists of a root node that
contains pointers to two smaller (possibly empty) binary trees. The two smaller binary
trees are called the left subtree and the right subtree.

bit. A single-digit binary number, which can be either 0 or 1.

black box. A system or component of a system that can be used without understanding what
goes on inside the box. A black box has an interface and an implementation. A black
box that is meant to be used as a component in a system is called a module.

block. In Java programming, a sequence of statements enclosed between a pair of braces, {
and }. Blocks are used to group several statements into a single statement. A block
can also be empty, meaning that it contains no statements at all and consists of just an
empty pair of braces.

blocking operation. An operation, such as reading data from a network connection, is said
to “block” if it has to wait for some event to occur. A thread that performs a blocking
operation can be “blocked” until the required event occurs. A thread cannot execute
any instructions while it is blocked. Other threads in the same program, however, can
continue to run.

blocking queue. A queue in which the dequeue operation will block if the queue is empty,
until an item is added to the queue. If the blocking queue has a limited capacity, the
enqueue operation can also block, if the queue is full.

Glossary 737

bottom-up design. An approach to software design in which you start by designing basic
components of the system, then combine them into more complex components, and so
on.

BufferedImage. A class representing “off-screen canvases,” that is, images that are stored in
the computer’s memory and that can be used for drawing images off-screen.

branch. A control structure that allows the computer to choose among two or more different
courses of action. Java has two branch statements: if statements and switch statements.

byte. A unit of memory that consists of eight bits. One byte of memory can hold an eight-bit
binary number.

bytecode. “Java bytecode” is the usual name for the machine language of the Java Virtual
Machine. Java programs are compiled into Java bytecode, which can then be executed
by the JVM.

charset. A particular encoding of character data into binary form. Examples include UTF-8
and ISO-8859-1.

checked exception. An exception in Java that must be handled, either by a try..catch

statement or by a throws clause on the method that can throw he exception. Failure to
handle a checked exception in one way or the other is a syntax error.

class. The basic unit of programming in Java. A class is a collection of static and non-static
methods and variables. Static members of a class are part of the class itself; non-static,
or “instance,” members constitute a blueprint for creating objects, which are then said
to “belong” to the class.

class variables and class methods. Alternative terms for “static variables” and “static
methods”, which are part of the class itself rather than of objects.

client/server. A model of network communication in which a “server” waits at a known
address on the network for connection requests that are sent to the server by “clients.”
This is the basic model for communication using the TCP/IP protocol.

command-line interface. A way of interacting with the computer in which the user types in
commands to the computer and the computer responds to each command.

comment. In a computer program, text that is ignored by the computer. Comments are for
human readers, to help them understand the program.

compiler. A computer program that translates programs written in some computer language
(generally a high-level language) into programs written in machine language.

component. General term for a visual element of a GUI, such as a window, button, or menu.
A component is represented in Java by an object belonging to a subclass of the class
java.awt.Component.

constructor. A special kind of subroutine in a class whose purpose is to construct objects
belonging to that class. A constructor is called using the new operator, and is not
considered to be a “method.”

container. A component, such as a JPanel, that can contain other GUI components. Contain-
ers have add() methods that can be used to add components.

contract of a method. The semantic component of the method’s interface. The contract
specifies the responsibilities of the method and of the caller of the method. It says how
to use the method correctly and specifies the task that the method will perform when

Glossary 738

it is used correctly. The contract of a method should be fully specified by its Javadoc
comment.

control structure. A program structure such as an if statement or a while loop that affects
the flow of control in a program (that is, the order in which the instructions in the
program are executed).

CPU. Central Processing Unit. The CPU is the part of the program that actually performs
calculations and carries out programs.

data structure. An organized collection of data, that can be treated as a unit in a program.

deadlock. A situation in which several threads hang indefinitely, for example because each of
them is waiting for some resource that is locked by one of the other threads.

default method. A method in a Java 8 interface that has an implementation. The default
implementation is used in any class that implements the interface but does not override
the method. Default methods are marked with the reserved word default. Not supported
in Java 7.

default package. The unnamed package. A class that does not declare itself to be in a named
package is considered to be in the default package.

definite assignment. Occurs at a particular point in a program if it is definitely true that
a given variable must have been assigned a value before that point in the program. It
is only legal to use the value of a local variable if that variable has “definitely” been
assigned a value before it is used. For this to be true, the compiler must be able to verify
that every path through the program from the declaration of the variable to its use must
pass through a statement that assigns a value to that variable.

deprecated. Considered to be obsolete, but still available for backwards compatibility. A
deprecated Java class or method is still part of the Java language, but it is not advisable
to use it in new code. Deprecated items might be removed in future versions of Java.

dialog box. A window that is dependent on another window, called its parent. Dialog boxes
are usually popped up to get information from the user or to display a message to the
user. Dialog boxes in the Swing API are represented by objects of type JDialog.

distributed computing. A kind of parallel processing in which several computers, connected
by a network, work together to solve a problem.

dummy parameter. Identifier that is used in a subroutine definition to stand for the value of
an actual parameter that will be passed to the subroutine when the subroutine is called.
Dummy parameters are also called “formal parameters” (or sometimes just “parameters,”
when the term “argument” is used instead of actual parameter).

enum. Enumerated type. A type that is defined by listing every possible value of that type.
An enum type in Java is a class, and the possible values of the type are objects.

event. In GUI programming, something that happens outside the control of the program, such
as a mouse click, and that the program must respond to when it occurs.

exception. An error or exceptional condition that is outside the normal flow of control of a
program. In Java, an exception can be represented by an object of type Throwable that
can be caught and handled in a try..catch statement.

fetch-and-execute cycle. The process by which the CPU executes machine language pro-
grams. It fetches (that is, reads) an instruction from memory and carries out (that is,
executes) the instruction, and it repeats this over and over in a continuous cycle.

Glossary 739

flag. A boolean value that is set to true to indicate that some condition or event is true. A
single bit in a binary number can also be used as a flag.

formal parameter. Another term for “dummy parameter.”

frame. One of the images that make up an animation. Also used as another name for activation
record.

function. A subroutine that returns a value.

garbage collection. The automatic process of reclaiming memory that is occupied by objects
that can no longer be accessed.

generic programming. Writing code that will work with various types of data, rather than
with just a single type of data. The Java Collection Framework, and classes that use
similar techniques, are examples of generic programming in Java.

getter. An instance method in a class that is used to read the value of some property of that
class. Usually the property is just the value of some instance variable. By convention, a
getter is named getXyz() where xyz is the name of the property.

global variable. Another name for member variable, emphasizing the fact that a member
variable in a class exists outside the methods of that class.

graphics context. The data and methods necessary for drawing to some particular destina-
tion. A graphics context in Java is an object belonging to the Graphics class.

GUI. Graphical User Interface. The modern way of interacting with a computer, in which the
computer displays interface components such as buttons and menus on a screen and the
user interacts with them—for example by clicking on them with a mouse.

hash table. A data structure optimized for efficient search, insertion, and deletion of objects.
A hash table consists of an array of locations, and the location in which an object is stored
is determined by that object’s “hash code,” an integer that can be efficiently computed
from the contents of the object.

heap. The section of the computer’s memory in which objects are stored.

high level language. A programming language, such as Java, that is convenient for hu-
man programmers but that has to be translated into machine language before it can be
executed.

HSB. A color system in which colors are specified by three numbers (in Java, real numbers in
the range 0.0 to 1.0) giving the hue, saturation, and brightness.

IDE. Integrated Development Environment. A programming environment with a graphical
user interface that integrates tools for creating, compiling, and executing programs.

identifier. A sequence of characters that can be used as a name in a program. Identifiers are
used as names of variables, methods, and classes.

index. The position number of one item in an array.

implementation. The inside of a black box, such as the code that defines a subroutine.

immutable object. An immutable object cannot be modified after it is constructed, because
all of its instance variables are final.

infinite loop. A loop that never ends, because its continuation condition always evaluates to
true.

inheritence. The fact that one class can extend another. It then inherits the data and behavior
of the class that it extends.

Glossary 740

instance of a class. An object that belongs to that class (or a subclass of that class). An
object belongs to a class in this sense when the class is used as a template for the object
when the object is created by a constructor defined in that class.

instance method. A non-static method in a class and hence a method in any object that is
an instance of that class.

instance variable. A non-static variable in a class and hence a variable in any object that is
an instance of that class.

interface. As a general term, how to use a black box such as a subroutine. Knowing the
interface tells you nothing about what goes on inside the box. “Interface” is also a
reserved word in Java; in this sense, an interface is a type that specifies one or more
abstract methods. An object that implements the interface must provide definitions
for those methods.

interpreter. A computer program that executes program written in some computer language
by reading instructions from the program, one-by-one, and carrying each one out (by
translating it into equivalent machine language instructions).

I/O. Input/Output, the way a computer program communicates with the rest of the world,
such as by displaying data to the user, getting information from the user, reading and
writing files, and sending and receiving data over a network.

iterator. An object associated with a collection, such a list or a set, that can be used to
traverse that collection. The iterator will visit each member of the collection in turn.

Java Collection Framework (JCF). A set of standard classed that implement generic data
structures, including ArrayList and TreeSet, for example.

JavaFX. The new toolkit for GUI applications, which becomes the preferred approach to GUI
programming in Java 8. JavaFX is not covered in this book.

JDK. Java Development Kit. Basic software that supports both compiling and running Java
programs. A JDK includes a command-line programming environment as well as a JRE.
You need a JDK if you want to compile Java source code, as well as executing pre-
compiled programs.

JRE. Java Runtime Environment. Basic software that supports running standard Java pro-
grams that have already been compiled. A JRE includes a Java Virtual Machine and all
the standard Java classes.

just-in-time compiler. A kind of combination interpreter/compiler that compiles parts of a
program as it interprets them. This allows subsequent executions of the same parts of
the program to be executed more quickly than they were the first time. This can result
is greatly increased speed of execution. Modern JVMs use a just-in-time compiler.

JVM. Java Virtual Machine. The imaginary computer whose machine language is Java byte-
code. Also used to refer to computer programs that act as interpreters for programs
written in bytecode; to run Java programs on your computer, you need a JVM.

layout manager. An object whose function is to lay out the components in a container, that
is, to set their sizes and locations. Different types of layout managers implement different
policies for laying out components.

linked data structure. A collection of data consisting of a number of objects that are linked
together by pointers which are stored in instance variables of the objects. Examples
include linked lists and binary trees.

Glossary 741

linked list. A linked data structure in which nodes are linked together by pointers into a linear
chain.

listener. In GUI programming, an object that can be registered to be notified when events of
some given type occur. The object is said to “listen” for the events.

literal. A sequence of characters that is typed in a program to represent a constant value. For
example, ’A’ is a literal that represents the constant char value, A, when it appears in
a Java program.

location (in memory). The computer’s memory is made up of a sequence of locations. These
locations are sequentially numbered, and the number that identifies a particular location
is called the address of that location.

local variable. A variable declared within a method, for use only inside that method. A
variable declared inside a block is valid from the point where it is declared until the end
of block in which the declaration occurs.

loop. A control structure that allows a sequence of instructions to be executed repeatedly.
Java has three kinds of loops: for loops, while loops, and do loops

loop control variable. A variable in a for loop whose value is modified as the loop is executed
and is checked to determine whether or not to end the loop.

machine language. A programming language consisting of instructions that can be executed
directed by a computer. Instructions in machine language are encoded as binary num-
bers. Each type of computer has its own machine language. Programs written in other
languages must be translated into a computer’s machine language before they can be
executed by that computer.

main memory. Programs and data can be stored in a computer’s main memory, where
they are available to the CPU. Other forms of memory, such as a disk drive, also store
information, but only main memory is directly accessible to the CPU. Programs and data
from a disk drive have to be copied into main memory before they can be used by the
CPU.

map. An associative array; a data structure that associates an object from some collection to
each object in some set. In Java, maps are represented by the generic interface Map<T,S>

member variable. A variable defined in a class but not inside a method, as opposed to a local
variable, which is defined inside some method.

memory. Memory in a computer is used to hold programs and data.

method. Another term for subroutine, used in the context of object-oriented programming. A
method is a subroutine that is contained in a class or in an object.

module. A component of a larger system that interacts with the rest of the system in a simple,
well-defined, straightforward manner.

multitasking. Performing multiple tasks at once, either by switching rapidly back and forth
from one task to another or by literally working on multiple tasks at the same time.

multiprocessing. Multitasking in which more than one processor is used, so that multiple
tasks can literally be worked on at the same time.

mutual exclusion. Prevents two threads from accessing the same resource at the same time.
In Java, this only applies to threads that access the resource in synchronized methods or
synchronized statements. Mutual exclusion can prevent race conditions but introduces
the possibility of deadlock.

Glossary 742

MVC pattern. The Model/View/Controller pattern, a strategy for dividing responsibility in
a GUI component. The model is the data for the component. The view is the visual
presentation of the component on the screen. The controller is responsible for reacting
to events by changing the model. According to the MVC pattern, these responsibilities
should be handled by different objects.

NaN. Not a Number. Double.NaN is a special value of type double that represents an undefined
or illegal value.

node. Common term for one of the objects in a linked data structure.

null. A special pointer value that means “not pointing to anything.”

numerical analysis. The field that studies algorithms that use approximations, such as real
numbers, and the errors that can result from such approximation.

off-by-one error. A common type of error in which one too few or one too many items are
processed, often because counting is not being handled correctly or because the processing
stops too soon or continues too long for some other reason.

object. An entity in a computer program that can have data (variables) and behaviors (meth-
ods). An object in Java must be created using some class as a template. The class of an
object determines what variables and methods it contains.

object type. A type whose values are objects, as opposed to primitive types. Classes and
interfaces are object types.

OOP. Object-Oriented Programming. An approach to the design and implementation of com-
puter programs in which classes and objects are created to represent concepts and entities
and their interactions.

operating system. The basic software that is always running on a computer, without which
it would not be able to function. Examples include Linux, Mac OS, and Windows Vista.

operator. A symbol such as “+”, “<=”, or “++” that represents an operation that can be
applied to one or more values in an expression.

overloading (of operators). The fact that the same operator can be used with different types
of data. For example, the “+” operator can be applied to both numbers and strings.

overloading (of method names). The fact that several methods that are defined in the
same class can have the same name, as long as they have different signatures.

overriding. Redefining in a subclass. When a subclass provides a new definition of a method
that is inherited from a superclass, the new definition is said to override the original
definition.

package. In Java, a named collection of related classes and sub-packages, such as java.awt
and javax.swing.

parallel processing. When several tasks are being performed simultaneously, either by mul-
tiple processors or by one processor that switches back and forth among the tasks.

parameter. Used to provide information to a subroutine when that subroutine is called. Values
of “actual parameters” in the subroutine call statement are assigned to the “dummy
parameters” in the subroutine definition before the code in the subroutine is executed.

parameterized type. A type such as ArrayList<String> that includes one or more type pa-
rameters (String in the example).

Glossary 743

parsing. Determining the syntactical structure of a string in some language. To parse a string
is to determine whether the string is legal according to the grammar of the language, and
if so, how it can be created using the rules of the grammar.

partially full array. An array that is used to store varying numbers of items. A partially full
array can be represented as a normal array plus a counter to keep track of how many
items are actually stored.

pixel. A “picture element” on the screen or in an image. A picture consists of rows and
columns of pixels. The color of each pixel can be individually set.

polymorphism. The fact that the meaning of a call to an instance method can depend on
the actual type of the object that is used to make the call at run time. That is, if
var is a variable of object type, then the method that is called by a statement such as
var.action() depends on the type of the object to which var refers when the statement
is executed at run time, not on the type of variable var.

pointer. A value that represents an address in the computer’s memory, and hence can be
thought of as “pointing” to the location that has that address. A variable in Java can
never hold an object; it can only hold a pointer to the location where the object is stored.
A pointer is also called a “reference.”

pragmatics. Rules of thumb that describe what it means to write a good program. For
example, style rules and guidelines about how to structure a program are part of the
pragmatics of a programming language.

precedence. The precedence of operators determines the order in which they are applied,
when several operators occur in an expression, in the absence of parentheses.

precondition. A condition that must be true at some point in the execution of a program,
in order for the program to proceed correctly from that point. A precondition of a
subroutine is something that must be true when the subroutine is called, in order for the
subroutine to function properly. Subroutine preconditions are often restrictions on the
values of the actual parameters that can be passed into the subroutine.

priority queue. A data structure representing a collection of items where each item has a
“priority.” A priority queue has operations add and remove. Items can be added in any
order, but the remove operation always removes an item of minimal priority. (Some
version of priority queue use maximum instead of minimum priority.)

postcondition. A condition that is known to be true at some point in the execution of a
program, as a result of the computation that has come before that point. A postcondition
of a subroutine is something that must be true after the subroutine finishes its execution.
A postcondition of a function often describe the return value of the function.

primitive type. One of the eight basic built-in data types in Java, double, float, long, int,
short, byte, boolean, and char. A variable of primitive type holds an actual value, as
opposed to a pointer to that value.

priority of a thread. An integer associated with a thread that can affect the order in which
threads are executed. A thread with greater priority is executed in preference to a thread
with lower priority.

producer/consumer. A classic pattern in parallel programming in which one or more pro-
ducers produce items that are consumed by one or more consumers, and the producers
and consumers are meant to run in parallel. The problem is to get items safely and

Glossary 744

efficiently from the producers to the consumers. In Java, the producer/consumer pattern
is implemented by blocking queues.

program. A set of instructions to be carried out by a computer, written in an appropriate
programming language. Used as a verb, it means to create such a set of instructions.

programming language. A language that can be used to write programs for a computer. Pro-
gramming languages range in complexity from machine language to high-level languages
such as Java.

protocol. A specification of what constitutes legal communication in a give context. A protocol
specifies the format of legal messages, when they can be sent, what kind of reply is
expected, and so on.

pseudocode. Informal specification of algorithms, expressed in language that is closer to
English than an actual programming language, and usually without filling in every detail
of the procedure.

queue. A data structure consisting of a list of items, where items can only be added at one
end and removed at the opposite end of the list.

race condition. A source of possible errors in parallel programming, where one thread can
cause an error in another thread by changing some aspect of the state of the program
that the second thread is depending on (such as the value of variable).

RAM. Random Access Memory. This term is often used as a synonym for the main memory
of a computer. Technically, however, it means memory in which all locations are equally
accessible at any given time. The term also implies that data can be written to the
memory as well as read from it.

recursion. Defining something in terms of itself. In particular, a recursive subroutine is
one that calls itself, either directly, or indirectly through a chain of other subroutines.
Recursive algorithms work by reducing a complex problem into smaller problems which
can be solved either directly or by applying the same algorithm “recursively.”

RGB. A color system in which colors are specified by three numbers (in Java, integers in the
range 0 to 255) giving the red, green, and blue components of the color.

reference. Another term for “pointer.”

return type of a function. The type of value that is returned by that function.

reserved word. A sequence of characters that looks like an identifier but can’t be used as an
identifier because it has a special meaning in the language. For example, class, public,
and if are reserved words in Java.

resource. An image, sound, text, or other data file that is part of a program. Resource files
for Java programs are stored on the same class path where the compiled class files for
the program are stored.

robust program. A program is robust if it is not only correct, but also is capable of handling
errors such as a non-existent file or a failed network connection in a reasonable way.

set. A collection of objects which contains no duplicates. In Java, sets are represented by the
generic interface Set<T>

scope. The region in a program where the declaration of an identifier is valid.

semantics. Meaning. The semantics rules of a language determine the meaning of strings of
symbols (such as sentences or statements) in that language.

Glossary 745

sentinel value. A special value that marks the end of a sequence of data values, to indicate
the end of the data.

setter. An instance method in a class that is used to set the value of some property of that
class. Usually the property is just the value of some instance variable. By convention, a
setter is named setXyz() where xyz is the name of the property.

signature of a method. The name of the method, the number of formal parameters in its
definition, and the type of each formal parameter. Method signatures are the information
needed by a compiler to tell which method is being called by a given subroutine call
statement.

socket. An abstraction representing one end of a connection between two computers on a
network. A socket represents a logical connection between computer programs, not a
physical connection between computers.

stack. A data structure consisting of a list of items where items can only be added and removed
at one end of the list, which is known as the “top” of the stack. Adding an item to a
stack is called “pushing,” and removing an item is called “popping.” The term stack also
refers to the stack of activation records that is used to implement subroutine calls.

standard input. The standard source from which a program reads input data. It is represented
by the object System.in. Usually, standard input comes from text typed by the user, but
standard input can be “redirected” to read from another source, such as a file, instead.

standard output. The standard destination to which a program writes output text. It is
represented by the object System.out. Usually, standard output is displayed to the user,
but standard output can be “redirected” to write to another destination, such as a file,
instead. There is also an object System.err that is meant for writing error messages.

state machine. A model of computation where an abstract “machine” can be in any of some
finite set of different states. The behavior of the machine depends on its state, and the
state can change in response to inputs or events. The basic logical structure of a GUI
program can often be represented as a state machine.

step-wise refinement. A technique for developing an algorithm by starting with a general
outline of the procedure, often expressed in pseudocode, and then gradually filling in the
details.

stream. An abstraction representing a source of input data or a destination for output data.
Java has four basic stream classes representing input and output of character and binary
data. These classes form the foundation for Java’s input/output API.

source code. Text written in a high-level programming language, which must be translated
into a machine language such as Java bytecode before it can be executed by a computer.

subclass. A class that extends another class, directly or indirectly, and therefore inherits its
data and behaviors. The first class is said to be a subclass of the second.

subroutine. A sequence of program instructions that have been grouped together and given a
name. The name can then be used to “call” the subroutine. Subroutines are also called
methods in the context of object-oriented programming.

subroutine call statement. A statement in a program that calls a subroutine. When a
subroutine call statement is executed, the computer executes the code that is inside the
subroutine.

super. A special variable, automatically defined in any instance method, that refers to the
object that contains the method, but considered as belonging to the superclass of the class

Glossary 746

in which the method definition occurs. super gives access to members of the superclass
that are hidden by members of the same name in the subclass.

syntax. Grammar. The syntax rules of a language determine what strings of symbols are
legal—that is, grammatical—in that language.

TCP/IP. Protocols that are used for network communication on the Internet.

this. A special variable, automatically defined in any instance method, that refers to the object
that contains the method.

thread. An abstraction representing a sequence of instructions to be executed one after the
other. It is possible for a computer to execute several threads in parallel.

thread pool. A collection of “worker threads” that are available to perform tasks. As tasks
become available, they are assigned to threads in the pool. A thread pool is often used
with a blocking queue that holds the tasks.

top-down design. An approach to software design in which you start with the problems, as a
whole, subdivide it into smaller problems, divide those into even smaller problems, and
so on, until you get to problems that can be solved directly.

type. Specifies some specific kind of data values. For example, the type int specifies integer
data values that can be represented as 32-bit binary numbers. In Java, a type can be
a primitive type, a class names, or an interface name. Type names are used to specify
the types of variables, of dummy parameters in subroutines, and of return values of
subroutines.

type cast. Forces the conversion of a value of one type into another type. For example, in
(int)(6*Math.random()), the (int) is a type-cast operation that converts the double

value (6*Math.random()) into an integer by discarding the fractional part of the real
number.

Unicode. A way of encoding characters as binary numbers. The Unicode character set includes
characters used in many languages, not just English. Unicode is the character set that is
used internally by Java.

URL. Universal Resource Locator; an address for a resource on the Internet, such as a web
page.

variable. A named memory location (or sequence of locations) that can be used to store
data. A variable is created in a program, and a name is assigned to the variable, in a
variable declaration statement. The name can then be used in that program to refer
to the memory location, or to the data stored in that memory location, depending on
context. In Java, a variable has a type, which specifies what kind of data it can hold.

wrapper class. A class such as Double or Integer that makes it possible to “wrap” a primitive
type value in an object belonging to the wrapper class. This allows primitive type
values to be used in contexts were objects are required, such as with the Java Collection
Framework.

XML. eXtensible Markup Language. A very common and well-supported standard syntax for
creating text-based data-representation languages.

	Preface
	1 The Mental Landscape
	1.1 Machine Language
	1.2 Asynchronous Events
	1.3 The Java Virtual Machine
	1.4 Building Blocks of Programs
	1.5 Object-oriented Programming
	1.6 The Modern User Interface
	1.7 The Internet and Beyond
	Quiz on Chapter 1

	2 Names and Things
	2.1 The Basic Java Application
	2.2 Variables and Types
	2.2.1 Variables
	2.2.2 Types
	2.2.3 Literals
	2.2.4 Strings and String Literals
	2.2.5 Variables in Programs

	2.3 Objects and Subroutines
	2.3.1 Built-in Subroutines and Functions
	2.3.2 Classes and Objects
	2.3.3 Operations on Strings
	2.3.4 Introduction to Enums

	2.4 Text Input and Output
	2.4.1 Basic Output and Formatted Output
	2.4.2 A First Text Input Example
	2.4.3 Basic TextIO Input Functions
	2.4.4 Introduction to File I/O
	2.4.5 Other TextIO Features
	2.4.6 Using Scanner for Input

	2.5 Details of Expressions
	2.5.1 Arithmetic Operators
	2.5.2 Increment and Decrement
	2.5.3 Relational Operators
	2.5.4 Boolean Operators
	2.5.5 Conditional Operator
	2.5.6 Assignment Operators and Type Conversion
	2.5.7 Precedence Rules

	2.6 Programming Environments
	2.6.1 Java Development Kit
	2.6.2 Command Line Environment
	2.6.3 Eclipse
	2.6.4 NetBeans
	2.6.5 BlueJ
	2.6.6 The Problem of Packages

	Exercises for Chapter 2
	Quiz on Chapter 2

	3 Control
	3.1 Blocks, Loops, and Branches
	3.1.1 Blocks
	3.1.2 The Basic While Loop
	3.1.3 The Basic If Statement
	3.1.4 Definite Assignment

	3.2 Algorithm Development
	3.2.1 Pseudocode and Stepwise Refinement
	3.2.2 The 3N+1 Problem
	3.2.3 Coding, Testing, Debugging

	3.3 while and do..while
	3.3.1 The while Statement
	3.3.2 The do..while Statement
	3.3.3 break and continue

	3.4 The for Statement
	3.4.1 For Loops
	3.4.2 Example: Counting Divisors
	3.4.3 Nested for Loops

	3.5 The if Statement
	3.5.1 The Dangling else Problem
	3.5.2 Multiway Branching
	3.5.3 If Statement Examples
	3.5.4 The Empty Statement

	3.6 The switch Statement
	3.6.1 The Basic switch Statement
	3.6.2 Menus and switch Statements
	3.6.3 Enums in switch Statements
	3.6.4 Definite Assignment and switch Statements

	3.7 Exceptions and try..catch
	3.7.1 Exceptions
	3.7.2 try..catch
	3.7.3 Exceptions in TextIO

	3.8 Introduction to Arrays
	3.8.1 Creating and Using Arrays
	3.8.2 Arrays and For Loops
	3.8.3 Random Access
	3.8.4 Partially Full Arrays
	3.8.5 Two-dimensional Arrays

	3.9 GUI Programming
	3.9.1 Drawing Shapes
	3.9.2 Drawing in a Program
	3.9.3 Animation

	Exercises for Chapter 3
	Quiz on Chapter 3

	4 Subroutines
	4.1 Black Boxes
	4.2 Static Subroutines and Variables
	4.2.1 Subroutine Definitions
	4.2.2 Calling Subroutines
	4.2.3 Subroutines in Programs
	4.2.4 Member Variables

	4.3 Parameters
	4.3.1 Using Parameters
	4.3.2 Formal and Actual Parameters
	4.3.3 Overloading
	4.3.4 Subroutine Examples
	4.3.5 Array Parameters
	4.3.6 Command-line Arguments
	4.3.7 Throwing Exceptions
	4.3.8 Global and Local Variables

	4.4 Return Values
	4.4.1 The return statement
	4.4.2 Function Examples
	4.4.3 3N+1 Revisited

	4.5 APIs, Packages, and Javadoc
	4.5.1 Toolboxes
	4.5.2 Java's Standard Packages
	4.5.3 Using Classes from Packages
	4.5.4 Javadoc
	4.5.5 Static Import

	4.6 More on Program Design
	4.6.1 Preconditions and Postconditions
	4.6.2 A Design Example
	4.6.3 The Program

	4.7 The Truth About Declarations
	4.7.1 Initialization in Declarations
	4.7.2 Named Constants
	4.7.3 Naming and Scope Rules

	Exercises for Chapter 4
	Quiz on Chapter 4

	5 Objects and Classes
	5.1 Objects and Instance Methods
	5.1.1 Objects, Classes, and Instances
	5.1.2 Fundamentals of Objects
	5.1.3 Getters and Setters
	5.1.4 Arrays and Objects

	5.2 Constructors and Object Initialization
	5.2.1 Initializing Instance Variables
	5.2.2 Constructors
	5.2.3 Garbage Collection

	5.3 Programming with Objects
	5.3.1 Some Built-in Classes
	5.3.2 The class ``Object"
	5.3.3 Writing and Using a Class
	5.3.4 Object-oriented Analysis and Design

	5.4 Programming Example: Card, Hand, Deck
	5.4.1 Designing the classes
	5.4.2 The Card Class
	5.4.3 Example: A Simple Card Game

	5.5 Inheritance and Polymorphism
	5.5.1 Extending Existing Classes
	5.5.2 Inheritance and Class Hierarchy
	5.5.3 Example: Vehicles
	5.5.4 Polymorphism
	5.5.5 Abstract Classes

	5.6 this and super
	5.6.1 The Special Variable this
	5.6.2 The Special Variable super
	5.6.3 super and this As Constructors

	5.7 Interfaces
	5.7.1 Defining and Implementing Interfaces
	5.7.2 Interfaces as Types
	5.7.3 Interfaces in Java 8

	5.8 Nested Classes
	5.8.1 Static Nested Classes
	5.8.2 Inner Classes
	5.8.3 Anonymous Inner Classes
	5.8.4 Java 8 Lambda Expressions

	Exercises for Chapter 5
	Quiz on Chapter 5

	6 Introduction to GUI Programming
	6.1 The Basic GUI Application
	6.1.1 JFrame and JPanel
	6.1.2 Components and Layout
	6.1.3 Events and Listeners
	6.1.4 Some Java GUI History

	6.2 Graphics and Painting
	6.2.1 Coordinates
	6.2.2 Colors
	6.2.3 Fonts
	6.2.4 Shapes
	6.2.5 Graphics2D
	6.2.6 An Example
	6.2.7 Where is main()?

	6.3 Mouse Events
	6.3.1 Event Handling
	6.3.2 MouseEvent and MouseListener
	6.3.3 MouseEvent Data
	6.3.4 MouseMotionListeners and Dragging
	6.3.5 Anonymous Event Handlers

	6.4 Timers, KeyEvents, and State Machines
	6.4.1 Timers and Animation
	6.4.2 Keyboard Events
	6.4.3 Focus Events
	6.4.4 State Machines

	6.5 Basic Components
	6.5.1 JButton
	6.5.2 JLabel
	6.5.3 JCheckBox
	6.5.4 JTextField and JTextArea
	6.5.5 JSlider

	6.6 Basic Layout
	6.6.1 Basic Layout Managers
	6.6.2 Borders
	6.6.3 SliderAndButtonDemo
	6.6.4 A Simple Calculator
	6.6.5 Using a null Layout
	6.6.6 A Little Card Game

	6.7 Menus and Dialogs
	6.7.1 Menus and Menubars
	6.7.2 Dialogs
	6.7.3 Fine Points of Frames
	6.7.4 Creating Jar Files

	Exercises for Chapter 6
	Quiz on Chapter 6

	7 Arrays and ArrayLists
	7.1 Array Details
	7.1.1 For-each Loops
	7.1.2 Variable Arity Methods
	7.1.3 Array Literals

	7.2 Array Processing
	7.2.1 Some Processing Examples
	7.2.2 Some Standard Array Methods
	7.2.3 RandomStrings Revisited
	7.2.4 Dynamic Arrays

	7.3 ArrayList
	7.3.1 ArrayList and Parameterized Types
	7.3.2 Wrapper Classes
	7.3.3 Programming With ArrayList
	7.3.4 Vectors

	7.4 Searching and Sorting
	7.4.1 Searching
	7.4.2 Association Lists
	7.4.3 Insertion Sort
	7.4.4 Selection Sort
	7.4.5 Unsorting

	7.5 Two-dimensional Arrays
	7.5.1 The Truth About 2D Arrays
	7.5.2 Conway's Game Of Life
	7.5.3 Checkers

	Exercises for Chapter 7
	Quiz on Chapter 7

	8 Correctness, Robustness, Efficiency
	8.1 Introduction to Correctness and Robustness
	8.1.1 Horror Stories
	8.1.2 Java to the Rescue
	8.1.3 Problems Remain in Java

	8.2 Writing Correct Programs
	8.2.1 Provably Correct Programs
	8.2.2 Robust Handling of Input

	8.3 Exceptions and try..catch
	8.3.1 Exceptions and Exception Classes
	8.3.2 The try Statement
	8.3.3 Throwing Exceptions
	8.3.4 Mandatory Exception Handling
	8.3.5 Programming with Exceptions

	8.4 Assertions and Annotations
	8.4.1 Assertions
	8.4.2 Annotations

	8.5 Analysis of Algorithms
	Exercises for Chapter 8
	Quiz on Chapter 8

	9 Linked Data Structures and Recursion
	9.1 Recursion
	9.1.1 Recursive Binary Search
	9.1.2 Towers of Hanoi
	9.1.3 A Recursive Sorting Algorithm
	9.1.4 Blob Counting

	9.2 Linked Data Structures
	9.2.1 Recursive Linking
	9.2.2 Linked Lists
	9.2.3 Basic Linked List Processing
	9.2.4 Inserting into a Linked List
	9.2.5 Deleting from a Linked List

	9.3 Stacks, Queues, and ADTs
	9.3.1 Stacks
	9.3.2 Queues
	9.3.3 Postfix Expressions

	9.4 Binary Trees
	9.4.1 Tree Traversal
	9.4.2 Binary Sort Trees
	9.4.3 Expression Trees

	9.5 A Simple Recursive Descent Parser
	9.5.1 Backus-Naur Form
	9.5.2 Recursive Descent Parsing
	9.5.3 Building an Expression Tree

	Exercises for Chapter 9
	Quiz on Chapter 9

	10 Generic Programming and Collection Classes
	10.1 Generic Programming
	10.1.1 Generic Programming in Smalltalk
	10.1.2 Generic Programming in C++
	10.1.3 Generic Programming in Java
	10.1.4 The Java Collection Framework
	10.1.5 Iterators and for-each Loops
	10.1.6 Equality and Comparison
	10.1.7 Generics and Wrapper Classes

	10.2 Lists and Sets
	10.2.1 ArrayList and LinkedList
	10.2.2 Sorting
	10.2.3 TreeSet and HashSet
	10.2.4 EnumSet
	10.2.5 Priority Queues

	10.3 Maps
	10.3.1 The Map Interface
	10.3.2 Views, SubSets, and SubMaps
	10.3.3 Hash Tables and Hash Codes

	10.4 Programming with the JFC
	10.4.1 Symbol Tables
	10.4.2 Sets Inside a Map
	10.4.3 Using a Comparator
	10.4.4 Word Counting

	10.5 Writing Generic Classes and Methods
	10.5.1 Simple Generic Classes
	10.5.2 Simple Generic Methods
	10.5.3 Type Wildcards
	10.5.4 Bounded Types

	Exercises for Chapter 10
	Quiz on Chapter 10

	11 Streams, Files, and Networking
	11.1 Streams, Readers, and Writers
	11.1.1 Character and Byte Streams
	11.1.2 PrintWriter
	11.1.3 Data Streams
	11.1.4 Reading Text
	11.1.5 The Scanner Class
	11.1.6 Serialized Object I/O

	11.2 Files
	11.2.1 Reading and Writing Files
	11.2.2 Files and Directories
	11.2.3 File Dialog Boxes

	11.3 Programming With Files
	11.3.1 Copying a File
	11.3.2 Persistent Data
	11.3.3 Files in GUI Programs
	11.3.4 Storing Objects in Files

	11.4 Networking
	11.4.1 URLs and URLConnections
	11.4.2 TCP/IP and Client/Server
	11.4.3 Sockets in Java
	11.4.4 A Trivial Client/Server
	11.4.5 A Simple Network Chat

	11.5 A Brief Introduction to XML
	11.5.1 Basic XML Syntax
	11.5.2 Working With the DOM

	Exercises for Chapter 11
	Quiz on Chapter 11

	12 Threads and Multiprocessing
	12.1 Introduction to Threads
	12.1.1 Creating and Running Threads
	12.1.2 Operations on Threads
	12.1.3 Mutual Exclusion with ``synchronized"
	12.1.4 Volatile Variables

	12.2 Programming with Threads
	12.2.1 Threads Versus Timers
	12.2.2 Recursion in a Thread
	12.2.3 Threads for Background Computation
	12.2.4 Threads for Multiprocessing
	12.2.5 The SwingUtilities Approach

	12.3 Threads and Parallel Processing
	12.3.1 Problem Decomposition
	12.3.2 Thread Pools and Task Queues
	12.3.3 Producer/Consumer and Blocking Queues
	12.3.4 Wait and Notify

	12.4 Threads and Networking
	12.4.1 The Blocking I/O Problem
	12.4.2 An Asynchronous Network Chat Program
	12.4.3 A Threaded Network Server
	12.4.4 Using a Thread Pool
	12.4.5 Distributed Computing

	12.5 Network Programming Example
	12.5.1 The Netgame Framework
	12.5.2 A Simple Chat Room
	12.5.3 A Networked TicTacToe Game
	12.5.4 A Networked Poker Game

	Exercises for Chapter 12
	Quiz on Chapter 12

	13 Advanced GUI Programming
	13.1 Images and Resources
	13.1.1 Images and BufferedImages
	13.1.2 Working With Pixels
	13.1.3 Resources
	13.1.4 Cursors and Icons
	13.1.5 Image File I/O

	13.2 Fancier Graphics
	13.2.1 Measuring Text
	13.2.2 Transparency
	13.2.3 Antialiasing
	13.2.4 Strokes and Paints
	13.2.5 Transforms and Shapes

	13.3 Actions and Buttons
	13.3.1 Action and AbstractAction
	13.3.2 Icons on Buttons
	13.3.3 Making Choices
	13.3.4 Toolbars
	13.3.5 Keyboard Accelerators
	13.3.6 HTML on Buttons

	13.4 Complex Components and MVC
	13.4.1 Model-View-Controller
	13.4.2 Lists and ListModels
	13.4.3 Tables and TableModels
	13.4.4 Documents and Editors
	13.4.5 Custom Components

	13.5 Finishing Touches
	13.5.1 The Mandelbrot Set
	13.5.2 Design of the Program
	13.5.3 Internationalization
	13.5.4 Events, Events, Events
	13.5.5 Custom Dialogs
	13.5.6 Preferences

	Exercises for Chapter 13
	Quiz on Chapter 13

	Appendix: Source Files
	Glossary

