A Brief History of the field of VLSI

InstructorS. Demlow ECE 410
J a nuary 9, 2012

The First Transistor

in 1947 J ohn Bardeen and Walter Bratta in built the first functioning point contact transistor at Bell Labs

First Tra nsistor (Bell Labs)

First IC (Texas Instruments)

Complementary Metal Oxide Semic onductor

- In 1959, Dawon Kahng and Martin M. (J ohn) Atalla at Bell Labsinvented the metal-oxidesemic onduc tor field-effect tra nsistor (M O SFET) as an offshoot to the patented FETdesign.
- The method of coupling two complementary MOSFETS (P-channel and N-channel) into one high/low switch, known as CMOS, means that digital circ uits dissipate very little power except when actually switc hed.
- As the number of transistors perchip increased, the idle powerconsumption of BJ Ts (which have other advantagesover MOSFEIS) made CMOS the dominant technology

1970s - nMOS Technology Intel 1101 SRAM - 256 bit static random access memory and 4004 4-bit mic roprocessor

(a)

(b)

FIGURE 1.3 (a) Intel 1101 SRAM (© IEEE 1967 [Vadasz69]) and (b) 4004 microprocessor (Reprinted with permission of Intel Corporation.)

Neil H.E. Weste and David Money Ha mis CMOS VLSI Design $4^{\text {th }}$ ed.

How were ICsdesigned before

 computer tools?

Layers were hand drawn, checked with magnifying glasses, manually checked for design rules and layout vs. schematic checks. The finallayout was cut out of rubylith, and painstakingly checked for peeling and cutting errors. The first Intel product, the 3101 64-bit RAM was actually a 63-bit RAM due to a peeling error

VLSI - "Very Large Scale Integration"

Small Scale Integration (SSI) ~ 10 gates

4049 Inverter

Medium Scale Integration (MSI)
~1000 gates

Intel 4004 4-bit Microprocessor

Very Large Scale Integration (VLSI) - This naming convention has become a hassle. Let's just call everything with more transistors "VLSI."

Moore's Law

The transistor count doubles every 18 months

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Stea dy M inia turiza tion

- Compound annual growth rate of 53% for over 50 years
- No other tec hnology in history has susta ined such a high growth rate for so long
- How is it possible? No tradeoff in performance, power and price:
- Astransistors get smaller, they also get faster, dissipate less power, and are cheaper to manufacture
- The only question is: how small can they get?

Concem 1 - "The PowerWall"

- Enormous numbers of gates- switching incredibly fast - even with low consumption power (and heat) become majordesign issues.
- Especially as transistors get smaller - harder to get a complete OFF leakage currents make it worse

Concem 2 atomic size

- Ultimate minimum feature size may be determined by atomic spacing - in Si the lattice constant is $\sim 0.5 \mathrm{~nm}$.

The future - 22nm and beyond

3rd Generation lvy Bridge

- Intel's next generation, made in 22 nm fab, will hit stores around April
- The "3D" transistor redesign that has made 22 nm and 14 nm processes possible
- How small is possible? The future is in your hands

